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Summary 

The purpose of this report is to provide a resource that characterizes and 
summarizes relationships between observable measures of human physiology and 
behavior with unobservable mental states, to support multimodal inference 
informed by those relationships. By taking this approach, we argue it is possible to 
generate mutually informed estimates of those unobservable states and improve 
predictions of interactions between humans and autonomous counterparts. This will 
enable the capability to more accurately predict joint decision-making, which is 
needed to identify and initiate appropriate state-based interventions for effective 
and appropriate human‒autonomy teaming. This directly supports the US Army 
Combat Capabilities Development Command Army Research Laboratory’s 
Human‒Autonomy Teaming Essential Research Program and the Next-Generation 
Combat Vehicle mission prioritization by supporting new techniques for predicting 
human states and behaviors related to decision-making.  

Within this context, various approaches, including machine learning and classical 
filtering and estimation techniques, are being explored as a means to estimate and 
predict human mental states that can inform effective human‒autonomy team 
interactions and performance. This view is motivated by the principle that in a 
human‒autonomy team, the human can, and often should, be thought of as a sensor 
that can provide critical information to the joint decision-making process, or as an 
element whose time-varying state should be considered to optimize team 
performance and resilience. Understanding fluctuations in human state are 
important because they provide continuous insight into the processes that drive their 
interactions with teammates. This also builds on previous research utilizing 
wearable sensor technologies to infer underlying human states, such as stress, 
fatigue, workload, trust, and others, which can directly impact how human team 
members make decisions as they interact with autonomous technologies.  

Here, we look at how employing a priori knowledge of these relationships can 
constrain models and be used to empirically fit optimal, interpretable, and plausible 
predictions to physiological and behavioral data when multiple sensor modalities 
are available. This allows us to use multiple human-derived signals to better model 
their relationships to a common set of mental states, rather than approaches that aim 
to estimate those states from a single modality in isolation. The ability to leverage 
information from multiple observable sensor sources allows us to more robustly 
infer unobservable latent states, which are informed and constrained by domain 
knowledge. This approach can provide more reliable and interpretable estimates of 
states that impact the resultant interactions with autonomous teammates, which we 
aim to improve. Therefore, this report collects and synthesizes the informative 
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relationships between various human-centric sensor modalities and the mental 
states that impact teaming. The focus on characterizing these relationships for a set 
of wearable, noninvasive sensing mechanisms supports Army goals of fieldable 
methods for real-time Soldier state estimation to dynamically manage interactions 
in human‒autonomy teams. 
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1. Introduction 

Current Army missions are characterized by an increased reliance on automation to 
extend human capabilities, creating a growing need to understand the decisions that 
impact human‒autonomy interactions. A gap exists in current technologies for 
explicitly modeling and predicting the psychological mechanisms that drive this 
interaction, making optimal integration of human‒autonomy teams difficult. 
Human assessments that combine wearable technologies with advanced analytics 
can provide a deeper understanding of an individual’s psychophysiological 
responses, including predictions of their resultant actions (Gremillion et al. 2018; 
Marathe et al. 2020). These responses can be used to characterize their interaction 
with autonomous technology and provide quantifiable data that can be used to 
assess teaming processes. This is important because human‒autonomy teams are 
steadily evolving from user–tool relationships to that of teammates. Increasingly 
social, fluid, and naturalistic interactions are needed, whereby coordinated actions 
and joint decisions made by humans and autonomous counterparts (software 
systems or embodied robots) require the maintenance of shared mental models and 
real-time shared situation awareness of both the task and other team members 
(Phillips et al. 2011).  

As such, advances in wearable devices have enabled the tracking of a wide range 
of factors including activity, sleep patterns, and various physiological response 
(Bonato 2010). These characteristic quantities can provide critical insight into 
factors that influence the human‒autonomy joint decision-making process, such as 
fatigue, stress, workload, vigilance, and trust. While the process of effectively 
integrating a human as a sensor to better predict joint human‒autonomy decision-
making is a relatively new field of study, this report argues for the use of 
psychophysiological signals to enabling multimodal sensor fusion, improved 
algorithms for assessing human state, and a cue mechanism for adapting and 
managing team interactions. This report motivates the approach of multimodal 
human-centric sensing to improve human‒autonomy interactions (Section 1), 
outlines the metrics used in human state estimation (Section 2), describes specific 
physiological and behavioral sensing modalities that can be leveraged to that end 
(Section 3), and discusses the specific latent states deemed especially relevant to 
decision-making within this context (Section 4).  

1.1 Using Physiological Signals to Manage Human‒Autonomy 
Team Interactions  

Advances in autonomous technologies have been designed to improve performance 
of the human operator by creating a less stressful, more effective working 
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environment, which include functionalities of autonomous technologies that are 
adaptive to the human user (Desmond and Hancock 2001). Thus, the goal of 
teaming with autonomous systems is to relieve the human of tasks that are tedious; 
taxing on their mental, cognitive, or physical state; or not suited to their relative 
strengths. As such, many researchers have suggested that task modes, levels of 
autonomy, or control authority be automatically varied based on changes in the 
real-time state of the human (Parasuraman et al. 1992; Scerbo 1996; Metcalfe et al. 
2017; Gremillion et al. 2018). For example, physiological signals that reflect 
changes in autonomic function (and presumably workload, stress, or arousal) could 
serve as a trigger for adaptive task allocation, to offload tasks to available 
teammates, when these signals are above or below desirable performance and 
decision-making thresholds (Morrison and Gluckman 1994; Byrne and 
Parasuraman 1996; Kramer et al. 1996). Here, physiological states may signify a 
precursor to maladaptive decision-making or performance impairments, which 
could be used to provide a notification, warning, or alert; a change in teammate 
communication or behavior; or an adjustment to the level of autonomy accordingly.  

Although the advancements of autonomous systems have been widely documented, 
there are particular concerns to be considered when forming human‒autonomy 
teams, especially in Army-relevant domains. First, autonomous systems may 
induce complacency or poorly calibrated expectations about the capabilities of 
those systems and increase the likelihood of the human to over- or under-rely on 
them. Second, these technological advancements may therefore produce minimally 
beneficial or even detrimental effects if the human team member does not have an 
appropriate level of trust in the system. Third, autonomous systems may interact 
with individual differences of their human teammates to produce highly variable 
changes in physiological responses and behaviors relating to the use of those 
system. Therefore, to effectively manage interactions in a human‒autonomy team, 
it is crucial to model the real-time dynamics of the human team member’s mental 
states associated with decision-making and understand their impact on those 
interactions. 

1.2 Assessing Human State  

To accomplish the aforementioned task, it is essential to employ metrics that 
continually gauge critical human team member states to inform the necessary 
configurations, actions, or interventions to encourage appropriate teaming. Here, 
state estimation may be enhanced by developing algorithms that integrate 
information from multiple sensors, which can include both noninvasive 
technologies relating to computer vision approaches and wearable sensors capable 
of measuring physiological responses (Sahayadhas et al. 2013). Given that different 
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state indices are not always highly correlated, this appears to be a well-founded 
strategy; however, before discussing the importance of state mapping, it is 
important to define what is meant by state.  

In terms of classical state space modeling, system states refer to the set of variables 
that sufficiently characterize the dynamics of a system with respect to its input–
output behavior (Dukkipati 2006). For example, an embodied robotic system’s 
physical state might often be sufficiently represented by its position and orientation, 
and perhaps some number of temporal derivatives of these variables. Similarly, 
system inputs, such as an exogenous force, describe external quantities that alter 
the propagation of that state over time (i.e., the system dynamics, which is 
represented by changes in the state, for example, the robot’s position, orientation, 
and velocities). The states may then manifest observable system outputs via 
transduced measurements (e.g., the robot’s gyroscope or accelerometer signals), 
which provide observable indicators of the system state. It should be noted that the 
state is not necessarily fully observed in the outputs but does necessarily capture, 
in observable and latent variables, the quantities needed to propagate the system 
forward in time.  

Similarly for a human interacting with a teammate, whether human or autonomous 
agent, we argue that the relationship between the external stimuli they experience 
and the resulting output behavioral and physiological responses are governed by 
psychological processes that can be modeled and expressed in terms of a discrete 
set of latent states that represent abstract mental, emotional, and cognitive features 
(e.g., fatigue, stress, workload, and trust). Thus, we purport that these states are 
driven by external features of the environment and task stimuli and can be deduced 
from real-time physiological and behavioral measures. This is in line with research 
on task-induced states, which suggest that factors like stress, fatigue, workload, and 
trust predominantly moderate how humans appraise and cope with tasks demands 
in performance-based settings (Matthews et al. 2012b).  

1.3 State Modeling, Estimation, and Prediction 

Given the complex relationship between external environmental stimuli and the 
physiological and behavioral response of the human, a promising approach to 
model this relationship is to use fully data-driven methods for generalized function 
approximation, such as neural networks, to predict resultant responses from a 
relatively large set of measurable quantities. Such approaches are powerful tools 
for identifying nonlinear mappings from inputs to outputs, particularly in deep 
neural networks that incorporate multiple layers and many internal states (i.e., 
nodes). Applying these techniques successfully assumes access to a sufficiently 
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large and often well-labeled data set in order to robustly fit the parameters (i.e., 
weights) of the network. In some applications, particularly in highly complex and 
variable circumstances, such as military operations, acquiring a sufficient amount 
of data can be intractable. Further, these models generally do not produce statistical 
measures of uncertainty or interpretable results, as the source of predictions are 
obscured by the complex internal activation state. This characteristic can make 
diagnosis, validation, and verification of the outputs of these models challenging. 

In cases where the limitations of machine learning models (e.g., limited 
explainability and large data volume requirements) are prohibitive in generating 
useful or predictive models, approaches that use domain knowledge to constrain 
the model structure and complexity to a greater degree are an attractive approach. 
Utilizing well-characterized relationships among latent mental, emotional, and 
cognitive states and measurable physiological and behavioral features provides a 
pathway to design more compact and interpretable models whose structure is well 
supported by established literature. This approach can compensate for the loss of 
prediction accuracy that generally results from more simplified models. By 
encoding these relationships in the structure of the model, we can also make 
plausible claims about the internal human state at each moment in time with the 
goal of tracking their internal psychological dynamics and improving the prediction 
of their future behavior as part of a human‒autonomy team. Machine learning and 
data-driven methods can therefore leverage these known domain constraints and 
help mitigate these limitations. At the most basic level, the selection of learning 
approach and architecture (e.g., fully connected versus convolutional networks, or 
feedforward versus recurrent networks) can be informed by the fundamental 
processes that govern the relationships between input and output features.  

Several recent learning approaches may prove to be apt techniques for integrating 
psychophysiological domain knowledge to inform modeling and prediction of 
human decisions and actions to a greater degree. This may be is accomplished by 
constraining the internal structure or input-output relationships using this domain-
specific a priori information. For example, promising learning methods include 
constrained variational autoencoders or generative networks that have a compact, 
latent representation. This produces an intermediate network representation with 
elements that, unlike traditional autoencoders, are disentangled and can be 
independently varied to yield explainable and interpretable changes in the network 
outputs along recognizable dimensions (Chen et al. 2016; Higgins et al. 2017). 
What this suggests is that if the elements of this latent representation can be 
plausibly assigned to psychological state dimensions, possibly through semi-
supervised data labeling by a human expert, these pretrained models can be used to 
estimate psychological state by monitoring this latent layer subject to the observed 
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time-varying network inputs (i.e., environmental stimuli). Another nonparametric 
approach that shows promise in applying psychophysiological and behavioral 
domain knowledge is constrained variational inference (Unhelkar and Shah 2019). 
This technique constrains the human behavioral dynamics with known 
relationships between latent psychological states and physiological and behavioral 
measures as identified by sparse, semi-supervised labels provided by a human 
expert. This approach differs from neural network technique in that it utilizes a 
Markov model framework, allowing for Bayesian optimality in estimating these 
behavioral policies, and integrates sequences of observed outputs, which can 
provide greater explainability, temporal consistency, and data efficiency.  

Conversely to these nonparametric techniques, the application of first principles 
domain knowledge to directly define parametric system dynamics describing the 
human psychological processes may provide even greater benefits in terms of data 
efficiency and explainability. The use of traditional dynamic systems representation 
and recursive inference are also promising approaches to leveraging prior domain 
knowledge for modeling and estimating the human’s latent mental states from 
observable measures (i.e., physiology and behavior). Dynamic systems allow for 
compact and interpretable representation of the unobservable state of the human. 
This representation defines the relationships among input, output, and state 
variables in the form of mathematical functions, typically state-space differential 
equations. Again, these dynamical equations define the temporal processes that 
govern forward propagation of the human state in time. The specification of these 
variables and their associated functional relationships does require potentially 
challenging a priori design, which entails a greater modeling effort than is typical 
in more generalized machine learning approaches. However, it allows for directly 
specifying plausible relationships and constraints based on existing domain 
knowledge. Assuming that a set of input, output, and state variables can be defined, 
there does exist an extensive set of system identification tools to empirically model 
the functional relationships among the variables (Keesman 2011; Nelles 2013). The 
use of compact, parameterized functional relationships also allows for flexibility to 
adapt to human variability through empirical fitting of those parameters with 
greater data efficiency than is possible with learned models that are less 
constrained. An additional benefit of using state-space dynamic models, is the 
ability to apply recursive inference techniques, which produce statistically optimal 
state estimates and compute levels of uncertainty in those estimated states (Simon 
2006). This characteristic also acts to continuously correct errors in the latent state 
estimate based on real-time measurements of several output quantities (i.e., 
physiological and behavioral features [Gremillion et al. 2018]).  
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Here, we suggest that a multimodal approach can more accurately inform those 
estimates by combining measurements of many such linkages to simultaneously 
and complementarily corroborate the human state. These characteristics also allow 
us to apply existing techniques for optimal model predictive control, which 
leverages forecasts of future system states, to more effectively mitigate or drive 
human behavior toward a desired outcome through feedback (Allgöwer and Zheng 
2012; Camacho and Alba 2013).  

Independent of the particular modeling approach used, we argue that estimation of 
explainable, latent psychological states by integrating measurements from several 
physiological and behavioral modalities (that are jointly related to those states) will 
produce more tractable, informative estimates to improve predictions of and 
interventions in human decisions and actions. To enable these approaches, it is 
critical that the robust multimodal relationships between latent states and 
physiological and behavioral measures be characterized to the extent that they are 
well established in previous literature. Therefore, the goal of this report is to collect 
and summarize this information in a form that is accessible to individuals applying 
these multimodal modeling and estimation techniques. 

2. Measures Used for Human State Estimation 

The following sections describe the various tools available for assessing human 
state, which include 1) subjective measures, 2) performance measures, and  
3) physiological measures and behavioral measures. The relationships outlined in 
these sections describe the links between various observable measures and 
unobservable states.  

2.1 Subjective Measures 

Traditional measures of human states have relied heavily on subjective ratings of 
individual affect and cognition. Typically, responses are recorded, via self-report 
questionnaires, both before and after a task to gauge changes in state such as 
changes in task-induced stress, fatigue, or trust. Several factors make 
questionnaires beneficial to researchers, including the low cost and ease of 
distribution, though there are some critical disadvantages. First, individuals may 
not always be able to accurately assess their thoughts and feelings, which can result 
in biased characterizations of their cognitive and affective state. Individual 
differences in motivation or other factors (i.e., compliance) may also affect the 
reliability of subjective responses (Thurman et al. 2018). Additionally, reporting on 
a potentially sensitive subject matter may hinder honest and forthcoming responses. 
Perhaps most important for state estimate and decision-making modeling is the fact 



 

7 

that questionnaires ask respondents to remember how they were thinking or feeling 
after the moment of interest has occurred, at a singular time point. This method of 
probing the human’s internal state, often collected after some significant time delay, 
provides only a sparse measure of state and can yield results that are biased by 
subjective experience and sensitive to artifacts of memory recall. Conversely, the 
use of noninvasive or wearable sensors for continuous, multimodal sensor fusion 
and estimation of human state is less susceptible to these limitations. 

2.2 Performance Measures 

In addition to self-reported data, performance measures can also be used to gauge 
changes in human state (e.g., an emergent fatigue response while performing a 
sustained attention task [Warm et al. 2008a, 2012]). In this context, much research 
has focused on what is referred to as the vigilance decrement, which is a 
psychological phenomenon that occurs during long periods of sustained attention 
and is characterized by a steep then steady decline in performance over time 
(Mackworth 1948; Matthews and Desmond 2001; Warm et al. 2008b). 
Additionally, the dynamic model of stress and sustained attention distinguishes 
between two qualitatively different fatigue states: active and passive fatigue 
(Desmond and Hancock 2001). Within this model, active fatigue is the result of 
sustained high workload tasks, which result in a depletion of cognitive resources. 
Conversely, passive fatigue is a product of low-workload, monotonous task 
environments (e.g., operating in an automated environment for an extended period 
of time) and results in lower levels of task engagement and a subjective withdrawal 
of task-related effort. Although each form of fatigue is elicited from different task 
parameters and result in qualitatively different states changes, both result in 
declines in performance. Declines in performance can also be measured in task 
paradigms that include a secondary task (e.g., a psychomotor vigilance task) to 
induce changes in workload, stress, or fatigue, which naturally detracts from the 
primary attention stream. In these cases, the individual will typically continue to 
apply effort to a primary task even after fatigue has set in (Mascord and Heath 
1992).  

Other performance metrics such as reaction time to standard and emergency events 
can also be gauged to infer specific human states such as passive and active fatigue 
(Saxby et al. 2008; Neubauer et al. 2012; Körber et al. 2015). In this context, several 
driving studies have had participants avoid collision with a vehicle that suddenly 
appeared from the side of the road moments after a driver had regained manual 
control of an automated vehicle. They found that this type of task resulted in 
different behavioral outcomes that were the result of a passive fatigue induction 
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(Saxby et al. 2008; Neubauer et al. 2012). In cases such as these, state changes can 
adversely impact performance.  

Although useful for inferring changes in state, performance metrics first require a 
decrement to occur to conclude a change in state has actually happened (Matthews 
and Desmond 2002). Additionally, performance may suffer before individuals are 
cognitively aware of and can correct these deficits. Ideally, future metrics would be 
designed to detect harmful states and preemptively intervene before they result in 
a performance decrement or undesirable decision-making scenario. This would 
require the continuous, noninvasive assessment of largely unobservable states that 
drive human decision-making and behavioral outputs.  

2.3 Physiological Measures 

Methods of inferring unobservable (i.e., latent) states can be individualized to the 
specific response measures that are most informative to the specific context. For 
example, the fatigue state can be detected psychophysiologically (Wohleber et al. 
2016) through well-known metrics, such as increasing spectral power in the lower 
frequency bands of the electroencephalogram (EEG; Borghini et al. 2014) and the 
percentage of eye closure time (PERCLOS; Wierwille et al. 1994). Additionally, 
electrocardiogram (ECG) studies have utilized decreased heart rate (HR) as a 
measure of lower arousal, and hence, of fatigue (Borghini et al. 2014). Relatedly, 
large fluctuations in pupil diameter captured by the pupillary unrest index (PUI) 
have been shown to index sleepiness-related fatigue (Lüdtke et al. 1998). Thus, 
fusing two or more physiological modalities can provide corroborative information 
about the unknown psychological fatigue state in this context. Therefore, we can 
then leverage the findings of relevant psychophysiological literature such as this to 
inform a model that captures all of these effects and fuses them to more robustly 
estimate the states that they each aim to infer. 

However, the physiological responses that may be associated with underlying latent 
human states are only useful to the extent that they allow researchers to index a 
psychological process. Therefore, before describing the various methods available 
for human-state detection, a few limitations to this approach should be considered. 
Generally, it is thought that a person is anxious or stressed because they exhibit 
physiological activation, are fatigued or inattentive due to diminished activation, 
surprised because they show a startle response, and so on. However, it cannot be 
definitively concluded that a psychological state has been detected simply because 
a physiological response, previously found to vary as a function of psychological 
processing or a latent state, has been observed. Therefore, a general framework for 
viewing the relationship between both psychological and physiological events is to 
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consider these two groups of events as representing independent sets or domains 
(e.g., a collection of elements who together are considered a whole), where all 
elements within the psychological set are assumed to have some sort of 
physiological representation (Cacioppo and Tassinary 1990; Cacioppo et al. 2000). 
More specifically, Cacioppo et al. (2007, p. 8‒9) have outlined several possible 
domain or set relationships between the psychological and physiological sets, 
which are as follows: 

1) “A one-to-one relation, such that an element in the psychological set is 
associated with one and only one element in the physiological set, and vice 
versa.  

2) A one-to-many relation, meaning that an element in the psychological 
domain is associated with a subset of elements in the physiological domain.  

3) A many-to-one relation, meaning that two or more psychological elements 
are associated with the same physiological element.  

4) A many-to-many relation, meaning two or more psychological elements are 
associated with the same (or an overlapping) subset of elements in the 
physiological domain.  

5) A null relation, meaning there is no association between an element in the 
psychological domain and that in the physiological domain.” 

Cacioppo and Tassinary (1990) suggest that only the first and third of these possible 
relationships allow for a robust specification for a psychophysiological relationship 
to be determined. Therefore, within the field of psychophysiology, one emphasis is 
on integrating multimodal data streams in order to illuminate latent psychological 
functions and mechanisms, rather than strict physiological structures per se. 
However, if a multimodal set of physiological measurements can be collected that 
have overlapping connections to a common set of psychological states, then the 
second and fourth of these relationships are able to provide valuable formation for 
inference of those states. The following sections discuss the utility of employing 
multimodal sensors to assess the relationship between specific physiological 
measures and their associated human states to identify the potential relationship 
these have on decision-making.  

3. Leveraging Multimodal Measures of Psychophysiology and 
Behavior: The Whole is More Than the Sum of Its Parts 

Individualized sensors, whether wearable or noninvasive, can reveal specific 
aspects of human cognition, emotion, and behavior. Such sensors are capable of 
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capturing, to name a few, eye behaviors, EEG signals in the brain, autonomic 
activity relating to HR, skin conductance, and even nonverbal behaviors, such as 
facial expressions. Given the complexity of human decision-making and the 
limitations associated with individual sensors, multimodal sensor fusion should 
increase robustness of the system in detecting relevant states. Here, two or more 
physiological or behavioral sensors may be combined to gain comprehensive 
insights into emotion, cognition, and decision-making. Overall, the goal of 
multimodal sensor fusion is to gather concurrent streams of physiological or 
behavioral data in real time to create a more comprehensive model of human 
psychology. 

Figure 1 illustrates the motivation to select the subsets of psychological states and 
physiological and behavioral outputs that can be effectively incorporated into a 
multimodal sensing and estimation framework. The relationships among these 
states and outputs are potentially many-to-many, meaning each psychological state 
is related to possibly many physiological and behavioral features, and any given 
physiological and behavioral feature is impacted by possibly many psychological 
states (Cacioppo and Tassinary 1990). Initially, this might seem to be problematic 
when trying to infer a single psychological quantity from a single modality of 
output. However, when taking a multimodal approach to inference that captures 
and accounts for these overlapping relationships, this can actually be favorable and 
yield a more robust inference of latent psychological states. Here, latent states that 
correlate to many features are well suited to applying a corroborative inference  
(Fig. 1, red), while output features that are impacted by many latent states (Fig. 1, 
blue) are highly informative to that inference and thus particularly valuable to 
collect. The expected benefit of the multimodal fusion approach is a more robust, 
convergent mapping from physiological parameters to the psychological state 
space. This figure also highlights the assumption that there are likely many more 
physiological and behavioral quantities that can be derived, which inform a 
relatively compact set of mental states. The relationships between the observable 
outputs and these latent states are often mediated by complex indirect processes 
and moderated by interaction effects, and thus are often characterized in the 
literature by coarse, correlative one-to-one relationships. Therefore, by capturing 
many-to-many sensor outputs that have such known correlative connections to a 
common set of states, it should be possible to partially account for this latent 
complexity and interaction effects, as well as noise, artifacts, and variability. 
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Fig. 1 Diagram illustrating notional connection between latent states and observable 
outputs 

There are substantial bodies of work for specific tasks that target relevant 
psychological states in relation to one specific modality of physiological 
measurement, but there has been less emphasis in synthesizing these findings across 
disciplines. The following subsections review some of the most promising 
physiological metrics and their known relationships to human states. As such, we 
propose employing models constrained or informed a priori by these relationships. 
Here, the latest domain knowledge can describe functional relationships between 
these states and outputs to maximally inform estimates of latent state when multiple 
measurement modalities are available. 

3.1 Electroencephalography 

One of the most widely used metrics in human state estimation research uses EEG 
techniques and event-related potential analysis to better understand brain dynamics 
(Prinzel et al. 2003). EEG is a noninvasive technique used to measure the electrical 
activity of the brain. Although it is subject to many potential sources of noise, 
filtering methods enable researchers to isolate and process signals from which 
information relating to task performance and stimulus exposure may be inferred. 
More importantly, EEG provides information about the intricate brain dynamics 
that are related to changes in engagement (arousal), motivation, and cognitive 
workload, with a high time resolution (Rozado and Dunser 2015). Additionally, 
frequency-based EEG techniques allow researchers to associate changes in specific 
frequency bands with various cognitive or affective states (Table 1).  
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Table 1 Common spectral bands associated with EEG measurement and corresponding 
changes in individual state 

EEG band Typical 
frequency 

Changes in band frequency associated with states 
and processes 

Delta 0.5‒3 Hz 
(amp 20‒60 µv) 

Fatigue and deep sleep, irregular and slow wave 
patterns, tumors, and abnormal brain behaviors; present 
during transition to drowsiness (Lal and Craig 2002) 

Theta 4‒8 Hz 
(amp 20‒100 µv) 

Pleasure/displeasure, drowsiness/fatigue (but not deep 
sleep); increases have been found in response to 
demands on working memory (Klimesch 1999); 
associated with meditative states, and low levels of 
alertness and decreased information processing (Lal and 
Craig 2002) 

Alpha 8‒12 Hz 
(amp 20‒60 µv) 

Memory activation and (potential) inhibitory functions 
(Klimesch 2012); visuospatial attention; appear at eye 
closure and decrease at eye opening (Tran et al. 2001; 
Kelly et al. 2006); generally suboptimal performance 
(phasic changes) (Goldman et al. 2002), or selective 
attention (Foxe and Snyder 2011); responsive to arousal 
and mental activity (Santamaria and Chiappa 1987; 
Tran et al. 2001)  

Beta (measured 
as alpha + 
theta) 

13‒22/30 Hz 
(amp 2‒20 µv) 

Motor control, mental thought and activity, working 
memory, increased arousal, alertness and engagement, 
and negative emotion (Güntekin and Başar 2010); sleep 
spindle frequency ~14 Hz. 

Gamma 36‒44 Hz 
(amp 3‒5 µv) 

Oscillations relate to cognitive processes, 
consciousness processes (e.g., conscious perception 
[Melloni et al. 2007; Doesburg et al. 2009]), memory 
processes (e.g., visual memory [Jerath et al. 2015]) and 
sudden changes in sensory stimuli. EEG recordings of 
gamma are highly sensitive to muscle noise (Whitham 
et al. 2007).  

*Some work suggests that gamma can be observed within other frequency bands (~160 Hz) and at a potentially 
higher resolution in recording technologies besides EEG (e.g., magnetic resonance spectroscopy, see Gaetz et 
al. [2011]). 

For example, within EEG research, the fatigue state has been found to be reliably 
associated with relative increases in slow wave activity (e.g., delta and theta waves) 
that are commonly experienced as increases in drowsiness and sleepiness, and are 
inversely related to cortical arousal (Lal and Craig 2002; Craig and Tran 2012). 
Cortical arousal has also been linked to the amplitude and frequency of the alpha 
rhythm (Golan and Neufield 1996), with high-amplitude, low-frequency activity 
associated with low cortical arousal, and low-amplitude high-frequency activity 
associated with high cortical arousal (Tran et al. 2001). Additionally, task 
engagement has also been found to be characterized by increases in beta activity, 
alpha blocking, and suppression in theta bands (Prinzel et al. 2003). Increases in 
alpha wave activity have also been found to be associated with decreases in the 

https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01204/full#B55
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level of the blood oxygenated signal within the occipital cortex, which in turn 
produce general performance impairments (Goldman et al. 2002). However, alpha 
band activity is also associated with selective attention. Attending to a specific 
region of space, sensory modality, or sensory feature can lead to increases in alpha 
activity in areas of the brain representing the unattended stimulus properties and a 
reduction in alpha activity in those representing the attended properties (Foxe and 
Snyder 2011). Additionally, there appears to be a reliable relationship between 
changes in alpha and theta bands. More specifically, these frequency bands tend to 
relate to one another inversely such that increasing task demands (associated with 
increases in theta) produce decreases in alpha wave activity for example (see  
Table 2 for full illustration of the alpha‒theta relationship). Finally, gamma 
frequencies have also been observed but it should be noted that they are also 
difficult to discern due to the fact that the scalp acts as a low-pass filter as well as 
artifact due to electromyogram (EMG) noise that is generated by facial muscle 
activity on or near an electrode. 

Table 2 Associated changes in alpha and theta power with respect to cognitive 
performance  

 Increases in cognitive 
performance 

Decreases in cognitive 
performance 

 Alpha power Theta power Alpha power Theta power 
Tonic change  Increases (+) Decreases (–) Decreases (–) Increases (+) 
Phasic change  
(subsecond – 
seconds) 

Decreases (–) Increases (+) Increases (+) Decreases (–) 

Note: Adapted from Klimesch (1999). 

If the goal of an adaptive autonomous system is to monitor human states and 
intervene when suboptimal changes in physiology are detected, it is necessary to 
understand what effective human performance looks like within a physiological 
signal. Here, any maladaptive changes within the EEG signal may occur before 
performance is impacted (Gevins et al. 1990). Within EEG research, qualitatively 
good performance (e.g., decreases in response time or increases engagement) are 
characterized by tonic increases in alpha and decreases in theta power; the opposite 
is found if looking at phasic event-related changes (see Table 2). Tonic changes 
refer to sensory inputs that produce event-related potential for the duration of 
stimulus in a manner, which is gradual during a longer timescale, whereas phasic 
changes adapt rapidly to a stimulus on a shorter timescale. 

Although much research has been dedicated to understanding and documenting the 
psychological states associated with changes in EEG frequency bands, there are 
several issues to consider when adopting this methodology (Klimesch 1999). First, 
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EEG is highly susceptible to noise or artifacts that can obscure and make it difficult 
to interpret the desired brain signals. Moreover, EEG signals can be impacted by 
several factors including the thickness of the skull and cerebral spinal fluid (CSF) 
volume, faulty equipment, electrode type and placement, age, baldness, 
electromagnetic interference (EMI) from nearby electronic equipment (e.g., 60 Hz 
line noise), muscle activity, and behavior, which produce a) electrical confounds in 
the signal (e.g., EMG), b) nonlinearities in the measurement system (electrode 
movement), and c) unwanted neural activity (e.g., something initiated muscle 
movement/activation [Jackson and Bolger 2014]). Furthermore, processing 
instructions, focusing on the task, and so on all produce measurable activity in the 
human brain, but that activity may not be the focus of a specific scientific 
experiment. Thus, the traditional indicator for quality of EEG data is to have a high 
signal-to-noise ratio (SNR) (Kappenman and Luck 2010). However, EEG has an 
inherently poor SNR due to an already small signal that is further attenuated by the 
issues noted previously. Noise and artifacts are often used interchangeably to 
describe a feature found in an EEG recording that was not a signal of interest. The 
term noise, however, is generally used to describe external influences on the signal, 
whereas the term artifact is more appropriately used to denote activity that is not 
the signal of interest but a necessary byproduct of the system. For example, eye 
blinks are a frequent source of artifacts in EEG measurement. Additionally, 
increases in alpha-band activity might reflect inattentiveness (Goldman et al. 2002), 
but it could also reflect an increase in selective attention (Foxe and Snyder 2011) 
necessary for expert performance, making data difficult to interpret. Thus, reported 
relationships between EEG measures and psychological state must be validated in 
a relevant task context before they may be considered reliable reporters of a 
psychological state. These artifacts make it more difficult to assess visually evoked 
neural activity.  

Second, many electrophysiological measures of state might be highly context- and 
task-dependent. For decades, neural signals have been characterized in 
impoverished lab environments, where the subjects perform a single, very 
controlled task to make it possible to elucidate underlying neural dynamics related 
to the study manipulation. These highly controlled studies are often necessary but 
make it difficult to translate findings into more realistic scenarios where the stimuli 
and tasks become much more complex (McDowell et al. 2013). For example, the 
highly characterized P300 neural waveform has been used to index attention. 
However, recent studies have found that this waveform is modulated by the state of 
the person such as whether they are seated or walking (Zink et al. 2016; Bradford 
et al. 2019; Ladouce et al. 2019). Quality EEG recordings have been made possible 
by advancements in biopotential measurements systems; however, these EEG 
recording systems have mostly been optimized for stationary, highly controlled 
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laboratory studies. Recently, EEG methods have been applied outside of laboratory 
settings in more realistic paradigms where artifacts are increased, further reducing 
the SNR (McDowell et al. 2013). For example, even allowing face, eye, and head 
movements can make it difficult to interpret the neural signal. As previously 
mentioned, sources of artifact include physiological (muscle and eye movements, 
sweat, etc.), EMI (line noise, other electrical devices, etc.), and movement of the 
electrode relative to the scalp (may occur due to head movement or whole-body 
movement of the person [Symeonidou et al. 2018]). Thus, advanced hardware and 
software solutions to mitigate and correct artifacts during these instances continue 
to make it possible to interpret neural signals even during whole-body movements, 
such as slow walking and reaching (Kerick et al. 2009; Bradford et al. 2016). 
Therefore, the degree to which a paradigm will induce artifacts in the EEG 
recording should be considered when deciding on including EEG in a sensor suite 
and choosing the appropriate hardware (Oliveira et al. 2016).  

3.2 Electrocardiogram 

A second physiological modality used in state estimation assesses changes in 
autonomic arousal and specifically cardiovascular reactivity. The cardiovascular 
system is under control of both the sympathetic and parasympathetic branches of 
the autonomic nervous system (ANS) with changes that have been linked to an 
individual’s level of arousal, anxiety, stress, and fatigue. These changes are 
primarily captured through an ECG signal, which is measured via electrodes 
attached to an individual’s chest, the surface of the skin, or limbs. Additionally, 
pulse oximetry, which measures the oxygen level of the blood (i.e., oxygen 
saturation), can be recorded from the fingertips and may be an important metric to 
gauge how much oxygen is being carried to the brain and other necessary organs or 
limbs required for decision-making and effective performance. More specifically, 
these methods are designed to capture a number of responses including blood 
pressure, pulse volume, HR, heart period, and heart-rate variability (HRV), to name 
a few. However, due to the requirements for robust, fieldable state estimation 
technologies in Army-relevant human‒autonomy teaming applications previously 
mentioned, we focus on the cardiovascular features of HR and HRV, as these 
appear to best satisfy those requirements. For a complete guide and further reading 
on all ECG measures mentioned, see the following resources (Task Force on Heart 
Rate Variability 1996; Berntson et al. 2007).  

Before discussing previous research regarding the relationship between 
cardiovascular reactivity and psychological states, it is imperative to first discuss 
general physiological processes as well as signal collection methods of the ECG 
signal. The ECG signal provides information about an individual’s cardiac cycle, 
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which can be extracted by examining the typical P, Q, R, S, and T waves of a normal 
ECG waveform (Fig. 2). The QRS waveform lasts approximately 80‒100 ms from 
the onset of the peak muscle action potential to the ventricular ejection period, 
which corresponds to the opening of the aortic valve. Further, the QT interval, 
which can range from 250‒500 ms, reflects the time from ventricular excitation to 
the return resting state. This portion of the ECG signal is dependent upon an 
individual’s HR, where higher HRs correspond to shorter QT intervals (Berntson 
et al. 2007). Finally, the amplitude of the T wave is sensitive to sympathetic 
activation; therefore, it has been proposed as a measure of sympathetic control. 

 

Fig. 2 Diagram of the general structure of the ECG signal, showing the P, Q, R, S, and T 
components as well as the PR, ST, QT, and QRS intervals (adapted from Berntson et al. 
[2007]) 

Although the entirety of the ECG waveform is informative, much of the work in 
fields, such as affective computing and neuroscience, focus on the “R-spike” within 
the typical QRS waveform due to the ease of detection. Additionally, the R-spike 
reflects the important event of electrical depolarization of the ventricles, which 
allows the aorta to provide blood to vital organs and the brain. The R-spike can be 
used to compute metrics such as HR (often expressed in terms of beats per minute 
[BPM]), analyzed via the temporal distance between R-spikes (i.e., the heart period 
or interbeat interval [IBI]). Note, HR and IBI are reciprocals of one another, 
meaning IBI can be converted to HR directly (Berntson et al. 2007). Although, 
these measures are reciprocal, they are not linearly related, as there does appear to 
be a linear relationship between changes in activity of the parasympathetic and 
sympathetic branches of the ANS and IBI, but not between the ANS branches and 
HR (Berntson et al. 2007).  
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While average HR may convey useful information such as BPM, more specific 
information about underlying autonomic mechanisms can be attained by looking at 
how HR varies beat-to-beat, known as HRV. When assessing HRV, two methods 
are typically employed and relate to time- and frequency-domain metrics. Time-
domain methods reflect the variance among heart periods or IBIs (for further 
reading, see Task Force on Heart Rate Variability [1996]). One of the easiest-to-
measure time-domain metrics is the standard deviation (SD) of the normal-to-
normal (NN) beat intervals (SDNN), which is generally derived over a fixed 
window of time such as 5 min or 24 h. Additionally, other highly inter-correlated, 
common metrics that are typically derived from HRV assessment include the root 
mean square of successive differences (RMSSD), the number of interval 
differences of successive NN intervals greater than 50 ms (NN50), and the 
proportion derived by dividing NN50 by the total number of NN intervals (pNN50). 
More specifically, the RMSSD measure is based on the variance of adjacent beat-
to-beat IBIs, is independent of baseline heart period, and has subsequently been 
applied as a measure of high-frequency heart period variability and respiratory 
sinus arrhythmia (Task Force on Heart Rate Variability 1996; Berntson et al. 2007). 
When developing a model structure for human state, it is essential to understand 
typical values associated with such measures. Therefore, Table 3 depicts meta-
analytic, average values of commonly used time- and frequency-domain HRV 
metrics. It can be assumed that values above or below two SDs beyond the average 
are indicative of a data artifact (Nunan et al. 2010). Additionally, when utilizing 
ECG metrics, it is important to understand that naturally occurring factors such as 
respiration, fine motor movements, and even the heart beat itself can produce 
artifacts in the ECG output; therefore, it may be necessary to combine ECG 
measures and other physiological modalities to improve artifact attenuation and 
signal decontamination, discussed in further detail later on.  
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Table 3 Meta-analytic summary of normal values and range for commonly used measures 
of HRV 

HRV 
measure 

Absolute value Log-transformed values 
Mean SD Median Range Mean SD Median Range 

mRR (ms) 926 90 933 785–1,160 n/a n/a n/a n/a 
SDNN 
(ms) 

50 16 51 32–93 3.82 0.23 3.71 3.57–4.07 

rMSSD 
(ms) 

42 15 42 19–75 3.49 0.26 3.26 3.26–3.41 

LF (ms2) 519 291 458 193–1,009 5.01 1.76 5.02 2.05–7.31 
LFnu 52 10 54 30–65 n/a n/a n/a n/a 
HF (ms2) 657 777 385 82–3,630 4.76 1.78 4.96 0.08–6.95 
HFnu 40 10 38 16–60 n/a n/a n/a n/a 
LF: HF 2.8 2.6 2.1 1.1–11.6 0.69 0.73 0.58 −0.16–1.98 

Note: Adapted from Nunan et al. (2010); n/a = not applicable; mRR = mean RR interval; LF = low-frequency 
spectral power; HF = high-frequency spectral power; LF:HF = ratio of low-frequency power to high-frequency 
power; nu = normalized unit. 
 
In addition to time-domain measures, ECG research also utilizes frequency-domain 
(spectral) analyses to assess the degree to which the ECG signal falls within one or 
more frequency bands (ranges). More specifically, much of the ECG research 
within this field has used the fast Fourier transform to analyze the HF and LF power 
spectral density (PSD) to distinguish between different states (Vicente et al. 2016). 
These methods decompose the overall IBI variance into specific frequency bands, 
which include high, low, very low, and ultra-low frequencies (see Berntson et al. 
[1997] and Heart Rate Variability Task Force [1996]). Table 4 depicts these 
frequency bands along with the typically accepted band range.  

Table 4  Average HF and LF spectral band constraint in the ECG 

Frequency  Corresponding activity 
Average spectral 
band constraint 

range 
HF Respiratory sinus 

arrhythmia/vagal 
(parasympathetic) control 

0.15‒0.4 Hz 

LF Sympathetic/parasympathetic* 
ANS/baroreflex 

0.04‒0.15 Hz 

Very low frequency (VLF) * 0.003‒0.04 Hz 
Ultra-low frequency (ULF) * 0.0‒0.003 Hz 

Note: * indicates a measure that has yielded mixed results and warrants further investigation. 
 
The HF band corresponds to respiratory sinus arrhythmia (RSA), an individual’s 
breathing cycle, exhibited as an increase in HR during inhalation and a decrease in 
HR during exhalation. RSA is apparent in both the sympathetic and 
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parasympathetic branches of the ANS and is generally considered to index cardiac 
vagal control. Consequently, the vagus nerve serves as the main nerve of the 
parasympathetic nervous system (i.e., vagal nerve activation). Therefore, cardiac 
vagal control should be viewed as an indicator of how efficiently self-regulatory 
resources are mobilized and used (Grossman et al. 1991; Berntson et al. 1993, 1994, 
1997; Grossman and Kollai 1993; Cacioppo and Berntson 1994). Additionally, the 
LF band is associated with sympathetic and parasympathetic activity of the ANS 
and the baroreflex (e.g., the mechanism responsible for controlling acute blood 
pressure changes via HR, vessel contractility, and peripheral resistance); therefore, 
anything that enhances sympathetic activation (e.g., exercise, arousal) should also 
elicit increases in the LF power of the spectral band. However, some claim that the 
LF also reflects parasympathetic activation as well (Berntson et al. 1997). Note that 
obtaining accurate measures of the LF bands requires somewhat longer recording 
times (i.e., a minimum of 4 min or more).  

In addition to the actual frequency band, of particular interest within HRV research 
is the variability of the LF/HF ratio. The ratio is considered to be indicative of 
sympathetic and parasympathetic autonomic balance. However, this finding is 
somewhat controversial and warrants further research (Eckberg 1997, 1998; 
Heathers 2014; Quintana and Heathers 2014). Here, it is assumed that the 
variability in the LF band is driven by both branches of the ANS. Therefore, an 
increase in sympathetic control would increase LF but not HF variability, thus 
reducing the index value (Berntson et al. 2007). Typically, PSD techniques support 
the use of the LF/HF ratio as a measure of drowsiness, where drowsiness without 
stress is typically reflected as high HF and low LF (i.e., a low LF/HF ratio) (Patel 
et al. 2011). Additionally, other studies assessing sleep-deprived subjects showed 
that as subjects became sleepy their LF component decreased, while the HF 
component increased (e.g., the LF/HF ratio decreased when subjects became sleepy 
[Vanlalchaka and Zonunmawii 2018]). However, there is some debate around 
utilizing this measure, as LF may uniquely reflect sympathetic regulation. The PSD 
band has also been further subdivided to include VLF and ULF. However, VLF and 
ULF are of debated origin and have not received much attention within 
psychophysiological research, as both stem from autonomic branches and are 
potentially influenced by slower endocrine influences related to temperature 
regulation and other basic homeostatic regulatory functions. There has been some 
work investigating the relationship between the “mid-frequency” band as a way to 
quantify mental workload and the baroreceptor function (Boucsein and Backs 2000; 
Van Roon et al. 2004).  

Within HRV research, much work has focused on changes in HRV as a reliable 
predictor of emotion regulation and suppression. Typical findings tend to show that 



 

20 

increases in HRV have been associated with increases in self-regulatory effort and 
emotion regulation, increased attentional control, and behavioral flexibility 
(Segerstrom and Nes 2007). Typically, an inverse relationship between HR and 
HRV is observed, as they relate to changes in human state (Table 5). For example, 
an increase in HR indicates a generally arousing state such as a stress or anxiety 
response, whereas an increase in HRV indicates a high fatigue state or increased 
emotion regulation (Wohlebler et al. 2018). In fact, O’Hanlon (1972) found that 
HRV increased in response to time on task, an indicator of a fatigue state, and 
consequently resulted in decreased performance and an apparent vigilance 
decrement, but then decreased when sudden events alerted drivers and gained their 
attention, also resulting in a slight increase in their HR.  

Table 5 Directional relationship between cardiovascular measures and emotional state 
variables 

Individual state or process 

Measure Arousal Emotion 
regulation 

Fatigue Stress Trust 

HR  Increase (+) * Decrease (-) Increase (+) Decrease (-) 
HRV Decrease (-) Increase (+) Increase (+) Decrease (-) Increase (+) 

Note: * indicates that a relationship is largely unknown or warrants further investigation. 
 
There are some key caveats associated with this particular modality. Mainly, the 
ECG signal does appear to reflect changes in RSA, which is also influenced by 
factors such as posture, movement, age, respiratory depth, and general fitness level 
of the individual. Therefore, it has been recommended that, at a minimum, 
respiratory measures be recorded and entered as a potential confound or covariate 
during analysis (Berntson et al. 2007). Additionally, the amount of cardiac change 
seen during an experimental manipulation can differ depending on the chosen 
metric, experimental manipulation, and baseline differences among individuals. 
Therefore, using the IBI measure, rather than HR, is recommended to more 
accurately interpret the data because it is not as susceptible to these influences 
(Berntson et al. 1995).  

3.3 Electrodermal Activity 

Psychophysiological activation can also be measured specifically through changes 
in electrodermal activity (EDA). According to Woodworth and Schlosberg (1954), 
EDA is “perhaps the most widely used index of activation” (p.137) and is 
essentially a sensitive, peripheral index of sympathetic nervous system activation. 
Measures of EDA monitor the skin’s electrical activity by measuring the amount of 
sweat that is secreted from the sweat glands that is generated by physiological or 
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emotional arousal when individuals are exposed to emotionally evocative stimuli. 
Here, an increase in sweat results in higher skin conductivity, which is typically 
expressed in units of microSiemens (μS). However, before continuing the 
discussion of EDA measures and their relation to psychophysiology, it is useful to 
outline the components of the EDA signal and appropriate metrics for assessment. 

The EDA signal includes 1) a general tonic level, which relates to the slower-acting 
background characteristics of the signal (referred to as skin conductance level 
[SCL]) and 2) the more specific and rapid phasic component (also referred to as a 
skin conductance response [SCR]), which results from sympathetic activity. 
Generally, the tonic level reflects changes in autonomic activation and general 
states of arousal or alertness, which are illustrated via the overall level of slow 
increases and decreases in skin conductance signal over time. The faster phasic 
component reflects the magnitude or degree of activation to a specific stimulus such 
as attentional processes and individual differences. However, this portion of the 
signal only makes up a small portion of the EDA complex. It appears that both 
signals are important and may rely on different neural mechanisms for activation 
(Nagai et al. 2004; Dawson et al. 2017).  

Typically, EDA methodology involves continuous measurement of the SCL, which 
tends to gradually decrease while individuals are at rest, rapidly increases when a 
novel stimulus is introduced, and then gradually decreases again when subjects are 
at rest or experience habituation (Dawson et al. 2017). Additionally, the 
presentation of a novel, personally significant, unexpected, or aversive stimulus 
will likely result in a SCR, referred to as a “specific” SCR. Conversely, if a SCR 
occurs in the absence of a stimulus, it is then referred to as a “spontaneous” or 
“nonspecific response” (NS-SCR). SCRs occur after an event has happened; 
therefore, the sampling window following the presentation of a stimulus is 
generally between 1‒4 s to allow for the accurate capture of the response. 
Therefore, an SCR that begins between 1 and 4 s following stimulus onset should 
be considered a response to that stimulus; however, it is methodologically 
important to be sure to select these fairly short latency windows to reduce the 
likelihood that a NS-SCR be taken as a SCR (Dawson et al. 2017). Figure 3 
illustrates the principal EDA components.  
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Fig. 3 Graphical representation of principal EDA components (Dawson et al. 2017) 

When assessing EDA, a number of metrics exist. The most commonly reported 
measure is the size of the SCR, which reflects the increase in conductance from the 
onset of a SCR to its peak and illustrates the degree of sympathetic activation. 
Additionally, when measuring the various components of the EDA complex, it may 
be useful to have a reference for specific EDA measures and a typical range of 
responses, which are outlined in Table 6.  

Table 6 Electrodermal measure, definition and typical range value 

Measure Definition Typical values 
SCL Tonic level of electrical conductivity of skin 2‒20 μS;  

4‒5 μS at rest 

Change in SCL Gradual changes in SCL measured at two or 
more points in time 

1‒3 μS 

Frequency of NS-SCR Number of SCRs in absence of identifiable 
eliciting stimulus  

1‒3 per minute 

SCR amplitude Phasic increase in conductance following a 
stimulus onset 

0.1‒1.0 μS 

SCR latency Temporal interval between stimulus onset 
and SCR initiation 

1‒3 s 

SCR rise time Temporal interval between SCR initiation 
and SCR peak 

1‒3 s 

SCR half recovery 
time 

Temporal interval between SCR peak and 
point of 50% recovery of SCR amplitude 

2‒10 s 

SCR habituation (trials 
to habituation) 

Number of stimulus presentations before 
two or three trials with no response 

2‒8 stimulus 
presentations 

SCR habituation 
(slope) 

Rate of change of ER-SCR amplitude 0.01‒0.5 μS per trial 

Note: Adapted from Dawson et al. (2017). 

While EDA is sensitive to a wide variety of stimuli, for our work, it cannot be 
directly linked to one particular psychological process (Landis 1930). For example, 
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it is nearly impossible to discern a SCR as an “attentional”, “anxiety”, or “anger” 
response. However, the value of SCRs become psychologically meaningful or 
interpretable when one takes into account the condition or experimental paradigm 
in which the SCR occurred. Here, conclusive interpretations must be made within 
tightly controlled experimental settings, or with sufficiently complete capture of 
environmental stimuli that might produce these responses. 

Within a generalized, experimental setting, tonic EDA has been linked to energy 
regulation or mobilization processes. These can be interpreted via information 
processing theories, which propose that tasks requiring an effortful allocation of 
attentional resources are associated with heightened autonomic activation and in 
turn larger tonic EDA fluctuations (Jennings 1986). A further view proposes that 
the stress associated with performing laboratory tasks leads to increased 
sympathetic activation and EDA arousal, not necessarily activation associated with 
attentional resource allocation (Dawson et al. 2017). Additionally, SCRs have been 
reliably found to relate to various arousal dimensions. For example, SCR 
magnitude has been found to increase in conjunction with subjective arousal ratings 
of positively valenced pictures (greater in response to erotic pictures compared to 
pictures of beautiful flowers) and negatively valenced pictures (greater for snakes 
than for tombs in a cemetery). However, such SCRs tend to be most sensitive to 
stimulus novelty, intensity, and personal significance (Lang et al. 1993; Cuthbert et 
al. 1996). Consequently, EDA measures have also been used within medical 
settings to identify precursors to impending psychotic relapses (Hazlett et al. 1997). 
Here, it has been hypothesized that sustained and heightened sympathetic activation 
can interfere with efficient cognitive processing capacity (Nuechterlein and 
Dawson 1984).  

In addition to the previously mentioned findings associated with EDA research, it 
is also vital to briefly mention one individual difference factor associated with 
changes in tonic and phasic EDA. Most researchers have concluded that EDA can 
be viewed as a relatively stable trait of the individual, though one that is subject to 
individual differences, which may further impact specific responses to 
environmental stimuli. Generally, individuals can be categorized as electrodermal 
“labiles”, who show high rates of NS-SCRs and slow SCR habituation, while 
electrodermal “stabiles” are those who show relatively few NS-SCRs and fast SCR 
habituation. More specifically, electrodermal lability has been found to be reliable 
over time, with labiles outperforming stabiles on sustained attention tasks, typically 
marked by a deterioration of correct target detections over time (Davies and 
Parasuraman 1982), which may reflect their increased ability to maintain 
attentional focus (Crider and Augenbraun 1975; Hastrup 1979; Vossel and 
Rossman 1984; Munro et al. 1987). Conversely, several studies have confirmed that 
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a vigilance decrement tends to be more pronounced among the EDA (specifically 
SCR and habituation rate) of stabiles (Munro et al. 1987; Koelega et al. 1990). 
Therefore, in the words of Katkin (1975, p. 172) “electrodermal activity is a 
personality variable that reflects individual differences in higher central processes 
involved in attending to and processing information”.  

Finally, when discussing each modality, it is crucial to also present the caveats or 
disadvantages of each. First, EDA is a relatively slow-moving response system, 
with SCR response latencies between 1‒4 s. Therefore, rapidly occurring processes 
may not be measurable via this modality. Second, it is vital to allow enough time 
to pass between stimulus presentations as a SCR needs time to “recover” following 
activation. If an appropriate amount of time is not allowed between stimulus 
presentations, subsequent SCRs may simply be superimposed on the recovery 
phase of the first response. For example, the amplitude or size of a subsequent SCR 
may be smaller given its occurrence immediately following a previous SCR, 
although the degree of distortion of the subsequent SCR is a function of the size 
and time of the first response (Grings and Schell 1969). Third, as previously 
mentioned, there may be large-scale variability due to individual difference factors 
such as electrodermal lability. Therefore, it is recommended that researchers use 
within-subject standardized scores (Ben-Shakhar 1985). Finally, as with most 
physiological modalities, response artifacts may be elicited by movement or deep 
breaths; therefore, it is vital to record these as well to document which responses 
are true SCRs and which are NS-SCRs.  

Despite these limitations, this particular physiological modality provides valuable 
insight into the lower-level, automatic and subconscious arousal that a person 
experiences when exposed to emotionally loaded or novel stimuli. As such, EDA 
is unique in that it reflects relatively direct and undiluted representations of 
sympathetic activity. Therefore, increases in SCL or SCRs reflect increased tonic 
and phasic sympathetic activation. This is in direct contrast to other physiological 
modalities that measure other ANS functions (e.g., pupil diameter, HR, and so on) 
as changes in response to various stimuli cannot be directly linked to sympathetic 
or parasympathetic activity. In other words, responses may be due to one or both 
systems working in conjunction with each other and cannot be isolated. Therefore, 
if one wishes to measure direct sympathetic activation, EDA measurement is best, 
though a broader representation of both sympathetic and parasympathetic activity 
requires other measurement modalities such as HR.  
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3.4 Eye Tracking  

Another modality for gauging cognition, arousal, and fatigue is eye tracking. Eye 
tracking offers insight into overt visual attention by monitoring where individuals 
direct their eye movements at certain points in time, as well as dilation of the pupil, 
which is tightly linked to activity in the ANS (Joshi et al. 2016). Pupil size is 
constantly in flux, reacting to environmental changes in luminance via constriction 
(in response to brightness) and dilation (in response to darkness). These 
unconscious responses help to optimize visual acuity and sensitivity for rapidly 
changing visual scenes. However, even in cases where luminance is held constant 
(e.g., in controlled laboratory settings), there is a rich literature documenting 
psychosensory influences on pupil size (Beatty 1982) including significant effects 
related to arousal (Loewenfeld and Loewenstein 1993), sleepiness (Wilhelm et al. 
1998), attention (Gabay et al. 2011), emotion (Bradley et al. 2008), control state 
(Jepma and Nieuwenhuis 2011), and mental processing load (Kahneman and Beatty 
1966; Granholm et al. 1996). Table 7 provides a selection of pupil features and their 
relationship to psychological states.  

Since pupil size is strongly linked to the ANS (via the locus coeruleus-
norepinephrine system), eye-tracking metrics can also be useful for validating and 
complementing other autonomic-linked signals derived from EDA and ECG 
measurements. Of note, pupil dilation occurs on a much slower timescale than does 
EEG (on the order of seconds versus milliseconds, respectively). Therefore, 
combining EEG with pupillometry measurements could improve continuous 
monitoring of fatigue, arousal, and mental engagement when individuals are 
exposed to emotional or cognitively demanding tasks. 
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Table 7 Relationship between specific pupil features/metrics and psychological states 

Pupil feature Definition/ 
calculation 

Range Psychological 
state 

Relationship References 

Baseline pupil 
size 

Mean pupil size to 
calculate the size 
of the pupil over a 
period of time 
(usually on the 
order of seconds) 
prior to or during 
a task. 

2.0‒8.0 
mm 

General arousal; 
control state 
(exploration vs 
exploitation) 

Linear (larger 
pupil size = 
higher arousal); 
Curvilinear 
(inverted “U” 
shape) 

(Loewenfeld and 
Loewenstein 1993; 
Jepma and 
Nieuwenhuis 2011) 

PUI The pupil’s 
tendency to 
instability; 
defined by the 
sum of absolute 
changes in pupil 
diameter (in mm) 
based on a sample 
frequency of 
1.5625 Hz (see ref 
for formula). 

2‒12 
mm 

Sleepiness/ 
fatigue 

Linear (larger 
PUI = more 
sleepiness) 

(Leudtke et al. 
1998) 

Index of 
cognitive 
activity 
(ICA)/index of 
pupillary 
activity (IPA) 

Wavelet analysis 
decomposes raw 
pupil signals to 
distinguish the 
light reflex from 
cognitive 
responses. 
Frequency of 
rapid super-
threshold pupil 
dilations indicate 
cognitive activity 
(see refs for 
formula) 

0–1 Hz Index of 
cognitive 
activity and 
workload 

Linear (larger 
ICA/IPA = 
higher 
cognitive load) 

(Granholm et al. 
1996; Marshall 
2000; Duchowski 
et al. 2018; Vogels 
et al. 2018) 

Peak pupil 
dilation 

Maximum amount 
of pupil dilation 
in a short time 
window following 
sensory 
stimulation 

0.1‒1.0 
mm 

Task-Induced 
Mental Load 

Linear (larger 
amplitude = 
higher mental 
load) 

(Kahneman and 
Beatty 1966) 

Peak pupil 
latency 

The amount of 
time required to 
reach peak pupil 
dilation 

500–
3,000 

ms 

Decision 
Making/Executi
on 

Linear (longer 
latency = 
longer decision 
process) 

(Cohen Hoffing et 
al. 2020) 

Note: Specific formulas for each pupil feature can be found in the associated reference(s). 
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To the extent that pupil dilation provides a proportional index of psychological 
states (e.g., arousal, engagement, cognitive load, and so on) during task execution, 
pupillometry could provide an effective, noninvasive tool for measuring changes in 
human state, particularly if confounds due to changes in luminance can be 
accounted for or controlled. There have been various attempts to model the 
influence of luminance on pupil size, with a majority of work focused on predicting 
stable-state changes in baseline pupil size as a function of luminance (for review, 
see Watson and Yellott [2012]). While these models are very good at capturing 
expected changes in mean pupil size following relatively long periods of adaptation 
(greater than 10 s) to well-controlled luminance levels in the laboratory, they are 
not designed to predict the rapid patterns of pupillary change when a person is 
confronted with complex and dynamic naturalistic scenes. More recent work by 
Korn and Bach (2016) proposed a method to model pupillary dynamics in response 
to slightly more rapid luminance changes (5-s stimuli), expressed as the sum of two 
linear time-invariant systems that capture the differential time course of dilations 
and constrictions using gamma response functions. Despite the success of this and 
related approaches (Denison et al. 2020), there is still no widely accepted model to 
date that can accurately predict luminance-based changes in pupil size when 
viewing complex visual scenes (e.g., movies) or when a person is situated in a real-
world environment. This challenge will likely need to be solved before the full 
potential of pupillometry is realized for psychological state monitoring in real-
world applications (Cohen Hoffing et al. 2020). 

In addition to pupil-based measures of human state, eye-movement metrics provide 
a type of trace of where an individual directs their eye gaze. This is important 
because what a person is looking at is thought to reflect the cognitive symbol 
currently being processed (Just and Carpenter 1976). Therefore, it is possible to 
identify stimuli that are important or emotionally salient to the subject. Eye-
tracking data, then, are useful to trust research, for example, because eye-movement 
metrics provide indications of what information the subject might find important 
for trust calibration. For example, repeated gaze fixation on an area of interest, such 
as one display compared to another, would allow an inference that the subject finds 
the display useful or critical to the current task (Just and Carpenter 1976; Poole and 
Ball 2006), whereas increased fixation duration might indicate that the subject finds 
the information difficult to understand (Poole and Ball 2006). Further, the pattern 
and targets of gaze fixation may indicate the direction of an impending decision 
(Pool and Ball 2006; Glaholt and Reingold 2011; Gildöf et al. 2013) and an estimate 
of the level of cognitive effort being expended while processing information 
(Marshall 2007). Typical eye movements consist of quick and frequent movements 
called saccades, which are interspersed with periods of steady gaze fixations (Poole 
and Ball 2006). Fixations are valuable metrics as their timing can indicate both 
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perception and cognitive activity. For example, fixations that last for longer periods 
of time can indicate that a person is having difficulty extracting or comprehending 
their visual information. More specifically, fixations associated with cognitive 
processing (i.e., fixations lasting between 150‒900 ms) tend to decrease as a person 
struggles to maintain focus and attention, a state associated with the onset of 
fatigue. However, some have argued that mean fixation duration may relate more 
strongly to workload than fatigue (Poole and Ball 2006). Table 8 provides typical 
values associated with fixation and fatigue. As with SCR features of EDA, the use 
of eye-gaze measurements to infer psychological states and processes requires 
sufficient capture of environmental stimuli that those measures correspond to. 

Table 8 Eye-tracking fixation periods (in ms) that are associated with human state 

Fixation (in ms) Associated human state  
≤150 Low level unconscious control but not deep processing 

150‒900 Cognitive processing 
150‒900 or longer Difficulty maintaining focus and attention, onset of fatigue 

≥900 Indicative of staring and minimal visual sensory processing 
Note: Adapted from Schleicher et al. (2008). 

Additionally, the PERCLOS measure has been widely used in human state-
estimation research (Wierwille et al. 1994). PERCLOS is defined as the proportion 
of time that a person’s eyes are more than 80% closed, though other research has 
used a 70% cutoff value (Dinges et al. 1998). Increased eye closures are typically 
associated with decreased arousal or increased fatigue states; therefore, the 
PERCLOS measure is a noninvasive way to allow researchers to gauge such 
changes.  

3.5 Facial Expressions 

One of the strongest visually observable indicators for emotion is the human face. 
We can read emotions in others based on even minute changes in the posture of 
prominent or key facial features such as the eyes, brows, lids, nostrils, and lips. The 
human face includes over 40 structurally and functionally autonomous muscles, 
each of which can be triggered independently of each other, though they are 
innervated by a single nerve, referred to as the facial nerve, which emerges from 
within the brainstem and branches off to all muscles. Facial muscle activity is 
highly specialized for expression and allows us to share social information with 
others to communicate both verbally and nonverbally. Humans can produce 
thousands of expression variations; however, there is only a small set of distinct 
facial configurations that we associate with certain emotions, irrespective of 
gender, age, cultural background, and socialization history (to an extent), which 
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include the emotions happiness, anger, surprise, fear, contempt, sadness, and 
disgust.  

Facial expressivity has been shown to be related to appraisal and coping 
mechanisms, as well as stress, fatigue, and trust. As such, computer-based facial 
expression analysis attempts to mimic human coding of emotion as it captures raw, 
possibly unfiltered emotional responses to engaging stimuli. Additionally, past 
studies have found that automatic computations of facial expressivity are 
comparable to manual annotations of emotional expressions (Neubauer et al. 
2017b) and have been utilized in a number of both clinical and experimental studies 
(Batrinca et al. 2013; DeVault et al. 2014; Chollet et al. 2015; Venek et al. 2016; 
Neubauer et al. 2017a; Parra et al. 2017). Therefore, this modality provides 
evidence that automatic behavior trackers have the ability to support clinical 
assessments and provide researchers with much needed objective assessments of 
behavioral indicators of stress, trust, or even team cohesion (Neubauer et al. 2020). 

Facial expressions can typically be assessed with two different methods. First, 
tracking of facial electromyographic activity (fEMG) records the activity of facial 
muscles with electrodes attached to the skin surface. fEMG detects and amplifies 
the electrical impulse generated by the respective muscle fibers during contraction. 
For example, the right/left corrugator supercilii (e.g., eyebrow wrinkler) is a small, 
narrow, pyramidal muscle near the eyebrow, generally associated with frowning. 
The corrugator draws the eyebrow downward and toward the face center, producing 
a vertical wrinkling of the forehead. This muscle group is active to prevent high sun 
glare or when expressing negative emotions such as suffering. In addition, the 
right/left zygomaticus is a muscle that extends from each cheekbone to the corners 
of the mouth and draws the angle of the mouth up and out, typically associated with 
smiling. Therefore, when facial expressions are apparent so too are the associated 
electrical impulses that result from movement.  

The second method involves visual observation of facial landmarks. This can be 
assessed by either manual coding, using the Facial Action Coding System (FACS; 
Ekman and Friesen 1978), or automated, computer vision-based detection of facial 
activity. The FACS represents a standardized classification system of facial 
expressions for expert human coders based on anatomic features. Coders examine 
videos of an individual’s face and describe any occurrence of facial expressions as 
combinations of elementary components called Action Units (AUs). Each AU 
corresponds to an individual face muscle or muscle group and is identified by a 
number (AU1, AU2, etc.). Figure 4 shows the location on the face of various AUs. 
All facial expressions can be broken down into their constituent AUs. In other 
words, facial expressions can be likened to “words”, while AUs are the “letters” 
that make up those words. Table 9 illustrates which AUs can be calculated to reveal 
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changes in the universal emotions described previously, and Fig. 4 depicts a 
diagram of the facial regions affected by those relevant AUs. The alternative 
method for visually coding the activity of the face utilizes computer-vision 
algorithms to automatically detect a human face and employ feature detection to 
identify facial landmarks such as eyes and eye corners, brows, mouth corners, and 
nose tip, and so on. With the feature detection, an internal face model is adjusted in 
position, size, and scale to match the individual’s actual face. Whenever the 
respondent’s face moves or changes expressions, the face model adapts and tracks. 
Feature classification then translates the position of landmark facial features into 
AU codes, and thus emotional states and other affective metrics (e.g., OpenFace 
[Baltrušaitis et al. 2016]). 

 

Fig. 4 Diagram of facial expression AU locations and direction of change (right half of face 
only) 

Table 9 Facial expression emotion calculation from single AUs (Ekman and Friesen 1978) 

Emotion classification AUs 
Anger 4+5+7+23 
Contempt R12A+R14A 
Disgust 9+15+16 
Fear 1+2+4+5+7+20+26 
Happiness 6+12 
Sadness 1+4+15 
Surprise 1+2+5B+26 

 
Most of the published research on computer vision application to detect human state 
have focused on fatigue assessment and typically relied on analyses focused on eye 
tracking and head movements (Gu and Ji 2004; Zhang and Zhang 2006; Dong et al. 
2011). Here, we argue that facial expressivity metrics can also be used to measure 
changes in affect, and specifically affect-based trust, an emergent attitudinal state 
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in which the individual makes attributions about the motives of the automation 
(McAllister 1995; Burke et al. 2007). Analyses using these features may be 
important to human‒autonomy teams because these data (e.g., emotions, body 
postures, and facial expressions) can provide insights into behavioral patterns that 
have been linked to affiliation, empathy, and assessments of team member 
trustworthiness. This line of research is critical because it will be necessary to 
develop autonomous systems that can robustly perceive and respond to affective 
changes of teammates if human‒agent teams are to be successful (Bartlett et al. 
2004). 

This presents an interesting case because human‒human teams may communicate 
nonverbally through changes in emotional expression (i.e., we regularly gather 
information from our partners’ faces). For example, if an individual is worried 
about a particular decision they made or need to make, they may seek confirmation 
or alternate solutions from nonverbal features of their partner. Alternatively, if 
something negative impacted the state of the team and one team member responds 
appropriately (e.g., some sort of negative affective response) whereas the other does 
not (e.g., they smile in response to a team failure), then trust and eventual cohesion 
may suffer. Within the human‒autonomy team domain, it is important to 
acknowledge that humans may not get the same kind of nonverbal feedback that 
they normally would from a human equivalent. Given scenarios such as these, 
additional considerations should be made with regard to the communicative design 
of human‒autonomy teams. To date, collection of this data modality has been 
exploratory within our lab, though we anticipate that facial expression 
measurements will provide corroborative support for other relevant behavioral and 
physiological measures that indicate changes in emotional state. 

4. Important Psychological States 

Thus far, we have assembled information on several methods to extract data from 
humans via noninvasive or wearable physiological and behavioral sensors as they 
inform typical baseline levels and relevant changes in various latent states 
mentioned previously. Although, there are many states of interest within human‒
autonomy teaming, for this report, we focus on the states associated with fatigue, 
stress, trust, workload, and vigilance, as these are some of the most extensively 
researched topic areas and are believed to provide the most valuable input for the 
types of modeling previously discussed, given the level of overlap onto the set of 
sensing modalities described previously. The following sections outline these states 
individually and include information from the literature regarding the typically 
known relationships that exist between latent states and observable physiological 
and behavioral outputs. The purpose of this section of the report is to provide a 
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concise summary of these states, such that researchers aiming to perform real-time 
inference of a particular state, or set of states, can more easily select sensing 
modalities and apply the relevant domain to that inference. 

4.1 Stress  

Stress has been defined as “the force that degrades (task) performance capability” 
(Hancock and Warm 1989). Task performance is frequently stressful, as evidenced 
by laboratory and field research, such as vehicle driving, industrial work, and 
military operations (Matthews et al. 2000a). Tasks may be intrinsically demanding, 
because they impose high workload or time pressure, or have a high likelihood of 
failure. The environmental context in which the task is performed may also be a 
source of stress. Operational settings may be noisy, hot, or dangerous; require 
prolonged, fatiguing work shifts; or some combination of these. Social factors such 
as interactions between team members may also elevate task demands and, in turn, 
stress. Task-related stress may have a variety of consequences including acute 
emotional responses, performance impairments, and long-term impacts on health 
and well-being. 

Stress states are sensitive to both external influences of the environment (e.g., 
noise), task demands, and individual competency in managing those demands. 
States, in turn, influence information-processing characteristics, which are 
expressed in observed performance. For example, stress can interfere with an 
individual’s ability to maintain focus and apply effortful regulation during a task, 
which can result in a degradation of individual and team performance. Thus, stress 
states have both physiological and psychological aspects (Fairclough and Venables 
2006). From a psychological standpoint, the leading theory centers on the 
transactional theory of stress and emotion (Lazarus 1999), which views the stress 
response as a twofold transaction comprising 1) individual appraisal of the task 
and 2) individual coping mechanism. This “transaction” is a subjective experience 
created by the individual to apply meaning to a current encounter. Therefore, a key 
insight concerning stress and performance is that individuals actively regulate their 
handling of task demands in stressful environments, for example, by varying effort 
or strategy. A further insight is that the task itself is often a source of stress, 
especially when it is appraised as taxing or exceeding the individual’s competence. 
Hence, both performance and well-being may depend on the coping strategies 
adopted by the individual in response to task demands. Stress theory also 
emphasizes the importance of individual differences in coping, where the choice of 
coping strategy depends on the individual’s appraisals of environmental demands 
and of their own personal abilities to execute effective coping mechanisms.  
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4.1.1 Stress Measurement 

One way to investigate task stress is to focus on changes in the individual’s mental 
state. For example, stress may be accompanied by negative emotions such as 
anxiety, anger, and unhappiness. Emotions, in this context, are a structured set of 
multiple psychological processes, including somatic responses, subjective feelings, 
processing biases, and action tendencies that serve a functional purpose. For 
example, the various components of fear promote awareness of danger and 
readiness for escape. An emotional state is thus a temporary configuration of 
multiple processes that may produce a variety of behavioral changes. Operationally, 
stress states may be assessed through a number of self-report measures such as the 
Dundee Stress State Questionnaire (see Matthews et al. [2012b] for further 
reading), or through psychophysiological response. 

4.1.2 Observable Correlates of Stress 

Generally speaking, stress can be viewed as an arousing state that has a negative-
valence component. It is a state that is also associated with changes in anxiety. 
Therefore, much research on the psychophysiological correlates of stress have also 
shown stress to coincide with changes in arousal or anxiety. In fact, early studies 
of mood showed that both energetic arousal (similar to engagement) and tense 
arousal (similar to distress) correlated with various measures of autonomic arousal, 
including HR and EDA (Thayer 1978). In other words, activation of the ANS, 
shown through an increase in HR, should indicate a generally arousing scenario 
such as a stress or anxiety response. However, as noted earlier, some physiological 
modalities (e.g., EDA) cannot explicitly delineate changes in stress, as they can 
only measure changes in arousal, but not necessarily the valence associated with 
that arousal.  

When faced with task demands, an individual’s level of arousal should increase. 
However, the valence associated with that arousal falls within one of two 
categories: a threatening “stress state” or an engaging “challenge state” (Tomaka et 
al. 1997). A psychological “challenge” occurs when individuals believe they 
possess the cognitive ability to meet required task demands. This manifests as 
psychological “threat”, and in turn a distressing stress state, when they believe that 
task demands outweigh their cognitive or physical resources. States of 
psychological “threat” are indexed via an increase in vasoconstriction (e.g., total 
peripheral resistance [TPR]) and a decrease in cardiac output (CO). TPR reflects 
vasodilation (increased blood flow) and vasoconstriction (decreased blow flow), 
which are related to parasympathetic and sympathetic activity. CO is the amount of 
blood pumped in terms of volume per unit time. It has been shown that TPR 
unambiguously increases in a threat state and decreases in a challenge state, 
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whereas CO either remains unchanged or decreases in a threat state and increases 
in a challenge state (Tomaka et al. 1997; Neubauer et al. 2017a). 

Additionally, stress states can also vary temporally. This temporal variation is also 
associated with changes in the heart and various blood vessels. For example, acute 
stress, or momentary/short-term stress, is associated with an increase in HR and 
stronger contractions of the heart muscle. This aspect of stress is also associated 
with a flood of stress-related hormones, which are designed to prime the body for 
action. Furthermore, blood vessels, which are responsible for transporting blood to 
large muscles, and the heart dilate, thereby allowing more blood and thus more 
oxygen to these areas. This state is also associated with an increase in blood 
pressure; however, it is a temporary state and once the episode is over the body 
returns to equilibrium.  

4.2 Workload  

Mental workload has been defined as the ratio of task demand to allocated resources 
(Wickens 2002). More specifically, workload has been defined as “the relation 
between the function relating the mental resources demanded by a task and those 
resources available to be supplied by the human operator” (Parasuraman et al. 2008, 
pp. 145‒146) and has been shown to be a critical factor that influences team 
effectiveness in human‒autonomy teams. The foundation of this research stems 
from the automated or driverless vehicle literature, which suggested that the 
inclusion of automation aides help reduce mental workload and positively benefit 
performance (Scribner and Dahn 2008; Yang et al. 2009; Scribner et al. 2013). 
Within this area of research, one of the primary purposes of automation is to reduce 
and regulate workload, so that individual levels of workload fall within a 
“moderate” level and hence avoid task overload and underload. Thus, automation 
implementation has been successful for both mental workload (Wiegmann et al. 
2001) and in the implementation of action (Yang et al. 2009). 

However, when it comes to measuring workload, especially in human‒autonomy 
teams, it is often difficult to separate workload from other constructs such as stress, 
trust, and situation awareness. Specifically, research has suggested that stress and 
workload are variable and unpredictable. More specifically, unregulated increases 
in stress and workload can lead to degradations in trust (Biros et al. 2004; Cosenzo 
et al. 2006; Wang et al. 2009). Further, increases in mental workload associated 
with autonomous systems can lead to degradations of trust (e.g., in combat 
identification tasks [Wang et al. 2011]). Similarly, trust in vehicle control systems 
is higher when workload is low (Spain and Bliss 2008), and the system is perceived 
to be more useful (Donmez et al. 2006). This relationship is mediated by situation 
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awareness. While the relationship among workload, situation awareness, and 
autonomy is complex, overall, increased automation leads to reduced workload. 
However, when there is an imbalance between situation awareness and workload, 
there is often an increase in performance-related errors (Beer et al. 2014). In other 
words, if increased automation reduces workload and in turn situation awareness, 
then an “out of the loop” performance problem may occur (e.g., individuals become 
passive rather than active participants in a task) and mistakes, errors, and 
degradations of trust can be common.  

4.2.1 Workload Measurement 

Workload has a longstanding measurement history. The most prominent means of 
measurement is through the NASA Task Load Index (NASA-TLX; Hart and 
Staveland, 1988). This self-report questionnaire measure provides workload 
assessment specific to mental demand, physical demand, temporal demand, 
performance, effort, and frustration. According to Hart and Staveland (1988), 
workload can further be defined as “the cost incurred by a human operator to 
achieve a particular level of performance” (p. 2). While it has been used in a variety 
of settings, its applicability for adequate assessment of workload when intelligent 
agents are part of the team is unknown. While general findings suggest that 
workload decreases as autonomy increases (e.g., less use of teleoperation), self-
report only provides a portion of the outcomes of workload. Thus, Steinfeld and 
colleagues (2006) identified a critical need to identify nonintrusive measures of 
workload to characterize the human team member in real time. They went on to 
suggest a set of behavioral indicators of workload related to the rate of interventions 
by the human, ratio of time each agent (human or artificial) spends performing the 
task, and the number of artificial agents each human can control (known as “fan 
out”).  

According to Goodrich and Oleson (2003), fan out is a measure of how many 
similar robots can be controlled by a single person. It can be used as an indicator 
for robot hand-offs and provides an upper limit of workload. Building on the 
research by Scholtz et al. (2003), the number of interventions per unit time, along 
with average time needed for the intervention, and the effectiveness of the 
intervention may be an indicator a workload (however, this may also be indicative 
of trust). Additionally, the ratio of operator time to robot time on task builds on the 
research from Yanco and colleagues (2004), which can be used to identify the 
balance of workload among team members, human or autonomous. More recent 
research has shown that there is a divergence of self-report measures with 
physiological and performance-based measures. Here, Matthews et al. (2020b) 
suggest three possible solutions to this divergence by creating reliable and valid 
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measurement, selecting appropriate measures based on the predictability of a 
specific outcome, and selecting representational workload measurements that 
correspond to real empirical phenomena, though current measurement techniques 
seem to measure different constructs. 

4.2.2 Observable Correlates of Workload 

Research has pointed to a number of observable correlates of workload, including 
HR, HRV, EDA, eye metrics, and EEG. Typically, within workload research, 
patterns show that HR increases and HRV decreases as workload increases 
(Delliaux et al. 2019). More specifically, high mental workload tends to raise HR 
and blood pressure (Schnall et al. 1990; 1994; Wilson 1992, Veltman and Gaillard 
1996; Hjortskov et al. 2004), while lowering HRV (Mulder and Mulder 1981; 
Hjortskov et al. 2004), which is likely due to increased sympathetic activation or 
decreased parasympathetic activation. Moreover, few studies have looked at the 
link between mental workload and the arterial baroreflex, which is a critical 
component of the ANS sympatho-vagal balance. This reflex seems to be impaired 
by increased mental workload and is thus identified as a significant cardiovascular 
risk factor (Mulder and Mulder 1981). Other research has also identified significant 
relationships between increased cardiac activity and changes in specific EEG band 
frequencies (e.g., alpha and delta bands), which were seen in response to various 
task-related demands that varied in their level of workload (Wilson et al. 2002).  

Additionally, Wilson et al. (2002) argued that HRV is a less sensitive measure of 
workload than HR. They also found that blink rates decreased during more visually 
demanding (i.e., higher workload) segments of a task. Workload has also been 
associated with changes in EDA, where tonic EDA increases in response to 
increased workload demands, while phasic EDA responses tend to be more 
frequent. Finally, blood pressure and pupil diameter have also been found to 
increase in conjunction with workload (Hughes et al. 2019). For example, a classic 
study by Hess and Polt (1964) found that the pupil response was a good indicator 
for mental activity by finding that the size of the pupil increases in proportion to 
task difficulty and workload (see also Beatty [1982]). Additionally, they argued 
that changes in the pupil, in response to changes in mental workload, occur at short 
latencies at the onset of processing and subside quickly after processing is complete 
(i.e., latency onset between 100 and 200 ms) (Beatty 1982). This work led 
Kahneman (1973) to rely on what is known as the “task-evoked pupillary response” 
as a primary determinant of processing, and hence workload, for his classic theory 
of attention. He further argued that “the limited capacity and the arousal system 
must be closely related” (p. 10). 
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4.3 Fatigue  

Generally, fatigue may be defined as the likelihood of falling asleep, but there is 
more to the condition than sleepiness alone. The fatigue state can be defined by its 
physical aspects, which are associated with muscular fatigue, a state caused by 
prolonged contraction of a muscle, a lack of oxygen, and an increased level of blood 
and muscle lactic acid (Craig and Tran 2012). However, for the purposes of this 
report, we are more concerned with the mental, behavioral, and physiological 
components associated with fatigue. A classic definition of fatigue in this context 
comes from Brown (1994), who described the fatigue state as a “subjectively 
experienced disinclination to continue performing the task at hand”. Moreover, 
fatigue has also been closely linked to stress and is sometimes referred to as a stress-
related condition (Bultmann et al. 2002). Therefore, we define fatigue as a 
neurophysiological state that occurs when a person is feeling tired or drowsy, or to 
the extent that they have a physical or cognitively reduced capacity to function, 
which may result in decreased performance, motivation, and generally negative 
emotions.  

Fatigue, in part, reflects fundamental changes in neural function (Saper et al. 2005), 
but is also largely dependent upon the individual’s level of subjective interest in the 
task (e.g., task engagement) as well as high-level cognitive processes relating to 
motivation regulation (Hockey 1997). Additionally, fatigue can also stem from 
different sources such as 1) an insufficiency or poor quality of sleep, 2) a byproduct 
of the 24-h circadian cycle in wakefulness and alertness, or 3) the task itself. A 
variety of task factors may influence the onset of fatigue (Ackerman et al. 2012). 
For example, high workload and monotonous tasks, which do not generally allow 
the individual to implement their own compensatory strategies, appear to be more 
susceptible to fatigue effects (Matthews et al. 2010a). Conversely, tasks that offer 
high levels of challenge and intrinsic interest can be highly fatigue resistant 
(Holding 1983; Neubauer et al. 2014). 

4.3.1 Fatigue Measurement 

Traditionally, fatigue research has been shaped by the tripartite division between 
physiological outcomes proposed by Bartley and Chute (1947), such as muscular 
fatigue, subjective feelings of tiredness and discomfort, and decrements in 
performance. The most obvious form of physiological fatigue is muscular fatigue 
resulting from prolonged physical exertion. Subjective fatigue may include an 
individual’s awareness of bodily discomfort, but it also refers to the experience of 
mental states, including tiredness, sleepiness, apathy, and mind-wandering. 
Regarding objective measurement, the Psychomotor Vigilance Test (see Balkin et 
al. [2004]) provides a convenient, widely used measure of sleepiness based on 
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reaction-time assessment and has been widely used in research on sleep and 
performance. Additionally, the performance decrements typically seen within 
vigilance research are also said to reflect an increased fatigue state.  

4.3.2 Observable Correlates of Fatigue  

Fatigue can be detected psychophysiologically (Wohleber et al. 2016) through EEG 
measures (Borghini et al. 2014), the PERCLOS (Wierwille et al. 1994), ECG 
measures (Borghini et al. 2014), and fluctuations in pupil diameter (Lüdtke et al. 
1998). However, EEG measures have perhaps been researched the most extensively 
with regard to this particular state (Santamaria and Chiappa 1987; Wijesuriya et al. 
2007). For example, within EEG research, the fatigue state has been found to be 
reliably associated with relative increases in slow wave activity (e.g., delta and theta 
waves) that are commonly experienced outwardly as an increase in drowsiness and 
sleepiness and are also inversely related to cortical arousal (Lal and Craig 2002; 
Craig and Tran 2012).  

A systematic review of studies using a variety of experimental paradigms showed 
two consistent effects associated with reduced cortical arousal and hence fatigue. 
Power reliably increased in two frequency bands: theta (4–7.5 Hz) and alpha  
(8–13 Hz). Theta is linked to drowsiness and loss of alertness; alpha with a relaxed 
but wakeful state. Additionally, Dirnberger et al. (2004) studied the relationship 
between movement-related cortical potentials and fatigue, and found that lower 
amplitudes in movement potentials were associated with greater levels of fatigue. 
They suggested that this finding supports the notion that fatigue reduces cognitive 
capability and in turn cortical arousal. Lehmann et al. (1995) conducted canonical 
analyses between subjective cognitions and EEG spectral power profiles with four 
channels of EEG. They found significant pairs of variables that support the finding 
that fatigue is associated with reduced cortical arousal. For instance, they found  
2–6-Hz (i.e., theta) activity to be significantly associated with cognition, reflecting 
reduced cognitive capacity (e.g., lacking orientation, low recall ability). Perhaps 
most importantly are the implications associated with these findings. For example, 
Gevins et al. (1990) argued that the changes associated with fatigue in the theta, 
alpha, and perhaps delta frequency bands could be seen prior to any deterioration 
in performance. Therefore, it appears that EEG may be used to provide an early 
warning for the onset of fatigue. That is, performance decrements are preceded in 
time by these increases in theta and alpha waves, suggesting brain wave activity 
may be a sensitive indicator of fatigue and its associated performance decrements. 

Additionally, ECG studies have utilized decreased HRs as a measure of lower 
arousal, or fatigue (Borghini et al. 2014). More specifically, it has been argued that 
an increase in HRV may be indicative of a high fatigue state or higher emotion 
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regulation (Wohlebler 2018). In fact, O’Hanlon (1972) found that HRV increased 
in response to time on task, an indicator of a fatigue state, and consequently 
manifested as a performance decrease and an apparent vigilance decrement, but 
then decreased when sudden events alerted drivers and gained their attention, 
resulting in an increase in their HR. Additionally, changes in HR reflect changes in 
autonomic arousal and sympathetic influences that govern emotional responses and 
decision-making. For example, given that task-induced fatigue and drowsiness are 
characterized as low-arousal states, a decline in average HR should be indicative of 
these changes (Borghini et al. 2014). In fact, studies within driving have shown 
significant declines in HR when drivers enter a fatigue state (Jap et al. 2009). 

Finally, ocular metrics such as PERCLOS and changes in pupil diameter have also 
been studied in the context of fatigue state detection. As previously mentioned, 
PERCLOS is defined as the proportion of time that a person’s eyes are more than 
80% closed (Dinges et al. 1998). Researchers have classified a PERCLOS score of 
15% or more as indicative of a person that is “drowsy”, 7.5%‒15% indicative of a 
“questionable state”, and 7.5% or less indicative that the person is “awake” 
(Wierwille et al. 1994). The PERCLOS measure can serve as an initial measure of 
fatigue or drowsiness and reflects slow eyelid closures (<500 ms) rather than faster 
blinks, which are not computed for this measure (Wierwille et al. 1994; Kozak et 
al. 2005). In fact, Schleicher et al. (2008) define lid closures that are greater than 
500 ms as “microsleeps”. Finally, increases in the PUI have also been associated 
with sleepiness and fatigue (Lüdtke et al. 1998). 

4.4 Vigilance  

The term “vigilance” has been used in different ways by different groups of 
researchers. For example, neurophysiologists sometimes refer to the term vigilance 
as a measure of arousal within the sleep‒wake spectrum, without the mention of 
any cognitive or behavioral response (Oken et al. 2006). Within this school of 
thought, changes in vigilance are primarily assumed to reflect activity in 
corticothalamic networks underlying the sleep‒wake dimension (Steriade 2000). 
Conversely, within psychology and the cognitive science domain, the term has been 
used to describe an individual’s ability to sustain attention toward a particular task 
over a period of time (Davies and Parasuraman 1982). For the purposes of this 
report, we adhere to the previous school of thought.  

Vigilance, or “sustained attention”, tasks require observers to maintain their focus 
of attention and detect the appearance of critical signals over prolonged periods of 
time (Warm et al. 2008b). Cognitively, sustained attention is most closely related 
to alertness. Alertness is also a term that overlaps with arousal and includes aspects 
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of cognitive processing. In fact, some researchers have argued that arousal is an 
aspect of vigilance, and that the two constructs are very closely related, as seen in 
sleep-deprivation research (Parasuraman et al. 1998). More specifically, alertness 
can be measured via tonic (synonymous to vigilance and sustained attention [Posner 
and Peterson 1990]) and phasic (associated with orienting responses [Sokolov 
1963]) changes. A key finding in vigilance research is that sustained attention is 
fragile and wanes over time. This is reflected in what is known as the vigilance 
decrement, a decline in the speed and accuracy of signal detections with time on 
task (Mackworth 1948; Warm et al. 2008b). Davies and Parasuraman (1982) 
reviewed the numerous factors that influence the vigilance decrement. These 
include task demand factors, such as memory load and stimulus event rate; 
variables that influence motivation, such as performance feedback; and adverse 
environmental conditions (Hancock 1984).  

4.4.1 Vigilance Measurement 

Typically, vigilance is measured via performance outcomes and is evident when 
individuals begin to make mistakes on a task, over time (i.e., the vigilance 
decrement). The resource model proposed by Davies and Parasuraman (1982) is a 
major conceptual framework for understanding the vigilance decrement. According 
to that view, the need to make continuous signal-to-noise discriminations depletes 
information-processing assets or reservoirs of energy that cannot be replenished in 
the time available, hence, the temporal decline in performance efficiency. Support 
for the resource model comes from findings that vigilance tasks impose a high level 
of perceived mental workload on observers, which increases with increments in 
psychophysical demand; that vigilance tasks promote high levels of stress; and that 
the decrement is correlated with observers’ feelings of mental exhaustion (Warm 
et al. 2008b, 2015). Physiological and subjective reports also confirm that vigilance 
tasks reduce task engagement and increase distress and that these changes rise with 
increased task difficulty (Warm et al. 2008b). 

4.4.2 Observable Correlates of Vigilance  

It should be noted that observable correlates of vigilance have been hard to 
explicitly define, mostly due to the different schools of thought regarding this state, 
and because there are other factors that contribute to vigilance, rather than discrete 
changes in arousal. In fact, some researchers have argued that the term “tonic 
alertness” may be more fitting as it more clearly outlines physiological changes that 
occur during vigilance tasks (Oken et al. 2006). Furthermore, it appears that 
alertness and sustained attention have similar underlying brain processes, such as 
the thalamo-cortical pathways associated with the sleep‒wake state. As such, most 
of the research assessing vigilance has relied on experimental paradigms that 
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impact drowsiness and sleep-deprivation. However, the most commonly studied 
physiological modalities for vigilance measurement have focused on EEG (Stikic 
et al. 2011), various measures of eye movement (Unsworth and Robison 2016), and 
ANS activity (Steriade 2000).  

During vigilance tasks, EEG signals have been found to be predictive of 
performance (Duta et al. 2010; Stikic et al. 2011). Overall, decreased vigilance has 
been associated with increased slow wave frequency and decreased amplitude of 
event-related potentials of the EEG. Conversely, during maximal attention, 
“awake” frequencies such as increased alpha wave activity have been recorded 
(Pfurtscheller and Aranibar 1977). Vigilance has also been associated with changes 
in ANS activity such as decreased HR, while diminished levels of vigilance are also 
indicated by increased HRV. Conversely, alerting events that rapidly increase 
vigilance are accompanied by sudden increases in HR and decreased HRV 
(O’Hanlon 1972). Electrodermal indicators of vigilance vary between labiles and 
stabiles, with labiles exhibiting relatively better performance in sustaining attention 
(Crider and Augenbraun 1975; Hastrup 1979; Davies and Parasuraman 1982; 
Vossel and Rossman 1984; Munro et al. 1987). Additionally, vigilance decrements 
are relatively more pronounced in the SCR and habituation rate of stabile’s EDA 
(Munro et al. 1987; Koelega 1990) and also in combination with measures of eyelid 
closure and head nodding (St John et al. 2006). Moreover, Hopstaken et al. (2015) 
and Van Orden et al. (2000) both found gradual decreases in pupil diameter as well 
as perceptual sensitivity, and thus performance, during a sustained attention task. 
However, it should be noted that these approaches typically utilize regression of 
many features to predict vigilance, making concise description of the relation 
between vigilance and these sensed modalities challenging. Thus, while measures 
used in isolation have been found to predict changes in vigilance and subsequent 
task performance, several researchers have suggested that a combination of 
measures may be more sensitive to attentional states and, hence, produce better 
vigilance predictions (Van Orden et al. 2000).  

4.5 Trust 

It has long been believed that human trust perception is a primary determinant of 
human‒autonomy interactions and further presumed that calibrating trust can lead 
to appropriate decisions regarding control authority. However, attempts to improve 
joint system decision-making by calibrating trust have not yet provided a 
generalizable solution. To address this, it is critical to first understand how we 
measure trust in human‒autonomy teams and second use that measurement to 
identify when and how to calibrate team trust (for a full review of these 
measurement methods, see Krausman et al. [in press]). Preliminary research 
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suggests that a multi-method approach that includes assessment of self-report, 
communication, behavior, and physiology together explains and expands on team 
performance ratings during joint human‒autonomy team operations (Schaefer et al. 
2019a; Milner et al. 2020).  

4.5.1 Trust Measurement 

A number of self-report trust scales, with varying assessment purposes, are 
available, though choosing self-report trust scales that address system trust and 
team trust is generally preferable in the context of human‒autonomy teams. For this 
context, specifically in domain of Army lethality, scales include a system trust scale 
that focuses on system intelligence, safety, autonomy, trustworthiness, and use 
(Schaefer et al. 2012), and a team readiness questionnaire that addresses the team’s 
readiness, confidence in specific types of autonomy, self-confidence, trust in the 
autonomy, and trust in the team (Schaefer et al. 2019a, 2019b; Milner et al. 2020). 
Other research on trust in autonomous vehicle driving aids (see Neubauer et al. 
[2000]) has supported using standard human‒automation system trust scales such 
as the Checklist for Trust between People and Automation (Jian et al. 2000) or the 
System Trust Scale (Muir and Moray 1996). However, these scales are limited 
when it comes to intelligent systems. To address some of these limitations, 
modifications have been made these standard automation trust scales. For example, 
modifications to the Checklist for Trust between People and Automation have been 
made to address four functional areas of human‒autonomy teaming: gathering or 
filtering information, integrating and displaying analyzed information, suggesting 
or making decisions, and executing actions (Wright et al. 2020). More recent scales, 
such as the Trust Perception Scale-Human-Robot Interaction (Schaefer 2016), 
address some of these limitations by expanding the item pool to address 
independent and interdependent teaming factors that extend across all robotic 
domains and joint team operations.  

Overall, these scales explain self-reported trust-based perceptions, but can be 
strengthened through behavioral and communication analysis. The main difficulty 
with behavioral analysis is that it varies by task. Given that, some critical functions 
that may influence trust include attention management (e.g., eye movement, mean 
saccade amplitude, horizontal gaze deviation [He et al. 2011; Chen and Barnes 
2012; Gold et al. 2015]), proximity (MacArthur et al. 2017; Schaefer et al. 2019c), 
or control authority (e.g., percent of time autonomy has control authority, per 
appropriate control modality [Spain and Bliss 2008]). Communication analysis can 
thus be used to further characterize the interaction and coordination patterns of 
human‒autonomy teams that help explain team trust and cohesion (e.g., aggregate 



 

43 

communication flow, relational event modeling, and language-similarity measures 
[Baker et al. 2020]).  

4.5.2 Observable Correlates of Trust  

Physiological measures, specifically EDA and HRV, have shown some promise as 
potential indicators that can be used to identify when changes in trust-based 
decision-making can occur. Although a one-to-one discrimination between EDA 
measures and specifics trust states cannot be directly asserted, several controlled 
experimental paradigms have linked changes in tonic and phasic EDA to changes 
in individual states such as stress and engagement within autonomous environments 
(Mower et al. 2007). In this context, increases in both tonic and phasic EDA have 
been shown to relate to increases in anxiety and cognitive effort (Shi et al. 2007; 
Zhao et al. 2015). Additionally, work by Bethel (2007) pioneered the use of EDA 
measurement during human‒robot interaction studies. They found that tonic EDA 
measures increased along with increased engagement with the robot. Furthermore, 
Montague et al. (2014) employed a dyadic interaction trust paradigm and found that 
the higher the users’ individual ratings of trust in technology were, the more their 
individual EDA measures agreed. In other words, if EDA levels of one subject were 
low, and both subjects were in a trust state, the second subject’s EDA would be 
expected to be low as well. Moreover, in a pilot study, Sanders et al. (2012) found 
higher EDA and lower subjective trust ratings during interaction with an unreliable 
robot than with a reliable robot. These general findings are important within 
human‒autonomy teams because such autonomous agents need to accurately assess 
changes in physiology so that they can respond appropriately. For example, if an 
autonomous system suddenly failed in some way (e.g., likely considered a negative, 
undesirable event), a subsequent sympathetic activation and an increase in tonic 
EDA should be present, and the degree or magnitude of the SCR would indicate 
the significance of the stimulus, in this case, the level of stress, frustration, or even 
anxiety associated with the negative event. 

Additionally, HR and HRV measures are often used in conjunction with other 
sensing systems to infer the effect of a stimulus, cognitively and affectively, on a 
subject. Following a stimulus, an acute decrease in HRV, along with a simultaneous 
phasic response has been associated with orienting behavior (Figner and Murphy 
2011), which may allow for an inference that an event was salient to the subject. 
HRV may also be used in conjunction with EDA to infer levels of workload and 
trust (Matthews et al. 2005; Mehler 2009; Montague et al. 2014). For example, in 
a state of high trust, it is unlikely that one would feel anxious, and therefore HRV 
should be high and HR and tonic EDA levels would be low. However, if there is an 
increase in cognitive workload and anxiety associated with the process of 
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maintaining situation awareness such as might occur in a state of low trust, it is 
likely HRV would fall and NS-SCR would rise along with tonic EDA levels. 
However, this particular trend was found within a high-risk, intelligent teaming 
scenario and may not generalize outside this context. Finally, Mitkidis et al. (2015) 
found that in human‒human interactions during a joint action task, HR arousal and 
HR synchrony between individuals was indicative of increased trust.  

5. Conclusions and Limitations 

This report outlines the importance of utilizing multimodal psychophysiological 
methods for human state detection. More specifically, one primary goal of this work 
focuses on the use of multimodal sensor fusion for the continuous assessment of 
human state in real time using noninvasive, wearable systems to support fieldable 
estimation of those states. This is an important area to focus on as systems are being 
developed to implement adaptive autonomous teammates to respond to changes in 
human state that indicate a precursor to undesirable decisions (e.g., unfavorable 
levels of stress, fatigue, workload, and/or trust). Additionally, we have presented 
other challenges associated with using subjective or even performance-based 
metrics, which may not capture the real-time dynamics associated with state 
change. Therefore, we seek to perform inference of these latent mental states from 
multimodal physiological and behavioral outputs (e.g., ECG, EDA, EEG, eye 
tracking, or facial expressions), specifically to improve interactions and 
performance in human‒autonomy teams.  

However, when discussing the use of psychophysiology as a means to estimate 
human state, it is critical to also present the caveats associated with these 
methodologies. Perhaps most importantly, it should not be assumed that an existing 
relationship between one or more elements of a psychological or physiological 
domain be held constant across all situations or individuals. In other words, a 
relationship between a theoretical construct and physiological and behavioral data 
may have a limited range of validity due to the fact that such relationships are only 
clear within well-controlled experimental paradigms and may actually be the result 
of other antecedent factors. In this context, it is vital to enact procedures that hold 
elements of the psychological domain constant in order to determine which of the 
observed changes in physiological response are likely attributable to relevant 
elements and which are believed to covary with irrelevant elements. As such, a 
further goal within this area of research is to use these procedures to account for or 
remove these irrelevant sources of variance to isolate the robust, if not invariant, 
relationship among psychological, physiological, and behavioral quantities of 
interest. Additionally, we have attempted to emphasize in the methods outlined 
previously that these relationships are simply a way to provide a more rigorous 
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approach to understanding and modeling psychophysiological processes. However, 
researchers still need to be aware that these relationships are approximations and 
generalizations that can vary across individuals, time, and contexts. Still, even 
coarse information about the connection between observable and unobservable 
human characteristics can be leveraged to improve prediction of their behavior. 

Overall, within this report, we would like to stress that there does appear to be, at a 
minimum, a transactional relationship between the individual and environment, 
which unfolds as changes in psychological state are exhibited via physiological and 
behavioral manifestations. Although a direct, invariant psychophysiological 
relationship provides the best generality, it is our contention that physiological and 
behavioral markers, covariates, and observable outcomes also provide important 
information about specific unobservable variables of interest within the 
psychological domain. Therefore, this report serves as a reference that identifies 
current psychophysiological relationships and their associated inferences that are 
applicable to human‒autonomy teams, via noninvasive and wearable sensor 
technologies. We have also attempted to visually and succinctly summarize these 
directional relationships in Appendix B, Table 10 of this document. Finally, this 
report has addressed various questions relating to selecting the appropriate 
measurements for variables of interest, the importance of addressing contextual and 
individual variability on psychophysiological relationships, and how measures of 
physiological and behavioral signals can be utilized to index various psychological 
factors such as stress, fatigue, workload, vigilance, and trust.  

Finally, this report has argued for the use of multimodal sensing and modeling 
techniques within psychophysiological research to more effectively predict state-
based interactions within the context of human‒autonomy teams. Integration of 
eye-tracking, EDA, EEG, and/or ECG measures allows researchers to more 
holistically and comprehensively infer internal human states that impact those 
interactions than is possible with any one measure individually. Our primary aim 
has been to support the design of psychophysiological models, informed by a priori 
knowledge, by characterizing the robust relationships between those states and their 
physiological and behavioral indicators to enable more powerful methods for 
human-centered sensor fusion and ultimately enable effective and resilient human‒
autonomy teaming.  
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Appendix A. Documentation and Software for Human Sensing  
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The following link is for human sensing knowledge and capabilities within the US 
Army Combat Capabilities Development Command Army Research Laboratory. 
This is intended to serve as a resource for general knowledge and usage 
documentation for new and experienced users for various human sensing 
modalities, systems, and algorithms, to aid in multimodal physiological, behavioral, 
and sociological research. 

This document is currently organized by sensing MODALITIES, with subsequent 
links to specific sensor SYSTEMS AND ALGORITHMS. 

Link: https://gitlab.sitcore.net/arl/hred/human-sensing/wikis/home 

 
 

https://gitlab.sitcore.net/arl/hred/human-sensing/wikis/home#modalities
https://gitlab.sitcore.net/arl/hred/human-sensing/wikis/home#systems-and-algorithms
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Appendix B. Psychophysiological Relationship Summary  
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Table B-1 Notional summary of correlational and functional relationships 

 Arousal Stress Fatigue Workload Vigilance Trust 
EDA tonic + + * + * * 
EDA phasic       
HR + + _ + - - 
HRV - _ + - + + 
EEG delta 
power 

- * + + - * 

EEG theta 
power tonic 

- * + +* - * 

EEG theta 
power 
phasic 

+ * +* * * * 

EEG alpha 
power tonic 

* * - + + * 

EEG alpha 
power 
phasic 

- * - * * * 

EEG beta 
power 

+ * - +* * * 

EEG gamma 
power 

* * * * * * 

Pupil 
diameter 

+ * _* + + +* 

PERCLOS - * + * - * 
Note: * indicates that a relationship is largely unknown or warrants further investigation; + represents a 
positive correlation; - represents a negative correlation. 
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List of Symbols, Abbreviations, and Acronyms 

ANS autonomic nervous system 

AU Action Unit 

BPM beats per minute 

CCDC US Army Combat Capabilities Development Command 

CO cardiac output 

CSF cerebral spinal fluid 

ECG electrocardiogram 

EDA electrodermal activity 

EEG electroencephalography 

EMI electromagnetic interference 

FACS Facial Action Coding System 

fEMG facial electromyographic activity 

GSR galvanic skin response 

HF high frequency 

HR heart rate 

HRV heart-rate variability 

IBI interbeat interval 

LF low frequency 

ln natural logarithm  

mRR   mean RR interval 

NN normal to normal 

NN50 NN intervals greater than 50 ms 

NS-SCR non-specific SCR 

nu normalized units 

PERCLOS percentage of eye closure time  

pNN50 proportion of NN50 divided by the total number of NN intervals  
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PSD power spectral density 

PUI pupillary unrest index 

RMSSD root mean square of successive differences 

RSA respiratory sinus arrhythmia 

SCL skin conductance level 

SCR skin conductance response 

SD standard deviation 

SDNN SD of the NN beat intervals  

SNR signal-to-noise ratio 

ULF ultra-low frequencies 

VLF  very low frequencies 
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