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1. Introduction 

Researchers at the US Combat Capabilities Development Command (CCDC) Army 
Research Laboratory (ARL) recently performed a survey of pulse identification 
techniques presented in the open literature. This effort represents the first step in 
the development of a capability to automatically identify arbitrary radar pulses. As 
part of this effort, a survey of intra-pulse modulations classification techniques was 
conducted. This report provides a summary of the open literature on radar pulse 
modulation classification. 

Many different approaches have already been investigated, some attempting to 
characterize pulse modulation and others attempting to identify the radar system 
based on measured parameters such as operating frequency and pulse shape 
parameters. The majority of the open modulation classification literature deals with 
classification of communications signals. Some of the classification techniques and 
features are applicable to radar signals. In some of these cases, a preprocessing 
stage must be included to extract the pulse data input to provide intra-pulse 
modulation recognition. 

In what follows, we summarize many technical approaches used to provide 
modulation classification found in the open literature. We begin with a general 
summary of processing techniques that are drawn from many mathematical and 
engineering fields. These classification techniques are drawn from the fields of 
statistics, domain transformations, digital signal processing, image processing, 
pattern recognition, machine learning algorithms, and artificial neural networks. In 
many cases, there is significant integration of processing techniques from various 
scientific fields. A list of references is included at the conclusion of the paper.  

Digital techniques have given radar configuration more flexibility and adaptability 
in operations. Advances in hardware components, RF and signal processing 
hardware, and signal processing algorithms have provided a more advanced 
capability that has necessitated the inclusion of more advanced techniques to 
identify and classify the radar configuration. 

2. Specific Emitter Identification (SEI) 

Historically, SEI has been based on physical parameters that could be measured on 
the radar return such as pulse repetition interval (PRI), pulse width (PW), pulse rise 
and fall time, and operating frequency. Due to the limited number of radar systems, 
the types of measurements were sufficient to identify the radar types. Radar system 
configurations were designed for the basic operation of target detection. As 
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technology advanced in RF components, electronic components, computer 
processing and control, and modulation complexity, radar identification has 
become increasingly difficult. The new low probability of intercept (LPI) radars are 
designed to make their detection harder or impossible. 

2.1 SEI with Cumulants Features  

The classic approach to SEI relies on the basic parameters of the radar pulse signal. 
Under this approach, it can distinguish among radar systems that appear to be 
identical. A more effective implementation would be to exploit differences in the 
radars’ unintentional modulations on pulse (UMOP). Basically, the goal is to assign 
a fingerprint to the radar signal to uniquely identify the radar source to produce an 
effective SEI capability. 

Aubry et al.1 developed an improved SEI system by identifying an additional set of 
features of the radar signal. This new set of features is based on the use of high-
order statistics (HOS). Specifically, the authors examined the use of the cumulants 
features of the intercepted signal. The goal was to identify relevant features that 
have some desirable robust characteristics such as shift invariance, noise 
invariance, and scale invariance. The second-, third-, and fourth-order cumulants 
were identified as being effective. Cumulants of an order greater than 2 share the 
shift- and noise-invariant properties. In addition, these cumulants were normalized 
to provide for the invariant-property goal. 

The k-nearest neighbor (KNN) classifier was chosen to sort the emitter signal into 
the appropriate class. Evaluation of this system was performed on a real data set. 
Three airborne radar signals (same model) were acquired by Elt_Elettronica SpA. 
The results from the classifier were considered very good, although not perfect.1  

2.2 SEI Based on the Deep Belief Network (DBN) 

The traditional SEI method employs the characteristic parameters, such as the time 
of arrival (TOA), direction of arrival (DOA), RF, PRI, and PW of the radar signal. 
Radar emitter recognition is difficult to accomplish with these parameters alone. 
Other parameters, such as the unintentional modulation of the radar pulse, are 
noted, including pulse leading edge characteristics, phase noise, and frequency 
drift. 

Dong et al.2 exploited the unintentional modulation of radar signals by the radar 
transmitter. Their focus was on using pulse envelope distortion as a parameter in 
the recognition process. Instead of developing/extracting features from the pulse 
directly, their effort examined the use of a neural network to identify the features 
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directly and autonomously from the time-domain data sequence. Using this 
technique, they reduced the dependence on prior knowledge and developed 
discriminate features. 

A DBN was used in their research. This neural network architecture uses is a deep 
structure superposed by multilayer limited Boltzmann machines. Compared with 
the traditional shallow network, the DBN process exhibits superior feature 
extraction and dimension reduction. The research was executed with computer 
simulations. Four different types of leading-edge shapes were modeled. 
Unsupervised extraction of the pulse leading edge was conducted in the time 
domain. Fine-tuning of the network was conducted with supervised adjustment 
based on the labeled data. The advantage of the method is that it overcomes the 
complexity of artificial feature extraction and extracts the deep features of the radar 
signal in the time domain. A comparison was conducted that showed improvements 
over other classification techniques. However, this study only examined signals 
with a signal-to-noise ratio (SNR) of 10 dB.2 

2.3 SEI with Linear Discriminant Analysis (LDA) and Karhunen–
Loève Transformation (KLT) 

Kawalec et al.3 provided a technique to improve on the SEI process. The early SEI 
process dealt with the inter-pulse measurement parameters such as TOA, PW, 
amplitude (A), RF and carrier frequency, and frequency modulation on pulse 
(FMOP). An issue with this paradigm is that it cannot distinguish between radar 
devices of the same type. 

To overcome the problem, the authors incorporated a parameter that considers the 
individual pulse or intra-pulse information. An overview of the procedure/ 
methodology used in enhancing the classification was provided. Their method is a 
composite task that involves pulse measurements, features extraction, 
normalization, selection, classification (recognition), and verification. Features 
were generated and two typical machine learning algorithms were employed for 
feature selection: LDA and KLT (i.e., principal component analysis). Comparison 
of the two data-reduction algorithms yielded similar results for feature reduction. 
Actual experiments were conducted where about 1 million pulses from 62 emitters 
were evaluated against their classifiers. The classifier demonstrated a significant 
improvement in accurately identifying emitters with the additional intra-pulse 
features.3 
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3. Signal Processing Techniques 

3.1 Hilbert Transformation 

The Hilbert transform is important signal processing trick wherein the analytic 
signal is derived from a real-valued signal. For a system capable of a measuring 
only a single channel, the signal is considered a real-valued signal as function of 
time. The Hilbert transform creates a complex representation of the signal in that 
the real-valued measurement is labeled as the “in phase” component. The 
“quadrature” component is generated by introducing a phase shift in the in-phase 
component by 𝜋𝜋

2
. The combination of these two components defines the analytic 

function. If the radar measurement has a complex representation, the Hilbert 
transform is not necessary. Calculation of the instantaneous amplitude and 
frequency constitute a critical basis for determining key modulation features.  

3.2 Convolution 

Convolution is a simple mathematical operation that is fundamental to signal and 
image processing operators. Convolution provides a way of “multiplying together 
and integrating” two arrays of numbers, generally of different sizes but of the same 
dimensionality, to produce a third array of numbers of the same dimensionality. For 
a linear system, if the input sequence and impulse response of the system is known, 
the output sequence can be computed. In this case, the convolution process involves 
multiplication and summation of the two signals with one of the signal reversed. 
This is expressed as 

[𝑓𝑓 ∗ 𝑔𝑔] =  �𝑓𝑓(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝜏𝜏

0

 (1) 

where f and g can represent the input and impulse response. 

In image processing, the convolution processing is similar, except that there is no 
reversing of any of the data matrix pixels. For a convolutional neural network 
(CNN), the input is the image and it is convolved with a matrix that is smaller in 
size. This smaller matrix is also known as a filter or kernel. It is basically a “dot 
product” between the image and filter, as the filter output is computed as it slides 
across the image to yield a single value for each position. The calculation is a 
summation and element multiplication between the image and the corresponding 
location of the kernel as expressed by 
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𝐶𝐶[𝑚𝑚,𝑛𝑛] =  ��𝐴𝐴[𝑚𝑚 + 𝑢𝑢, 𝑛𝑛 + 𝑣𝑣] ∙
𝑣𝑣𝑢𝑢

𝐵𝐵[𝑢𝑢, 𝑣𝑣] (2) 

where C is the output image, A is the input image, and B is the kernel. 

3.3 Instantaneous Frequency and Phase 

Let the complex signal be representative as 

�̂�𝑠 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 (3) 

The instantaneous phase of the complex signal is the complex argument function 
defined as 

𝜙𝜙(𝑡𝑡) =  𝑎𝑎𝑎𝑎𝑔𝑔{�̂�𝑠} =  𝑡𝑡𝑎𝑎𝑛𝑛−1 �
𝑖𝑖
𝑥𝑥
� (4) 

There are two categories that define the range of the instantaneous phase value: 
“wrapped phase” and “unwrapped phase”. For “wrapped phase”, the instantaneous 
phase calculation ranges between values of [−𝜋𝜋,𝜋𝜋]. In the case for “unwrapped 
phase”, the instantaneous phase is represented as a continuous function. When the 
calculation of adjacent difference points exceeds a value of π radians, a value of 2𝜋𝜋 
phase is added to the instantaneous phase calculation at that position forward.  

The instantaneous frequency is the rate of change of the instantaneous phase. 
Instantaneous frequency (angular) can be expressed as follows:  

𝜔𝜔(𝑡𝑡) =  
𝑑𝑑𝜙𝜙(𝑡𝑡)
𝑑𝑑𝑡𝑡

 (5) 

and the instantaneous frequency (regular) is defined as 

𝑓𝑓(𝑡𝑡) =  
1

2𝜋𝜋
𝜔𝜔(𝑡𝑡) 

=  
1

2𝜋𝜋
𝑑𝑑𝜙𝜙(𝑡𝑡)
𝑑𝑑𝑡𝑡

 

(6) 

where 𝜙𝜙(𝑡𝑡) must be the unwrapped instantaneous phase angle. It can be 
approximated using the finite difference equation as
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𝑓𝑓(𝑘𝑘) =  𝜙𝜙(𝑘𝑘 + 1) −  𝜙𝜙(𝑘𝑘) (7) 

where ϕ(k) is the unwrapped instantaneous phase. 

4. Features 

Modulation recognition has been conducted for many decades. Fundamentally, the 
research was performed on communications-type signals. Initially, these signals 
were analog signals: amplitude and frequency modulations. As the hardware 
technology has evolved, the different types of communications modulation have 
evolved and become more complex in nature. The introduction of digital techniques 
has created many forms of modulation for communications. 

Initial radar signals evolved from continuous-wave to pulse-radar signals in order 
to obtain range resolution. Detection of targets is the main purpose of radar systems, 
as indicated in the name, which is an acronym for radio detection and ranging. 
Originally, it was necessary to transmit high power levels in order to obtain the 
desired range response, but this approach is susceptible to counterattacks since the 
radar could also be easily detected. LPI radar techniques evolved to reduce radar 
detectability. The LPI transmitter energy is reduced and spread over a larger 
frequency band of operation. Spreading the energy over a larger PW reduces the 
range resolution compared to a shorter PW signal. This is mitigated by modulating 
the intra-pulse signal (i.e., the signal within the pulse). Through signal processing 
techniques, the increased range resolution is obtained.  

Some of the foundational work was performed by the following authors: EE 
Azzouz and AK Nandi. Their work4 dealt with the modulation of communications-
type signals. A significant number of researchers expanded on the feature basis that 
Azzouz and Nandi created. These features are formed using basic statistical 
measures on the normalized instantaneous amplitude, frequency, and phase. The 
five features that they proposed are as follows. 

4.1 Maximum Fourier Transform of the Normalized-Centered 
Instantaneous Amplitude 

The maximum Fourier transform of the normalized-centered instantaneous 
amplitude is  

𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 ≜ 𝑚𝑚𝑎𝑎𝑥𝑥�𝐷𝐷𝐷𝐷𝐷𝐷�𝐴𝐴𝑐𝑐𝑐𝑐(𝑖𝑖)��
2
 (8) 
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where 𝐴𝐴𝑐𝑐𝑐𝑐(𝑖𝑖) is the value of the normalized-centered instantaneous amplitude at 
time instants 𝑡𝑡 =  𝑖𝑖

𝑓𝑓𝑠𝑠 
 (𝑖𝑖 = 1,2, …𝑁𝑁) and it is defined by  

𝐴𝐴𝑐𝑐𝑐𝑐(𝑖𝑖) ≜  𝐴𝐴𝑐𝑐(𝑖𝑖) − 1 (9) 

𝐴𝐴𝑐𝑐(𝑖𝑖) =  
𝐴𝐴(𝑖𝑖)
𝜇𝜇𝑚𝑚

 (10) 

where 𝜇𝜇𝑚𝑚 is the average value of the instantaneous amplitude over one frame, that 
is,  

𝜇𝜇𝑚𝑚 =  
1
𝑁𝑁
�𝐴𝐴(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (11) 

Normalization of the instantaneous amplitude is necessary in order to compensate 
for the channel gain. Thus, 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum value of the spectral 
power density of the normalized-centered instantaneous amplitude of the 
intercepted signal. 

4.2 Standard Deviation of the Nonlinear Component of the 
Absolute Instantaneous Phase 

The standard deviation of the nonlinear component of the absolute instantaneous 
phase is 

𝜎𝜎𝑚𝑚𝑎𝑎 ≜ �1
𝐶𝐶
� � 𝜙𝜙𝑁𝑁𝑁𝑁2 (𝑖𝑖)
𝐴𝐴𝑛𝑛(𝑖𝑖)>𝑚𝑚𝑡𝑡

� − �
1
𝐶𝐶

� |𝜙𝜙𝑁𝑁𝑁𝑁(𝑖𝑖)|
𝐴𝐴𝑛𝑛(𝑖𝑖)>𝑚𝑚𝑡𝑡

�

2

 (12) 

where 𝜙𝜙𝑁𝑁𝑁𝑁(𝑖𝑖) is the value of the nonlinear component of the instantaneous phase 
at the time instants 𝑡𝑡 =  𝑖𝑖

𝑓𝑓𝑠𝑠
 ,𝐶𝐶 is the number of samples in {𝜙𝜙(𝑖𝑖)} for which  

𝐴𝐴𝑐𝑐(𝑖𝑖) >  𝑎𝑎𝑡𝑡 , and 𝑎𝑎𝑡𝑡 is a threshold for 𝐴𝐴(𝑡𝑡) below which the estimation of the 
instantaneous phase is very sensitive to the noise. Thus, 𝜎𝜎𝑚𝑚𝑎𝑎 is the standard 
deviation of the absolute value of the nonlinear component of the instantaneous 
phase, evaluated over the nonweak segments of the intercepted signals. 
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4.3 Standard Deviation of the Nonlinear Component of the 
Instantaneous Phase 

The standard deviation of the nonlinear component of the instantaneous phase is 

𝜎𝜎𝑑𝑑𝑎𝑎 ≜ �1
𝐶𝐶
� � 𝜙𝜙𝑁𝑁𝑁𝑁2 (𝑖𝑖)
𝐴𝐴𝑛𝑛(𝑖𝑖)>𝑚𝑚𝑡𝑡

� − �
1
𝐶𝐶

� 𝜙𝜙𝑁𝑁𝑁𝑁(𝑖𝑖)
𝐴𝐴𝑛𝑛(𝑖𝑖)>𝑚𝑚𝑡𝑡

�

2

 (13) 

Thus, 𝜎𝜎𝑑𝑑𝑎𝑎 is the standard deviation of the nonlinear component of the direct (not 
absolute) instantaneous phase, evaluated over the nonweak segments of the signals. 

4.4 Standard Deviation of the Absolute Normalized 
Instantaneous Amplitude 

The standard deviation of the absolute normalized instantaneous amplitude is  

𝜎𝜎𝑚𝑚𝑚𝑚 ≜ �1
𝑁𝑁
���𝐴𝐴𝑐𝑐𝑐𝑐2(𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

� − �
1
𝑁𝑁
�|𝐴𝐴𝑐𝑐𝑐𝑐(𝑖𝑖)|
𝑁𝑁

𝑖𝑖=1

�

2

 (14) 

 
The fourth key feature, 𝜎𝜎𝑚𝑚𝑚𝑚, is the standard deviation of the absolute value of the 
normalized-centered instantaneous amplitude of the signal. 

4.5 Standard Deviation of the Absolute Value of the Normalized 
Instantaneous Frequency 

The standard deviation of the absolute value of the normalized instantaneous 
frequency is 

𝜎𝜎𝑓𝑓𝑚𝑚 ≜ �1
𝐶𝐶
� � 𝑓𝑓𝑁𝑁2(𝑖𝑖)
𝐴𝐴𝑛𝑛(𝑖𝑖)>𝑚𝑚𝑡𝑡

� − �
1
𝐶𝐶

� |𝑓𝑓𝑁𝑁(𝑖𝑖)|
𝐴𝐴𝑛𝑛(𝑖𝑖)>𝑚𝑚𝑡𝑡

�

2

 (15) 

where the centered instantaneous frequency 𝑓𝑓𝑐𝑐 is normalized by the bit rate, 𝑎𝑎𝑏𝑏, to 
obtain 𝑓𝑓𝑁𝑁 according to 

𝑓𝑓𝑁𝑁[𝑖𝑖] =
𝑓𝑓𝑐𝑐[𝑖𝑖]
𝑎𝑎𝑏𝑏

 (16) 

At this point, the referred centered instantaneous frequency 𝑓𝑓𝑐𝑐 is denoted by the 
mean value of frequencies constituting the pulse modulation. It is given by  
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𝑓𝑓𝑐𝑐[𝑖𝑖] = 𝑓𝑓[𝑖𝑖] − 𝜇𝜇𝑓𝑓 (17) 

𝜇𝜇𝑓𝑓 =
1
𝑁𝑁
�𝑓𝑓[𝑖𝑖]
𝑁𝑁

𝑐𝑐=1

 (18) 

where N is the number of frequency-domain samples. 𝜎𝜎𝑓𝑓𝑚𝑚 is the standard deviation 
of the absolute value of the normalized-centered instantaneous frequency, 
evaluated over the nonweak segments of the intercepted signal.4 

Lunden and Koivunen5 developed feature set designed for radar platforms. The 
received signal is a discrete-time complex signal as represented by 

𝑖𝑖(𝑘𝑘) = 𝑥𝑥(𝑘𝑘) + 𝑛𝑛(𝑘𝑘) = 𝐴𝐴𝑒𝑒𝑗𝑗∅(𝑘𝑘) + 𝑛𝑛(𝑘𝑘) (19) 

where 𝑖𝑖(𝑘𝑘)and 𝑥𝑥(𝑘𝑘) are the complex envelopes of the intercepted and transmitted 
signals, respectively, and 𝑛𝑛(𝑘𝑘) is the (complex) noise. In complex polar form, 𝐴𝐴 is 
constant amplitude and ∅(𝑘𝑘) is the instantaneous phase of the complex envelope. 

4.6 Second-Order Statistics Features 

Second-order statistical features were implemented through the use of moments and 
cumulants. These second-order features provide good recognition of binary phase 
signals. The squared complex envelope of a binary phase signal has a useful 
property in that it is a constant. 

The general form of the moment statistic of the complex envelope of a complex 
random process 𝑖𝑖(𝑘𝑘) may be estimated as 

𝑀𝑀𝑐𝑐𝑚𝑚� =  �
1
𝑁𝑁
� 𝑖𝑖𝑐𝑐−𝑚𝑚(𝑘𝑘)(𝑖𝑖∗(𝑘𝑘))𝑚𝑚
𝑁𝑁−1

𝑘𝑘=0

� (20) 

where 𝑁𝑁 is the number of data samples and 𝑚𝑚 is the number of conjugated 
components. The use of the absolute value renders the estimate invariant to constant 
phase rotation. Another way to obtain scaling invariance is through the 
normalization of the input sequence, 𝑖𝑖(𝑘𝑘), prior to applying moment. Scaling 
invariance is expressed as follows: 

𝑖𝑖�(𝑘𝑘) =  
𝑖𝑖(𝑘𝑘)

�𝑀𝑀21� − 𝜎𝜎𝑐𝑐2
 (21) 

where 𝜎𝜎𝑐𝑐2 is the variance of the additive noise.  
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The first- and second-order moments 𝑀𝑀�10 and 𝑀𝑀�20 as well as the second-order 
cumulant �̂�𝐶20 were chosen as features. �̂�𝐶20 is calculated similarly as 𝑀𝑀�20, except 
that the mean 𝑀𝑀�10 is first subtracted from 𝑖𝑖(𝑘𝑘).  

4.7 Power Spectral Density (PSD) Features 

The signal power distribution in the frequency domain is obtained through the 
Fourier transform. Two additional features are formed through the PSD. The first 
feature is the maximum of the PSD of the complex envelope as expressed as 

𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 =  
1
𝑁𝑁

max
𝑐𝑐

�
1
𝑁𝑁
���𝑖𝑖�(𝑘𝑘)𝑒𝑒−𝑗𝑗2𝜋𝜋𝑐𝑐𝑘𝑘/𝑁𝑁�
𝑁𝑁−1

𝑘𝑘=0

�

2

� (22) 

where 𝑖𝑖�(𝑘𝑘) is magnitude normalized complex envelope. 

A discrimination capability for binary phase and Costas codes can be obtained to 
separate them from the rest of the pulse modulation schemes. Invariance is achieve 
by 1/𝑁𝑁2 normalization with respect to the data sequence length. 

The second feature is the maximum of the PSD of the squared complex envelope. 
In this case, 𝑖𝑖�(𝑘𝑘) is replaced with 𝑖𝑖�2(𝑘𝑘) due to the fact that the squared complex 
envelope is constant for binary phase signals. 

4.8 Instantaneous Signal Features 

The radar signals instantaneous properties are very distinctive for frequency and 
phase modulations. First, two features based on the direct estimate of the 
instantaneous phase (i.e., the phase of the complex envelope) are given. Note that 
these features are as defined by Azzouz and Nandi4:  

1) Standard deviation of the absolute value of the instantaneous phase  

𝜎𝜎𝜙𝜙� =  �
1
𝑁𝑁
��𝜙𝜙2(𝑘𝑘)

𝑘𝑘

� − �
1
𝑁𝑁
�|𝜙𝜙(𝑘𝑘)|
𝑘𝑘

�
2

 (23) 

where 𝜙𝜙(𝑘𝑘) is the defined between −𝜋𝜋 and 𝜋𝜋.𝑁𝑁 is the number of nonweak 
samples contributing to the summation (i.e., samples whose amplitude is 
larger than some predefined threshold). The employed threshold was 0.2 of 
the maximum amplitude.  

2) Standard deviation of the absolute value of the normalized centered 
instantaneous frequency  
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𝜎𝜎𝑓𝑓� =  �
1
𝑁𝑁
��𝑓𝑓2(𝑘𝑘)

𝑘𝑘

� − �
1
𝑁𝑁
��𝑓𝑓(𝑘𝑘)�
𝑘𝑘

�
2

 (24) 

where 𝑓𝑓(𝑘𝑘) is the normalized centered instantaneous frequency, that is,  

𝑓𝑓(𝑘𝑘) =  
�𝑓𝑓(𝑘𝑘) −  𝜇𝜇𝑓𝑓�

𝑚𝑚𝑎𝑎𝑥𝑥�𝑓𝑓(𝑘𝑘) −  𝜇𝜇𝑓𝑓�
 (25) 

where 𝑓𝑓(𝑘𝑘) is the instantaneous frequency and 𝜇𝜇𝑓𝑓 is the mean of 𝑓𝑓(𝑘𝑘). The 
sums are again taken over nonweak samples with the same threshold.5 

5. Statistics 

Statistical processing of the radar data provides statistical techniques/methodology 
to condense the radar data in quantitative terms. Reduction of the measured radar 
data provides a mechanism for the interpretation of the data. These statistical 
definitions are described in the following subsections. 

5.1 Mean 

Mean is the most common measure of a statistical distribution. In this case, mean 
is arithmetic average for a set of measurements: 

𝒙𝒙� =  𝜇𝜇 =
1
𝑁𝑁
�𝒙𝒙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

. (26) 

5.2 Variance 

Variance is a measure of the dispersion of a waveform about its mean, called the 
second moment of the measurements: 

𝜎𝜎2 =  
1
𝑁𝑁
�(𝒙𝒙𝑖𝑖 −  𝒙𝒙�)2
𝑁𝑁

𝑖𝑖=1

 (27) 

5.3 Standard Deviation 

Standard deviation is a measure of the variation of a set of data values. Standard 
deviation is defined as the square root of the variance moment: 
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𝜎𝜎 =  �
1
𝑁𝑁
�(𝒙𝒙𝑖𝑖 −  𝒙𝒙�)2
𝑁𝑁

𝑖𝑖=1

 (28) 

5.4 Kurtosis 

Kurtosis is a measure of the tails of the statistical distribution. This provides a 
description of the outliers in the distributions: 

𝜅𝜅 =  
∑ (𝒙𝒙𝑖𝑖 −  �̅�𝜇)4𝑁𝑁
𝑖𝑖=1

𝑁𝑁𝜎𝜎4
 (29) 

6. Higher-Order Statistics 

HOS advance the fundamental mathematical statistics to provide additional 
features to compare radar measurements. These higher-order features are moments 
beyond the variance and kurtosis. Use of the HOS provides additional information 
about the shape of the data.  

6.1 Moments 

The definition for moments are defined as follows: 

Mp =  
1
N
�(xi −  x�)p
N

i=1

 (30) 

where p is the order of the moment, N is the number of data samples, i is the index 
of the data sample, and x ̅ is the mean value of the data set. 

Moments are simply the expectation (or mean) of the variable data raised to the 
power by the order of the moment. 

6.2 Cumulants 

Cumulants are alternative method to summarize the distribution of a data set. 
Cumulants are related to the moments the natural logarithm of the characteristic 
function. Let characteristic function and second characteristic function, 
respectively, as 
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Φ(s) =  � f(x)esxdx
−∞

∞

 (31) 

and 

Ψ(s) = lnΦ(s) 
(32) 

The nth-order cumulant of x is defined as the nth derivative of the second 
characteristic function evaluated at s = 0: 

λn =  
dnΨ(0)

dsn
 (33) 

The computation of these cumulants can be mathematically determined as a 
function of equal and lower-ordered moment, which provides for an easier 
numerical calculation 

6.3 Notation 

The radar signal is represented by in a complex format. For the calculation of the 
moments, the moment generation is modified to incorporate a conjugate term. In 
this case, the moment notation is defined as 

Mx,a,b = E�xa(x�)b�, a, b ∈ ℤ+ (34) 

where E is the expectation operator or mean calculation, x is the variable, and x� is 
its complex conjugate. The order of this moment is a + b.  

The cumulant is denoted with following notation: Cx,a,b. Instead of explicitly 
calculating statistical moments, they can be numerically expressed as combination 
of moments of comparable or lower orders. 

6.4 Normalization 

One potential problem in using these statistics as they are is that the magnitude of 
the cumulants increases with their order. This characteristic could have the 
unintended consequence of weighting these larger statistics more heavily in the 
classification scheme. To mitigate this effect, Geisinger proposed raising each 
cumulant to the power 2

𝑐𝑐
, where 𝑛𝑛 is the cumulant’s order. Simulations showed that 

taking the magnitude of the statistics and normalizing the cumulants according to 
their order greatly improved the discrimination power of the features considered 
when dealing with noise. However, simulations also showed that some of the 
statistics were very sensitive to the received signal power. This characteristic could 
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have the unintended consequence of weighting these larger statistics more heavily 
in the classification scheme.6  

Normalization involves no loss of information and achieves two important goals. 
The first is that the power level of the signal appears linearly in the various 
cumulant calculations. The second is that the higher-order cumulants are not 
emphasized over the lower-order cumulants.7 

6.5 Modulation Classification with HOS of LPI Radar 

Raghu et al.8 evaluated the use of HOS techniques to identify certain LPI radar 
signatures. When the signals are in a noisy environment or under low SNR, it may 
be very difficult to detect them. Detection of the LPI signal is possible with 
Wigner‒Ville time-frequency processing, but the identification of the modulation 
is not possible since the phase information is not preserved in the processing 
technique. LPI radar signals use phase modulation to reduce their detectability. The 
modulation used in this study were Barker, P1, P2, P3, and P4 codes. Barker signals 
use two-phase combination, while the P1, P2, P3, and P4 are different polyphase 
coded signals. The authors used a bispectrum image to identify these modulations. 
A bispectrum image are created by a process that uses dual fast Fourier transform 
(FFT) with sliding window size over the input signature. Identification of the 
modulation are based on operator image recognition. 

6.6 Modulation Classification with HOS and Wavelet Packet 
Transform 

The detection and localization of the radar pulse under low SNR conditions are 
important to radar operation. A purposed technique that employs wavelet packet 
transform with HOS has been evaluated. Wavelet packet transform is similar to 
time-frequency transform except the correlation is performed on a prescribed shape 
that changes in amplitude and duration length. After decomposition through the 
Wavelet packet transform, the noise can be filtered out through a technique known 
as denoising. In this process, wavelet levels below a certain threshold are basically 
zeroed out. The inverse of the Wavelet packet transform will yield a filtered signal 
where the noise has been minimized. A potential problem is that the pulse signal 
can removed in this process. The authors proposed the use of HOS processing to 
decide the threshold level. They developed a procedure using the kurtosis 
estimation to establish an iterative operation to remove the noise.9 
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6.7 Modulation Classification with HOS and Image Processing 

The following types of modulation were used in this study: frequency-modulated 
continuous wave (FMCW), Frank-coded signals, P3 codes, P4 codes, Costas-coded 
signal, and stepped-frequency codes. The authors evaluated a system composed of 
a bank of parallel filters. Each filter feeds a third-order cumulant operator and 
detector. The outputs are used to generate a time-frequency plot. The time-
frequency image is converted into a two-level image and image morphology 
processing techniques are applied to enhance the image shape. Modulation 
recognition is then based the pattern recognition.10 

7. Fourier Transform 

The Fourier transform is a mathematical transform that decomposes a time-series 
sequence into a frequency-domain representation in terms of sinusoidal 
components (i.e., a series of complex frequency components represented by sine 
and cosine values). The mathematical representation for the Fourier transform and 
the inverse can be expressed as follows: 

𝐷𝐷{𝑥𝑥(𝑡𝑡)} =  𝑋𝑋(𝑓𝑓) = � 𝑥𝑥(𝑡𝑡)
∞

−∞

𝑒𝑒−𝑖𝑖2𝜋𝜋𝑓𝑓𝑡𝑡𝑑𝑑𝑡𝑡 (35) 

𝐷𝐷−1{𝑋𝑋(𝑓𝑓)} =  𝑥𝑥(𝑡𝑡) = � 𝑋𝑋(𝑓𝑓)
∞

−∞

𝑒𝑒𝑖𝑖2𝜋𝜋𝑓𝑓𝑡𝑡𝑑𝑑𝑓𝑓 (36) 

The Fourier transform is good for stationary signals where the waveform does not 
change during the sampling time. Time-dependent information is not incorporated 
into the output response. The Fourier transform output is dependent on the 
alignment of the input signal onto the transformation spacing. The transition 
endpoints are critical to the output response. A mismatch at the endpoint will result 
in leakage. This leakage effect results in what appears as signals appearing across 
the domain even though the actual signal may be concentrated at a particular 
frequency. This necessitates the use of windowing functions that are applied to the 
input signal to reduce the artifact due to leakage. 

7.1 Discrete Fourier Transform (DFT) 

DFT is basically the discrete representation of the Fourier transform. It converts an 
equally spaced finite sample sequence into a same-length, frequency-domain 
representation. It can be expressed as follows: 
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𝐷𝐷{𝑥𝑥(𝑖𝑖)} = 𝑋𝑋[𝑘𝑘] =  �𝑥𝑥(𝑖𝑖)𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑖𝑖𝑘𝑘

𝑁𝑁−1

𝑘𝑘=0

 (𝑖𝑖 = 0, … ,𝑁𝑁 − 1) (37) 

𝐷𝐷−1{𝑋𝑋[𝑘𝑘]} =  𝑥𝑥[𝑖𝑖] =  
1
𝑁𝑁
� 𝑋𝑋[𝑘𝑘]𝑒𝑒𝑗𝑗

2𝜋𝜋
𝑁𝑁 𝑖𝑖𝑘𝑘, (𝑖𝑖 = 0, … ,𝑁𝑁 − 1) 

𝑁𝑁−1

𝑘𝑘=0

 (38) 

7.2 FFT 

FFT is a mathematical algorithm that reduces the number of numerical 
computations necessary for the computation of the DFT. Size of the FFT output is 
limited to the base power of 2. The algorithm reduces the computational load factor 
for calculation for points 𝑁𝑁 from 2𝑁𝑁2 𝑡𝑡𝑜𝑜 2𝑁𝑁𝑁𝑁𝑜𝑜𝑔𝑔𝑁𝑁. The output of the FFT is only 
available after it has been calculated for the entire frequency-domain representation 
versus the DFT, where it is faster only if the output for one particular frequency is 
needed. 

8. Time-Frequency Transforms 

As stated for the Fourier transform, the frequency-domain representation is good 
for stationary signals where the waveform does not change during the sampling 
time. To capture conditions where the signal is changing during the sampling 
window, the signal can be divided into smaller frame size and a series of Fourier 
transforms calculated for each frame. There are different forms of this time-
frequency transform as expressed in the following sections. 

8.1 Short-Time Fourier Transform (STFT) 

STFT is generated by using the DFT on a smaller frame length than the origin data 
frame of length n. A partitioning of the origin data frame into “m” DFT computation 
can be expressed as 

XSTFT[m, n] =  � x[k]g[k − m]e−j2πn(k−m) L⁄
m+L−1

k=m

 (39) 

where x[k]is the signal and g[k]is a rectangular window function of length L 

Each DFT output is used to form a complex representation of the signal where “m” 
is used to provide a temporal indicator. Note that the frequency resolution is not as 
fine as a DFT performed on the entire data sequence.
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8.2 Cohen 

The Cohen transformation describes a general class of time-frequency 
transformation obtained through a quadratic formulation with a smoothing kernel 
applied to reduce interference terms created in the mathematical operation. The 
Cohen transformation is expressed as 

Cx,x
ϕ (t, f) =  �ϕ(ξ, τ)ej2πξ(s−t)x �s +

τ
2
� x∗ �s −

τ
2
� e−j2πfτdξdsdτ (40) 

where ϕ(ξ,τ) is the kernel of the distribution. 

8.3 Wigner‒Ville 

The Wigner‒Ville transformation is a time-frequency transformation that 
overcomes the stationary requirement of the Fourier transform to be applicable to 
nonstationary features. A mathematical expression for Wigner‒Ville is as follows: 

WVx,x(t, f) =  � x �t +
τ
2
� x∗ �t −

τ
2
� e−j2πfτdτ

∞

−∞

 (41) 

8.4 Choi‒Williams 

The Choi‒Williams transformation is a time-frequency transformation of the 
Cohen class time-frequency transformation. A kernel function filters the cross-
terms products that differ in both time and frequency center. The Choi‒Williams 
transformation is defined as follows: 

CWx,x(t, f) =  � � e�−α(ητ)2�Ax(η, τ)
∞

−∞

∞

−∞

ej2π(ηt−τf)dηdτ (42) 

where 

Ax(η, τ) =  � x �t +
τ
2
�

∞

−∞

x∗ �t −
τ
2
� e−j2πtηdt (43) 
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8.5 Image Processing: Morphological Feature Extraction 

Morphology is a set of image processing techniques that use shapes to modify the 
image characteristic. These operations apply a structuring element to an input 
image, creating an output image value of each pixel based on neighborhood pixel 
values. Fundamental operations are known as dilation and erosion. Dilation 
corresponds to opening or expanding the boundaries of the image object, while 
erosion performs the opposite in reducing or shrinking the image shape. These 
image operations are applied with structuring elements and rules associated with 
the desired function. Morphological operations rely only on the relative ordering of 
pixel values, not on their pixel numerical value.22  

Binarization of images is the process of converting an image into a binary or two-
state pixel image. This is computed through conversion of the image based on a 
simple threshold. Although this may reduce complexity, there is a high probability 
that artifacts may be generated and distort the desired shape. The morphological 
operations are applied to clean the image.  

8.6 Automated Classification with Choi‒Williams Distribution 
Extraction Integrated with Neural Networks 

Zilberman et al.11 developed an automated modulation classification process that 
used the time frequency: the Choi‒Williams distribution. This particular time-
frequency processing was chosen due to the minimization of the cross-term 
products when compared to a Wigner‒Ville distribution. Feature extraction was 
generated from the time-frequency image through the use of image processing 
techniques (morphological operations) using various shape kernels. Through a 
series of erosion, dilation, and adaptive threshold binarization, the image is 
simplified to produce an image of the modulation energy centroid. Classification is 
performed using a multilayer perceptron (MLP) neural network. Using computer 
simulation, the algorithm was evaluated against binary phase-shift keying (BPSK), 
FMCW, Frank, P4, and polyphase modulation.  

8.7 Automated Classification with Choi‒Williams Distribution, 
Standard Signal Extraction Feeding a Dual Elman Neural 
Network Classifier  

Zhang et al.12 provided a detailed roadmap of the process that was employed in 
their modulation classification algorithm. An automatic modulation recognition 
algorithm was the primary goal. Choi‒Williams time-frequency processing was 
selected as one of the primary techniques to transform the radar time signature (i.e., 
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to automate the feature extraction from the time-frequency image). The time-
frequency image was simplified into a binary image using techniques outlined in 
their paper. Through morphological operations, such as erosion and dilation, binary 
image shape features were isolated and enhanced. Features were extracted from the 
image through the statistical image moments called pseudo-Zernike moments. 

In addition to the Choi‒Williams processing, the authors used other signal 
processing on the radar signature in order to have features for classification. A list 
of features is included in their report. Some of these features were instantaneous 
frequency and phase; statistical features like standard deviations, moments, and 
cumulants; and PSD features. A total of 23 features were used in their classification 
algorithm. 

The authors used a neural network called Elman neural network (ENN). An ENN 
network incorporate a feedback path in the network that is typical feedforward only. 
In the classification algorithm, there are actually two ENNs used in parallel. 
Network 1 is used to classify linear frequency modulation (LFM), Costas, and 
binary phase modulations. Network 2 is used on the polyphase modulation signals. 
Their algorithm was evaluated against the following modulations: LFM, Costas, 
binary, Frank, P1, P2, P3, and P4.12 

9. Cyclostationary 

HOS are defined as the nth-order moments or cumulants (nonlinear combination of 
moments) of random signals. In the frequency domain, they correspond to HOS 
(also known as polyspectra), which are, by definition, multidimensional Fourier 
transforms of HOS (moments or cumulants). Particular cases of higher-order 
spectra are the third-order spectrum called the bispectrum and the fourth-order 
spectrum, called trispectrum, which are the Fourier transforms of the third- and 
fourth-order statistics adequately. Thus, the power spectrum is a part of the class of 
higher-order spectra (i.e., it is a second-order spectrum). The power spectrum or 
PSD and auto-correlation function provide very useful information in the design 
and analysis of the linear predictive systems. 

9.1 Cyclostationary Processing of LPI Radar Signals 

The researcher, Antonio F Lima, focused his thesis work13 on using cyclostationary 
processing on LPI signatures. He studied the use of cyclostationary properties 
against the following LPI signals: FMCW, Frank, P1, P2, P3, P4, and Costas 
modulation. These types of modulation have certain periodicity that can be 
exploited when the spectral correlation are performed. Two implementations of 
cyclostationary processing were implemented in MATLAB and attached in the 
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thesis appendix: FFT accumulation method (FAM) and the direct frequency-
smoothing method (DFSM). Certain modulation parameters can be interpreted/ 
extracted from the cyclostationary image that results from the cyclostationary 
processing technique. Modulation classification is unique to the modulations, but it 
would require image recognition on the part of the viewer. 

9.2 Maximum a Posteriori (MAP) Classifier for Communication 
and Radar Signals Using Features Based on Cyclostationary 
and Cumulants 

Hadjis’ thesis work14 involved the development of a MAP classifier based on 
features that are derived from estimated duty cycle, cyclic spectral correlation, and 
cyclic cumulants. In his work, he studied various modulations associated with 
communication system as well as radar systems. The following modulations were 
evaluated: BPSK, quadrature phase-shift keying (QPSK), 16-quadrature amplitude 
modulation (QAM), 64-QAM, 8-phase-shift keying (PSK), and 16-PSK 
communication modulations, as well as Barker5-, Barker11-, Barker5,11-, Frank49-, 
Px49-, and LFM modulations for radar modulations. 

The author generated a feature list based on the previously mentioned signal 
processing techniques. A feature vector of 25 classification features was derived 
from the application of cyclostationary- and cumulant-based processing. Using 
simulations, a features-based classifier was trained and evaluated under various 
SNR levels and pulse parameters. The classifier features and their equations are 
listed in Table 1.14 

Table 1. Classifier feature equations 

Feature Equation Eq. No. 

𝜓𝜓1 �
𝑆𝑆𝑋𝑋𝑇𝑇
2∗𝑓𝑓𝐶𝐶(𝑛𝑛, 0)∆𝑓𝑓

𝑆𝑆𝑋𝑋𝑇𝑇(𝑛𝑛,𝑓𝑓𝐶𝐶)∆𝑓𝑓,𝐴𝐴𝑑𝑑𝑗𝑗
�
𝑁𝑁′=328

𝑁𝑁=4096

 (44) 

𝜓𝜓2 �
𝑀𝑀𝐴𝐴𝑋𝑋𝑓𝑓(𝑆𝑆𝑋𝑋𝑇𝑇

2∗𝑓𝑓𝐶𝐶(𝑛𝑛,𝑓𝑓)∆𝑓𝑓))
𝑀𝑀𝐴𝐴𝑋𝑋𝑓𝑓(𝑆𝑆𝑋𝑋𝑇𝑇(𝑛𝑛,𝑓𝑓)∆𝑓𝑓,𝐴𝐴𝑑𝑑𝑗𝑗)

�
𝑁𝑁′=328

𝑁𝑁=4096

 (45) 

𝜓𝜓3 �
𝑆𝑆𝑋𝑋𝑇𝑇
2∗𝑓𝑓𝐶𝐶(𝑛𝑛, 0)∆𝑓𝑓

𝑆𝑆𝑋𝑋𝑇𝑇(𝑛𝑛,𝑓𝑓𝐶𝐶)∆𝑓𝑓,𝐴𝐴𝑑𝑑𝑗𝑗
�
𝑁𝑁′=36

𝑁𝑁=4096

 (46) 

𝜓𝜓4 �
𝑀𝑀𝐴𝐴𝑋𝑋𝑓𝑓(𝑆𝑆𝑋𝑋𝑇𝑇

2∗𝑓𝑓𝐶𝐶(𝑛𝑛,𝑓𝑓)∆𝑓𝑓))
𝑀𝑀𝐴𝐴𝑋𝑋𝑓𝑓(𝑆𝑆𝑋𝑋𝑇𝑇(𝑛𝑛,𝑓𝑓)∆𝑓𝑓,𝐴𝐴𝑑𝑑𝑗𝑗)

�
𝑁𝑁′=36

𝑁𝑁=4096

 (47) 
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Table 1. Classifier feature equations (continued) 

Feature Equation Eq. No. 

𝜓𝜓5 �̂�𝛿𝐶𝐶 =  
𝑃𝑃𝑚𝑚𝑣𝑣𝑎𝑎
𝑃𝑃�0

 (48) 

𝜓𝜓6 �𝐶𝐶2,1
𝛽𝛽=0� (49) 

𝜓𝜓7 �𝐶𝐶4,0
𝛽𝛽=4𝑓𝑓𝐶𝐶� (50) 

𝜓𝜓8 �𝐶𝐶8,0
𝛽𝛽=8𝑓𝑓𝐶𝐶� (51) 

𝜓𝜓9 
�𝐶𝐶4,2

𝛽𝛽=0�

�𝐶𝐶2,1
𝛽𝛽=0�

2 (52) 

𝜓𝜓10 
�𝐶𝐶4,0

𝛽𝛽=4𝑓𝑓𝐶𝐶�

�𝐶𝐶2,1
𝛽𝛽=0�

2  (53) 

𝜓𝜓11 
��𝐶𝐶6,1

𝛽𝛽=4𝑓𝑓𝐶𝐶�
3

�𝐶𝐶2,1
𝛽𝛽=0�

 (54) 

𝜓𝜓12 
��𝐶𝐶6,1

𝛽𝛽=4𝑓𝑓𝐶𝐶�
3

�𝐶𝐶4,0
𝛽𝛽=4𝑓𝑓𝐶𝐶�

 (55) 

𝜓𝜓13 
��𝐶𝐶6,3

𝛽𝛽=0�
3

�𝐶𝐶2,1
𝛽𝛽=0�

 (56) 

𝜓𝜓14 
��𝐶𝐶6,3

𝛽𝛽=0�
3

�𝐶𝐶4,0
𝛽𝛽=4𝑓𝑓𝐶𝐶�

 (57) 

𝜓𝜓15 
��𝐶𝐶8,0

𝛽𝛽=8𝑓𝑓𝐶𝐶�
4

�𝐶𝐶2,1
𝛽𝛽=0�

 (58) 
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Table 1. Classifier feature equations (continued) 

Feature Equation Eq. No. 

𝜓𝜓16 
��𝐶𝐶8,0

𝛽𝛽=8𝑓𝑓𝐶𝐶�
4

��𝐶𝐶4,0
𝛽𝛽=4𝑓𝑓𝐶𝐶�

 (59) 

𝜓𝜓17 
�𝐶𝐶8,0

𝛽𝛽=8𝑓𝑓𝐶𝐶4

��𝐶𝐶6,3
𝛽𝛽=0�

3
 (60) 

𝜓𝜓18 
��𝐶𝐶8,2

𝛽𝛽=8𝑓𝑓𝐶𝐶�
4

�𝐶𝐶2,1
𝛽𝛽=0�

 (61) 

𝜓𝜓19 
��𝐶𝐶8,2

𝛽𝛽=8𝑓𝑓𝐶𝐶�
4

��𝐶𝐶4,0
𝛽𝛽=4𝑓𝑓𝐶𝐶�

 (62) 

𝜓𝜓20 
�𝐶𝐶8,2

𝛽𝛽=4𝑓𝑓𝐶𝐶4

��𝐶𝐶6,1
𝛽𝛽=4𝑓𝑓𝐶𝐶�

3
 (63) 

𝜓𝜓21 
�𝐶𝐶8,2

𝛽𝛽=4𝑓𝑓𝐶𝐶4

��𝐶𝐶6,3
𝛽𝛽=0�

3
 (64) 

𝜓𝜓22 
��𝐶𝐶8,4

𝛽𝛽=0�
4

�𝐶𝐶2,1
𝛽𝛽=0�

 (65) 

𝜓𝜓23 
��𝐶𝐶8,4

𝛽𝛽=0�
4

��𝐶𝐶4,0
𝛽𝛽=4𝑓𝑓𝐶𝐶�

 (66) 

 



 

23 

Table 1. Classifier feature equations (continued) 

Feature Equation Eq. No. 

𝜓𝜓24 
�𝐶𝐶8,4

𝛽𝛽=04

��𝐶𝐶6,1
𝛽𝛽=4𝑓𝑓𝐶𝐶�

3
 (67) 

𝜓𝜓25 
�𝐶𝐶8,4

𝛽𝛽=04

��𝐶𝐶6,3
𝛽𝛽=0�

3
 (68) 

10. Artificial Neural Networks 

Artificial intelligence is not a new concept, but has been studied in academia for a 
long time. One of the areas of interest is called artificial neural networks, where 
attempts are being made to model the processing power of the human brain. 
However, such approaches have only recently become practical due to 
advancements in massively parallel multiprocessor chips, graphical processing 
units (GPUs), and software tools. The foundation had been laid out through decades 
of research, but the application was not readily practical until recently. 

In the classification of radar signals, the training of neural networks requires lots of 
labeled or known configuration data that represent the different types of radar 
signals (modulation) and under different SNRs and other effects, multipath, and 
fading. Configurations that represent various PWs, PRIs, operating frequencies, 
pulse shapes, bandwidths, and modulations. Differences between scanning and 
tracking and detection operations are also important. Simulations can be performed, 
but actual measurements should be done to adjust the detection and classification 
performance. 

10.1 Multilayer Perceptron (MLP) 

MLP is a class of artificial neural network. In neural networks, the processing 
attempts to produce a decision statistic formed through a combination of simplified, 
parallel calculations. These neural networks have evolved into various forms/ 
structures. At a fundamental level, the structure comprises three layers: input, 
hidden, and output. The input layer is composed of features that provide summary 
representation of the input data set. With the application of weighting factors to the 
input nodes, the hidden layer provides a summation of the input nodes and performs 
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an activation function or decision threshold on the hidden node. Finally, the output 
layer combines the hidden nodes through another set of weights to generate the 
output decision statistic. 

10.2 Convolutional Neural Network  

A CNN is a neural network that uses an image as the input layer. The network 
generates a set of features based on the application of a convolutional calculation 
on the image. These neural networks have been referred to as deep learning since 
they leverage many layers of processing before arriving at the output layer. 

The CNN has become very powerful and active area of research in the last decade. 
There is an annual competition, ImageNet, where teams compete on image 
classification using a large database of labeled images. The level of 
accomplishment had reached a plateau before Alex Krizhevsky’s doctoral work on 
image recognition at Toronto University. The application of CNN architecture 
algorithm marked a significant improvement in the ImageNet competition. His 
algorithm, AlexNet, provided a significant increase in accuracy up to that point in 
time. He made this code readily available to users, which has helped speed up the 
development of CNNs.15 

10.3  Radar Modulation Classification through Dual MLP 
Networks 

Lunden16 conducted doctoral research in spectrum sensing for communications and 
radar systems. There has been much research into automatic modulation 
recognition for communication systems, but a relatively smaller amount as applied 
to radar systems. Some of the features identified in communications-type 
modulation have some degree of applicability to radar waveform recognition. There 
are two basic categories of automatic modulation recognition: likelihood- and 
feature-based methods. The feature-based methods extract features from the 
measurement of the signal and decision on the classification is based on the feature 
values. Lunden’s research is concentrated on the feature-based methodology using 
some standard features. In addition, features are derived from Wigner‒Ville and 
Choi‒Williams distributions. Since the application of time frequency only forms an 
image of the frequency spectrum, he had to apply some image processing 
techniques in order to extract features. 

The following pulse compression modulations were considered: linear frequency 
modulation, Costas frequency codes, binary codes, Frank, P1, P2, P3, and P4 
polyphase codes. A dual, parallel MLP network was developed for radar waveform 
classification. The following features were evaluated in Lunden’s research16: 
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• Time lag of the maximum cross-correlation between pulse and time-
reversed pulse 

• The Choi‒Williams distribution features were the second-, third-, and 
fourth-order pseudo-Zernike moments. In addition, the features from the 
binary form of the Choi‒Williams distribution: number of objects in image, 
location of the peak signal, and the standard deviation of the width 
associated with the objects.  

• The Wigner‒Ville distribution features were as follows: the standard 
deviation of the instantaneous frequency, the ratio of the sidelobe, and 
maximum of the autocorrelation of the instantaneous frequency.  

• Standard deviation of the instantaneous phase and frequency. The 
instantaneous frequency was median-filtered to suppress the spikes caused 
by the phase changes in the phase-coded signals. 

• The bandwidth feature from using a symbol-rate-sampled signal. 

• The difference between the beginning and ending phases of the pulse. 

• PSD-based features: symmetry, the maximum of the PSD, and the 
maximum of the PSD of the squared signal. 

• Zero-lag moments of the complex envelope. Moments up to eighth order 
without any complex conjugated components. 

• Zero-lag cumulants of the complex envelope. Second- to sixth-order 
cumulants were used.  

10.4  Radar Modulation Classification through CNN with Choi–
Williams Distribution 

Zang et al.17 provided a process for developing radar modulation classification 
through the incorporation of several processing techniques. The following 
modulations were simulated and evaluated through the proposed algorithm: Barker, 
LFM, Costas, Frank, T1, T2, T3, and T4 modulation codes. A Choi‒Williams 
image was selected as the basis for input signal processing. Standard image 
processing techniques such as image denoising and binarization processing were 
performed to simplify and enhance shape recognition. The CNN architecture is 
typically a very deep configuration, meaning that it has many intermediate layers 
between input and output. The proposed architectural network is a modification of 
the CNN configuration in which a MLP network is added as the final classifier. In 
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the CNN layer, a feature vector is created to feed the MLP network and provides a 
reduction in the typical depth of a CCN architecture. 

10.5  Radar Modulation Classification through CNN with 
Wigner‒Ville Distribution 

Wang, et al.18 explored the use of the Wigner‒Ville distribution. Typically, most 
researchers have rejected this particular time-frequency distribution due to the 
cross-term products generated in the time-frequency image. Selection of other types 
of time-frequency distributions have shown that the power spectrum of Gaussian 
white noise occupies the full-frequency band, thereby Cohen-type distributions do 
not offer an advantage for the rejection of background noise. An evaluation of the 
statistical characterization of the time-frequency image showed that cross-term 
products and noise could be separated from the desired signal. The CNN network 
was used as a classifier in their architectural algorithm. A naïve filter was 
incorporated into the CNN processing where the averaging technique is performed 
on the CNN processing block to minimize the cross-term products and noise terms. 
The system was evaluated against eight modulations: Barker, LFM, Costas codes, 
Frank, and T1, T2, T3, and T4 polyphase codes. 

10.6  Radar Modulation Classification through Cohen Class 
Time-Frequency Processing with CNN Classification 

Qu et al.19 introduced a new kernel to Cohen class time-frequency image processing 
with CNN classification. Twelve kinds of modulation signals were used in this 
evaluation: LFM, sinusoidal frequency modulation (SFM), 2-FSK, 4-FSK, dual 
frequency modulation (DLFM), even quadratic frequency modulation (EQFM), 
multiple linear frequency modulation (MLFM), BPSK, Frank, MP, and composite 
modulation (LFM-BPSK, 2FSK-BPSK).  

Typically, Choi‒Williams time-frequency processing is used by researchers as 
input into the CNN. In this work, the authors have introduced a new type of Cohen-
type time-frequency kernel used in the image processing that have a higher noise 
rejection. The general form of the Cohen time-frequency computation is 

𝐶𝐶(𝑡𝑡,𝜔𝜔) =
1

4𝜋𝜋2
�𝐴𝐴𝐷𝐷(𝜏𝜏, 𝜐𝜐)𝜙𝜙(𝜏𝜏, 𝜐𝜐)𝑒𝑒−𝜐𝜐𝑡𝑡−𝑗𝑗𝑗𝑗𝜏𝜏𝑑𝑑𝜐𝜐𝑑𝑑𝜏𝜏 (69) 

 

𝐴𝐴𝐷𝐷(𝜏𝜏, 𝜐𝜐) =  �𝑥𝑥 �𝑢𝑢 +
𝜏𝜏
2
� 𝑥𝑥∗ �𝑢𝑢 −

𝜏𝜏
2
� 𝑒𝑒𝑗𝑗𝜐𝜐𝑢𝑢𝑑𝑑𝑢𝑢 (70) 
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The authors have suggested that a good kernel that might be used is a Gaussian 
kernel expressed as 

𝜙𝜙(𝜏𝜏, 𝑣𝑣) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−
(𝜏𝜏𝜐𝜐)2

𝜎𝜎
� (71) 

For radar signals, this particular kernel is not good choice, since it does not reduce 
the artifacts for radar signals. The authors have proposed a new kernel as follows: 

𝜙𝜙(𝜏𝜏, 𝜐𝜐) = 𝑒𝑒−�𝛼𝛼𝜏𝜏2+𝛽𝛽𝜈𝜈2� (72) 

where 𝛼𝛼 and 𝛽𝛽 are parameters that adjust the shape of the kernel function. 

The estimate for 𝛼𝛼 and 𝛽𝛽 is four times the standard difference of the Gaussian 
function. 

The time-frequency image is processed through a series of image processing 
techniques that incorporate a 2-D Wiener filtering, morphological feature 
extraction, and binarization to enhance the image prior to application to CNN 
classification. Otsu’s method is used in the binarization process to determine the 
optimum threshold level for the conversion process. LeNet-5 was the CNN 
architectural form used in the classification. The authors had increased the layers 
in this configuration and modified the parameters to improve the classification 
performance to a ‒6 dB SNR level.19 

10.7  Radar Modulation Classification LPI Radar Waveform 
Recognition Technique (LWRT) with CNN Classification 

Kong et al.20 examined LWRT, which is a popular technique that is a combination 
of the time-frequency transformation and the CNN network for modulation 
classification. A total of 12 types of modulations were evaluated as follows: LFM, 
Costas, BPSK, Frank, P1, P2, P3, P4, T1, T2, T3, and T4. 

Detection and classification of LPI radar signals are very difficult under low SNR 
conditions. In the authors’ algorithm, they implemented a filtering technique used 
in GPS to enhance the quality of the signal. The intra-pulse signature is defined as 

𝑖𝑖[𝑘𝑘] = 𝑥𝑥[𝑘𝑘] + 𝑤𝑤[𝑘𝑘] (73) 

where x[k]is the discrete time complex LPI samples and w[k]is the complex 
Gaussian white noise. 

This signature sequence was averaged over 𝑁𝑁𝑚𝑚 consecutive samples of 𝑖𝑖[𝑘𝑘] and 
defined as 
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𝑖𝑖𝑚𝑚 =  
1
𝑁𝑁𝑚𝑚

� 𝑖𝑖[𝑘𝑘 + 𝑛𝑛𝑁𝑁𝑚𝑚] 
𝑁𝑁𝑎𝑎−1

𝑘𝑘=0

 (74) 

where 

 𝑁𝑁𝑚𝑚 =  
𝑁𝑁1
𝑁𝑁𝑆𝑆𝐶𝐶

 (75) 

and 

𝑁𝑁1 =  
𝑓𝑓𝑠𝑠
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

 (76) 

where f_max is the maximum frequency allowed by the receiver bandpass filter 
and f_s is the sampling frequency. 

This filtered signal is used by the Choi‒Williams distribution to generate a time-
frequency image of the modulated signal. The time-frequency images for the 12 
modulations have distinct feature shapes. These feature objects varies in terms of 
the number of distinct objects, pattern of the objects, and symmetry as a function 
of time in the image. In this case, the time frequency has less resolution or fewer 
details when compared to having the original sampled waveform that is fed directly 
into the Choi‒Williams distribution. To compensate, the authors reimaged the time-
frequency image through a series operations consisting of cropping and resizing of 
the image. Then the authors evaluated the hyperparameters of the CNN, such as the 
input size, number of filters, filter size, and number of neurons to select the 
hyperparameters would provide the best classification under various SNR 
conditions.20 

10.8  Radar Modulation Classification CNN in Conjunction with 
Tree Structure Classifier 

Wan et al.21 have developed a radar modulation classification using the Choi‒
Williams distribution and CNN network as a feature generation operation. Instead 
of using the CNN as the classifier, the authors used a final layer of the CNN as 
feature vector for a tree structure-based machine learning process optimization 
(TPOT) classifier. The 12 radar modulation evaluated were as follows: Barker, 
LFM, Costas, T1, T2, T3, T4, Frank, P1, P2, P3, and P4. 

The process of using the Choi‒Williams distribution and CNN follows the standard 
procedure. Radar signatures are transformed into a time-frequency image and a 
binarization operation is used to simplify the image for the CNN processing. The 
authors provided detailed steps to their binarization operation in their paper. 



 

29 

Typically, the CNN configuration is used as the classifier for modulation 
recognition, but the CNN output was not used in the final classification in this 
algorithm. The last layer of the CCN network was extracted to form the feature 
vector for modulation recognition. In this case, the use of the Choi‒Williams 
distribution and CNN were used as a training process to learn and provide the initial 
learning features. 

The authors have extracted the fully connected layer of the CNN as input to 
combination of classifiers. The classifier algorithm was labeled as a TPOT 
classifier. The CNN data features are sent to the TPOT to select and optimize the 
classifier parameters. The TPOT is optimized through the use of various machine 
learning algorithms. A technique called “genetic programming” is used to optimize 
the feature vector as initially generated by the CCN training. The TPOT classifier 
is constructed as tree structure decision to select the among various machine 
learning classifiers: decision tree, random forest, support vector machine (SVM), 
logistic regression, and KNN.21 

11. Summary and Conclusions 

In this report, we described various techniques for radar pulse modulation 
classification. Recognition of the radar pulse modulation shares similar concepts of 
modulation recognition for communications systems. For most of the survey papers 
and reports, the assumption is that the radar signature operates in an isolated 
environment without inference except for white Gaussian noise. Also, the 
assumption is made that the radar pulse can be detected and the intra-pulse signature 
can be extracted for some of the classification techniques. 

SEI was the work conducted in radar identification through physical radar 
measurements such as operating frequency, PRI, and PW. Initially, signal 
processing capability was very limited and radar identification related to these 
measurements was dependent on the capabilities/interpretation of the radar/signal 
operator. LPI radar evolved to minimize the detectability of these radar systems, 
therefore, making manual operation extremely difficult. Luckily, technology 
advancement has also produced capabilities to automatically detect and classify 
these LPI modulations. 

Modulation classification capabilities are being achieved through the application 
from many areas of engineering, mathematics, statistics, digital signal processing, 
image processing, pattern recognition, machine learning, and artificial neural 
networks. Some of the techniques have evolved over many decades ago, but only 
recently have the hardware capabilities advanced to the point that the processing is 
closer to the real time domain. 
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Classification of the radar modulation can divided into two general groups: feature 
based and image based. Radar pulse modulations use the complex representation of 
the radar signature (i.e., in phase and quadrature [I/Q] representation). The 
instantaneous frequency and phase are two important elements that can be 
formulated from the I/Q signal. For featured-based classification, the information 
for classification is extracted from the intra-pulse measurement. Features are 
derived through statistical transformation of the I/Q signal. Various machine 
learning techniques can be applied to statistical features to determine the 
modulation class. 

Modulation classification can also be based on pattern recognition that uses time-
frequency transforms, image processing, and artificial neural networks. In this case, 
there is no need to perform feature extraction as a preliminary step in the 
classification process. There are various time-frequency transforms that have been 
investigated. The output of the time-frequency transforms provide an image basis 
for the classification process. In the majority of the researched investigations, the 
CNN was the classifier of choice. Features are automatically formulated in the CNN 
through an extensive training process. This training process requires a significant 
amount of labeled data. Computer simulations were the main process in the 
evaluation of the modulation algorithms. Computer simulations provide a good 
initial step, but evaluations need to incorporate real-world measurements. 
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List of Symbols, Abbreviations, and Acronyms 

ARL  Army Research Laboratory 

BPSK  binary phase shift keying 

CCDC   Combat Capabilities Development Command  

CNN   convolutional neural network 

DOA  direction of arrival 

DBN  deep belief network 

DFSM  direct frequency-smoothing method  

DFT  discrete Fourier transform 

DLFM  dual frequency modulation   

ENN   Elman neural network 

EQFM  even quadratic frequency modulation 

FAM  FFT accumulation method 

FMCW  frequency modulated continuous wave  

FFT  fast Fourier transform 

FMOP  frequency modulation on pulse 

FSK  frequency shift keying 

GPS  global positioning system 

GPU  graphical processing unit 

HOS  high-order statistics 

I/Q  in phase and quadrature 

KNN   k-nearest neighbor    

KLT  Karhunen–Loève transformation 

LDA  linear discriminant analysis 

LFM  linear frequency modulation 

LPI  low power intercept 
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LWRT  LPI radar waveform recognition technique 

MAP  maximum a posteriori 

MLP   multilayer perceptron 

MLFM  multiple linear frequency modulation 

PRI  pulse repetition interval 

PW  pulse width   

PSD  power spectral density 

PSK  phase-shift keying 

QAM  quadrature amplitude modulation 

QPSK  quadrature phase-shift keying 

radar  radio detection and ranging  

RF  radio frequency 

SEI  specific emitter identification 

SFM  sinusoidal frequency modulation 

SNR  signal-to-noise ratio 

STFT  short time Fourier transform 

SVM  support vector machine 

TOA  time of arrival 

TPOT  tree structure-based machine-learning process optimization  

UMOP  unintentional modulations on pulse 
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