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Why Causal Learning?

Establishing causation 

with observational data 

is a vital need and a key 

technical challenge.

Detecting causation is 

becoming more feasible 

and practical.

Estimating and controlling program costs benefits from causal

knowledge of program dynamics.

Regression does not distinguish between correlation and 

causation. 

Causal knowledge is actionable knowledge.

Causal discovery is becoming practical and is supported with 

innovative tools and algorithms.
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Causal Graphs in a Nutshell

DAGs – Directed Acyclic Graphs

• Nodes are factors of interest (observed or latent).

• Edges are where there is direct causation.

- If you hold other variables constant, wiggling a node at the tail of an oriented edge 

affects the node at its head, but not vice versa.

A DAG consists of nodes connected by directed edges. DAGs do not have cycles.

The result of a causal discovery algorithm may be a DAG or a pattern (i.e., a DAG 

where some edges are left undirected).
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Building Blocks for DAGs

Combining the atomic units results in a causal graph (DAG). The following table 

describes how different causal relationships appear in a DAG.

Direct causation between A and B. 

We say this: A is a parent of B; B is a child of A.

Causal chain – A indirectly causes B through C. 

We say this: A is an ancestor of B; B is a descendant of A.

Common cause (fork) – C directly causes both A and B, thus inducing an 

association between A and B.

Common effect (collider) – A and B share a common effect, C. 

Conditioning on (i.e., adjusting for) C can induce an association between A 

and B.

A B

A C B

A B

C

A B

C
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Common Cause on Treatment and Effect

“Simpson’s Paradox” can happen when  

there is a mediated common cause.

• A trend that appears in different groups of 

data may disappear or reverse when 

these groups are combined.

For example, the causal structure and graph 

on the right illustrate this paradox.

• For the whole population, dosage (D) and 

pain relief (R) correlate negatively. 

• But, if we split into two groups according 

to the size of kidney stones, within each 

group, D and R correlate positively.

• The D and R association reverses.

Size – kidney stone size 

(small/large)

D – dosage (0..12)

R – days free from pain (0..10)
R

D

Size

D

R
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Causal Discovery (Structure Search) and Estimation in a 
Nutshell

The causal structure captured in DAGs (and patterns) is critical to correctly 

interpreting and analyzing observational data. 

The Data

• Apply prescriptive rules to infer causality implications.

• Test the implications statistically.

• Grow (or shrink) the graph.

Background Knowledge

(What we know from our domain expertise helps resolve ambiguities.) 

• Test causal models for consistency with data and knowledge.

• Test models to discover the data’s underlying causal structure.

Once we have a causal structure, we can proceed to Estimation, assigning values to 

underlying model parameters, and enabling quantitative inferences (predictions) to be 

made.
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SCOPE LSI Project End Products

In this presentation, we showcase selected products of the SCOPE LSI project.

1. Methodology for Causal Inference on Small Data Sets

2. Direct Causes of Software Cost and Schedule: A summary of our Causal 

Discovery investigation of COCOMO® II software and COSYSMO 3.0 systems 

engineering cost estimation

3. Consensus Graph for U.S. Army Sustainment: A summary of our 

investigation of a U.S. Army software sustainment release data set 

- Originally split by super domain and ACAT level to reduce conditions for Simpson’s 

Paradox, but then search results were stitched together into an integrated model

4. Other Research Artifacts and Transition
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Methodology for Causal Inference on Small Samples

This approach to causal inference is principled (i.e., no cherry picking) and robust (to outliers).

- for small samples: when the number of cases is < 5-10 times the number of variables

1. Inject null variables by appending an independently randomized copy of each original 

variable.

2. Search (FGES or PC with default settings except for regularization) with bootstrap to 

determine each edge’s Probability of No Edge (PNE) across the search.

3. Set a threshold (e.g., 10th percentile) among the edges involving a null variable.

- (Of edges involving a null variable, 90% have a PNE exceeding that threshold.)

4. Trim the remaining edges (involving only original variables) when their PNE > threshold.

- Surviving edges are a mix of true-positive edges and a few false-positive edges.

- The PNE of a surviving edge ~ = fraction of cases (data set rows) that have that direct causal relationship.

When proceeding to model estimation, repeat these four steps, as needed, for the 15th, 20th, or 

25th percentile trims until a decent model fit is achieved.
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Investigating the Effects of Spurious Correlations

Experimentation revealed that randomly generated variables often form edges.

However, when we search a project data set, some edges may be spurious. 

Is the frequency of spurious correlations more likely with smaller data sets?

How significant is the effect using  

different sample sizes? Here’s 

what we learned:
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Thus, when performing causal search on small data sets, we apply our methodology to reduce false positives.
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Direct Causes of Software Cost and Schedule

COCOMO® II - Effort

• Size (SLOC)

• Team Cohesion

• Platform Volatility

• Reliability

• Storage Constraints

• Time Constraints

• Product Complexity

• Process Maturity

• Risk and Architecture Resolution

COCOMO® II - Schedule

• Size (SLOC)

• Platform Experience

• Schedule Constraint

• Effort

COSYSMO 3.0 - Effort

• Size

• Level of Service Requirements

See the definitions of these factors in the COCOMO® II Model definition manual and COSYSMO 3.0 paper.

From among 40+ factors these sources describe, these are the ones found to be direct drivers of cost and schedule.

Intervening on these elements of a project may improve outcomes.
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Using Tetrad to Generate Mini Cost-Estimation Models

We used the following six steps to generate mini-models that produce plausible cost 

estimates that are guided by the self-imposed structure of the existing estimating 

models:

1. Force cost drivers to have no direct causal relationships with one another.

2. Instead of including each scale factor as a variable (as we do in effort

multipliers), replace them with a new variable—scale factor times LogSize.

3. Apply causal discovery to obtain a plausible causal graph.

4. Use Tetrad model estimation to obtain parent-child edge coefficients. 

5. Lift the equations from the resulting graph to form the mini-model, re-applying 

estimation to properly determine the intercept.

6. Evaluate the fit of the resulting model and its predictability.
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Overall Model Fit Statistics

Chi-Square Test(s) of Model Fit
P-Value = 2.3667E-5

(want > 0.01, or at the very least > 0); 

Chi-Square/DF = 17.8688 (want < 5)

RMSEA (Root Mean Square Error 

of Approximation)
RMSEA = 0.5018 (want < 0.08)

CFI (Comparative Fit Index)
0.9967 (want > 0.95)

The conclusion is that the model 

fit is poor to fair. 

COSYSMO 3.0 Estimation

Coefficients

Mean
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Overall Model Fit Statistics

Chi-Square Test(s) of Model Fit
P-Value = 8.9571E-5

(want > 0.01, or at the very least > 0);

Chi-Square/DF = 3.58 (want < 5)

RMSEA (Root Mean Square Error 

of Approximation)
RMSEA = 0.1271 (want < 0.08)

CFI (Comparative Fit Index)
0.9993 (want > 0.95)

The conclusion is that the model 

fit is fair to good. 

COCOMO® II Estimation
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Prediction Accuracy: Mini-Models vs. Estimating Models

COSYSMO 3.0 – Effort COCOMO® II – Effort COCOMO® II – Schedule

Mini-

Model

Original

Max MRE 285.4% 234.8%

MMRE 45.9% 57.3%

PRED(25) 41.2% 23.5%

PRED(30) 48.5% 23.5%

Mini-

Model

Original

Max MRE 455.4% 229.41%

MMRE 38.64% 25.67%

PRED(25) 44.72% 67.08%

PRED(30) 52.8% 74.53%

Mini-

Model*

Original

Max MRE 628.6% 130.95%

MMRE 42.28% 50.88%

PRED(25) 45.34% 9.94%

PRED(30) 52.8% 12.42%

* Analysis done with TDEV; but realized Log(TDEV) might have been better.
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COCOMO® II vs. Mini-Model Effort MRE Comparison

Using more factors for a cost estimate (as with the full model) tends to reduce the frequency of 

way-off predictions. (Of course, on any given project, either model might be more accurate.) The 

advantage of the mini-model is that it identifies which factors, among many, are more likely to drive 

cost and schedule. 

0

50

100

150

200

250

300

350

400

450

500

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

1
2

9

1
3

3

1
3

7

1
4

1

1
4

5

1
4

9

1
5

3

1
5

7

1
6

1M
ag

n
it

u
d

e
 o

f 
R

e
la

ti
ve

 E
rr

o
r 

(M
R

E)
 (

in
 %

)

COCOMO® II Causal Estimation



17
Causal Models for Software Cost Prediction & Control (SCOPE)
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 

unlimited distribution.

RESEARCH REVIEW 2020

Consensus Graph for U.S. Army Software Sustainment –1

A U.S. Army AFC-CCDC data set was segmented into (Superdomain, ACAT-level) pairs, 

resulting in five sets with barely sufficient data to search and estimate. 

• Splitting was needed to address high fan-out for several common causes, which would 

lead to structures typical of Simpson’s Paradox.

A consensus graph was built from the resulting five fitted models.

For consensus estimation, the data from individual searches was pooled with data that was 

previously excluded because of missing values. The resulting 337 releases were then used 

to estimate the consensus graph using Mplus with Bootstrap in estimation.

The next slide shows the resulting structural equation model, coefficients, and model fit. 

There was no cherry picking or re-do’s—this model is a direct out-of-the-box estimation, 

achieving good model fit on the first try.

*This slide and the next two are from analyses of a data set kindly provided by Cheryl Jones, U.S. Army AFC-

CCDC, and DASA-CE of software releases from the past seven years. The program identification was removed. 

We thank her and her team for their insight into the data set and meaning of certain variables as the work 

progressed.
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Consensus Graph for U.S. Army Software Sustainment –2

Model Fit Statistics
Chi-Square Test(s) of Model Fit

P-Value 0.0279 is not > 0.05, but with 337 observations, not too worrisome

Chi-Square/DF = 20.15/10 < 5

RMSEA (Root Mean Square Error of Approximation):

0.055 < 0.08

CFI (Comparative Fit Index)

0.978 > 0.95

SRMR (Standardized Root Mean Square Residual):

0.033 < 0.08
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Other Research Artifacts and Transition

In the rest of this presentation, we identify other research artifacts and transition 

vehicles for the SCOPE LSI project:

• other data sets analyzed

• lessons learned and caveats

• reflections and impacts

• SCOPE transition products
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Other Data Sets Analyzed

Personal Software Process (PSP). We examined (1) inter-programmer vs. intra-

programmer variation in productivity and (2) evidence for a quality-

conscientiousness trait.

Open Source Software Cyber Vulnerabilities. We examined (1) Project 

Chromium for drivers of cyber vulnerabilities and (2) OpenSSL for social smell-

based drivers of excessive commits and churn.

SSDR. We identified drivers of software effort and cost growth.

Sources of Complexity vs. Program Success (Sarah Sheard’s Ph.D. data set). 

We identified drivers of program success.

Process Improvement vs. Program Outcomes.  We analyzed an USAF data set 

to identify which of about 40 process and team factors were direct drivers of quality, 

cost, and schedule.
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Lessons Learned and Caveats –1 

Lessons Learned. By performing causal inference (causal discovery and model 

estimation), we did the following:

• We identified factors important for cost estimation and attained insight into cost-

estimating relationships, and how they might be improved.

• We obtained an integrated and estimated causal model that indicates how 

release effort and duration are impacted by changes to appropriations, the 

number of hardware platforms, etc.

• More broadly, by analyzing a dozen data sets, we identified from among 

hundreds of correlations, which factors are actually direct causes of DoD 

program outcomes (cost, schedule, and security/quality). Intervening on these 

causes is more likely to achieve intended outcomes.
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Lessons Learned and Caveats –2 

Caveats. In these analyses, the following algorithmic assumptions were made for 

imputing missing data, discovering causal structure, and estimating parameters:

• The data set has no critical missing (unmeasured) confounders.

• Software sustainment releases are independent of one another. (In reality, 

releases from the same program are more alike.)

• Data is randomly drawn from a multi-variate normal distribution.
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Reflections and Impacts

Three years ago we hypothesized, “Among the dozens of factors that predict cost, 

few will prove causal.”

• Our research confirms this hypothesis. 

• Intervening on other factors might not only be ineffective, but it might even be 

counter-productive.

Having a method for applying causal discovery to DoD program data sets, which 

typically are small, is critical to making progress with causal discovery.

• Our method eliminates cherry picking and provides robustness to data outliers.

Collaborating with data owners is the key to successful research. We thank the 

following people for their insights:

• Cheryl Jones and her team from the U.S. Army AFC-CCDC, and DASA-CE

• Dr. Anandi Hira and Dr. James Alstad from Barry Boehm’s Center for Systems 

and Software Engineering at USC
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SCOPE Transition Products

In addition to a number of causal graphs—estimated and not estimated—SCOPE can be used by 

project management with minimal training. The SCOPE project developed the following transition 

products:

• SCOPE Project Web Page. This web page describes the other research we performed in this 

project with corresponding data sets.

• Specification of a Causal Structure for Program Risks/Change Drivers. SEI staff of the 

Agile Collaboration Group (ACG) defined a causal structure for program risks, providing a basis 

for designing interventions for program risk mitigation.

• Report on Change Drivers Identifying Common Cascading Consequences. SEI staff 

participated in an internal survey to identify (1) events that led to cost growth and (2) the  most 

common cascading consequences responsible for non-linear cost growth.

• QUELCE Workshop. Results of these and other causal relationships identified in over a dozen 

program data sets were incorporated into the Quantifying Early Lifecycle Costs for Cost 

Estimation (QUELCE) workshop for reliable cost estimation throughout the life of a program, 

starting early in the life of a program.
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Project Artifacts List

1. Accepted publications (e.g., ESEC_FSE_20 Journal First; ICEAA 2020)

2. Accepted presentations (e.g., Joint Software & IT-Cost Forum [with USC] and IEEE Reliability, Availability, 

Maintainability Symposium [RAMS] 2021)

3. A summer intern presentation on pseudo-random number generators (PRNGs), which enable simulation, 

numeric integration, etc. used by our tool chain

4. An integrated causal model for U.S. Army sustainment

5. Mini-Models for Cost Estimation for Systems Engineering (COSYSMO 3.0) and Software Engineering 

(COCOMO® II)

6. A method for causal discovery and model estimation from small data sets

7. A causal model for program risks

8. Quantifying Early Lifecycle Costs for Cost Estimation (QUELCE) artifacts enriched with knowledge gained 

from the SCOPE project

9. The PAIRS processing tool, used by DoD cost estimators to compile SRDR reports

10. Code and tools for automating the analysis pipeline (e.g., Python, R, VBA, Mplus)

11. New causal discovery algorithms developed by CMU (Multi-FASK and implementation of CD-NOD for Tetrad)
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Recent Project Bibliography

W. Nichols, “The Myth of Individual Programmer Productivity” accepted for publication 

at Foundations of Software Engineering (FSE), 2020

This work originated from a SCOPE study of performance factors in PSP. The results were largely negative (no 

clear productivity factors). Following up found previously unstudied results in personal performance variation. That 

is, the negative result from causal learning led to discovering that individual performance variation was comparable 

to performance ranges between programmers.

B. Stoddard, "A New Science for Reliability" accepted for the 2021 IEEE Reliability, 

Availability, Maintainability Symposium (RAMS)

A. Hira, J. Alstad, and M. Konrad, “Investigating Causal Effects of Software and 

Systems Engineering Effort” presented at the Joint Software and IT Cost Forum, 

September 2020

This work is the culmination of a nearly two-year collaboration with Barry Boehm’s Center for Systems and 

Software Engineering at USC. USC has proprietary data sets that it cannot share with the SEI. However, since the 

SEI has causal discovery and model estimation expertise, the two teams worked together to derive causal structure 

models and estimate them.


