
RESEARCH REVIEW 2020

Probability of No Edge

Randomized Variables

0 1

How can we control costs in software development and
sustainment? We are collaborating with other researchers to
apply causal learning to learn how.

DoD Problem
•	DoD leadership needs to understand why software costs

so much.
•	DoD program offices need to know where to intervene to

control software costs.

Why Causal Learning?
To reduce costs, the causes of an outcome (good or bad)
need to be considered. Correlations are insufficient in part
due to Simpson’s Paradox. For example, in the figure below,
if you did not segment your data by team (User Interface
[UI] and Database [DB]), you might conclude that increasing
domain experience reduces code quality (downward line);
however, within each team, it’s clear that the opposite is
true (two upward lines). Causal learning identifies when
factors such as team membership explain away (or mediate)
correlations, and it works for much more complicated data
sets too.

Mike Konrad, Bob Stoddard, William Nichols, and Dave Zubrow
Michele Falce, Rhonda Brown, and Bryar Wassum

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

PA7

Causal Models for Software Cost Prediction & Control (SCOPE)

Summary
Causal models offer better insight for program control
than models based on correlation. Knowing which factors
drive which program outcomes is essential to sustain the
warfighter by providing high-quality, secure software in a
timely and affordable manner.

For More Information
For more information, including causal analyses of other
data sets, see our SCOPE Project website.

Log_PM

RESL_LS

PVOL

Log_Size

1.064215.8070

0.11500.1937

-0.0654

STOR

TDEV

Co
de

 Q
ua

lit
y

Domain Experience

UI Team

DB Team

Months

SC

K_HW_Plat

HW_Var

K_Hrs_Total

ApprCnt

ServiceCnt

SW_Base

135.070

0.127

-0.002 0.147

5.150

0.436

0.113

-0.003

0.035

-0.419

-2.646

-1.561 -0.501

3.275

0.021

-7.912

-0.128

-0.087

Simpson’s Paradox as Applied to UI/DB Data

COCOMO® II Mini-Cost Estimation Model Consensus Graph for U.S. Army Software Sustainment

COCOMO® II – Effort Drivers
Size (SLOC), Team Cohesion, Platform
Volatility, Reliability, Storage Constraints, Time
Constraints, Product Complexity, Process
Maturity, Architecture/Risk Resolution (RESL)

COCOMO® II – Schedule Drivers
Size (SLOC), Platform Experience, Schedule
Constraint, and Effort

COSYSMO 3.0 – Effort Drivers
Size and Level of Service Requirements

After identifying which of over 40 factors
directly drive costs, we used Tetrad to generate
mini cost-estimation models that fit well. (In
the figure, RESL_LS is the product of RESL and
Log_Size.)

A U.S. Army Sustainment data set was segmented
into (Superdomain, ACAT Level) pairs resulting in
five sets of data to search and estimate. Splitting
addressed high fan-out for common causes, which
can lead to structures typical of Simpson’s Paradox.
A consensus graph (see above) was built from the
resulting five searched and fitted models.

For consensus estimation, the data from individual
searches was pooled with previously excluded data
because of missing values. The resulting 337 releases
were used to estimate the consensus graph using
Mplus with Bootstrap in estimation.

There was no cherry picking or re-do’s—this model
is a direct out-of-the-box estimation, achieving good
model fit on the first try.

Acknowledgments
Our thanks to Anandi Hira and Jim Alstad of USC; and
Cheryl Jones and her team at U.S. Army AFC-CCDC
and DASA-CE.

Our Solution
Our approach to causal inference is principled (i.e., no
cherry picking) and robust (to outliers). This approach is
especially useful for small samples—when the number of
cases is < 5-10 times the number of variables.
1.	 Inject null variables by appending an independently

randomized copy of each original variable.

2.	 Search (FGES or PC with default settings) with Bootstrap
to determine each edge’s Probability of No Edge (PNE)
across the search.

3.	 Set a threshold (10th percentile) among the edges
involving a null variable. (Of edges involving a null
variable, 90% have a PNE exceeding that threshold.)
Then drop the null variables but apply this same
threshold to determine which edges to keep among the
original variables.

Original Variables

Recent Results

Causal learning reduces costs.

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by other
documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required
for any other external and/or commercial use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Personal Software ProcessSM and PSPSM are service marks of Carnegie Mellon University.
DM20-0843

