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How can we control costs in software development and 
sustainment? We are collaborating with other researchers to 
apply causal learning to learn how.

DoD Problem
•	DoD leadership needs to understand why software costs 

so much.
•	DoD program offices need to know where to intervene to 

control software costs.

Why Causal Learning?
To reduce costs, the causes of an outcome (good or bad) 
need to be considered. Correlations are insufficient in part 
due to Simpson’s Paradox. For example, in the figure below, 
if you did not segment your data by team (User Interface 
[UI] and Database [DB]), you might conclude that increasing 
domain experience reduces code quality (downward line); 
however, within each team, it’s clear that the opposite is 
true (two upward lines). Causal learning identifies when 
factors such as team membership explain away (or mediate) 
correlations, and it works for much more complicated data 
sets too.
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Causal Models for Software Cost Prediction & Control (SCOPE)

Summary
Causal models offer better insight for program control 
than models based on correlation. Knowing which factors 
drive which program outcomes is essential to sustain the 
warfighter by providing high-quality, secure software in a 
timely and affordable manner. 

For More Information
For more information, including causal analyses of other 
data sets, see our SCOPE Project website.
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Simpson’s Paradox as Applied to UI/DB Data

COCOMO® II Mini-Cost Estimation Model Consensus Graph for U.S. Army Software Sustainment

COCOMO® II – Effort Drivers 
Size (SLOC), Team Cohesion, Platform 
Volatility, Reliability, Storage Constraints, Time 
Constraints, Product Complexity, Process 
Maturity, Architecture/Risk Resolution (RESL)

COCOMO® II – Schedule  Drivers 
Size (SLOC), Platform Experience, Schedule 
Constraint, and Effort

COSYSMO 3.0 – Effort  Drivers
Size and Level of Service Requirements

After identifying which of over 40 factors 
directly drive costs, we used Tetrad to generate 
mini cost-estimation models that fit well. (In 
the figure, RESL_LS is the product of RESL and 
Log_Size.)

A U.S. Army Sustainment data set was segmented 
into (Superdomain, ACAT Level) pairs resulting in 
five sets of data to search and estimate. Splitting 
addressed high fan-out for common causes, which 
can lead to structures typical of Simpson’s Paradox. 
A consensus graph (see above) was built from the 
resulting five searched and fitted models.

For consensus estimation, the data from individual 
searches was pooled with previously excluded data 
because of missing values. The resulting 337 releases 
were used to estimate the consensus graph using 
Mplus with Bootstrap in estimation.

There was no cherry picking or re-do’s—this model 
is a direct out-of-the-box estimation, achieving good 
model fit on the first try.
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Our Solution
Our approach to causal inference is principled (i.e., no 
cherry picking) and robust (to outliers). This approach is 
especially useful for small samples—when the number of 
cases is < 5-10 times the number of variables.
1.	 Inject null variables by appending an independently 

randomized copy of each original variable.

2.	 Search (FGES or PC with default settings) with Bootstrap 
to determine each edge’s Probability of No Edge (PNE) 
across the search.

3.	 Set a threshold (10th percentile) among the edges 
involving a null variable. (Of edges involving a null 
variable, 90% have a PNE exceeding that threshold.) 
Then drop the null variables but apply this same 
threshold to determine which edges to keep among the 
original variables.

Original Variables

Recent Results

Causal learning reduces costs.
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