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1. Introduction

One of the more important properties of magnetic materials is their magnetization,
which influences how a material behaves when exposed to a magnetic field. For
instance, it has been observed that processing under a magnetic field influences
a phase’s alignment and spacing1,2 and the formation of metastable carbide pre-
cipitates.3,4 This is a result of the magnetic field influencing the thermodynamics
of the system, wherein competing kinetic and thermodynamic mechanisms are at
play. The strength that a magnetic field will have on a material’s behavior can be
captured through the description of the thermodynamic component as a function of
magnetization:

∆Gext
mag = −µ0

∫ H

0

M(H,T, x)dH (1)

where µ0 is the permeability of vacuum, H is the externally applied magnetic field,
T is the processing temperature, and x is the alloy composition.

Several models (e.g., Weiss mean field theory [WMFT]) have been used to simulate
and/or predict an alloy’s magnetization. To fully explore some of these models,
Murdoch et al. [5] performed a robust analysis and comparison of some of these
models. This technical note provides some further observations on the WMFT and
Kuz’min’s equation of state (KEoS) models, and a more detailed description of how
these models were implemented. Furthermore, the python class used to calculate
the magnetization based on these models is included in the Appendix.

2. Model Formulations

Multiple models have been developed to predict and/or fit the magnetization of
a given material. Two of these are the WMFT and Landau models, which have
been successfully used to describe magnetization in a variety of materials. Here, we
focus on these two models, which were recently extended to model magnetization
in alloys.5
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2.1 Weiss Mean Field Theory

WMFT denotes the magnetization of an ensemble ofN atoms, each with a magnetic
moment m when subjected to an externally applied magnetic field H:

M = mNBj(α) = M0Bj(α) (2)

where M0 = mN is the saturation magnetization and Bj is the Brillouin function

Bj(α) =
2j + 1

2j
coth

(
2j + 1

2j
α

)
− 1

2j
coth

(
1

2j
α

)
(3)

and the quantum number j is a positive integer or half-integer. The α-parameter is
defined as the ratio of the Zeeman energy of the magnetic moment and the thermal
energy

α =
m(H + wM)

kBT
(4)

where w is the molecular field constant and kB is the Boltzmann constant. The
term wM gives the internal magnetization field. The Curie temperature, at which
magnetization goes to zero in the absence of an applied external field, can be defined
as

TC =
(j + 1)wm2N

3jkB
. (5)

Since the molecular field constant can have a complex dependence on the material’s
electronic structure, causing it to vary widely between species, it is convenient to
remove it by using Eq. 5,

w =
3jkBTC

(j + 1)m2N
, (6)

which, by combining with Eqs. 2 and 4, we can express α as

α =
mH

kBT
+

3jkBTC
(j + 1)m2N

mM

kBT
=
mH

kBT
+

3jBj(α)

j + 1

TC
T
. (7)

Rearranging Eq. 7, we can derive the “transcendental equation”

Bj(α)− j + 1

3j

T

TC
α +

j + 1

3j

mH

kBTC
= 0, (8)

which must be solved numerically. This nonlinear equation was solved using the
nsolve function of Python’s sympy module.

2



2.2 Magnetization for Alloys

To properly account for alloying, the existing treatment varies the Curie temperature
and magnetic moment linearly as a function of alloy composition. A description of
how to extend WMFT to alloys, adopted from Guo and Enomoto,6,7 is presented
next. For example, an iron (Fe)-based material (Fe-M) has a Curie temperature
given by

T aC = T FeC (1 + a · xM) (9)

and a magnetic moment by

m = mFe(1 + b · xM), (10)

where a and b are material parameters. These material parameters can be obtained
experimentally measuring how the Curie temperature and magnetic moment changes
as a function of composition

a =
100

T FeC

dTC
dxM

(11a)

b =
1

mFe

dm

dxM
. (11b)

The magnetization of the binary alloy is calculated by

M = mNBj(α + ∆α) (12)

where ∆α = Ax is the alloying-induced change in α. Performing a first-order
Taylor expansion and using Eq. 10, we get

M = mFeN ·
[
1 + b · xM

]
·
[
Bj(α) + xMAB′

j(α)
]

M = mFeN ·
[
Bj(α) + xMAB′

j(α) + b · xMBj(α) + b · xM 2
B′
j(α)

]
.

(13)

Finally, only keeping terms that depend linearly with xM , we get

M = mFeN
[
Bj(α) +

{
A ·B′

j(α) + b ·Bj(α)
}
· xM

]
(14)

Examining Eq. 14, it can be observed that we still need to determine the A param-
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eter. In order to derive a function for A, we can extend Eq. 8 to its alloyed form:

Bj(α + ∆α)− j + 1

3j

(α + ∆α)T

T FeC (1 + axM)
+
j + 1

3jkB

mFe(1 + bxM)H

T FeC (1 + axM)
= 0. (15)

Keeping in mind that Bj(α+ ∆α) = Bj(α) + ∆αB′
j(α), performing some expan-

sion with respect to xM and grouping by order, we get

0th : Bj(α)− j + 1

3j

T

TC
α +

(j + 1)mH

3jkBTC
(16a)

1st : AB′
j(α) + aBj(α)− j + 1

3j

T

T FeC
A+

(j + 1)mFeHb

3jkBT FeC
(16b)

2nd : aAB′
j(α). (16c)

Then, recognizing that Bj(α) corresponds to the pure alloy and combining Eq. 8
(for Fe) and the first-order terms of Eq. 16, we get

AB′
j(α)− j + 1

3j

T

T FeC
(A− aα) +

(j + 1)

3j

mFeH

kBT FeC
(b− a) = 0, (17)

and finally, we can solve for A:

A =
kBTaα +mFeH(b− a)

kBT − 3jT FeC B′
j(α)/(j + 1)

. (18)

It should be noted that once the α values for a given elemental system subjected to
an applied field H are obtained, these values can be used to calculate the magneti-
zation of the alloy based on the elemental system. Hence, we only need to calculate
the α values as a function ofH and T once and then reuse these for alloyed systems.

2.3 Kuz’min Equation of State

Based on Landau’s theory for ferromagnets,8 Kuz’min developed an approximate
equation of state (EoS).9 This EoS applies to ferromagnets at T . TC undergoing
a second-order phase transition.

Following the ferromagnet-specific version of Landau theory, as stated by Ginzburg,10

a thermodynamic potential can be written as an expansion of magnetization:

Φ(M,H, T ) = Φ0 +
1

2
AM2 +

1

4
BM4 +

1

6
CM6 + · · · −HM (19)
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where the coefficients Φ0, A,B,C, . . . may depend on external thermodynamic pa-
rameters (e.g., temperature), but not on the applied field H . Under thermodynamic
equilibrium, we get

∂Φ

∂M
= AM +BM3 + CM5 + · · · −H = 0, (20)

which is an implicit form of the magnetic EoS, giving a relation betweenM,H, and
T . Given the reduced magnetization (σ = M/M0) and temperature (τ = T/TC),
the magnetic EoS can be rewritten as

H = aσ + bσ3 + cσ5 + · · · (21)

where a, b, and c are functions of the reduced temperature. Kuz’min postulated that
the magnetic EoS can be expressed as Eq. 21 when: 1) it has been truncated to the σ5

term, 2) coefficients b and c are independent of τ , and 3) coefficient a dependence
on τ fulfills Bloch’s 3/2 power law at low temperatures:

a(τ) = a0
τ 3 − 1

1 + pτ 3/2
(22)

where a0, p and κ = b/a0 are material parameters. Then, with the normalization
condition

σ(T = 0, H = 0) = 1 → M = M0 (23)

we get

H = a0σ

[
τ 3

1 + p+ τ 3/2
+ κσ2 + (1− κ)σ4

]
(24)

where a0, p and κ = b/a0 are material parameters. An alternative to solving this
problem, the EoS can be solved for τ :

τ =
(√

1− 2u+ p2u2 − pu
)2/3

(25)

where
u =

1

2

[
κσ2 + (1− κ)σ4 − H

a0σ

]
. (26)

It should be noted that either equation could be used to fit to experimental data,
where Eq. 24 can be used to fit experimental magnetization curves (σ vs. H , with
fixed τ ), while Eq. 26 can be used to fit temperature dependences of magnetization
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at a fixed magnetic field (σ vs. τ , with fixed H).

3. Analysis of Models

This section explores how these models perform at predicting the magnetization
of different metals. We consider both pure systems, and the influence of alloying
through the WMFT model.

3.1 WMFT Model

WMFT has been used to calculate magnetization for pure Fe across a range of ap-
plied fields, as shown in Fig. 1. The material parameters used were obtained from
Ishikawa11 and are tabulated here for convenience (Table 1). Figure 1a shows mag-
netization as a function of time for multiple applied magnetic fields. As expected,
for H = 0 T, magnetization goes to zero at the Curie temperature (TC = 1043 K).
We explored two cases of WMFT, where the quantum number is j = 1/2 (solid
lines) and j = 1 (dashed lines). However, when subjected to an applied field, the
alloy is still magnetized at temperatures over the Curie temperature. It is observed
that the j = 1/2 case yields a magnetization that is higher than the j = 1 case.
Figure 1b shows the percent difference between these two curves. It is shown that
for small fields (H . 10 T), there is a sharp increase in difference when T ∼ TC .
This difference quickly plateaus to a maximum of approximately 10%. Further, it
is shown that while the difference still increases monotonically for higher applied
fields, there is a substantial decrease in the difference at higher temperatures.

To determine the magnetization, we need to numerically solve Eq. 8 to obtain α at
a given applied field and temperature. Since the solver requires an initial guess (α0)
for each condition, we assigned the previous temperature value to correspond to the
current temperature initial guess:

α
(T+∆T,H=0)
0 → α(T,H=0) (27)

where ∆T is the temperature discretization. Whenever this discretization is too
large, a numerical instability is observed as T → TC , as shown in Fig. 2. For the
∆T = 1 K case, there is a large discontinuity very close to the Curie temperature.
By decreasing the discretization to ∆T = 0.95 K, the discontinuity is mostly gone,
and for ∆T = 0.9 K, no discontinuity is observed before the magnetization goes to

6



a)

b)

Fig. 1 Fe magnetization as calculated by WMFT, showing a) curves for j = 0.5 (solid) and
j = 1 (dashed) and b) the percent difference between the different j values. This shows that
the error decreases as the applied field H increases.

Table 1 Material parameters for WMFT, which describe the influence of alloying on the Curie
temperature and magnetic moment in Fe (after Ishikawa11)

Alloying element dTC/dx [◦C/at%] a dm/dx [µB] b

Co 12 1.15 1.11 0.5
Ni -3.6 -0.34 1.30 0.59

a = 100/(dTC/dx)/T
0
C b = (dm/dx)mFe

7



Fig. 2 Instability observed for WMFT when calculating the magnetization for the Fe–10Ni
alloy

zero. It should be noted that this instability was only observed when the alloying
element causes the Curie temperature to decrease (TC |xM>0 < T FeC ). Furthermore,
this anomaly was not observed when calculating magnetization under an applied
field.

Figure 3 shows the magnetization as a function of alloying composition for the Fe-
cobalt (FeCo) and Fe-nickel (FeNi) systems as predicted by WMFT. It is shown
that the predicted values are often not realistic, especially for high alloy content
(e.g., MxNi=0.75

0 > 3µB and T xCo=0.75
C ∼ 1940 K). Further, the shape of the mag-

netization curve is non-physical. This is likely due to the assumption that the Curie
temperature and magnetic moment change linearly as a function of composition.
While this might be a valid assumption for low alloying content, it is clearly not an
accurate assumption otherwise, as discussed by Murdoch et al.5

3.2 KEoS Model

The EoS developed by Kuz’min based on Landau’s theory was tested and com-
pared against WMFT. This is shown for Fe in Fig. 4 for multiple applied magnetic
fields, where the solid lines correspond to KEoS and the dashed lines correspond to
WMFT. The material parameters used are shown in Table 2. Figure 4a shows that as
the applied field increases the Kuz’min curves do not reach T = 0 K. In fact, look-
ing at Eq. 26 and setting the reduced magnetization to one (σ = 1 → M = M0),

8



a)

b)

Fig. 3 WMFT prediction of magnetization as a function of alloy composition for the a) FeCo
and b) FeNi systems

we get

u =
1

2

[
1− H

a0

]
. (28)

Using this equation, we can determine the temperature at which KEoS predicts that
the magnetization will be saturated, as shown in Fig. 4b. We can see that as the
applied field increases, KEoS becomes less practical.

Figure 5 shows the KEoS prediction of the magnetization for the FeCo and FeNi
systems at different compositions. Similar to the alloyed WMFT calculations, this
model is unable to accurately predict realistic magnetization and Curie tempera-
tures. This suggests that the adjustable KEoS parameters should be refit as the al-

9



Table 2 Values of the parameters used for KEoS

Element Fixed parameters Adjustable parameters
M0 (emu/g) TC (K) p κ a0 (MOe)

Co 164 1390 0.25 0.43 3.7
Fe 222 1043 0.25 0.18 3.3
Gd 266 293 1.5 0.35 0.9
Ni 58 631 0.28 0.47 1.85
Note: Gd = gadolinium

a)

b)

Fig. 4 Performance of KEoS in predicting magnetization of Fe. a) Comparing the Kuz’min
(solid) and WMFT (dashed) models, which show that there’s a limit to Kuz’min as the ap-
plied field goes up. b) reduced temperature limit at the saturation magnetization (τ |σ=1) as
a function of applied field.
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a)

b)

Fig. 5 KEoS prediction of magnetization as a function of alloy composition for the a) FeCo
and b) FeNi systems

loys undergo phase transformations. On the other hand, the KEoS model does not
show the abnormal curve shape (bump) observed for the WMFT calculations.

3.3 Model Comparison

As a final analysis, the models were used to calculate the magnetization and com-
pared against experimental values of pure Fe,12 Ni,12 and Co.13–15 The resulting
calculations are shown in Fig. 6. It is clear that KEoS better approximates the mag-
netization for pure alloys, followed by WMFT with a half-integer quantum number
(j = 1/2). Further, using j = 1/2 with applied fields would require a discontinuity
at TC to make the ferro- and paramagnetic regions consistent with their respective

11



descriptions under WMFT as outlined by Murdoch et al.,5 Guo,6 and Bozorth.16

a) b)

c)

Fig. 6 Comparison between WMFT and KEoS calculated magnetization for elemental a) Fe,
b) Ni, and c) Co. It is clear that Kuz’min better approximates the experimental data.

4. Conclusions

The WMFT and KEoS models were used to calculate the magnetization of metals.
A numerical instability was observed for WMFT as T → TC , which depends on
the temperature discretization. Furthermore, it was shown that the assumption of
a linear change in the Curie temperature and magnetic moment is invalid. KEoS
was shown to perform best when no applied field is present, but encounters a low-
temperature limit as the applied field increases. However, it performs better than the
WMFT model at predicting the magnetization of pure metals at low applied fields.
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1 ’’’

2 ================================================================

3 : class : ‘magnetization‘ -- WMFT and Kuz’min EoS magnetization

4 ================================================================

5

6 This module calculates the magnetization for a variety of alloys

as prescribed by the WMFT and the equation of state developed

by Kuz’min.

7

8 Developed by Efrain Hernandez-Rivera (2019--2020)

9 US Army Research Laboratory

10 --

11 THIS SOFTWARE IS MADE AVAILABLE ON AN "AS IS" BASIS

12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, NEITHER

13 EXPRESSED OR IMPLIED

14 ’’’

15

16 import numpy as np

17 from sympy import *

18 import matplotlib.pylab as plt

19

20 #atomic masses

21 Me = {’Ni’:58.6934, ’Co’:58.933195, ’Fe’: 55.845, ’Gd’:64}

22

23 #constants

24 k = 1.38e-23 # J/K

25 N0 = 8.49e28 # #Fe/m3

26 muB = 9.274e-24 # J/T

27

28 Na = 6.02214076e23

29 fa = 4*pi*1e-7 # funky magnetic conversion

30

31 #from Guo and Enomoto, Mat Trans JIM 41.8 911-916 (2000)

32 # note: a=100/Tc0*dTc/dx, b=1/mFe*dm/dx

33 coefs={’V’: {’dTdx’:7.5, ’a’:0.72, ’dmdx’:-2.68,’b’:-1.22},\

34 ’Cr’:{’dTdx’:-1.5,’a’:-0.14,’dmdx’:-2.29,’b’:-1.04},\

35 ’Mn’:{’dTdx’:-15.,’a’:-1.44,’dmdx’:-2.11,’b’:-0.96},\

36 ’Co’:{’dTdx’: 12.,’a’:1.15, ’dmdx’:1.11, ’b’:0.5},\

37 ’Ni’:{’dTdx’:-3.6,’a’:-0.34,’dmdx’:1.3, ’b’:0.59},\

38 ’Mo’:{’dTdx’:0., ’a’:0., ’dmdx’:-2.11,’b’:-0.96},\

39 ’Si’:{’dTdx’:-3.5,’a’:-0.34,’dmdx’:-2.29,’b’:-1.04},\

40 ’labs’:[’dTc/dX’,’a’,’dm/dx’,’b’]}

41
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42 #from Kuz’min, PRB 7 184431 (2008)

43 # note: M0 (emu/g) Tc (K), p, kappa, a0 (MOe)

44 # : 1 [emu] = 1.078283e20[uB]

45 # : 1 [emu/g] * 1.078283e20 [uB/emu] * Ma [g/mol] / Na [mol/

atom]

46 kuz ={’Gd’:{’M0’:266, ’Tc’:293, ’p’:1.50, ’k’:0.35, ’a0’:0.9},\

47 ’Ni’:{’M0’:58, ’Tc’:631, ’p’:0.28, ’k’:0.47, ’a0’:1.85},\

48 ’Fe’:{’M0’:222, ’Tc’:1044,’p’:0.25, ’k’:0.18, ’a0’:3.33},\

49 ’Co’:{’M0’:164, ’Tc’:1390,’p’:0.25, ’k’:0.43, ’a0’:3.70}}

50

51 class magnetization(object):

52 ’’’

53 Class to calculate magnetization curves as a function of

temperature

54

55 Inputs:

56 a, b : Coeficents for calculation of the Curie

temperature and magnetic moment, respectively. Values for

several alloying elements (V, Cr, Mn, Co, Ni, Mo, Si) can be

called as follows:

57

58 >>> E = ’Ni’

59 >>> a, b = coefs[E][’a’], coefs[E][’b’]

60

61 [Guo and Enomoto, Mat Trans JIM 41.8 911-916 (2000)]

62

63 Tc : Curie temperature (K)

64

65 H : Magnetic field intensity (T)

66

67 j : Angular momentum quantum number, should be a

multiple of 1/2 (optional, default=1)

68

69 maxT : Maximum temperature (K) to which magnetization is

determined (optional, default=1100)

70

71 dT : Discretization step for the temperature array (

optional, default=0.1)

72

73 m0 : Magnetic moment of pure iron (mu_B) (optional,

default=2.2)

74

75 ’’’
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76

77 def __init__(self,a,b,Tc,H,j=1.,maxT=1100,dT=0.1,m0=2.22):

78 self.a = a

79 self.b = b

80 self.j = j

81 self.m = muB*m0 # [Bohr magneton]

82 self.Tc = Tc # [K]

83 self.H = H # [T]

84 self.maxT = maxT # maximum T to analyze [K]

85 self.dT = dT # temperature discretization

86

87 self.alpha, self.T = symbols(’alpha T’)

88

89 self.Bj = (self.j+0.5)/self.j*coth(self.alpha*(self.j

+0.5)/self.j)\

90 - 0.5/self.j*coth(0.5*self.alpha/self.j)

91 self.dBj = diff(self.Bj,self.alpha)

92

93 self.alphaSol = []

94

95 def solveAlpha(self,a0=1000):

96 ’’’

97 Solve WMFT for pure system, obtaining alpha parameters.

Function will loop from 1 to Tm in 1 K increments.

98

99 Inputs:

100 a0 : Initial guess for alpha (optional, default

=1000)

101

102 Outputs:

103 alphaSol : Array of alpha values between 1 K and Tm

104 ’’’

105

106 j, m, alpha, T, Tc = self.j, self.m, self.alpha, self.T,

self.Tc

107 eq = (j+1)/3./j*T/Tc*alpha - (j+1)/3./j*m*self.H/Tc/k

108 dT = np.arange(1,int(self.maxT)+1,self.dT)

109

110 for t in dT:

111 self.alphaSol.append(nsolve((eq.subs(T,t) \

112 - self.Bj),(alpha),(a0)))

113 a0 = self.alphaSol[-1]

114
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115 def calcMag(self,X,i=0):

116 ’’’

117 Calculate temperature dependent magnetization for given

alloying concentration

118

119 Inputs:

120 X : Concentration of alloying element

121

122 Outputs:

123 M : Array of magnetization values between 1 K and

maxT

124 ’’’

125

126 a, b, j, alpha = self.a, self.b, self.j, self.alphaSol[i]

127 m = self.m#*(1+b*X)

128 Tc = self.Tc#*(1.+a*X)

129 T = Tc*(1+a*X)*float(i)/Tc

130

131 Bj = self.Bj.subs( self.alpha,alpha)

132 dBj = self.dBj.subs(self.alpha,alpha)

133

134 A = (k*T*a*alpha + (b-a)*m*self.H)/(k*T - 3.*k*self.Tc*j*

dBj/(j+1.))

135 M = fa*m*N0*(Bj + (dBj*A + Bj*b)*X)

136 return M

137

138 def landau(self,sig,m0=2.22,X=0.,p=0.25,k=0.18,a0=3.3):

139 ’’’

140 Calculate magnetization of pure Fe using Kuz’min

application of Landau

141 [Kuz’min, Phys Rev B 77, 184431 (2008)]

142

143 Inputs:

144 sig : Array for the reduced magnetization (M/M0

)

145

146 p, k, a0 : Fitting parameters for pure Fe as

determined by Kuz’min (optional, default= 0.25, 0.18, 3.3)

147

148 Outputs:

149 [T, m] : Array of temperature and magnetization

values between 1 K and Tc

150

19



151

152 ’’’

153

154 H = self.H/1e2 #field given in T

155 u = 0.5*(k*sig**2. + (1.-k)*sig**4. - (H/(a0*(sig+1e-1))))

156 t = ((1 - 2*u + p*p*u*u)**0.5 - p*u)**(2/3.)

157

158 return np.array([t*self.Tc*(1+self.a*X), sig*m0*(1+self.b*

X)])

159

160 if __name__==’__main__’:

161 E=’Ni’; dT = 0.5; maxT = 2000

162 T = np.arange(1,maxT+1,dT); n = T.size

163 m0 = kuz[E][’M0’]*1.078283e20*Me[E]/Na

164 Tc = kuz[E][’Tc’]

165 wmft = magnetization(0,0,Tc,0,maxT=maxT, dT=dT, j=0.5, m0=m0)

166 wmft.solveAlpha()

167 M=np.array([wmft.calcMag(0,i=i) for i in range(n)])

168

169 data = wmft.landau(np.linspace(1e-5,1,100001),p=kuz[E][’p’],k=

kuz[E][’k’],a0=kuz[E][’a0’],m0=m0)

170

171 plt.plot(data[0],data[1],label=r"Kuz’min",lw=2)

172 plt.plot(T,M,’--’,label=r’WMFT ($j=1/2$)’,lw=2)

173

174 wmft = magnetization(0,0,Tc,0,maxT=maxT, dT=dT, j=1., m0=m0)

175 wmft.solveAlpha()

176 M=np.array([wmft.calcMag(0,i=i) for i in range(n)])

177

178 plt.plot(T,M,’--’,label=r’WMFT ($j=1$)’,lw=2)

179

180 plt.xlim(0,700)

181 plt.ylim(0,0.7)

182

183 plt.axvline(Tc,lw=1,ls=’:’,c=’k’)

184 plt.grid()

185

186 plt.xlabel(’Temperature (K)’,fontsize=16)

187 plt.ylabel(r’Magnetization ($\mu_B$)’,fontsize=16)

188

189 plt.legend()

190 plt.show()
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List of Symbols, Abbreviations, and Acronyms

TERMS:

Co cobalt

Fe iron

Ni nickel

Gd gadolinium

KEoS Kuz’min’s equation of state

WMFT Weiss mean field theory

MATHEMATICAL SYMBOLS:

µ0 permeability of vacuum

σ reduced magnetization

τ reduced temperature

Bj Brillouin function

H applied magnetic field

M magnetization

M0 saturation magnetization

N atomic density

T temperature

TC Curie temperature

j quantum number

kB Boltzmann constant

m magnetic moment

x alloying composition
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