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Abstract

Quantum control originated in the mid-1980s as a set of different laser schemes
designed to manipulate chemical reactions and excite the molecule in specific quan-
tum states. In the last four decades it has enlarged its scope to optimize any type of
process in quantum systems. In this chapter we analyze in a stepwise manner how
the different laser parameters: pulse area, optical phase, duration, timing, frequency
and intensity, affect the dynamics, motivating different quantum control mechanisms.
We explain the control setups in simple scenarios that involve a few particles, mostly a
trapped ion, a quantum dot or a diatomic molecule. Using examples from our own
publications, we show how the different control schemes can be used to prepare
the system in specific quantum states, or prepare quantum gates, or manipulate the
position and width of the wave function, or control the geometry, photophysics,
and photochemistry of the molecule in the excited state. Finally, we give an introduc-
tion to the techniques of optimal control theory that allow to generalize and globally
optimize the dynamics of the system by using a variational approach.

1. INTRODUCTION

Atomic and molecular physics were first studied from a static or

structural point of view, by which ever more precise or computationally effi-

cient theoretical methods were developed for determining the electronic

structure, and then there was a nondynamic view of processes in excited

states based on scattering theory. Laser sources and molecular beams tested

the Hamiltonian eigenvalues and state-to-state cross sections. The first

dynamical theories were proposed to explain the relaxation processes that

limited the precision that could be achieved by measuring those observables.

And then came the development of dynamic spectroscopy to resolve in time

the dynamics. But how and in what sense the new field of quantum control

(QC) emerged and why was it needed?

The usual narrative starts with the story of a failure: the application of

lasers tuned to fundamental frequencies of vibrational modes of molecules

to selectively break the chemical bonds did not produce the desired frag-

ments. In spite of the large energy deposited with strong continuous wave

laser sources in the selected bond, most energy was effectively dissipated as
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heat. This led to the development of ultrashort laser pulses and Femto-

chemistry (Rosker et al., 1988; Zewail, 1988, 2000). The key experimental

realization of a pump-probe experiment allowed to probe a time-slice of

the dynamics of the molecule out of equilibrium, allowing the characteri-

zation of the transition states. While scanning different time delays allows

to follow the evolution of the wave packet in the excited potential, one

can select the particular frame with the largest overlap of the wave packet

to the desired state or location in the ground potential. By using a probe

pulse acting as a Stokes pulse at the right time delay one can restore

the wave packet to the ground potential at the desired position. This is

the underlying principle of the Tannor–Rice–Kosloff control scheme

(Tannor and Rice, 1985; Tannor et al., 1986). As more complex systems

were studied and higher yields demanded, the control was exerted not

only in the timing of the electronic transitions, but also in the wave packet

motion within each electronic state. That required the use of stronger

fields or pulse bandwidths comprising the infrared and visible parts of

the spectrum and algorithms that could find the right parameters in the

high-dimensional space of solutions, paving the way to optimization strat-

egies ( Judson and Rabitz, 1992; Peirce et al., 1988).

However, this is only one leg of the story. For the other one, we should

pay attention to progress in nonlinear laser spectroscopy (Berman and

Malinovsky, 2011). In general, the role of coherence and henceforth the

relative phases (or time delays) between laser pulses or frequency compo-

nents, revealed as a key principle to drive quantum systems. Adiabatic con-

trol (Bergmann et al., 1998) and coherent control (Shapiro and Brumer,

1999) emerged from nonlinear high-finesse spectroscopic techniques in

order to overcome the difficulties in observing population inversion by res-

onant absorption, the so-called Rabi oscillations. Essentially, the relative

phase between the pulses and the sequence by which isolated Hamiltonian

resonances act in the dynamics play the essential role in determining the

outcome of the desired molecular process, which is predesigned by the con-

troller. For instance, quantum control is needed to improve the yield of a

Raman transition avoiding fluorescence in the stimulated Raman adiabatic

passage or STIRAP scheme of Gaubatz et al. (1990). It is also needed to

select a target state from a set of degenerate quantum states in the coherent

control schemes of Brumer and Shapiro (1986). The control is thus exerted

mainly in the frequency domain, by focusing several phase-locked laser

beams or designing specific sequences of pulses. Interesting theoretical

concepts, like the dressed states, have their roots in these original ideas.
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From the experimental point of view QC grew side by side with pulse

modulation or pulse shaping techniques. An ultrashort, minimal time-

width pulse implies a transform-limited maximally coherent pulse, but

the phase relation between different spectral components can be manipu-

lated in pulse-shapers, inducing temporal profiles in the pulses as complex

as demanded (Brixner and Gerber, 2001; Spano et al., 1987; Weiner et al.,

1986). In the simplest case, the phase varies quadratically with the pulse,

inducing a linear chirp (the pulse frequency shifts from red to blue or blue

to red as the pulse proceeds). In the adiabatic rapid passage or ARP scheme

(Bergmann et al., 1998; Shore, 2011; Vitanov et al., 2001, 2017) the yield

of an optical transition is greatly enhanced using chirped pulses where the

frequency sweeps across the resonance. On the other hand, several fre-

quency components can work in parallel with certain phase relationships,

as in the Shapiro and Brumer (1999). Other phases have been used to mod-

ulate, mask certain frequencies or split the original pulse into subpulses

(Brixner et al., 2005; Silberberg, 2009; Wollenhaupt et al., 2005).

Besides the time or frequency domain properties of the pulses, the laser

intensity constitutes another essential control knob that is recently gaining

a leading role in new control scenarios. Beyond intensities larger than the

TW cm�2 but below intensities that ionize the molecule, many nonlinear

multiphoton transitions may occur. Additionally, Autler–Townes reso-

nances and strong Stark shifts modify the electronic forces and reshape

the potential energy surfaces. Yuan and George (1978) and Bandrauk and

Sink (1981) introduced a “chemical” picture of light-induced processes,

where the slow effects of the field on the nuclei (averaged over the radiation

cycles) are incorporated in the dressed (energy shifted and distorted) molec-

ular potentials, which are called light-induced potentials or LIPs. Static phe-

nomena like bond hardening in a laser-free dissociative state (Zavriyev et al.,

1993) or bond softening of the ground state (Bucksbaum et al., 1990) were

first interpreted in the light of the LIPs, and the dynamics of photodis-

sociation or multiphoton processes was recast in terms of predissociation,

avoided crossings, or other topological features of the LIPs, with the impor-

tant difference that now the position of the laser-induced avoided crossings,

LIACs (Gonzalez-Vazquez et al., 2009) or in general, of the laser-induced

conical intersections, LICIs (Csehi et al., 2017; Demekhin and Cederbaum,

2013; Halász et al., 2012a,b, 2013a,b, 2014, 2015; Moiseyev et al., 2008;

Sindelka et al., 2011) can be externally controlled. Much effort has been

put recently in characterizing the LICIs and exploiting then to control

molecular properties.
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Many schemes of adiabatic control can be translated to this so-called

moderately intense regime, allowing to control the selective transfer of

vibronic population through the LIPs, as in the adiabatic passage by light-

induced potentials or APLIP scheme (Chang et al., 2001c; Garraway and

Suominen, 1998; Gonzalez-Vazquez et al., 2006a; Malinovsky et al.,

2003; Rodriguez et al., 2000; Sola et al., 2000a,b), sometimes aided with fre-

quency chirped pulses (Chang et al., 2000; Kallush and Band, 2000), or the

selective population of dressed states or SPODS scheme (Bayer et al., 2008;

Wollenhaupt and Baumert, 2006;Wollenhaupt et al., 2006, 2010). Not only

one can control the population transfer between different electronic states,

but also its structure and its photophysical (internal conversion, intersystem

crossing) and photochemical processes. The development of the non-

resonant dynamic stark effect scheme, by Sussman et al. (2006), stimulated

novel approaches to control chemical reactions (Corrales et al., 2014,

2017; Kim et al., 2012).

While the nuclear wave function encodes the molecular structure, given

by the shape or the geometry, the electronic distribution is responsible for

the chemical properties. In particular, the dipole moment typically provides

simplified information regarding the distribution of charges, so it is partic-

ularly interesting to create and manipulate the molecular dipoles. In princi-

ple, the laser field drives directly the charges, leading at sufficiently strong

amplitudes to tunnel ionization and recombination (Lewenstein et al.,

1994; Seideman et al., 1995). At lower intensities, however, it is sometimes

possible (Albert et al., 2016; Calegari et al., 2014; Chang et al., 2015b; Falge

et al., 2012a; Jim�enez-Galán et al., 2014) to control the charge displacement

while the electron–nuclear motions remain correlated.

In many ways one can regard QC as an additional set of tools that the

experimentalist or theoretician in the atomic, molecular and optical physics

(the AMO community) has at her disposal. Indeed one can claim that there is

no experiment in laser physics without a careful design and tuning of the

laser parameters, typically named in QC as the control knobs. And from

the theoretical point of view, what can there be more than solving the

time-dependent Schr€odinger equation (TDSE) in the presence of an exter-

nal field? However, as progress through this review will show, the goal of

driving a quantum system to a predetermined target state (an eigenstate of

the Hamiltonian or of a different operator), or to accomplish some process

(like a photochemical process or the processing of quantum information),

was more complex than initially expected. As the number of laser parameters

or control knobs grew, the strategies to manipulate these parameters had to
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evolve too. In general, one needs to synchronize the natural evolution of the

Hamiltonian dynamics, determined by phase differences, with the multi-

spectral nature of the driving pulse. A most effective experimental setup,

usually referred as adaptive learning, was proposed by Judson and Rabitz

(1992) which couples the pulse-shapers that modulate the control pulse

with learning algorithms that retrieve the information from the probe in

a closed-loop design.

The change in paradigm from solving theTDSE to an inversion (or rather

a dynamical optimization process), and to a learning process, required the

development of new theory to understand general features of the cost func-

tionals and of the time-evolution operators. This corpse of theory is generally

referred to as quantum optimal control theory (QOCT) and is a distinct fea-

ture of QC with respect to other approaches. In the last 15 years, many

experimental results in the laser control of photofragmentation of complex

molecules (Assion et al., 1998; Brixner and Gerber, 2003; Brixner et al.,

2004; Daniel et al., 2003; Levis et al., 2001; Nuernberger et al., 2010;

Wells et al., 2013) or control of photochemistry in the condensed phase

(Brixner et al., 2001; Herek et al., 2002; Vogt et al., 2005) have validated

this approach, but the challenge remains in interpreting the control mecha-

nisms that lead to the general efficiency of the method (Daniel et al., 2003;

Herek et al., 2002; Roslund and Rabitz, 2009; Trallero et al., 2008; Wells

et al., 2013), and its applications to newer and wider domains.

The goal of this chapter is a broad overview of the different physical

models and mathematical techniques regularly employed in quantum con-

trol, for a variety of purposes of growing complexity. The emphasis is on the

general ideas, trying to display them in the simplest scenarios for pedagogical

reasons, rather than the applications, which are typically selected from the

work of the authors for illustration purposes.

After this introduction, the chapter follows by Section 2 on Rabi

oscillations in a two-level system. Adiabatic control of a single-qubit and

single-qubit quantum gates based on the geometrical phase are reviewed

in Section 3. STIRAP methods of control are discussed in Section 4.

Closed-loop system control is illustrated using a two-qubit system as an

example in Section 5. Section 6 shows what conditions apply in order

to extend the previous basic control strategies (Rabi oscillations and adi-

abatic passage) to molecules using short pulses, where the potential energy

curve adds another dimension to the problem. In Section 7 we illustrate

control ideas that rely on the use of pulses strong enough to modify the

potential curves. We show how in these new potentials one can selectively
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control population transfer, the geometry of the molecule, or the photo-

physical and photochemical processes of the excited states. Finally,

Section 8 introduces the control techniques to deal with more complex

systems that require a different, more numerical, approach based on the

calculus of variations. We explain in detail some algorithms used to solve

the equations and end the chapter with a short summary.

2. RABI OSCILLATIONS IN A TWO-LEVEL SYSTEM

In this section we consider fundamental features of quantum control

in two-level system (TLS). Understanding population dynamics in TLS is

a crucial factor in many areas of physics and chemistry. We will refer to the

TLS as a qubit since later in this work we will address some problems of

control directly related to the quantum information. For simplicity, we

will mostly use wave function formalism, neglecting decoherence and dis-

sipation effects.

The total wave function of the TLS system jΨ(t)i ¼ a0(t)j0i + a1(t)j1i,
where a0,1(t) are the probability amplitudes to be in the states j0i and j1i, is
governed by the time-dependent Schr€odinger equation (TDSE). In the

rotating wave approximation (RWA) the Hamiltonian describing dynamics

of a TLS (Fig. 1) has the form

H ¼�ħ
2

0 ΩðtÞeiϕ0

ΩðtÞe�iϕ0 2Δω

� �
, (1)

whereΔω¼ω0�E1=ħ is the detuning between the transition frequency and
the center frequency,ω0, of the laser field, taken as EðtÞ¼EðtÞcos ω0t +ϕ0ð Þ,
E1 is the excited state energy, the j0i state energy is assumed equal to zero,

0
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Fig. 1 Schematic of a two-level system. Population of the ground (solid line) and excited
(dashed line) as a function of the pulse area of the Gaussian shape envelope.
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ΩðtÞ¼EðtÞμ01=ħ is the Rabi frequency, μ01 is the dipole moment, E(t) is the

pulse envelope, ϕ0 is the initial phase.

In resonant conditions, Δω ¼ 0, the expression for the evolution oper-

ator of the TLS is analytic,

UðtÞ¼ e�i
SðtÞ
2

n � σð Þ ¼ cos
SðtÞ
2

� �
I� i sin

SðtÞ
2

� �
n � σð Þ

¼ cos
SðtÞ
2

� �
I + i sin

SðtÞ
2

� �
cos ϕ0ð Þσx� sin ϕ0ð Þσy
� �

¼
cos

SðtÞ
2

� �
ieiϕ0 sin

SðtÞ
2

� �

ie�iϕ0 sin
SðtÞ
2

� �
cos

SðtÞ
2

� �
0
BBB@

1
CCCA,

(2)

where SðtÞ¼ R t
0
Ωðt0Þdt0 is the pulse area, n¼ð�cosϕ0, sinϕ0,0Þ, σx, y, z are

the Pauli matrices.

As we can see from Eq. (2) population dynamics of the TLS is controlled

by the pulse area, S(t), which determines howmuch population is transferred

from the ground to the excited state. A pulse area of π corresponds to com-

plete population inversion, whereas a pulse area of π/2 gives a coherent

superposition of the TLS states with equal amplitudes. Fig. 1 shows the Rabi

oscillations of the population between the states.

The dynamics of the population in the TLS is more complex in the case

of off-resonant excitation, Δω 6¼0 (Berman and Malinovsky, 2011). Under

a field of constant amplitude and frequency, slightly detuned from the res-

onance, the excitation probability of the TLS undergoes Rabi oscillations

P1ðtÞ¼ ja1ðtÞj2¼Ω2
0 sin

2 Ωeff t=2ð Þ=Ω2
eff , where Ω0 is the constant Rabi

frequency, and the effective Rabi frequency, Ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 +Δω2

q
, takes into

account the effect of the detuning. The detuning accelerates the rate of the

population transfer but decreases the maximum that can reach the target

state, hampering the efficiency and robustness of the preparation process.

A general feature of detuning is to generate fast oscillating dynamical phases

that modulate (and reduce) the coherent transfer induced by the Rabi

frequency.

In the case of the pulsed excitation, for the off-resonance case, the

population of the excited states may reach some nonzero value at the inter-

mediate times, but will always decay to zero at the end of the pulse if the
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pulse is turned on and off smoothly. This is known as an adiabatic population

return. Fig. 2 shows the population dynamics in TLS under a π-pulse for

resonant and off-resonant conditions.

From the control point of view, the Rabi oscillations provide an efficient

and selective method of population transfer in quantum systems, with a

variety of applications in chemistry, laser spectroscopy, quantum optics and

quantum information processing. In some cases, the sensitivity of the final

population distribution in the system to the field parameters is considered

as a drawback of the method. In the next chapters we will consider several

adiabatic passage techniques of population transfer in quantum systems which

are substantially more robust against moderate variations in the interaction

parameters.

3. ADIABATIC CONTROL IN A SINGLE QUBIT

Adiabatic control methods have been studied extensively during last

few decades and found many applications in various areas of laser spectros-

copy, physical chemistry, as well as in quantum information processing. In

this section we consider application of the adiabatic passage (AP) to design

an universal set of single-qubit quantum gates. We will consider the electron

spin in a single quantum dot as one of the most promising realizations of a

qubit for the implementation of a quantum computer (Press et al., 2008). Dur-

ing the last decade several control schemes that perform single gate operations

on a single quantum dot spin were reported (Chen et al., 2004; Economou

and Reinecke, 2007; Liu et al., 2010; Press et al., 2008). Here we consider

a scheme that allows performing ultrafast arbitrary unitary operations on a

single qubit represented by the electron spin. The idea of geometrically
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Fig. 2 Population of the ground (solid line) and excited (dashed line) as a function of
time under excitation by a π-pulse with Gaussian envelope; (A) exact resonance and
(B) off-resonant excitation.
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manipulating the qubit wave function has been developed to the point of

becoming a new research direction called geometric quantum computing

(Falci et al., 2000; Jones et al., 2000; Zanardi and Rasetti, 1999). The main

motivation of this development is the robustness of geometric quantum gates

against noise (Chiara and Palma, 2003; Lupo and Aniello, 2009; Zanardi and

Rasetti, 1999). Here, we demonstrate how to use the geometric phase, which

the Bloch vector gains along the cyclic path, to prepare an arbitrary state of a

single qubit. We show that the geometrical phase is fully controllable by the

relative phase between the external fields.

Let us consider the coherent Raman excitation in the three-level Λ-type
system consisting of the two lowest states of electron spin j0i and j1i coupled
through an intermediate trion state jTi consisting of two electrons and a

heavy hole (Bayer et al., 2002) (Fig. 3). Assuming that the trion state is

far off-resonance with the external fields we neglect decoherence on the

trion-qubit transitions. The electron spin states are split by an external

magnetic field; the separation energy is ħωe. The total wave function of

the system

jΨðtÞi¼ a0ðtÞj0i+ a1ðtÞj1i+ bðtÞjTi, (3)

where a0,1(t) and b(t) are the probability amplitudes, is governed by the

TDSE with Hamiltonian

H ¼ ħ
0 0 �ðΩPðtÞ+ �ΩSðtÞÞ
0 ωe �ð�ΩPðtÞ+ΩSðtÞÞ

�ðΩPðtÞ+ �ΩSðtÞÞ �ð�ΩPðtÞ+ΩSðtÞÞ ωT

0
@

1
A,

(4)

where ΩP,SðtÞ¼ΩP0,S0ðtÞcos ½ωP,St+ϕP,SðtÞ�, �ΩP,SðtÞ¼ �ΩP0,S0ðtÞcos
½ωP,St +ϕP,SðtÞ�, ΩP0,S0ðtÞ¼ μ0T ,T1EP,SðtÞ=ħ, and �ΩP0,S0ðtÞ¼ μ1T ,T0

T

1

0

(t), SS(t), PP

Fig. 3 Energy structure of the three-level system comprised of the two electron spin
states and the trion state.
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EP,SðtÞ=ħ are the Rabi frequencies, μ0T,T1 are the dipole moments, EP,S(t)

are the pulse envelopes, ωP,S are the center frequencies, ϕP,S(t) are the

time-dependent phases, and ħωT is the energy of the trion state. For the gen-

erality, in the present analysis we suppose a symmetrized excitation, with the

pump and Stokes fields driving both transitions of the three-level system of

Fig. 3. We are addressing here a case of linearly chirped pulses such that

ϕP,SðtÞ¼ϕP,S + αP,St2=2, (5)

where ϕP,S are the initial phases and αP,S are the chirps of the pulses.
In the RWA, neglecting the rapidly oscillating terms with frequency

2ωS, 2ωP and ωS + ωP, the Hamiltonian has the following form

eH ¼�ħ
2

0 0 ΩP + + �ΩS+e
�iΔωt

0 2ðΔω�ωeÞ �ΩP +ðtÞeiΔωt +ΩS+

Ω*
P + +

�Ω*
S+e

iΔωt �Ω*
P +e

�iΔωt +Ω*
S+ �2ΔP

0
@

1
A,

(6)

where ΔP¼ωT�ωP, Δω¼ωP�ωS, ΩP +¼ΩP0ðtÞeiϕPðtÞ, ΩS+¼ΩS0ðtÞ
eiϕSðtÞ, �ΩP +¼ �ΩP0ðtÞeiϕPðtÞ, �ΩS+ ¼ �ΩS0ðtÞeiϕSðtÞ and the asterisk represents

the complex conjugate.

Assuming large detunings of the pump and Stokes field frequencies from

the transition frequencies to the trion state, we apply the adiabatic elimina-

tion of the trion state. After some algebra, taking into account the exact time

dependence of the phases in Eq. (5), we obtain the following form for the

Hamiltonian in the field interaction representation

�H ¼�ħ
2

δðtÞ ΩeðtÞeiΔϕ
Ω*

e ðtÞe�iΔϕ �δðtÞ
� �

, (7)

where δ(t) ¼ δ � ζt, δ ¼ ωe + ωS � ωP, ζ ¼ αP � αS, Δϕ ¼ ϕP � ϕS, and

ΩeðtÞ¼ΩP0ðtÞΩS0ðtÞ
2ΔP

1+
ΩP0ðtÞ�ΩP0ðtÞ+ΩS0ðtÞ�ΩS0ðtÞ

ΩP0ðtÞΩS0ðtÞ e�i½Δϕ+Δωt+ ζt2=2�
�

+
�ΩP0ðtÞ�ΩS0ðtÞ
ΩP0ðtÞΩS0ðtÞ e

�2i½Δϕ+Δωt+ ζt2=2�
� (8)

is the effective Rabi frequency. For simplicity, we use the two-photon res-

onance condition and μ0T � μ1T, so that the differential AC Stark shift can

be neglected for completely overlapping pulses.
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In some excitation schemes, due to selection rules that take into account

the polarization of the external field, the pump and Stokes fields interact only

with the corresponding transitions and the general Hamiltonian can be

simplified further by replacing the expression for the effective Rabi

frequency, Eq. (8), with Ωe(t) ¼ΩP0(t)ΩS0(t)/(2ΔP). This is the so-called

nonimpulsive excitation regime, which we address next.

3.1 Adiabatic Solution
The Hamiltonian in Eq. (7) controls the dynamics of the qubit wave

function in the approximation of the adiabatic elimination of the trion state.

Here we consider the adiabatic excitation of the qubit and find the solution

of its corresponding TDSE.

Since the phase factor eiΔϕ of the coupling term in Eq. (7) is time indepen-

dent, it is convenient to use the following transformation, jΦ(t)i ¼ AjΨ(t)i,
where

A¼ j0ih0j+ eiΔϕj1ih1j ¼ eiΔϕ=2e�iΔϕσz=2, (9)

so that the new wave function is governed by the Hamiltonian

�H ¼A �HA�1¼�ħ
2
δðtÞσz +ΩeðtÞσxð Þ: (10)

To solve the TDSE in the adiabatic representation, we apply another

transformation: j�ΦðtÞi¼RðtÞjΦðtÞi, where

RðtÞ¼ cosθðtÞ sinθðtÞ
� sinθðtÞ cosθðtÞ

� �
¼ eiθðtÞσy , (11)

and tan ½2θðtÞ� ¼ΩeðtÞ=δðtÞ. In the new basis the Hamiltonian, Eq. (10),

takes the form

eHðtÞ¼RðtÞ �H ðtÞR�1ðtÞ¼�ħλðtÞσz=2, (12)

where λðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2ðtÞ+Ω2

e ðtÞ
q

.

As we see, the Hamiltonian in Eq. (12) is diagonal in the adiabatic basis

and we can readily write down the solution. However, since the transfor-

mation R(t) is time dependent, an additional nonadiabatic coupling term

is present in the general Schr€odinger equation

iħj _�ΦðtÞi¼�1

2
ħλðtÞσzj�ΦðtÞi�ħ _θðtÞσyj�ΦðtÞi, (13)

where
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_θðtÞ¼�ΩeðtÞ _δðtÞ�δðtÞ _ΩeðtÞ
2 Ω2

e ðtÞ+ δ2ðtÞ� � : (14)

Neglecting the nonadiabatic coupling term in Eq. (13), we readily obtain

for the qubit wave function in the original basis,

jΨðtÞi¼ ei
Δϕ
2
σz e�iθðtÞσy ei

ΛðtÞ
2

σz eiθð0Þσy e�i
Δϕ
2
σz jΨð0Þi, (15)

where ΛðtÞ¼ R t
0
dt0λðt0Þ. Note that the general form of the evolution

operator in Eq. (15) is well justified if the following condition jΩeðtÞ _δðtÞ�
_ΩeðtÞδðtÞj≪λ3ðtÞ is valid.

In the case of completely overlapping pulses,ΩP0ðtÞ¼ΩS0ðtÞ, with iden-
tical chirp rates, αP ¼ αS, for the resonant qubit, δ(t)¼ δ¼ 0, we have θ(t)¼
θ(0) ¼ π/4 and the transformation matrix becomes RðtÞ¼Rð0Þ¼ eiπσy=4.

Therefore, the unitary evolution operator for the wave function of the

resonant qubit takes the form

UðtÞ¼ cos SðtÞ=2ð ÞI� i sin SðtÞ=2ð Þ n �σð Þ¼ e�iSðtÞn �σ=2, (16)

where SðtÞ¼ R t
0
dt0Ωeðt0Þ is the effective pulse area, n¼ð�cosΔϕ, sinΔϕ,0Þ.

Note also that the nonadiabatic coupling term, Eq. (14), is zero for the reso-

nant qubit and the solution of the TDSE in the adiabatic approximation,

Eq. (16), is the exact solution, identical to Eq. (2).

The density plots of the population and coherence (ja0ðTÞa*1ðTÞj) at final
time (after the pulse excitation) as a function of the effective pulse area, S(T),

and the dimensionless frequency chirp parameter, α0=τ20, are depicted in

Fig. 4. We use Gaussian pulses, assuming that the linear chirps are obtained

by applying linear optics, so an initially transform-limited pulse of dura-

tion τ0 is chirped, conserving the energy of the pulse (Malinovsky and

Krause, 2001a,b). The temporal (α) and spectral (α0) chirps are related as

α¼ α0τ�4
0 =ð1+ α02=τ40Þ (Malinovsky and Krause, 2001a,b). We observe

the Rabi oscillation regime, when the population of the qubit states is

changing between 0 and 1 while the coherence is changing between

0 and 1/2. This behavior does not depend on the chirp rate, since the effec-

tive Rabi frequency Ωe(t) is determined by the product of the pump and

Stokes Rabi frequencies: ΩP0,S0ðtÞ¼Ω0 expf� t2=ð2τ2Þg=½1+ α02=τ40�1=4
with the chirp-dependent pulse duration τ¼ τ0½1+ α02=τ40�1=2 and the

amplitude (Malinovsky and Krause, 2001a,b).
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In turn, for the off-resonant qubits, δ6¼0, the evolution operator in the

adiabatic approximation takes the form

UðtÞ¼ eiξðtÞ cosθðtÞ �e�iξðtÞeiΔϕ sinθðtÞ
eiξðtÞe�iΔϕ sinθðtÞ e�iξðtÞ cosθðtÞ

� �
, (17)

where

cosθðtÞ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 +Ω2

e ðtÞ
qvuut , (18a)

sinθðtÞ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 +Ω2
e ðtÞ

qvuut (18b)

and ξðtÞ¼ 1
2

R t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 +Ω2

e ðt0Þ
q

dt0 is the effective pulse area.

As expected, the population of the off-resonant qubit at final time is not

changed by the external fields as long as the pulse excitation parameters are in

the adiabatic regime, leading to adiabatic return. However, in Fig. 5 we also

observe the Rabi oscillation for the value of the chirp jα0j≲5τ20. This is the
regime of nonadiabatic population transfer where the nonadiabatic coupling

term cannot be neglected in Eq. (13).
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Fig. 4 The density plot of the state j1i population (A) and coherence (B) as a function of
the effective pulse area and frequency chirp; αP ¼ αS, δ¼ 0. Initially, only the j1i state is
populated. Adapted from Malinovsky, V.S., Rudin, S., 2012b. Ultrafast control of electron
spin in a quantum dot using geometric phase. Solid State Electron. 78, 28–33.
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3.2 Adiabatic Control of Raman Coherence
Modified adiabatic passage schemes using frequency chirped pulses can be

successfully applied to createmaximum coherencewith applications inCoher-

ent ant-Stokes Raman Scattering (CARS) spectroscopy (Malinovskaya and

Malinovsky, 2007). The maximum coherence between the ground and

excited vibrational states in a molecule optimizes the magnitude of the CARS

signal generated upon propagation of an incident light through a molecular

medium. CARS is a four-wave mixing process, Fig. 6A that involves the

interaction of molecular vibrational modes with the pump and Stokes pulses

resulting in a preparation of a molecular system in a coherent superposition

of the ground and the excited vibrational states. This superposition is analyzed

by the probe pulse that may be delayed with respect to the pump pulse and

usually possesses the same frequency. It induces the anti-Stokes signal at fre-

quency ωA ¼ 2ωP � ωS.

We developed the adiabatic passage method to selectively maximize

the Raman coherence between predetermined vibration states. We use

two linearly chirped femtosecond pulses defined as EPðtÞ¼EP0ðtÞcos
ðωPðt� t0Þ+αðt� t0Þ2=2Þ, and ESðtÞ¼ES0ðtÞcosðωSðt� t0Þ+ βðt� t0Þ2=2Þ,
where EP0,S0(t) are the Gaussian envelopes, with the chirp-dependent pulse

duration τ. It implies β to be constant giving monotonous change of the

Stokes pulse frequency, and α to have same magnitude and opposite sign

for times before the central time t0, (when the field amplitude reaches
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Fig. 5 The density plot of the state j1i population (A) and coherence (B) as a function of
the effective pulse area and frequency chirp; αP ¼ αS, δτ0 ¼ 0.75. Initially, only the j1i
state is populated. Adapted from Malinovsky, V.S., Rudin, S., 2012b. Ultrafast control of
electron spin in a quantum dot using geometric phase. Solid State Electron. 78, 28–33.
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maximum), and then to flip the sign (see Fig. 6B). At t0 the frequency differ-

ence of the pump and Stokes pulse comes into resonance with the j1i�j2i
two-level system and remains in resonance for the rest the pulse duration.

Themethod is called the roof method in accordancewith the temporal shape

of the pump pulse instantaneous frequency, Fig. 6B. Numerical studies show

that coherence in the resonant and in the detuned two-level systems, formed

by the two-photon adiabatic passage, demonstrates fundamentally different

behavior. In the resonant j1i�j2i two-level system, themaximumcoherence

is created in the broad range of field intensities, from 1011 to 1012 W/cm2.

The coherence as a functionof thepulse area and the frequency chirp is shown

in Fig. 7A. Meanwhile in the j3i�j4i two-level system detuned by δ with
respect to the j1i�j2i system, the coherence is atminimumvalue for the same

range of the pulse area and the frequency chirp, Fig. 7B. For the selectivity of

excitations the condition δτ � 1 must be satisfied.

The proposedmethod suggests the robust way to obtain noninvasive image

of biological structure. For example, various biological tissue contain molec-

ular groups, having CH vibrations which span from 2800 to 3100 cm�1 and

may be selectively excited to provide noninvasive image with high chemical

sensitivity. Besides, if to fix the pump field central frequencyωp and to scan the

Stokes pulse frequency ωs, one can obtain the vibrational spectrum of

unknown molecular species. For each instantaneous magnitude of the Stokes

pulse central frequency, the maximum intense CARS signal and the efficient

suppression of the background signal can be achieved. More details on opti-

mization of the Raman coherence using adiabatic methods can be found in

Malinovskaya and Malinovsky (2007) and Malinovskaya (2006, 2007, 2009).
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Fig. 6 (A) Schematic of the coherent anti-Stokes Raman scattering. The interaction of
the two-level systems with the pump and Stokes femtosecond pulses induces coher-
ence between the lower and upper levels. The coherence is analyzed by the probe pulse
that stimulates anti-Stokes Raman transition. (B) Wigner plots of the pump (left frame)
and Stokes (right frame) pulses.
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3.3 Bloch Vector Representation
The dynamics of the qubit wave function can be described equally well using

the Bloch vector representation. The Bloch vector formalism provides a

very nice and clear geometrical interpretation of the qubit dynamics

(Berman and Malinovsky, 2011). In this section, we give a short overview

of the Bloch picture.

A general state of a qubit can be described as

jΨi¼ a0ðtÞj0i+ a1ðtÞj1i¼ cos β=2ð Þj0i+ eiα sin β=2ð Þj1i, (19)

where α and β are the phase parameters. Up to an insignificant global phase,

the wave function can be mapped into a unitary Bloch vector B ¼ (u, v, w),

as shown in Fig. 8. To use the Bloch vector representation, we construct the

qubit density matrix

ϱ¼ jΨihΨj ¼ ϱ00 ϱ01
ϱ10 ϱ11

� �
¼ 1

2

1+ cosβ e�iα sinβ
eiα sinβ 1� cosβ

� �
, (20)

where ϱij ¼ aiðtÞa*j ðtÞ, i, j ¼ 0, 1. The density matrix can be decomposed

using Pauli matrices as

ϱ¼ 1

2
I +B � σ!
	 


: (21)
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Fig. 7 The coherence density plot as a function of the effective pulse area and dimen-
sionless frequency chirp parameter, calculated using the roof method and ω21τ0 ¼ 15;
(A) the resonant two-level system, (B) the detuned two-level system, δ/ω21 ¼ 0.1.
Adiabatic passage induced in both two-level systems leads to the maximum in one
(blue) and minimum coherence (red) in another two-level system.
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It is easy to verify that

B¼Tr½σ! ϱ� ¼ Tr½σxϱ�,Tr½σyϱ�,Tr½σzϱ�
� �¼ðu,v,wÞ, (22)

and identify the relation between the components of the qubit wave function,

the qubit density matrix elements, and the Bloch vector components:

u¼ ϱ01+ϱ10¼cosα sinβ, v¼ iðϱ01�ϱ10Þ¼ sinα sinβ, w¼ ϱ00�ϱ11¼cosβ.

Using the Pauli matrix decomposition procedure Tr½σ!H�, we can

rewrite the Hamiltonian in Eq. (7) in the form

H ¼ ħ
2

Ω � σ!
	 


, (23)

where the components of the pseudo-field vector

Ω¼ �ΩeðtÞcosΔϕ,ΩeðtÞ sinΔϕ, �δðtÞð Þ (24)

are determined by the effective Rabi frequency, the two-photon detuning,

and the relative phase between the pump and Stokes pulses. Therefore, the

equation of motion for the density matrix, _ϱ¼ i ϱH�Hϱð Þ=ħ, can be

rewritten as the Bloch equation

_B¼Tr½σ! _ϱ� ¼ 1

2
Tr½σ! � σ! � Ω�Bð Þ� ¼Ω�B, (25)

which describes a precession of the Bloch vector, B, about the pseudo-field

vector, Ω, and allows a clear, intuitive interpretation of the qubit dynamics.

x y

z

B

(t) cose

(t) sine

Fig. 8 The Bloch vector representation of the qubit state. Excitation of the qubit by an
external field corresponds to the rotation of the B vector about the pseudo-field vector,
Ω, with components determined by the effective Rabi frequency Ωe(t), detuning δ, and
the relative phase Δϕ.
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Since we already know the evolution operator of the qubit, for example

for the exact resonance case, Eq. (16), we can easily construct the evolution

operator for the Bloch vector. Using the definition of the density matrix, ϱ(t)
¼U(t)ϱ(0)U†(t), after some algebra we obtain for the Bloch vector evolution

the following expression

BðtÞ¼
C2 +S2 cos 2Δϕð Þ �S2 sin 2Δϕð Þ 2 C � S sin Δϕð Þ
�S2 sin 2Δϕð Þ C2�S2 cos 2Δϕð Þ 2 C � S cos Δϕð Þ
�2 C � S sin Δϕð Þ �2 C � S cos Δϕð Þ C2�S2

0
@

1
ABð0Þ,

(26)

where C¼ cos SðtÞ=2ð Þ, S ¼ sin SðtÞ=2ð Þ, and B(0) is the initial

Bloch vector.

3.4 Single Qubit Gates Using Geometrical Phase
At this point, we are ready to discuss implementation of the single-qubit

gates since we have obtained the analytic solution for the qubit wave func-

tion and constructed the evolution operator in the Bloch vector represen-

tation. A universal set of quantum gates has been intensively discussed in the

literature related to the universality in quantum computation (Deutsch et al.,

1995; DiVincenzo, 2000; Lloyd, 1995; Nielsen and Chuang, 2006). To per-

form quantum computation, we must have twomajor building blocks at our

disposal: arbitrary unitary operations on a single qubit and a controlled-

NOT operation on two qubits. Here we address only the single-qubit

manipulation.

To demonstrate arbitrary geometric operations on a single qubit, we use

the Bloch vector representation discussed in the previous section. Since any

unitary rotation of the Bloch vector can be decomposed, for example, as

U ¼ eiα0Rzðα1ÞRyðα2ÞRzðα3Þ, where Ri¼ eiασi (i ¼ y, z) are the rotation

operators (Nakahara and Ohmi, 2008; Nielsen and Chuang, 2006), we need

to demonstrate rotations of the qubit Bloch vector about the z- and y-axes

by applying various sequences of external pulses. This decomposition plays

an important role in circuit-based quantum computing, as it shows explicitly

that two single-qubit operations allow us to prepare arbitrary qubit state.

Here we show how this can be accomplished by controlling the parameters

of the external pulses, which are defined by the explicit form of the evolu-

tion operator (see Eq. 16). There are two distinct implementations

depending on which part of the total qubit phase we employ: dynamical

or geometrical (Bohm et al., 2003). Quantum gates relying on geometrical
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quantum phases are called holonomic gates and they are expected to be

robust with respect to noise (Chiara and Palma, 2003; Lupo and Aniello,

2009; Zanardi and Rasetti, 1999).

To implement the rotation of the Bloch vector about the z-axis (the

phase gate) based on the geometrical phase, we can use the evolution oper-

ator of the resonant qubit, Eq. (16). The product of two evolution operators

corresponding to the sequence of two π-pulses with the relative phaseΔϕ¼
φ + π, gives RzðφÞ¼Uπ;φ+ πUπ;0¼ eiφσz , where the first subindex of U

indicates the pulse area, and the second one indicates the phase.

Fig. 9 shows the Bloch vector trajectories of the qubit basis states j0i and
j1i, which correspond to the angles β ¼ 0 and β ¼ π in Eq. (19) and the

Bloch vector initially pointing in the z and � z directions while the vector

Ω1 ¼ (�Ωe, 0, 0) is pointing in the � x direction. For simplicity we chose

Δϕ¼ 0 for the first π-pulse. The first π-pulse flips the population to the state
j1i (j0i); correspondingly, the Bloch vector turns about the effective field

vector Ω1 (about the x-axis), and it stays in the y, z plane all the time and

points in the � z (z) direction at the end of the pulse. Due to the second

π-pulse, the population is transferred back to the initial state j0i (j1i);
therefore, the Bloch vector returns to its original position pointing along

the z (� z) axis. However, since we chose Δϕ ¼ φ + π for the second

π-pulse, the pseudo-field vector is rotated counterclockwise by the angle

φ + π in the x, y plane, Ω2¼ðΩe cosφ, �Ωe sinφ,0Þ, and the Bloch vector

moves in the plane perpendicular to the x, y plane and has the angle π/2� α
(� π/2 � α) with the x, z plane.

The Bloch vectors representing a pair of orthogonal basis states j0i and
j1i follow a path enclosing solid angles of 2φ and � 2φ. The geometrical

phase is equal to one half of the solid angle, which means the basis states
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Fig. 9 The Bloch vector trajectory for the qubit state j0i in panel (A) and the qubit state
j1i in panel (B) generated by the sequence of two π-pulses with the relative phase φ + π.
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j0i and j1i gain phases φ and� φ and the evolution operator takes the form

of the phase gate, with the relative phase controlling the phase of the gate.

The rotation operator about the y-axis can be constructed using three

pulses. The first and third pulse are π/2-pulses withΔϕ¼ 0, while the second

pulse is a π-pulse with relative phase π + φ. It is easy to show, using Eq. (16),

that this three-pulse sequence results inRyðφÞ¼Uπ

2
;0Uπ;π +φUπ

2
;0¼ eiφσy . To

demonstrate the geometrical nature of the Ry(φ) operation, we use the fact

that it creates the relative phase between the qubit basis states

j� ii¼ ðj0i� ij1iÞ= ffiffiffi
2

p
. In the Bloch representation, these states have the

form j� ii¼ cos π=4ð Þj0i+ e�iπ=2 sin π=4ð Þj1i, which are two vectors de-

fined by the angles β ¼ π/2 and α ¼ �π/2 and pointing in the y and �y

directions, as shown in Fig. 10. The trajectory of the Bloch vector rep-

resenting the states j� ii is shown in Fig. 10. The pseudo-field vectors Ω1

and Ω3 are defined by the effective Rabi frequencies of the first and

third pulses and are pointing in the �x direction since Δϕ ¼ 0. The second

pseudo-field vector Ω2 is rotated counterclockwise by the angle φ + π in

the x, y plane same as in the case above. The initial Bloch vector is pointing

in the y (�y) direction. The first π/2-pulse rotates the Bloch vector about

Ω1 to the position of the state j1i (j0i). The second pulse flips the direction

of the Bloch vector. The third π/2-pulse returns the Bloch vector to its

original position. The Bloch vector and the pseudo-field vector are orthog-

onal during the whole evolution. Similar to the previous case, we observe

that the basis states jii and j� ii follow a path enclosing solid angles of

2φ and �2φ. Therefore, they gain the relative phase 2φ, which is the
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Fig. 10 The Bloch vector trajectory for the qubit state jii in panel (A) and the qubit state
j� ii in panel (B) generated by the sequence of two π/2-pulses and one π-pulse with the
relative phase φ + π.
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geometrical phase defined by the relative phase between the pulses. It is easy to

show that the phase gate in the j� ii basis is equivalent to theRy(φ) gate in the
j0i, j1i basis.

3.4.1 Single-Qubit Operation Using Bright-Dark Basis
In sections 3.1 and 3.2, we have considered several excitation schemes of the

three-level system and discussed a possible implementation of single-qubit

gates. It was shown that all possible qubit states can be created in a

controllable fashion using a couple of completely overlapping laser pulses,

ΩP(t) ¼ΩS(t). In this section, we present a more general solution, which

allows some additional flexibility in terms of the ratio of the pump and

Stokes pulse amplitudes. Again, we address here the coherent Raman exci-

tation in a three-level Λ-type system consisting of the two lowest states of

electron spin j0i	j�Xi and j0i	jXi coupled through an intermediate trion

state jTi (see Fig. 3) and assume that the trion state is far off-resonance with

the external fields. In addition, we restrict our consideration to the non-

impulsive regime and can then put �ΩP +ðtÞ¼ �ΩS+ðtÞ¼ 0 in Eq. (6), so that

the Hamiltonian takes the form

eH ¼�ħ
2

0 0 ΩP +

0 2ðΔω�ωeÞ ΩS+

Ω*
P + Ω*

S+ �2ΔP

0
@

1
A, (27)

where ΔP ¼ ωT � ωP, Δω ¼ ωP � ωS, ΩP +¼ΩP0ðtÞeiϕPðtÞ,
ΩS+¼ΩS0ðtÞeiϕSðtÞ, and ϕP, S(t) ¼ ϕP, S + αP, St

2/2.

Let us consider the case when ΩP0ðtÞ¼Ω0ðtÞcosϑ and ΩS0ðtÞ¼
Ω0ðtÞ sinϑ; the pump and Stokes Rabi frequencies have the same envelope

but different peak amplitudes, controlled by the mixing angle ϑ. Applying

the transformation to the bright-dark basis, jΨi¼ aBðtÞ,aDðtÞ,ebðtÞn o
¼

RbdjeΨi, where

Rbd ¼
e�iϕP cosϑ e�iϕS sinϑ 0

�eiϕS sinϑ eiϕP cosϑ 0

0 0 1

0
@

1
A, (28)

in the two-photon resonance (δ¼ 0), equal chirp rates (αP¼ αS) case, we have

�H ¼Rbd
eHR�1

bd ¼ ħ
2

0 0 �eiαt
2=2Ω0ðtÞ

0 0 0

�e�iαt2=2Ω0ðtÞ 0 2ΔP

0
@

1
A: (29)
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After the adiabatic elimination of the excited state jTi (assuming that
_ebðtÞ� 0), we obtain the following expression for the evolution operator

of the qubit states

UðtÞ¼ eiSðtÞ=2e�iSðtÞn � σ=2, (30)

where SðtÞ¼ R t
0
Ω2

0ðt0Þdt0=ð4ΔPÞ is the effective two-photon Rabi fre-

quency, and

n¼ �cos Δϕð Þ sin 2ϑð Þ, sin Δϕð Þ sin 2ϑð Þ,� cos 2ϑð Þð Þ: (31)

For ϑ ¼ π/4, Eq. (30) is identical to the previously obtained solution,

Eq. (16), and can be considered as a more general result, providing additional

freedom to the single-qubit manipulation by adjusting the ratio between the

pump and Stokes pulse amplitudes.

3.4.2 Electron Spin in a Quantum Dot as a Qubit
Above, we discussed several methods of an arbitrary manipulation of a qubit

wave function using the geometric phase. The proposed scheme can be

implemented on electron spin states in a charged quantum dot. Due to quan-

tum confinement, the state of the electron can be expressed as a product of

the Bloch function and an envelope function, which has the typical size of a

quantum dot, a few nanometers. The energy level structure and optical

selection rules have been studied extensively in the literature (Chen et al.,

2004; Economou and Reinecke, 2007; Liu et al., 2010; Press et al.,

2008). A commonly accepted energy level structure is comprised of four

levels, the two electron spin states and two trion spin states, which allow

for the optical control of the electron spin qubit. The electron spin control

experiments are usually performed at low temperature (
1 K). An external

magnetic field in the Voigt configuration (of order 2 � 7 T) is applied

along the x-axis, perpendicular to the sample growth direction, the z-axis.

Zeeman splittings of the electron and trion spin states are on the order ofωe¼
10meV andωh¼ 10 μeV. In these conditions, taking into account the opti-
cal selection rules, the four-level system can be considered as a double Λ
system (Chen et al., 2004; Economou and Reinecke, 2007; Greilich

et al., 2006; Liu et al., 2010; Press et al., 2008). Using the two σ+ or σ�

polarized fields, one can couple the electron spin states appropriately and

the three-level model can be implemented. A more detailed discussion

of the implementation and timescale of the quantum gates operation can

be found in Hawkins et al. (2012) and Malinovsky and Rudin (2012a,b).
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Note that using only the geometric phase for manipulation of a qubit has

some advantages, since it reduces the requirements of perfect tuning of

the control field parameters and it is significantly more robust against

noise (Chiara and Palma, 2003; Lupo and Aniello, 2009; Zanardi and

Rasetti, 1999).

4. STIRAP IN MULTILEVEL QUANTUM SYSTEMS

Coherent control of quantum systems has attracted a considerable

interest in recent years. Efficient and robust population transfer between

quantum states has been the ultimate goal of many theoretical and experi-

mental studies. This problem is relevant to many applications, including

spectroscopy, collision dynamics, optical control of chemical reactions,

waveguide photonic system, and quantum gate implementation in various

quantum computer architectures. A considerable number of studies have

been devoted to the process of stimulated Raman adiabatic passage

(STIRAP) in three-level and multilevel systems coupled by a number of

external fields (see Fig. 11). Here we review some important features of

STIRAP and its applications.

4.1 Three-Level System
The STIRAP mechanism of population transfer in a three-level system has

been explored in details, both numerically and analytically. Many analytic

studies have been performed in the adiabatic limit (Glushko and

Kryzhanovsky, 1992; Kuklinski et al., 1989; Vitanov and Stenholm, 1997)

although some nonadiabatic effects have been also considered as well (Sun

and Metcalf, 2014; Vitanov and Stenholm, 1996). STIRAP has also been

demonstrated experimentally for the Rydberg state preparation in Cubel

et al. (2005). Recent reviews of the literature related to STIRAP in atomic
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Fig. 11 Scheme of the three-level (A) and five-level (B) systems sequentially coupled by
external fields.
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and molecular systems can be found in Bergmann et al. (1998) and Vitanov

et al. (2001, 2017).

In the RWA, considering two-photon resonance, the Hamiltonian has

the form

H ¼�ħ
2

0 eiφPΩPðtÞ 0

e�iφPΩPðtÞ 2Δ e�iφSΩSðtÞ
0 eiφSΩSðtÞ 0

0
@

1
A, (32)

where ΩP,S(t) are the pump and Stokes Rabi frequencies,Δ¼ΔP¼ΔS is the

single-photon detuning, andφP,S are the initial phases.We address theRaman

excitation of three-level system by external fields with a continuous pulse

envelope, such as a Gaussian. For simplicity, we focus on a closed system,

assuming long coherence or absence of dephasing and dissipation, that allows

us to use the time-dependent Schr€odinger equation to describe the population
dynamics.

The mechanism of the population transfer in STIRAP can be under-

stood using the dressed state picture. To do that, we find the eigenvalues

and eigenvectors of the Hamiltonian in Eq. (32); for the single-photon

resonance, Δ ¼ 0, the eigenvalues (energies) are

λ0 ¼ 0, λ� ¼�ħ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

PðtÞ+Ω2
SðtÞ

q
, (33)

and the respective eigenvectors are

Φ0¼ � eiφP�iφSΩSðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPðtÞ2 +ΩSðtÞ2

p ,0,
ΩPðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩPðtÞ2 +ΩSðtÞ2
p

 !
,

Φ� ¼ eiφP�iφSΩPðtÞffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPðtÞ2 +ΩSðtÞ2

p ,
e�iφSffiffiffi

2
p ,

ΩSðtÞffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPðtÞ2 +ΩSðtÞ2

p
 !

,

Φ+¼ eiφP�iφSΩPðtÞffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPðtÞ2 +ΩSðtÞ2

p , � e�iφSffiffiffi
2

p ,
ΩSðtÞffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩPðtÞ2 +ΩSðtÞ2
p

 !
:

(34)

As we can see, the eigenstate Φ0 with the eigenenergy λ0 ¼ 0 is the dark

state since its projection to the state j2i is zero in the adiabatic limit. The

adiabatic theorem guarantees that a quantum system will evolve in one adi-

abatic state if it is initially prepared in a single adiabatic state and the

adiabaticity condition of the Hamiltonian change is satisfied. Analyzing

the projections of the dressed state Φ0 on the bare states j1i and j3i, we
observe that the counterintuitive pulse sequence, when the Stokes pulse
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ΩS(t) precedes the pump pulse, provides a robust solution of population

transfer from state j1i to state j3i without populating state j2i.
Fig. 12 illustrates the STIRAP dynamics in a three-level system. The

results are obtained by solving numerically the TDSE with the Hamiltonian

in Eq. (32). The population dynamics is shown in Fig. 12A when the coun-

terintuitive pulse sequence (Fig. 12B) excites the three-level system. The

dressed states frequencies λ0,�=ħ as a function of time are shown in

Fig. 12D. Fig. 12B shows a density plot of the target state (j3i) population
at final time, as a function of the time delay between the Stokes and pump

pulses and the peak Rabi frequency. The plot clearly reveals the remarkable

robustness of population transfer in the wide area for positive time delays

(the counterintuitive pulse sequence).

The intermediate level population is not exactly zero at the time when

the pump and Stokes pulsed maximally overlap, Fig. 12A. This detrimental

population in j2i is due to nonadiabatic coupling between the dressed states.
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Since the Hamiltonian, Eq. (32), is time dependent, the Schr€odinger equa-
tion in the dressed state basis has the form

iħ _ΦðtÞ¼DðtÞΦðtÞ� iħRDðtÞ _R�1

D ðtÞΦðtÞ, (35)

whereD(t) is the diagonal matrix with the eigenstate energies, Eq. (33), and

RD(t) is the transformation matrix, which can be constructed using the

eigenvectors, Eq. (34). The general expression for the nonadiabatic coupling

term can be written as

�iħRDðtÞ _R�1

D ðtÞ¼�iħ _θðtÞ 1ffiffiffi
2

p
0 �e�iϕ+ 0

eiϕ+ 0 eiϕ+

0 �e�iϕ+ 0

0
@

1
A, (36)

where ϕ+ ¼ ϕP + ϕS, and

_θðtÞ¼
_ΩPðtÞΩSðtÞ�ΩPðtÞ _ΩSðtÞffiffiffi

2
p

Ω2
PðtÞ+Ω2

SðtÞ
� � : (37)

Therefore, the adiabaticity condition for STIRAP can be presented in the

form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

pðtÞ+Ω2
s ðtÞ

q
≫

_ΩPðtÞΩSðtÞ�ΩPðtÞ _ΩSðtÞ
�� ��

Ω2
PðtÞ+Ω2

SðtÞ
� � , (38)

which implies that the distance between the dressed states must be larger

than the nonadiabatic coupling. In principle, the amount of population in

j2i can be used as a measure of the transfer adiabaticity. Note that using fre-

quency chirped pulses in STIRAP may help to improve the adiabaticity of

the population transfer in quantum systems (Sola et al., 1999a).

Finally, wewould like to point out that STIRAP solution has been found

as an optimal solution of the global optimal control theory (Sola et al.,

1999b) as well as a solution of the local control problem for population trans-

fer in a three-level system, when the intermediate state population was

penalized (Malinovsky and Tannor, 1997).

4.2 Generalization of STIRAP
Now we discuss generalized STIRAP schemes of population transfer in

N-level system with sequential couplings (Fig. 11). There is a significant dif-

ference in the mechanisms of adiabatic transfer for even and odd number of

levels. A detailed study of this difference can be found in Sola et al. (1999b)
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and Vitanov et al. (1998). Here we describe the main features of the schemes

in multilevel systems with odd number of levels, using the five-level system

as an example. In the RWA, the five-level system Hamiltonian in the

resonant case has the form

H ¼�ħ
2
ΩPðtÞj1ih2j+Ω1ðtÞj2ih3j+Ω2ðtÞj3ih4j+ΩSðtÞj4ih5j+ c:c:½ �:

(39)

There are two possible versions of STIRAP for multilevel systems with odd

number of levels: in one, the straddling STIRAP (S-STIRAP) scheme

(Malinovsky and Tannor, 1997), the Stokes pulse again precedes the pump

pulse, but all the pulses connecting intermediate levels “straddle” both the

Stokes and the pump pulses (Ω1(t)¼Ω2(t)¼ΩST(t)). In the other, the alter-

nating STIRAP (A-STIRAP) scheme, all the pulses have the same shape and

amplitude, but the pulses corresponding to all even transitions precede the

pulses corresponding to all odd transitions (Ω1(t) ¼ ΩS(t) and Ω2(t) ¼ ΩP)

(Shore et al., 1991).

The eigenvalues of the Hamiltonian for the S-STIRAP, assumingΩST(t)

≫ΩP, S(t) are

λ0¼ 0, λ1,2¼� ħ
2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

PðtÞ+Ω2
SðtÞ

q
, λ3,4¼� ħffiffiffi

2
p ΩST ðtÞ, (40)

while for the A-STIRAP we have

λ0¼ 0, λ1,2,3,4¼� ħ
2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

PðtÞ�ΩPðtÞΩSðtÞ+Ω2
SðtÞ

q
: (41)

In both cases there is a dark state corresponding to the zero eigenvalue.

The respective eigenvector is, in the S-STIRAP case,

Φ0¼ ΩSðtÞ,0, �ΩSðtÞΩPðtÞ=ΩST ðtÞ,0,ΩPðtÞð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPðtÞ2 +ΩSðtÞ2

p
, (42)

whereas in the A-STIRAP case we have

Φ0 ¼ Ω2
SðtÞ,0, �ΩSðtÞΩPðtÞ,0,Ω2

PðtÞ
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPðtÞ4 +ΩPðtÞ2ΩSðtÞ2 +ΩSðtÞ4

p
:

(43)

The difference between the S-STIRAP and A-STIRAP arrangements

resides in the probability amplitude of the level j3i, Eqs. (42) and (43). The

maximum population in j3i is 1/3 (when the pump and Stokes pulses max-

imally overlap) in A-STIRAP, while in S-STIRAP this population is given

approximately by ΩSðtÞΩPðtÞ=Ω2
STðtÞ and can be substantially suppressed.
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Figs. 13 and 14 show the population dynamics in the five-level system,

respectively for the S-STIRAP and A-STIRAP pulse sequences. Compar-

ison of the intermediate level population in Figs. 13A and 14A suggests a

greater efficiency and robustness of the S-STIRAP scheme for the case

where level j3i is not stable.
Note that the S-STIRAP pulse sequence has been discovered using local

optimal control theory penalizing the intermediate state population

(Malinovsky and Tannor, 1997) and its performance has been successfully

verified in ultracold experiments to prepare rovibronic states of Cs2
(N€agerl et al., 2011).

5. PHASE-CONTROLLED TWO-QUBIT QUANTUM GATES

In this section we consider the dynamics of a quantum system with

closed-loop configuration. Control of such systems is possible due to the

relative phase adjustment of two (or more) pathways from an initial to

the target state (Shapiro and Brumer, 2003). A two-qubit system will be
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Fig. 13 Straddling STIRAP. (A) Population dynamics: ja1(t)j2—solid line, ja5(t)j2—dashed
line, ja2,3,4(t)j2—dotted lines. (B) Pump (solid), Stokes (dashed), and straddling (dotted)
pulses.
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considered as an example, where we address the role of the relative phase

between external fields to control entanglement and to design two-qubit

quantum gates.

In the last years, several methods have been proposed to create entangle-

ment in quantum systems involving a small number of particles as well

as multiparticle entanglement (Ladd et al., 2010; Leibfried et al., 2003;

Schmidt-Kaler et al., 2003). One promising system to build a quantum com-

puter is based on trapped ions, different schemes of coherent manipulation

by quantum states of trapped ions have been developed. The excitation can

proceed in two ways, by individually addressing each ion or through simul-

taneous indistinguishable excitations. Both cases have been considered in the

literature and were shown to be very promising since even hot ions could be

used for quantum computations, contrary to most protocols for quantum

manipulations. The reason for this is that the effective couplings between

the different states of the ions do not depend on the vibrational quantum

number in the Lamb–Dicke limit. Here we reexamine both excitation

schemes and demonstrate that the relative phase is a fundamentally impor-

tant factor, which has remarkable influence on the trapped-ion state manip-

ulation. We show that the state population and entanglement dynamics of

the trapped ions depend strongly on the relative phase between the external

fields. For properly chosen relative phases one can observe either Rabi oscil-

lations according to the Mølmer–Sørensen (M-S) scheme (Mølmer and

Sørensen, 1999; Sørensen and Mølmer, 1999, 2000) or collapse and revival

phenomena, similar to the well-known Jaynes–Cummings model in quan-

tum optics ( Jaynes and Cummings, 1963; Shore and Knight, 1993; Tavis

and Cummings, 1968).

5.1 Individual Qubit Addressing: Collapse and Revival
of Entanglement

Let us consider the dynamics of two distinguishable qubits in a one-

dimensional harmonic trap. Assuming that the other degrees of freedom

are suppressed and decoherence effects can be neglected, the collective

motion of the ions is defined by an effective harmonic trap potential, with

the Hamiltonian

H ¼ ħν a{a+
1

2

� �
+
X
i

E
ðiÞ
1

2
ðI�σziÞ+ Jσz1σz2, (44)

where ν is the frequency of the vibrational motion, E
ðiÞ
1 is the transition

energy in the i qubit, σzi are Pauli matrices and a†, a are the vibrational ladder
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operators. The interaction between the qubits can be treated as an effective

spin–spin coupling Hamiltonian, where J is the coupling constant. The qubit

interaction with the external fields can be described as

V i ¼�ħ
X
j, i

ΩjðtÞcos ½ωjt+ϕj�ηjða{ + aÞ� σxi + h:c: (45)

whereωj,ϕj are the laser frequency and phase,Ωj(t) are theRabi frequencies,

ηj ¼ kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħ=4mωt

p
the Lamb–Dicke parameters, and ωt is the trap frequency.

In general, due to the interaction between the qubits, the transition fre-

quencies of the four-level system (Fig. 15) are different, depending on the

specific system realization. This interaction between qubits is the main rea-

son of blockade effects known as dipole blockade in atomic systems ( Jaksch

et al., 2000; Lukin et al., 2001) and in semiconductor quantum dots (Li et al.,

2003). Here, we consider a general scheme of excitation by four off-resonant

fields driving the following transitions: j00ni,j01n � 1i,j11ni and

j00ni,j01n + 1i,j11ni (see Fig. 15), where “0”(“1”) denotes the qubit

state and n is the vibrational quantum number. In the RWA and field

interaction representation, the Hamiltonian has the form

H ¼�ħ
2

0 Ω1,n Ω2,n+1 0

Ω*
1,n �2δ1 0 Ω3,n

Ω*
2,n+1 0 �2δ2 Ω4,n+1

0 Ω*
3,n Ω*

4,n+1 0

0
BBB@

1
CCCA, (46)

00 n

11 n

01 n

01 n + 1

10 n + 1

10 n −1

10 n

01 n − 1 1

2

1

2

3

4

Fig. 15 Scheme of a four-level system for two qubits with distinguishable interactions in
a linear ion trap.
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where Ωi,n ¼ ηiΩi,0ðtÞeiϕi
ffiffiffi
n

p
, Ωi,0(t) are the Rabi frequency envelopes, and

δ1,2 the detunings including energy level shifts due to the spin–spin coupling.
The total wave function of the system is represented as jψi ¼ a1j00ni +

a2j11ni + b1j01n � 1i + b2j10n + 1i.
Choosing the detunings as δ2¼�δ1¼ δ0, after the adiabatic elimination

of the bi amplitudes (off-resonant excitation) in the case of fully overlapping

pulses, Ωi,0(t) ¼Ω0(t), we obtain

H ¼�η2Ω2
0ðtÞ

4δ0

1 iα*
�iα 1

� �
, (47)

where α¼ ½ð2n+1Þ sinðϕ=2Þ+ icosðϕ=2Þ�, ϕ ¼ ϕ4 + ϕ2 � ϕ1 � ϕ3 is the

effective phase difference between the two distinct two-photon couplings,

and we use η1 ¼ η2 ¼ η.
As we see, the coupling between states j00ni and j11ni in Eq. (47)

depends on the relative phase, ϕ, and the vibrational quantum number, n.

Only at ϕ ¼ 0 the coupling between the internal states does not depend

on the motional states, and Eq. (47) reproduces the well-known M-S

Hamiltonian of trapped ions (Mølmer and Sørensen, 1999; Sørensen and

Mølmer, 1999, 2000). In this case one observes Rabi oscillations between

the ground and excited electronic states even if the motional state is not a

single Fock state.

The solution of the Schr€odinger equation with the Hamiltonian of

Eq. (47) for arbitrary phase is a1¼ cos ½εnSðtÞ� and a2¼ α sin ½εnSðtÞ�=εn,
where SðtÞ¼ η2

4δ0

R t
0
Ω2

0ðt0Þdt0, εn¼ ½1+ 4nðn+1Þ sin2ðϕ=2Þ�1=2 (Malinovsky

and Sola, 2006). To demonstrate the effect of the relative phase we now con-

sider the cw regime,Ω0(t)¼Ω0. When the initial state of the phonons is not a

single Fock state, we average the results over the corresponding state distri-

bution. Averaging using the coherent state distribution, PcðnÞ¼ e��n �nn=n!,
where �n is the average number of phonons, we obtain for the population

inversion, W ¼P∞
n¼0PcðnÞðja1j2�ja2j2Þ¼

P∞
n¼0PcðnÞcos ½2gtεn�, where

g¼ η2Ω2
0=4δ0.

Fig. 16A shows the population inversion dynamics for different values

of the relative phase after averaging over the coherent state distribution.

At ϕ ¼ 0 the dynamics of the system does not depend on the vibrational

quantum number, as it was shown in Mølmer and Sørensen (1999) and

Sørensen andMølmer (1999, 2000), and we observe simple Rabi oscillations

with frequency defined by 2g. However, in general the Rabi frequencies

depend on the vibrational quantum number n, Gn ¼ 2gεn. In the limit of
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�n≫1 we obtain the analytic expression for the population inversion,W ðtÞ¼
e�2�n sin2ðτ=2Þ cosð�n sinτÞ, where τ¼ 4gt sinðϕ=2Þ. The envelope function,

e�2�n sin2ðτ=2Þ, shows that all revivals in this model are full revivals. Using

the analytic expressions for the probability amplitudes, we estimate the fol-

lowing characteristic times for the dynamics: the period of the Rabi oscilla-

tions, tR � 1=4g�n sinðϕ=2Þ, the collapse time, tc ¼ ½8g ffiffiffi
�n

p
sinðϕ=2Þ��1

, and

the interval between revivals, tr � πm=½2g sinðϕ=2Þ�, where m ¼ 1, 2, ….

The results in Fig. 16A are in a perfect agreement with our estimates.

Since the state j00ni + j11ni is the entangled state, we quantify the

degree of entanglement by constructing the density matrix ρ and calculating
the concurrence C(ρ) (Hill and Wootters, 1997; Rungta et al., 2001;

Wootters, 1998; Yu and Eberly, 2002, 2003). Fig. 16B shows the dynamics

of entanglement in the two-qubit system at various values of the relative

phase. We observe that for the coherent state distribution of phonons the

concurrence fully revives at any value of the relative phase, which controls

the revival time and the width of the reviving comb. The dependence of the

Renyi entropy, P(ρ)¼ Tr[ρ2], which can be used as a measure of the system

purity, on the relative phase, is also presented in Fig. 16B.More details about

the phase-induced collapse and revival of entanglement can be found in

Malinovsky and Sola (2006).

5.2 Indistinguishable Qubit Addressing: Two-Qubit Gates
Now we consider the dynamics of two distinguishable qubits in a one-

dimensional harmonic trap when both qubits are excited by external fields.

The Hamiltonian of the system and the interaction part of Eqs. (44) and (45)

are still valid. However, the number of the states involved in the dynamics

changes, as well as the coupling between states is changed, as shown in

Fig. 17. The total two-qubit wave function has the form

jΨðtÞi¼ a1ðtÞj00ni+ a2ðtÞj10ni+ a3ðtÞj01ni+ a4ðtÞj11ni
+ b1ðtÞj01n�1i+ b2ðtÞj10n+1i+ b3ðtÞj01n+1i
+ b4ðtÞj10n�1i+ c1ðtÞj00n�1i+ c2ðtÞj00n+1i
+ c3ðtÞj11n�1i+ c4ðtÞj11n+1i,

(48)

which contains the computational subspace (j00ni, j10ni, j01ni, j11ni)
and additional ancillary states (j00n � 1i, j10n � 1i, j01n � 1i, j11n
� 1i). As in Sørensen and Mølmer (1999, 2000) and Mølmer and

Sørensen (1999), here we address the excitation of the trapped ion by
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using off-resonant laser fields. In the general case, we have eight different

couplings with frequencies arranged in pairwise way to accomplish two-

photon resonance between the computational states while all ancillary states

are not excited.

Assuming that all single-photon detunings, δ1,2 and δ01,2, are sufficiently
large, we make the adiabatic elimination of the ancillary vibrational states

(Berman and Malinovsky, 2011) and obtain the Schr€odinger equation for

the probability amplitudes of the computational states, ai. The general system

of four differential equations splits in two uncoupled two-level systems,

shown in Fig. 17A and B. For simplicity, we consider here only the case

when all the external fields are fully overlapping,Ωj(t)¼Ω0(t) and symmetric

detunings, δ1¼ δ02, δ2¼ δ01.
The effective Hamiltonian for states j00ni and j11ni (see Fig. 17A) and

for states j01ni and j10ni (see Fig. 17B) has the form

H e¼�ħ
ΩacðtÞ ΩeðtÞ
Ω*

e ðtÞ ΩacðtÞ
� �

, (49)

where Ωac(t) is the ac Stark shift, and Ωe(t) is the effective two-photon

Rabi frequency. Both the ac Stark shift and the effective two-photon Rabi
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Fig. 17 Energy level structure of the two-ion system and their couplings induced by
external fields. To simplify the figure, we show the couplings between the j00ni, j11ni
states, and between the j01ni, j10ni states in two frames, (A) and (B), respectively.
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frequency depend on the vibrational quantum number and the relative phase

of the fields (Malinovsky et al., 2014).

To address the case of two indistinguishable ions excited by only two

external fields we need to impose the following relations for the phases ϕ1	
ϕ0
2	ϕ4	ϕ0

3 and ϕ2	ϕ0
1	ϕ3	ϕ0

4 and symmetrize the detunings by tak-

ing δ2¼�δ1¼ δ0. Under these conditions the ac shifts for all computational

states are identical, ΩacðtÞ¼ η2Ω2
0ðtÞ=ð2δ0Þ, while the Rabi frequencies are

Ω14ðtÞ¼ η2Ω2
0ðtÞeiðϕ1 +ϕ2Þ=ð2δ0Þ, Ω23ðtÞ¼ η2Ω2

0ðtÞ=ð2δ0Þ: (50)

Note that theRabi frequencyΩ14(t) couples the states j00ni and j11ni, while
the Rabi frequencyΩ23(t) couples states j01ni and j10ni. The independence
of the Rabi frequencies on the vibrational quantum number indicates that

the excitation scheme does not require laser cooling to the motional ground

state (Mølmer and Sørensen, 1999).

The ac Stark shift is irrelevant here, since it produces only a dynamic

global phase. Therefore, the final form of the total Hamiltonian in the limit

of adiabatic elimination of the ancillary states is

HðtÞ¼�2ħgðtÞ½cosðϕ+=2Þσx� sinðϕ+=2Þσy�½cosðϕ+=2Þσx� sinðϕ+=2Þσy�,
(51)

where ϕ+ ¼ ϕ1 + ϕ2, gðtÞ¼ η2Ω2
0ðtÞ=ð4δ0Þ. Solving the Schr€odinger equa-

tion with the Hamiltonian in Eq. (51), the complete evolution operator in

the computational basis j00i, j01i, j10i, j11if g can be written in the general

canonical form

UtðξÞ ¼C1C2e
iξðtÞσxσxC�1

1 C�1
2 , (52)

where ξðtÞ¼ 2
R t
0
dt0gðt0Þ is the effective pulse area, and C1,2¼ eiϕ+σz=4.

The canonical form of Ut(ξ) in Eq. (52) is equivalent to the Cartan

decomposition (Zhang et al., 2003) of an element of the group SU(4). This

is of the formU¼ k1UAk2, where k1 and k2 represent single-qubit operations

from the SU(2) SU(2) subgroup of SU(4). In our case, the Cartan decom-

position of Ut(ξ) is given as Ut(ξ) ¼ k1(ϕ+)Uxx(ξ)k2(ϕ+), which explicitly

demonstrates that the entangling capabilities of Ut(ξ), contained in Uxx(ξ),
are invariant to any variations of the phase ϕ+ including phase errors. This

makes the gate naturally more robust to phase errors and allows to correct

these errors by single-qubit operations that are usually easier to implement.

The exact CNOT gate decomposition, which can facilitate further advances
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in the practical implementation of the circuit-based quantum computation,

is explicitly derived in (Malinovsky et al., 2014).

6. MOLECULAR WAVE PACKETS: ELECTRONIC
TRANSITIONS IN MOLECULES

Previously, in this chapter, we have studied laser driven processes with

pulses long enough to resolve the dynamics in the energy eigenstates of the

system. In the RWA such dynamics is characterized by the lack of (or the

very slow) dynamic dephasing. The basic requirement is the use of lasers

with spectral bandwidth smaller than the energy spacing of the system that

induce effective interactions (that is, with Rabi frequencies) smaller than the

energy spacing. In the presence of short or intense pulses, coherent super-

positions or nearby levels are formed, inducing dynamics controlled by the

field-free Hamiltonian,H0. Although in principle the situation can be more

difficult to be analyzed, three limiting cases have natural analytic solutions

which can be used as starting points to understand the dynamics and to

extend strategies previously proposed forN-level systems. These are the sud-

den (or impulsive) limit, the adiabatic limit, and the strong-field limit. The

last one will be the subject of Section 7.

The main disadvantage of using short pulses is the loss of energy-resolved

state selectivity. The advantages, however, are many. From the experimental

side it is far simpler to work with stable coherent laser sources in the fem-

tosecond regime to induce coherent molecular dynamics, precisely because

most decoherent processes (e.g., collisions, spontaneous decay) act on longer

timescales. In addition, shorter pulses can often be stronger, allowing to

access highly excited states via multiphoton transitions or to affect the system

in other nonlinear ways (Stark shifts) that provide new control knobs in the

dynamics. And then, even if the pulses are stronger, the energy flow may

remain low enough as to avoid damaging the sample. Finally, any technique

involving phase modulation of the pulses is simpler to implement using

shorter rather than longer pulses.

But if state selectivity can not be achieved in principle, what are going to

be the controlled observables in the dynamics of wave packets? Although

obviously subject to Heisenberg’s uncertainty principle and to natural spread-

ing, molecular wave packets typically involve spatial (in somemolecular coor-

dinates) localization during timescales that may correspond to that of the

controlled motion. It is therefore natural to observe, manipulate, and control

the spatial distribution of the wave packet using short pulses, as evidenced in
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the development of Femtochemistry (Rosker et al., 1988; Zewail, 1988,

2000) and of one of the first QC schemes, the Tannor–Kosloff–Rice control

of chemical reaction by time-delaying pulses (Tannor andRice, 1985; Tannor

et al., 1986).

Additionally, because of the hierarchical energy structure of most quan-

tum systems with different reduced masses, in particular molecules, the pulse

can be chosen so that its spectral width is larger than the energy spacing of

only some degrees of freedom, inducing a wave packet in that coordinate,

but selectively addressing the others. Hence, picosecond pulses can generate

rotational wave packets, called pendular states (Friedrich and Herschbach,

1995; Ortigoso et al., 1999), but address selectively a vibrational mode;

and similarly femtosecond pulses can create vibrational wave packets within

an electronic state. Hence, one can control population flow in this degree or

degrees of freedom. But also, there is no principle that disallows the selective

control in the degree of freedomwhere the wave packet is formed. As in the

Coherent Control scheme where several routes can select a single state from

a set of degenerate levels by quantum interference, we will show in Section 8

that state selectivity is finally also possible, albeit it typically requires laser

pulse modulation or the previous preparation of the initial state.

In this section we will concentrate on the dynamics of vibrational wave

packets and the control of electronic transitions. There has been a wealth of

ideas and schemes devised to control rotational wave packets, for which we

refer the reader to the relevant literature (Seideman and Hamilton, 2005;

Stapelfeldt and Seideman, 2003; Townsend et al., 2011). To simplify the anal-

ysis we start by considering diatomic molecules oriented with respect to a sin-

gle external field E(t). We use the rotating wave approximation (RWA), such

that E(t)�E(t)e�iφ(t)/2, whereE(t) is a slowly varying envelope function, com-

pared to the rate of change of the dynamical phase φ(t). The negative sign is

used to describe absorption, while the positive sign is used for the stimulated

emission. In general, for chirped pulses, φðtÞ¼ R ωðt0Þdt0, where ω(t) is the
time-varying frequency. If only two electronic states participate in the dynam-

ics, the following very general TDSE can be used to describe the dynamics of

the nuclear wave packets, particularly if the pulses are not very intense,

iħ
∂

∂t

ψ1ðR, tÞ
ψ2ðR, tÞ

� �
¼

T+V1ðRÞ K�1

2
μ12ðRÞEðtÞ

K�1

2
μ12ðRÞEðtÞ T+V2ðRÞ�ħωðtÞ

0
B@

1
CA ψ1ðR, tÞ

ψ2ðR, tÞ
� �

,

(53)
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where ψ j(R, t) are the nuclear wave packets moving in the Vj(R) electro-

nic potentials, T¼� ħ2
2m

∂
2

∂R2 is the kinetic energy operator (m the reduced

mass) and K takes into account nonadiabatic couplings that break the

Born–Oppenheimer approximation, either of kinetic origin or due to

spin–orbit couplings (Worth and Richings, 2013).

Our first concern is how to control the electronic transition of the wave

packets between the two electronic states, for which we show the limiting

solutions and comment on how they can be used in more complex scenarios

or for other goals.

6.1 The Impulsive Limit: Making Molecular π-Pulses
Consider a molecule in the vibrational ground state of its electronic ground

state. How can we maximize the electronic absorption to an excited elec-

tronic state, to which it is coupled by a laser? The simplest control model

that we know of is the population transfer by π-pulses. If the pulse is very
short we can assume that during the excitation the packet does not move,

such that the kinetic energy can be regarded constant (which can be taken

away from the Hamiltonian).

How short that must be? We follow here the argument of Garraway and

Suominen (1995). Typically the shortest timescale is related to the motion of

the wave packet promoted to the excited state, since in the most common

situations, the bond equilibrium distance in the ground state, R0, lies in the

repulsive barrier of the excited state, so the excited packet will experience a

strong gradient. To estimate the timescale of motion we linearly expand the

excited potential around R0, V2 ��α(R � R0). The excited packet suffers

an acceleration a� 1
m
∂V2

∂R
� α=m and the time that it takes to move a distance

equal to its standard deviation, σ, is

τe 

ffiffiffiffiffiffiffiffiffi
2mσ

α

r
: (54)

Hence, we need the time duration of the pulse, τ, to be shorter than τe.
However, if the potentials differ, the resonance condition can only be

achieved at a certain internuclear distance, as Fig. 18 shows. We define a

coordinate-dependent detuning, ΔðRÞ¼V2ðRÞ�V1ðRÞ�ħω. Assuming

that the transition dipole remains fairly constant around the packet and

omitting the nonadiabatic coupling terms, the TDSE of Eq. (53) can be sim-

plified to
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iħ
∂

∂t

ψ1ðRÞ
ψ2ðRÞ

� �
¼ 0 �ħΩðtÞ=2

�ħΩðtÞ=2 ΔðRÞ
� �

ψ1ðRÞ
ψ2ðRÞ

� �
: (55)

For each value ofRwe have the Hamiltonian of a two-level system, with

detuning Δ(R). General analytical solutions are not known although there

are fair guesses (Robiscoe, 1983). For a pulse of the form E(t)¼ E0sech(t/T),

the Rosen-Zener solution gives, at final time T, the excitation probability

(Rosen and Zener, 1932)

PðV1ðRÞ!V2ðRÞÞ¼ sin2ðS=2Þ sech2½πΔðRÞT �, (56)

where S is the pulse area. The excited population at time T can be obtained

integrating over R,

P2¼
Z

dR0jψ1ðR0,0Þj2 PðV1ðR0Þ!V2ðR0ÞÞ: (57)

This depends on the pulse area, as the Rabi solution, but takes into account

the detuning. DefiningΔFC as the range that Δ(R) takes within the confines
of the wave packet, the so-called Franck–Condon region, we find that if

T ≪ 1/ΔFC, sech
2(πΔ(R)T) � 1 and the π-pulses lead to better than

95% population in the excited state (for a Franck–Condon region extended

2σ around R0). This implies the obvious condition that in order to transfer

all the wave packet to the excited state we need the pulse bandwidth to

extend over all the absorption band, a condition much harder to meet than

Δ(R)

R

V1

V2

ω

Fig. 18 Sketch of the Franck–Condon transition as a set of two-level systems with
different detunings for each value of R.
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that imposed by τe. We call Franck–Condon transitions (FCT) to these

“vertical” excitations. A delta pulse, with all frequency components in phase

with equal magnitude, guarantees full electronic population inversion, but

femtosecond pulses often provide good approximations for not very light

molecules. Some rough numbers for the X1Σg to A1Σu transition or

A band in Na2 give τe 
 50 fs and Δ�1
FC ¼ 5 fs, showing that molecular

π-pulses are within actual capabilities.

The control of the electronic transition is a first step to most control sce-

narios in molecules. The excited electronic potential provides gradients that

move the promoted wave packet away from the equilibrium configuration,

inducing vibrations or (depending on the nature of the excited state)

photodissociation. Another properly time-delayed molecular π-pulse can

be used to move the packet back to the ground state, inducing high vibra-

tional excitation, isomerization, or photodissociation, as in the original

pump–dump scheme of Tannor et al. (1986). However, in polyatomic mol-

ecules it is often necessary to add a certain momentum to the wave function

before it is promoted to the excited state. This can be achieved by using an

infrared pulse before the molecular π-pulse hits the molecule (Amstrup and

Henriksen, 1992; Elghobashi and González, 2004; Meyer and Engel, 1997).

As the wave packet moves, the time duration of the pump or dump pulses

must be adjusted so that their spectral widths overlap the absorption or

emission bands.

In addition to controlling the position of the packet by cleverly using the

gradients of the excited and ground potentials at the right time, molecular

π-pulses can be used for molecular squeezing, that is, the control of the

width of the wave function or the dispersion of the position of the particle.

When the potentials have different harmonic frequencies, the dynamics

implies breathing, where the packet stretches in the excited state and squeezes

in the ground state as long as it remains Gaussian. A succession of properly

time-delayed π-pulses can lead to a high level of dynamic squeezing by

iterative pump–dump control. This is the principle under the iterative

stretching–squeezing scheme, ISS (Chang and Sola, 2005; Chang et al.,

2006a). For harmonic oscillators, the process can be continued forever, with

the only limitation that, in each iteration the π-pulse bandwidth must

increase. Chang and Sola (2005) have developed analytical formulas in

the harmonic approximation regarding the maximum degree of squeezing

that can be achieved given a fixed (limited) maximum pulse bandwidth

and have applied these formulas to study squeezing in two electronic tran-

sitions in Rb2: X
1Σg ! 1 1Πu and 1 1Σu! 3 1Πg (Chang et al., 2006a).
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Fig. 19 shows the evolution of the width of the wave packet relative to its

initial width. In the first transition, the potentials are very different, leading

to fast squeezing (in less iterations) but also fast spreading of the packet, lim-

iting the maximum squeezing that can be achieved. However, the 1 1Σu and

3 1Πg potentials have very similar shapes, providing an excellent example of

the capabilities of population inversion by molecular π-pulses. The process is
almost a perfect FCT where the wave packets simply breath in each poten-

tial, leading to successively maximum stretch (in the excited state) and max-

imum squeeze (in the ground state) at each iteration. Using 25 fs FWHM

pulses of 300 GW/cm2 peak intensity, one can achieve a maximum squeez-

ing of nearly 50% of the original width (Chang et al., 2005, 2006a).

The physical origin of the squeezing is caused by the phase accumulation

generated by the mismatch in the electronic forces exerted in the different

molecular potentials at different iterations. Alternatively, the squeezing

can be induced by interference between two wave packets if the pulses

imposes two different pathways, using the principles of coherent control
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Fig. 19 Wave packet breathing dynamics of the ISS in Rb2 for the X 1Σg ! 1 1Πu

transition (upper left frame) and for the 1 1Σu ! 3 1Πg (lower left frame). Dotted lines rep-
resent the analytical results in the HO approximation and solid lines give the numerical
solution of the TDSE; red lines refer to the excited state and black to the ground state.
The right frame shows the maximally stretched and squeezed wave packets in the
ISS scheme for the transitions from 1 1Πu and 1 1Σu to 3 1Πg. The numbers in the
wave packets label the iteration in the stretching–squeezing process. Adapted from
Chang, B.Y., Lee, S., Sola, I.R., Santamaria, J., 2006. Adiabatic and diabatic transformations
as physical resources for wave packet squeezing. Phys. Rev. A 73 (1), 013404. https://doi.org/
10.1103/PhysRevA.73.013404 with permission.
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(Abrashkevich et al., 1994; Averbukh and Shapiro, 1993) or it can proceed

adiabatically, by the combined Stark shift pressure of at least two pulses

with slowly increasing intensity (Chang et al., 2005), as we comment in

Section 7.2.

6.2 The Adiabatic Limit: Necessary Conditions for AP
We know that the π-pulse method, while effective in certain cases, is not in

general a robust method for population transfer. Can we apply the previous

approximations to study adiabatic passage for wave packets in molecules?

In analyzing the conditions required to reach AP, one must take into

account that under linear optics, the laser amplitudes and durations depend

on the chirp rates. In Section 8.6 we refer to the most common processes of

pulse modulation. Assuming an initial Gaussian transformed-limited pulse

(TLP) of duration τ0 and spectral width Γ0¼ 1/τ0, the spectrum is modified

by quadratic phase dispersion

EðωÞ¼E0
0 exp �ðω�ω0Þ2

2Γ2
+ iα0

ðω�ω0Þ2
2

" #
: (58)

The transformed pulse in the time domain then remains Gaussian,

EðtÞ¼E0 exp � t2

2τ2
� iω0t� iα

t2

2

� 
, (59)

and α and α0 are the linear temporal and spectral chirps, which are related.

Whereas the temporal duration depends on the chirp

τ2¼ 1

Γ2
ð1+ α0Γ4Þ, (60)

the spectral width is fixed, Γ ¼ Γ0. In addition, assuming no losses, the

chirped pulse intensity I decreases with the chirp, so that the relation

between the pulse areas of the chirped pulse S, and its parent TLP S0, is

S

S0

 Ω τ

Ω0τ0
¼

ffiffiffiffi
τ

τ0

r
, (61)

where Ω0 ¼ μE0/ħ is the peak Rabi frequency of the TLP. In a two-level

system, application of the Landau–Zener model (assuming a constant field

Ω0) gives as adiabatic criteria for AP the condition Ω2
0> 4α. Interestingly,
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the relation between the different parameters makes the AP basically

independent of the chirp (Malinovsky and Krause, 2001a),

P2� 1� exp �π
Ω2

0

2α

� �
¼ 1� exp �π

2
Ω2

0τ
2
0

	 

: (62)

However, taking into account that the pulse duration is finite, and that at

initial time the two states must be separated at least byΩ0 to start the dynam-

ics in a single dressed state, gives the additional condition τ �Ω0/α. The
main difficulty to achieve electronic population inversion remains the same

as with the π-pulses: the bandwidth of the parent transformed-limited pulse

must overlap the entire band of the absorption spectra. Because τ0 must be

very short, following Eq. (62), Ω0 must be very large, although sometimes

strong-field effects can be neglected. Population inversion by chirped pulses

has been observed experimentally in I2 and other molecules (Melinger et al.,

1991; Yakovlev et al., 1998).

In principle, to obtain analytic formulas one could use the same TDSE as

previously (Eq. 55). Now the detuningΔðR, tÞ¼V2ðRÞ�V1ðRÞ�ħωðtÞ is
both position dependent and time dependent. Modeling the frequency with

a tangent hyperbolic function (with a nearly linear chirp), one obtains the

Demkov–Kunike model (Garraway and Suominen, 1995). Solving the

two-level system for each R, and later integrating over R as before,

Paloviita et al. (1995) showed that the yields of population transfer corre-

spond well with the exact results obtained from the numerical integration

of the TDSE. Surprisingly, one can obtain population inversion with large

α and short pulses, with pulse areas not much larger than π (Cao et al., 1998).
Although the conditions are not exactly those of AP, the motion of the

wave packet actually favors the passage, even in the absence of chirping,

since as the wave packet leaves the Franck–Condon region, it decouples

the stimulated emission, so that there is no Rabi cycling for even π-pulses
unless τ0 
 τe. By chirping, however, one has other interesting control

effects on the shape of the packet that depend on the sign of the chirp.

For instance, using red-to-blue chirp, the low energy components of the

packet, with lower momentum, are excited first, and the higher energy

components, with larger momentum, later. Although during the excitation

the packet spreads, the components recombine and the packet refocuses

at a later time. The opposite occurs when one chooses a blue-to-red

chirp. This so-called molecular reflectron or molecular cannon effects

can be used to control the shape of the wave function at a later time
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(Cao and Wilson, 1997; Guhr et al., 2004; Krause et al., 1993). In addition,

the blue-to-red chirp can induce stimulated emission. As the wave packet

propagates in the excited potential, the red components of the same field

can overlap the emission spectrum inducing intrapulse stimulated Raman

scattering, ISRS (Ruhman and Kosloff, 1990) that vibrationally heats the

molecule in the ground potential (Malinovsky and Tannor, 1997). Both sit-

uations are sketched in Fig. 20. On the other hand, one can operate in the

opposite limit. If the bandwidth of the TLP is smaller than the energy spac-

ing, then the excitation can be state-selective (Malinovsky and Krause,

2001a). But even if that condition does not hold, depending on the sign

of the chirp one can select the highest/lowest vibrational level of the man-

ifold (Chang et al., 2003a).

Although we have considered here only electronic population transfer

by AP, chirped pulses have been proposed and used for many other purposes

in molecules. In particular, a single infrared pulse can be used to induce

vibrational ladder climbing (Chelkowski et al., 1990; Falvo et al., 2013;

Gu�erin, 1997; Hess et al., 2000; Maas et al., 1998; Witte et al., 2003) and

a pair of optical pulses can extend the ladder climbing by a Raman process

(Chang et al., 2001a,b; Chelkowski and Bandrauk, 1997; Chelkowski and

Gibson, 1995; Davis and Warren, 1999). Using two or more pulses it is

possible to achieve AP with a sequence of transformed-limited pulses, as

in the STIRAP scheme and its extensions. We reviewed some results of

STIRAP in level systems in Section 4. Its applications to molecules with

strong fields are the subject of the following section.

V2

V1

A

V2

V1

ω (t)
ω (t)

B

Fig. 20 Sketch of an adiabatic electronic transition with (A) blue-to-red chirp; (B) red-
to-blue chirp, leading to spreading or focusing of the wave packet, and intrapulse stim-
ulated Raman scattering.
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7. STRONG FIELD SOLUTIONS: DYNAMICS
IN LIGHT-INDUCED POTENTIALS

In N-level Hamiltonians, when adiabatic conditions apply (for long

and strong pulses) it is usually simpler to follow the dynamics in the dressed

states. The same idea can be extended to wave packet dynamics, where now

the instantaneous adiabatic potentials are called light-induced potentials or

LIPs (Bandrauk and Sink, 1981; Yuan and George, 1978).

To explain the different features of strong-field dynamics we use the

Hamiltonian of Eq. (53) but add polarizability terms to account for nonlinear

laser effects, such that the effective Hamiltonian is

H¼ T K

K T

� �
+

V1ðRÞ�1

4
α11ðRÞE2ðtÞ �1

2
μ12ðRÞEðtÞ

�1

2
μ12ðRÞEðtÞ V2ðRÞ�ħωðtÞ�1

4
α22ðRÞE2ðtÞ

0
B@

1
CA:

(63)

In Eq. (63) we have assumed that the field may be resonant or quasi-resonant

between the two electronic states, coupled via the dipole moment μ12, and
nonresonant with respect to the remaining states of the molecule. The effect

of the remaining states on the two selected states is described in terms of

the quasi-polarizabilities (α11 and α22) up to the next leading order in the

field, E2.

The description of the strong-field effects is based on clarifying the rela-

tion between certain topological features of the LIPs and the quantum pro-

cesses they conveyed in the molecular potentials. We consider two different

regimes depending on whether the effect of the laser on the potentials

renders a “soft” or “hard” shaping. The first one is characterized by the lack

of a resonant or quasi-resonant excitation so that the off-diagonal terms are

negligible. Then the initially populated LIP can be written as

Va
1 ðR,EÞ�V1ðRÞ�1

4
α11ðRÞE2ðtÞ,

in which α is the dynamic polarizability. In some cases the polarizability

is dominated by a single electronic state, closer in energy to V1ðRÞ+ ħω.
In other cases, the frequency is much smaller (e.g., an infrared laser or an

electric pulse) and the static polarizability can be used instead. Unless

α11(R) changes drastically around the equilibrium geometry of V1(R), the
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topological changes in V1(R) induced by the field will be small, hence the

“soft” character of the shaping. The control is mainly exerted by E(t), induc-

ing energy variations (Stark shifts) of the potential. It is often the case that the

ground LIP is very similar to the ground molecular potential, except at long

internuclear distances, where the energies of V1ðRÞ+ ħω and V2(R) lie

closer, inducing bond softening in Va
1 ðRÞ (Allendorf and Sz€oke, 1991;

Bucksbaum et al., 1990; Giusti-Suzor et al., 1995; Jolicard and Atabek,

1992; Yang et al., 1991; Zavriyev et al., 1990). The corresponding effect

in the excited state is more dramatic, specially if V2 is dissociative or weakly

bound. Then the coupling induces bond hardening or vibrational stabiliza-

tion (Aubanel et al., 1993a,b; Giusti-Suzor and Mies, 1992; Yao and Chu,

1992; Zavriyev et al., 1993).

On the other hand, when the interaction is quasi-resonant, as a first

approximation one can neglect the polarizability and concentrate on the

two crossing potentials. The LIPs are obtained by diagonalizing the potential

energy operator, including the field coupling. They are the instantaneous

eingenstates of the electronic Hamiltonian. Applying the rotation matrix

cosθðR;EÞ sinθðR;EÞ
� sinθðR;EÞ cosθðR;EÞ

� �
,

where θ(R;E) is the rotation or mixing angle that diagonalizes the matrix,

we obtain

HDS¼ T K0

K0 T

� �
+

Va
1 ðR;EÞ i _θ cos2θ

�i _θ cos2θ Va
2 ðR;EÞ

� �
: (64)

The off-diagonal terms in the kinetic operator, K0, are often referred to as

spatial nonadiabatic terms, while those in the potential operator are dynamical

nonadiabatic terms. They depend on the time-derivative in the mixing

angle, _θ, which reflects the time-variation of the field, _EðtÞ (Chang et al.,

2001c). When the pulses are strong and their time evolution is slow (com-

pared to the motion of the nuclear wave functions) the off-diagonal terms

can be neglected. Then, if initially V1(R) correlates to a single LIP,

Va
1 ðR;Eð0ÞÞ, all the dynamics will occur in this LIP and the final electronic

state as well as all the properties of the system during all times will solely

depend on Va
1 ðR;EðtÞÞ. In order to characterize the LIP we need to know

the structure of the strongly coupled electronic potentials, V1 and V2. It is

most important to localize the light-induced avoided crossing (LIAC) Rc,

defined by the condition
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ΔðRc, tÞ¼V2ðRcÞ�V1ðRcÞ�ħωðtÞ¼ 0: (65)

The populated LIP can be expressed as a function of the original molecular

potentials, as

Va
1 ðR,EÞ¼ cosθðR,EÞV1ðRÞ+ sinθðR,EÞV2ðRÞ, (66)

where the mixing angle θ changes from 0 to π/2 at both sides of Rc. The

LIAC changes the character of the electronic states: Va
1 ðRÞ looks like

V1(R< Rc) before the crossing and V2(R> Rc) after it. Through the LIAC,

the nuclear wave packet can transfer part of the population. It operates in

analogous way to a molecular (beyond Born–Oppenheimer-like) internal

conversion, induced by K. In the adiabatic limit, which requires a large

energy gap between the LIPs around the LIAC and slow changes in the pulse

envelope E(t), the population in the initial electronic state is given by

cos2θðR,EÞ, while the population in the other coupled electronic state is

given by sin2θðR,EÞ. Therefore, the motion of a nuclear wave packet across

Rc in Va
1 ðR,EÞ represents full population transfer from V1 to V2.

7.1 Population Transfer
We will now briefly mention some features of population transfer analyzed

from the perspective of LIPs. As noticed, one of the most important steps in

the design of laser control schemes is to localize the LIAC of the LIP, as this

topological point is an indication of possible population inversion. In order

to fully transfer the population from V1 to V2 one needs to modulate θ via

the control field E(t). However, depending on the structure of the LIP and

the initial kinetic energy, the nuclear wave function will be able or not to

cross the region of the potential that correlates with V2. In the most simple

cases, as e.g., in population transfer from a bound to a dissociating electronic

state, a chirped pulse where the pulse frequency ω(t) sweeps through

the Franck–Condon region is often enough to allow the mixing angle

θ(R, E) to change from 0 to π/2 for all values of R where the wave packet

is located. In other cases, one needs to find a more difficult adiabatic path

that connects V1 to V2 via the LIP, requiring a more elaborate trajectory

of θ(R, E). Typically, when the equilibrium geometries of V1 and V2 are

very separated and the energy gap between the LIPs at the LIAC is large,

one needs to find additional electronic states that allow to modulate the

LIP from V1 to V2 adiabatically. Garraway and Suominen (1998) proposed

the first scheme of adiabatic passage by light-induced potentials or APLIP.

In APLIP, the AP is possible by using two control pulses: E1(t) that

couples V1 to an intermediate electronic state Vb, and E2(t) that couples
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Vb to V2. For instance, consider that we want to invert the population in

Na2 from the ground X1Σ+
g state (V1) to a second excited 21Πg state

(V2), using a resonant two-photon transition through the intermediate

A1Σ+
u state (Vb), whose equilibrium geometry lies in between that of

the initial and the final state (although this is not an essential requirement

for the intermediate state, it typically reduces the pulse intensities needed

for the APLIP scheme). Garraway and Suominen (1998) showed that

a counterintuitive pulse sequence with ES(t) preceding Ep(t) could lead to

full population inversion without populating the intermediate state at all.

This is possible because such pulse sequence prepares a LIP, Va
d ðR, tÞ¼

cosθV1ðRÞ� sinθV2ðRÞ, that has no contribution from Vb. If the popula-

tion transfer is fully adiabatic, there is no internal barrier in the adiabatic

pathway at the bottom of the LIP connecting the initial equilibrium geom-

etry corresponding toV1 to the final equilibrium geometry corresponding to

V2, as shown in the LIP of Fig. 21.

Fig. 21 Light-induced potential responsible for the APLIP process. Adapted from
Garraway, B.M., Suominen, K.A., 1998. Adiabatic passage by light-induced potentials in
molecules. Phys. Rev. Lett. 80 (5), 932–935. https://doi.org/10.1103/PhysRevLett.80.932
with permission.
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Under these circumstances the transfer preserves the form of the nuclear

wave function. In particular, the dynamics conserves the vibrational quanta.

The dynamics in APLIP holds several similarities with that of STIRAP but

using stronger fields. The advantage of APLIP is its universality and

“apparent” robustness (or robustness under ideal conditions).

The application of STIRAP to molecular system poses problems derived

from the need to privilege a single dressed state from the multiply allowed

couplings between the vibrational states ofV1 andVb and those ofVb andV2.

One needs to find a proper “bridge vibrational state,” ϕðBÞ
v , with strong and

relatively similar couplings with the initial ϕð1Þ
0 and target ϕð2Þ

t vibrational

states. Depending on the geometry of the potentials, this may pose a prob-

lem. Malinovsky et al. (2003) illustrated this point comparing how STIRAP

and APLIP perform for selecting the ground vibrational state of two different

final electronic states in Na2, the B
1Πg state (in short VB) and the C

1Σg state

(VC), from the initial state X 1Σg (VX) and through an intermediate A 1Σu

potential, VA, that allows the two-photon process. We call these the

XAB and XAC systems, as depicted in Fig. 22. In the XAB system, the equi-

librium bond distance is more relaxed in VB than in VA, so one can find a

good bridge state (v¼ 10) with comparatively large Franck–Condon factors

(C,0)

(B,0)

non-FC

FC

(X,0)

C

B1Πg

A1Σu

X1Σg

1Σg

Fig. 22 Na2 potentials considered for population transfer from the initial to two possible
target wave functions, defining the so-called XAB and XAC systems. Adapted from
Malinovsky, V.S., Santamaria, J., Sola, I.R., 2003. Controlling nonfranckcondon transitions:
counterintuitive schemes of population transfer in the adiabatic and strong adiabatic
regimes. J. Phys. Chem. A 107 (40), 8259–8270. ISSN 1089-5639. https://doi.org/10.1021/
jp0226477 with permission.

200 Ignacio R. Sola et al.

https://doi.org/10.1021/jp0226477
https://doi.org/10.1021/jp0226477


(FCC) for both vibrationally selective electronic transitions, ϕðXÞ
0 !ϕðAÞ

10

and ϕðAÞ
10 !ϕðBÞ

0 .

On the other hand, because VC is similar to VA while the equilibrium

geometry of VA is displaced to larger bond distances than in VX, the

FCC from ϕðXÞ
0 favor large v for the bridge state, while the FCC from

ϕðCÞ
0 favor small v� 0 for the bridge state. The best compromise is to choose

v ¼ 2, with comparatively small FCC for both transitions. Worse, the FCC

with adjacent vibrational levels (with smaller v for the first electronic

transition, and larger v for the second) are larger and typically have different

signs. This induces destructive interference of possible parallel adiabatic

transitions through different bridge states (Sola and Malinovsky, 2003), so

that STIRAP is only possible with very long (and hence weaker) pulses,

as Fig. 23 shows.

In contrast, working in nonresonant conditions, APLIP constructively

uses all possible adiabatic routes linking all bridge states (Sola and

Malinovsky, 2003) so that the adiabatic passage is possible for any interme-

diate and final electronic state, as shown in Fig. 23. As the wave packet

moves from VX to VB or VC the system uses the most convenient set of

bridge states, so in the vibrational basis one first observes Raman Stokes

transitions in V1 and anti-Stokes Raman transitions in V2 before the target

vibrational state is selected. In addition, the target state is chosen even in

nonresonant two-photon conditions, by adiabatic following, as shown

in Fig. 24.

One problem of APLIP is the need of very strong laser pulses, such that

the RWA assumptions breakdown. Both nonresonant adiabatic passage

routes, V1!ω1 Vb!ω2 V2 implying blue-shift from the A band and

V1!ω2 Vb!ω1 V2 implying red-shift from the A band, contribute to the

passage, but while the first one leads to V2, the second one implies popula-

tion return to V1 (Sola et al., 2000a). Fig. 24 reveals how without the RWA

the robustness of the results is weakened.

With different properties, other APLIP pulse sequences allow full adia-

batic passage (Malinovsky et al., 2003; Sola et al., 2000a) and the scheme can

be extended to multiphoton passage involving an even number of pulses

(Suominen, 2014) or can be aided by chirping the pulses (Band and

Magnes, 1994; Chang et al., 2000; Kallush and Band, 2000). Shorter pulses

with durations of the order of 100 fs can be used as well, at the expense of

giving up on the selection of a single vibrational state. However, by starting

the dynamics on an optimized wave packet in the ground state, one can
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regain the selectivity and achieve higher yields with weaker pulses

(Sampedro et al., 2016b). However, the main problem remains in avoiding

other multiphoton transitions to higher excited states and ionization. These

problems have not allowed yet the experimental verification of APLIP. To

break through, it is important to design simpler APLIP protocols.

Recently, Sampedro et al. (2016a) proposed an APLIP process that can

be achieved using a single nonresonant pulse, called the nonresonant elec-

tronic transition through light-induced potentials or NETLIP scheme. In

this case the electric field must create a different Stark effect on two different

parts of the potential energy surface, generating an effective LIP that will
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Fig. 23 Efficiency and selectivity of the two-photon transfer as a function of the field
amplitude, for different pulse timewidths and different target states. The curvewith open
circles represents the population at final time on the target electronic state for the reso-
nant STIRAP transition, the light gray shaded curve gives the population on the target
vibrational state. The time-averagedpopulationon the intermediate electronic state, hPAi,
is given by the dot-dashed curve in logarithmic scale at the right side of the plot. In the top
row we show the results for the XAB system, and in the bottom row the results for the
XAC system. From left to right the time widths of the pulses change as σ ¼ 6 (A,B panels),
1.5 (C,D panels), and 0.6 ps (E,F panels). Adapted from Malinovsky, V.S., Santamaria, J.,
Sola, I.R., 2003. Controlling nonfranckcondon transitions: counterintuitive schemes of popu-
lation transfer in the adiabatic and strong adiabatic regimes. J. Phys. Chem. A 107 (40),
8259–8270. ISSN 1089-5639. https://doi.org/10.1021/jp0226477 with permission.
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allow the system to oscillate between the two coupled states. The necessary

asymmetry can also be induced by an antisymmetric transition dipole. How-

ever, the transition cannot be adiabatic in the nuclear motion. If the pulse is

switched on slowly the wave packet will adiabatically shift from the

Fig. 24 Final populations in the target electronic state and in its ground vibrational
level, as a function of the pulse amplitude E0 (A), the one-photon detuning
Δ¼ VXðR0Þ+ ħω�VAðR0 (B) and the two-photon detuning δ¼ VC �VX �ħðω1 +ω2Þ
(C). The solid line is the final electronic population in the target electronic state and
the dashed line the time-averaged population in the intermediate electronic state (scale
at the right side), calculated using the RWA. Empty and solid squares give the final
populations in the electronic state and its ground vibrational level, respectively, for a
calculation without the RWA. Adapted from Sola, I.R., Santamaria, J., Malinovsky, V.S.,
2000b. Efficiency and robustness of adiabatic passage by light-induced potentials. Phys.
Rev. A 61 (4), 043413. https://doi.org/10.1103/PhysRevA.61.043413 with permission.
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equilibrium geometry of V1 to that of V2, only to revert the transition when

the pulse is switched off.

Fig. 25 reveals such effect for the simplest system formed by two har-

monic oscillators, V1 and V2, coupled by a field. In the first case

(Fig. 25A) the excited state was chosen exactly as the ground state but shifted

to a new equilibrium geometry,R1�R0¼ δ, where δ¼ 2a0 (approximately

the displacement of the equilibrium geometries of the ground and first

excited electronic states of Na2). and the transition dipole was assumed con-

stant. As we are not exciting at the Franck–Condon region, the transition

from V1 to V2 is hindered by an energy barrier Vb that the nuclear wave

packet, initially in V1, must overcome. For sufficiently strong fields this

barrier is absent in the LIPs, U1 and U2, so the packet can move from small

values of R, correlating with the V1 state, to large values or R, correlating

with V2.

The NETLIP scheme works as long as the equilibrium geometries of

the electronic potentials are separated. On the other hand, if δ is smaller than

the characteristic extension of the initial nuclear wave function (that is, the
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Fig. 25 Electronic potentials and LIPs generated by a strong-field slightly off-resonant
from the absorption band. In (A) the equilibrium geometries are more separated than in
(B), so that the ground state wave function (shown) overlaps excited state configura-
tions in the latter case. In (B) the LIPs are calculated when the transition dipole depends
linearly with R. Adapted from Sampedro, P., Chang, B.Y., Sola, I.R., 2016a. Nonresonant
electronic transitions induced by vibrational motion in light-induced potentials. Phys.
Chem. Chem. Phys. 18 (36), 25265–25270. ISSN 1463-9076. https://doi.org/10.1039/
C6CP04761K with permission.
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region where the probability density cannot be neglected), then part of this

wave function correlates withU1 in the adiabatic representation (for R< 0),

and part of it with U2 (for R > 0). Under a strong field we generate a

wave packet in two LIPs with no internal barriers, leading to interference

and electronic beatings, but a coordinate-dependent transition dipole can

compensate this effect. In Fig. 25B the LIPs for δ ¼ 1a0 and linear dipole,

μ¼ a + bR (a¼ 3.79 a.u.; b¼ 0.257 a.u., the parameters chosen to approx-

imate the true dipole in Na2), are shown. The effect of the dipole is to sep-

arate the equilibrium geometries of the LIPs, allowing to prepare the initial

wave function in a single LIP. The gradient of the dipole decides the shape of

the LIPs. If b is positive, then the interaction energy due to the coupling with

the field, bRE, is larger in V2(δ) than in V1(�δ) and grows with the inter-

nuclear distance. Hence the Stark shift is larger in the former and the LIPU1

will move the packet toward V2. On the other hand, if the gradient of the

dipole has opposite sign, μ0 ¼ a� bR, then the interaction energy would be

larger inV1(�δ) than inV2(δ) and the equilibrium geometry ofU1 would sit

nearV1. In this case the wave packet remains relatively trapped at the ground

electronic state, the trapping increasing with the pulse intensity.

Fig. 26 shows the application of the NETLIP scheme to adiabatic passage

of the molecular wave packet from the ground state X 1Σg to the first excited

state A 1Σu in Na2 using 689 nm pulses (slightly below the A band peak). The

absorption yield is shown as a function of the pulse duration τ (FWHM), for

different pulse intensities. The dependence of the yield with τ follows from
the vibrational motion of the wave packet in the LIP. The right panels show
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the time evolution of the square of the wave packet for two pulse durations:

75 fs (within the maximum absorption band) and 150 fs (within the popu-

lation return conditions, with no net photon absorption) using a pulse of

0.27 GV/m peak amplitude. In principle, the NETLIP process can be

extended to anymultiphoton process with odd number of pulses and the ion-

ization can be used to monitor the dynamics in the LIP.

The control of population transfer with strong pulses is the doorway of

most strategies to control many observables or quantum processes in excited

states, as shown in sections 7.2 and 7.3

7.2 Controlling Geometries and Charges
It is well known that intense off-resonant lasers can induce important

changes in the geometry of the molecule, which can be most straight-

forwardly explained in terms of LIPs. By coupling the ground potential

V1 to a dissociative (or loosely bound) excited electronic state V2 with a

strong field, the ground state attains some character of the continuum,

exhibiting bond softening, while the continuum attains some character of

the bond state, exhibiting bond hardening or vibrational trapping. The

molecular geometry is fully characterized by the LIP. Typically, the

rearrangement of charges and changes in the geometry are small in the gro-

und state (and even smaller near its equilibrium bond length), and have been

characterized using analytical models by Thomas and Henriksen (2016).

A large control over the bond distance can only be attained in the excited

state, particularly ifV2 is dissociative. The laser adiabatic manipulation of the

bond or LAMB process is the laser protocol that must be found to adiabat-

ically transfer the wave function from the ground potential to the desired

LIP, while the laser that creates the LIP remains switched on.

A slightly modified APLIP procedure (where the second pulse, E2(t),

must remain switched on at the end of the dynamics) can be used for LAMB

(Chang et al., 2003a). Simpler LAMB implementations are possible whenV2

is coupled directly to the initial state and Vb (now called V3) is used to dress

V2 (Chang et al., 2003b, 2004). Then it is even possible to use a single pulse

responsible both for the transfer and the dressing of the final potentials

(Chang et al., 2010).

Fig. 27 outlines both two-pulse as well as one-pulse scenarios. In the first

case the LAMB process implies the following mechanism: Initially E2(t) is

switched on, with an off-resonant frequency that prepares Va
2 with an LIAC

between V3 and V2 at the desired bond length. Then, while E2(t) ¼ E0
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remains constant, another pulse, E1(t), moves all the population from V1 to

V2, which in the presence of E0 is V
a
2 . This electronic absorption can pro-

ceed rapidly, using an ultrashort transform-limited pulse that generates a

nuclear wave packet moving in the LIP, as in a Franck–Condon transition

(Chang et al., 2013). Or it can be quasi-static, using a chirped pulse, in which

we talk of an adiabatic transfer (Chang et al., 2010). In both cases full pop-

ulation inversion requires pulse bandwidths Δω1, at least as large as the

absorption band, ΔFC. In fact, in the quasi-static case, the chirp typically

needs to span an even larger bandwidth. Fig. 27A and B shows how the

shape of Va
2 is influenced by the choice of ω2, blue-shifted or red-shifted

with respect to the V2!V3 transition. In the first case there is properly

an LIAC and the bond length inVa
2 is better defined. In the second case there

is no proper LIAC and the control is mostly done by Stark effect. Then the

LIP is much flatter and it is more difficult to achieve adiabatic population

transfer.

On the other hand, it is possible to use a single chirped pulse, E(t),

responsible for both roles: the adiabatic transfer and the formation of the

LIP. The basic mechanism is explained in Fig. 27C and D. At initial times

ω(0) must be blue-shifted from the absorption spectrum to the dissociative
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state Ve. Slowly sweeping through the photodissociation band the popula-

tion is transferred in a quasi-static way, with the wave packet always located

at the bottom of the LIP. Then the chirp must sweep through all the emis-

sion spectra. The final value of the frequency, ω0, defines the LIAC and the

bond length (Chang et al., 2010).

In comparison with an FCT process a typical LAMB process requires

10–100 more energy (integrated pulse amplitude or peak amplitude times

duration) from the pulses. The extra energy is mainly used to deform the

potential. This pays off in the fact that the molecular properties associated

to the wave packet dynamics are entirely governed by the field parameters.

In particular, any trajectory in the “chirp function” ω(t) entails different
excursions of the average internuclear distance or bond length (Chang

et al., 2017b). Then any time-symmetric function ω(t) induces fully revers-
ible bond elongations that mimic a single period of a classical molecular

vibration, with both the amplitude and frequency of the vibration being

externally controlled (Chang et al., 2010, 2011). If ω(t) is periodic, the
inverse of its period will be the “frequency” of this LIP-supported vibration

(Sola et al., 2011). Relaxing the adiabaticity of the transfer gives some kinetic

energy to the vibrational wave packet, which ends vibrating around the

equilibrium distance of the LIP (Chang et al., 2012, 2013). Sometimes some

laser protocols can be proposed to “absorb” the kinetic energy excess and

stop the packet using asymmetric pulses (Sola, 2004).

Although most LIPs are wider than the ground electronic state (as they

add the character of weakly bounded excited potentials) it is possible to cre-

ate LIPs that lead tomolecular squeezing, when at least three electronic states

are coupled. Then, a LIP is formed between the attractive barrier of the

excited potential and the repulsive barrier of the ground potential (Chang

et al., 2005). As Fig. 28A shows, even when the LIP is formed by two wider

electronic states (and in the example of Fig. 28 the excited 1 1Πg potential of

Na2 is very flat) the resulting LIP, Us, has a narrower well. By adiabatically

moving the wave packet to Us by a slightly modified APLIP procedure

(Chang et al., 2006b) one can achieve
10% squeezing comparing the width

of the packet with that of the ground vibrational state.

Instead of adiabatically squeezing the wave packet in a narrower LIP, one

can more easily stretch it on a wider LIP, and then transfer it back to V1

where it will dynamically squeeze, as shown in Fig. 28B. This is possible

using asymmetric pulses, with slowly increasing heads leading to the adia-

batic part of the transformation, and sudden trails, that release the packet
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to its original potential diabatically, without reshaping the packet. Using

such a procedure (Chang et al., 2006a,b) nearly 
40% squeezing can be

achieved. The advantage of the adiabatic squeezing is that the packet is fro-

zen while the pulses act, and one has some degree of control over both the

position and width of the packet at the desired time.

The main problem in using strong nonresonant pulses is ionization.

Short wavelength pulses induce molecular ionization by multiphoton

absorption, but the hurdle is not solved using long wavelength pulses

because of tunneling ionization (Lewenstein et al., 1994). The external field

E(t) times the dipole breaks the local symmetry of the Coulomb potentialVC,

and VC � qzE(t) (where q is the electron charge and z the coordinate along

the field’s polarization) induces the motion of the electron along the field.

For strong enough fields the electron can ionize both above or below

the internal barrier, particularly at large internuclear distances (Seideman

et al., 1995). However, in molecules with large ionization potentials
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Fig. 28 Sketches of the adiabatic squeezing scheme formed at a narrower LIP,Us (A) and
of the asymmetric adiabatic–diabatic squeezing scheme (B) formed by preparing a
wave packet in the wider Uw LIP and suddenly releasing the packet back to the ground
state, showing the wave packets calculated by solving the TDSE in Na2. Adapted from
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(or, e.g., molecular cations) one can still use strong fields to guide the

charges avoiding tunneling ionization. As Fig. 29 shows for a model of

the Hydrogen molecular cation H+
2 using soft-core Coulomb potentials

(Chang et al., 2015a), the electron follows the field (hz(t)i is anticorrelated
with the pulse amplitude) generating an oscillating dipole (a molecular

antenna) as it shifts from one proton to the other. The effect of the vibra-

tional motion of the molecule is a small modulation on the amplitude of the

dipole. When the molecule is stretched the amplitude of the electron’s

motion is wider. Since the (slow) nuclear motion is constrained in the gro-

und LIP the charge is barely displaced.

In order to create large dipoles, it is first necessary to move the wave

packet to the excited LIP, where the bond is quite stretched, and in addition,

it is necessary to correlate the electronic and nuclear motions. In a LAMB

process, the total wave function of the system is a coherent superposition of

both nuclear and electronic wave functions (Chang et al., 2010),

ΨðR,q, tÞ¼ϕgðR, tÞΞgðq;RÞ+ϕeðR, tÞΞeðq;RÞ: (67)
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Fig. 29 (A) Average electron position hzi and internuclear distance hRi using (A) an
ultrashort 800 nm pulse and (B) a longer 400 nm pulse. The electron position is anti-
correlated with the amplitude of the electric field of the Gaussian pulse, shown in
the dashed line (right side). The additional slower modulation in hzi is due to the vibra-
tional motion. Right panel: Sketch of the mechanism for the creation of the dipole using
a strong nonresonant pulse starting in the ground state. In (C) we show the LIPs.
The vibrational motion of the nuclear wave packet in the ground LIP is mostly
constrained. In (D) we show snapshots of the electronic wave function, periodically
oscillating with the field. At short internuclear distances the wave function lies in
between both protons, while at larger internuclear distances it is mainly localized in
one proton, leading to a small modulation of the dipole amplitude with the vibrational
motion.
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However, in adiabatic conditions, the nuclear wave packet inVg andVe have

the same shape, ϕgðR, tÞ∝ϕeðR, tÞ∝ϕaðR, tÞ, so one can write

ΨðR,q, tÞ¼ϕaðR, tÞ agðtÞΞgðq;RÞ+ aeðtÞΞeðq;RÞ
� �¼ϕaðR, tÞΞaðq, t;RÞ, (68)

where Ξa(q, t;R) is the dressed electronic wave function (from which one

calculates the LIP). The total wave function is thus separable and not

an entangled state of nuclear and electronic states. Since the total wave

function in the LIP is a single Born–Oppenheimer product, there is per-

fect correlation between the electronic and nuclear motion. Notice that

the changes of the electronic wave function are externally controlled:

they do not rely on dynamical phases as in superpositions of different

electronic states. Adiabaticity is required for the single product wave func-

tion to faithfully represent the dynamics, so the changes in the LIP must

be slower than the typical timescale of the nuclear dynamics. The perfect

correlation of electronic and nuclear motion in the LIP is only possible

when the electron dynamics occurs in the timescale of the nuclear

dynamics.

Fig. 30 shows the results of the dynamics using DC fields (i.e., in the limit

of zero frequency).The LIPs are in this case more properly named FIPs, from

field-induced potentials. Now the electron motion is clearly correlated to

the nuclear motion in the excited FIP, which shows bond hardening. In

the excited state, the electron moves with the proton against the gradient

of the field. The transient dipole increases with distance and it is possible

to stabilize the molecule at very large bond lengths, up to
40 a.u., creating

huge molecular dipoles that oscillate in the far infrared, from 3 to 40 THz

approximately.

It is possible to use low frequency laser pulses instead of constant fields,

but then the pulses must meet very specific conditions (Chang et al., 2015a).

In particular, the frequency must be approximately equal to the frequency of

the vibrational motion in the LIP. Otherwise, the correlation between the

motion of the electron driven by the field, and that of the protons, oscillating

in the potential, is not perfect. The electron must move with one proton as

the bond stretches, and hop to the other proton as the bond compresses and

the phase of the field changes. It is crucial that the bond is maximally com-

pressed when the amplitude of the oscillating electric field is zero as other-

wise the electron cannot hop from one proton to the other, leading to

dissociation (Chang et al., 2015a).
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7.3 Control of Photophysical and Photochemical Processes
The LIPs are excited potential energy surfaces externally manipulated, offer-

ing ample possibilities to control chemical reactions that follow different

energy landscapes. Recently, several experiments using strong nonresonant

fields have revitalized the field of quantum control (Corrales et al., 2014,

2017; Kim et al., 2012; Sussman et al., 2006). However, the excited state

dynamics of polyatomic molecules is dominated by nonadiabatic crossings

and intramolecular couplings, with no dipole-allowed transitions, that open

many deactivation pathways by internal conversion or intersystem crossing.

There is empirical evidence that even in this scenario, the strong pulses are

able to optimally drive the dynamics to the desired target or doorways states.

Therefore, it is of great interest to design schemes from first principles that

can be used to manipulate and control the nonadiabatic transitions and

which may allow to interpret current experiments or implement new con-

trol strategies of chemical reactions on LIPs.

Focusing again in the effective Hamiltonian of Eq. (63), we consider the

case where V1 and V2 are close enough in energy (at least for certain geom-

etries that the wave function visits) that the nonadiabatic couplingK induces
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unwanted transitions. Our goal is to use an external field to decouples such

transition. González-Vázquez and coworkers developed a scheme that allows

the control over the spin–orbit transition (Gonzalez-Vazquez et al., 2006b,c,
2007; Sola et al., 2006). They first considered the case where V1 is a singlet

state (typically the first excited one), S1, and V2 a nearby triplet state, T1, and

K¼VSO is strong enough that the singlet–triplet transition is on the timescale

of the vibrational motion, as in Rb2.

Fig. 31 shows the potential energy curves around the first excited singlet

and lowest triplet in Rb2, calculated in the diabatic representation, not

including the singlet–triplet coupling VSO. S1 crosses with T1 and the
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in S1 and T1 around the crossing. The coupling, VSO, is large enough to involve several
vibrational levels in T1. (C) Effect of a strong 1.7 TW/cm2, 5500 cm�1 nonresonant field
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Gonzalez-Vazquez, J., Sola, I.R., Santamaria, J., Malinovsky, V.S., 2006c. Quantum control
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coupling is strong enough that involves several vibrational levels. The

dynamics in the absence of any control field, shown in Fig. 32A involves

spin switching between the singlet and triplet states. Can one stop such

transition and remain in pure spin states, such as S1? Because singlet–triplet
transitions are dipole forbidden, the control can only be exerted indirectly,

through the Stark shifts. Hence we are in a situation where Eq. (63)

simplifies to

H¼ T+VS1 � 1

4
αSðRÞE2ðtÞ VSO

VSO T+VT1
� 1

4
αTðRÞE2ðtÞ

 !
, (69)

where αS and αT are the polarizabilities of the singlet and triplet states,

respectively. When they differ, the energy difference between the dressed
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potentials at a certain R (where the packet is located), can be controlled

by the field

δðEÞ¼ δð0Þ+ 1

4
αS�αTð ÞE2: (70)

Making δ(E) > VSO one can effectively decouple the transition. The

dynamical polarizabilities are usually different because the structure of the

singlets and triplets is not symmetric. In particular, in most closed-shell mol-

ecules there is always a ground singlet below S1 and no triplet below T1 so

that the Stark effects will never be the same, even if the frequency of the

pulse is not fine-tuned (and we can even used the static polarizabilities). Fol-

lowing the previous nomenclature this is a case of soft-shaping of the LIPs.

Fig. 31C shows the resulting LIPs using an infrared pulse of 5500 cm�1 wave

numbers and 1.7 TW/cm2 intensity. While the pulse is on, the populations

(and spin state) remain locked, as shown in Fig. 32B. The results depend on

the choice of frequency and are sensitive to the model employed to calculate

the spin–orbit coupling (Gonzalez-Vazquez et al., 2006b). Even more inter-

estingly, one can use Eq. (70) to remove a detuning when the potentials are

separated, inducing a vibrational-state selective spin switch (Gonzalez-

Vazquez et al., 2007; Sola et al., 2006). Or, as shown in Fig. 32C the field

can be used to smooth out the nonadiabatic transitions between the poten-

tials. The main problem remains to avoid the ionization. It turns out that the

control is most effective when the spin–orbit coupling is weak (Falge et al.,

2012b, 2014).

A similar strategy can be used to control other photophysical processes, as

internal conversion. Gonzalez-Vazquez et al. (2009) studied a one-

dimensional model of 1,1-difluoroethylene, H2C¼CF2. In the ground state

(theN state) the equilibrium geometry is planar and the double bond hinders

the molecular torsion τ, so the potential energy surface has a high internal

barrier. However, in the first electronic state (the V state) the double bond

has antibonding character, so the torsion is allowed and the most stable form

has the two Hydrogens perpendicular to the C¼CF2 plane. Hence, under

torsion in the excited state theN andV states are degenerate, allowing the fast

de-excitation from V by internal conversion. In a one-dimensional model,

beyond the Born–Oppenheimer approximation, the effect of the nuclear

momentum in the torsional mode lifts the energies generating the avoided

crossing (AC), but as a wave packet in V originally at the Franck–Condon
region (the planar geometry, τ ¼ 0) moves to the perpendicular configura-

tion some population decays to the ground state, as shown in Fig. 33.
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Considering all nuclear degrees of freedom there is no single degeneracy point

in the full-dimensional potential energy surface, but a funnel (a surface in the

N � 1 dimensions) that remains when we include the effect of the nuclear

momentum. These are quite generic effects in complex molecules.

An interesting difference with respect to other nonadiabatic couplings

(like the spin–orbit) is that the transition between the two electronic states

can be dipole allowed, except at the geometry of the AC. This opens

new strategies to control the population transfer by hard shaping of the

LIPs, instead of soft-shaping. In particular, by using a slightly off-resonant
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laser at the Franck–Condon region one can create an excited LIP that

presents a strong LIAC that hinders the torsional relaxation. As the wave

packet cannot move to the AC, even in the excited state (or rather the

coherent superposition formed by the N and V configurations) the mole-

cule remains in the planar geometry, effectively decoupling the internal

conversion.

Interestingly, taking into account the vectorial properties of the laser (the

orientation with respect to the molecular’s dipole) an LIAC has the proper-

ties of a light-induced conical intersection or LICI, that is, the coupling is

zero for some orientations. Therefore, even in the presence of a strong field

all control mechanisms based on hard shaping have some deactivation pro-

cesses unless the molecules are first aligned with the laser polarization. There

has been great interest recently in characterizing the properties of LICIs

(Csehi et al., 2017; Demekhin and Cederbaum, 2013; Halász et al.,

2012a,b, 2013a,b, 2014, 2015; Moiseyev et al., 2008; Sindelka et al.,

2011), in particular, if it presents a true geometrical phase, as a CI. Other

mechanisms to control the wave packet motion around conical intersections

have been proposed, some based on interference processes involving

vibronic states (Sukharev and Seideman, 2004) or using optimal control the-

ory (Abe et al., 2005; Geppert and de Vivie-Riedle, 2005). The opposite

goal of using strong lasers to accelerate the internal conversion, acting on

the wave packet’s momentum, was also developed (Gonzalez-Vazquez

et al., 2009; Tamura et al., 2006), so full control over internal conversion

is in principle possible, paving the way to the control of isomerization reac-

tions mediated through conical intersections or LICIs. Bucksbaum and

coworkers (Kim et al., 2012) recently reported the first experimental evi-

dence in the control of the photoisomerization of 1,3-cyclohexadiene by

creating LICIs that manipulate the ring opening of the molecule.

Strong nonresonant fields can also be used to control photodissociation

reactions using the nonresonant dynamic stark effect (NRDSE) scheme of

Sussman et al. (2006). The apparent universality of the scheme prompted a

resurgence of experiments controlling chemical reactions. The nonresonant

field can be used to control (i) the photodissociation spectra, (ii) the lifetime

of the transition state, (iii) the yield of competing reaction products, and

(iv) the kinetic energy distribution of the fragments (KED) or the photo-

fragment angular distributions (PAD).

The control of the photodissociation spectra is a direct consequence of

the Stark effect and can be achieved by soft-shaping. Assuming that the

control nonresonant pulse Ec(t) is much more intense than the pump pulse
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Ep(t), the resonance at the Franck–Condon region, Dj0 ¼ Vj(R0) � V0(R0),

is modified as

D
p
j0ðEcÞ¼Va

j ðR0Þ�Va
0 ðR0Þ�Dj0�1

4
αjj�α00
� �

E2
c , (71)

where αjj are the dynamic polarizabilities. The position of the photodisso-

ciation bands corresponding to different electronic channels can therefore be

controlled. The control is most effective when the polarizabilities αjj have
different signs for different electronic states, such that Ec can both blue-shift

and red-shift the different bands of the spectra.

The landscape of the photodissociative LIP Va
j ðRÞ can be different than

that of the laser-free molecule, changing the transients of the transition state.

This is particularly the case when the LIP shows some hard shaping for the

presence of nearby electronic channels, for instance when there is some

predissociative (metastable) state Vi that only decays through the crossing

with a dissociative state, Vd. By Stark shifting the potentials, the position

of the crossing can be moved away from the Franck–Condon geometry,

manipulating the lifetime of the species and the rate of the photodissociation

reaction.

Since the LIPs imply superposition states of mixed electronic character,

the control via NRDSE effectively changes the relative yields of the prod-

ucts. If Ec(t) couples two dissociative potentials that lead to asymptotically

different product channels, P1 and P2, the relative yield is approximately

given by

χ¼P2

P1

 μ12Ec

2Δ

� �2

, (72)

where μ12 is the dipole coupling between the channels andΔ their energy gap,

V2ð∞Þ�V1ð∞Þ�ħωc. One of the exit channels can be the ground state,

above dissociation energies. However, if Ec(t) is switched off slowly or the

dipole μ12(R) decays slowly through the reaction coordinate, as the wave

packet propagates through Va
1 (or Va

2 ) it will adiabatically revert to V1 (or

V2). In order to control the yield one must abruptly switch off the pulse using

an asymmetric pulses or a short pulse, playing with the pulse sequence.

We consider two cases: A PC sequence, when the control pulse is del-

ayed with respect to the pump pulse, and a CP sequence, when the control

pulse arrives earlier, such that the pump pulse overlaps the trail ofEc(t). In the

CP sequence the Franck–Condon excitation proceeds between V0 and the
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spectrally chosen (by ωp) excited molecular state Ve (e ¼ 1, 2) but the dis-

sociation occurs in the asymptotic region of the molecular potential, leading

to selective dissociation. If the chosen potential Va
e is, e.g., Va

2 , then one

collects all the fragments in the molecular state that correlates with that

potential, that is, V2,

ψ0ðR, t Þ!
Ec
ψ a
2ðR, tÞ!

Ep

ψ2ðR, tÞ, (73)

where ψ a
j is the wave function initially in state j of mixed electronic character

by virtue of the control pulse.

Conversely, in the PC sequence the Franck–Condon excitation occurs

mainly in the excited molecular state e, selected by ωp, but the dissociation

occurs in the asymptotic region of Va
j , leading to mixed dissociation. For

instance, if we initially excite V1,

ψ0 ðR, tÞ!
Ep

ψ1ðR, tÞ!
Ec
ψ a
1ðR, tÞ∝

ffiffiffiffiffiffiffiffiffiffiffi
χðEcÞ

p
ψ1ðR, tÞ+ψ2ðR, tÞ, (74)

where χ is roughly given by Eq. (72).

The timing of the control pulse with respect to the pump pulse affects the

yield of the photodissociation reaction, but also the kinetic energies of the

fragments. The situation is even more interesting when the LIPs have LIACs

that allow to invert the electronic populations to have full control over the

branching ratios.

Fig. 34 shows a sketch of the control mechanism over the yield of the

products and the kinetic energy distribution of the fragments in the photodis-

sociation of the A band of CH3I, that can yield two channels, I*(2P1/2), the
adiabatic channel, and I(2P3/2), that can be reach through a CI at Rc. In the

absence of the control pulse most population ends asymptotically in the adi-

abatic channel. However, the creation of a LIP and the manipulation of its

LICI (its position depending on the frequency of ωc) can be used to control

the yield and kinetic energy of its fragments. For instance, choosing a partic-

ular time delay of 60 fs between the pump and control pulses, the fastest

momentum components of the wave packet reachRc before the control pulse

acts, to naturally yield I*(2P1/2). In contrast, the slowest momentum compo-

nents cross Rcwhen the control pulse is at its maximum intensity, so they fol-

low the LIPVa
g , dissociating inVg and therefore yielding ground state I(

2P3/2).

Under these conditions, the pulse sequence acts as a momentum filter that dis-

criminates the velocity components of the dissociating wave packet on the

different reaction channels.
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The energy distribution filtering (narrowing of the KED) is not the sole

effect of the application of these short control pulses. From the velocity dis-

tribution of Fig. 34 (lower panel) it is clear that there is a significant red-shift

of the KED in the main dissociation channel. This is a typical signature of

Fig. 34 (Upper panel) Potential energy curves of the relevant electronic states involved in
the photodissociation of CH3I in the A-band along the RCI coordinate: the

3Q0 (red line) and
the 1Q1 (yellow line). A pump pulse at 268 nm was used to prepare a wave packet in the
3Q0 state and an intense ultrashort 804 nm control pulsewas time delayed (τ) with respect
to the pump pulse, to create the LIPs (dashed lines) and manipulate the LICI, shown at
the intersection between the red and blue lines. (Lower panel) Calculations showing the
relative velocity distribution of the fragments at different times, to control the KED using
a strong (85 TW/cm2) and short (50 fs) control pulse, 60 fs time delayedwith respect to the
pump pulse. The arrows sketch the main contributing processes along with the shifts in
the velocities that lead to the observed broadening and shifting of the asymptotic distri-
butions. Adapted from Sola, I.R., Gonzalez-Vazquez, J., de Nalda, R., Bañares, L., 2015. Strong
field laser control of photochemistry. Phys. Chem. Chem. Phys. 17 (20), 13183–13200. ISSN
1463-9076. https://doi.org/10.1039/C5CP00627A with permission.
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nonadiabatic effects. Indeed, as the crossing is created, there is an abrupt

ramp up from a low to a high control field intensity, and thus the wave

packet initially evolving on Ve is mainly transferred to Va
g . Since the shape

of Va
g after the LICI is attractive, the momentum of the dissociating packet

becomes smaller as it evolves, causing the red-shift of the KED. Similarly,

the transient evolution of the photofragment angular distributions (PAD)

shows how the NRDSE can also change the stereodynamics of the reaction

in subtle ways (Corrales et al., 2017). A more direct control over the veloc-

ities can be effected by using the dipole force (Niikura et al., 2004).

8. TOWARD AUTOMATION: QUANTUM OPTIMAL
CONTROL THEORY

The ultimate tool that distinguishes quantum control from the study

of the quantum dynamics of the system is the development of optimization

techniques from the theoretical side, and closed loops of pulse shaping

experiments and learning algorithms, from the laboratory side. Tannor

and Rice (1985) proposed the first variational formulation of the control

of a chemical reaction following the maximization of its related Spectro-

scopic signal using time-dependent perturbation theory, while Peirce

et al. (1988) and later Kosloff et al. (1989) realized that the problem could

be expressed using the cost functionals of Optimal Control Theory. Soon

the technique was fully developed and applied to many different systems

and physical objectives, including all type of reactions. For an overview

of applications the interested reader should inspect some books and reviews

on QuantumOptimal Control Theory (Balint-Kurti et al., 2008; Brif et al.,

2012; Brixner and Gerber, 2003; Brumer and Shapiro, 1992; Gordon and

Rice, 1997; Goswami, 2003; Ho et al., 2014; Nuernberger et al., 2007;

Rabitz et al., 2000; Rice and Zhao, 2000; Shapiro and Brumer, 2003).

In this section we will explain the theoretical basis of Quantum Optimal

Control Theory and develop some of the main ideas, barely mentioning

the applications.

8.1 The Quantum Control Problem
As in Sections 6 and 7, our starting model will consist of a quantum system

(e.g., a molecule), with Hamiltonian H0, aligned with a laser pulse E(t), thus
disregarding the vectorial nature of the coupling. More importantly, we do

not consider dissipation effects, allowing then to tackle the problem using

the TDSE.
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Essentially, the quantum control problem can be framed as follows:

We know the initial wave function ψ (0) 	 ψ i and we want to drive the

system toward state ψ f at time t ¼ T; so we must find the function E(t)
that brings ψ i as close as possible to ψ f. This is an inversion problem and

hence it is computationally more costly than a dynamical problem (solving

the TDSE). It can be formulated as an optimization problem.

Theoretically, there are three big questions related to the control

problem

1. If it exists a field E(t) that brings ψ i exactly (or as close as we want) to

ψ f. In control terminology this is called the Controllability problem

(Ramakrishna et al., 1995).

2. How to find an “acceptable” E(t). This is normally achieved designing

a cost functional of the field from which one obtains the optimal field

Eoc(t) imposing extremalization conditions. The cost functional that we

are mostly interested in is the transition probability

Pif ¼ jhψ f jU T ,0; Eocð Þjψ iij2
(where U is the time-evolution operator) that we want to maximize.

This problem is called the Quantum Optimal Control problem and the

algorithms necessary to solve the problem are called optimal control

algorithms.

3. What are the properties of the space of all possible solutions, that is, how

many different solutions are and how sensitive the probability Pif is to

changes in the optimal fields Eoc(t). Determining the most important field

parameters and the mechanism of the control, etc. are questions very

dependent on the Hamiltonian and the optimal field. More generally,

one can try to find the global features of Pif or of the cost functional,

for any initial and target states. This is called the Landscape or Optimal

Landscape problem (Rabitz et al., 2004).

Controllability is a set of mathematical theorems (D’Alessandro, 2007;

Ramakrishna et al., 1995) that proof the existence of solutions, but usually they

are not constructive except in some special systems (Khaneja andGlaser, 2001;

Khaneja et al., 2001; Schirmer et al., 2002), offering no guidance on how to

find the optimal pulses. The first theorems treated piecewise constant pulses

(Huang et al., 1983) but a breakthrough was achieved using the Lie-algebraic

approach (Ramakrishna et al., 1995; Rangan et al., 2004; Schirmer et al.,

2001; Turinici and Rabitz, 2001) A simpler theorem, based on connectivity,

analyzes the basic set of couplings between the states that are necessary to

allow population transfer (Turinici and Herschel, 2003; Wu et al., 2004).
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On the other hand, the quantum control landscapes address the wider

picture of the properties of the set of all solutions explaining how difficult

it is to find them. In particular, the topology of the landscapes (i.e., the char-

acter of its critical points) determines the robustness of the solutions, provid-

ing hints whether local search algorithms will converge to global maxima.

Among the most interesting findings is the general result (independent of

the Hamiltonian) that if we maximize transition probabilities in controllable

systems, and the functional is unconstrained, then there are no local traps;

except for the global maxima (Pif ¼ 1) and minima (Pif ¼ 1) all other regular

extrema are saddle points (Ho and Rabitz, 2006; Moore and Rabitz, 2011;

Rabitz et al., 2004, 2005, 2006; Shen et al., 2006). This is not so surprising,

as controllability in a sense guarantees free navigation on the Hilbert space

(one can reach any state from a different one in finite time) and the matrix

elements of the unitary evolution operator are, by definition, constrained

between 0 and 1. For such operators, all local maxima are therefore artifacts

of the constrains in the functional or the penalization in the laser fluence that

affect the gradient. Theoretical analysis has shown that in controllable sys-

tems one can move continuously through a level set of the landscape, for

which homotopy trajectory control algorithms (D-MORPH) can be

designed (Rothman et al., 2005, 2006).

Here we will only focus on how to find the optimal pulses. There are

several ways to address this problem:

1. We call an open-loop designa to an approximate maximization of

Pif ¼ jhφtjU T ,0; Eap
� �jψð0Þij2 based on a motivated guess of a first-

order solution, E0(t) (chosen from analytic knowledge of the dynamics

under a Hamiltonian Hap(t) that looks similar to H(t) under certain

limits) whose parameters are fitted, typically by trial and error, until

Pif is large enough. These are the families of control schemes that were

previously presented in this chapter.

2. We call local control theory (LCT) to the procedure by which one finds

(Engel et al., 2009) Elc(t) such that

dPif

dt
¼ d

dt
jhψ f jU T , 0; Elcð Þjψð0Þij2� 0, 8t:

a This nomenclature is not used for instance in the Engineering or Mathematical Control Theory or in

QuantumOptics, but it is most often encounter inMolecular Physics. Perhaps more appropriate would

be to consider it as a constrained search, or a few parameters search approach
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3. We call optical control (OCT) to the variational procedure by which one

finds (Werschnik and Gross, 2007) Eoc(t) such that Pif is a local maximum

under variations of Eoc(t), that is

δPif

δEocðtÞ¼
δjhψ f jU T , 0; Eocð Þjψð0Þij2

δEocðtÞ ¼ 0:

Below we derive the equations that Elc(t) and Eoc(t) must obey. But before

getting to this point, it is worth mentioning other QC problems related,

but different, to the one that was stated above ( Joe-Wong et al., 2016).

For instance one may ask for less detailed control objectives where instead

of ψ f, the target is to maximize or minimize some expectation value, e.g.,

hxi, hHi, at a certain time (Shi and Rabitz, 1990; Sola et al., 1998b). They

involve less detailed target states for which sometimes one can use simpler

methodologies, as local control theory (Bartana et al., 1993; Kosloff et al., 1992;

Tang et al., 1996), tracking (Gross et al., 1993; Nguyen-Dang et al., 1995;

Ohtsuki et al., 1998; Sugawara et al., 2001), or semiclassical approaches

(Botina et al., 1995, 1996; Chen et al., 1995; Shi et al., 1988). But in fact,

maximization of Pif can be rewritten as the maximization of the expectation

value of the projector operator P¼ jψ fihψ fj. We will use this notation as the

control formalism is then expressed in amore general way, and one can easily

move from the expectation value of P to the expectation value of another

quantum operator A.

In principle, the operatorA can be as complex as needed. In particular, it

can imply a tradeoff between different goals. In addition, one can include

time-dependent target states, where one maximizes the expectation value

of the operator over some interval of time (Kaiser and May, 2004;

Ohtsuki et al., 2004; Serban et al., 2005). This leads to more complex inho-

mogeneous TDSE that certain wave functions must satisfy.

Finally, one may ask for more complex control problems where instead

of maximizing a single target state, Pif, the goal is to maximize different target

states conditioned to the initial state. That is, one seeks to reconstruct an

entire unitary operator Uf with the control E(t), minimizing the difference

between jjUf �U T , 0; Eð Þjj, where the double vertical bar jj indicates some

measure of distance or difference in the unitary matrices. This type of control

problem is essential to the use of quantum control for Quantum Information

or Quantum Computing. In QC, this is termed a multiobjective quantum

control problem (Palao and Kosloff, 2002, 2003; Tesch and de Vivie-

Riedle, 2002; Troppmann et al., 2006).
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8.2 Local Control and Tracking
In LCT we set for a less ambitious goal. We want to find the field Elc(t) that
forces the monotonic increase or decrease in time of the expectation value of

a given observable of interest in the dynamics, hAi, be it a transfer probability
Pif or a property such as the energy of the system hH0i.

Therefore, we must find the field so the derivative

d

dt
hψðtÞjAjψðtÞi¼� i

ħ
hψðtÞj A,H½ �jψðtÞi (75)

is always positive (or negative, depending on the goal), where we use the

commutator A,H½ � ¼AH�HA. It is sometimes convenient to write

Eq. (75) in the equivalent way

d

dt
hψðtÞjAjψðtÞi¼�2

ħ
Re ihψðtÞjAHjψðtÞið Þ¼ 2

ħ
Im hψðtÞjAHjψðtÞið Þ

(76)

to remind us that the expectation value is a real number despite the presence

of the imaginary unit in Eq. (75). Here, Re and Im denote the real and

imaginary parts of a complex number.

SinceH(t) ¼H0 � μE(t), separating the contributions of the two parts of

the Hamiltonian in Eq. (75) we obtain

d

dt
hψðtÞjAjψðtÞi¼� i

ħ
hψðtÞj A,H0½ �jψðtÞi+ i

ħ
EðtÞhψðtÞj A,μ½ �jψðtÞi,

(77)

to be rewritten as

d

dt
hψðtÞjAjψðtÞi¼ hðtÞ+ EðtÞgðtÞ: (78)

Clearly, if A,μ½ � ¼ 0 no control is possible (or at least we will not obtain

any explicit dependence of our objective with the local control field). On

the other hand, if A,H0½ � ¼ 0 the control is simple, since then, from

Eq. (77) it is easy to impose dhA(t)i/dt � 0 (or � 0). It suffices to make

E(t)g(t) � 0, or

ElcðtÞ¼ f ðtÞgðtÞ¼ i

ħ
f ðtÞhψðtÞj A,μ½ �jψðtÞi¼�2

ħ
f ðtÞIm hψðtÞjAμjψðtÞið Þ

(79)

with f(t) � 0, since then dhA(t)i/dt ¼ f(t)g(t)2. (For dhA(t)i/dt � 0 we only

need to choose f(t) � 0.) At the times when gðtÞ¼ A,μ½ � ¼ 0 (or the
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imaginary part of hψ (t)jAμjψ (t)i is zero) the rate of change will be zero as

well, provided h(t) ¼ 0. If the last condition is not met, there is no easy

way to know if that term will not cause a drop in hA(t)i. This is why local
control procedures are commonly used only for operators A such that

A,H0½ � ¼ 0. This is the case whenA is a projection operator on an eigenstate

of the system, P or is proportional to the molecular Hamiltonian, H0.

Local control is a local-in-time procedure. One just needs to adjust

the pulse instantaneously to the value of the integral that depends on the

wave function evaluated at the same time, which forces the use of very short

time steps in the numerical integration of the TDSE. On the other hand, as

we will show later, OCT requires knowledge of all the dynamics to adjust

the value of the pulse at each time.

In the closely related tracking approach, one forces hψ (t)jAjψ (t)i to

follow a preset trajectory a(t). From Eq. (77) this is equivalent to demand

EðtÞgðtÞ¼ daðtÞ
dt

(80)

again assuming h(t) ¼ 0. Because Eq. (80) is ill-defined whenever g(t) ¼ 0

and da(t)/dt 6¼0, and there is no way to know a priori (without previously

knowing the field and solving the TDSE) what trajectories a(t) are possible,

in order to impose tracking one often needs to develop algorithms with reg-

ularization techniques, which soften the requirements of tracking (Salomon

and Turinici, 2006; Zhu and Rabitz, 2003; Zhu et al., 1999).

There have been numerous applications of LCT and tracking, including

molecular cooling and heating (Kosloff et al., 1992; Tang et al., 1996), and

optical paralysis (Malinovsky et al., 1997), photodissociation (Gr€afe et al.,

2004), predissociation (Marquetand and Engel, 2005), photoassociation

(Marquetand and Engel, 2007), and electron transfer (Vindel-Zandbergen

et al., 2016). In Section 8.3 we will compare the equations for the LCT

and OCT fields when Â is a projection operator, P̂ . Here we consider

two simple examples that show the physics behind the mathematical formal-

ism of LCT.

First consider a field that stops or slows down a free electron, moving

under H0 ¼ p2/2m. Since p2,H0½ � ¼ 0 and p2,μ½ � ¼ 2eip=ħ, (μ ¼ �ez),

the required condition

dhp2i
dt

� 0
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can be met making

ElcðtÞ¼�2f ðtÞhψðtÞjpjψðtÞi: (81)

This equation just expresses the physically intuitive condition that the field

must oppose themomentum of the electron, with an amplitude proportional

to its value, in order to stop its flow. The same will be valid for any particle

provided it is coupled to the field. The simple field given by Eq. (81) can be

used to push the particle in one or the other direction.

Secondly, we use LCT to show how it elegantly generalizes the theory

of population transfer by molecular π-pulses (Section 6.1). Let us consider

again electronic excitation in molecules by ultrashort pulses,

iħ
∂

∂t

ψ1

ψ2

� �
¼ T+V1 μElcðtÞ=2

μE*
lcðtÞ=2 T+V2

� �
ψ1

ψ2

� �
, (82)

where, using the RWA, ElcðtÞ¼ ðElcðtÞe�iωt +E*
lcðtÞeiωtÞ=2 (ω is the center

frequency of the pulse) and Elc(t) must be complex, in general.b Our goal

is to control the flow of population between the different electronic states,

Pj(t) ¼ hψ j(t)jψ j(t)i. In LCT we demand monotonic increase or decrease of

d

dt
P2ðtÞ¼ 1

ħ
Im hψ1ðtÞjμjψ2ðtÞiElcðtÞ½ �: (83)

Hence, making Elc(t)¼�i hψ2(t)jμjψ1(t)i f(t), the sign of f(t) forces the sign of
the flux, increasing (or decreasing) the population in the excited electronic

state for positive (or negative) functions. The amplitude of f(t) only deter-

mines the rate of the transfer. This expression shows that adjusting the phase

of the laser to that of the instantaneous dipole, hψ2(t)jμjψ1(t)i, one can select
whether there is absorption or spontaneous emission under the field, if the

dipole is not zero. Eq. (83) generalizes the conditions for electronic popu-

lation transfer under molecular π-pulses with moving wave packets, lifting

the too restrictive conditions imposed in Section 6. Rather than requiring

the transfer to finish before the packets move, it is just necessary that ψ1(t)

and ψ2(t) overlap.

Alternatively, choosing Elc(t) ¼ hψ1(t)jμjψ2(t)i f(t), one locks the popu-
lations. Since additional conditions can be applied (for instance, that the

pulse heats or cools the wave packets in one potential) one can set up

b Since forcing the field to be transformed-limited amounts to eliminate all control based on phase

modulation, in general we need to work with complex fields in LCT.
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conditions for laser-catalysis, where the laser acts without net flow of pho-

tons (Kosloff et al., 1992; Malinovsky and Tannor, 1997; Tang et al., 1996).

In many occasions the obtained control fields violate the assumed RWA

approximation, leading to some losses in the yields when the dynamics is

solved without the RWA.

8.3 The Variational Approach: Deriving the Quantum Optimal
Control Equations

We return to our fundamental control problem, defined in terms of projection

operators.Wewant to find the field thatmaximizes J¼hψ (T)jPjψ (T)i, where
P¼ jψ fihψ f j, such that J¼ Pif is the transition probability to go fromψ (0)¼ ψ i

at initial time to ψ f at final time. The same derivation will be valid if P is any

positive semidefinite operator. At the same time we want to penalize the use

of very strong laser pulses, for two reasons: (i) strong pulses break the validity of

most approximate Hamiltonian descriptions, and (ii) we need an explicit

dependence on the field in our equations.As shownbelow,weneed to include

the field (at least) up to power two in J in order to find equations for the fields.

To start up, we set up a variational method to find the extremes of the

cost functional

J ¼hψðTÞjPjψðTÞi� 1

T

Z
E2ðtÞ
f 2ðtÞdt, (84)

where f (t) is a predetermined function that makes the functional dimensional

free. The second term penalizes solutions that use strong fields: When f (t) is

large the penalty is small and the amplitude of the optimal field is not con-

strained. The opposite occurs when f (t) is small. Hence, the envelope of f (t)

works as a general envelope of the optimal field (Manz et al., 1998). In par-

ticular, it forces the optimal field to zero, as we will show, when f (t) ¼ 0,

suppressing static field components. The peak amplitude of f (t) sets a trade

off between the two goals, maximizing the projection on the target at final

time, and minimizing the pulse fluence. Taking variations in ψ (T) and E(t)
we write

J + δJ ¼hψðTÞ+ δψðTÞjPjψðTÞ+ δψðTÞi� 1

T

Z
EðtÞ+ δEðtÞ½ �2

f 2ðtÞ dt: (85)

Keeping only variations in first order of ψ (T) and E(t) we obtain

δJ ¼ 2Re hψðTÞjPjδψðTÞi½ �� 2

T

Z
EðtÞ
f 2ðtÞδEðtÞdt: (86)
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In order to find a maximum (or rather an extreme) of δJ/δE(t) we

need to find how δψ (T) depends on δE(t). In most derivations of the

quantum OCT equations one uses Lagrange multipliers to consider both

functions independent (Werschnik and Gross, 2007). Here we use an

alternative derivation (Zhu et al., 1999) explicitly showing how they

relate to each other via the TDSE (the dynamical constraint). The quan-

tum dynamics of the system, including the variations, must follow the

equation

d

dt
ðψðtÞ+ δψðtÞÞ¼� i

ħ
HðtÞ�μðEðtÞ+ δEðtÞÞ½ � ψðtÞ+ δψðtÞð Þ: (87)

As we only keep variations up to first order, we can drop terms of second or

higher order from the equations,

d

dt
δψðtÞ¼� i

ħ
HðtÞδψðtÞ+ i

ħ
μδEðtÞψðtÞ: (88)

This is an inhomogeneous TDSE that connects δψ (t) with δE(t) at all
times, and in particular, at final time, as required in Eq. (86). Its formal

solution is

δψðtÞ¼Uðt, 0; EÞδψð0Þ+ i

ħ

Z t

0

Uðt, t0; Eðt0ÞÞμδEðt0Þψðt0Þdt0: (89)

We are not allowed to change the initial state. Thus, δψ (0) ¼ 0 and at

final time

δψðTÞ¼ i

ħ

Z T

0

UðT , t0; Eðt0ÞÞμδEðt0Þψðt0Þdt0: (90)

Substituting Eq. (90) in Eq. (86) we obtain

δJ ¼
Z T

0

dt0
2

ħ
Re ihψðTÞjPUðT , t0; EÞμδEðt0Þjψðt0Þi½ �� 2

Tf 2ðt0ÞEðt
0ÞδEðt0Þ

� �
(91)

or, since δE(t) is real

δJ ¼�2

Z T

0

dt0 Im hψðTÞjPUðT , t0; EÞμ
ħ
jψðt0Þi

h i
+

1

Tf 2ðt0ÞEðt
0Þ

� �
δEðt0Þ:

(92)
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We can define an instantaneous gradient dJt/dE(t) such that

δJ ¼
Z T

0

dJt

dEðtÞδEðtÞdt, (93)

where

dJt

dEðtÞ¼�2 Im hψðTÞjPUðT , t; EÞμ
ħ
jψðtÞi

h i
+

1

Tf 2ðtÞEðtÞ
� �

: (94)

Next, we find a maximum of the functional making dJt/dE(t) ¼ 0 at

each time, t. This determines the equation obeyed by the optimal field,

EocðtÞ¼�T

ħ
f 2ðtÞIm hψðTÞjPU T , t; EocðtÞð ÞμjψðtÞi½ � (95)

or

EocðtÞ¼�T

ħ
f 2ðtÞIm hψðTÞjPU T , t; EocðtÞð ÞμU t, 0; EocðtÞð Þjψð0Þi½ �: (96)

Eq. (96) is an implicit equation: Eoc(t) depends on U T , t; EocðtÞð Þ which
itself depends on Eoc(t ) in a complicated way. In particular, knowing

Eoc(t) requires knowledge of the whole history of the dynamics, from the past

to the present (via U t, 0; EocðtÞð Þ) and from the future to the present (via

U T , t; EocðtÞð Þ). To solve the nonlinear equation one needs iterative proce-

dures. Notice that, had we not included the quadratic penalty form of the

field in the functional, the gradient (Eq. (94)) would not be an explicit

function of the field.

It is customary to write Eq. (96) in more symmetric fashion. First we

define the performance function, which can be identified with a Lagrange

multiplier that forces the quantum unitary evolution of ψ (t) in an

unconstrained optimization (Werschnik and Gross, 2007),

χðTÞ¼PψðTÞ: (97)

The performance function can only be evaluated at the end of the dynamics

(it is fixed at time t ¼ T ), and then we propagate it backwards in time with

the optimal field. Since

hψðTÞjPUðT , t; EocÞ¼ hχðTÞjUðT , t; EocÞ¼ hχðtÞj, (98)

we can write

EocðtÞ¼�T

ħ
f 2ðtÞIm hχðtÞjμjψðtÞi½ �: (99)
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This is the quantum OCT equation for the optimal field. It is very com-

pact and deceivingly simple, but since both χ(t) and ψ (t) depend on the field,
the equation (obviously) remains nonlinear. Usually one defines a positive

envelope function S(t) 	 f 2(t) and adds a scale factor α instead of T in

the equation. On the other hand, it has been shown that often one obtains

better results when instead of penalizing the fluence, one penalizes changes

in the fluence with respect to some reference field, Eref(t). That is, one
changes E(t)2 for [E(t) � Eref(t)]

2 in the penalty term of Eq. (84).

One can obtain similar quantumoptimal control equations formore com-

plex functionals. For instance,with cost terms involving time-dependent pen-

alty functions (Kaiser andMay, 2004;Ohtsuki et al., 2004; Serban et al., 2005;

Sola et al., 1999b) or constrains in the optimal pulse spectra that imply only

phase modulation of the optimal pulses (Gollub et al., 2008; Lapert et al.,

2009; Werschnik and Gross, 2005)) or when the optimal pulse is parameter-

ized (Shi and Rabitz, 1990; Sola et al., 1998a).

It is instructive to compare the LCT and OCT pulses. In LCT we force

monotonic increase in Pif over time. We recall that P commutes with the

molecular Hamiltonian, so that we can use Eq. (79) for the LCT solution.

To compare with the OCT solution, we change 2f ðtÞ!Tf 2ðtÞ, rewriting
Eq. (79) as

ElcðtÞ¼�T

ħ
f 2ðtÞIm hψðtÞjPμjψðtÞið Þ, (100)

so that the field has the right dimensions. This looks very much as Eq. (99)

except that hψ(t)jP is not hχ(t)j. Let us remember that from Eq. (98),

hχðtÞj ¼ hψðTÞjPUðT , t; EocÞ¼ hψðtÞjUðt,T ; EocÞPUðT , t; EocÞ:
So that we can make the expressions of the LCT and OCT identical,

EocðtÞ¼�T

ħ
f 2ðtÞIm hψðtÞjePðtÞμjψðtÞi� �

, (101)

hiding the complexity of the OCT field in the time-dependent projection

operator

ePðtÞ	Uðt,T ; EocÞPUðT , t; EocÞ
that takes into account all the dynamics of the system. ePðtÞ is an operator in

the Heisenberg representation with the reference time defined in the future

t ¼ T, instead of t ¼ 0. Only when P commutes with the time-evolution
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operator (eP¼P), LCT and OCT give identical results. Then, the instanta-

neous dipole that forces the monotonic increase in the population transfer,

without care of the future dynamics, fully maximizes the population transfer

at final time. Unfortunately, it can be shown that this condition only applies

when the dynamics is trivial. The LCT field is (almost) never optimal. One

can (almost) always improve its final yield with a OCT version. But then

LCT is much faster and computationally friendly to use than OCT.

8.4 Finding the Optimal Pulses: Optimal Control Algorithms
As indicated, Eq. (99) (or the equivalent form (96)) is an implicit equation that

can only be solved by iterative procedures. Many quantum optimal control

algorithms have been proposed in the literature. Most use the gradient

(Eq. 94) (Combariza et al., 1991; Shi and Rabitz, 1991; Sola et al., 1998b) or

some generalization of the gradient that leads to fast monotonic increase of the

functional at each iteration, as in the Krotov (Kosloff et al., 1992; Maday

and Turinici, 2003; Ohtsuki et al., 2004, 2007; Palao and Kosloff, 2003;

Somlói et al., 1993; Zhu and Rabitz, 1998), the Zhu–Rabitz (Werschnik

and Gross, 2007; Zhu et al., 1998), and the two-point boundary-value quan-

tum control paradigm (Ho and Rabitz, 2010; Liao et al., 2011). Taking into

account the form of the landscapes, some global search algorithms as genetic

algorithms have been proposed (Geremia et al., 2000; Turinici et al., 2004).

However, in general these algorithms only use information of the observable

at final time, throwing away the wealth of information contained in the

dynamics, that is obtained by solving the TDSE. As a result, they are quite less

efficient from a computational point of view.Aswediscuss in Section 8.6 these

are the type of algorithms that are precisely needed to find optimal pulses in the

laboratory, by adaptive learning.

In this section we focus on two algorithms that can be used as a motivation

for the study and development of other algorithms: the gradient method and

the Krotov method. Since they imply iterative procedures, we refer to E(k)(t)
and E(k+1)(t) as two consecutive steps in the run to obtain good (optimal) solu-

tions. To start the algorithm one always needs an initial guess k ¼ 0 which is

often physically motivated (e.g., from the open-loop approach). In some

occasions a very non imaginative guess, E(0)(t)¼ 0, suffices. On the other hand,

the search must stop by imposing convergence conditions, for instanceZ T

0

dt
Eðk+1ÞðtÞ� EðkÞðtÞ� �2

f ðtÞ2 �Tκ or J ðk+1Þ � J ðkÞ � κ0,

where κ (κ0) are predetermined criteria for convergence.
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To simplify the notation and use Eq. (99) we will call ψ (k)(t) to the wave

function obtained by propagating withU t, 0; EðkÞðtÞ� �
and likewise χ(k)(t) to

the performance function obtained by propagating with U{ t,T ; EðkÞðtÞ� �
.

8.4.1 The Gradient Method
The gradient method is based on choosing the field on step k + 1 as the field

on step k plus a contribution along the gradient obtained with the same k

field. From Eq. (94), writing the gradient as a function of the performance

function evaluated after iteration k, χ(k)(T),

dJ
ðkÞ
t

dEðtÞ¼�2 Im hχðkÞðtÞjμ
ħ
jψ ðkÞðtÞi

h i
+

1

Tf 2ðtÞEðtÞ
� �

: (102)

Then

Eðk+1ÞðtÞ¼ EðkÞðtÞ+ β
dJ

ðkÞ
t

dEðtÞ , (103)

where β (a small but unknown positive number) must be found by linear

search. It is not difficult to prove that this choice makes J(k+1) � J(k) at least

for a certain range of β. Once the gradient at each iteration is known, alter-

native gradient-based search algorithms, such as the conjugate-gradient

method, can be used as well.

8.4.2 The Krotov Method
The Krotov method is based on general (not differential) changes in the pulses

from iteration to iteration that assure monotonic increase ofΔJ¼ J(k+1)� J(k).

In terms of the changes in the final stateΔψ(T)¼ ψ (k+1)(T)� ψ (k)(T), and in

the field, ΔE(t) ¼ E(k+1)(t) � E(k)(t),

ΔJ ¼hΔψðTÞjPjΔψðTÞi+2Re hψ ðkÞðTÞjPjΔψðTÞi� �
� 1

T

Z T

0

dt
ΔEðtÞ2 + 2EðkÞðtÞΔEðtÞ

f 2ðtÞ :

(104)

Since the first term is always positive, one only has to evaluate changes in the

fields that force the second and third term positiveness, for which we need to

link changes in the final wave function with changes in the field. Using a

TDSE similar to Eq. (87), we can write

d

dt
Δψ ¼� i

ħ
H0�μEðkÞ
h i

Δψ +
i

ħ
μ Eðk+1Þ � EðkÞ
h i

ψ ðk+1Þ (105)
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only that now we cannot drop terms that depend on second-order varia-

tions. Solving the inhomogeneous TDSE gives

ΔψðTÞ¼ i

ħ

Z T

0

UðT , t; EðkÞðtÞÞμΔEðtÞψ ðk+1ÞðtÞdt (106)

and introducing Eq. (106) into Eq. (104) we obtain

Re hψ ðkÞðTÞjPjΔψðTÞi� �¼�
Z T

0

Im hχðkÞðtÞjμ
ħ
jψ ðk+1ÞðtÞi

h i
ΔEðtÞdt:

(107)

We need to make the integrand,

IðtÞ¼�2Im hχðkÞðtÞjμ
ħ
jψ ðk+1ÞðtÞi

h i
ΔEðtÞ� 1

T

ΔEðtÞ2 + 2EðkÞðtÞΔEðtÞ
f 2ðtÞ

always positive. In the Krotov scheme we maximize it with respect to ΔE(t),

dIðtÞ
dΔEðtÞ¼�2Im hχðkÞðtÞjμ

ħ
jψ ðk+1ÞðtÞi

h i
�2ΔEðtÞ+2EðkÞðtÞ

f 2ðtÞT ¼ 0 (108)

leading to

ΔEðtÞ¼�EðkÞðtÞ�2Im hχðkÞðtÞjμ
ħ
jψ ðk+1ÞðtÞi

h i
: (109)

The Krotov-optimized field for the step k + 1 is therefore

Eðk+1ÞðtÞ¼ EðkÞðtÞ+ΔEðtÞ¼�f 2ðtÞT Im hχðkÞðtÞjμ
ħ
jψ ðk+1ÞðtÞi

h i
: (110)

This equation is very similar to Eq. (99), and the equation for dI(t)/dΔE(t)
(Eq. 108) is very similar to the gradient, Eq. (102), but notice that while

χ(k)(t) is propagated using the field obtained at the previous step (the only

one that is known at all times), ψ (k+1)(t) is propagated with the new field.

This implies immediate feedback and gives the faster convergence properties

of Krotov or similar methods. It can also be proved that the Krotov method

guarantees J(k+1) � J(k) without needing any line search for β.

8.5 Geometrical Optimization
In OCT (or LCT) the initial wave function is fixed and the pulse is changed

to maximize the probability of a given process. Alternatively, one can

change the initial wave function (within some constrains in a subspace of
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the Hilbert space so that the solution is not obvious) to maximize the prob-

ability for a given fixed field. Since the optimization amounts to finding a

superposition state (a rotation in the Hilbert space not parameterized by

the time), this approach is called a Geometrical Optimization.

Consider then again that we want to maximize the transition probability

Pif for which we construct a functional J ¼ hψ ijU†(0, T; E)PU(0, T; E)jψ ii
that depends on ψ i. For brevity, we will omit the arguments of the

time-evolution operator. Typically, P ¼ jψ fihψ fj projects on a particular

vibrational wave function in the electronic excited state. Alternatively,

we may want to maximize the electronic absorption, for which

P¼Pf jψ f ihψ f j where the summation runs over all the vibrational states

of the excited electronic state.

On the other hand, ψ i can be changed within a subset of vibrational

levels in the electronic state, subject to norm conservation, hψ i + δψ ijψ i +

δψ ii ¼ 1. Maximizing with constraints can be achieved by the technique

of Lagrange multipliers.

We define the unconstrained functional as J 0 ¼ J�χ i hψ ijψ ii�1ð Þ, where
χ i is the Lagrange multiplier, and take variations on ψ i (ψ i!ψ i + δψ i). By

formally deriving with respect to the initial bra ψ*
i (the derivation with respect

to the ket gives the conjugate gradient of the same expression), we obtain

∂J 0

∂ψ*
i

¼U{PUjψ ii� χijψ ii:

Upon extremization (i.e., making the derivative equal to zero) we obtain the

secular equation,

U{PUjψ ii¼ χ ijψ ii, (111)

which is an eigenvalue equation for the operator PH	U(0, T; E)PU(T, 0; E),
which is the transpose of the projection operator in the Heisenberg picture

evaluated at final time. The eigenvalues give the probabilities of the transfer

while the eigenfunctions give the superposition states that extremize the

functional. Typically one is only interested in the maximum eigenvalue

and eigenfunction, although for other operators it could be the minimum.

Expanding the initial wave function in the set of N allowed vibrational

levels in the ground electronic state (where N could include all the bound

vibrational levels in the ground electronic state or only a subset of them),

ψ i¼
PN

k akiφj, and deriving J 0 with respect to the coefficients of the super-

position aj, we obtain Eq. (111) in matrix form (Chang et al., 2015e),
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XN
k¼1

Pjkaki¼ ajiχ i, (112)

where

Pjk¼hφjjPH jφki: (113)

Chang and coworkers have applied the Geometrical Optimization

scheme to maximize electronic absorption (Chang et al., 2015d,e), selective

excitation of entangled states and quasi-dark states (Chang et al., 2015c),

multiphoton transitions (Sampedro et al., 2016b), and isomerization reac-

tions (Chang et al., 2017a). In particular, it was shown that the preparation

of specific superposition states was necessary to accelerate the absorption and

achieve state-selective excitation with broadband pulses.

8.6 Pulse Shaping and Adaptive Learning
The solution of both OCT and LCT approaches gives typically complex

pulses or pulse sequences. The optimal pulse must adjust its amplitude and

phase at each time to maximally use the instantaneous transient dipole of

the molecule; and for competing processes, it must generate dynamical

phases that lead to constructive interference on thewanted state, and destruc-

tive interference in all other available states. With the development of pulse

shaping techniques, these pulses are within the reach of most laser experi-

mentalists. The starting point is the generation of ultrashort transformed-

limited pulses. In a Fourier-transformed pulse all frequencies are locked.

Manipulation of these frequencies in phase and amplitude constitutes the

key tool for changing the temporal structure.

The basic idea is shown in Fig. 35. The short pulse is decomposed into its

Fourier components. Then a mask is applied generating phases (and/or

blocking components) that lead to the modification of the pulse after Fourier

recombination. Mathematically, this process can be written as

E+modðtÞ¼
1

2π

Z ∞

�∞
eM ðωÞE+ðωÞeiωtdω, (114)

where eM ðωÞ is the complex optical transfer function (or spectral mask) that

represents the passage of the pulse through a linear optical system, and E+(ω)
is the positive part of the initial pulse spectrum. Since Eq. (114) is a product

in the frequency domain, the inverse Fourier transform is a convolution of

the pulse and mask in the time domain.
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As an exercise in Fourier analysis, it is relatively simple to anticipate some

interesting effects of pulse shaping on the original pulse, which we assume

Gaussian. Consider a purely phase mask that does not change the spectrum.

If the optical phase ω(t) is quadratically modulated it leads to linear chirping

of the frequency and stretching of the pulse, as indicated in Section 6.2.

Third-order dispersion breaks the symmetry of the system, generating weak

sidepulses leading or trailing the main subpulse (McMullen, 1977). Phase

jumps subdivide the pulse in two (Meshulach and Silberberg, 1999;

Pr€akelt et al., 2004; Renard et al., 2004), whereas sinusoidal spectral phase

modulation generates a train of pulses where one can control the amplitudes

and time delays between the subpulses (Herek et al., 2002; Meshulach and

Silberberg, 1998; Weiner et al., 1990).

In practice, the generation of complex shaped laser pulses is now regu-

larly achieved on programmable pulse shaping techniques that control eM ðωÞ
based on liquid crystal spatial light modulators (Weiner, 1995, 2000) or

acousto-optic modulators (Wefers and Nelson, 1995) among other possibil-

ities. But, in many quantum control cases, eM ðωÞ is parameterized in a very

general way, without constraining the functional form. The parameters are

then obtained by quantum control algorithms. Typically, a family of pulses is

produced and its performance is checked by measuring the observable of

interest. Then an evolutionary algorithm (or a different learning algorithm)

is used to manipulate the pulse parameters (the Fourier amplitudes and

phases) keeping the pulses that gave better performance and introducing

randomized variations (or interchanged of parameters, etc.), so that a new

family of pulses is generated and the procedure is iteratively continued until
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Fig. 35 (A) Basic layout for Fourier transform femtosecond pulse shaping. (B) Schematic
illustration of shaping the temporal profile of an ultrashort laser pulse in a liquid crystal
modulator. Adapted from Stoian, R., Wollenhaupt, M., Baumert, T., Hertel, I.V., 2010. Temporal
Pulse Tailoring in Ultrafast Laser Manufacturing Technologies. Springer, Berlin, Heidelberg. ISBN
978-3-642-10523-4, 121–144. https://doi.org/10.1007/978-3-642-10523-4_5 with permission.
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convergence. This feedback learning or closed-loop approach to optimize

light-induced processes, started a whole new class of experiments, that

had a very strong impact on the evolution of the quantum control field, with

applications ranging from selective nonlinear spectroscopy (e.g., high-

harmonic generation) in atoms, multiphoton microscopy, photodissociation

and isomerization reactions in complex molecules, or electron transfer, to

even the control of the energy flow in biomolecular complexes, and appli-

cations in liquid phase and in semiconductors. We refer the interested reader

to the general reviews that focus on the many experimental achievements of

quantum control through adaptive learning (Brif et al., 2012; Brixner and

Gerber, 2003; Gordon and Rice, 1997; Nuernberger et al., 2007; Rabitz

et al., 2000) and the references therein.

9. SUMMARY AND OUTLOOK

In this chapter we have reviewed several general aspects of quantum con-

trol. Understanding how the different pulse parameters act driving the dynamics

allows to motive different control setups for selective population transfer

between quantum states and between manifolds of states (for instance, elec-

tronic states) that may serve as a doorway to design quantum information pro-

tocols, prepare quantum gates, optimize nonlinear spectroscopic methods, or

control photochemical and photophysical processes. We have mainly used

results fromour research to illustrate how themethodswork in simple scenarios.

Starting from the simplest example of a two-level system, we have com-

mented on control mechanisms based on so-called π-pulses and on adiabatic
evolution using two-photon transitions and geometric phases. As an exam-

ple, we focused on preparing quantum gates where the qubit is implemented

on the electron spin. Application of adiabatic passage using frequency

chirped pulses to maximize the Raman coherence for CARS signal

enhancement has been presented, introducing the roof method. Both

STIRAP and their generalizations for sequentially coupled multilevel sys-

tems were explained, focusing on similarities and differences between

S-STIRAP and A-STIRAP. We presented some results of the two-qubit

system dynamics as an example of closed-loop system control using the rel-

ative phase between two quantum pathways. Collapse and revival of entan-

glement has been discussed addressing trapped ions state manipulation by

external fields in two different excitation regimes. The important role of

the relative phase between the pulses in the modified Mølner–Sørensen
scheme of CNOT quantum gate implementation has been demonstrated.
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We then studied how the previous solutions could be applied using

pulses short enough that create wave packets, and the interplay between

the dynamic dephasing (the evolution induced by the gradient of the poten-

tials) and the excitation processes to control the position and width of the

wave function. These schemes are extensions of the Tannor–Kosloff–Rice

control setup. We analyzed the role of the pulse intensity in the control of

the absorption spectra, lifetimes, geometry, photophysical (intersystem

crossing, internal conversion), and photochemical properties of molecules

under strong fields, where the dynamical properties can be better understood

using light-induced potentials. Most of these schemes generalize the APLIP,

LAMB, and NRDSE control setups that use the dynamical Stark effect to

induce the desired dynamics or to decouple the unwanted processes. Finally,

we briefly discussed how to maximally use all the physical resources in the

pulse to optimally drive the dynamics, formulating the quantum optimal

control problem.We mainly focused on connections between optimal con-

trol, local control, and tracking methods and described different algorithms.

The important problems of controllability and quantum landscapes and their

importance in deriving general properties of the control solutions were

briefly mentioned.

Before ending, we would like to comment on some challenges and some

motivations underlying many conceptual problems that are open.

Many quantum control experiments applied the closed-loop learning

algorithm method of Judson and Rabitz to laser excitation with Ti-sapphire

laser pulses, due to the nice shaping capabilities of femtosecond pulses. This

approach artificially limits the systems that can be controlled to those that can

be excited at 1.55 eV or their multiples (Lozovoy and Dantus, 2005). In spite

of these constrains, in most experiments one routinely finds solutions to the

point of raising the question of whether optimal control can be economically

viable as a competing route for chemical reactions. However, it is difficult to

assess how close or far are the solutions from global maxima. In addition,

most experiments required maximizing yields or ratios of coarse-grained

observables, where it is not so difficult to obtain reasonable yields almost

by statistical sampling. The challenge remains in finding good controls of

fine observables that integrate more information from the dynamics and

particularly in addressing not only photodissociation or rearranging reac-

tions, but also photoassociation processes, that can be used to synthesize a

molecule in a quantum state. Several control mechanisms were proposed

in cold conditions (Koch and Shapiro, 2012), but recently photoassociation

at high temperature is being studied (Levin et al., 2015).
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Other frontiers are in the timescale and the complexity. Controlling

electronic or coupled nuclear-electronic processes in the attosecond scale

is still in its infancy. More developed is the study in complex setups. There

are remarkable results in the control of processes in liquid phase and with

biomolecules (Brixner et al., 2001; Herek et al., 2002; Vogt et al., 2005),

where dissipation or decoherent effects should pose insurmountable difficul-

ties to quantum control. In current experiments, it is hard to assess to what

degree the control uses quantum resources, as it is in general difficult to

characterize the mechanism by which the control drives the dynamics,

but some protocols for classifying the solutions have been proposed

(Mitra et al., 2003; Rey-de Castro and Rabitz, 2010; Sharp et al., 2008).

In many ways the philosophy of quantum control is the opposite to that

of Nanoscience. In Nanoscience one synthesizes a quantum system so that it

behaves in the desired way (e.g., a catalyst of a chemical reaction) or has the

demanded property (e.g., emits at a certain frequency). Essentially to manip-

ulate the properties of a system one enlarges the Hilbert space adding

particles, working with few states per particle or, in other words, staying

at the lowest energy states. The setup is stable but not very flexible, and there

are no good inversion or optimization algorithms that help us to fine the

optimal Hamiltonian. In quantum control the complexity is given by the

set of excited states and is temporally addressed by the external field, which

must therefore be complex in most cases. This leads to very flexible and fast

controls and fast algorithms that find optimal solutions, although they are

often not very stable. One of the greater challenges in quantum control is

the application of its techniques to optimize important processes in

Nanoscience, for instance, forcing molecules to act as catalysts, or in Quan-

tum Technology, for instance, finding quantum algorithms. From control-

lability and landscape theories we might expect that such solutions exist and

maybe they are not so difficult to find (Russell and Rabitz, 2017). However,

the picture is not clear in the presence of irreversible processes such as

dissipation or the loss of particles as in fragmentation or ionization processes

at strong fields. The challenge and the opportunities are still lying ahead.
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Elghobashi, N., González, L., 2004. Breaking the strong and weak bonds of OHF� using
few-cycle IR + UV laser pulses. Phys. Chem. Chem. Phys. 6 (16), 4071–4073.
https://doi.org/10.1039/B409446H.

Engel, V., Meier, C., Tannor, D.J., 2009. Local Control Theory: Recent Applica-
tions to Energy and Particle Transfer Processes in Molecules, vol. 141. John
Wiley & Sons, Inc. ISBN: 9780470431917, pp. 29–101. https://doi.org/10.1002/
9780470431917.ch2.

244 Ignacio R. Sola et al.

https://doi.org/10.1103/PhysRevA.52.R3417
https://doi.org/10.1103/PhysRevA.52.R3417
https://doi.org/10.1103/PhysRevLett.65.2355
https://doi.org/10.1103/PhysRevLett.65.2355
https://doi.org/10.1063/1.468998
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0300
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0300
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0305
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0305
https://doi.org/10.1021/j100178a022
https://doi.org/10.1038/nchem.2006
https://doi.org/10.1038/s41467-017-01139-6
https://doi.org/10.1038/s41467-017-01139-6
https://doi.org/10.1021/acs.jpclett.7b00413
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0330
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0330
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0330
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0335
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0340
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0340
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0340
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0340
https://doi.org/10.1063/1.478305
https://doi.org/10.1063/1.478305
https://doi.org/10.1063/1.4826172
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0355
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0355
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0360
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0360
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0365
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0365
https://doi.org/10.1039/B409446H
https://doi.org/10.1002/9780470431917.ch2
https://doi.org/10.1002/9780470431917.ch2


Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V., 2000. Detection of geometric
phases in superconducting nanocircuits. Nature 407, 355–358.

Falge, M., Engel, V., Gr€afe, S., 2012a. Fingerprints of adiabatic versus diabatic vibronic
dynamics in the asymmetry of photoelectron momentum distributions. J. Phys. Chem.
Lett. 3 (18), 2617–2620.

Falge, M., Engel, V., Lein, M., Vindel-Zandbergen, P., Chang, B.Y., Sola, I.R., 2012b.
Quantum wave-packet dynamics in spin-coupled vibronic states. J. Phys. Chem. A
116 (46), 11427–11433. https://doi.org/10.1021/jp306566x.

Falge, M., Vindel-Zandbergen, P., Engel, V., Lein, M., Chang, B.Y., Sola, I.R., 2014. The
time-scale of nonlinear events driven by strong fields: can one control the spin coupling
before ionization runs over? J. Phys. B 47 (12), 124027. http://stacks.iop.org/0953-
4075/47/i¼12/a¼124027.

Falvo, C., Debnath, A., Meier, C., 2013. Vibrational ladder climbing in carboxy-
hemoglobin: effects of the protein environment. J. Chem. Phys. 138 (14), 145101.
https://doi.org/10.1063/1.4799271.

Friedrich, B., Herschbach, D., 1995. Alignment and trapping of molecules in intense laser
fields. Phys. Rev. Lett. 74, 4623–4626. https://doi.org/10.1103/PhysRevLett.74.4623.

Garraway, B.M., Suominen, K.A., 1995. Wave-packet dynamics: new physics and chemistry
in femto-time. Rep. Progr. Phys. 58 (4), 365. http://stacks.iop.org/0034-4885/58/i¼4/
a¼001.

Garraway, B.M., Suominen, K.A., 1998. Adiabatic passage by light-induced potentials in mol-
ecules. Phys. Rev. Lett. 80 (5), 932–935. https://doi.org/10.1103/PhysRevLett.80.932.

Gaubatz, U., Rudecki, P., Schiemann, S., Bergmann, K., 1990. Population transfer between
molecular vibrational levels by stimulated Raman scattering with partially overlapping
laser fields. a new concept and experimental results. J. Chem. Phys. 92, 5363.

Geppert, D., de Vivie-Riedle, R., 2005. Reaction velocity control by manipulating the
momentum of a nuclear wavepacket with phase-sensitive optimal control theory. Chem.
Phys. Lett. 404, 289.

Geremia, J.M., Zhu, W., Rabitz, H., 2000. Incorporating physical implementation concerns
into closed loop quantum control experiments. J. Chem. Phys. 113 (24), 10841–10848.
https://doi.org/10.1063/1.1326905.

Giusti-Suzor, A., Mies, F.H., 1992. Vibrational trapping and suppression of dissociation in
intense laser fields. Phys. Rev. Lett. 68 (26), 3869–3872. https://doi.org/10.1103/
PhysRevLett.68.3869.

Giusti-Suzor, A., Mies, F.H., DiMauro, L.F., Charron, E., Yang, B., 1995. Dynamics of H+
2 in

intense laser fields. J. Phys. B 28 (3), 309. http://stacks.iop.org/0953-4075/28/i¼3/a¼006.
Glushko, B., Kryzhanovsky, B., 1992. Radiative and collisional damping effects on efficient

population transfer in a three-level system driven by two delayed laser pulses. Phys. Rev.
A 46, 2823–2830.

Gollub, C., Kowalewski, M., de Vivie-Riedle, R., 2008. Monotonic convergent optimal
control theory with strict limitations on the spectrum of optimized laser fields. Phys.
Rev. Lett. 101 (7), 073002. https://doi.org/10.1103/PhysRevLett.101.073002.

Gonzalez-Vazquez, J., Sola, I.R., Santamaria, J., 2006a. Adiabatic passage by light-induced
potentials in polyatomic molecules. J. Phys. Chem. A 110 (4), 1586–1593. https://doi.
org/10.1021/jp0539021.

Gonzalez-Vazquez, J., Sola, I.R., Santamaria, J., Malinovsky, V.S., 2006b. Optical control of
the singlet-triplet transition in Rb2. J. Chem. Phys. 125 (12), 124315. https://doi.org/
10.1063/1.2355492.

Gonzalez-Vazquez, J., Sola, I.R., Santamaria, J., Malinovsky, V.S., 2006c. Quantum con-
trol of spin-orbit coupling by dynamic Stark-shifts induced by laser fields. Chem. Phys.
Lett. 431 (4), 231–235. https://doi.org/10.1016/j.cplett.2006.09.085. http://www.
sciencedirect.com/science/article/pii/S0009261406014473.

245Quantum Control in Multilevel Systems

http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0380
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0380
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0385
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0385
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0385
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0385
https://doi.org/10.1021/jp306566x
http://stacks.iop.org/0953-4075/47/i=12/a=124027
http://stacks.iop.org/0953-4075/47/i=12/a=124027
http://stacks.iop.org/0953-4075/47/i=12/a=124027
http://stacks.iop.org/0953-4075/47/i=12/a=124027
http://stacks.iop.org/0953-4075/47/i=12/a=124027
https://doi.org/10.1063/1.4799271
https://doi.org/10.1103/PhysRevLett.74.4623
http://stacks.iop.org/0034-4885/58/i=4/a=001
http://stacks.iop.org/0034-4885/58/i=4/a=001
http://stacks.iop.org/0034-4885/58/i=4/a=001
http://stacks.iop.org/0034-4885/58/i=4/a=001
http://stacks.iop.org/0034-4885/58/i=4/a=001
https://doi.org/10.1103/PhysRevLett.80.932
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0420
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0420
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0420
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0425
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0425
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0425
https://doi.org/10.1063/1.1326905
https://doi.org/10.1103/PhysRevLett.68.3869
https://doi.org/10.1103/PhysRevLett.68.3869
http://stacks.iop.org/0953-4075/28/i=3/a=006
http://stacks.iop.org/0953-4075/28/i=3/a=006
http://stacks.iop.org/0953-4075/28/i=3/a=006
http://stacks.iop.org/0953-4075/28/i=3/a=006
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0445
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0445
http://refhub.elsevier.com/S1049-250X(18)30003-X/rf0445
https://doi.org/10.1103/PhysRevLett.101.073002
https://doi.org/10.1021/jp0539021
https://doi.org/10.1021/jp0539021
https://doi.org/10.1063/1.2355492
https://doi.org/10.1063/1.2355492
https://doi.org/10.1016/j.cplett.2006.09.085
http://www.sciencedirect.com/science/article/pii/S0009261406014473
http://www.sciencedirect.com/science/article/pii/S0009261406014473
http://www.sciencedirect.com/science/article/pii/S0009261406014473


Gonzalez-Vazquez, J., Sola, I.R., Santamaria, J., Malinovsky, V.S., 2007. Vibrationally state-
selective spin-orbit transfer with strong nonresonant pulses. J. Phys. Chem. A 111 (14),
2670–2678. https://doi.org/10.1021/jp066825y.
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Halász, G.J., Vibók, A., Moiseyev, N., Cederbaum, L.S., 2013b. Nuclear-wave-packet
quantum interference in the intense laser dissociation of the D+

2 molecule. Phys. Rev.

A 88 (4), 043413. https://doi.org/10.1103/PhysRevA.88.043413.
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