AFRL-RY-WP-TR-2020-0013

CLEARSCOPE: FULL STACK PROVENANCE GRAPH
GENERATION FOR TRANSPARENT COMPUTING ON
MOBILE DEVICES

Michaell Gordon, Jordan Eikenberry, Anthony Eden, Jeffrey Perkins, Malavika Samak,
Henny Sipma, and Martin Rinard

Massachusetts Institute of Technology

JULY 2020
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with The Under Secretary of Defense memorandum
dated 24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020. This
report is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)

(http://www.dtic.mil).

AFRL-RY-WP-TR-2020-0013 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// /ISignature//

CHARLES P. SATTERTHWAITE BENJAMIN J. BRUCKMAN, Maj, USAF
PM, Resilient & Agile Avionics Branch Chief, Resilient & Agile Avionics Branch
Spectrum Warfare Division Spectrum Warfare Division

/ISignature//

JOHN F. CARR, Chief
Spectrum Warfare Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a

collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)
July 2020

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
30 June 2015 — 30 November 2019

4. TITLE AND SUBTITLE
CLEARSCOPE: FULL STACK PROVENANCE GRAPH
GENERATION FOR TRANSPARENT COMPUTING ON MOBILE
DEVICES

5a. CONTRACT NUMBER
FA8650-15-C-7564

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Michaell Gordon, Jordan Eikenberry, Anthony Eden, Jeffrey Perkins,
Malavika Samak, Henny Sipma, and Martin Rinard

5d. PROJECT NUMBER
1000

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
Y1B5

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institute of Technology
77 Massachusetts Ave.
Cambridge, MA 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research
Projects Agency
DARPA/I20

675 North Randolph Street
Arlington, VA 22203

Air Force Research Laboratory
Sensors Directorate

Wright-Patterson Air Force Base, OH
45433-7320

Air Force Materiel Command

United States Air Force

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/RYZC

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-RY-WP-TR-2020-0013

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

This report is the result of contracted fundamental research deemed exempt from public affairs security and policy review in accordance
with The Under Secretary of Defense memorandum dated 24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020.
This material is based on research sponsored by Air Force Research laboratory (AFRL) and the Defense Advanced Research Agency
(DARPA) under agreement number FA8650-15-C-7564. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation herein. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies of endorsements, either expressed or implied, of AFRL and

DARPA or the U.S. Government. Report contains color.

14. ABSTRACT

The ClearScope project associates a provenance history graph for each value of Android application via a custom build of the Android
operating system. Provenance provides a history of the sensitive sources and sinks that influenced a value, including the temporal order of
the operations, and details of the operations (e.g., file names, IP addresses, data values, the calling program and user, etc.). This information
can be employed to improve the accuracy and efficiency of malware and APT detection, forensics, and policy enforcement. The ClearScope
project combines multiple instrumentation systems to provide unprecedented coverage for an Android system at low overhead. Performance
experiments with the Caffeine Mark benchmarks demonstrate 14% overhead. Additionally, we demonstrate only a 1% overhead for Firefox
browser benchmarks. For the TC engagements, we captured all in-bounds malicious actions performed by TA4 (the red team). For TC, we
are the only system to track and report fine-grained and value-precise data-provenance. We have robust ClearScope builds for Android 5, 6,
7, and 8 for multiple devices. We also published our work in major conferences and technical reports.

15. SUBJECT TERMS
provenance, dynamic instrumentation, security, information leaks

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 8. NUMBER OF

a. REPORT | b. ABSTRACT | c. THIS PAGE ABSTRACT: PAGES
Unclassified | Unclassified | Unclassified SAR 178

N/A

19a. NAME OF RESPONSIBLE PERSON (Monitor)
Charles Satterthwaite
19b. TELEPHONE NUMBER (Include Area Code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Table of Contents

Section Page
I TS 0 1o U T 2 PP |||
LISt OF TabIes. ..o e e e e eV

1.0 SUMMARY ettt ettt ettt et e s sttt e st e e s bee e sabe e s sbeeesabeesabesesbbessbasesbeeesabesssbbeesabessabeneas 1
2.0 INTRODUCTION ..ottt ettt ettt e s s bt e s s b e e s sbt e e sabe s e abaeesbtessabesesbbessabesaareeans 2
2.1 COMPLEMENTARY PROVENANCE TRACKING MECHANISMScoooiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 3
2.2 EVALUATION AND RESULTS .ooiii oottt ettt ettt 4
2.3 CONTRIBUTIONS «..eieie ettt ettt ettt ettt ettt 4
2.4 CONCLUSION AND NEXT STEPS ...coi oottt 5
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES..........coooiiici et 7
3.1 CLEARSCOPEvviiitii ettt ettt e st e e e st e e s ebe e e eat e e sabe e s ebee e sateesateseshteseabesebeeesabaseabesesabeesabase st beesabasaaraneas 7
00 A S 1 =1V I 5] [RO 7
3.1.2 PROVENANCE FORMALIZATION ...uiiiiititieiiteieesitteeeessbreeesssbaesssssbasssssssssssssssassessssssssssssssssssssesssssssenes 11
3.1.3 JAVA-BASED INSTRUMENTATION IMPLEMENTATION.cciiuiiiitiieittiestisesttesssteessseesstessssressssassssesesans 15
3.1.4 DYNAMIC INSTRUMENTATIONuvviiitiieittteitteessttessatessttsssstssssbesssssassasessssesssassssssessssssssssesssssssessensssns 18
3.1.5 SOURCES AND SINKS GENERATIONuuiiiiiitiiteiitrreeeiirreeesiseeeesiseeesssssesssssssesssssssssssssssssssssssssssssenes 19
3.1.6 INTINTERFACE .. .cicttieietieeettee ettt e s ettt e s tee e ettt e sabe e s stbeesateesbeeesabesssbeeesabaesabesesbbessbesesabassabesesbbessrbeeesbenssans 33
IR A = = T = o N RS RRRR 35
IR T = =00) O 17N =TSR 36
RS T === 0] = | N[TSR 37
3.1.10 BUILD ENVIRONMENTvtiiittiesstteestteesttsssstesssstessatassbesssssesssbesssstassasesssssessssssssessssbessssbesssesessenssans 46
3.1.11 ARRAY AGGREGATION / DEAGGREGATIONcvuiiitieiitieeitiesiteeesstesstesesstessstesssseesstesssseesssessssesssnns 47
3.1.12 ART MODIFICATIONSciitttteetitteeee e ittt et sbeeeesstbaeeessbeeeesssbaeeesssbaeeesssbbeeesssbaseesssbsesessbresessbeesssssrens 47
3.1.13 UPGRADES TO NEW ANDROID VERSIONScitttteitieiitireitisssteresstessisessssssssssssssssssssssssssssssssssssesssans 48
3.1.14 STRING (AND PRIMITIVE WRAPPER) INTERNING ...cvtterteteriesieseesenseasessessesseseeseeseesessessessessessesseseens 49
N R =t I N1 ST 51
3.1.16 COMPATIBILITY TEST SUITE (CTS) MODIFICATIONS AND RESULTS.....ceiviiterieiereerinreereneesseneeseenenns 52
3.1.17 BINARY TRACKING AND REPORTING IMPLEMENTATIONccuviiiitieiitieeseriessteeesieesstesssstesssaassssenssans 52
3.1.18 CDIM TRANSLATION .. eiiiittteeeiitteteesibtetesibeeeesstbeeeessbsesesssbaesessbaseesssbsesesssbeseesssbsesessbrsssssseesssssrens 71
I = I o VS I Y 4 Y O 73
I R | N 210] 016 [ox i (0] SRRSO 73
A = 7:Y01 112 {0 18] | o TSR 73
K T o o 1N = = I U= =0 | = TR 78
3.2.4 PHASE 2: MIPS DISASSEMBLER........uuttiittteittiesitttestiessttessstessstesssstassesessssesssssesssstsssbesssstsssssessssesssans 81
3.2.5 PHASE 3: TRANSLATION INTO LLV MM ... oottt ettt st sttt e s sbe e 84

Approved for public release; Distribution is unlimited i

4.0 RESULTS AND DISCUSSION......ccoiiiiiiiiiieiee s 87

R O I = = 100 = =S TRR 87
N R I O N[N = [N TR 87
4.1.2 PERFORMANCE ANALYSIS ...utiiiiiitiitiiititeesiittesesitreeessissesssssbesessasbessssssbessssassessesasbessssassessesssssesesannns 95
4.1.3 ADUPS FOTA: FORENSIC CASE STUDY ..eiiiiiutiiiiiiriiesiitteeessitteesssistaessssbasesssstesssssstaessssnsesssssssssssssnnns 95
4.2 ELF = IMIPS —LLVIM oottt ettt ettt e st e e bt e s st e e s et e e e sataesaba s s sbbeesbaeasraneas 101
4.2.1 ANALYSIS RESULTS: X806 DNSIMASQuueieiiitriieeiitiiiessirtiiessitassessns 101
4.2.2 ANALYSIS RESULTS: MIPS DNSIMASQ....uciiiiittiieeiittieeeiitteeesiitieeessistesesssssesessssesesssssesssssssnsesssssesessnnes 126
4.2.3 LLVM INFRASTRUCTUREccitieiititeittte sttt e steessatesssttsssstesstesssstessbesassesssabesssbesssasassbassssessssbesssseneas 136
4,24 LLVIM TEST CASESutiiiitiieitie et e sttt et ette s sttt e satesssttessateesabesssabessbesesbesesabesssbeeesatasssbasssbbsssbasasraneas 139
T N0 10 I 1 [PR 139
N T =1 ¥ o1 TR 142
.27 COMPARISONcveiiiteieittiesettee st eesettessatessettesssesssabesssbesssatessatessssbesssbesesbessssbasssbesssasasssbesssbesssbesasreneas 145
4.2.8 IMIXED EXPRESSIONS ...vviiiiiitiiieiiitteteeiitteeesiittesessebtesesabseeessbaesessbaesesabsesesasbaesessbessessabeesessseesesanses 146
4.2.9 IMULTIPLICATION ..tttteiittieeeietteee s eetteeessebbeeessebbesesaebbeeessbbeeessbaesessbbesesabbesesasbbesessbbesessbbesessnbeeeesanses 148
4,210 PHI EXPRESSIONS.utitiitiieietieeitessstteesettesssesssatesssttsssstesssbessssbessbesesbesssabesssbesssabsessbassssbesssbesasraneas 150
4.2.11 POINTER EXPRESSIONS......uieitieiititeitttesitteesessssessssesssssssssessssssssssssassssssssssssesssssssssssssssnssssessssasens 152
R 10 1= 1 =YX o i [0 N R 163
5.0 CONCLUSION ...ttt ettt ettt ettt st e st e e sttt s s et e e e sateesabe s s sabessbasssbesessbasesbbessrbasssraneas 167
6.0 REFERENGCES ...ttt ettt s s st e e s s e e e s s bb e e e s sbbee e s s bbbessssabeesssnbensssnres 168
7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMSoooiiiiiieiiiie e 170

Approved for public release; Distribution is unlimited ii

Figure
3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
4.1

4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

411

List of Figures

Execution language of the system

Inference rules

CodeHawk Tool Suite

Overall architecture of the CodeHawk Binary Analyzer
Architecture of the CodeHawk Binary Analyzer
CodeHawk Binary Analyzer Architecure(original)
CodeHawk Binary Analyzer Architecure of ELF support
CodeHawk Binary Analyzer Architecure of MIPS modules
CodeHawk Binary Analyzer Architecure of LLVM module

Engagement 2, Provenance history for the data exfiltration by the
Setex app of the Bovia scenario

Engagement 2, Provenance history for the data exfiltration by the
GatherApp with HelloWorld app of the pandex scenario

Engagement 4 Day 1, Attack 1 results

Engagement 4 Day 1, Attack 2 results

Engagement 4 Day 1, Attack 3 results

Engagement 4 Day 2, Attack 1 results

Engagement 4 Day 2, Attack 1 results

Engagement 5 Common Data Model (CDM) Production
Engagement 5 reporting Results - 1

Engagement 5 reporting Results — 2

Engagement 5 reporting Results - 3

Approved for public release; Distribution is unlimited

Page
13
14
82
84
86
87
88
91
94

99

100

102
102
102
103
103
103
104
104

105

4.12
4.13
4.14
4.15

4.16

4.17

4.18

Engagement 5 reporting Results - 4

Adups Advanced Persistent Threat (APT) Lifecycle

Adups 24-hour exfiltration HTTP post

Three provenance examples from Adups 23-hour exfiltration

Beginning of run-length encoded provenance tag stream for
Adups’s 72-hour exfiltration communication. Communication is
compressed prior to exfiltration, so ASCII representation of data
is not helpful.

Example of one provenance tag derivation from 72-hour
exfiltration cycle.

Timeline of reads of sensitive information relative to network
send operation for 72-hour exfiltration.

Approved for public release; Distribution is unlimited

105
108
108
109
110

111

111

Table

3.18

3.19

3.20

List of Tables

List of system calls tracked and reported by the
native tracking component ClearScope

List of system binaries that are not tracked by
ClearScope

Status of test function conversion on LLVM IR

Approved for public release; Distribution is unlimited

Page

73

77

97

1.0 SUMMARY

Detailed information about the paths that data take through a system is invaluable for understanding
sources and behaviors of complex exfiltration malware. We present a new system, ClearScope,
associates a provenance history graph for each value of program. Provenance provides a history of
the sensitive sources and sinks that influenced a value, including the temporal order of the
operations, and details of the operations (e.g., file names, IP addresses, data values, the calling
program and user, etc.).

The ClearScope project included three main instrumentation and monitoring mechanisms:

1. Off-line static instrumentation of all Java code of the Android Open Source Platform
(AOSP). This static instrumentation operates on the compiled DEX code for ALL of the
Java code of a new Android system. It also includes aggressive and sophisticated static
optimizations to reduce overhead of provenance tracking.

2. Dynamic monitoring of native code executing outside the context of the Android Java
runtime. This monitoring is achieved via modifications to the kernel to provide callbacks
into reporting and tracking code at system calls of interest. The monitoring is extremely
low-overhead, and conservatively maintains provenance histories for values.

3. On-line static instrumentation of downloaded 3rd party applications. A stripped down
version of the DEX static instrumentation is included on a ClearScope device, and
modifies all downloaded applications at install time.

These three mechanisms combine to give us unprecedented coverage of the execution of apps and
processes on an Android device. We have also protected the tracking and reporting with novel
kernel protections.

The ClearScope system design enables this unprecedented level of provenance tracking detail by
1) structuring the provenance representation as references, via provenance tags, to provenance
events that record the movement of data between system components and into or out of the device
and 2) adopting a split design in which provenance events are streamed to a remote server for
storage, with only the minimal information required to generate the tagged stream of events
retained on the device. ClearScope also includes compiler optimizations that enable efficient
provenance tracking within applications by eliminating unnecessary provenance tracking
computations and adopting and efficient aggregate provenance representation for arrays when all
array elements have the same provenance.

Experience using ClearScope to analyze the notorious Adups FOTA malware highlights the
significant benefits that this level of comprehensive detail can bring. Performance experiments
with the Caffeine Mark benchmarks show that the overall ClearScope provenance tracking
overhead on this benchmark suite is 14%. Additionally, we demonstrate only a 1% overhead for
Firefox browser benchmarks.

For Transparent Computing (TC)’s engagements, we captured all in-bounds malicious actions
performed by TA4 (the red team). Across TC, we are the only system to track and report fine-
grained and value-precise data-provenance. We have robust ClearScope builds for Android 5, 6, 7,
and 8 for multiple devices. We also published our work in major conferences and technical
reports [1, 2, 3, 4, 5, 6].

Approved for public release; Distribution is unlimited 1

2.0 INTRODUCTION

Understanding the flow of information through a device can be critical for finding and
understanding information and privacy leaks. A standard approach is to instrument the software
running on the device to tag data with information about its source [7, 8, 9]. The information can
then be propagated through the device and read at specified points to enforce privacy policies.

For the Transparent Computing (TC) program, we developed a novel and robust system,
ClearScope, for precise and comprehensive provenance tracking of information that flows through
Android devices. In contrast to previous systems, ClearScope tracks the complete path that data
takes through the device, from its initial entry into the device through to its exit point, including
applications, files, binders, and pipes that the data traverses along this path, as well as tracking
flows in both the Dalvik Android Runtime (ART) and code executing outside of the runtime (native

code). ClearScope can also track up to 232 combinations of information sources and intermediate
information traversal points. Previous systems, in contrast, can track only a small fixed number of
information sources (typically between 1 to 32 sources). And the information that ClearScope
delivers has unprecedented precision, including the time of data traversal events, the precise
location in the application where data traversal events take place, and the initial source or sources
of relevant data at the level of individual bytes.

The ClearScope project included three main instrumentation and monitoring mechanisms:

1. Off-line static instrumentation of all Java code of the Android Open Source Platform
(AOSP). This static instrumentation operates on the compiled DEX code for ALL of the
Java code of a new Android system. It also includes aggressive and sophisticated static
optimizations to reduce overhead of provenance tracking (see Section 3.1.3).

2. Dynamic monitoring of native code executing outside the context of the Android Java
runtime. This monitoring is achieved via modifications to the kernel to provide callbacks
into reporting and tracking code at system calls of interest. The monitoring is extremely
low-overhead, and conservatively maintains provenance histories for values (see
Section 3.1.17).

3. On-line static instrumentation of downloaded 3rd party applications. A stripped down
version of the DEX static instrumentation is included on a ClearScope device, and
modifies all downloaded applications at install time (see Section 3.1.4).

These three mechanisms combine to give us unprecedented coverage of the execution of apps and
processes on an Android device. We have also protected the tracking and reporting with novel
kernel protections (see Section 3.1.17.5).

ClearScope includes several implementation techniques that enable this level of information to be
productively collected from a running Android device. First, its system architecture includes a
remote server that maintains the majority of the detailed information (Section 3.1.18). This system
design effectively partitions the maintained provenance information between the device and the
server, maintaining the majority of the detailed information on the server and only the minimal
amount of information required for efficient operation on the device. With this design, the device
streams collected provenance information to the server as it executes. The device itself maintains
only the tables that it needs to generate the stream of provenance events. The server retains the full

Approved for public release; Distribution is unlimited 2

provenance tracking information, including all information required to create a provenance web
that captures the movement of data through the device.

ClearScope also includes several program optimizations. These include optimizations that maintain
a single provenance tag for an array of values if all values in the array have the same provenance
(without these optimizations the device does not even boot) and optimizations that remove
provenance propagation calculations for values that do not escape the application. Together, these
optimizations can reduce the provenance tracking overhead from a factor of two or more to 14%
(as measured in the standard Caffeine Mark benchmark set).

2.1 Complementary Provenance Tracking Mechanisms

For ClearScope, we developed complementary provenance tracking systems motivated by the
common execution pattern of Android applications. Android apps are typically implemented
mostly in Java (or Katlin) with included native libraries (written in C/C++). Execution of the Java
component of apps happens in the context of the ART, while binary libraries execute natively
(outside the context of ART). Most of the dynamic execution of a (non-game) application is in the
ART, and binary libraries are called like stateless accelerators for performance sensitive operations.
Our complete system tracks provenance through ART execution with complete precision with deep
application modification.

For the native execution context, our experiments showed the accelerator model computation does
not require such deep and invasive application modification and monitoring. Our native tracking
component thus keeps a single tag of provenance for each thread executing outside the context of
ART. This extremely low-overhead mechanism is suited towards capturing flows in the native
code where syscalls are rare, and most tainted data comes from (and is sinked in) the ART context.

When ART code calls native code (in a binary library) there is well-defined interface that is termed
the Java Native Interface (JNI). We have modified this interface to switch between the tracing
mechanisms and pass provenance information between the ART context and the native content.

The single provenance tag of the thread (which we term the “provenance union”, see
Section 3.1.17.2) is reset when the thread switches from the ART context to the native context via
the call. Furthermore, the tags on the arguments of the JNI call that initiated the context switch are
joined and the provenance union is set to this join. In the native context, when provenance is
injected into the thread via the execution of a syscall source, the new provenance is joined with the
provenance union. When the native context is finished execution, on switching back to the ART
context, the provenance union tag is joined with any return values or memory returned to the ART
via the JNI call.

This combination of mechanisms enabled ClearScope to maintain acceptable overhead, and
unprecedented accuracy, since to our knowledge it is the only non-emulation system to track
provenance through both ART and non-ART contexts.

Approved for public release; Distribution is unlimited 3

2.2 Evaluation and Results

During the life of the project, we have the following results and evaluations:

1. For each of the engagements, our system captured all in-bounds* malice performed by

TAA4 (the red team). For the engagements, our system executed in a robust manner, e.g., for
the last engagement we supported 3 devices over 2 weeks.

. We have used our implemented ClearScope system to analyze the notorious Adups FOTA

malware [10] shipped with over 700 million Android devices. This malware implements a
persistent, hidden information exfiltration algorithm that exfiltrates SMS messages,
histories, call logs, and contacts to an external Chinese web site, with both 24 and 72 hour
exfiltration cycles. Understanding this malware took Kryptowire months of analysis
effort [11]. With ClearScope, we were able to analyze the exact flow, pinpoint the source
of the information leak, and characterize the behavior of the malware with several hours
examining the provenance logs.

Recently, we employed ClearScope on Android 8.1 to evaluate 50 applications from the
Google Play top 100 apps list (as of August 2019). We collected over 1TB of data over 3
weeks of execution of the applications over 8 devices. Currently, we are analyzing this data
to find interesting security and privacy violations.

2.3 Contributions

ClearScope makes the following contributions:

The ClearScope project maintained industry-strict coding practices to develop multiple
robust versions of our custom builds of the AOSP. We have robust builds for Android
versions 5, 6, 7, and 8. Each of the versions pass all expected tests in the Android
Compatibility Test Suite (CTS) which includes hundreds of thousands of tests (see
Section 3.1.16). Our system are ready for many transition opportunities including
application vetting, honey pots, malware reverse engineering, and end-user deployment.

The system was developed over 4 years and includes over 7.34M LOC of the Android
Open Source Project added or modified. Four full-time developers worked on the project,
and the project graduated three Masters students and two PhD students.

Unlike previous systems, ClearScope records the complete path that data takes as it
traverses the system, including data entry and exit points, and application, file, pipe,
binder, and socket traversals. The recorded provenance information includes detail such as
times when provenance actions occur and provenance information that the level of
individual bytes of data.

Unlike previous systems, ClearScope tracks and reports flows through both the ART and
through code executing outside the context of the ART (native execution). Each of the two

1 We considered malice “in-bounds” if our system was scheduled, based on our statement of

work at the time of the engagement, to capture and report the underlying mechanism used for
the malice.

Approved for public release; Distribution is unlimited 4

execution contexts includes a separate mechanism for tracking. ART tracking is
accomplished via DEX instruction-level instrumentation (see Section 3.1.3, while native
tracking is accomplished via syscall monitoring via a novel kernel modifications (see
Section 3.1.17).

In our system, provenance reporting is extremely low overhead and naturally multi-
threaded. Constructing a provenance message and sending the message to the on-device
provenance service is performed in the execution context of the user thread that caused the
message to be constructed. We call this mechanism “Same-Thread Tracing” (see

Section 3.1.17.1).

ClearScope is extremely high-precision, with no false positives for tracking in the ART.
For ART, our system maintains a provenance tag per array element. For both systems, a
tag per byte is associated with each byte transferred over IPC/RPC, and for each byte of
the filesystem written by tracked processes.

ClearScope collects an unprecedented amount of information about the flow of data
through the device. It is infeasible to maintain this information only the device itself — the
amount of information would exceed the storage capacity of typically Android devices.
ClearScope therefore adopts a new design that streams information off to a remote server,
maintaining only the information required to efficiently generate the stream locally. This
novel split design is one of the key prerequisites to the effective collection and
maintenance of this level of provenance information.

ClearScope implements several optimizations that enable it to operate with acceptably low
overhead (14% on Caffeine Mark benchmarks). These optimizations include using a single
provenance tag to represent the provenance for all array elements when the array elements
all have the same provenance and eliminating provenance calculations for provenance that
does not escape the application.

The native tracking component of ClearScope is extremely low-overhead, with only 1%
overhead added for popular browser benchmarks executing in Firefox on the device.

We have used our implemented ClearScope system to analyze the Adups FOTA malware
as well as 35 top Android applications from the Google Play Store. These results highlight
the effectiveness of ClearScope in collecting detailed and comprehensive provenance
information for these applications.

Our Android 8 system includes protections against insider attacks on our tracking and
reporting. The provenance messages inbound to the reporting service are authenticated
such that the service can determine if the app has the ability to tamper with messages, e.qg.,
its privileges have been maliciously escalated. The kernel instructions added for enabling
and disabling tracing are guarded to make sure they are called from trusted code.
Furthermore, our off-device provenance translator can detect tampering of the provenance
shadow filesystem.

2.4 Conclusion and Next Steps

Accurate provenance information is critical for understanding device behavior and how
information flows through the device. This information can be particularly critical for
understanding persistent and stealthy information exfiltration malware. In comparison with

Approved for public release; Distribution is unlimited 5

previous taint tracking systems, ClearScope provides comprehensive provenance tracking that it
unprecedented in the quality and detail of the information that it can provide.

ClearScope is robust and ready for transition opportunities. Some of the appropriate missions
include:

Malware and Advanced Persistent Threat (APT) detection,
Malware and APT forensics,

Real-time, fine-grained, and advanced policy enforcement,
Pre-install application vetting for malware, and

App understanding for bug finding and policy adherence.

Furthermore, the techniques that we have developed in the context of Android will easily transfer
to other systems including Linux desktop / server, 10T and routers.

We sincerely thank DARPA for giving us the opportunity to develop ClearScope and hope that it
finds use in the DoD.

Approved for public release; Distribution is unlimited 6

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

For all the research we performed in this program, we adopted an experimental approach driven
by the evaluation scenarios.

3.1 ClearScope

We next present the ClearScope implementation, including the representation of provenance
throughout the system, when provenance events are generated, the overall system design, and the
different ClearScope optimizations.

3.1.1 System Design

This section provides a formal presentation of our novel notion of provenance; how provenance is
tracked and reported.

3.1.1.1 Provenance Events

ClearScope instruments the Android system and the DEX executables to emit provenance events
at program points where data enters or exits the device, is stored or retrieved from files on the
device, or enters or exits Android applications. These provenance events are then streamed off to
a remote server, which maintains the streamed provenance information. Each event has the
following fields:

* Flow: Tells whether the event is a source event (when data enters an application), a sink
event (when information leaves an application), or other event. Examples of other events
include file events (such as file creation, deletion, or open), binder events (such as open or
close), and pipe events (such as open or close).

» Event Type: Information about the type of the event. Many events are triggered by system
calls; this field typically records the system call that triggered the event.

» Application Information: The application id, thread id, and program point (summarized
as debugging information that identifies the specific point in the program where the event
occurred) for the event.

* Time: The time when the event occurred.

» Event Data: Provenance data for the event. This data typically includes the provenance
tags for each byte of transferred data (run-length encoded for events that transfer multiple
bytes). It can also optionally include all of the transferred data.

3.1.1.2 Provenance Tags

ClearScope maintains a 32 bit provenance tag for every byte of primitive data (characters, integers,
floating point numbers, booleans, etc.) accessed by Android applications, stored in the local file
system, or transferred between Android applications. For data in Android applications, these tags
are stored in shadow fields that ClearScope adds to the Java data structures for this purpose. For
data stored in file systems, each file has a shadow file that stores this provenance information. For
data between Android applications, we have modified the communication mechanism (such as
Binder) to include additional metadata that carries these provenance tags.

Approved for public release; Distribution is unlimited 7

Each 32 bit tag indexes data structures that maintain detailed provenance information about the
tagged data. Conceptually, these data structures maintain information about the last provenance
event for the data, with the data structures linked together to enable the reconstruction of the
complete provenance web of events for each byte of primitive data in the system. This provenance
web captures the complete path through the device for that byte. We next detail the information
that the provenance tags index.

Provenance Sets: Some values are derived from multiple pieces of data. For example, a value may
be computed by adding values read from a file to values read from the GPS on the device.
Provenance sets record the sets of provenance tags that capture this value derivation information.

Previous Provenance Tag: This tag links provenance data structures together to enable the server
to reconstruct the complete provenance web for each byte of information. The nodes in this web
are the provenance events that record the movement and computation of data through the system.
The edges record relationships between these events. For example, if an application reads data
from a file, the provenance tags for the data inside the application will index a data structure that
stores information about the corresponding file read event. The previous provenance tag in this
data structure will index a data structure that stores information about the file write event that wrote
the data into the file. The previous provenance tag for this file write data structure will, in turn,
index a data structure that stores the provenance information for the provenance event that injected
the data into the application that wrote the file. In this way the previous provenance tags enable the
reconstruction of the complete provenance provenance web that captures the detailed flow of
information through the device.

File Provenance: This data structure maintains information about provenance events on files.
There are several cases:

« File Write: Each file has a shadow file that stores the provenance information for the data
in that file. Each of the tags in this shadow file references provenance information that
summarize the file write events that stored the data in that file. The recorded information
includes the application that wrote the data and the statement in the application that wrote
the data. The previous tag enables ClearScope to trace the provenance of the data back
through the application that write the data.

« File Read: Data that was obtained by reading a file has a provenance tag that indexes a
data structure that records information about the file read events that generated the data.
The recorded information includes the file, the offset within the file for the data, and the
time of the read. The previous tag indexes the corresponding file write data structures that
summarize the events that wrote the data into the file.

* File Open, Close, Delete: The indexed data structure records information about the file
open, close, or delete operation. This information includes the application and statement
within the application that performed the operation.

Binder Provenance: Android uses the Binder mechanism [12] to communicate information
between Android software components. ClearScope maintains detailed provenance information for
information communicated via the Binder, including byte-level provenance for all communicated
data. Supporting this detailed provenance information required extensive changes to the Binder
implementation to support passing additional provenance information through the Binder interface.

Approved for public release; Distribution is unlimited 8

Android applications also access Android services via the Binder. To support these services, we
developed 81 provenance types to identify the specific service that generated each byte of data.
Examples include the camera, the microphone, the GPS, and a wide variety of sensors. So, for
example, if an application reads data from the camera, the provenance tags for the camera data
inside the application will index data structures that identify the data as coming from the camera
along with metadata such as the time when the data was read from the camera.

Binder performs file descriptor translation across binder calls — a file descriptor in one application
can be transferred via the Binder to another application, which can then use the translated file
descriptor to read the referenced file. ClearScope augments the Binder implementation to
appropriately configure the file descriptors for the shadow file in the application receiving the
information from the Binder.

Network Provenance: Network provenance data structures record information about provenance
events for the network. The recorded information includes the IP address and port and the time of
the network read or write. It is also optionally possible to record the transmitted or received
information. ClearScope also records provenance events that open or close network connections.

Pipe Provenance: Pipe provenance data structures record information about provenance events
involving pipes. The recorded information includes the two communicating applications and the
time of the communication. ClearScope also records provenance events that open or close pipes.

3.1.1.3 System Design

By streaming much of the provenance information off the device to a remote server, ClearScope
avoids the need to accumulate all of the provenance information on the device. This design decision
is critical to enabling ClearScope to function on Android devices such as smartphones, which
typically have limited storage capacity in comparison with a remote server.

The decision to structure the provenance system as events referenced by provenance tags enables
this productive division of responsibility between the device and the server. With this design, the
events, which contain the vast majority of the information, are stored on the server and available
for analysis. The device stores the shadow files for the file system on the device and per-application
provenance tag mappings that store just enough data to enable the device to memoize provenance
lookups and generate the stream of provenance events. This approach enables ClearScope to
deliver unprecedented levels of provenance detail, including the construction of a complete byte-
level provenance web, while still operating on devices with limited resources.

With this system design, each application has its own provenance table, stored in application
memory in the (modified) Dalvik runtime. This table enables the application to perform the
required quick memoized provenance tag lookups. Provenance tags are unique across applications
and allocated to applications in blocks by a tag system service built for this purpose.

3.1.1.4 Provenance Propagation

We next present an overview of the provenance propagation algorithm in ClearScope. We start
with the basic algorithm, then discuss several optimizations: aggregate array provenance, loop
specialization, method specialization, and dead provenance elimination.

Basic Provenance Propagation: The basic provenance propagation algorithm instruments the
DEX code to appropriately propagate the provenance across individual computing instructions
within the Android application. The instrumentation augments each primitive Java value with a

Approved for public release; Distribution is unlimited 9

shadow provenance tag. Provenance information for composite values such as Java objects are
comprised of the union of the provenance information for the primitive values contained in the
object.

The ClearScope compiler instruments the Android DEX code to include additional instructions
that propagate the provenance tags. For each load or store instruction, the compiler adds a
corresponding load or store that propagates the provenance tags to the corresponding shadow
fields. For compute instructions (such as instructions that add two values), the ClearScope compiler
inserts a provenance join operation. This operation takes the provenance tags for the operands of
the compute instruction and returns a new provenance tag for the join of the two operand
provenance tags. This returned join value typically indexes a provenance set containing a list of
the two operand provenance tags.

The ClearScope instrumentation memoizes calls to the provenance join operation. If the two
operand provenance tags have been previously joined, the instrumentation simply returns the
provenance tag from the previous join operation. This memoization improves performance and
eliminates the excessive creation of new operand tags that would otherwise take place.

The instrumentation also augments procedure calls with shadow parameters to hold the provenance
information for any primitive parameters. There is a single global object that holds the provenance
information for the return value. Binder and pipe calls are also augmented to pass provenance
information in addition to the values. This provenance information is maintained at the level of the
individual bytes of transferred data.

The DEX instrumentation can be added either offline or on the device. ClearScope implements a
mechanism that intercepts the call to the DEX compiler, adds the instrumentation, then proceeds
on to invoke the DEX compiler on the instrumented DEX code.

Array Aggregation Optimization: Many arrays store data with homogeneous provenance
information, i.e., all array elements have the same provenance tags. ClearScope optimizes for this
common case by storing a single provenance tag for all array elements when these elements have
the same tag. This optimization substantially reduces the ClearScope memory footprint and makes
the difference between a feasible and infeasible system — without this optimization the device will
not boot.

Because of this optimization, the ClearScope DEX instrumentation has to check several cases on
each array access (in the absence of the loop specialization optimization described below). Each
array can be in one of two states: aggregated (in which there is a single provenance tag for all array
elements) or expanded (in which there is a shadow array that holds the provenance information,
with each element of the shadow array holding the provenance for the corresponding array
element). Array reads check array the state to determine whether to fetch the provenance tag from
the aggregate tag or the shadow array. Array writes check the array state along with the provenance
tag for the written value to determine if the instrumentation should 1) leave the aggregate
provenance tag intact (if the array is in the aggregate state and the written array element has the
same state as the array’s aggregate state), 2) write a shadow array element (if the array is in
expanded state), or 3) expand the array and write a shadow array element (if the array is in
aggregate state and the provenance tag for the written element does not match the aggregate tag).

Loop Specialization: The loop specialization optimization is designed to work with the array
aggregation optimization. This optimization adds a loop header to loops that access arrays. The
loop header checks for common optimizable cases, then jumps to specialized code generated for

Approved for public release; Distribution is unlimited 10

each such case. The most common optimizable case occurs when the provenance can be
precomputed in the loop header for all accesses in the loop. To apply this optimization, the
ClearScope compiler:

« Array Extraction: The ClearScope compiler analyzes the loop body to find all arrays
accessed in the body.

» Aggregate Checks: For each extracted array, the ClearScope compiler checks to see if the
array is in aggregate state. If so, it retrieves the provenance tags for each array.

« Write Checks: For each array written in the loop, the ClearScope compiler checks that all
of the writes will write values into the array whose provenance information matches the
aggregate provenance tag.

If the aggregate and write checks succeed, the loop will not change the provenance information
and the ClearScope compiler generates specialized loop code that completely omits the provenance
tracking code.

The ClearScope compiler also implements more sophisticated checks that, for example, check that
the loop writes every element of an array and that all written elements have the same provenance.
In this case the generated code inserts a single provenance assignment operation into the header
that sets the provenance tag to the new value and again generates specialized code that completely
omits the provenance tracking code.

Method Specialization: In some cases, depending on the calling context, ClearScope can detect
that method calls will leave the provenance information unchanged. In such cases ClearScope
generates and invokes a specialized version of the method that omits provenance tracking
instrumentation.

Dead Provenance Information Elimination: ClearScope does not need to maintain provenance
information for computed values that do not escape the application in which they are located. Such
values often occur, for example, in conditionals or loop bounds. ClearScope implements a program
analysis that detects such values and eliminates all provenance instrumentation for these values.

3.1.2 Provenance Formalization

In this section, we formally define provenance tracking for a sequentially consistent multi-
processing system. Section 3.1.2.1 formalizes the system state. Section 3.1.2.2 extends the system
state definition and defines the provenance tracking.

3.1.2.1 System definition

Val represents the set of values that can be defined in the system. It consists of all memory
addresses and integer values. Var represents all plausible variable names that may be defined by a
process in the system. Process represents the set of all processes in the system.
c,a€ Val :IntUAddr
Vi,Vq,v3 € Var C String
P1,P2 € Process C Int

The system state is defined as a function, that maps every process in the system to a tuple (o,u).
Where, o represents the process environment and p represents the process memory. ¢ maps every
process variable to a value and p maps every memory address to a value.

Approved for public release; Distribution is unlimited 11

State : Process — Mem x Env
U € Mem :Addr+— Val
p € Env :Var— Val

The definition assumes the operating system as yet another process with special privileges. It is
represented as process po, that has its own process environment oo and memory po. The

memory po represents all the system resources such as file system, network ports etc., managed
by the operating system.

stmt — startp|endp |switchps p2| read vq vs|
write vg v4| sys-read vq vg| sys-write vg vq|
Vi=C|Vi=Va|Vi=v2DVa
O~ +|—|=|x|#|=]<]|>|mod

Figure 3.1: Execution language of the system

Figure 3.1 presents a simple language that presents the set of instructions that may be executed by
the processes in the system. The first three statements represent the starting a new process p,
terminating a process p and context switching from process Py to P, respectively. These

statements can only be executed by the operating system, represented as process po. The statement
(read v q VS) retrieves a value stored by the process memory location specified by variable Vg

and assigns it to variable Vg Here, the variable v, can only contain a memory location owned
by the current process. Similarly, the statement (write Vg vd) writes the value in variable Vg
to a memory location specified by variable Vg Here too, the target memory location must be
owned by the current process.

The statements (sys-read v q VS) and (sys-write Y OI) are system calls, that can

read/write the system resources maintained by the operating system. Statement
(sys-read v d VS) reads a value from a memory location maintained by the operating system

(location specified by variable vs) and assigns it to variable vy Similarly, the statement
(sys-write Vg Vd) writes a value contained in variable Vg into a memory location specified

by variable v q Here too, the target address specified by variable v , is managed by the operating

d
system. Statement (v1:v2) assigns value stored in variable v, to variable v, (v1=v2 @vg)

performs the binary operation specified by the operator @ on the contents of variables V, sV, and

stores the result in variable v, (vlzc) assigns a constant value c to variable v,

sys-boot : (s,d) < ReadDB() sys-shutdown : WriteDB(s,d)

s’ « s[pi < init] s« s[p; « 1]

[strt] [end]

1:(start pi) 1:(end ps)
(S,d,P) ﬂ} (Sladap) (Sadap) u} (Sl1d1p) (S:dppi)

Approved for public release; Distribution is unlimited 12

1i(switch p;y pj
_—

)
(Szdzpj]

(kp,Pp) «— s[p] (a,1) < Pp[vs] pp < Pplva Up[a]] (p: Pp) < 8[p] (2,1) « Pplva] My Hpla

[zd]
s[p <+ (kp,Pp)]; 4, P) (s,d,p s[p (45, 0p)]: 4,

) 1: read vg vg () liwrite vy vg (

(s,d,p

(HosPo) +- slpo] (tp,p) +~ slp] (a,1) = pplval (c,5) +~ Holal k+ newld()
Py ¢ pplva ¢ (¢, 1)] W'+ nlk ¢ (p,1,¢, {3},)

1: sys-read vq Vs [Sys'rd]
(s,d,p) > (8[p < (tp; Pp)|, 1, P)
(Mo, Po) < s[po (ﬂpapp) < s[p| (a,i)+ Pp[Vd] (c,3) « pp[Vs] k < newld()
o = bola = ()] ¢ bk = (p,1,c,{3},1) yseur

1l: sys-write vg vg

(s,d,p) > (s[po +— (Uh,Po)], 1, p)

(kp,Pp) = 8[p] (cs,1) <= pp[va] (c5,3) = pp[va] k < newld()
h/ «— h[k A (pa 1) ci® Cja{iaj}aJ—)] p}/) — pp[Vi <~ (Ci & Cj,k)]

l:vy =vy @ vs [bl-Op]

(s,d,p) =————— (s[p « (kp,Pp)], 1, P)

[c-assign]

(kp, Pp) < s[p] Py < pp[vi < pplval] assiga] (tp, Pp) < s[p] pp = pplvi (¢, L)]
(5:4,0) === (s[p « (i, P5)]:d,P) (5:4,p) “2=% (s[p < (1, P)],d,P)
Figure 3.2: Inference rules

3.1.2.2 Provenance tracking

We now define the provenance tracking for the above system. Provenance tracking associates a
provenance identifier to every variable and memory location owned by all processes in the system.
It also maintains a database that stores important data pertaining to every provenance identifier
created in the system. Using the database and the provenance identifier associated with a memory
location, the precise provenance data of a value can be derived.

We extend the system state as follows to enable provenance tracking.
U € Mem :Addr— Val x Int
p € Env :Var+— Val x Int

Here, every process memory maps its address to a pair instead, comprising a value and a
provenance identifier. Similarly, every process environment maps variables to a value-provenance
identifier pair.

The provenance tracking maintains a tracking state as a tuple (s,d,p). Where, s is the current
system state, d is the database instance that contains the provenance information of the system and
p is the process that is currently executing in the system.

State x Database x Process
d € Database : Int — Process x Src x Val x & (Int) x Int

The database instance d maps every provenance identifier created by the system to a tuple (p,1,c,
{il... im},in) , Where,

Approved for public release; Distribution is unlimited 13

e pisthe process that created the provenance entry.

» 1 is the static source code location of the instruction executed by p, responsible for
creating the provenance entry.

» c is the constant value that was read, written, or computed by the instruction.

. i1"' im are the provenance identifiers of values, that influenced the value c.

« If the instruction at I accessed a memory address a maintained by the operating system,
in represents the provenance identifier associated with computing the address a.

Otherwise, it is setto L.

Figure 3.2 presents the rules for tracking provenance flow within a system. At system boot, the
provenance tracking initializes the system state s and the database instance d appropriately from
a file. The file contains the existing provenance data of the system resources from previous
executions. When the system shuts down, provenance tracking updates the file with the new
provenance data associated with the system resources and the updated provenance database. This
ensures the provenance information is persistently maintained across boots.

Provenance tracking for creating a new process p is handled by rule [strt]. It initializes the
process memory and environment. Every memory location and environment variable allocated to
p is mapped to a special provenance id L, that indicates the absence of provenance data. Rule
[end] is applied when, a process P; terminates. The rule modifies the system state s and

deallocates the resources allocated to the process. The rule [swp] is applied when the operating
system context switches from process p; to pj. This rule updates the tracking state by updating

the current process to P;-

A process reading and writing its own memory is handled by [rd] and [wr] rules respectively. If
a process executes (read v Vv OI) statement, the [rd] rule reads the process environment and

retrieves the address a referenced by variable V. It then reads the process memory and maps the

value-provenance id pair associated with address a to variable v . Similarly, executing

d-

(write v vS) statement invokes [wr] rule, which maps address a referenced by variable v

d dl
to the value-provenance id pair mapped to variable V. These statements do not create any new

provenance identifier or require updates to the database instance d.

Every system call issued by a process creates a new provenance identifier and a suitable update to
the provenance database. Executing system read and write calls are handled by rules [sys-rd]
and [sys-wr] respectively. Executing (sys-read v Vv OI) system call, triggers [sys-rd]

rule. This rule creates a new provenance identifier k and maps it to a new entry in the database d.
The rule first identifies value-id pair (a, 1) mapped to variable Vg, where address a is maintained

by the the operating system. Next, the rule identifies the value-id pair (c, j) mapped to address a.
The new provenance entry created for the new provenance identifier k, encodes both provenance
identifiers 1, J. In addition to this, the entry also encodes the source location I in the program

Approved for public release; Distribution is unlimited 14

which triggered the system call, the process id of the executing process, and value c at address a.

The variable \ is re-mapped to a new value-id pair (c,k). Similarly, executing

(sys-write vy VS) creates a new provenance identity and a corresponding entry in the

database. The target memory location a written by the process, is owned by the operating system
and is re-mapped to a newly created value-id pair. We do not elaborate this rule for brevity.

The tracking also creates a new provenance identifier when a binary assignment statement (V1:

EQ v\s\do6(2) ®v\s\do6(3)) is executed by the process. Rule [bi—op] handles this case, and it
creates a new id k and adds a corresponding provenance entry to the database. The new entry

encodes the provenance identifiers associated with both the operands V.V The variable v, is

re-mapped to a new value-id pair. Assignment statement (v :v2) is handled by [assign] rule

1
which maps variable v, to the same value-id pair as vV, Finally, executing (v1=c) maps the

variable v, to (c, 1) pair, indicating the absence of provenance data for variable v,

3.1.3 Java-Based Instrumentation Implementation

We use Soot as a framework for instrumenting Dalvik bytecode for both the system and the
application. It works by first translating the Dalvik instructions into Jimple IR. From the Jimple,
we generate new (semantically equivalent) taint-tracked Jimple based on the following
grammatical rules. In the following, => denotes instruction insertion after the current rule, and <
denotes instruction insertion before the current rule.

Cistmt(] [l [assignStmt(] | [lidentityStmtl] | [lgotoStmtl] | L[lifStmt(]
| OinvokeStmt] | CiswitchStmt[1 | [JmonitorStmt[]
| ClreturnStmtl] | [CithrowStmtl] | [JbreakpointStmt(

| CJnopStmt[]
ClassignStmt(1 1 LocAL = [lrvaluel] ; {
if (LOCAL.getType() instanceof PrimType) =>LOCALt: Crvaluel] (
} | RELD = Oimmi ; {
if (FIELD.getType() instanceof PrimType) =>FIELDt: [imm[t
} | rocaL . FELD = Oimmd ; {
if (FIELD.getType() instanceof PrimType) =>LOCAL.FIELth Climm(¢
} | rocaL [[imm1[] = DimmZD ;

if (LOCAL.getType() instanceof PrimType) {
=>LOCALa = TC.getAggregateTaint(LOCAL)

=if (LOCALa I=-1) goto AGGR
= LOCALt = TC.getArrayTaint(LOCAL)

= goto NONAGGR
=AGGR:
= if(LOCALa == [Jimm,[] () goto DONE

Approved for public release; Distribution is unlimited 15

= LOCALt = TC.unaggregate(LOCAL)

=NONAGGR:
= LOCAL [Uimm;[1]= Limm,Ll
=DONE:

}

ClidentityStmt[] 1 LOCAL := @this : TYPE ;
| LocAaL = @parametern > TYPE ; {

if (TYPE instanceof PrimType) {
/*
Note that n in the original statement will be shifted by the number of
tag parameters seen (up to n)
*/

=>LOCALt = @parameter 4l sint

¥

if (n == numOfParameters) {
=TCRET := @parameter 4l - java.lang. TCReturn

¥

} | LocaL = @exception ;
CJgotoStmt[] (] goto LABEL ;
ClifStmt(C1if [lconditionExpr(1 goto LABEL ;
ClinvokeStmt] [invoke [JinvokeExpr(l ;
CswitchStmt1 (1 lookupswitch [Jimm(] {

case VALUE , @ (goto LABEL , ;

case VALUE =~ @ (goto LABEL ;

default : goto DEFAULTLABEL ; }

| tableswitch Oimm({

case Low : goto LOWLABEL ;

case HIGH : goto HIGHLABEL ;

default : goto DEFAULTLABEL ; }
CImonitorStmt(] (1 entermonitor [Jimm[] ; | exitmonitor [Jimm[(;
CreturnStmtl) [0 return Climmi ; {

if (returnType instanceof PrimType) & TCRET .taint = [Jimm[] ¢

} | return
throwStmt(] (1 throw [limm(] ;

) Tl breakpoint ;
CbreakpointStmt

l
CInopStmt[0 nop
limm] 7 rocaL {

Jimm(] ¢ LOCALt
} | consTanT {

Approved for public release; Distribution is unlimited 16

“lconditionExpr :
(]
“lcondop’ O
Crvaluel’ O

[JconcreteRef(] []

linvokeExpr(] [

Cexpri] 0

if (CONSTANT instanceof PrimType) [limm[] ¢ — TRUSTED
}

imm(] 1 ‘lcondopl] [Jimm(] 5

> [< | =1# | = |z
CconcreteRef(1 {
[rvaluel] ¢ [JconcreteRef[] o

} | Oimmi {
Orvaluel] ¢ Limm(l o

} | Oexpril {
Crvaluel] ¢ — Hexpril g

}

FIELD {
if (FIELD.getType() instanceof PrimType) [IconcreteRef(! ¢ FIELDt;

} | LocAL . FIELD {
if (FIELD.getType() instanceof PrimType) [IconcreteRef(! ¢

LOCAL.FIELDt;

} | rocaL [Oimmi]

if (LOCAL.getType() instanceof PrimType) {
=tagTmp = TC.getAggregateTaint(LOCAL)
=if (tagTmp = -1) goto AGGR
= tagArrayTmp = TC.getArrayTaint(LOCAL)
= tagTmp = tagArrayTmp[[limm[]
=AGGR:
ClconcreteRef(! ¢ tagTmp

¥
specialinvoke LocAL . M ([imm1[yo DimmnD)
| interfaceinvoke LOCAL . M ([imm1[,o DimmnD)
| virtualinvoke LocAL . M (Dimm1D ,o DimmnD)
| staticinvoke ™M (Dimm1D ,o DimmnD)

/*

Parameters [Jimm] -, [Jimm,[]

will (potentially) become Climm, [,[immltt,---, dimm, O,
Uimm, 0, TCRET

*/

if (M.getReturnType() instanceof PrimType) [linvokeExpr(! (- TCRET.taint
[imm1[“1binop (] DimmZD {
if (CJimm, [0 .getType() instanceof PrimType && [limm, [.getType() instanceof
PrimType) {

Approved for public release; Distribution is unlimited 17

if (Cimm, 0 instanceof Constant) {
if (CJimm, [instanceof Constant) {
Clexpr(] (= TRUSTED

} else {

Hexpril — Dimmyll

¥

}else if (Llimm, 0 instanceof Constant) {
Lexpri) — Cimm, [¢

}else {

expri — TC.join(Jimm, [. Limm, [t)

}
¥

} | (TYPE) Olimm(]

| Oimm[instanceof TYPE

| [linvokeExpr(]

| new REFTYPE
| newarray (TYyPE) [Limm(l]
| newmultiarray (TYPE) [DimmD1] [[imm[n]
|
|

length [Jimm(]
neg ClimmQ]
Ibinop(] 0o+ |- > < | = l# | |=2|* |/ |<< >>
| <<< | % | rem | &

Methods are copied and instrumented on the method copy. If instrumenting for application code,
the original method body is additionally replaced with a call to the instrumented copy. We
originally did this to ensure that we can never fully deviate on an uninstrumented execution path
(in the event that we somehow ended up in an uninstrumented call). We think this is probably
largely unnecessary now, given that the Android Runtime Android Runtime (ART) runtime will
always call the instrumented on a Java callback from native land.

3.1.4 Dynamic instrumentation

We added a hook into ART’s class linker for checking to see if the DEX being loaded into the class
linker was uninstrumented. We check this simply by verifying that the constant table does not
contain an entry for the " java. lang.TCReturn™ class. If no entry was found, a message is
sent via Binder to the instd (instrumentation daemon) process requesting for this DEX to be
instrumented. The instd process must operate under root, and fork itself under the uid/gid of the
caller to ensure that the requesting application has the correct permissions to access the
instrumented DEX that instd will generate. Once instrumented on the device, instd will replace the
DEX with the instrumented DEX on the device. Unfortunately, since the FD that we’re operating
on is already closed at this point, we cannot simply swap out the FD in memory with the new FD.
Instead, we must return a status back to the process that forked and execed the dex2oat process,
which in this case is installed. The installd process will check this value to determine if the DEX
had to be instrumented. If it didn’t, then we are good, and we proceed to install the already

Approved for public release; Distribution is unlimited 18

instrumented APK. If it did, then we must re-fork and exec the dex2oat process on the newly
instrumented DEX/APK. On this second pass the instrumented APK will be installed presuming
no error was encountered along the way.

Since Android 8 now has an in-memory DEX class loader, instd also needed to support this. We
do so by adding another binder call to this service that passes the bytes of the DEX to instd. It will
then write out these bytes to a temporary to instrument to a file readable by the calling pid. Since
the original Java native call this was called from already returns some sort of cookie, the most
obvious approach here was to pack the bytes from the instrumented DEX into a Java byte[], and
put this inside of an exception that was be thrown back into Java. On the Java side, we catch this
exception, and replace the contents of the ByteBuffer with the bytes obtained from the
exception. We then call DexFile.openInMemoryDexFile() again on this new
ByteBufTfer to reload the instrumented DEX.

3.1.5 Sources and sinks generation

Sources and sinks are specified and formatted using Google protocol buffers (see Error!
Reference source not found.). These messages can be programmatically inserted into a call by
creating a summary for the call that you wish to treat as a source, sink, or other event. They are
also automatically injected into Binder system calls when translating the AIDL into java source
code, which we will discuss in the next sub-section.

3.1.5.1 Binder

Unfortunately, we do a really poor job of reporting in Binder. We can lose accuracy and precision
in various ways, simply because we’ve assumed each Parcel is written in a linear fashion, and
that’s not quite true. Parcel data can be written in a random-access fashion. So, we will eventually
have to address these issues.

3.15.1.1 How do we support these calls?

* Parcel._setDataPosition(): This allows us to set the position anywhere in the
parcel, and arbitrarily write over (potentially) another value. We suppose this isn’t super
important. Worst case is we’ve overwritten some value with another value, both of which
we’ll have an EventData object for. Basically, We would just consider this a case of over-
reporting.

* Parcel._marshall(), Parcel .unmarshall (), Parcel .appendFrom():
These are much more worrisome, since you can essentially pass off data from one parcel to
another parcel, and you would miss that hand-off here, when this maybe should be treated
as another link in our prov graph. At the very least, We think we should see if there is an
easy fix for these calls. We would essentially need to keep track of the parcel position at
each EventData object that we generate for each of the corresponding reads/writes. That
will allow us to know which EventData objects will need to be copied over, in the case of
appendFrom(). For marshalling and unmarshalling, I’m not sure if it’s quite so simple.
We suppose the Parcel could keep track of a weak reference map of byte|[] objects
corresponding with the event data that was marshalled. Then simply recover this
information when you unmarshall by performing a lookup in the weak map.

Approved for public release; Distribution is unlimited 19

It turns out there are a lot of core framework classes that require these pieces to work, to precisely
"transact™ what is going on.

3.1.5.1.2 Special Classes to support
e Binder/BinderProxy
* Bundle
» BaseBundle
» PersistableBundle
» Parcel
» Parcelable (and inner classes, i.e. Creator, ClassLoaderCreator)
» ParcelableSpan
Aside from Parcel, the source code alterations required is pretty straight forward, and minimal.

3.1.5.1.3 Parcel

The motivation here is two-fold. First, we would like to speed up binder reporting a bit by
essentially minimizing the number of report calls made on any given Parcel. Also, we would like
the events reported on each binder to be an accurate hierarchical representation of each of the calls
that we are treating as a source/sink. In addition to the hierarchies, we would like to (ideally) report
each EventData to be named/labeled according to the Parcelable’s field name, or corresponding
AIDL argument name. This way, to an analyst, it is (or should be) much more obvious what the
corresponding values mean when you have this hierarchical context attached to the protobuf
message.

We therefore try to remedy this problem by making a copy of all Parcel read/write calls (or at least
the ones we are interested in reporting on). The copy will contain an additional argument for the
label (which will correspond to the name of the EventData generated). For example, some Parcel
read/write calls look like this:

class Parcel {

final static String DEFAULT _READ_LABEL = "binder_read";
final static String DEFAULT WRITE_LABEL = "binder_write";

@TCBinder(source = true)
int readInt(TCReturn ret) {

return readlnt(DEFAULT_READ_LABEL, ret);
}

int readInt(String label, TCReturn ret) {
int val = nativeReadlnt(mNativePtr, 0, ret);
ret_taint = TC.defineProv(ret.getAppPpt(), mSysCall, mProvKind, true, ret.taint);
mSrcData.peek() .add(TC.reportint(label, val, ret._taint, EventData.SRC));
return val;

}

@TCBinder(source = true)
String readString(TCReturn ret) {

return readString(DEFAULT_READ_LABEL, ret);
}

Approved for public release; Distribution is unlimited 20

String readString(String label, TCReturn ret) {
String val = nativeReadString(mNativePtr, O, ret);
mSrcData.peek() .add(TC.reportNonArrayObject(label, val, String.class, EventData.SRC,
TCDefiner.joiner(ret.getAppPpt(), mSysCall, mProvKind, true)));
return val;

}

@TCBinder(source = true)
String[] readStringArray() {

return readStringArray(DEFAULT_READ_LABEL);
}

String[] readStringArray(String label) {
String[] array = null;

int length = readIntNR(); 7/ Do not report at all, since we probably don"t care
about this.

ifT (length >= 0)

{

array = new String[length];
pushObject(array, true /* isSource */, label);

try {
for (int i = 0 ; 1 < length ; i++)

{
array[i] = readString(TC.arrayOf(label, 1)); // labeled as: label[i], at
each i1th EventData object

}
} finally {
popObject(true /* isSource */);

}

return array;

}

@TCBinder(source = true)
void readMap(Map outVal, ClassLoader loader) {

return readMap(outVal, loader, DEFAULT_READ_LABEL);
}

void readMap(Map outVal, ClassLoader loader, String label) {
pushObject(outVal, true /* isSource */, label);

try {
int N = readIntNR(); // Do not report at all, since we probably don"t care about

while (N > 0) {
Object key = readvalue(loader, "key™); // labeled as: "key"
Object value = readValue(loader, "value'); // labeled as: "value"
outVal .put(key, value);

}
3} finally {
popObject(true /* isSource */);

}

@TCBinder(source = false)

void writelnt(int val, int val_t, TCReturn ret) {
writelnt(val, val_t, DEFAULT _WRITE_LABEL);

}

void writelnt(int val, int val_t, String label, TCReturn ret) {
mSinkData.peek() .add(TC.reportint(label, val, val_t, EventData.SINK));
val_t = TC.defineProv(ret.getAppPpt(), mSysCall, mProvKind, false, val_t);
nativeWritelnt(mNativePtr, 0, val, val_t, ret);

}

Approved for public release; Distribution is unlimited 21

@TCBinder(source = false)

void writeString(String val, TCReturn ret) {
writeString(val, DEFAULT WRITE_LABEL);

}

void writeString(String val, String label, TCReturn ret) {
mSinkData.peek() .add(TC.reportNonArrayObject(label, val, String.class,
EventData.SINK));
nativeWriteString(mNativePtr, val, mProvKind, mSysCall, ret);
}

@TCBinder(source = false)

void writeStringArray(String[] val) {
writeStringArray(val, DEFAULT_WRITE_LABEL);

}

void writeStringArray(String[] val, String label) {
if (val = null) {
pushObject(val, false /* isSource */, label);
try {
int N = val._length;
writeIntNR(N); // Do not report at all, since we probably don"t care about
this.
for (int 1=0; i<N; i++) {
writeString(val[i], TC.arrayOf(label, 1)); // labeled as: label[i], at
each i1th EventData object

}
} finally {
popObject(false /* isSource */);

} else {
writeIntNR(-1); // Do not report at all, since we probably don"t care about this.
}

}

@TCBinder(source = false)
void writeMap(Map val) {
writeMap(val, DEFAULT_WRITE_LABEL);

void writeMap(Map val, String label) {
if (val == null) {
writeIntNR(-1); // Do not report at all, since we probably don"t care about this.
return;

pushObject(val, false /* isSource */, label);

try {
Set<Map.Entry<String,Object>> entries = val._entrySet();
writeIntNR(entries.size()); // Do not report at all, since we probably don"t care
about this.
for (Map.Entry<String,Object> e : entries) {
writeValue(e.getkey(), "key'); // labeled as: "key"
writeValue(e.getvValue(), "value™); // labeled as: "value"

}
} finally {
popObject(false /* isSource */);

For anything we wish to not report on at all, we create a copy of the corresponding read/write
Parcel call, and make an ""NR" copy (which essentially propagates the values and tags without
reporting them). This is useful for things that are really only used for information flow, and the tag
is therefore not necessary, for example. These are things like representing null objects with a

Approved for public release; Distribution is unlimited 22

boolean value prior to the object write/read, or for things like array/map sizes used only for the
purpose of allocating the correctly sized objects on the other end of the call.

You’ll notice that for more complicated Objects such as java.util _Map, we essentially
represent this as an ObjectVValue on the map, containing separate protobuf "value™ objects for each
of the respective keys and values of the map. In a similar fashion, this enables us to create
hierarchies of objects for each parcelable written/read to/from that respective parcel, and each of
those can be writing/reading to/from yet another parcelable on that parcel, and so on, and so forth
(which we talk about in the next section). Parcel needs to support the following new operations for
handling the reports:

* pushObject(Object val, boolean isSource, String label),
pushObject(Object[] val, boolean isSource, String label),
pushObject(LongArray val, boolean isSource, String label),
pushObject(Collection val, boolean i1sSource, String label),

pushObject(Class val, boolean isSource, String label): Simply
appends a new EventData with a given label for val (and depending on the type of value,
all of it’s respective parts), and then pushes an empty EventDataL ist onto the
srcData/sinkData stack (depending on value of isSource).

* popObject(isSource): Simply pops the top EventDataL.ist from the
srcData/sinkData stack (depending on the value of isSource), and binds the EventData
from the list to the last EventData object written/read from the parent.

» recycle(): This is where we will move the reporting on all sources/sinks. If we
presume no resource leak in the system, then we can be certain this is the absolute latest we
can issue the java report on the sources/sinks attached to this Parcel. This is both simpler
than our current approach, and also drastically minimizes the number of native report calls
we have to make for each Parcel (in a lot of cases).

3.1.5.1.4 How tags are passed

In general, tags are interleaved with their corresponding data value. The events are generated and
reported for each read/write to the Parcel like we discuss in sections 3.1.9.3 and 3.1.9.4. Primitive
arrays are optimized for C++ (i.e. so we can perform a memcpy), hence the elements of the array
are not interleaved. Instead, they are structured as follows:

1. The length of the array (or -1 if null)

2. The aggregate tag (or -1 if not aggregate)

3. The elements of the array

4. The elements of the corresponding non-aggregate tag array (if aggregate tag == -1)

3.1.5.1.5 User-defined Parcelables

We can take full advantage of Java 8 and create default interface methods to create default
implementations for the write/read calls required to fully take advantage of this framework.

Approved for public release; Distribution is unlimited 23

interface android.os.Parcelable {

/**
* Flatten this object in to a Parcel.
*
* @param dest The Parcel in which the object should be written.
* @param flags Additional flags about how the object should be written.
* May be 0 or {@link #PARCELABLE_WRITE_RETURN_VALUE}.
*
/
@TCBinder(type = Type.ROOT, source = false)
public void writeToParcel(Parcel dest, @WriteFlags int flags);

/**

* Flatten this object in to a Parcel.

* @param dest The Parcel in which the object should be written.

* @param flags Additional flags about how the object should be written.

* May be 0 or {@link #PARCELABLE_WRITE_RETURN_VALUE}.

*/

public default void writeToParcel(Parcel dest, @WriteFlags int flags, String label)
dest.pushObject(this, false /* isSource */, label);

try {
writeToParcel(dest, flags);
3} finally {
dest.popObject(false /* isSource */);
}
}
/**

* Interface that must be implemented and provided as a public CREATOR
* field that generates instances of your Parcelable class from a Parcel.
*/
public interface Creator<T> {
/**
* Create a new instance of the Parcelable class, instantiating it
* from the given Parcel whose data had previously been written by
* {@1ink Parcelable#writeToParcel Parcelable._writeToParcel()}.-
*
* @param source The Parcel to read the object"s data from.
* @return Returns a new instance of the Parcelable class.
*/
@TCBinder(type = Type.ROOT, source = true)
public T createFromParcel(Parcel source);

/**

* Create a new instance of the Parcelable class, instantiating it
from the given Parcel whose data had previously been written by
{@link Parcelable#writeToParcel Parcelable.writeToParcel()}.

* %k

* @param source The Parcel to read the object"s data from.
* @return Returns a new instance of the Parcelable class.
*/
public default T createFromParcel (Parcel source, String label) {
// TODO: Ideally we would like to operate on the T returned here

// and not "this", but it would require pulling the parcel
// out of T"s constructor in a lot of cases, which would
// require some analysis here.
dest.pushObject(this, true /* isSource */, label);
try {

return createFromParcel (source);
} finally {

dest.popObject(true /* isSource */);
}
}

Approved for public release; Distribution is unlimited

}

/**
* Specialization of {@link Creator} that allows you to receive the
* ClassLoader the object is being created in.
*/
public interface ClassLoaderCreator<T> extends Creator<T> {
/**

* Create a new instance of the Parcelable class, instantiating it
from the given Parcel whose data had previously been written by
{@link Parcelable#writeToParcel Parcelable.writeToParcel()} and
using the given ClassLoader.

*

@param source The Parcel to read the object®"s data from.
@param loader The ClassLoader that this object is being created in.
@return Returns a new instance of the Parcelable class.

*o% % ok ok %

*/
@TCBinder(type = Type.ROOT, source = true)
public T createFromParcel(Parcel source, ClassLoader loader);

/**

* Create a new instance of the Parcelable class, instantiating it
* from the given Parcel whose data had previously been written by
{@link Parcelable#writeToParcel Parcelable.writeToParcel()} and
using the given ClasslLoader.

*

@param source The Parcel to read the object"s data from.
@param loader The ClassLoader that this object is being created in.
@return Returns a new instance of the Parcelable class.

o % %

*/
public default T createFromParcel (Parcel source, ClassLoader loader, String label) {
// TODO: Ideally we would like to operate on the T returned here

// and not "this", but it would require pulling the parcel
// out of T"s constructor in a lot of cases, which would
// require some analysis here.
dest.pushObject(this, false /* isSource */, label);
try {

return createFromParcel(source, loader);
} finally {

dest.popObject(false /* isSource */);

}
}
}

}

This is a excellent way to preserve a natural hierarchy of Parcelables in your binder calls without
having to add any additional code for all of the child classes! This works great so long as the
application is AIDL generated, and the SDK is one that supports this default interface method
implementation (i.e. SDK version >= 24). For everything else, sadly we must go in and physically
hand-code this on System applications that are built below this SDK requirement. Having said this,
there were not too many to need to go through by hand. We suspect you could write a Java AST
parser fairly easily to do an adequate enough job, if there were quite a number of these.
Alternatively, I’ve marked "root” @TCBinder calls, as well as @ TCBinder report calls. Perhaps
we can use these to construct call paths that would automatically insert these methods and ensure
calls with the "label” argument exist for any method call that leaves with that Parcel object.

Approved for public release; Distribution is unlimited 25

3.15.1.6 AIDL Translation

Since the AIDL files contain the names of the data items that are read/written to the parcel for each
call, we can automatically insert the correct Parcel calls (with the data and label) for each of the
AIDL calls specified in the file. This allows us to construct these more detailed Binder prov
messages for free, without having to manually write it out by hand.

EXAMPLE:

Consider setting the test provider location with the location manager.

Listing: Location.aidl

package android.location;

parcelable Location;

Listing: Location.java

public class Location implements Parcelable {

public static final Parcelable.Creator<Location> CREATOR = new
Parcelable.Creator<Location>() {
@Override
@TCBinder(source = false)
public Location createFromParcel(Parcel in) {
return createFromParcel(in, Parcel .DEFAULT_READ LABEL);
}

@Override
public Location createFromParcel(Parcel in, String label) {
Location I = new Location();
in.pushObject(l, true /* isSource */, label);
try {
-.mProvider = in.readString("mProvider');
-mTime = in.readLong("'mTime™);
-mElapsedRealtimeNanos = in.readLong(''mElapsedRealtimeNanos™);
-mFieldsMask = in.readByte("mFieldsMask™);
-mLatitude = in.readDouble("'mLatitude™);
-mLongitude = in.readDouble(*'mLongitude');
-.mAltitude = in.readDouble("mAltitude");
.mSpeed = in.readFloat("'mSpeed");
.mBearing = in.readFloat(''mBearing');
-mHorizontalAccuracyMeters = in.readFloat("'mHorizontalAccuracyMeters');
-mVerticalAccuracyMeters = in.readFloat("'mVerticalAccuracyMeters™);
-.mSpeedAccuracyMetersPerSecond =
in.readFloat("'mSpeedAccuracyMetersPerSecond™);
1 _mBearingAccuracyDegrees = in.readFloat("'mBearingAccuracyDegrees');
1 _mExtras = Bundle.setDefusable(in.readBundle("'mExtras'), true);
3} finally {
in.popObject(true /* isSource */);

return I;

}

Approved for public release; Distribution is unlimited 26

@Override

public Location[] newArray(int size) {
return new Location[size];

}

¥

@Override
public void writeToParcel(Parcel out, int flags) {
out.pushObject(this, false /* isSource */, label);
try {
out.writeString(mProvider, "mProvider™);
out.writeLong(mTime, "mTime");
out.writeLong(mElapsedRealtimeNanos, "mElapsedRealtimeNanos');
out.writeByte(mFieldsMask, "mFieldsMask');
out.writeDouble(mLatitude, "mLatitude™);
out.writeDouble(mLongitude, 'mLongitude™);
out.writeDouble(mAltitude, "mAltitude™);
out.writeFloat(mSpeed, ''mSpeed");
out.writeFloat(mBearing, "mBearing');
out.writeFloat(mHorizontalAccuracyMeters, "mHorizontalAccuracyMeters™);
out_writeFloat(mVerticalAccuracyMeters, "mVerticalAccuracyMeters™);
out.writeFloat(mSpeedAccuracyMetersPerSecond, ''mSpeedAccuracyMetersPerSecond™);
out.writeFloat(mBearingAccuracyDegrees, ''mBearingAccuracyDegrees™);
out.writeBundle(mExtras, "mExtras');

} finally {
out.popObject(false /* isSource */);

Listing: ILocationManager.aidl

interface lLocationManager

{

void setTestProviderLocation(String provider, in Location loc);
}
AIDL OUTPUT:

Considering the AIDL for the example of ILocationManager.setTestProviderLocation(), the aidl
tool will generate code that resembles the following:

Listing: AIDL-translated ILocationManager.java

package android.location;

/**
* System private APl for talking with the location service.

*

* @hide

*/

public interface lLocationManager extends android.os.lInterface {

Approved for public release; Distribution is unlimited 27

/** Local-side IPC implementation stub class. */

public static abstract class Stub extends android.os.Binder implements
android. location.lLocationManager {

@Override
public boolean onTransact(int code, android.os.Parcel data, android.os.Parcel reply,
int flags)
throws android.os.RemoteException {
switch (code) {

case TRANSACTION_setTestProviderLocation: {

data.setSysCall(*'void

android.location. ILocationManager$Stub.
setTestProviderLocation(java. lang.String provider, android.location.Location loc) [boolean
android. location. lLocationManager$Stub.onTransact(int code, android.os.Parcel data,
android.os.Parcel reply, int flags)]'):

data.enforcelnterface(DESCRIPTOR);

java.lang.String _argO;

_arg0 = data.readString(‘'provider™);

android.location.Location _argl;

if ((0 !'= data.readIntNRQ))) {

_argl = android.location.Location.CREATOR.createFromParcel(data, '"loc");
} else {

_argl = null;

this.setTestProviderLocation(_arg0, _argl);
reply.setProvKind(TCReport.BinderObject.LOCATION);
reply.setSysCall(*'void
android. location. ILocationManager$Stub.
setTestProviderLocation(java. lang.String provider, android.location.Location loc) [boolean

android. location. ILocationManager$Stub.onTransact(int code, android.os.Parcel data,
android.os.Parcel reply, int flags)]'):

reply.writeNoException();

return true;

}

}
return super.onTransact(code, data, reply, flags);

}

private static class Proxy implements android.location. lLocationManager {

@Override
public void setTestProviderLocation(java.lang.String provider,
android. location.Location loc)
throws android.os.RemoteException {
android.os.Parcel _data = android.os.Parcel
.obtain(TCReport.BinderObject.LOCATION,
"void
android. location. ILocationManager$Stub$Proxy.
setTestProviderLocation(java.lang.String
provider, android.location.Location loc)");
android.os.Parcel _reply = android.os.Parcel
.obtain(TCReport.BinderObject.BINDER,
"“void
android.location. lLocationManager$Stub$Proxy.
setTestProviderLocation(jJava.lang.String
provider, android.location.Location loc)");

Approved for public release; Distribution is unlimited 28

try {
_data.writelnterfaceToken(DESCRIPTOR) ;

_data.writeString(provider, "provider™);
if ((oc '= null)) {
_data.writelntNR(1);
loc.writeToParcel(_data, 0, "loc");
} else {
_data.writelntNR(0);

mRemote.transact(Stub.TRANSACTION_setTestProviderLocation, _data, _reply,

0);

_reply.readException();

} finally {
_reply.recycle();
_data.recycle(Q);

3

b
b
b

public void setTestProviderLocation(java.lang.String provider, android.location.Location

loc)
throws android.os.RemoteException;

Listing: Prov Output

define_sys call <
id: 7
prog_id: 4
value: "**BINDER** void
android. location. lILocationManager$Stub$Proxy.setTestProviderLocation(java.lang.String
provider, android.location.Location loc)"
>
define_app_ppt <
id: 8
prog_id: 4
value: ...
>
define_prov <
flow: 1
id: 9
prog_id: 4
type: 178
app_ppt: 8
sys_call: 7
prev_id: O
>
event <
flow: SINK
prog_id: 4
app_ppt: 8
sys_call: 7
tid: 856
time: 1556735811185
event_data <
name: "‘provider"
value_type: SINK
is_array: false

Approved for public release; Distribution is unlimited

29

tag <
>
is null: false
string_value <
>
>
event_data <
name: "loc"
value_type: SINK
is_array: false
tag <
>
is_null: false
object _value <
type: "android.location.Location"

event_data <
name: ‘‘mProvider"

string_value <
>

>

event_data <
name: "mTime"
long_value <

..... Some time passes

define_sys _call <

id: 57

prog_id: 54

value: "**BINDER** void
android. location. lLocationManager$Stub.setTestProviderLocation(java. lang.String provider,
android. location.Location loc) [boolean
android. location. ILocationManager$Stub.onTransact(int code, android.os.Parcel data,
android.os.Parcel reply, int flags)]"

>

define_app_ppt <
id: 58
prog_id: 54

value: "boolean android.os.Binder.execTransact(int code, long dataObj, long replyObj, int
flags) [line: 443]"
>

define_prov <
flow: O
id: 59
prog_id: 84
type: 178
app_ppt: 58
sys_call: 57
prev_id: O

>

event <
flow: SRC

Approved for public release; Distribution is unlimited 30

prog_id: 12
app_ppt: 8
sys call: 6
tid: 912
time: 1556735811186
event _data <
name: "‘provider"
value_type: SRC
is_array: false
tag <
>
is null: false
string_value <

>

>

event_data <
name: *"loc"
value_type: SRC
is_array: false
tag <
>
is_null: false
object _value <

type: "android.location.Location"

event data <
name: "‘mProvider”
string_value <

>

>

event data <
name: "mTime"
long_value <

Obviously, this was at least partially hand generated, so I’ve elided over some of the details in the
output.

3.1.5.2 Linux.java/ Posix.java

Events and trivial sources (i.e. Single source events, where the returned value is the source) are
automatically injected at instrumentation time. They are specified by calls in the provenance.stubs
file (see Error! Reference source not found.).

Listing: provenance.stubs

libcore.io.Linux {
boolean @src access(jJava.lang.String @apred,int);
void chmod(Java.lang.String @apred,int);
void chown(jJava.lang.String @apred, int,int);
void execve(java.lang.String,java.lang.String[].,java.lang.String[]);

Approved for public release; Distribution is unlimited 31

void execv(jJava.lang.String,java.lang.String[]):
void fchmod(Java.io.FileDescriptor @bpred,int);
void fchown(Java.io.FileDescriptor @bpred,int,int);
int @src getgid(Q);

int @src getpid();

}

The provenance.stubs files support the following type of “annotations™ on the parameters and
return type:

* (@src - Specifies the value that should be marked as the source to this event (default
Binder type is POSIX).

* @apred - Marks which parameter is the file predicate (to be computed after the call).

e @apred_cached - Like @apred, but the prov type for this predicate is cached.

* @bpred - Marks which parameter is the file predicate (to be computed before the call).
* @bpred_cached - Like @bpred, but the prov type for this predicate is cached.

For all other non-trivial sources, sinks, and events, we must handle this in a summarized call in
libcore.io.Linux. For example...

public final class Linux implements Os {

@TCDontShadow
public native long Iseek(FileDescriptor fd, long offset, int whence) throws
ErrnoException;

@TCDontShadow
@TCTransparent
public long Iseek(FileDescriptor fd, long offset, int offset_t, int whence, int
whence_t, TCReturn ret) throws ErrnoException {
long nBytes = lIseek(fd, offset, whence);
if (ITC.programStarted()) {
ret.taint = 0;
return nBytes;

}

int sysCall = TC.defineSysCall(*'long libcore.io.Linux.lseek(FileDescriptor fd, long
offset, int whence) [line: 168]");

FileDescriptor taintFd = fd.getTaintFd();

if (taintFd = null) {
// Seek the tag file at four times the offset (to account for tag size).
Iseek(taintFd, offset*4, whence);

}

EventData[] data = {
TC.reportNonArrayObject("fd", fd, FileDescriptor.class, EventData.PARAM),
TC.reportLong(“offset", offset, offset_t, EventData.PARAM),
TC.reportint(*whence", whence, whence_t, EventData.PARAM),
TC.reportLong(''r'*, nBytes, 0, EventData.RET)

iﬁt pred = TC.toPredicate(fd, true);
TC.event(ret.getAppPpt(), sysCall, data, pred);

ret.taint = 0;
return nBytes;

Approved for public release; Distribution is unlimited 32

@TCDontShadow
public native FileDescriptor dup(FileDescriptor oldrFd) throws ErrnoException;

@TCDontShadow
@TCTransparent
public FileDescriptor dup(FileDescriptor oldFd, TCReturn ret) throws ErrnoException {
// Generate the event...
int idx = 0;
EventData[] data = new EventData[2];
int sysCall TC.defineSysCall("'FileDescriptor libcore.io.Linux.dup(FileDescriptor
oldFd) [line: 2171™);
data[idx++]
EventData.PARAM) ;
int oldPathPred = TC.toPredicate(oldFd, true);

TR

TC.reportNonArrayObject(*'oldFd", oldFd, FileDescriptor.class,

FileDescriptor newFd = dup(oldFd);

int newPathPred = TC.toPredicate(newFd, false);

data[idx++] = TC.reportNonArrayObject(''r'', newFd, FileDescriptor.class,
EventData.RET);

TC.event(ret.getAppPpt(), sysCall, data, oldPathPred, newPathPred);

FileDescriptor fd_t = oldFd.getTaintFd();

if (fd_t !'= null)
newkFd.setTaintFd(dup(fd_t));

newFd.setRemoteld(oldFd.getRemoteld());

return newFd;

We make use of the @TCDontShadow annotation to indicate that the instrumenter should not
touch this method. This is done on both the original and instrumented copy, since we provide our
own instrumentation for this call. Note that additionally the instrumented copy should also be
annotated by @TCTransparent to ensure that this method is invisible to reflection.

3.1.6 JNI interface

We modified the interface itself by adding new function calls to the end of the JNINativelnterface
struct.

struct JININativelnterface {

//

// Clearscope/TC functions

//

// Tag array access functions:

Jjtag* (*GetTagArrayElements) (UNIEnv *, jtagArray, jboolean *);

void (*ReleaseTagArrayElements) (ONIEnv *, jtagArray, jtag *, jint);
void (*GetTagArrayRegion) (UNIEnv *, jtagArray, jsize, jsize, jtag *);
void (*SetTagArrayRegion) (UNIEnv *, jtagArray, jsize, jsize, const jtag *);
// Array/String taint access functions:

jtag (*GetAggregateTaint) (ONIEnv*, jarray):;

JtagArray (*GetArrayTaint) (ONIEnv*, jarray);

void (*SetAggregateTaint) (UNIEnv*, jarray, jtag);

JjtagArray (*Unaggregate) (ONIEnv*, jarray);

Jjtag (*GetStringAggregateTaint) (ONIEnv*, jstring);

Approved for public release; Distribution is unlimited 33

JjtagArray (*GetStringArrayTaint) (ONIEnv*, jstring);
void (*SetStringAggregateTaint) (UNIEnv*, jstring, jtag);
JjtagArray (*UnaggregateString) (ONIEnv*, jstring);

// java.lang.TCReturn field access functions:

void (*SetReturnTaint) (ONIEnv*, jreturn, jtag);

jstring (GetPpt) (UNIENnvV*, jreturn);

// ProvMsgr/binder functions:

jtag (*DefineAppPpt) (ONIEnV*, const char¥®);

jtag (*DefineSysCall) (ONIEnv*, const char¥®);

jtag (*DefineProvType) (UNIEnv *, jsize);

jtag (*DefineProvPipeType) (ONIEnv *, const char*);

jtag (*DefineProvFileType) (UNIEnv *, const char*, jchar, jint, jint);

Jjtag (*DefineProvNetworkType) (UNIEnv *, jint, const char*, jint, const char*,
jint, jint);

jtag (*DefineProv) (UNIEnv*, const char*, const char*, jsize, jboolean, jtag);

jtag (*DefineProvUsingTag) (ONIEnv*, jtag, jtag, jtag, jboolean, jtag);:

Jjtag (*DefineProvSet) (ONIEnv*, jtag);

void (*ReportMsg) (INIEnv*, uint8_t*, jint);

// Tag generation functions:

jtag (*NewTag) (INIEnv*);

jtag (*JoinTaint) (ONIEnv*, jtag, jtag);

jtag (*JoinTaintUnion) (ONIEnv*, jtag, jtag):

// Taint bridge functions:

void (*PushTaint) (ONIEnv*, const jtag*, const char*, jint);

Jjtag (*PopTaint) (ONIEnv*);

Jtaintbridge (*CurrentTaintBridge)(INIEnv*);

// System call functions for accessing the metadata file descriptor:
void (*SyscallSetFdTaintFd) (UNIEnv*, jint, jint);

void (*SyscallSetFdRemotelD)(INIEnv*, jint, const char®);

void (*SyscallSetFdProvTypelD)(INIEnv *, jint, jtag);

jint (*SyscallGetFdTaintFd) (IUNIEnv*, jint);

const char* (*SyscallGetFdRemotelD)(INIEnv*, jint);

Jjtag (*SyscallGetFdProvTypelD)(INIEnv *, jint, jboolean);
void (*SyscallFdCleanup) (ONIEnv*, jint);

These functions are utilized on the native side to both summarize Java native calls that are easy
to summarize, and also as entry points for LAM (lean and mean). In addition to this we add another
struct for communicating the tags, system call id, and application program point id, returned tag,
etc...

typedef struct {
uint8_t is_java;
Jjtag app_ppt;
const char* shorty;
struct {
Jjtag* taint;
} params;
struct {
Jjtag taint;
} ret;
long scratch; /7* XXX */
} taint_bridge_t;

typedef taint_bridge_t* jtaintbridge;

Approved for public release; Distribution is unlimited 34

3.1.6.1 Native methods

Java native methods when instrumented are represented as a native method in Java, though it’s not
actually backed by any native code. Instead, we correct the call at runtime, such that the native
code can be located and executed for each native call. We accomplish this by first skipping Dalvik-
to-native compilation in dex2oat for all Java native methods. This is necessary because otherwise
a bridge to the native routine will be compiled into the binary. So, by skipping this we divert the
call through the Java Native Interface (JNI) trampoline. Inside of the JNI trampoline we do the
following:

1. Pop arguments and respective tags from the current stack frame, pushing the arguments
back onto the stack (since this is what the original method will be expecting on the stack).

2. Replace the *sp that points to the current ArtMethod™ with the original
(uninstrumented) ArtMethod™ (since the original is bound to the actual native routine).

3. Push anew taint_bridge_t struct containing the tags we popped from Step 1, as well
as the other information LAM is expecting for the call.

4. Make the native call.

5. Pop the current taint bridge, and record the returned tag from this struct onto this thread’s
TCReturn object.

Note that for any call that provides a native summary we must actually call the original native
routine since a) we’ve obviously provided a native implementation in this case, and b) this call
should not be running under LAM, since this summary will handle the tag propagation to and from
Java. Also, there are certain system calls that we wish not to intervene on in LAM. To
accommodate for this, we have added two special method modifiers (as bitwise-flags to the
methods access value). The first is used to mark system methods that will not run under LAM. The
second is for specifying whether the tags should be stripped or not.

3.1.7 Reflection

There are two things to consider for supporting reflection. First, it needs to be transparent to the
application. For example, all of the fields, constructors, methods that we add to the
system/application needs to be invisible to reflection. We support this by marking each of these
new elements we add with the TCTransparent annotation. Second, methods invoked (or
objects constructed) at runtime need to operate on the instrumented method. Likewise, fields set
reflectively also need to set the tag field as well. We need to therefore consider each of the
following cases:

« java.lang.Class

» TorName() - Throw a ClassNotFoundException() if the class returned is
@TCTransparent.

» getConstructors(), getDeclaredConstructors() - Return all
constructors not annotated by @TCTransparent.

« getAnnotations(), getDeclaredAnnotations() - Return all
annotations not annotated by @TCTransparent (including @TCTransparent itself).

Approved for public release; Distribution is unlimited 35

» getField(), getDeclaredField() - Throw a NoSuchFieldException if the
field returned is @ TCTransparent.

« getFields(), getDecalredFields() - Return all fields not annotated by
@TCTransparent.

» getMethods(), getDeclaredMethods() - Return all fields not annotated by
@TCTransparent.

e getConstructor(), getbDeclaredConstructor(), getMethod(),
getDeclaredMethod() - Throw a NoSuchMethodException() if the
constructor/method returned is @ TCTransparent.

* newlnstance() - See Constructor.newlnstance().
« java.lang.reflect.Field

e get() - If the underlying field is a primitive, then box the value of the field with
the value of the corresponding tag field, and return the boxed primitive.

* getBoolean(), getByte(), getChar(), getShort(), getint(),
getFloat(), getLong(), getDouble() - Retrieves the tag for the
corresponding tag field, sets TCReturn. taint with this value, and returns the
value of the underlying primitive field.

* set() - If the underlying field is a primitive, then unbox the value and tag, and set
both the primitive field and corresponding tag field with these values.

« setBoolean(), setByte(), setChar(), setShort(), setInt(),
setFloat(), setLong(), setDouble() - Sets both the primitive field and
corresponding tag field from the value and tags (respectively) passed into the call.

* java.lang.reflect.Method

* i1nvoke() - This is handled natively to support native "reflective” calls made via
JNI. The primitive arguments passed to a call need to be unboxed (both the value,
and tag). While unwinding the arguments in this fashion, we construct the new
arguments to the instrumented call. We then invoke the instrumented method on the
new set of arguments. If this was called from the JNI while tracing with LAM, then
we additionally need to get the current taint bridge and propagate the tag return from
the method invocation. We get this by obtaining this thread TCReturn object, and
accessing the taint field.

 java.lang.reflect.Constructor
* newlnstanceof() - This is essentially turns into the same underlying native call
as Method. invoke().
3.1.8 Proxy Classes

While like reflection, proxy classes are actually a bit different, since a method invoked on a proxy
class appears like any other method call. What this means is that unlike reflection, the primitive

Approved for public release; Distribution is unlimited 36

arguments to the call are not boxed. We therefore need to correct for this in the native entry point
for InvocationHandler . invoke() as follows:

1. Strip all of the tag parameters from the proxy method call, and box all of primitive
arguments from their (value,tag) pair, then reconstruct a new Java object array with the
arguments (as they would appear in an uninstrumented call).

2. Call InvocationHandler . invoke() passing it this new object array with the
corrected arguments, as well as the Method object of the original call.

3. If the underlying method returns a primitive, we need to additionally unbox the primitive
return value and corresponding tag. TCReturn . taint will be set to the tag we unboxed
from this current threads TCReturn object.

Now that the implementation of InvocationHandler . invoke() will receive the original
method and boxed arguments with taint to the call, this is exactly what we want since there will
almost certainly be a call to Method . invoke () here on this Method and arguments. This means
that reflection will actually operate on the instrumented method copy, and will unbox the
(value,tag) pair that we had previously boxed for the proxy call, and everything should just work
as expected on the actual instrumented call.

3.1.9 Reporting

Event data can be natively reported on all of the Java primitive values, arrays, strings, as well as
other Java objects. These calls can be found in Java. lang.TC in each of the static report*()
methods, and each return an EventData object. In Java. lang.Object, we added the following
method to handle the reporting for general objects:

public EventData report(String name, int dataType, TCDefiner definer) {
EventData data = new EventData();
ObjectValue objValue = new ObjectValue();
objValue.type = this.getClass().getQuickName();
objValue.hashCode = System.identityHashCode(this);
data.name = name;
data.valueType = dataType;
data.setObjectValue(objVvalue);
return data;

}

This can be overridden to include fields that you wish to report on, but above is the default
implementation. Alternatively, you can alter the classes.defs file, and this will tell the
instrumenter how these Objects will be reported. The instrumenter will then automatically generate
the report() method for these classes at instrumentation time.

Listing: Example of classes.def

jJava.io.File : (path)

jJava.io.FileDescriptor - all

java.lang.Class : (getName())

jJava.net. InetAddress : (family, ipaddress, hostName)

Approved for public release; Distribution is unlimited 37

In this example, Fi le only reports on the path field, Fi leDescriptor reports on all fields,
Class reports on the String returned from the call to Class.getName(), and InetAddress

reports on fami ly, ipaddress, and hostName fields.

3.1.9.1 Protocol Buffers

As mentioned earlier in the paper, we rely on Google protocol buffers to generate report for all
sources/sinks and other events that incur in the system. Below is the specification for how

provenance messages are defined in ClearScope.
Listing: Protocol Buffers provenance message declarations

package art;

option java package = "java.lang";
option optimize for = SPEED;
option java outer_classname = "TCReport";

message RLETag {
// no length means aggregate

optional int32 length = 1 [default = -1];

required uint32 tag = 2;

}

/xxx
* Data types for events *

/

message PointerValue {
required uint64 value
}

message BoolValue {
repeated bool value = 1;
}

message ByteValue {
required bytes value = 1;
}

message CharValue {
required string value = 1;
}

message ShortValue {
repeated int32 value = 1;
}

message IntValue {
repeated int32 value = 1;
}

message FloatValue {
repeated float value = 1;
}

message LongValue {
repeated int64 value = 1;
}

message DoubleValue {
repeated double value = 1;

1
[Eny

Approved for public release; Distribution is unlimited

38

}

message StringValue {
repeated string value = 1;
}

message ObjectValue {
required string type = 1;
optional iInt32 hash_code

2 [default = 0]; // Could be a null ref.
repeated EventData value ;

3;

}

message EventData {
enum ValueType {
PARAM = 0O;
SRC = 1;
SINK = 2;
RET = 3;
b
required string name = 1;
required ValueType value_type = 2;
optional bool is_array = 3 [default = false];
oneof data {

BoolValue bool_value = 4;
ByteValue byte value = 5;
CharValue char_value = 6;

ShortValue short_value = 7;
Intvalue int _value = 8;
FloatValue float value = 9;
LongValue long_value = 10;
DoubleValue double_value = 11;
StringValue string_value 12;
ObjectValue object value 13;
PointerValue pointer_value = 16;

}
repeated RLETag tag = 14;
optional bool is _null = 15 [default = false];

}

message GeneralObject {
required string type = 1;
repeated StringPair properties = 2;

}

message BinderObject {
enum ProvKind {

ACCESSIBILITY_SERVICE
ACTIVITY_MANAGEMENT =
ALARM_SERVICE = 2;
ANDROID_AUTO = 93;
ANDROID_RADIO = 97;
ANDROID_TV = 3;
ANDROID_VR = 99;
AUDIO_I10 = 4;
AUTOFILL = 98;
BACKUP_MANAGER = 5;
BINDER = 6;
BLUETOOTH = 7;
BOOT_EVENT = 8;
BROADCAST_RECEIVER_MANAGEMENT = 9;
CAMERA = 10;
CLIPBOARD = 11;
COMPANION_DEVICE = 100;
COMPONENT_MANAGEMENT = 12;
CONTENT_PROVIDER = 13;
CONTENT_PROVIDER_MANAGEMENT = 14;
DATABASE = 15;

= O;
1;

Approved for public release; Distribution is unlimited

DEVICE_ADMIN = 16;
DEVICE_SEARCH = 17;
DEVICE_USER = 18;
DISPLAY = 19;
DROPBOX = 20;

EMAIL = 21;
EXPERIMENTAL = 22;
FILE = 23;
FILE_SYSTEM = 24;
FILE_SYSTEM_MANAGEMENT = 25;
FINGERPRINT = 26;

FLASHLIGHT = 27;
GATEKEEPER = 28;

HDMI = 29;
IDLE_DOCK_SCREEN = 30;
IMS = 31;

INFRARED = 32;
INSTALLED_PACKAGES
JSSE_TRUST_MANAGER
KEYCHAIN 35;
KEYGUARD 36;
LOCATION 37;
LOWPAN = 92;
MACHINE_LEARNING = 38;

MBMS = 89;

MEDIA = 39;

MEDIA_CAPTURE = 40;
MEDIA_LOCAL_MANAGEMENT = 41;
MEDIA _LOCAL_PLAYBACK = 42;
MEDIA_NETWORK_CONNECTION = 43;
MEDIA_REMOTE_PLAYBACK = 44;
MIDI = 45;

NATIVE = 46;

NETWORK = 47;
NETWORK_MANAGEMENT = 48;

NFC = 49;

NOTIFICATION = 50;
OVERLAY_MANAGER = 96;
PAC_PROXY = 51;

PERMISSIONS = 52;
PERSISTANT_DATA = 53;

POSIX = 54;

POWER_MANAGEMENT = 55;
PRINT_SERVICE = 56;
PROCESS_MANAGEMENT = 57;
QUICK_SETTINGS = 90;

33;
34;

RCS = 94;
RECEIVER_MANAGEMENT = 58;
RPC = 59;

SCREEN_AUDIO_CAPTURE = 60;
SERIAL_PORT = 61;

SERVICE_CONNECTION = 62;
SERVICE_MANAGEMENT = 63;
SHORTCUTS = 88;

SMS_MMS = 64;
SPEECH_INTERACTION = 65;

STATUS_BAR = 66;
SYNC_FRAMEWORK = 67;
SYSTEM_UPDATE = 91;
TASK_STACK = 95;
TELEPHONY = 68;
TEST = 69;
TEXT_SERVICES = 70;
THREADING = 71;
TIME_EVENT = 72;

ul = 73;

UID_EVENT = 74;

Approved for public release; Distribution is unlimited

40

UI_AUTOMATION = 75;
UI_MODE = 76;

UI_RPC = 77;
USAGE_STATS = 78;

USB = 79;
USER_ACCOUNTS_MANAGEMENT = 80;
USER_INPUT = 81;
VIBRATOR = 82;
WAKE_LOCK = 83;
WALLPAPER_MANAGER = 84;
WAP = 85;

WEB_BROWSER = 86;
WIDGETS = 87;

required ProvKind kind = 1;
repeated StringPair properties = 2;

}

message FileObject {

required string path = 1;

required int32 permissions = 2;

required string type = 3;

optional int64 sizelnBytes = 4 [default = 0]; //at open
}

message NetworkObject {
required string localAddress = 1;
required int32 localPort = 2;
optional string remoteAddress = 3 [default = ""];
optional int32 remotePort = 4 [default = -1];
required int32 protocol = 5;
optional iInt32 initTcpSegNum = 6;

}

message IPCObject {
enum IPCObjectType {
IPC_OBJECT_PIPE_NAMED = 0;
IPC_OBJECT_PIPE_UNNAMED = 1
IPC_OBJECT_SOCKET_ABSTRACT
IPC_OBJECT_SOCKET_PATHNAME
I1PC_OBJECT_SOCKET_UNNAMED
IPC_OBJECT_SOCKET_NETLINK

W N

a b

}

required IPCObjectType type = 10;
required string uniquelD = 11;

}

//deprecated
message PipeObject {

required string uniquelD = 3;
}

message PacketSocketObject {
required int32 protocol = 1;
required int32 ifindex = 2;
required int32 hatype = 3
required int32 pkttype =
required int32 halen = 5;
required bytes addr = 6;

}

message Event {
enum Flow {
EVENT =

SRC = 1;

SINK = 2;

0;

Approved for public release; Distribution is unlimited

required Flow flow = 1;

required uint32 prog_id = 2;

//java user program point

required uint32 app_ppt = 3;

//string signature of java call or native sys-call
required uint32 sys_call = 4;

required int64 tid = 6;

required int64 time = 7;

repeated EventData eventData = 8;

optional uint32 predicatel_id = 9; // prov type id
optional uint32 predicate2_id = 10; // prov type id
//native library and offset

optional uint32 native_ppt = 11;

//string signature of java native method

optional uint32 java_native_call = 12;

optional uint32 taint_union_entr_id
optional uint32 taint_union_exit_id

13;
14;

}

message DefineProgram {
required uint32 id = 1
required uint32 host_i
required string pname
required int32 pid = 4
required int32 ppid = 5;
required int32 uid = 6; //user id assigned by 0S
required int64 start_time = 7;

= 2;
3;

“r] Qs

}

message DefineProvType {

required uint32 id = 2;
required uint32 prog_id
//required string value
oneof object {

GeneralObject generalObj = 5;

FileObject fileObj = 6;

NetworkObject networkObj = 7;

PacketSocketObject packetSockObj = 8;

// PipeObject should no longer be used, keeping for backwards

// compatability, see IPCObject

PipeObject pipeObj = 9 [deprecated=true];

BinderObject binderObj = 10;

IPCObject ipcObject = 11;

3;
4;

}
}

message DefineAppPpt {
required uint32 id = 1;
required uint32 prog_id
required string value =

w Il
N

}

message DefineSysCall {
required uint32 id = 1;
required uint32 prog_id
required string value =

w Il
N

}

message DefineUnknownProv {
required uint32 id = 1;
required uint32 prog_id = 2;
}

message DefineProv {
enum Flow {

Approved for public release; Distribution is unlimited

SRC = 0;
SINK = 1;
}

required Flow flow 1;

required uint32 id = 2;

required uint32 prog_id =

required int32 type = 4;

required uint32 app_ppt = 5;
required uint32 sys_call = 6;
required uint32 prev_id = 7;
optional string prev_device_id = 8;

message DefineProvSet {
required uint32 id = 1
required uint32 prog_i

|

d
repeated uint32 child =

5
)

message HostInfo {
required uint32 id =
required string hostname = 2;
repeated StringPair hostlds = 3;
required string osDetails = 4;
repeated Interfacelnfo interfaces = 5;

}

message StringPair {
required string key = 1;
required string value = 2;

}

message Interfacelnfo {
required string name = 1;
required string macAddress = 2;
repeated string ipAddresses = 3;

}

message User {
required int32 userld = 1; //user id assigned by 0S
required string name = 2;
repeated string groups = 3;

}

message ProvMessage {
oneof type {

DefineProgram define_program = 1;
DefineAppPpt define_app_ppt = 2;
DefineSysCall define_sys call =
DefineProv define_prov = 4;
DefineProvSet define_prov_set = 5;
DefineProvType define_prov_type = 6;
Event event = 7;
User user = 9;
HostInfo host_info = 10;
DefineUnknownProv unknown_prov = 11;

3;

3.1.9.2 How tags are defined

The Java.lang.TCDefiner class tells each of the TC. report*() calls whether and how
to tag the data for each report call. Primitive arrays are tagged via the java. lang.RLE, and also

Approved for public release; Distribution is unlimited 43

generate the appropriate run-length encoding protobuf message. There are three definers that
ClearScope uses:

1. TCNulIDefiner - The call to TCDefiner .define() simply returns the original tag.
This definer is only ever used for debugging, and testing purposes.

2. TCProvDefiner - This is backed by a call to TC.defineProvSet() on the
provided tag. l.e., for each tag called on TCDefiner .define(), it will ensure that a
DefineProvSet message is created for the tag passed to the call (only if the prov set
was not already previously defined).

3. TCProvJoiner - This is backed by a call to TC.defineProv(). In other words, the
tag returned by TCDefiner .define() is the join of the tag passed to the call,
application program point, and sys call ids. A DefineProv protobuf message is
generated for each call.

3.1.9.3 Sources (with read example)

If there is no tag FD associated with the FD that we are reading from, then we mark the read bytes
with the tag associated with the FileDescriptor number itself. This allows us to do things like tag
the FileDescriptor objects used for stdout, stderr, and stdin of an execed process, for
example. Otherwise, we read four times as many bytes from the tag file, as we did the original FD.
The byte array is now tagged with the tags read in from the tag file. We then make the appropriate
callto TC. reportByteArray() that joins with the application program point, and system call.
A new EventData|] object of the remaining parameters, and the call to TC.sink() is made.
This outlines the basic principle behind all reads/sources in ClearScope.

public int read(FileDescriptor fd, byte[] bytes, int byteOffset, int byteOffset t, int
byteCount, int byteCount t,
TCReturn ret) throws ErrnoException, InterruptedlOException {
// This indirection isn"t strictly necessary, but ensures that our public interface
is type safe.
int bytesRead = readBytes(fd, bytes, byteOffset, byteCount);
ifT (ITC.programStarted() || bytesRead <= 0) {
ret.taint = 0;
return bytesRead;

}

int sysCall = TC.defineSysCall(
"int libcore.io.Linux.read(Java.io.FileDescriptor fd, byte[] bytes, int
byteOffset, int byteCount) [line: 459]");
int appPpt = ret.getAppPpt():
int provType = fd.getProvType(false);
if (provType == -1) {
// Could only be true if fd was opened in pre-zygote init code.
ret.taint = 0;
return bytesRead;

}

try {
readTaint(fd, bytes, byteOffset, bytesRead);
} catch (ErrnoException err) {
// Taint FD cannot be null here, since an errno exception cannot be raised in the
event that
// there is no taint FD. So no null check is needed in this case.
TC.logWarning(''Unable to read taint from fd(%d) due to errno(%d): %s",
fd.getTaintFd() .getInt$(), err.errno,
strerror(err.errno));

Approved for public release; Distribution is unlimited 44

-1 :

} catch (Throwable misc) {
FileDescriptor taintFd = fd.getTaintFd();

TC.logWarning(*'Unable to read taint from fd(%d) due to %s: %s'", taintFd == null ?

taintFd.getInt$(),

misc.getClass() .getName(), misc.getMessage());
}

// Generate the source event...

ret_taint = TC.defineProv(appPpt, sysCall, provType, true, 0);

EventData[] data = {
TC.reportNonArrayObject(*'fd", fd, FileDescriptor.class, EventData.PARAM),
TC.reportByteArray("'bytes", bytes, bytesRead, EventData.SRC,

TCDefiner.joiner(appPpt, sysCall, provType, true)),

TC.reportint("byteOffset"”, byteOffset, byteOffset t, EventData.PARAM),
TC.reportint(“'byteCount”, byteCount, byteCount_t, EventData.PARAM),
TC.reportint(''r", bytesRead, ret.taint, EventData.SRC)

};
TC.source(appPpt, sysCall, provType, data);

return bytesRead;

3.1.9.4 Sinks (with write example)

In a write call, the sink event is generated prior to writing out the tags to the tag file. We construct
an EventData|] of the parameters to the call, and pass that to the call to TC.sink() like we
did in the previous read example. After the sink message is generated and reported, we write write

the tags to the corresponding tag file. If the byte[] had aggregate taint, we must write out this
tag (joined with the application program point, and system call id) for each byte written to the

original FD. Otherwise, we write out the tags (joined with the application program point, and

principle behind all writes/sinks in ClearScope.

public int write(FileDescriptor fd, byte[] bytes, int byteOffset, int byteOffset_t,

byteCount,

int byteCount_t, TCReturn ret) throws ErrnoException, InterruptedlOException {
// This indirection isn"t strictly necessary, but ensures that our public interface

is type safe.

int bytesWritten = writeBytes(fd, bytes, byteOffset, byteCount);
if (ITC.programStarted() || bytesWritten <= 0) {

ret.taint = 0;

return bytesWritten;

}

int sysCall = TC.defineSysCall(
"int libcore.io.Linux.write(Java.io.FileDescriptor fd, byte[] bytes, int

byteOffset, int byteCount) [line: 751]");

int appPpt = ret._getAppPpt();

int provType = fd.getProvType(false);

if (provType == -1) {
// Could only be true if fd was opened in pre-zygote init code.
ret_taint = 0;
return bytesWritten;

}

// Generate the sink event...

EventData[] data = {
TC.reportNonArrayObject("fd", fd, FileDescriptor.class, EventData.PARAM),
TC.reportByteArray("'bytes", bytes, bytesWritten, EventData.SINK),
TC.reportint("byteOffset", byteOffset, byteOffset t, EventData.PARAM),
TC.reportint("byteCount', byteCount, byteCount_t, EventData.PARAM),
TC.reportint(''r", bytesWritten, 0, EventData.RET)

Approved for public release; Distribution is unlimited

system call id) corresponding to each byte written to the original FD. This outlines the basic

int

45

1
TC.sink(appPpt, sysCall, provType, data);

try {
writeTaint(fd, bytes, byteOffset, bytesWritten, appPpt, sysCall, provType);
} catch (ErrnoException err) {
// Taint FD cannot be null here, since an errno exception cannot be raised in the
event that
// there is no taint FD. So no null check is needed in this case.
TC.logWarning(''Unable to write taint from fd(%d) due to errno(%d): %s",
fd.getTaintFd().getInt$(), err.errno,
strerror(err.errno));
} catch (Throwable misc) {
FileDescriptor taintFd = fd.getTaintFd();
TC.logWarning(*'Unable to write taint from fd(%d) due to %s: %s"™, taintFd == null ?
-1 : taintFd.getInt$Q),
misc.getClass().getName(), misc.getMessage());
}

ret.taint = 0;
return bytesWritten;

}

3.1.10 Build environment

This was a bit of a pain due to the overall complexity of the android build system. Most of this
complexity stems from the fact that components of the system are modularized but interdependent,
and also some things are built for both the host and device. Additional build steps were required
for building the following:

* dex-instrumentation - This is built for both the host and the device. This has to
build very early for the host, since the dx tool relies on it to perform the dex translation, as
well as perform the instrumentation, on Java bytecode. Additionally, we modified the build
rules for the Jack compiler to perform instrumentation on modules built with Jack.

* provmsgr - Device only provenance messenger service for serializing prov message data.

e instd - Device only instrumentation daemon for providing dynamic instrumentation
support.

» clearscope - Device and host executables for accessing/analyzing metadata from files.

Fortunately, since system code is built in a directory separate from application code, we can
actually pass the right instrumentation flag (-aosp or -app) that will instrument the bytecode as
SYSTEM or APPLICATION code.

3.1.10.1 Protocol Buffer Integration

Due to unforeseen build issues relating to how android modules utilize the protocol buffer libraries,
and the craziness of the dependencies involved here, the protobuf Java library needed to be
integrated into the core java libraries. This is because system calls need to be able to send protocol
buffer messages for generating sources, sinks, and other events. This took some clever retrofitting
of the android build system for including certain classes in with the System API. This is because
Doclava required the javadocs to be formatted in a particular way (provided that the method was
not hidden - via "@hide™).

Approved for public release; Distribution is unlimited 46

3.1.11 Array aggregation / deaggregation

See section 3.1.3.

3.1.12 ART modifications

The only thing super critical for having a working instrumentation required both changes to the
garbage collector, and also changes to the mirror classes (which we will talk about in separate
subsections). Other less critical changes involved modifying threads to additionally allocate a
TCReturn Java object once per thread creation. Also, since class initializers now take an argument
(namely, the TCReturn object of the current thread), we modified the class linker to allocate classes
by passing the TCReturn reference for that thread to it’s initializer. Additionally, to speed up the
lookup time needed to access the shadowed version of the reflected Object (Field, Method, or
Constructor), the class linker finds these exactly one time at the time the class is loaded.

3.1.12.1 Garbage collector

Because we altered the Java array header to contain a heap reference to a Java int[] allocation.
We have to compensate for this new allocation during the Garbage Collection mark phase. They
have abstracted this concept of visiting a reference tree not only for the purpose of Garbage
Collection, but also to handle things like cloning. The ART developers make use of C++ functions,
and depending on the wuse case it passes a different Visitor object to the
Object: :VisitReferences() member function. This is where we must consider this new
allocation, for when the Object type is a primitive array.

3.1.12.2 Mirror classes

Since we are modifying the entire system API, we must also modify (by hand) all of the mirror
classes in the ART runtime. These classes are core classes (like String, Class, Object, etc...) that
are used internally by the runtime. Since they are essentially a "mirror"-image of the Java
allocation, the fields in the C++ mirror class must be exactly aligned with the Java class. Fields in
Dalvik are ordered with Object fields appearing first, followed by primitive types in descending
precision (i.e. 64-bit, then 32-bit, etc...). Because these fields are also packed, it is slightly less
trivial to know the exact byte offset of each field. So, generally We will print out the expected field
offsets in the first pass, and then correct the order in the second pass.

3.1.12.3 Optimizations

The ART runtime contains many compiler intrinsics for replacing common method calls with
inlined assembly that can be generated by the compiler a priori. This replacement procedure is
performed on the LIR (low-level IR) produced by the dex2oat compiler. Some examples of calls
with intrinsics are String.charAt(), Math.max(), and Thread.currentThread(). In cases where tags
do not have to propagate through the call, we essentially mirror the same intrinsic (ensuring that
registers line up correctly for the parameters to the instrumented intrinsic). Additionally, we added
intrinsics for accessing both aggregate and element-by-element taint on arrays, since it would
otherwise turn into an expensive JNI call, and these accesses occur all of the time (including tight
loops). Optionally, we can inline the entire array load and store instruction (only in the case where
the element is not wide), which is a bit of a smaller performance improvement over the standard
array intrinsics. We do this since array accesses actually turn into about 30-40 Dalvik instructions
(depending on if it’s a load or a store).

Approved for public release; Distribution is unlimited 47

3.1.13 Upgrades to new Android versions
3.1.13.1 Describe process and pain points

The issue with migrating to newer versions mostly is due to the fact that it requires complicated 3-
way merging between divergent repositories (plural). It’s not usually as simple as merging, since
typically we need to make a physical copy of the existing method when making method summaries.
Therefore, if something inside of a method that we summarized had changed, the "git merge" will
be oblivious to the change that would need to happen in the instrumented summary. So, this would
introduce a (potentially bad) bug.

We therefore take a very systemic approach here, and manually pull in changes into the Android
Open Source Platform (AOSP) iteratively, starting with the most elementary changes required to
have a complete instrumentable system. Generally we will start with binder first, since that
typically is the hardest of the modified components to work with. Once we have this working on a
slightly modified vanilla system that just throws away the tags, we can start to pull in the ART
changes required to have a basic complete instrumentation (i.e. see the necessary changes discussed
in section 3.1.12). You will also need to address the changes that are divergent from the newer
android version. This will typically require understanding new functionality introduced in the more
modern version, and hopefully the number of instances is small.

3.1.13.2 Java8

This required supporting two additional Dalvik instructions (invokedynamic, and
invokepolymorphic). Unfortunately this required some amount of work in Soot to be able to
support these instructions, since Soot (at that time) did not support these features. Later on there
was enough support for this that we were able to go in and fix whatever bugs there were for this,
and so now our instrumentation supports Java 8.

3.1.13.3 Strings

What was once implemented as a char[] allocation in Jjava. lang.String became part of
the actual String allocation (where the chars are inlined into the object’s allocation). For this reason,
Strings cannot be constructed by making the usual constructor call (since the allocation size is now
dynamically determined. This is therefore implemented by replacing all constructor calls with calls
to a static method inside java. lang.StringFactory, as shown in the table below:

new String() StringFactory.newEmptyString(Q)
new String(String) [StringFactory.newStringFromString(Strin
9)

new String(char[]) [StringFactory.newStringFromChars(char[]

new String(char[], |[StringFactory.newStringFromChars(char[]

int, int) , Int, Int)
new String(int, StringFactory.newStringFromChars(int,
int, char[]) int, char[])

new String(int[], [StringFactory.newStringFromChars(int[],
int, int) int, Int)

Approved for public release; Distribution is unlimited 48

new String(byte[], [StringFactory.newStringFromBytes(byte[]

int, int, int) , Int, Int, Int)
new String(byte[], [StringFactory.newStringFromBytes(byte[]
int, int) , Int, Int)

new String(byte[], [StringFactory.newStringFromBytes(byte[]
int, Iint, String) , Int, Int, String)

new String(byte[], [StringFactory.newStringFromBytes(byte[]
int, int, Charset) |, int, int, CharsetName)

new String(byte[], [StringFactory.newStringFromBytes(byte[]
int) , Int)

new String(byte[], [StringFactory.newStringFromBytes(byte[]
int, int, int) , Int, Int, Int)

new String(byte[]) [StringFactory.newStringFromBytes(byte[]

new String(byte[], [StringFactory.newStringFromBytes(byte[]
String) , String)
new String(byte[], [StringFactory.newStringFromBytes(byte[]

Charset) , Charset)

new StringFactory.newStringFromStringBuffer
String(StringBuffer [((StringBuffer)

D

new StringFactory.newStringFromStringBuilde
String(StringBuilde [r(StringBuilder)

r

The only modifications required to support this was to simply find the place in the compiler where
this translation happened, then add translations for each of their respective instrumented
constructor calls. Then our DEX instrumentation will get us most of the way there. The only thing
left at that point would be to hand instrument all of the native calls by utilizing the JNI taint access
routines that we added for primitive arrays.

3.1.14 String (and Primitive Wrapper) interning

We support string interning by replacing the == operator with a call to TC.acmp(Object,
Object) when either operand can be either a String or one of the (non-float) primitive wrapper
class types: Boolean, Byte, Character, Short, Integer, and Long. This simply calls
Object.transparentEqualEquals() on the two operands, which is a method we added
to jJava.lang.Object for comparing the interned/cached references. This method is
overridden in each of the aforementioned classes of the types that will support interning/caching.
For example, for supporting String.intern(), consider the following changes to
Java.lang.String:

public final class String
implements java.io.Serializable, Comparable<String>, CharSequence {

Approved for public release; Distribution is unlimited 49

/** @hide */
@TCTransparent
protected transient String tc_interned;

/** @hide */
@Override
@TCDontShadow
@TCTransparent
public boolean transparentEqualEquals(Object 0) {
if (1(o instanceof String))
return false;
String otherString = (String) o;
Object vall = this.tc_interned;
if (vall == null)
vall = this;
Object val2 = otherString.tc_interned;
if (val2 == null)
val2 = otherString;
return vall == val2;

}

@FastNative
@TCDontShadow
public native String intern();

/** @hide */
@TCDontShadow
@TCTransparent
public String intern(TCReturn ret) {
// Create copy of String and set the interned string
// to be a field in the copied String. The String we
// return here will be the one we copied. Any comparisons
// will have to compare interned references.
String si = intern();
String newString = StringFactory.newStringFromString(this);
newString.tc_interned = si;
return newString;

We perform a similar technique for supporting comparisons on Objects returned from calls to the
boxing routines that would otherwise return a cached value. For example, consider the following
changes to Java. lang.Byte (which essentially caches byte value with a unique wrapped Byte
object):

public final class Byte extends Number implements Comparable<Byte> {

@TCDontShadow
private final byte value;

/** @hide */
@TCDontShadow
@TCTransparent
public int value$t;

/** @hide */
@TCDontShadow

Approved for public release; Distribution is unlimited 50

@TCTransparent
public transient boolean cached;

private static class ByteCache {
private ByteCache(Q{}

static final Byte cache[] = new Byte[-(-128) + 127 + 1];

static {
for(int i = 0; 1 < cache.length; i++)
cache[i] = new Byte((byte)(i - 128), true);
}
}
@TCDontShadow

public Byte(byte value, boolean cached) {
this.value = value;
this.cached = cached;

}

/** @hide */

@TCDontShadow

@TCTransparent

public Byte(byte value, int value_t, boolean cached, int cached_t, TCReturn ret) {
this.value = value;
this.value$t = value_t;
this.cached = cached;

}

@TCDontShadow
public static Byte valueOf(byte b) {
final int offset = 128;
return ByteCache.cache[(int)b + offset];

}

/** @hide **/

@TCDontShadow

@TCTransparent

public static Byte valueOf(byte b, int b_t, TCReturn ret) {
// Return new instance instead of caching!
return new Byte(b, b_t, true, 0, ret);

}

/** @hide */
@TCDontShadow
@TCTransparent
public boolean transparentEqualEquals(Object object) {
if (1(object instanceof Byte))
return false;
Byte other = (Byte) object;
if (Icached || 'other.cached)
return this == object;
return other.value == value;

3.1.15 SELinux

Since we are adding system services to the device, it was critical to modify the init. rc file such
that the system is initialized properly to allow for tagging inside system processes/services.

Approved for public release; Distribution is unlimited 51

1. provmsgr - This service needs to start as early as possible, since we are also tracking
native processes via LAM tracing. It’s marked a critical service, since it’s required for the
device to function properly.

2. instd - The instrumentation daemon is also a critical services that must start under root
user, because it needs to be able to fork/exec under essentially any trusted/untrusted app.

In addition to this, both the provmsgr and 1nstd service need directories created under /data
for storing provenance data (when writing prov data to a file), and also directories for storing the
dynamically instrumented DEX files (in the case of 1nstd). It also required setting up the tag file
system, since the tag files are actually written to a separate file system. We also needed to set up
shared memory, since LAM tracing requires this.

SELinux policies needed to be created for handling these additional system services. Since the base
policies were a bit too restrictive, we also needed to allow for extra sets of permissions for these
services. Also, since all trusted/untrusted apps needed to (for example) communicate over binder,
we had to allow access through the service manager.

1. provmsgr - Allow for communicating over binder, creating FIFO file for writing prov
messages, as well as working with UDP sockets (for accessing network information).

2. 1nstd - Allow for communicating over binder, accessing Dalvik cache, execing the shell
and zygote (for invoking our Java soot-based instrumentation), setting the UID/GID
(needed to ensure correct permissions of the instrumented Dalvik files), and writing files to
the system directory (for storing Dalvik).

3. lam_tracer - Allow access to shared memory, access to procfs, rootfs, tmpfs, fifos, and
datagram sockets.

We also added properties for both debugging purposes, and also for the purpose of doing things
like turning off dynamic instrumentation, for example. These additional properties needed to be
added so that the system server could access these properties.

3.1.16 Compatibility Test Suite (CTS) modifications and results

Most all of the modifications were simply to increase the timeout needed to run certain tests, since
in certain cases the instrumented tests exceeded this timeout bound. We wrote scripts to triage the
failures so that we could easily compare runs between the vanilla system, system instrumented
with soot-identity, as well as the fully-instrumented system. This allowed us to go in and more
easily fix any soot related bug that was breaking certain fundamental (but more esoteric) parts of
the system that was apparently hard for Soot to get right (i.e. system features that rely on certain
system annotations). In fact, in the early phases of the project, the phone wasn’t even robust enough
to fully boot without crashing somewhere in the system API on critical Java services. For example,
there were many floating-point bugs that prevented the phone from displaying graphics properly.
So, we actually fixed a fair number of soot bugs (15-20, or so).

3.1.17 Binary Tracking and Reporting Implementation

The binary tracking and reporting implementation is based on kernel modifications that enable
low-overhead system call monitoring and reporting callbacks. We call the system lean-and-mean
(LAM) tracking and reporting. The main goal of LAM was to achieve a very low overhead, and
compete with existing kernel-side system call tracing systems. With a previous system based on

Approved for public release; Distribution is unlimited 52

ptrace, the cost of context-switching was too high; Firefox (which creates at least 100 threads)
did not scale well. Like many others have before, we discovered the performance drawbacks of
ptrace. Thus LAM was designed with a "same-thread" model in mind.

Existing Linux interfaces such as seccomp allow the user to provide a BPF program that can be
used to efficiently trace system calls, but BPF’s cannot have unbounded loops, something we
needed for the maintaining provenance metadata. So we opted for something more general: signal
delivery.

Every time a system call is made, we interrupt the current thread before and after the system call
has returned. The remainder of this section discuss the kernel mechanism design and modifications
and the user-level design of LAM.

3.1.17.1 Kernel Modifications

3.1.17.1.1 Controlling tracing of system calls

In arch/armé4/kernel/entry.S, the kernel-side entry point for system calls, there is a
slow path and a fast path. While the fast path transfers control straight to the relevant system call
procedure, the slow path takes a detour into syscall_trace_enter located in
arch/arme4/kernel/ptrace.c before, and then into syscal | _trace_exit after (also
located in arch/armé4/kernel/ptrace.c). Which one taken is dictated by whether the
current thread flags intersect with _ TIF_SYSCALL_WORK.

By defining our own thread flags,

#define TIF_CSBLAM 12
#define TIF_CSBLAM_ENTERED 13

And changing _TIF_SYSCALL_WORK to include _T1F_CSBLAM,

#define _TIF_CSBLAM (1 << TIF_CSBLAM)

#define _TIF_SYSCALL WORK (_TIF_SYSCALL_TRACE | _TIF_SYSCALL AUDIT | \
_TIF_SYSCALL_TRACEPOINT | _TIF_SECCOMP | \
“TIF_NOHZ | _TIF_CSBLAM)

Then the slow-path will be taken if the TIF_CSBLAM thread flag is set, giving us the opportunity
to initiate userspace tracing. Note that if the TIF_CSBLAM thread flag is not set, there will be
negligible overhead for system calls since the fast-path will be taken which bypasses all the same-
thread-tracing code.

3.1.17.1.2 Tracing mechanism

If the TIF_CSBLAM thread flag is set, and the system-call number is marked for reporting, it shall
be traced on the same thread.

This is essentially equivalent to immediately delivering a signal on the CSBLAM stack for the
current thread (with the handler being the post-syscall procedure). We harness the existing
machinery in the kernel to perform this. The TIF_CSBLAM thread flag is cleared before returning
to userspace; if we make system calls in the syscall procedure, we do not want them to be traced.

Approved for public release; Distribution is unlimited 53

The return address of the syscall procedure points into the vDSO(7), where the
csblam_sigreturn(2) system-call is invoked. Its semantics are nearly equivalent to
sigreturn(2), except the TIF_CSBLAM thread flag is set before returning to userspace — thus
we continue tracing system calls following execution of the syscall procedure.

3.1.17.1.3 Kernel interfaces
Here we define the kernel interfaces we have added.

long sys_csblam_setup(void __user *sys_entr_proc,
void __user *sys exit _proc,
void __user *sig_proc)

Caller provides the addresses of three functions: (1) a pre-syscall procedure, (2) a post-syscall
procedure, and (3) signal-handler-wrapper. Provided that csblam_set_stack(2) has been
called, this system call effectively starts tracing for the current thread.

Return value: On success, returns 0. Furthermore the follow-on-clone and follow-on-exec task
struct fields are set to 1. On error, returns —EAGAIN (if this system call was previously invoked).

long sys_csblam_set stack(void __user *stack, size_t size)

This is for userspace to define the stack on which the tracing procedures execute, akin to
sigaltstack(?2).

Return value: On success, returns 0. On error, returns —EAGAIN (if this system call was previously
invoked).

long sys_csblam_set_thd_flg(void)

Sets the TIF_CSBLAM flag for the current thread.

Return value: On success, returns 0. On error, returns —EPERM (if this system call was not called
by either Iibc.so, libcsblam.so, or provmsgr).

long sys_csblam _clr_thd_flg(void)

Clears the TIF_CSBLAM flag for the current thread.

Return value: On success, returns 0. On error, returns —-EPERM (if this system call was not called
by either Iibc.so, libcsblam.so, or provmsgr).

long sys_csblam_get_thd_flg(void)
Return value: Returns whether the TIF_CSBLAM thread flag is set in the current thread.
long sys_csblam_tst_follow_exec(void)

Return value: Returns the "follow-on-exec" field in the current thread.

Approved for public release; Distribution is unlimited 54

long sys_csblam_set next_tag(unsigned long)

Sets the "next tag"”, i.e. the next number to be returned from sys_csblam_request_tags()
Return value: On success, returns 0. On error, returns —EPERM (if this system call was not called
by either Iibc.so, libcsblam.so, or provmsgr).

long sys_csblam_request_tags(void)

Return value: On success, returns tag. On error, returns -EAGAIN (if
sys_csblam_set_next_tag hasn’t been called yet).

long sys_csblam _get next_tag(void)

Return value: The "next tag" (i.e. the next wvalue to Dbe returned by
sys_csblam_request_tags).

long sys_csblam_finalize(void)
Disables tracing for all threads in the current thread group. Intended to be called before the

application cleanly shuts down.

Return value: On success, returns 0. On error, returns —EPERM (if this system call was not called
by either Iibc.so, libcsblam.so, or provmsgr).

The "handler" for this so-called interrupt is designated by the first successful call to
sys_csblam_setup(2).

3.1.17.2 User-Level Design and Implementation
In this section, we describe the user-level modifications we have made to the system for binary
LAM tracking and reporting.
3.1.17.2.1 Runtime linker (/system/bin/1inker)
Tracing is set in motion in the dynamic linker if:
1. The follow-on-exec flag is set, or

2. readlink("'/proc/self/exe') is *not* on the whitelist in
bionic/linker/csblam_whitelist.hpp.

Doing so can be understood as leveraging the LD _PRELOAD environment variable to add
libcsblam.so to the list of DSO’s loaded into the dynamically-linked process.

3.1.17.2.2 Same-thread-tracing library (/system/lib/libcsblam.so)

Constructor

The constructor, a DT_INIT function which is called by the dynamic linker after loading all
dependent shared objects, immediately establishes a connection with provmsgr. Then it passes

Approved for public release; Distribution is unlimited 55

the addresses of the pre-syscall procedure, post-syscall procedure, and signal handler wrapper to
the sys_csblam_setup system call, *unless* ""CSBLAM_HAS PROGRAM_START" is
present in the environment (e.g. for an android app), in which case this setup is postponed until
later.

Syscall Procedures

In the post syscall procedure, provenance is propagated for file read(2)’s and write(2)’s
wherever possible. A map from file descriptor numbers to provenance file descriptor numbers is
maintained, where regular files have provenance counterparts (whose size is four times that of their
counterpart), and pipes have provenance counterparts (whose size is also set to four times of their
counterpart via fcntl (2) with F_GETPIPE_SZ/F_SETPIPE_SZ).

Generally speaking, if open(2) or pipe(2) is traced, provenance map entries will be created
accordingly.

Dynamic memory allocation

Care is taken regarding calling functions from libc. This is because libc may make a system call in
the middle of a non-reentrant function (e.g. mal oc). So in order to dynamically allocate memory,
we call into jemalloc that has been built inside of 1 ibcsblam.so (for internal use only). And to
make use of that with standard containers, we define our own C++ allocator (which is passed as a
template parameter to std: :unordered_map, std: - list, etc...).

3.1.17.2.3 Provenance union

The provenance union provides an over-approximation of the sinks and sources of interest. It is
what it sounds like- an ongoing join of tags.

static thread_local jtag _initial_provenance_union = NULL_TAG;
thread_local jtag *provenance_union = & initial_provenance_union;

Note that it is a pointer. Along the way in a Java thread’s execution, after a native function is called
a "new" provenance union (initialized to NULL_TAG) on the stack space is set to the provenance
union pointer, before saving the old address (to be restored after the native code is returned). And
after a native call, one can call back into Java, and after that back into native- creating a second
provenance union. Thus there is really a stack of provenance unions in a thread’s execution. Under
two more circumstances will "new" provenance unions be created: at the execution of a signal
handler, and the execution of a DT __INIT "constructor" function.

3.1.17.2.4 Lang transitions

As a hybrid system, we disable userspace same-thread tracing when calling into Java, since we
know the instrumented Java will do the reporting on its own. We do this via
csblam_clr_thd _flg(2). We save tls::provenance_union, before it becomes
nul Iptr. After Java returns, we set tls: :provenance_union back to its old value, and
reenable userspace same-thread tracing via csblam_set_thd_flg(2).

If a DT_INIT function is called by the dynamic linker or a signal handler is called, we save the
current tls: :provenance_union and create (on the stack) a new provenance union to set

Approved for public release; Distribution is unlimited 56

tls::provenance _union to point at. After it returns, we restore
tls::provenance_union to point to the original provenance union.

3.1.17.2.5 Reporting

Establishing a connection to "/dev/socket/provmsg” is necessary to perform any reporting. The
O_NONBLOCK file status flag on the resulting file descriptor is set. Furthermore the value of
SO_SNDBUF is setto /proc/sys/net/core/wmem_max, which we have configured to have
a value of 128MiB.

The reporting format expected by provmsgr is a struct, whose first byte always indicates what
type of struct message it is. Following is an example of
frameworks/native/include/provmsgr/msg/eventlb.hpp, which defines a
provmsg:

BEG_PROVMSG(Event1WithBytes)

PROVMSG_FIELD(uint32_t, program_id)
PROVMSG_FIELD(uint32_t, flow)
PROVMSG_FIELD(uint64_t, time)
PROVMSG_FIELD(uint32_t, tid)
PROVMSG_FIELD(uint32_t, sys_call)
PROVMSG_FIELD(uint32_t, app_ppt)
PROVMSG_STR_FIELD(symO)

PROVMSG_FIELD(int64_t, arg0)
PROVMSG_STR_FIELD(str0)

PROVMSG_FIELD(int64 t, r)
PROVMSG_FIELD(uint32_t, predl)
PROVMSG_FIELD(uint32_t, pred2)
PROVMSG_FIELD(uint32_t, provenance_union_entr)
PROVMSG_FIELD(uint32_t, provenance_union_exit)

PROVMSG_STR_FIELD(bytes)
PROVMSG_VLA FIELD(uint32_t, bytes tags)

END_PROVMSG(Event1WithBytes)

This "EventlWithBytes" message is used for reporting system calls that take 1 argument, and has
a variable-length stream of bytes as well. Pre-processor tricks are used to generate definitions
for sending and receiving each of these messages with zero-intermediate copies for the variable-
length data.

3.1.17.2.6 Provenance Messenger (/system/bin/provmsgr)

All reporting goes through provmsgr before being written to the "final output™ file descriptor
(e.g. /data/progmsgr/prov-output), whose throughput may obviously vary. Thus provmsgr acts
as a high-speed buffer and authenticator.

Definition of daemon in system/core/rootdir/init.rc

service provmsgr /system/bin/provmsgr
class main
priority -20
critical

Approved for public release; Distribution is unlimited 57

user prov_msgr
group prov_msgr inet readproc

socket provmsg seqpacket 666 prov_msgr prov_msgr
socket provctl stream 666 prov_msgr prov_msgr
writepid /dev/cpuset/foreground/tasks

provmsgr listens on /dev/socket/provmsg, a Unix domain socket

the

SOCK_SEQPACKET variety. For each connection established, a thread is created to service that
connection. The SO_RCVBUF size is set to /proc/sys/net/core/rmem_max, which we

have configured to 128MiB.
Here follows the main message receive loop:

constexpr unsigned MaxMsgHdrSize = std::max<size_t>({OUL
#define BEG_PROVMSG(x) , sizeof(struct x##MsgHdr)
#include <provmsgr/msg/all_msgs.hpp>

D

uint8_t msghdrbuff[MaxMsgHdrSize];
for (53 {
ssize_t ret =
recv(args->data_socket, &msghdrbuff[0], MaxMsgHdrSize, MSG_PEEK);

it (unlikely(ret <= 0)) {
if (ret < 0)
print("'recv failed (%s)', strerror(errno));
return nullptr;

}
if (unlikely(ImsgHdrSizes[msghdrouff[0]])) {

print(‘'bad message header type %u', static_cast<unsigned>(msghdrbuff[0]));

return nullptr;

}
ifT (unlikely(ret < msgHdrSizes[msghdrbuff[0]]1)) {

print("failed to peek %s message (got %zd < %u)', msgNames[msghdrbuff[0]], ret,

msgHdrSizes[msghdrbuff[0]]);
return nullptr;

}

if (unlikely(!'receiveMsgProcs[msghdrbuff[0]](&msghdrbuff[0],
args->data_socket,
args->fd))) {
print(“"failed to receive %s message", msgNames[msghdrbuff[0]]);
return nullptr;
}
}

Each message type is indexed into an array of function pointers, receiveMsgProcs, which
perform the final recvmsg(2) and then (optionally convert the provmsg to a ProtoBuf) writing

the final output to disk (or usb).
3.1.17.3 System Calls
The folowing is the list of system calls that are reported.

accept
accept4
access

Approved for public release; Distribution is unlimited

58

acct

add\s\do4(k)ey

adjtimex

bdflush

bind

bpf

brk

capget

capset

chdir

chmod

chown

chownl6

chroot

clock\s\do4(a)djtime

clock\s\do4(g)etres

clock\s\do4(g)ettime

clock\s\do4(n)anosleep

clock\s\do4(s)ettime

clone

close

compat\s\do4(f)anotify\s\do4(m)ark

connect

creat

delete\s\do4(m)odule

dup

dup?

dup3

epoll\s\do4(c)reate

epoll\s\do4(c)reatel

epoll\s\do4(c)tl

epoll\s\do4 (p)wait

epoll\s\do4(w)ait

eventfd

eventfd2

execve

execveat

exit

exit\s\do4(g)roup

faccessat

fadvise64

fadvise64\s\do4(6)4

fallocate

fanotify\s\do4(i)nit

fanotify\s\do4(m)ark

fchdir

fchmod

fchmodat

fchown

fchown16

fchownat

fentl

fcntl64

fdatasync

fgetxattr

Approved for public release; Distribution is unlimited

59

finit\s\do4(m)odule

flistxattr

flock

fork

fremovexattr

fsetxattr

fstat

fstat64

fstatat

fstatat64

fstatfs

fstatfs64

fsync

ftruncate

ftruncate64

futex

futimesat

getcpu

getcwd

getdents

getdents64

getegid

getegid16

geteuid

geteuid16

getgid

getgid16

getgroups

getgroups16

getitimer

get\s\do4(m)empolicy

getpeername

getpgid

getpgrp

getpid

getppid

getpriority

getrandom

getresgid

getresgid16

getresuid

getresuid16

getrlimit

get\s\do4(r)obust\s\do4(1)ist

getrusage

getsid

getsockname

getsockopt

gettid

gettimeofday

getuid

getuid16

getxattr

init\s\do4(m)odule

inotify\s\do4(a)dd\s\do4(w)atch

Approved for public release; Distribution is unlimited

60

inotify\s\do4(i)nit

inotify\s\do4(i)nitl

inotify\s\do4(r)m\s\do4(w)atch

io\s\do4(c)ancel

ioctl

io\s\do4(d)estroy

io\s\do4(g)etevents

ioprio\s\do4(g)et

ioprio\s\do4(s)et

io\s\do4(s)etup

io\s\do4(s)ubmit

kcmp

kexec\s\do4(1)oad

keyctl

kill

Ichown

Ichown16

Igetxattr

link

linkat

listen

listxattr

Ilistxattr

llseek

lookup\s\do4(d)cookie

Iremovexattr

Iseek

Isetxattr

Istat

Istat64

madvise

mbind

membarrier

memfd\s\do4(c)reate

migrate\s\do4(p)ages

mincore

mkdir

mkdirat

mknod

mknodat

mlock

mlock2

mlockall

mmap

mmap2

mount

move\s\do4(p)ages

mprotect

mq_getsetattr

mq_notify

mq_open

mq_timedreceive

mq_timedsend

mq_unlink

mremap

Approved for public release; Distribution is unlimited

61

msgctl

msgget

msgrcv

msgsnd

msync

munlock

munlockall

munmap

name_to_handle_at

nanosleep

newuname

nice

open

openat

open_by handle_at

pause

pciconfig_iobase

pciconfig_read

pciconfig_write

perf_event_open

personality

pipe

pipe2

pivot_root

poll

ppoll

pretl

pread64

preadv

prlimit64

process_vm_readv

process_vm_writev

pselect6

ptrace

pwrite64

pwritev

quotactl

read

readahead

readlink

readlinkat

readv

reboot

recv

recvfrom

recvimmsg

recvmsg

remap_file_pages

removexattr

rename

renameat

renameat2

request_key

restart_syscall

rmdir

Approved for public release; Distribution is unlimited

62

rt_sigaction

rt_sigpending

rt_sigprocmask

rt_sigqueueinfo

rt_sigreturn

rt_sigsuspend

rt_sigtimedwait

rt_tgsigqueueinfo

sched_getaffinity

sched_getattr

sched getparam

sched get priority_max

sched_get_priority_min

sched_getscheduler

sched rr_get_interval

sched_setaffinity

sched_setattr

sched_setparam

sched_setscheduler

sched_yield

seccomp

select

semctl

semget

semop

semtimedop

send

sendfile

sendfile64

sendmmsg

sendmsg

sendto

setdomainname

setfsgid

setfsgid16

setfsuid

setfsuid16

setgid

setgid16

setgroups

setgroups16

sethostname

setitimer

set_mempolicy

setns

setpgid

setpriority

setregid

setregid16

setresgid

setresgid16

setresuid

setresuid16

setreuid

setreuid16

Approved for public release; Distribution is unlimited

63

setrlimit

set_robust_list

setsid

setsockopt

set tid _address

settimeofday

setuid

setuid16

setxattr

shmat

shmctl

shmdt

shmget

shutdown

sigaction

sigaltstack

signalfd

signalfd4

sigpending

sigprocmask

sigreturn

sigsuspend

socket

socketpair

splice

stat

stat64

statfs

statfs64

swapoff

swapon

symlink

symlinkat

sync

sync_file_range

sync_file_range2

syncfs

sysctl

sysfs

sysinfo

syslog

Tee

tgkill

timer_create

timer_delete

timerfd_create

timerfd_gettime

timerfd_settime

timer_getoverrun

timer_gettime

timer_settime

times

tkill

truncate

truncate64

Approved for public release; Distribution is unlimited

64

umask

umount

unlink

unlinkat

unshare

uselib

userfaultfd

ustat

utimensat

utimes

vfork

vhangup

vmsplice

wait4

waitid

write

writev

Table 3.1: List of system calls tracked and reported by the native tracking component of

ClearScope.

|
3.1.17.4 Whitelist

The following system binaries are not traced by our system currently. We choose to disable
provenance tracking and reporting for these binaries because they were out-of-scope for the
Transparent Computing (TC) engagements and/or tracing would significantly increase overhead.

/data/local/tmp/lldb-server

[init

/su

/system/bin/adbd

kk/system/bin/app_process32

/system/bin/app_process64

/system/bin/audioserver

/system/bin/bootanimation

/system/bin/bootstat

/system/bin/cameraserver

/system/bin/cmd

/system/bin/crash_dump32

/system/bin/crash_dump64

/system/bin/dex2oat

/system/bin/drmserver

/system/bin/e2fsck

/system/bin/folio_daemon

/system/bin/gatekeeperd

/system/bin/healthd

/system/bin/htop

/system/bin/hw/android.hidl.allocator@1.0-service

/system/bin/hwservicemanager

/system/bin/idmap

/system/bin/installd

/system/bin/instd

Approved for public release; Distribution is unlimited

65

/system/bin/ip6tables

/system/bin/iptables

/system/bin/keystore

/system/bin/Imkd

/system/bin/logcat

/system/bin/logd

/system/bin/mediadrmserver

/system/bin/mediaextractor

/system/bin/mediametrics

/system/bin/mediaserver

/system/bin/netd

/system/bin/oatdump

/system/bin/patchoat

/system/bin/preopt2cachename

/system/bin/profman

/system/bin/provcat

/system/bin/provmsgr

/system/bin/pstree

/system/bin/recovery-persist

/system/bin/recovery-refresh

/system/bin/sdcard

/system/bin/secilc

/system/bin/sensorservice

/system/bin/servicemanager

/system/bin/sh

/system/bin/storaged

/system/bin/surfaceflinger

/system/bin/thermalserviced

/system/bin/tombstoned

/system/bin/toybox

/system/bin/tune2fs

/system/bin/tzdatacheck

/system/bin/update_engine

/system/bin/update_verifier

/system/bin/vdc

/system/bin/vold

/system/bin/webview zygote32

/system/bin/wificond

/system/xbin/su

/vendor/bin/ATFWD-daemon

/vendor/bin/KmInstallKeybox

/vendor/bin/PktRspTest

/vendor/bin/StoreKeybox

/vendor/bin/WifiLogger_app

/vendor/bin/adsprpcd

/vendor/bin/athdiag

/vendor/bin/btnvtool

/vendor/bin/chre

/vendor/bin/cnd

/vendor/bin/cnss-daemon

/vendor/bin/cnss_diag

/vendor/bin/cplay

/vendor/bin/diag_callback_sample

/vendor/bin/diag_dci_sample

/vendor/bin/diag_klog

Approved for public release; Distribution is unlimited

66

/vendor/bin/diag_mdlog

/vendor/bin/diag_socket_log

/vendor/bin/diag_uart_log

/vendor/bin/easel_boot_test

/vendor/bin/ese-Is-provision

/vendor/bin/ese-replay

/vendor/bin/ese_load

/vendor/bin/esed

/vendor/bin/ezlsh

/vendor/bin/ezlspi

/vendor/bin/grep

/vendor/bin/halutil

/vendor/bin/hdrplus_client_tests

/vendor/bin/hostapd

/vendor/bin/hostapd_cli

/vendor/bin/hw/android.hardware.audio@2.0-service

/vendor/bin/hw/android.hardware.biometrics.fingerprint@2.1-service.wahoo

/vendor/bin/hw/android.hardware.bluetooth@1.0-service

/vendor/bin/hw/android.hardware.boot@1.0-service

/vendor/bin/hw/android.hardware.camera.provider@2.4-service

/vendor/bin/hw/android.hardware.cas@1.0-service

/vendor/bin/hw/android.hardware.configstore@1.0-service

/vendor/bin/hw/android.hardware.contexthub@1.0-service

/vendor/bin/hw/android.hardware.drm@1.0-service

/vendor/bin/hw/android.hardware.drm@1.0-service.widevine

/vendor/bin/hw/android.hardware.dumpstate@1.0-service.wahoo

/vendor/bin/hw/android.hardware.gatekeeper@1.0-service-qti

/vendor/bin/hw/android.hardware.gnss@1.0-service-qti

/vendor/bin/hw/android.hardware.graphics.allocator@2.0-service

/vendor/bin/hw/android.hardware.graphics.composer@2.1-service

/vendor/bin/nhw/android.hardware.keymaster@3.0-service-qti

/vendor/bin/hw/android.hardware.light@2.0-service

/vendor/bin/hw/android.hardware.media.omx@1.0-service

/vendor/bin/hw/android.hardware.memtrack@21.0-service

/vendor/bin/hw/android.hardware.nfc@1.0-service

/vendor/bin/hw/android.hardware.oemlock@1.0-service

/vendor/bin/hw/android.hardware.power@1.1-service.wahoo

/vendor/bin/hw/android.hardware.sensors@1.0-service

/vendor/bin/hw/android.hardware.usb@1.1-service.wahoo

/vendor/bin/hw/android.hardware.vibrator@1.1-service.wahoo

/vendor/bin/hw/android.hardware.vr@1.0-service.wahoo

/vendor/bin/hw/android.hardware.wifi.offload @1.0-service

/vendor/bin/hw/android.hardware.wifi@1.0-service

/vendor/bin/hw/rild

/vendor/bin/nhw/wpa_supplicant

/vendor/bin/ims_rtp_daemon

/vendor/bin/imsdatadaemon

/vendor/bin/imsgmidaemon

/vendor/bin/imsrcsd

/vendor/bin/init.insmod.sh

/vendor/bin/init.power.sh

/vendor/bin/init.qcom.devstart.sh

/vendor/bin/init.qcom.ipastart.sh

/vendor/bin/init.radio.sh

/vendor/bin/ipacm

Approved for public release; Distribution is unlimited

67

/vendor/bin/irsc_util

/vendor/bin/loc_launcher

/vendor/bin/lowi-server

/vendor/bin/msm_irgbalance

/vendor/bin/netmgrd

/vendor/bin/nl_listener

/vendor/bin/oemlock-bridge

/vendor/bin/oemlock_provision

/vendor/bin/pbserver

/vendor/bin/pbticlient

/vendor/bin/pbtiserver

/vendor/bin/pd-mapper

/vendor/bin/perfd

/vendor/bin/pktlogconf

/vendor/bin/pm-proxy

/vendor/bin/pm-service

/vendor/bin/port-bridge

/vendor/bin/gseecom_sample_client

/vendor/bin/gseecomd

/vendor/bin/qseeproxydaemon

/vendor/bin/gseeproxysampledaemon

/vendor/bin/qti

/vendor/bin/radish

/vendor/bin/rmt_storage

/vendor/bin/sensors.qcom

/vendor/bin/sensors_test

/vendor/bin/sh

/vendor/bin/smlog_dump

/vendor/bin/sns_cm_test

/vendor/bin/sns_daf test

/vendor/bin/spectraltool

/vendor/bin/ssr_diag

/vendor/bin/ssr_setup

/vendor/bin/subsystem_ramdump

/vendor/bin/test_diag

/vendor/bin/tftp_server

/vendor/bin/thermal-engine

/vendor/bin/time_daemon

/vendor/bin/toybox_vendor

/vendor/bin/vndservice

/vendor/bin/vndservicemanager

/vendor/bin/wcnss_filter

/vendor/bin/wpa_cli

/vendor/bin/xtra-daemon

Table 3.2: List of system binaries that are not tracked by ClearScope.

|
3.1.17.5 Protections

At the top of most of the syscall definitions, there is this little prologue:

asmlinkage long sys_csblam_(struct pt_regs *regs)

{
if (lis_trusted_code(regs->pc) ||

Approved for public release; Distribution is unlimited

68

Tis_trusted_code(regs->regs[30]))
return -EPERM;

Is_trusted_code checks to make sure that the program counter and return address registers

point into either libc.so, libcsblam.so, or provmsgr.

static bool is_trusted_code(unsigned long pc) {
bool res = false;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = NULL;
char *p;
char *tmp = NULL;
struct file *f = NULL;

down_read(&mm->mmap_sem) ;
vma = find_vma(mm, pc);

it (lvma || 'vma->vm_fFile)
goto out;

tmp = (char *)__get_free_page(GFP_TEMPORARY) ;

it (1tmp)
goto out;
T = get_file(vma->vm_file);

p = File_path(f, tmp, PAGE_SIZE);
ifT (IS_ERR(p)) {
//pr_info(""(CSBLAM) is_trusted_code: failed to get file path\n");

} else {
__kernel_size_t n = strlen(p);

const char si[] = { "I, "i", "b", "c", ".", "s", "o" }

const Char S2[] - { 'I-, -i-: -b', -C', 'S-, 'b-, -I', :a-, -m-, -_-, 'S', 0"

}:
const char s3[] = { "p", "r*, "o", "v", "m", "s", "g", "r" };
#define _CSBLAM_CHECK_ENDSWITH(suffix) \
do { \
unsigned 1i; \
\
if (res) \
break; \
\
it (n <= sizeof(suffix)) \
break; \
\
res = true; \
for (i = 0; 1 < sizeof(suffix); ++i) { \
if (p[n - sizeof(suffix) + i] '= suffix[i]) { \
res = false; \
break; \
} \
} \
} while (0)

_CSBLAM_CHECK_ENDSWITH(s1);
_CSBLAM_CHECK_ENDSWITH(sS2) ;
_CSBLAM_CHECK_ENDSWITH(S3) ;

#undef _CSBLAM_CHECK_ENDSWITH
}

Approved for public release; Distribution is unlimited

69

fput(fF);

free_page((unsigned long)tmp);
out:

up_read(&mm->mmap_sem);

return res;

As a defensive maneuver we also modify mprotect(2) in the following way:

/* mm/mprotect.c */

enum userspace_code_classification_t {
USERSPACE_CODE_UNKNOWN = 0,
USERSPACE_CODE_LINKER = 1,
USERSPACE_CODE_LIBC = 2,
USERSPACE_CODE_LIBCSBLAM = 3

}:

SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
unsigned long, prot)
{

unsigned long vm_flags, nstart, end, tmp, regprot;

struct vm_area_struct *vma, *prev;

int error = -EINVAL;

const int grows = prot & (PROT_GROWSDOWN]PROT_GROWSUP) ;

prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP) ;

if (grows == (PROT_GROWSDOWN]PROT_GROWSUP)) /* can"t be both */
return -EINVAL;

if (start & ~PAGE_MASK)
return -EINVAL;

it (1len)
return O;
len PAGE_ALIGN(len);

end = start + len;

if (end <= start)
return -ENOMEM;

if (larch_validate_prot(prot))
return -EINVAL;

enum userspace_code_classification_t start _class =
classify_userspace_code(start);
if (start_class == USERSPACE_CODE_LIBC ||
start_class == USERSPACE_CODE_LIBCSBLAM ||
start_class == USERSPACE_CODE_LINKER) {
struct pt_regs *regs = current_pt_regs(Q);
enum userspace_code_classification_t pc_class =
classify_userspace_code(regs->pc);

/* only the linker shall be allowed to do this */
if (pc_class !'= USERSPACE_CODE_LINKER) {
pr_info("mprotect(libc]libcsblam]linker) by <%s>\n",
userspace_code_classification_desc_tbl

[pc_class]);
return -EPERM;

}
/x5 L x/

If start is either libc.so, libcsblam. so, or linker, the system call fails with ~-EPERM unless
the program counter of the caller resides in the dynamic linker (i.e. /system/bin/linker).

Approved for public release; Distribution is unlimited 70

The rest of the code above is straightforward:

/* linux/mm/mprotect.c */

enum userspace_code_classification_t classify_userspace_code(unsigned long pc)
{

enum userspace_code_classification_t res = USERSPACE_CODE_UNKNOWN;

struct mm_struct *mm = current->mm;

struct vm_area_struct *vma = NULL;

char *p;

char *tmp = NULL;

struct file *f = NULL;

down_read(&mm->mmap_sem) ;
vma = find_vma(mm, pc);

if (tvma || 'vma->vm_fFile)
goto out;

tmp = (char *)__get_free_page(GFP_TEMPORARY);
if (1tmp)
goto out;

T = get_file(vma->vm_file);

p = File_path(f, tmp, PAGE_SIZE);
if (IS_ERR(P)) {

} else {
if (Istrecmp(p, ""/system/l1ib64/libcsblam.so™) ||
Istrcmp(p, '/system/lib/libcsblam.so™))

res = USERSPACE_CODE_L IBCSBLAM;

else if (Istrcmp(p, "/system/lib64/1libc.so™) ||
Istrcmp(p, "/system/lib/libc.so™))
res = USERSPACE_CODE_LIBC;

else 1if (Istrcmp(p, "/system/bin/linker64'™) ||
Istrcmp(p, '/system/bin/linker'™))
res = USERSPACE_CODE_L INKER;

}

fput(F);

free_page((unsigned long)tmp);
out:

up_read(&mm->mmap_sem) ;

return res;
}

3.1.18 CDM Translation

For TC, TA3 was responsible for defining a common data format between TAL1 and TA2. This
format was termed the Common Data Model (CDM). ClearScope reporting on devices does not
produce CDM directly due to various scaling, storage and performance reasons. Instead we have
defined our own intermediate provenance format outlined in Section 3.1.9.1, termed the
ClearScope Data Stream (CDS). The CDS is translated into CDM off-device by software we
collectively call the “Ingestor”. The ingestor maintains the state necessary to convert CDS to CDM
so that it does not have to be maintained on device, with the limited storage of mobile devices.

The implementation of the ingestor is rather straightforward, but a few points are interesting:

Approved for public release; Distribution is unlimited 71

The design of the ProvenanceTagNode of the CDM was directly inspired by our CDS
DefineProv and DefineProvSet.

Tags in the CDS are 32-bit integers and are converted to 128-bit UUIDs in the ingestor.

The ingestor includes special handling of files that maps a file path to a persistent UUID
for each device.

The ingestor includes protections and checks that make sure user code never modifies the
provenance file system that stores the tags of files. If such a modification is found, the
Ingestor reports the violation.

During the engagements, the Ingestor did not add any measurable latency to the message
stream; our CDM events were reported in “real-time” according to TA3.

Approved for public release; Distribution is unlimited 72

3.2 ELF-MIPS-LLVM
3.2.1 Introduction

The CodeHawk Binary Analyzer (CBA) is a general reverse engineering tool for x86 PE binaries.
It performs disassembly and dataflow analysis to extract information on the executable to support
a variety of use cases, including malware analysis, reverse engineering, and vulnerability analysis.
For this project we extended CBA to (1) support executables in ELF format, (2) disassemble and
analyze MIPS 32-bit executables, and (3) convert x86/MIPS assembly code to LLVM bitcode. The
new capabilities are demonstrated on the application dnsmasq,.

This report explains the capabilities and architecture of the original CBA and describes the modules
and components that have been added as part of this project. All code is delivered in either
executable form (OCaml-based code) or source code (python) via the ktaccelerate GitHub
repository, which also contains the test cases.

3.2.2 Background
3.2.2.1 CodeHawk Tool Suite

CodeHawk Tool Suite

—
j{:)

.class |

Jjar sound abstraction from ' CodeHawk
war Java byte code into CHIF
abstract
interpretation
C source code front end engine
sound abstraction from lterators
€ CiL preprocessed CIL code into

CHIF Abstract domains:
constants

intervals
strided intervals

. x86 binary front end) "
linear equalities
disassembly polyhedra
_axe abstraction from x86 ‘ s symbolic sets
binary code into CHIF value sets

taint

Figure 3.3: CodeHawk Tool Suite

Kestrel Technology has developed a sound static analysis platform called CodeHawk. CodeHawk
is a customizable static analysis tool based on the mathematical theory of abstract
interpretation [13], developed at Kestrel Technology. CodeHawk consists of a programming-
language independent abstract interpretation engine and three language front ends, as shown in
Figure 3.3. The abstract interpretation engine provides the following components:

CHIF (CodeHawk Internal Form), the internal engine language in which programs are
represented and on which analysis is performed:;

Approved for public release; Distribution is unlimited 73

Abstract Domains, that provide semantics for all constructs in the language possibly
augmented with custom operations relative to a particular decidable theory;

Fixpoint Iterators, highly optimized algorithms that perform flow-sensitive forward and
backward propagation of the semantics encoded in the domains.

The fixpoint iterators are completely transparent to the user and do not need further elaboration.
CHIF and the abstract domains are described in some more detail below.

CHIF

The CodeHawk internal form is an imperative language. Data types include integers, symbols,
structs, and arrays. Expressions include arithmetic expressions, boolean expressions, and
expressions on sets. The language supports both structured and unstructured control flow. Control
flow constructs can be arbitrarily nested, for example, loops may contain arbitrary control flow
graphs constructed from jumps, as long as the control flow graphs stay within the loops. Breakout
blocks are provided to enable representation of otherwise structure loops with exits to the statement
immediately following the loop.

The language provides assignment statements for all data types. Generic, named operations are
provided to enable assignments with user defined semantics for operators not directly supported
by CHIF expressions, for example, bit-wise operations.

The language also includes analyzer directives, including commands to activate or deactivate
domains, assert the validity of expressions, transfer values from one domain to another, designate
certain regions of the code to establish summary transfer relations, and custom operations directed
at custom domains to inject constraints at particular locations in the program.

Abstract Domains

An abstract domain is a decidable theory. It consists of a finite or infinite set of elements that form
a lattice, with well-defined meet and join operations and a bottom and top element. Furthermore,
it provides forward and backward transformers for all dataflow constructs in the language as well
as for assert statements. The transformers are guaranteed to be an over-approximation of the
concrete semantics of the operations modeled. Custom domains may include an arbitrary number
of domain operations that define transformers for custom constraint generation.

The core system provides several numerical and symbolic domains, including intervals, linear
equalities [14] and linear inequalities [15], and symbolic sets.

New abstract domains can be easily added to the engine to support specific features of the target
system or new properties of interest. For example, as part of the IARPA StoneSoup project for
binary analysis we developed two new custom domains:

Strided Interval Domain [16]. This domain is a refinement of the regular interval domain
that constrains alignment. It is especially useful in binary analysis where one has to reason
about memory locations on different address boundaries.

Value-set Domain [16] This domain expresses an explicit partitioning of disjoint memory
regions to allow reasoning about relative addresses (with respect to a symbolic base of the
region) in terms of absolute values (their offsets), which has a much lower complexity than
polyhedra and in most cases provides sufficient expressiveness, thus increasing scalability
without losing precision.

Approved for public release; Distribution is unlimited 74

3.2.2.2 CodeHawk Binary Analyzer

ml.py —*

apy > bk §

D CHReporter A ida.py F—>

Figure 3.4: Overall architecture of the CodeHawk Binary Analyzer

Figure 3.4 shows the overall architecture and use patterns of the CodeHawk Binary Analyzer. The
analyzer takes as input a PE32 executable, represents it in xml format, which is the input format
for the analyzer. The analyzer has access to a library of function models (shown in gray). During
the analysis it continuously stores intermediate results in xml. When analysis has stabilized the
reporting module consolidates the analysis results into a format that can then be used by different
back ends ranging from visualization in IDA Pro to feature extraction for machine learning, or as
a basis for further vulnerability or forensics analysis.

The CodeHawk Binary Analyzer has been applied to tens of thousands of executables, up to 8SMB
in size. Applications include feature extraction for malware analysis, memory safety analysis for
java native methods and indirect call resolution to discover of stealthy malware, which tend to use
indirect calls to hide their functionality.

3.2.2.2.1 Disassembler

The CodeHawk Binary Analyzer has its own disassembler. It recognizes more than 900 of the
approximately 1700 Intel instruction opcodes, including the SSE and AVX instructions.
Experience shows that this set of instructions is sufficient to cover almost all executables produced
by a variety of different compilers, including gcc, visual studio, borland delphi and others. Initial
disassembly is performed in linear sweep fashion, similar to the approach used by the gnu utility
objdump to obtain maximum coverage of the code section. A disadvantage of linear sweep is the
need to effectively deal with data embedded within the code section. Some of these are easy to
recognize such as jump tables and various PE data structures identified by address such as import
tables and export tables; structured exception handler blocks and strings are harder. For the vast
majority of executables encountered our linear sweep approach combined with embedded data
recognition provides perfect disassembly. In some cases data blocks have to be blocked out
manually, or block boundaries can be imported from tools such as IDA Pro that perform recursive

Approved for public release; Distribution is unlimited 75

descent disassembly. The set of 900 opcodes is disassembled into a set of approximately 160
internal disassembly instructions that parameterize the different opcodes with different data types
and condition codes.

3.2.2.2.2 Function Construction

The next step in the disassembly phase is function construction. Function entry points are initially
identified by application entry point and direct call targets. It is also possible to import function
entry points from other tools or enter them manually. For each function entry address a function is
constructed by recursive descent. Indirect jumps are resolved, if possible, against the jump tables
identified in the disassembly phase. Non returning calls are identified and used to terminate
branches. Multiple functions may overlap, that is, share instructions, and each function will have
its own copy of those instructions. So far these steps are standard for any disassembler. An addition
specific to our analyzer is to connect conditional jumps with the test expressions that set the
condition codes associated with the jump, and to connect call arguments with the call instruction.
Different approaches are used to deal with gcc-compiled code (which moves arguments on the
stack) and code compiled with most other compilers, including Microsoft Visual Studio, which
push arguments on the stack before a call. For library calls, library function prototypes, if available,
are used to more precisely identify exactly the number of arguments, rather than use heuristics or
prototypes based on previous analysis runs.

3.2.2.2.3 Translation into CHIF

Analysis by the abstract interpretation engine is performed at the function level. Individual
functions are translated into CHIF. Initially registers and global variables are the only entities that
qualify as variables in CHIF, since they are the only storage locations that have a well-defined one-
to-one correspondence between name and location. The CHIF translator provides an over-
approximating semantics for all 160 internal assembly instructions, that is, all behaviors of the
instruction are included in the CHIF code generated for the abstract interpretation engine. This
semantics can range from a precise representation for most control flow instructions and integer
arithmetic instructions (if the operands can be related to a uniquely representable register or
memory location) to minimal nondeterminism for instructions like addcarry to full abstraction
for most packed operation instructions in the AV X instruction set or floating point operations. In
the latter case the destination operand is completely abstracted, that is, it is assumed that it can
have any value after the instruction is executed.

Approved for public release; Distribution is unlimited 76

function
summaries
(xml})

function
invariants
(xrml)

disassemble and
construct > translate to CHIF analyze CHIF

functions
T 4

data blocks : library function
function names . summaries

. function entry points ~ +

invariants

indirect call targets

indirect jump targets

Figure 3.5: Architecture of the CodeHawk Binary Analyzer

3.2.2.2.4 Variable Discovery

The essential prerequisite for an effective data flow analysis is variable discovery, that is,
establishing unique memory location representations for operands that are specified by indirect
memory addresses. In the CodeHawk Binary Analyzer this variable discovery is accomplished by
an iterative process of translation and invariant generation, illustrated in Figure 3.5. Invariants that
are especially useful in this process are linear equalities and value sets, both of which scale well to
large functions. Linear equalities are used to resolve memory addresses on the stack, that are
represented either relative to a base pointer, e.g., Ebp, or relative to the stack pointer Esp itself.
Value sets can keep track of offsets from potentially multiple base pointers. Successive translations
make use of invariants generated earlier to generate an increasingly precise model of the function.

The data flow analysis that drives the variable discovery process may also yield resolutions for as
yet unresolved indirect jumps. In this case the feedback loop shown in Figure 3.5 is extended back
to to the disassembly step to add the targeted basic blocks to the function and restart the analysis
process.

Approved for public release; Distribution is unlimited 7

3.2.3 Phase 1: ELF Support

& Rl Python scripts for reporting and analyzer control
{t
[file interface to python API: text data
Extract and — —
i Sad Disassemble and Translate to CHIF SLDANEL Absuact.
Executable (x86) and Interpret Interpretation
Content Results Engine
(PE)
Library ; = o
SN Binary Analysis Commun Data Structures and Utilities

Figure 3.6: CodeHawk Binary Analyzer Architecture (original)

The original CBA only supported x86 executables in PE format. The first task performed under
this project was to add support for the ELF format. Figure 3.6 shows a schematic view of the
original organization of the implementation of the CodeHawk Binary Analyzer as a set of modules.
The core binary analyzer (implemented in OCaml, shown in yellow in the figure) consists of the
following four modules:

PE-extraction is responsible for reading in a PE executable and creating the data structures
that represent the various components of the PE file format. A large number of accessors
are provided to serve the data requests from the disassembler, including values of global
variables, string constants, import-table information, etc.

Disassembly and Translation is responsible for disassembling the executable sections,
constructing functions, including control flow graph, resolving condition codes for
conditional jumps, and collecting function arguments for library calls. This module also
defines the semantics for each assembly instruction in terms of CHIF, and performs the
translation of individual functions into CHIF.

Analysis Setup is responsible for setting up the abstract domains and submitting the CHIF
to the Abstract Interpretation Engine. This module also receives the resulting invariants
and translates them back to invariants that can be used on the function control flow graph.
All invariants are stored in data structured maintained by the supporting module.

Supporting Data Structures and Utilities provides all other modules with (almost)
architecture and format-independent data structures and services.

Results produced by these modules are saved in report-ready format in xml files.

Approved for public release; Distribution is unlimited 78

User interaction with the analyzer is provided via a collection of python scripts (shown in red) that
can be used to run the analyzer, and to produce reports of the results saved in xml.

3.23.1 ELF Module

The PE-extraction module mostly encapsulates the details of the PE file format and presents a
service API to the other module to obtain the information to perform the disassembly and analysis.
Thus to be able to handle ELF executables a parallel module was implemented to provide
approximately the same service API, see Figure 3.7. As the original CBA was designed and
implemented with knowledge only of the PE format, some file-format dependencies were still
found to be present in the Support module and the Disassembly module. In particular, the Support
module, which handles library function summaries, makes some assumptions about how library
functions and calls are presented, which is different for PE and ELF; file-format dependent data
structures and accessors were introduced to handle these. The file-format dependencies in the
Disassembly module are concerned also with the retrieval and representation of library calls, as
well the handling of strings and symbols, which required separating the top-level disassembly
functions between PE and ELF.

. ELE Python scripts for reporting and control,
- Python objects for representing analysis results
i
[file interface to pythan APl structured/indexed data]
Extract and
Structure
Executable PE
4 Content i
(PE) D:sasse;ﬁhle Set up Analysis Abstract
T;ansIaaI: ta CHIE and Interpret Interpretation
Extract and FrTa (x86) Results Engine
Structure :
. Executable ELF !
> Cantent :
—r (ELF) i
1 i
(e 1
Litirary i _PE 1 : : i
AT pessses 5 Binary Analysis Commaon Data Structures and Utilities
TR

Figure 3.7: CodeHawk Binary Analyzer: Addition of ELF support
3.2.3.2 Data Export

During this phase we also expanded the data export to file, replacing the mostly text-based data for
reports with structured disassembly and analysis results data suitable for further processing in
python. The reason for this expansion was to prepare for the conversion of assembly code to LLVM
IR, which was decided to be performed in python rather than within the (Ocaml-based) core
analyzer. On the core-analyzer side this involved converting many of the internal data structures
to indexed format to enable a concise representation on disk with maximal sharing. Complementary
code and data structures were added to the python code to extract the indexed data and provide
accessors. All reporting functions were rewritten to feed from this structured data rather than from
the original text-based data.

Approved for public release; Distribution is unlimited 79

3.2.3.3 Source-code Cross References

When (conjectured) source code is available for an executable it is often advantageous to have the
ability to cross-reference the binary code with the source code. In the absence of symbols in a
binary (stripped binary), the elements from source code most recognizable in a binary are global
variables and strings. Thus we created scripts that extract global variables and strings and relate
their references to the functions in which they appear, thus providing a way to match function
addresses in the binary to functions in the source code, which in turn enables the automatic
insertion of function signatures, and with them the highly coveted argument and return types that
can then be propagated further.

3.2.3.4 Dnsmasq

The analyzer was applied to both a stripped and an unstripped version of dnsmasq. The
executable was built from source (version 2.77) using the default Makefile, with the only change
the addition of a -m32 flag to the compilation to produce a 32-bit executable on a 64-bit platform.
The executable was not compiled with debug. Both the original and the stripped version were
analyzed. Both executables are available in the tests/elf/dnsmasq-2.77 directory.
Appendix 4.2.1 shows some analysis results statistics and comparison with source code.

3.2.3.5 Deliverables

The Linux and Mac executables for CBA provided on the ktaccelerate GitHub repository support
disassembly and analysis of ELF x86 executables and export the disassembly and analysis results
in indexed structured form. The same repository also provides the following (open-source) python
scriptsinaccelerate/cmdl ine/el T to run the analyzer and view results (run the scripts with
command-line argument —he I p to see the expected arguments):

« chx86_analyze_fTile._py: disassembles and analyzes an ELF executable;
« chx86_ disassemble_Tile.py: disassembles an ELF executable;
« chx86_ list_executables.py: lists the ELF executables provided as test cases;

e chx86 report_stringargs.py: reports application calls and library calls with
string arguments;

» chx86_show_call_targets.py:
« chx86_ show_elfdata.py: shows the elf format section data

 chx86_show_functions.py: shows the annotated assembly code for the selected
functions;

e chx86_show_ functions_data.py: shows a list of function addresses and function
names (if known);

* chx86_show_instructions.py: shows a list of annotated instructions of a
particular type;

e chx86 show_resultmetrics.py: shows analysis statistics for an analyzed
executable.

The source code for the python objects representing the elf format are in the directory
accelerate/elfformat.

Approved for public release; Distribution is unlimited 80

The repository also contains a number of test executables in the directory tests/el T, organized

by project files:

353176 0 dnsmasq
378132 0 dnsmasq_not_stripped

dnsmasq

+ o+

dnsmasq_not_stripped + +

3.2.4 Phase 2: MIPS Disassembler

TC_C_120_v1014
TC_C_121_v1017
TC_C_120_v1019
TC_C_120_v1027
TC_C 121 v1032
TC_C_120_v1052
TC_C_120_v1055
TC_C_120_v1068
TC_C_121_v1069
TC_C_120_v1084
TC_C_121_v1109
TC_C_120 v1120
TC_C_120_v1130
TC_C_120_v898

TC_C_120 _v918

TC_C_120_v940

The original CBA only supported disassembly and analysis of x86 executables. In the second phase
we added support 32-bit MIPS executables.

3.2.4.1 MIPS Module

The Disassemble and Translate module implements the disassembly of x86 opcodes, and the
semantic translation of x86 instructions and functions into CHIF. To be able to handle MIPS
executables a parallel module was implemented to disassemble MIPS opcodes and translate each
of the opcodes into CHIF, see Figure 3.8.

Approved for public release; Distribution is unlimited

81

. ELE Python scripts for reporting and control,

- Python objects for representing analysis results
i
[file interface to pythan API: structured findexed data]
i i3
Extract and
Structure P Disassemble x86
Executable i i and
7 Content ELF) Translate to CHIF = o ==
(PE) Set up Analysis Abstract
and Interpret Interpretation
— Extract and Results Engine
Structure Disassemble MIPS
I Executable and
Content Translate to CHIF
(ELF)
co— I f
______ 1 { = t—lamlt |
o rPE T _ o i e
M Pl = Binary Analysis Common Data Structures and Utilities =—~~==""
SETET OEMIEE

Figure 3.8: CodeHawk Binary Analyzer: Addition of MIPS modules

The disassembly of MIPS is significantly simpler than that of x86 because (1) opcodes are fixed
width in MIPS versus variable width in x86, and (2) the number of distinct opcodes MIPS is much
smaller than the number of opcodes in the x86 instruction set. We implemented support for about
100 MIPS opcodes (versus more than 900 for x86), which cover the MIPS executables encountered
so far.

The semantics of the individual MIPS instructions also tend to be simpler than many of the x86
instructions, as register and memory operations are mostly separated. One complication in the
semantic translation of functions into CHIF is the presence of delay slots in MIPS. Delay slots are
instructions that follow instructions that change the control flow, but that are executed before
control is actually transferred to the target location. In some cases this can be handled by instruction
reordering, e.g., the assignment of a function call argument can be after the instruction for the
function call itself, and thus in the translation this assignment must be moved before the call. On
the other hand a conditional branch expression is evaluated before the instruction in its delay slot
is executed and thus in this case simply reordering may create an incorrect branch condition in the
translation; the instruction still has to be executed, however, before flow control is transferred.

Another difference between x86 and MIPS is the representation of branch conditions. While x86
uses condition codes set by a large number of arithmetic and comparison instructions, MIPS uses
regular registers to transfer the (boolean) result of a comparison expression, which values are then
used in the branch condition expressions that are part of the conditional branch instructions. To be
able to transfer the comparison expression (if expressed in terms of function-constant values) to be
used as a control flow predicate, we added the capability to propagate constant symbolic
expressions.

The Analysis module did not have to be adapted: the interface between the
Disassembly/Translation module and the Analysis module is dependent only on CHIF and generic
location invariant data structures defined by the Support Module, which hide the MIPS specifics.
We did introduce some MIPS-specific data structures in the Support module: in particular, the
MIPS registers. Registers, as described above, are the basis of variables, which are all handled by

Approved for public release; Distribution is unlimited 82

the Support module, so they are represented explicitly in the Support module along with their roles
in the assembly code (e.g., argument registers, return value registers, etc.).

At this time we only support the disassembly and analysis of MIPS executables in ELF format. We
have not been able to find any MIPS executables in PE format.

3.2.4.2 Python MIPS Module

The accelerate/mips directory contains the python objects that represent the various MIPS
opcodes and provide the basis for generating the annotated function code and other reports. They
are also the basis for extracting the necessary information to convert the assembly code to LLVM
IR.

3.2.4.3 Dnsmasq

The analyzer was applied to a dnsmasq executable found on a Debian linux distribution on a MIPS
processor. The executable was stripped; the following information could be obtained from the
executable itself:

-rwxr-xr-x 1 root root 244088 Feb 13 2013 dnsmasq

> _/dnsmasq --version
Dnsmasq version 2.62 Copyright (c) 2000-2012 Simon Kelley
Compile time options: IPv6 GNU-getopt DBus i18n IDN DHCP DHCPv6 no-Lua TFTP conntrack

dnsmasq: ELF 32-bit LSB executable, MIPS, MIPS-I1 version 1 (SYSV),
dynamically linked, interpreter /lib/ld.so.1, for GNU/Linux 2.6.26,
BuildID[shal]=5cd9ac7¥275b07¥86c644c3e5879Ff568c7fcfedf, stripped

Information on the operating system:

/usr/sbin$ cat /etc/os-release
PRETTY_NAME="Debian GNU/Linux 7 (wheezy)"
NAME=""Debian GNU/Linux"

VERSION_ID=""7"

VERSION="7 (wheezy)"

ID=debian

ANS1_COLOR=""1;31""
HOME_URL=""http://www.debian.org/"
SUPPORT_URL=""http://www.debian.org/support/"
BUG_REPORT_URL=""http://bugs.debian.org/"

The CodeHawk C Analyzer was used to extract function information from the source code of
versions 2.62 (from which the executable was purportedly compiled) and and 2.65 (the most recent
version released before the compilation date). Information on references to global variables and
strings were used to partially match functions in the binary with their source counterparts. Clearly
the code was modified relative to the source code. Debian publishes the changes it makes to the
source code. However, we did not retrieve that information.

Appendix 4.2.2 show some analysis results statistics for the analysis.
3.2.4.4 Deliverables

The Linux and Mac executables for CBA provided on the ktaccelerate GitHub repository support
disassembly and analysis of 32-bit MIPS ELF executables. The same repository also provides the
following (open-source) python scripts:

Approved for public release; Distribution is unlimited 83

 chx_analyze_fTile._py: disassembles and analyzes a MIPS executable;
 chx_disassemble_fTile.py: disassembles a MIPS executable;
 chx_list_executables.py: lists the executables in the tests directory;

« chx_list_global_variables.py: lists the global variables referenced per
function;

 chx_list_strings.py: lists the references to string per function;
* chx_show_elfdata.py: shows the elf-format section data;

» chx_show_function_cfg.py: creates a dot file with a graph representing the
control flow graph of a function;

* chx_show_functions: shows the annotated assembly code of one or more (or all)
functions of a MIPS executable;

* chx_show_resultmetrics.py: shows the analysis statistics of an analyzed MIPS
executable.

In addition to dnsmasq the tests directory contains a few more mips executables

mips
dnsmasq + + 244088 0 dnsmasq
dnsmasq277 + + 326406 0 dnsmasq
openssl + 522276 0 openssl
readlink + + 42512 0 readlink
sed + + 63868 0 sed
sleep + 28852 0 sleep
tar + 316604 0 tar
tempfile + + 10188 0 tempfile
wpa_supplicant + + 934048 0 wpa_supplicant

3.2.5 Phase 3: Translation into LLVM

3.2.5.1 Basic Design Decisions

The objective of this phase was to convert x86/mips assembly code to LLVM IR. The
implementation was based on two basic design decisions:

1. All functionality was to be implemented in python, to facilitate collaboration and more
convenient interfaces with external libraries. A consequence of this decision was that
disassembly and analysis results had to be exported to file and interpreted by the python
layer to a much larger extent and with more detail and structure, as described earlier in
section 3.2.3.2.

2. The initial implementation was to be standalone, that is, independent of the LLVM C++
libraries. The rationale for this decision was that we wanted maximum control over the
bitcode generation process, to enable convenient and quick experimentation with small
blocks of code and their combinations in various ways. It would also provide us with a
deeper understanding of the bitcode itself. A consequence of this decision was that we had
to implement our own infrastructure for reading and constructing bitcode in python.

Approved for public release; Distribution is unlimited 84

The resulting architecture is shown in Figure 3.9.

. ELE Python scripts for reporting and control, Converter from
- Python objects for representing analysis results 3
l file interface to pythan APL: structuredindesed data
il
Extract and
: Structure PE Disassemble x86
] Executable === and
7 Content ELp) Translate to CHIF = o ==
(PE) Set up Analysis Abstract
and Interpret Interpretation
" | Extractand Results Engine
Structure Disassemble MIPS
I Executable and
Content Translate to CHIF
|
— (ELF)
co— I f
______ 1 { = t—lamlt |
Nhrery [FE : . S
M '-_:::::: Binary Analysis Common Data Structures and Utilities =—~~==""
SETET OEMIEE

Figure 3.9: CodeHawk Binary Analyzer: Addition of LLVVM module
3.25.2 LLVM Infrastructure

Bitcode Reader

We implemented a Bitcode Reader class that takes in a bitcode file and converts it into internal
data structures resembling the LLVM internal data structures. It is built on top of the BitStream
class that parses the lowest-level data items and serves them on request to the Bitcode Reader. The
Bitcode Reader can generate output similar to that produced by Ilvm-dis and 1lvm-
bcanalyzer —dump. An example of the output of our bitcode reader is included in
Appendix 4.2.3.

Bitcode Generator

The python class IRFunctionBlock provides the main API for constructing and emitting
bitcode. It implements most of the IR instruction types. It constructs expressions recursively,
allocating constants as necessary. Functions can be written directly to bitcode via the IRBlock
parent class and the write API of the BitStream class.

3.2.5.3 LLVM TestCases

Test programs

We developed a set of small ¢ programs to drive the conversion of assembly code to LLVM. The
¢ programs were compiled to both x86 and mips with the following command-line flags:

> gcc -m32 -01 -fno-stack-protector -fno-pie

Approved for public release; Distribution is unlimited 85

to produce reasonably concise and clean binaries (e.g., no frame pointer, no stack canaries, etc.).
The ¢ programs were also compiled into LLVM bitcode and (the equivalent) LLVM IR assembly
code with:

> clang -c -emit-1lvm -m32 -01
> clang -c -emit-1lvm -m32 -S -01

Test specifications

Even simple c programs generate complex binaries with a lot of boiler plate code in addition to the
target function that we want to convert. Therefore each of the test programs was accompanied by
a test specification that provided the address of the target function to be converted, the signature
of the function, and the type of conversion to be performed. These last two items were provided
for convenience to enable focusing on the bitcode generation process; providing the signature and
type of conversion can be separately automated.

Results

The x86 tests can all be run automatically from the directory accelerate/cmdline/11vm
wit the command:

> python chx86_run_tests.py

The mips tests can all be run automatically from the directory accelerate/cmdline/ 1 1vm-
mips with the command:

> python chc_run_tests.py

A full list of the test cases that were successfully converted to LLVM IR from both x86 and mips
assembly code is shown in Appendix 4.2.4, including listings of the annotated x86 and mips
assembly code and the generated LLVM IR. A summary of the testcases and their current status is
shown in table Error! Reference source not found..

3.2.5.4 Deliverables

All of the code in the LLVM module is provided open-source on the ktaccelerate repository in the
directory accelerate/llvm. The test cases are provided on the same repository in the
directories tests/ 1 1vm-r for x86, and tests/mips/ 1 1vm-r for mips. Python scripts are
provided to read bitcode files, to perform transformations on individual testcases and to run all
tests automatically, in the directories accelerate/cmdline/llvm for x86 and
accelerate/cmdline/11vm-mips for mips.

Approved for public release; Distribution is unlimited 86

4.0 RESULTS AND DISCUSSION

4.1 ClearScope
4.1.1 TC Engagements

This section provides high-level summaries for the results of the five engagements of the
Transparent Computing program. The main result was that ClearScope captured all in-scope
malicious actions executed by the red team. The following sub-sections provide details for each
engagement.

4111 Engagement1

For the first engagement, we implemented the initial version of the DEX static instrumentation.
The goal was to provide TA2 with stream of events describing an appa€™s interaction with
protected data and protected operations, precise and accurate, make the causality explicit. The first
engagement also debuted our Common Data Model (CDM) support. The results for the first
engagement were:

» Captured and reported precise provenance for all exfils in Pandex/Bovia engagement apps.

» Diagnosed and fixed various problems with TA3 range and background traffic scripts.

» CDM translation issue found during Pandex/Bovia, fixed for Stretch scenarios.

» Verified stretch scenarios data is free of issue and captures Pandex/Bovia apps exfils.
4.1.1.2 Engagement 2

The second engagement introduced tracking for binary blobs via system call monitoring via the
ptrace mechanism. The second engagement was a full success:

e Our analysis found explicit evidence of all malicious behaviors from TA5 hotwash
presentation.

* RIPE reported all malicious behavior.
» No robustness issues during engagement.
» Devices and ingestor experienced no errors.
Here are the data generation totals from the Bovia scenario:
* Total: 8.5GB
e Daily:3.7GB
* Avg msgsize: 520 B
Here are the data generation totals from the Pandex scenario:
» Total: 30.6 GB
» Daily: 3.6 GB
* Avg msg size: 500 B

Approved for public release; Distribution is unlimited 87

41.1.2.1 Bovia Scenario

This scenario included two apps that gathered sensitive information. The Setex App exfiltrated wifi
information written to external storage by another app. Figure 4.1 provides the provenance history
reported for the exfiltrated data.

WifiManagerService:

FILE
/.../gather.txt

NETWORK

local:

£:::43446

remote:
/255.255.255.255:31337

Figure 4.1: Engagement 2, Provenance history for the data exfiltrated by the Setex app of the
Bovia scenario.
4.1.1.2.2 Pandex Scenario

This scenario introduced Android apps with binary blobs. All successful malicious actions were
capture and reported. Figure 4.2 provides the provenance history on the exfiltrated data of
GatherApp with HelloWorld.

Approved for public release; Distribution is unlimited 88

Event SENDTO: NetFlow

Predicate Remote:
128.55.12.167:443

sink arg; buf

ProvTagNode: ProvT:
alins o L LER SysCall; iogt(...
Tag1 NetFlow

<UNBOUND>

Tag3
Tag4

Figure 4.2: Engagement 2, Provenance history for the data exfiltrated by the GatherApp with
HelloWorld app of the pandex scenario.

In the Pandex scenario TADS installed an app that included a malicious native library via an ELF
DT_INIT callback definition. We captured this constructor and its descendants. The library
immediately spawns threads for C2. We captured 67 commands received. For each, we tracked
and reported the actions of the commands. For example, the “ps” command performed the
following:

1. New thread
2. On /proc filesystem, a series of:
(@) openat()
(b) Fstatat64()
(c)getdents()
3. prctl () to try to set ptrace options
4. Network writes of getdents() data
5. getdents() not marked as source, so data not tagged
6. Thread teardown
41.1.3 Engagement 3

Engagement 3 saw us improving our coverage and robustness and lowering our overhead.
Engagement 3 was a complete success as all in-scope malicious behaviors reported, verified with
our own analysis of produced CDM 18. At least 1 TA2 performer successful with our data.

Approved for public release; Distribution is unlimited 89

file://proc

We detected all actions of the following attacks: phishing email, Metasploit. We detected start of
nation-state attack, once it when native we stopping tracking it. This blindness was fixed for the
next engagement, and was out of scope for engagement 3 per our statement of work schedule.
These malicious actions were outside of Zygote-spawned processes.

4.1.1.4 Engagement 4

Engagement 4 was another major success. For this engagement our achieved technical goals were
the following:

e Android 8.1 upgrade
* New low-overhead binary tracking / reporting
» Decrease overhead of native tracing
» Capture and report all userland processes
* Report complete values in syscalls
e Support CDM19
For our results:
 Hit all deadlines for data and code delivery.
* Minor fixes during testing month.
* Robust and transparent execution during engagement.
« Fixed integration issue between engagement days.
» ClearScope reported all successful malicious actions.
« All successful malicious actions reported by at least one TA2 team.
Day 1 data production:
» Two devices, each device:
» 3days, 20 hours
* Includes idle time
» 20GB of CDM data
» 37.8M CDM records
» Rate: 114 records / sec
Day 2 (after Kafka fix):
* One device
* 5h01m of recording
e Only TA5.1 interaction
» 19GB of CDM data
* 40.5M CDM records
» Rate: 2250 records / sec (LMB / sec)

Approved for public release; Distribution is unlimited 90

Figure 4.3, Figure 4.4, Figure 4.4, Figure 4.6, and Figure 4.7 provide details on each of the attacks
over the two days of the engagement. Each row represents a single action of an attack (or attack
setup). The last column of each table represent whether the attack was reported by ClearScope; the
columns immediately to the left of the when green indicate that the TA2 team successfully reported
the associated action, white means the action was not reported, and gray denotes the action was not
successfully completed.

Action Object
install [es2] AgricelaScoreboard-instr.apk
run lcs2] AgricolaScoreboard-instr.apk
read les2] fsdcard/DCIM/ Camera/*
write (encrypt) [cs2] fsdeard/DCIM/ Camera/*
delete les2] fsdeard/DCIMY. thumbnails™

Figure 4.3: Engagement 4 Day 1, Attack 1 results.

| Action _ Object

Install [cs1) Qutlook-instr.apk

run [es1] Cutiook-instr.apk

collect [es1] wifi

collect les1] Location

||:c|le1:t [es1] Contacts

{udp broadeast 1131337 i I I

Figure 4.4: Engagement 4 Day 1, Attack 2 results.

| Action Object |

Install [cs2] AnkiDrold-instr.apk _ =

run [£52] AnkiDroid-instr.apk —

loadlibrary [£s2) microapt [ubd 10075] - _

connect fice) (cs2) 15057713680 ===t —

call [es2] uname -

call [es2] whoami e -

write [cmd_exec, cache) [th2] fdew/glx_alsa 675 H

expcute (call_usermodel rl c52] microapt [uld 10075]

write [e52] micraapt [uid 0] _ _
le [es2] /sdcard/Pictures/DCIM/Camera/IMG_20181116_183436.jpg -— -

Figure 4.5: Engagement 4 Day 1, Attack 3 results.

Approved for public release; Distribution is unlimited 91

Figure 4.6: Engagement 4 Day 2, Attack 1 results.

Figure 4.7: Engagement 4 Day 2, Attack 2 results.

Action
browse
connect (exploit)
connect (stagel]
connect (oc?)
veall
(call
\connect (tcp)
\connect (tep)

Object

RIPE MARPLE ADAPT ClearScope|

hittp:/www.dj.com
118.71.132.209:80

65.242.232.1:80
111.251.101.45:80
[es1] getuid

[cs1] gethostname

|185.82.12.235:80
|185.82.12.235:80

L]

Action

browse

http:/fwww.dj.com

Object

RIPE MARPLE ADAPT ClaarSmpel

connect (exploit)

connect (stagel)

connect (oc2)

write (emd_exec, cache)
execute {call_usermodehelper)

write
call
execute

4115 Engagement 5

[118.71.132.209:80
65.242.232.1:80
111.251.101.85:80

[es1] fdew/gls_alsa 675

[es1] firefox

[es1] system_server
[es1] getuid
delient,

=
e
1L [—]

pom—;

—

The final engagement was a complete success for us as well. Our achieved technical goals for
engagement were:

Deploy detections and protections against insider attacks (See Section 3.1.17.5)

Increase robustness and decrease overhead for long running scenarios.

Hit all pre-engagement deadlines and tested extensively on the BBN range.

Robust engagement execution.

Capture all red team malicious actions.

Three devices executed for 12 days. Six device reboots were required. Figure 4.8 provides the
CDM data production summary:

Figure 4.8: Engagement 5 CDM Production.

Data Rate Record
Device Total Data (GB) () Count
ch04 188.3 181.6 342M
ch58 73.0 70.4 325M
ch64 1701 164.1 130M

Approved for public release; Distribution is unlimited

92

Figure 4.9, Figure 4.10, Figure 4.11, and Figure 4.12 provide details on the attacks and their
individual actions. Green boxes indicate that the goal was achieved and red boxes indicate the goal
was not achieved.

Install appstarter
Connect 77.138.117.150:80

Captured by CS

screenshot
sl/insmod / Ismod
elevate

whoami

get mmssms.db
screenshot

Figure 4.9: Engagement 5 Reporting Results - 1.

Figure 4.10 and Figure 4.12 show red boxes under “Reported to TA2” because of a protect
implemented for this engagement. As covered in Section 3.1.17.5, we implemented a mechanism
to determine if a process illegally performs a privilege escalation. In the case of the attacks in 2
and 4, the app performs a privilege escalation that we detect, and we stopped reporting actions by
that app. This is because once an app has root privileges it can spoof and alter reporting. So the
best action is to immediately Kill an app that has illegally escalated its privileges. However, for the
engagement experiment, we did not kill the app, just continued to monitor it (though not report its
actions after the escalation). We still successfully captured its actions. If ClearScope is deployed
in the real-world, it should be configured to kill an app that illegally escalates its privileges.

Approved for public release; Distribution is unlimited 93

Action

Install appstarter

Connect 77.138.117.150:80
pwd

aptinfo

screenshot

sl/insmod / Ismod

elevate

get calllog.db
get calendar.db

get mmssms.db

screenshot

Action
Connect 42,183.7.162:80
Connect 128.56.12.233:80
hostname

Exfil profiles.ini

Figure 4.11: Engagement 5 Reporting Results - 3.

Connect 128.55.12.233:80

whoami

cp media/external.db
Is (3)

cp (3)

exfils

Figure 4.12: Engagement 5 Reporting Results - 4.

Approved for public release; Distribution is unlimited

4.1.2 Performance Analysis

We use the CaffeineMark benchmarks [17] to measure the performance overhead that ClearScope
imposes. We ran all of the benchmarks on a Samsung Nexus 6 running Android 5. The table below
presents the resulting Caffeine Mark performance scores. We compare the scores without
instrumentation (Original score) and with instrumentation (Instrumented score). The results show
that the overhead ranges from negligible to 42%, with the overall Caffeine Mark score of
approximately 14%.

Original Instrumented

Test Score Score Overhead

Sieve 39076 44332 -13.45%
Loop 58831 55424 5.79%
Logic 81698 92731 -13.50%
String 27504 20245 26.39%
double 28608 16394 42.69%
Method 34240 26139 23.66%
Overall 41434 35426 14.50%

With this overhead, the instrumented Android systems remain responsive and the ClearScope
overhead is typically not noticeable for most interactive tasks.

4.1.3 Adups FOTA: Forensic Case Study

This section discusses our analysis of Adups FOTA, a pre-installed firmware Android application
that, at the time of discovery, included undocumented gathering and exfiltration of sensitive
information. Ostensibly, the Adups application and service is a user-behavior monitoring and
analytics solution distributed by Shanghai Adups Technology Company. OEM device
manufactures often install these types of analytics and data-harvesting services to derive added
value from their devices by accumulating (and analyzing and/or selling) data on their users. The
company claims an installed base of over 700 million devices as of 2017 [18]. In the US, Adups
software was distributed as pre-installed system applications on Android devices marketed by BLU
and sold at leading retailers including Amazon.

In November of 2016, the computer security company Kryptowire released an analysis that claimed
that Adups FOTA harvested and exfiltrated Personally-identifiable Information (PII) including
device IMEI, SMS message history with message bodies, call logs, contact database information,
installed and uninstalled applications, and application execution time and order [19]. Kryptowire
noted that there are two distinct exfiltration cycles, a 24-hour cycle and a 72-hour cycle, both of
which encrypt Pl and send data to servers in China. The version of the application they analyzed
is persistent and system-privileged as it comes pre-installed on a device. It is difficult to uninstall,
and has the ability to be updated without user intervention.

Considerable manual analysis was required for Kryptowire’s report on Adups FOTA, upwards of
multiple analyst-months (based on personal communications with Kryptowire employees). Firstly,
the discovery of the threat was purportedly due a “happenstance” series of events [20].
Furthermore, Kryptowire was able to extract the private key for which data was encrypted and

Approved for public release; Distribution is unlimited 9%

using this key, they were able to inspect the network traffic of Adups FOTA for values that
signified PIl. Without the key, which may have been exposed due to careless or incorrect
cryptography implementation, it is possible that the analysis of Adups could not have been
performed via analysis of communication at all. Their analysts also performed manual analysis of
decompiled source code to verify their findings guided by communication analysis, a difficult and
time-consuming process, made more difficult by byte-code obfuscation.

Kryptowire extracted the APKs for the version of Adups FOTA which they analyzed and sent the
packages to us for analysis with ClearScope. We instrumented the APKs with our static
instrumentation system, and installed them on a Nexus 6 device running a stock Android Open
Source Platform (AOSP) version 6.0.1 release 74. We had to sign the system operation application
(see below) using the system key prior to installation. We sporadically used the device for 4 days,
including making calls, sending and receiving SMS messages, installing / uninstalling apps, and
running applications (including the stock AOSP browser and email applications). We then
analyzed our provenance event stream from the device.

The version of Adups FOTA analyzed included 2 APKs, identified by their package names:
com.adups.fota, com.adups.fota.sysoper. The former is installed as a normal 3'd-party application
with many privileges, its code obfuscated, and includes 3,580 classes and 25,806 methods. The
latter is installed as the system user (essentially giving it root privileges), its code obfuscated, and
is comprised of 775 classes and 5,326 methods.

In the remainder of this section, we present findings from our analysis of Adups FOTA. We were
able to elicit and verify all of the behaviors reported by Kryptowire, except we did not see an update
of the application. The salient different is that our analysis was performed in 4 hours of a single
analyst’s time. Our analysis employed tools that summarize, for each sink provenance type, the
sensitive sources that flow into the sink. So within minutes our analyst was able to see that, for
example, SMS message data was exfiltrated via network communication to particular IP addresses.
We did not look at decompiled code, and our sinks report values and tags prior to encryption.

The four days of data for the Adups FOTA capture comprises 27 million provenance events
(sources, sinks, non-provenance events, provenance tag definitions, etc.). In uncompressed human-
readable ASCII form this is approximately 4GB, and includes all primitive values passed to and
returned from sources, sinks, and non-provenance events, and run-length encoded provenance tags
on the argument and return values.

Approved for public release; Distribution is unlimited 96

Exfiltrate
Data

Package
Data

Deployment

Heavy Light
Reconnaissance Reconnaissance

Qutbound
Connection
Established

C&C Message
Received

Figure 4.13: Adups Advanced Persistent Threat (APT) Lifecycle.

Figure 4.13 provides an overview of the life-cycle of what we interpret as an APT. The light
reconnaissance takes place on a 24 hour cycle, after which it opens an outbound connection and
sends the retrieved information to the Adups server. The 72 hour reconnaissance cycle takes place
when the device receives the command and control message from the Adups server. The ensuing
heavy reconnaissance retrieves SMS messages and other data, packages the data, then sends it off
to the Adups server. We next discuss this process in more detail.

POST /dm/pushInterface.do HTTP/1.1
Content-Type: application/x—www—form-urlencoded
Content-Length: 483

Host: push5.adups.com

Connection: Keep-Alive

Accept-Encoding: gzip

User-Agent: okhttp/2.7.5

mid=20161230195154YU2238&module=register&appv=V3.3.@&mode 1=A05P%2@0n%2@85hamu&project=unknownoem_unknownpro
duct_en_other&channel=unknownoem_unknownproduct&product=fotaS&imei=000005302945978&1imsi=3102605173390368wi
fimac=5c%3A51%3AB8%3A48%3A74%3A1d&koperator=310260&sn=8901260515773390367&sin=14136298485&sdklevel=224sdkve
rsion=5.1.1&apn=WIFI&language=cr_|/“&resolut ion=144@0+239280em=motorolakbuildnumbe r=aosp_shamu-
userdebug%205.1.1%20LMY486%20eng. jeikenberry. 20161229, 134919%20test-keysis0o-8859-15, iso-8859-2, iso-8859-
3, is0-8859-4, isp-8859-5, is50-8859-6, iso-8859-7, is0-8859-8, is50-8859-9, jis_x0201, jis_x0212-1990,
koi8-r, koiB-u, shift_jis, tis-620, us-ascii, utf-16, utf-1l6be, utf-16le, utf-32, ..

Figure 4.14: Adups 24-hour exfiltration HTTP post.
4.1.3.1 24-Hour Exfiltration Cycle

Every 24 hours, Adups sends a message to a server that includes P1l. The message includes the
device IMEI and IMSI (both of which by are considered sensitive), and device hardware and
software information. In Figure 4.14, we show an annotated example of the HTTPS post for this
exfiltration cycle. Distinct colors of the text denote distinct tags on the character of the post (black

Approved for public release; Distribution is unlimited 97

characters are program constant data). This data appears inassl_write sink call that is included
in Google’s Conscrypt secure socket library, and the data is sent to push.adups.com at IP
118.193.187.35 port 443. Here we can see that ClearScopeis providing character-level provenance
that associates with this simple encoding scheme, i.e., fields of the HTTP post.

990005302945978
com.android. internal.telephony.ITelephony.getDeviceId()
8901260515773390367

com.android.internal, telephony.IPhoneSubInfo.
getIccSerialNumberForSubscriber(int subId)

150-8859-15, 1s50-8859-2

src NETWORK remote: fota5.adups.com/118.193.254.13:443
NativeCrypto.SSL_read(..)

Figure 4.15: Three provenance examples from Adups 24-hour exfiltration.

In Figure 4.15 we provide summarized provenance derivations for three of the tags used in the post
of Figure 4.14. The figure presents that the provenance on the IMEI data represents data returned
from the com.android. internal .telephony. 1Telephony.getDeviceld() RPC
call on the telephony service (via Binder). Also, we can see the call that retrieves the IMSI. Finally,
we show that data that looks like character encoding schemes was originally retrieved from an
Adups server, and read via the Conscrypt library.

4.1.3.2 72 Hour Exfiltration Cycle

We next discuss the 72 hour exfiltration cycle. This cycle starts with the reception of a command
and control packet from bigdata.adups.com/118.193.254.27:443. When the device
receives this packet it reads the SMS and contacts databases and writes the information to
analytics.db. It then reads the data back from analytics.db and writes the data to
intermediate JSON files. It zips the files, deletes them, the sends the zipped files to
bigdata.addups.com:443.

Approved for public release; Distribution is unlimited 98

SSL_write(..)to bigdata.adups.com/118.193.254.27:443

211@1872300 4@1872334 2230@1872300 4@1872376 255@1872300
4@1872414 163@1872300 4@1872438 845@1872300 4@1873047
65@1872300 4@1873052 1124@1872300 4@1873057 8@1872300
16@1873059 4@1873060 65@1873059 4@1873061 56@1873059
4@1873062 64@1873059 4@1873063 58@1873059 4@1873064
62@1873059 4@1873065 61@1873059 4@1873066 67@1873059

Figure 4.16: Beginning of run-length encoded provenance tag stream for Adups’s 72-hour
exfiltration communication. Communication is compressed prior to exfiltration, so ASCII
representation of data is not helpful.

Figure 4.16 presents the start of the run-length encoded provenance tag stream for the 72 hour
exfiltration cycle. We capture the data before SSL encryption and that we maintain accurate
provenance information even through the compression algorithm code.

4@1872414
|

v

FILE /data/data/com.adups.fota/source/source.zip

v

FILE /data/data/com.adups.fota/zip/DcTellMessage.json

v

src DB /data/data/com.adups.fota/databases/analytics.db
CursorWindow.getString()

l

src DB /data/data/com.adups.fota/databases/analytics.db
executeSQLForCursor(): "SELECT DISTINCT * FROM tel”

v

sink DB /data/data/com.adups.fota/databases/analytics.db
executeSQLForCursor(): "insert into tel (one, two, three) values (7,7,7)”
v2: "8900:0:1:1:1483145769190:0"
md: 4@1034870 5@0 1@1034870 1@0 13@1034870 2@0

—) —
src CONTENT_PROVIDER
/data/data/com.android.providers.telephony/databases/mmssms.db

Figure 4.17: Example of one provenance tag derivation from 72-hour exfiltration cycle.

Figure 4.17 presents the provenance web for 4 bytes of transmitted data with provenance tag
18723414. This web traces the data back starting from the source . zip file containing the zipped
JSON data. The zipped JSON data came from the DcTel IMessage . json file, then from the
analytics.db via a call to CursorWindow.getString() and
executeSQLForCursor (). The provenance web eventually traces the transmitted data back

Approved for public release; Distribution is unlimited 99

to the SMS database containing the SMS data (red text in Figure 4.17), clearly indicating the
exfiltration of that data.

i SSL_write(..)to bigdata.adups.com/118.193,254,27:443
Time 0 9 :

20 | src CONTENT_PROVIDER
- ms /data/data/com.android.providers.telephony/databases/mmssms.db

20 | src CONTENT_PROVIDER
- ms /data/user/@/com.android.providers.contacts/databases/contacts2.db

30 | src INSTALLED_PACKAGES
- S android.content.pm.IPackageManager.getInstalledApplications(..)

src BINDER

-1 day sink SYSTEM_SERVICE (APP START)
3 d | src FILE /system/priv-app/TelephonyProvider/TelephonyProvider. apk
- ayS Posix.read(..)

~ w (50 much more!)

Figure 4.18: Timeline of reads of sensitive information relative to network send operation for 72-
hour exfiltration.

Figure 4.18 presents information that shows the relative timing of various events involved in the
exfiltration. This timing information shows that these events are spread over several days up to the
actual exfiltration. All of these events are opportunities to observe the impending exfiltration.

4.1.3.3 Discussion

As the Adups case study indicates, the detailed provenance information can provide insight into
the flow of data through the device that can immediately highlight the operation of the information
exfiltration malware. The generated provenance web can immediately surfaces the sequence of
events that caused the exfiltration, in this case reducing the time required to understand the
exfiltration from months to hours. ClearScope makes the information immediately apparent and
can deliver detailed information available via no other mechanism or system.

Approved for public release; Distribution is unlimited 100

42 ELF-MIPS-LLVM

4.2.1 Analysis Results: x86 dnsmasq
4.2.1.1 stripped

function esp reads writes unrc blocks instrs time
0x6cd0 100.0 100.0 100.0 1 2 0.0117
0x6cch 100.0 100.0 100.0 1 2 0.0125
0xel28 100.0 100.0 100.0 1 2 0.0129
0xa034 100.0 100.0 100.0 1 2 0.0132
0xa03c 100.0 100.0 100.0 1 2 0.0134
0x6dc9 100.0 100.0 100.0 1 2 0.0141
Ox1e547 100.0 100.0 100.0 1 2 0.0144
0xa038 100.0 100.0 100.0 1 2 0.0146
Oxeaf0 100.0 100.0 100.0 1 6 0.0169
0x29b60 100.0 100.0 100.0 1 7 0.0171
0x3a200 100.0 100.0 100.0 1 4 0.0213
Oxeall 100.0 100.0 100.0 1 6 0.022
0x¥880 100.0 33.33 50.0 1 11 0.0224
0x33f70 100.0 50.0 0.0 3 8 0.0236
Oxea90 100.0 100.0 100.0 1 9 0.025
0x22650 100.0 100.0 100.0 3 8 0.0261
0x233d0 100.0 33.33 0.0 4 11 0.0262
0x1f1b0 100.0 100.0 100.0 1 11 0.0265
0x40d3 100.0 0.0 100.0 4 10 0.0268
0x7450 100.0 100.0 100.0 1 15 0.0276
0x77e0 100.0 100.0 100.0 4 0.0279
0x22720 100.0 100.0 100.0 3 7 0.0288
Oxf7b0 100.0 100.0 100.0 3 12 0.0291
0x7970 100.0 100.0 100.0 4 10 0.0293
0x2c30 30.0 100.0 60.0 6 10 0.0303
0x2c90 30.0 100.0 60.0 6 10 0.0305
0x3170 30.0 100.0 60.0 6 10 0.0306
0x2f50 30.0 100.0 60.0 6 10 0.0307
0x2fco 30.0 100.0 60.0 6 10 0.0308
0x2d20 30.0 100.0 60.0 6 10 0.0309
0x3100 30.0 100.0 60.0 6 10 0.031
0x2a50 0.0 100.0 50.0 4 7 0.0311
0x3010 30.0 100.0 60.0 6 10 0.0312
0x2b80 30.0 100.0 60.0 6 10 0.0313
0x3140 30.0 100.0 60.0 6 10 0.0314
0x2d30 30.0 100.0 60.0 6 10 0.0315
0x2ddo 30.0 100.0 60.0 6 10 0.0315
0x2fe0 30.0 100.0 60.0 6 10 0.0315
0x3c010 100.0 100.0 100.0 1 12 0.0315
0x2bb0 30.0 100.0 60.0 6 10 0.0316
O0x2ff0 30.0 100.0 60.0 6 10 0.0316
0x30c0 30.0 100.0 60.0 6 10 0.0316

Approved for public release; Distribution is unlimited 101

0x32a0
0x2b30
0x2ae0
0x2da0
0x3260
0x2d00
0x3110
0x2ca0l
0x3120
0x31b0
0x31a0
0x31f0
0x3200
0x2ad0
0x2f20
0x3080
0x2b40
0x2bf0
0x2ef0
0x2fb0
0x2b70
0x2d80
0x2ee0
0x2af0
0x2cb0
0x3280
0x2aal
0x2el0
0x2e90
0x2e60
0x2fdo
0x2a60
0x2db0
0x31d0
0x3270
0x2d50
0x2df0
0x2e30
0x32d0
0x2e50
0x2cf0
0x32e0
0x2a90
0x2f40
0x3070
0x31e0
0x2c00
0x3060
0x2bc0
0x3090
0x30f0

30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.

o

O O O 0O 0O 0000000000000 0D0D0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOo

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

Approved for public release; Distribution is unlimited

60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.

O OO 0O 0000000000000 0D0D0D0DO0DO0DO0D0D0D0D0D0D0D0D0D0D0DO0DO0DO0ODO0ODO0D0DO0DO0ODO0OOO0OO0OO0OOOoOOoOOoOOo

D OO0 0000000000000 0000000000000 0000000000000 o0 oo

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

O O O O 0O 0000000000000 OoOOoOOoOOo

.0316
.0317
.0318
.0318
.0318
.0319
.0319
.0321
.0321
.0321

0322

.0322
.0322
.0323
.0324
.0324
.0326
.0326
.0326
.0327
.0328
.0329
0.

0329

0.033
0.033
0.033

0.
0.
0.
.0333
.0333
-0334
.0334
-0334
.0334
.0335
-0335
.0336
-0336
.0337
.0338
-0339

O O O 0O 0O 0000 O0oOOoO OoOOo

0331
0332
0332

0.034
0.034
0.034
0.034

0.
0.
0.
0.
0.

0341
0341
0342
0342
0342

102

0x3250
0x2c70
0x3130
0x2bd0
0x2cc0
0x2c20
0x30a0
0x3050
0x2e70

0x22370

0x2al0
0x2c80
0x2f90
0x2cdO
0x3300
0x2b00
0x2de0
0x2e80
0x3150
0x2ecO
0x3220
0x3290
0x3040
0x31c0
0x2c60
0x2f10
0x2b10
0x3190

0x340f0

0x2b20
0x2d40
0x30d0
0x3000
0x3180
0x2b90
0x2c40
0x2fa0
0x2b50
0x2f00
0x32f0

0x22280

Ox2ab0
0x2ce0
0x2f80
0x2a70
0x2dcO
0x6ce0
0x2a80
0x2d60
0x3030
0x32b0

30.
30.
30.
30.
30.
30.
30.
30.
30.

0
0
0
0
0
0
0
0
0

100.0

100.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
100
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
100
30.
30.
30.
30.
30.
100.
30.
30.
30.
30.

0
0
0

o

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
33.33
100.0
100.0
100.0
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
40.
100.
100.
100.
100.
100.

100.
100.
100.
100.

OOOOOOOOOOOOOOOOOOOOOO'OOOOOOOOOOOOOOOO

Approved for public release; Distribution is unlimited

60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
0.0
100.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
100.0
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.

o

60.
60.
60.
60.
60.
100.
60.
60.
60.
60.

[N
o
o
OOOOOOOOOO'oOOOOOOOOOO

0D 0OoOoOh OO e OO0 000000 ;0000000000000 000w A0 0o O;

10
10
10
10
10
10
10
10
10
11
11
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
16
10
10
10
10
10
18
10
10
10
10

0.0342
0.0343
0.0343
0.0344
0.0344
0.0345
0.0345
0.0346
0.0347
0.0348
0.0348
0.0348
0.0348
0.0349
0.0349
0.035
0.035
0.035
0.035
0.0351
0.0351
0.0351
0.0352
0.0352
0.0354
0.0354
0.0355
0.0355
0.0355
.0356
-0356
-0356
.0357
.0357
.0358
.0359
-0359
.0361
-0361
.0361
0.0363
-0363
.0363
-0363
-0365
.0365
-0365
.0366
.0366
-0366
.0366

o

O O O O O O OoOOoOOoOOo

O O O O OO OoO o oo

103

0x2d10
0x2d90
0x2f60
0x2b60
0x2eb0
0x3230
0x3240
0x2c50
0x2edO
0x30e0
0x2ba0
0x30b0
0x2e00
0x2eal
0x3210
0x2e20
0x20a30
0x2d70
0x2be0
0x2f30
0x32c0
0x2ac0
0x3160
0x3020
0x340d0
0x2c10
0x3a220
0x34110
0x40e9
0x7420
0x2e40
Oxeab0
Oxfda0
0x360c
0x33eel
0x329c0
OxebcO
0x79a0
0x340a0
0x33120
0x1c550
0x2f70
0x3b540
0x3b86
0x¥700
0x34010
0x36710
0x28730
0x2bddO
0x22670
0x21d60

30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
.0

100

30.
30.
30.
30.
30.
30.
30.
.0

100

30.
.0
.0

100
100

100.
100.

30.
100.
100.
100.
.0
.0

100
100

100.
100.
.0
.0
.0

100
100
100

30.
100.
100.
100.
100.
100.
100.
100.
100.
100.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

0
0
0
0
0
0

0
0

0

o

O 0O o0oooo oo

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

40.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
33.33
100.
100.
100.
100.
100.
100.
100.
100.0
100.0
100.0
100.0

50.0
100.0
100.0
83.33
100.0
100.0
100.0

O o o0 o0ooo

Approved for public release; Distribution is unlimited

60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
100.
60.
60.
60.
60.
60.
60.
60.0
100.0
60.0
100.0
100.0
100.0
100.0
60.0
100.0
33.33
66.67
0.0
100.0
50.0
100.0
100.0
100.0
100.0
60.0
100.0
100.0
50.0
100.0
100.0
85.71
100.0
100.0
100.0

O 0O 0O 00O QOO0 000O00OO0OO0OO0OOoOOoOOoOOoOOo

o

WWwN oW R, Hww~NYAPRPAEMND R bR DD DHDDDDDDDDDDDDDD DD

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
15
10
10
10
10
10
10
10
13
10
11
17
12
15
10
18
24
19
15
21
16
17
19
19
28
10
13
23
19
21
33
34
24
20
18

.0367
.0367
.0367
.0368
.0368
.0368
.0368
.0369
0.037
0.037
0.0372
0.0374
0.0375
0.0375
0.038
0.0385
0.0386
0.0386
.0387
.0388
.0394
.0396
.0398
0.0405
0.0406
0.0408
0.041
0.0412
0.0425
0.0425
0.0431
0.0477
0.048
0.0489
0.0499
0.0518
0.0522
0.053
0.0547
0.0551
0.0583
0.0584
0.0599
0.0602
0.0605
0.062
0.0622
0.0633
0.0634
0.0643
0.0646

O O O O O O o o

o O O o o

104

0x33490
0x1d940
Oxe5c0
Ox1cfa0
0xe550
Ox1felO
0x7790
0x23ac0
0x21690
0Oxe7d0
0x29c20
0x2ec70
0x19a00
0x29d80
0x39630
0x18790
0x23390
0x28820
0x21eal
0Ox3alal
0x2da50
0x3a250
0x35710
Oxe8al
0xf910
0x34050
0x7a80
0Oxf6a0
0x4109
0x226b0
0x6e50
0x36a4
0x29c70
0x21490
0x395d0
0x3ef2
0x4138
0x34140
Ox6ee0
Oxea30
0x33390
Oxaa90
0xe630
0x359e0
0xeb80
0x¥130
0x1b360
0x1f110
Oxaeb0
Oxeb10
OxF4f0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

57.14
66.67
85.71
50.0
85.71
100.0
71.43
100.
100.
100.
87.
50.
100.
100.
50.
100.
100.
100.
100.
42 .86
50.0
83.33
62.5
100.0
100.0
100.0
75.0
100.0
75.0
100.0
63.64
100.0
75.0
100.0
54.55
83.33
80.0
80.0
50.0
80.0
57.14
100.0
80.0
70.0
80.0
83.33
81.82
100.0
100.0
80.0
77.78

O OO0 0O oo o u o oo

Approved for public release; Distribution is unlimited

100.
50.
100.
100.
100.
100.
100.
100.
100.
100.
100.0
85.71
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
85.71
100.0
60.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
66.67
100.0
66.67
100.0
100.0
100.0
100.0
100.0
60.0
100.0
100.0
100.0
100.0
71.43
100.0
100.0
100.0
100.0
100.0
100.0
100.0

OO0 O o0 OO0 o0 o

(@)

= =
PR OW©O®Rane P A osrodarn®adardwonooronwwkpiAONDI®WAGROW®O O M G

'_\
© b R

27
22
24
25
24
26
27
23
26
25
30
28
22
24
22
25
19
28
23
30
28
27
31
29
35
30
20
35
31
32
44
37
31
31
32
33
37
33
39
32
41
27
35
39
26
32
36
49
49
39
31

0.0646
0.0664
0.0671
0.0681
0.0681
0.0685
0.0691
0.0694
0.0705
0.0717
0.0721
0.0724
0.0727
0.0729
0.0732
0.0741
0.0741
0.0745
0.0747
0.0747
0.0781
0.0794
0.081
0.0827
0.0839
0.084
0.0843
0.0861
0.0885
0.092
0.092
0.0922
0.0927
0.0931
0.0933
0.0942
0.0944
0.0963
0.0967
0.1009
0.1011
0.1034
0.1037
0.1042
0.1058
0.1061
0.1067
0.1085
0.1092
0.1092
0.1092

105

0x1cf40
0xe830
0x33fa0
0xf740
0x2¥3b0
0x6ddo
0xa040
0x2eccO
0x1c490
0x29dd0
0x79c0
0x215F0
0x23860
0x21da0
0xe6b0
0x33310
0xf640
0x225e0
0x27e00
0x¥5d0
0x32570
0x363F
0x2b490
0x29b80
0x¥180
0x326¢0
0x2dbf0
0x2e230
0x3f3a
0x7800
0x1d990
0xe900
0x33410
Ox1cedO
0x36760
0x342d0
0x187F0
0x20890
0x2b4f0
0x36690
0x2d5e0
0xf450
0x¥8b0
0x2e180
0x9750
Ox¥7do
0x32c00
0x28790
0xe990
0x¥970
0x236e0

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

OO0 0O 0000000000000 0D000CO0O000D000CO0DO0O0CO0O0CO0DO00CO0OO0CO0OO0O0 0000000 oo oo

55.56
100.0
100.0
87.5
100.0
75.0
100.0
92.86
40.0
100.0
62.5
100.0
84.62
87.5
75.0
57.14
50.0
76.92
100.0
100.0
100.0
54 .55
100.0
100.0
100.0
45.45
100.0
69.23
75.0
54.55
60.0
100.0
80.0
55.56
93.33
100.0
100.0
53.85
100.
40.
80.
100.
100.
100.
58.33
77.78
69.23
90.91
100.0
100.0
85.71

o O O O O o

Approved for public release; Distribution is unlimited

100.0
100.0
100.0
85.71
100.0
100.0
100.0
100.0
100.0
100.0
30.0
92.31
62.5
100.0
100.0
100.0
83.33
100.0
100.0
100.0
100.0
88.89
100.0
100.0
100.0
66.67
100.0
100.0
57.14
100.
87.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.0
100.0
100.0
93.33
100.0
100.0
100.0
100.0
100.0

OO0 o0oo0oo0oo0o0oo oo uo

o

D o ® N NO

0 01l © N O w 0w u

N (I P
HwobdRERoRou~w~~w~ERE B 0o~No®o o

31
38
31

42
51

40
42
43
28
35
52
44
45
28
39
41
37
43
49
47
41
38
29
49
50
39
49
45
48
30

48
56
35
36
54
64
44
49
63
48
47
52
65
64
42
65
46
58
43
53
53

0.1108
0.1129
0.1131
0.115
0.1178
0.12
0.121
0.1211
0.1214
0.1219
0.1224
0.1227
0.1228
0.1235
0.1239
0.1248
0.1267
0.1276
0.128
0.1291
0.1293
0.1306
0.1307
0.1353
0.1377
0.1399
0.1405
0.1409
0.1431
0.1443
0.145
0.1453
0.1455
0.1469
0.1512
0.1524
0.1567
0.1603
0.1618
0.1674
0.1675
0.168
0.1734
0.1746
0.1748
0.1765
0.1775
0.179
0.1817
0.1826
0.183

106

0x23b50
0x29cd0
0x223a0
0x2b¥10
OxleecO
0x2d660
0x331d0
0x22420
0Ox7ad0
0x3a7c0
0x2db60
0x21df0
0x33e30
0x8b50
0x1f1le0
0x¥550
Oxac60
0x8f50
0x72d0
0x29a80
0x2d0e0
0x323e0
Oxae00
0xe450
0x2ebb0
0x3c6b
0x28670
0x3bda0
0x1e430
0x3508
O0x3bbe
0x1b2d0
0x222c0
0xf210
0x1ce00
0x20920
0x21380
0x1c960
Ox1ed90
0x9790
0x7090
0x32b20
0x8be0
0x38fe0
0x29970
0x3441
0x33280
0x6¥80
0x198F0
0x23a20
0x3be80

100.0
100.0
100.0

N
o
D
[00]

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O OO0 O0CO0O0CO0O0O0O0O000D00D000CO0D0000D0D00CO0O00O0D0D0 0000000000 O© oo oo

76.47
100.0
70.59

50.0

75.0
100.0

50.0
84.62

80.0
100.0
69.23

50.0
100.0
100.0
100.0
82.35
100.0
92.31

90.0
100.0
88.24

50.0
100.0
71.43
93.75
61.54
85.71
80.95
100.0
54.17
66.67
100.0
68.97

95.0

75.0
52.38
100.0
100.0
83.33
88.24
64.71
100.0
66.67

80.0
100.0
90.91
76.92
86.67

75.0
93.33
100.0

Approved for public release; Distribution is unlimited

100.0
100.0
100.0
35.29
94.44
100.0
100.0
100.0
72.73
100.0

90.0
73.33
100.0
100.0
100.0
100.0
100.0
93.33
100.0

95.0
100.0
100.0
100.0
90.91
100.0
100.0
100.0
93.75
100.0
66.67
100.0
100.0
100.0
100.0
94.44
95.65
100.0
100.0
100.0
100.0
100.0
100.0

62.5
100.0
96.15
94.44
100.0
90.91
58.33
100.0
100.0

11

11

~

16

15

11
10

10
15

10
12

16

19
12

10
12
19
25
12

13

10
17
10
12

17
14
11
11
16

12
18
13
23
18

57
56
45
42
52
66
63
47
46
60
52
53
57
46
59
54
a4
59
59
61
54
67
64
76
68
49
63
71
76
89
65
46
61
61
69
78
86
83
97
85
73
69
47
63
76
65
84
86
84
112
110

0.1894
0.191
0.1913
0.1941
0.1943
0.203
0.203
.2035
2039
.2047
.2094
.2123
.2132
0.2142
0.2174
0.2194
0.2201
0.221
0.2218
0.2222
0.2278
0.2358
0.24
0.2402
0.2513
0.259
0.2605
0.261
0.2658
0.266
0.2702
0.2728
0.2755
0.2772
0.284
0.2846
0.2889
0.2925
0.297
0.3027
0.3119
0.3151
0.3182
0.3193
0.323
0.3245
0.3256
0.3256
0.336
0.3416
0.3452

OOOOIOO

107

0x1cd30
0x397d0
0x3320
0x7180
0x2dc70
Ox3aca0
0x3310
0x2be70
0x32990
0x324b0
0x232b0
0x2daa0
0x238e0
0x3318
0x221a0
Oxa6al
0x20a60
0x224b0
0x32600
Oxed20
0x22070
0x7380
0x3a2a0
0x23400
0xe720
0x23770
0x23580
0x1c3a0
0x2b5e0
0x22740
0x3a39
0x2dda0
0x19a50
Oxbe80
0x3ceb
OxbaeO
0x2d4c0
0x3a410
0x1f7c0
0x3fb0
0x1fbeO
OxbdbO
OxaadO
0x32270
0x39400
0x1ef50
Oxebf0
0x1d540
0x39680
0x35770
0x36F7

H
o
1 [} 1 o 1 1 [}
OO0 O0OO0OO0O0O0O0OOOO0O oo

~
(@]
w
N

100.0
100.0
100.0
100.0
23.89

63.64
73.68
100.0
68.18
100.0
52.94
100.0
72.22
70.83
66.67
50.0
19.05
96.55
100.0
59.09
89.47
76.0
89.47
100.0
100.0
86.36
90.48
92.86
72.97
78.95
75.0
96.88
55.88
75.0
100.0
36.36
100.0
74.07
95.0
75.0
62.96
78.26
78.26
77.27
69.23
100.0
92.0
92.31
65.71
70.0
75.76
96.43
84.78
70.83
76.0
28.81

Approved for public release; Distribution is unlimited

88.89
90.0
96.77
63.16
96.88
77.78
96.77
56.0
100.0
100.0
100.0
100.0
100.0
96.77
100.0
100.0
80.95
100.0
100.0
100.0
90.91
88.89
89.29
88.46
71.43
86.67
95.24
100.0
85.19
100.0
60.53
97.14
94.29
50.0
87.1
100.0
100.0
75.0
83.87
70.59
100.0
100.0
100.0
100.0
91.18
89.47
91.67
97.62
100.0
97.1
33.33

17
16
12
21

25
16
12
19
15
12
20
16
14
21
15
17
19
13
11
14
20
14
23
19
15
25
29
23
22
24
10
37
25
40
33
17
28
22
22
25
18
19
24
30
37
24
32
12
32
39

70
68
99
90
84
135
103
83
79
69
75
69
100
101
79
78
91
89
71
111
91
112
109
118
65
74
111
105
118
126
117
102
182
134
172
107
81
122
136
106
188
80
137
116
157
186
212
177
96
197
226

0.3457
0.3463
0.3475
0.3493
0.3557
0.3559
0.3584
0.3619
0.3632
0.3644
0.3665
0.3773
0.3776
0.3827
0.3908
0.3936
0.3989
0.4009
0.4036
0.4082
0.4098
0.4156
0.4294
0.4331
0.4559
0.4882
0.4946
0.4951
0.5108
0.55
0.5554
0.5639
0.5722
0.58
0.583
0.5845
0.6052
0.6107
0.612
0.6319
0.646
0.646
0.6788
0.6883
0.6983
0.7485
0.7619
0.7913
0.7964
0.8112
0.8166

108

0x36580
0x2d860
0x1d770
0x16d10
0x98b0
0x1b740
0x32730
0x¥390
0x27c80
0x21f00
0x1cc30
0Oxba00
0x32a00
0x16F90
0x7860
0x2bb50
0x29e40
0x228f0
0x2cfb0
OxfalO
0x17390
0xf2d0
0x1da20
0x32c80
0xalcO0
0x3ae60
0x1f970
OxfdeO
0x1b6b0
0x183c0
0x8100
0x1c650
0x2be20
0x296b0
0x1d460
0x3bb10
0x3a570
0x2d720
Oxbc30
0x8c70
0x3b670
Oxee70
0x1dd30
0x1e140
0x38c20
0x9c20
0xel30
Oxa2e0
0x33a20
0Ox1ca80
0x7480

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O 0O 0000000000000 0D0D00D00CO0DO00CO000CO0DO0O0CO0O0C0OO00DO00CO0OO00O0O0O0O0OOo0o©oo oo

54.
74.
58.
86.
75.
61.
34.

84
36
14
05
47
76
04

100.0
96.3
50.0
80.0

73.

68

76.0

88.
93.
72.

24
55
22

98.0

86.
94.
92.
32.

67
74
16
79

100.0

86.
71.
86.

79
88
36

100.0

49.
73.

25
58

52.0

75.
79.

76
69

100.0
75.0
100.0
87.3
71.7

78.
.46

82

81.
81.
77.
89.
67.
96.
90.

57

82
58
78
47
61
55
74

100.0
76.4

78.
98.
75.
57.

Approved for public release; Distribution is unlimited

87
85
38
38

94.44
81.08
85.71
100.0
100.0
91.3
61.11
100.0
100.0
100.0
88.89
100.0
100.0
100.0
80.65
87.5
84.0
100.0
100.0
96.72
88.89
100.0
49.25
100.0
88.89
100.0
85.71
53.42
88.24
92.16
94.55
98.88
88.37
100.0
98.44
62.5
100.0
88.14
100.0
80.25
86.41
88.1
88.46
95.59
87.78
98.08
93.55
90.32
96.26
94.12
50.0

16
36
23
28
41
56
54
13
29
31
27
50
14
33
31
36
34
44
16
a4
44
22
32
59
32
32
34
59
62
63
42
46
41
23
40
50
36
47
38
51
42
47
70
46
43
72
32
65
42
56
65

81
168
150
170
214
194
179
65
149
121
146
173
92
200
167
199
185
200
138
259
216
114
217
226
160
178
185
247
237
256
246
305
222
190
250
187
173
252
195
304
324
199
321
279
333
271
287
342
323
281
239

0.8499
0.8524
0.8578
-8656
.9342
.9677
-9686
.9944
.0315
.0347
.0487
.0536
.1126
1173
-1869
.1922
-1946
.1986
1.202
1.2184
1.2488
1.2506
1.2595
1.3597
1.3743
1.3974
1.4055
1.5548
1.556
1.558
1.5618
1.6619
1.6986
1.8112
1.8765
1.9502
2.0359
2.1314
2.1437
2.276
2.381
2.3837
2.5138
2.5201
2.5807
2.6581
2.6824
2.7271
2.781
2.8306
2.8519

o

P PRPrRPRPRPPPPLOoOO

109

OxacdO

0x1¥590
0x2dde0
0Ox1c5a0
0x39090
0xa790

0x1f4f0
0x1b3e0
0x8770

0x2b0a0
0x1c500
0x216F0
0x32f40
0x3b0d0
0x1d2b0
0x3b570
0x2b7e0
0x3a860
0x38a80
0x36310
0x35d10
0x7e90

0x398c0
0x2ed50
0x1e750
0x31Ff10
0x1f2b0
0x20e00
0x2c9d0
0x22b80
0x9290

0x1a930
0x334F0
0x31db0
0Ox1fe70
0x1e550
0x39e70
0x7b80

0x1d000
0x2e2a0
0x2c7e0
0x20b80
0x35a00
0x36030
0x1a430
0x4197

0x16760
0x8330

0x2d180
0x39b90
0x17300

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

Ay
a1

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
32.76
100.0
100.0
100.0
100.0
100.0

5.29
100.0
100.0
100.0
32.36
100.0
100.0
100.0
100.0
100.0

N
O 0O 0000000000000 O0O0DO0O0O0O0O00O0O0O0O0Oo0oO©ooooo

94.

12

78.0

54.

29

100.0

62.
69.
79.
.42
30.
84.
53.
48.

52

07
12
25

95
21
17
76

70.0

86.
78.
70.
84.
83.
87.
42.

08
65
09
42
75
93
03

61.4

71.
70.
75.

6.
79.
74.
63.

96
83
38
84
63
73
06

75.4
91.1

60.
58.
57.
7.
85.
21.
52.
65.
78.
54.
78.
12.
70.
60.
57.

87
21
79
21
14
05
46
79
99
55
01
57
91
29
19

21.89

74.
58.

23
17

79.1

54.
84.

Approved for public release; Distribution is unlimited

72
55

100.0

92.
98.
99.
.42
89.
93.
78.
90.
84.
78.

77

06
61
07

13
51
67
91
81
95

100.0

86.
90.
97.
86.
90.
92.
91.
.46
98.
83.
93.
94.
15.
94.

88

21
24
85
55
57
65
54

48
15
65
56
27
12

91.3

86.

96

94.3
97.8

95.
96.

65
15

88.2
94.4

98.
28.

54
39

100.0

74.
97.
95.
95.
11.
99.

05
28
88
22
72
12

89.8

95.
51.
82.
96.

73
46
67
03

100.0

97.
87.

96
21

24
46
32
54
70
39
53

112
59
39

117
80
33
42
59
55
75
39
62
53
34
86
28
80

102
47
79
96
91
69
49

118

124
57

104

137
45

142
90

138

113

140
80
96

190

250
89
96
30
80
92

160
282
280
360
263
211
333
459
288
295
473
500
186
321
365
405
431
293
462
265
232
412
214
546
557
357
485
479
515
543
328
649
702
441
641
702
221
611
557
664
663
662
456
463
1019
1057
410
574
251
418
455

3.0192
3.0636
3.1819
3.1828
3.3001
3.3249
3.5779
3.7328
3.779
3.8141
3.9361
3.9726
4.0753
4.2172
4.271
4.3917
4.5278
4.7561
4.7771
4.8708
5.0773
5.1761
5.5717
5.7276
5.9456
5.9629
6.4939
6.6944
7.3909
7.4249
7.8854
7.9893
8.0449
8.2301
8.7212
9.3818
9.6178
9.9468
10.2212
10.2654
12.5983
12.8123
13.0801
13.7801
14.9014
14.9903
15.7919
16.3593
17.6751
21.8512
23.3512

110

0x34520 100.0 63.8 84.64 219 1162 27.6242
0x2f440 100.0 44 .51 86.26 317 1939 34.1508
Ox16Ff0 100.0 66.24 87.94 128 679 35.3681
0x2a0e0 100.0 58.31 95.44 177 1107 36.6407
0x19cd0 100.0 61.99 94.35 279 1497 45.9248
0x36800 100.0 58.75 95.35 417 2429 47.6399
Oxaf60 100.0 77.42 93.83 167 866 64.4584
0x1b9c0 100.0 48.34 79.17 107 588 65.5314
0x23bf0 83.92 54.76 71.47 483 2804 88.1264
0x17670 60.96 24.73 50.78 230 1150 145.2208
0x28880 1.88 6.04 11.31 173 1171 168.9595
0x28040 100.0 55.77 100.0 106 480 237.4184
0x18f60 100.0 60.69 93.46 98 655 283.497
0x18890 100.0 58.63 93.41 170 1112 305.8778
0x18d90 100.0 61.34 94.59 111 765 307.18
0x27eal 100.0 62.3 100.0 121 584 330.4836
0xc420 100.0 62.68 96.98 349 1905 832.5844
0xc2c0 100.0 63.49 95.1 364 2010 836.1099
Disassembly Summary

Instruction count: 64922

Unknown instrs : 0

Function count : 519

Function coverage: 81.1%

Analysis Summary

Esp precision : 92.11%

Reads precision : 66 .75%

Writes precision: 85.86%

Calls : 4252

Analysis time : 4722.08 secs

Iterations : 8

4.2.1.2 not stripped

function esp reads writes unrc blocks instrs time

0x3c000 100.0 100.0 100.0 1 1 0.0113 (__libc_csu_fini)
0x1e547 100.0 100.0 100.0 1 2 0.0123 (__x86.get_pc_thunk.bp)
Oxa03c 100.0 100.0 100.0 1 2 0.0124 (__x86.get_pc_thunk.di)
0xel28 100.0 100.0 100.0 1 2 0.0124 (__x86.get_pc_thunk.ax)
0x6dc9 100.0 100.0 100.0 1 2 0.0126 (__x86.get_pc_thunk.dx)
0xa034 100.0 100.0 100.0 1 2 0.0126 (__x86.get_pc_thunk.cx)
0Ox6cch 100.0 100.0 100.0 1 2 0.013

0x3a200 100.0 100.0 100.0 1 4 0.015 (poll_reset)

Approved for public release; Distribution is unlimited 11

0x6cd0
Oxeaf0
0xa038
0x3c024
0x29b60
Oxea90
0x33f70
OxealO
0x¥880
0x1f1b0
0x22650
0Ox¥7b0
0x22370
0x40d3
0x22720
0x233d0
0x3c010
0x2a50
0x7970
0x30b0
0x2fe0
0x2d90
0x32a0
0x77e0

0x2bal
0x2eb0
0x3010
0x2e70
0Ox2da0
0x3250
0x3280
0x2d50
0Ox2ecO
0x3140
0x7450

0x2ef0
0x2fc0
0x3240
0x2c30
0x3090
0x2fb0
0x3150
0x2b10
0x2d30
0x3170
0x3260
0x3270
0x2c40
0x2c90

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

100.
30.
30.
30.
30.

100.

30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
100.

30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.

OO0 0000900000000 0OO0O0OOODO O OO0

O O O O O OO0 o OoOOo

O OO O 0O 0O0OO0OO0OO0OOoOOoO oo

100.
100.
100.
100.
100.
100.

50.
100.

O O O oo O oo

w
w
w
w

100.0
100.0
100.0
33.33
0.0
100.0
33.33
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
0.0
100.0
50.0
100.0
100.0
100.0
0.0
100.0
100.0
0.0
100.0
50.0
100.0
60.0
60.0
60.0
60.0
100.0

60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
100

OO O0OO0OO0OO0OO0OO0OOoOOoOOo

60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.

O OO0 0O 0000000 OoOOoOOo

NOOOO AP UDNEGPPROWERPPRPOYPE LR PR PP

[o) o) NN) I BN NN e) NN o) I o) B)]

(o220« e B e) I e) N o) NN o) R o) R o) N o) I) B e))N ©)]

2
6
2
7
7
9
8
6

11
11
8
12
11
10
7
11
12
7
10
10
10
10
10
9

10
10
10
10
10
10
10
10
10
10
15

10
10
10
10
10
10
10
10
10
10
10
10
10
10

0.0159 (__x86.get_pc_thunk.bx)
0.0166 (is_same_net)
0.0168 (__x86.get_pc_thunk.si)
0.0178 (_fini)

0.018 (helper_buf_empty)
0.0201 (dnsmasq_time)
0.0204 (save_counter)
0.0207 (sa_len)

0.0253 (set_option_bool.part.5)

0.0263 (queue_event)
0.0264 (lease4_allocate)
0.0268 (atoi_check16)
0.0273 (lease6_reset)
0.0276 (in_list.part.3)
0.0279 (lease_set_iaid)
0.0289 (rerun_scripts)
0.0289 (__stack_chk_fail_local)
0.0302
0.0302 (cache_get_name)
0.0308
0.0311
0.0313
0.0313
0.0313 (cache_get cname_target

.part.5)
0.0314
0.0317
0.0318

0.032
0.0321
0.0321
0.0321
0.0322
0.0322
0.0322
0.0322 (is_expired.isra.2.

part.3)
0.0323
0.0323
0.0323
0.0324
0.0324
0.0325
0.0325
0.0327
0.0328
0.0328
0.0328
0.0329

0.033

0.033

Approved for public release; Distribution is unlimited

112

0x2b30
0x31d0
0x3300
0x2a90
0x2c10
0x2f90
0x2f40
0x3100
0x32e0
0x2d20
0x2db0
0x2c20
0x2f10
0x3070
0x3220

0x340f0

0x2ad0
0x2b50
0x2b80
0x2d40
0x2f60
0x2ce0
0x2d80
0x2de0
Ox2ff0
0x3200
0x2a60
0x2ddo
0x2e30
0x2f00
0x3160
0x2af0
0x2fdO0
0x30c0
0x3230
0x2a10
0x2c70
0x3110
0x2b60
0x3030
0x2b40
0x2e50
0x31a0
0x2a70
0x2bd0
0x31b0
0x2b90
0x2bb0
0x2dcO
0x3120
0x2d00

30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
100.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
100.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.

0
0
0
0
0
0
0
0
0
0
0
0

o

O OO OO0 0000000000 0DO0CO0O0O00D00DO0O0O0O0O0OO0OO0OO0OO0OO0OOoOOoOAQp oo

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
100.0
60.0
60.0
60.0
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
100.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.
60.

o

O OO0 000000000000 O0OO0O00OO0O0OO0OO0OO0OO0OO0OO0OOoOOoOOo

OO0 H OO0 000000000 ;0000000000000 000

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

.0331
.0331
.0332
.0333
-0333
.0333
.0334
.0334
.0334
-0335
.0335
0.0336
0.0336
0.0336
0.0336
0.0336 (put_opt6_char)
0.0337
0.0337
0.0337
0.0337
0.0337
0.0338
0.0338
0.0338
0.0338
0.0338
0.0339
0.0339
0.0339
0.0339
0.0339
0.034
0.034
0.034
0.034
0.0341 (_init)
0.0341
0.0341
0.0342
0.0342
0.0343
0.0343
0.0343
0.0344
0.0344
0.0344
0.0345
0.0347
0.0347
0.0347
0.0348

O O O OO 0O O0OO0OOoO oo

Approved for public release; Distribution is unlimited

113

0x2e80
0x2eal
0x3040
0x2c60
0x2ca0l
0x2fa0
0x3020
0x3080
0x2cb0
0x2e10
0x31f0
0x2bf0
0x30a0
0x2d60
0x2b70
0x2cf0
0x2d10
0x2d70
0x2ee0
0x2b00
0x2aal
0x3190
0x2c00
0x2cd0
0x2e90
0x2f20
0x32b0
0x2e40
0x3180
0x3050
0x6ce0
0x2c80
0x32c0
0x2b20
0x3290
0x2c50
0x31e0
0x2¥30
0x30f0
0x31cO
0x2ab0
0x2f50
0x2f80
0x32d0
0x2e00
0x2e20
0x2e60
0x2acO
0x2ccO0
0x30d0
0x32f0

30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
100.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
100.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0

(20> e B e) I e) NN) N e) i) B o) i) e BN . BN BN e) BN) BN« M) B o) B BN o I 22N <2 B) I o) o) B o) B) i) i > N) B) B o) B o) B) B) B @) B @) B @) B @) B e) B) B o) Bl @) i @) B @) i @) i e) B e) B) B ©)]

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
18
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

.0348
.0348
.0348
.0349
.0349
-0349
-0349
.0349
0.035
0.035
0.035
.0351
.0351
.0352
.0353
.0353
.0353
.0353
.0353
.0354
.0355
.0355
.0356
.0356
.0357
.0357
.0357
.0359
.0359
0.036
0.036
.0361
.0361
-0362
.0362
.0363
-0363
.0364
-0364
.0365
.0366
-0366
.0367
.0367
-0368
.0368
-0368
.0369
.0369
.0372
.0372

O O O O O O o o

O O O O 0O 000000000 OoOOoOOoOOo

O O O O 0O 00000000000 OoOOoOOoOOo

(deregister_tm_clones)

Approved for public release; Distribution is unlimited

114

0x3060
0x3210
0x3000
0x2edO
0x2ae0
0x2be0
0x2a80
0x2bc0
0x30e0
0x22280
0x2df0
0x16¥50
0x3130
0x20a30
0x340d0
0x34110
0x3a220
0x40e9

0x7420

0x33ee0
Oxeab0
0x2f70
0x1c550
0x360c
OxebcO
0x21690
Oxfdao
0x6c93
0x33490
0x340a0
0x329c0
0x33f20
0x79a0
0x6d20
0x6d70
0x21d60
0x3b540
0x3b86
0x1d940
0x28730
0x¥700
0xe7d0
0x23ac0
0x36710
0x22670
0x34010
0x6dc0
0Oxe550
Oxl1cfal

W
o
o

30.
30.
30.
30.
30.
30.
30.
30.
100
30.
100
30.
100.
100
100.
100.
100.

OCoo0o0o0O0Op0O0OpO0OO00O0OO0OO0OOOo

100.

o

100.
100.

30.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

OO0 0O 000000000000 O0OO0o oo

o

[Eny
o
o
o

100.
100.
100.
100.
100.
100.
100.
100.
40.
100.
100
100.
40.
100
100.
100.
100.

OCooo0oO0OO0OpO0OO0O0O0O0O0OO0OO0OOoOOo

100.

o

100.
100.
100.
100.
100.
100.0
100.0
33.33
100.0
57.14
100.0
100.0
100.0
100.0

50.0
100.0
100.0
100.0
100.0
66.67
83.33

50.0
100.0
100.0
100.0
100.0
100.0
66.67
85.71

50.0

© o © oo

60.
60.
60.
60.
60.
60.
60.
60.
60.
100.
60.
100
60.
100.
100
100.
100.
100.

OCooo0o09Qp O O©OO0OO0O0O0O0O0 0o

100.0

100.0
60.0
100.0
66.67
50.0
100.0
33.33
100.
100.
100.
100
100.
100.
100.
100.
100.
100.
100.

50.
85.71
50.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

OCO0Ooo0oO0O9O0ooooo

- - B R B N I« R e R S e W e

[}

© 0 U WwwanuumwWP e dAPrPpPrpwdPNwurwordpWNaPR

10
10
10
10
10
10
10
10
10
16
10
16
10
15
13
17
11
12

15

15
18
10
28
19
16
26
24
18
27
19
21
19
17
26
20
18
13
23
22
34
19
25
23
33
20
21
30
24
25

0.0373
0.0373
0.0375
0.0379
0.038
0.0381
0.0382
0.0383
0.0384
0.0385 (lease_find_by addr)
0.0392
0.0393 (reset_option_bool)
0.0396
0.0402 (config_find_by address)
0.0414 (put_opt6_short)
0.0434 (put_opt6_string)
0.0438 (do_poll)
0.0441 (add_extradata_opt
.part.4)
0.0442 (is_outdated_cname_pointer
-part.1)

0.0458 (end_optb6)
0.0478 (netmask_length)
0.0491

0.05 (Fix_fd)
0.0501 (option_put)
0.0501 (setaddr6part)
0.0509 (kill_name)
0.0519 (set_option_bool)
0.0526 (_start)
0.0536 (lookup_dhcp_len)
0.0546 (put_opt6_long)
0.0548 (strip_hostname)
0.0548 (reset_counter)
0.0564 (cache_get_cname_target)
0.0573 (register_tm_clones)
0.0575 (__do_global_dtors_aux)
0.0579 (lease_ping_reply)
0.0585 (add_do_bit)
0.0597 (clear_packet)
0.0614 (mark_servers)
0.0617 (my_setenv)
0.0617 (unhide_metas.part.0)
0.0626 (safe_malloc)
0.0627 (extended_hwaddr.part.6)
0.0641 (filter_zone)
0.0657 (lease6_allocate)
0.0663 (new_opt6)
0.0666 (frame_dummy)
0.0673 (rand16)
0.0684 (is_dad_listeners)

Approved for public release; Distribution is unlimited

115

0xe5c0
0x2da50
0x29d80
0x2bddO
0x19a00
0x23390
0x7790
Ox1felO
0x21eal
0x29c20
0xeb80
0x39630
0x7a80
0xf910
0x3a770
0Oxf6a0
0x6e50
0x2ec70

0x28820
0x3a250
0Ox3alal
0x18790
Oxe8al
0x4109
0Ox6ee0
0x35710

0x4138
0x3ef2
0x21490
OxF4f0
0x29c70
0x1f900
0x34050
0x34140
0x¥130
0x395d0
Oxea30
0xa040
0xe630
0xe830
Oxaa90
0Ox36a4
0x¥5d0
0Ox1cf40
0x226b0
0x33390
Oxaeb0
0x1f110
0x6dd0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

85.71
50.0
100.0
100.0
100.0
100.0
71.43
100.0
100.0
87.5
80.
50.
75.
100.
75.
100.
63.64
50.0

O O o O o ©

100.0
83.33
42 .86
100.0
100.0
75.0
50.0
62.5

80.0
83.33
100.0
77.78

75.0
66.67
100.0

80.0
83.33
54.55

80.0
100.0

80.0
100.0
100.0
100.0
100.0
55.56
100.0
57.14
100.0
100.0

75.0

100.0
85.71
100.
100.
100.
100.
100.
100.
100
100.
100.
100.
100.
100.
100.
100.
66.67
85.71

CO0OO0OO0OO0O0O0o00O0OO0O OO O

100.0
100.0
100.0
100.0
100.0
100.0
60.0
60.0

100.0
100.0
100.0
100.0
66.67

20.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

(=Y
O ~NDPO®WAONWOD WNHNOOR O ©

o 0~ ww o A~

RS

R [
P oo 0 ulo~N®p Ul N WO O N

S o

24
28
24
24
22
19
27
26
23
30
26
22
20
35
25
35
44
28

28
27
30
25
29
31
39
31

37
33
31
31
31
31
30
33
32
32
32
42
35
38
27
37
47
31
32
41
49
49
40

0.0689 (rand32)

0.0697 (mark_config_used)

0.0698 (tftp_err_oops)

0.0699 (set_log_writer)

0.0704 (free_rfd)

0.0712 (lease_set_interface)

0.0718 (sanitise.part.4)

0.0729 (dhcp_init)

0.0748 (lease_make_duid)

0.0755 (next)

0.0758 (addré6part)

0.0764 (get_domain6)

0.0777 (cache_start_insert)

0.0779 (opt_string_alloc)

0.0783 (rrfilter_desc)

0.0787 (is_tag_prefix)

0.0794 (cache_hash)

0.0804 (mark_context_used
.isra.3)

0.0808 (buff_alloc.part.l)

0.0834 (poll_check)

0.0839 (fd_search)

0.084 (allocate_frec)
0.0843 (whine_malloc)
0.0862 (add_extradata_opt)
0.0864 (cache_free)

0.0867 (ra_start_unsolicited
.part.4)
0.0885 (pxe_misc)

0.089 (calc_time.isra.1l)
0.0905 (ourprintf)

0.0923 (wildcard_match)
0.0933 (sanitise)

0.094 (check_listen_addrs)
0.0947 (put_opt6)

0.0957 (find_iface_param)
0.0959 (memcmp_masked)

0.096 (get_domain)

0.0993 (hostname_isequal)
0.0994 (crec_ttl.isra.0)
0.1003 (rand64)

0.1019 (safe_pipe)

0.1032 (skip_guestions)
0.1041 (option_put_string)
0.1046 (parse_mysockaddr)
0.1049 (warn_int_names)

0.105 (lease_set_expires)
0.1056 (display_opts6)
0.1057 (private_net)
0.1062 (send_alarm)
0.1079 (hash_bucket)

Approved for public release; Distribution is unlimited

116

Oxebl10

0x3bfa0
0x¥640

0x1c490
0x29dd0
0x33fa0
0x¥740

0x32570
0x1b360
0x2eccO
0x27e00
0x359e0
0x23860
Ox1cedO
0x215F0
0x21da0
0x79c0

0x2b490
0x29b80
0x7800

0x33310
0x33410
0x2¥3b0
0x3f3a

0Oxe6b0

0x225e0
0x326c0
0x363F

0x¥8b0

0x9750

0x2e230
0x187F0
0x1d990
0x¥180

0x2dbf0
0x34240
0x36690
0x21570
0x¥450

0x2b4f0
0xe900

OxleecO
0x36760
0x214f0
0x2e180
0x342d0
0x20890
0Ox¥7do

0x32c00
0x23af0
0x223a0

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O OO0 0000000000000 00CO0D0000000D00CO0O0D0O0C 00000000000 O0OO0Oooooooo

80.0
100.0
50.0
40.0
100.0
100.0
87.5
100.0
81.82
92.86
100.0
70.0
84.62
55.56
100.0
87.5
62.5
100.0
100.0
54 .55
57.14
80.0
100.0
75.0
75.0
76.92
45.45
54 .55
100.0
58.33
69.23
100.0
60.0
100.0
100.0
100.0
40.0
61.54
100.0
100.0
100.0
75.0
93.33
66.67
100.0
100.0
53.85
77.78
69.23
100.0
70.59

100.0
100.0

83.33
100.0
100.0
100.0

85.71
100.0
100.0
100.0
100.0

71.43
62.5
100.0
92.31

100.0

30.0
100.0
100.0

100.0
100.0

100.0
100.0

57.14
100.0
100.0
66.67

88.89
100.
100.
100.
100.
87.
100.
100
100.
100.
80.
100.
100.
100.
94.44
100.0
77.78
100.0
100.0
100.0

93.33
100.0
100.0
100.0

OO O0OO0OO0OoOU oo OO

g o1 o 0 ©

13

w

10

~

18
13

[any
g © 0 ©

P o o~won~N®y

~N

10

21

14

11

11

11

39
32
37
28
35
31

42
41
36
43
49
39
45
36
44
28
52
29
49
30
41
35
51
48
39
43
39
38
65
42
45
44

48
50
49
48
48
44
52
63
56
52
54
42
64
64
49
65
46
58
45

0.1084
0.109
0.1092
0.1106
0.1119
0.1119
0.1132
0.1147
0.1172
0.1178
0.1182
0.1194
0.1202
0.1211
0.124
0.1248
0.1258
0.1262
0.1281
0.1286
0.1318
0.1322
0.1323
0.1358
0.1369
0.138
0.1391
0.1393
0.1409
0.1411
0.142
0.1421
0.1428
0.1458
0.1465
0.1487
0.1494
0.1508
0.1511
0.1517
0.1547
0.1588
0.1599
0.1606
0.1619
0.1633
0.1662
0.1713
0.1732
0.1771
0.1786

(is_same_net6)
(_libc_csu_init)
(split_chr)
(label_exception)
(free_transfer)
(expand)
(atoi_check)
(dhcp_common_init)
(server_gone)
(build_ia.isra.4)
(nl_async)
(ra_start_unsolicited)
(sanitise)
(warn_wild_labels)
(lease_allocate)
(lease_update_slaac)
(cache_enumerate)
(do_tftp_script_run)
(helper_write)
(record_source.part.6)
(display_opts)
(lookup_dhcp_opt)
(end_ia.part.7)
(do_opt)
(legal_hostname)
(lease_find_max_addr)
(run_tag_if)
(prune_vendor_opts)
(opt_malloc)
(record_source)
(opt6_find.part.1)
(free_frec)
(cleanup_servers)
(expand_buf)
(check_address)
(add_11a)
(find_addrlist)
(find_interface_v4)
(rand_init)
(log_reopen)
(canonicalise)
(read_event)
(in_zone)
(find_interface_v6)
(calculate_times.isra.0)
(new_timeout.isra.l)
(address_available)
(canonicalise_opt)
(config_has_mac)
(extended_hwaddr)
(lease6_find_by client)

Approved for public release; Distribution is unlimited

117

0x28790
0x2d5e0
0xe990
0x8b50
0x236e0
0xf970
0x29cd0
0x323e0
0x2b¥10
0x22420
0x7ad0
0x21df0
0x23b50
0x33e30
Oxac60
0x2d0e0
0x2db60
0x8f50
0x3a7c0
0x331d0
0x29a80
0x1f1le0
0x72d0
0x¥550
0x2ebb0
0xe450
Oxae00
0x28670
0x3bda0
0x1b2d0
0x2d660
0x1e430
0xf210
0x222c0
0x3508
0x1ed90
0x3c6b
0x1ce00
Ox3bbe
0x3441
0x9790
0x7090
0x324b0
Ox2bfa0
0x1c960
0x6¥80
0x1f020
0x198F0
0x21380
0x33280
0x32b20

100.
100.
100.
100.
100.
100.
100.
100.

O o0 O ooOOo oo

N
o
D
[00]

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
63.93
100.0
100.0
100.0
100.0

O 0O 0000000000000 00D0D0D00D0D00O0DO0DO0ODO0OO0OCO00O©o0o0o oo

90.91

80.0
100.0
100.0
85.71
100.0
100.0

50.0

50.0
84.62

80.0

50.0
76.47
100.0
100.0
88.24
69.23
92.31
100.0

50.0
100.0
100.0

90.0
82.35
93.75
71.43
100.0
85.71
80.95
100.0
100.0
100.0

95.0
68.97
54.17
83.33
61.54

75.0
66.67
90.91
88.24
64.71
66.67
100.0
100.0
86.67
65.22

75.0
100.0
76.92
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
35.29
100.0
72.73
73.33
100.0
100.0
100.0
100.0

90.0
93.33
100.0
100.0

95.0
100.0
100.0
100.0
100.0
90.91
100.0
100.0
93.75
100.0
100.0
100.0
100.0
100.0
66.67
100.0
100.0
94.44
100.0
94.44
100.0
100.0
100.0
100.0
100.0
90.91
81.82
58.33
100.0
100.0
100.0

12

12

15

16

15
10
11

~

11
10

16

10
12
15
12
19

10
12

19

13
25

10
12

17
14
15

12
18
27
13
10
12
11

58
47
43
46

53
53
56
67
42
47
46
53

57
57
44
54
52
59
60
63
61
59
59
54

68
76
64

63

71
46
66

76
61

61
89
97
49
69
65
65
85
73
69
70
83
86

122

84
86
84
69

0.1798 (grab_extradata)
0.1799 (address6_valid)
0.1806 (sockaddr_isequal)
.1817 (a_record_from_hosts)
.1845 (option_findl)
.1845 (add_txt)
.1871 (tftp_err)
.1889 (is_config_in_context)
-1957 (die)
.1974 (lease6_find_by addr)
.1983 (cache_end_insert)
.2012 (lease_find_interfaces)
.2036 (find_boot)
0.2052 (log_relay)
0.2088 (skip_section)
0.2113 (config_find_by address6)
0.2118 (get_context_tag)
0.212 (cache_make_stat)
0.2121 (expand_workspace)
.2134 (whichdevice)
-2209 (queue_arp)

.2211 (clear_cache_and_reload)
.2227 (eatspace)
.2228 (wildcard_matchn)
.2299 (check_ia.isra.2)
-2324 (check_name)
.2336 (resize_packet)

.2412 (netlink_multicast)
.2512 (do_arp_script_run)
.2519 (resend_query)
.2527 (config_valid)

0.2547 (newaddress)
0.2663 (print_mac)

0.2682 (lease6_find)

0.2726 (free_space)

0.2753 (fatal_event.isra.0)
0.277 (log_options)

0.2804 (warn_bound_listeners)
0.2847 (apply_delay)
0.2894 (add_rev6)

0.2923 (querystr)
0.2957 (add_hosts_cname)
0.2973 (match_netid.part.1)
0.2988 (make_duidl)

0.2995 (create_listeners)
0.3028 (rehash)

0.3038 (sig_handler)
0.3042 (allocate_rfd)

0.3046 (host_from_dns)
0.3084 (bindtodevice)

0.311 (match_bytes)

OO0 O0Oo0O0o0oO0 oo

O 0O oo 0 o0 O o oo

Approved for public release; Distribution is unlimited

118

0x20920
0x3be80
0x221a0
0x8bel

0x397d0
0x38fe0
0x3318

0x3320

0x23a20
0x29970
0x7180

0x3310

0x1cd30
0x32990
0x3aca0
0x2be70
0x232b0

Oxed20
0x2dc70
0x2daa0
0x22070
Oxa6al
0x32600
0x224b0
0x20a60
0x238e0
0x7380
0x23400
0xe720
0x3a2a0
0x23770
0x2b5e0
0x3a39
0x341a0
OxbaeO
0x22740
0x2dda0
0x23580
0x343a0
0x2d4c0
0x1c3a0
0x19a50
Oxbe80
Ox3ceb
0OxbdbO

0x3a410
0x3fb0

0x1f7c0
0x32270

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
69.88

O OO0 0O 0000 Oo0Oooo©ooo

[Eny
o
o
o

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O 0000 oooooO©ooo o

(o}
[ty
(@]
N

~
=
~
©

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O OO 000000 OO O oo

100.
100.
100.
100.

o o O o

52.38
100.0
59.09
66.67
73.68

80.0
100.0
100.0
93.33
100.0
68.18
100.0
63.64
70.83
52.94
72.22

50.0

100.0
100.0
19.05
86.36
89.47
100.0
89.47

76.0
96.55
90.48
72.97
78.95
92.86

75.0

75.0
36.36

93.1
62.96
100.0
100.0
96.88
70.59
78.26
55.88
74.07

95.0

75.0

92.0

78.26
69.23
77.27
65.71

95.65
100.0
100.0
62.5

90.0
100.0
96.77
96.77
100.0
96.15
63.16
96.77
88.89
100.0
77.78

56.0
100.0

100.0
96.88
100.0
90.91
100.0
100.0
100.0
80.95
100.0
88.89
88.46
71.43
89.29
86.67
85.19
60.53
96.0
100.0
100.0
97.14
95.24
96.15
100.0
100.0
94.29
50.0
87.1
100.0

75.0
70.59
83.87
100.0

17
18
21
11
16
16
14
12
23

21
16
17
19
25
12
12

11

20
14
15
13
19
17
16
20
23
19
14
15
23
24
15
33
22
10
25
23
17
29
37
25
40
18

28
22
23
24

78
110
79
47
68
63
101
99
112
76
90
103
70
79
135
83
75

111
84
69
91
78
71
89
91

100

112

118
65

109
74

118

117

104

107

126

102

111

120
81

105

182

134
172
80

122
106
136
116

0.3138 (narrow_context)
0.3215 (__umoddi3)
0.3271 (lease_find_by client)
0.328 (cache_unhash_dhcp)
0.3309 (detect_loop)
0.331 (search_domain6)
0.3315
0.3339 (add_rev4)
0.3414 (option_find)
0.3431 (queue_tftp)
0.345 (add_dhcp_cname)
0.3473
0.3491 (create_bound_listeners)
0.3598 (match_netid)
0.3601 (calc_subnet _opt)
0.3605 (Fflush_log)
0.3637 (lease_update_
from_configs)
0.3652 (prettyprint_time)
0.3818 (log6_packet)
0.3866 (add_local _addrs)
0.3894 (lease_prune)
0.3895 (skip_name)
0.3908 (recv_dhcp_packet)
0.3917 (lease_find_max_addr6)
0.392 (do_icmp_ping)
0.3992 (log_packet)
0.4036 (gettok)
0.4191 (do_script_run)
0.4206 (do_rfcl035_name)
0.4335 (poll_listen)
0.4375 (match_vendor_opts)
0.4733 (log_start)
0.4998 (pxe_uefi_workaround)
0.507 (send_ra_to_aliases)
0.5218 (check_for_local_domain)
0.5223 (lease_set_hwaddr)
0.526 (log6_quiet)
0.5278 (lease_add_extradata)
0.5321 (iface_search)
0.5655 (address6_available)
0.5734 (loopback_exception)
0.5741 (get_new_frec)
0.5751 (add_resource_record)
0.5792 (dhcp_packet_size)
0.5845 (check_for_
ignored_address)
0.6102 (check_name)
0.622 (do_encap_opts)
0.6252 (icmp_ping)
0.6791 (relay_reply6)

Approved for public release; Distribution is unlimited 119

0x39400
Oxebf0

0x1fbeO
Ox1ef50
0x36580
OxaadO

0x36F7

0x35770
0x16d10
0x1d540
0x39680
0x3b970
0x2d860
0x¥390

0x1b740
0x21f00
0x98b0

0x1d770
0Ox1cc30

0x32a00
0x32730
0x27c¢80
0Oxba00

0x2cfb0
0x29e40
0x7860

0x16F90
0x2bb50
0x17390
0x¥2d0

0x228f0
0x1da20
Oxfalo

0x1f970
0xalcO0

0x1c2e0
0x183c0
0x1b6b0
0x3ae60
0x32c80
OxfdeO

0x2be20
0x1c200
0x1c650
0x8100

0x296b0
0x1d460
0x3bb10
0x2d720
0xbc30

100.0
100.0
100.0
76.34
100.0
100.0
23.89
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O 0O 0O o0ooO©oooo oo

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O OO0 0000000000000 O0O0O0DO0OO0OO0O0O0O0ooo©ooo

70.0
96.43
100.0
75.76
54.84
92.31
28.81

76.0
86.05
84.78
70.83
78.95
74.36
100.0
61.76

50.0
75.47
58.14

80.0

76.0
34.04

96.3
73.68
94.74

98.0
93.55
88.24
72.22
32.79
100.0
86.67
86.79
92.16
49.25
86.36

66.0
75.76

52.0
100.0
71.88
73.58

75.0
68.85
100.0
79.69
100.0

87.3

71.7
82.46
81.82

91.18
91.67
100.0
89.47
94.44
100.0
33.33

97.1
100.0
97.62
100.0

60.0
81.08
100.0

91.3
100.0
100.0
85.71
88.89

100.0
61.11
100.0
100.0
100.0
84.0
80.65
100.0
87.5
88.89
100.0
100.0
49.25
96.72
85.71
88.89
96.43
92.16
88.24
100.0
100.0
53.42
88.37
97.73
98.88
94 .55
100.0
98.44
62.5
88.14
100.0

30
24
25
38
16
19
39
32
29
32
12
26
36
13
56
31
41
23
27

14
54
29
50
16
34
31
34
36
a4
22
a4
32
44
34
32
36
63
62
32
59
59
41
a4
46
42
23
40
50
47
38

157
212
188
186

81
137
226
197
170
177

96
122
168

65
194
121
214
150
146

92
179
149
173
138
185
167
200
199
216
114
200
217
259
185
160
163
256
237
178
226
247
222
222
305
246
190
250
187
252
195

0.6819 (is_rev_synth)
0.6908 (prettyprint_addr)
0.7317 (make_fd)

0.7375 (send_event)

0.7408 (slaac_ping_reply)

0.7424 (find_soa)

0.7976 (pxe_opts)

0.7994 (ra_init)

0.8156 (one_file)

0.8182 (allocate_sfd)

0.8216 (loop_send_probes)

0.8391 (filter_mac)

0.8492 (dhcp_construct_contexts)

0.8671 (read_write)

0.8803 (iface_check)

0.8999 (lease_update_dns)

0.9016 (log_guery)

0.9194 (pre_allocate_sfds)

0.9414 (create_wildcard

_listeners)

0.9492 (log_tags)

0.9578 (option_fFilter)

0.9788 (netlink_recv)

0.9795 (extract_request)
1.0127 (get_client_mac)

1.0699 (get_block)

1.1247 (cache_init)

1.1362 (option_read_dynfile)

1.1425 (log_write)

1.153 (reread_dhcp)

1.1757 (retry_send)

1.2462 (lease_set_hostname)
1.2735 (add_update_server)

1.3091 (parse_server)
1.3157 (complete_context)

1.3456 (extract_name)

1.4144 (iface_allowed_v6)
1.417 (search_servers)

1.4182 (indextoname)
1.4218 (Find_pseudoheader)
1.4299 (Ffind_config)

1.4581 (one_opt)

1.6029 (check_log_writer)
1.6265 (iface_allowed_v4)
1.6349 (make_sock)

1.6776 (add_hosts_entry)
1.802 (queue_script)
1.823 (local_bind)

1.8646 (Find_mac)

1.9848 (make_duid)

1.9873 (check_for_

Approved for public release; Distribution is unlimited

120

0x3a570
0x8c70
0x2c080
0x3b670
Oxee70
0x38c20
0x1e140
0x1dd30
0x33a20
Oxa2e0
0xel30
0x9c20
Ox1ca80
0x7480
OxacdO
0x35220
0x2dde0
0Ox1c5a0
0x1¥590
O0xa790
0x39090
0x1b3e0

0x216f0
Ox1f4f0
0x1c500
0x2b0al
0x8770

0x32f40
0x3b570
0x3b0d0
0x36310
0x1d2b0
0x7e90

0x35d10
0x38a80
0x2b7e0
0x3a860
0x398c0
0x31f10
0x1e750
0x2ed50
0x20e00
0x1f2b0
0x2c9d0
0x9290

0x334f0
0x22b80
0x1a930
0x31db0

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O OO0 00000 000000000 oo o oo

O OO0 0000000 O0OOoO 0o o oo

H
(&}
N
o]

100.
100.
100.
100.
100.
100.
100.
100.
100.

O OO0 O0Ooooo

78.57
81.58
77.78
77.78
89.47
90.74
96.55
67.61
98.85
78.87

76.4
100.0
75.38
57.38
94.12
81.52
54.29
100.0

78.0
69.12
62.07
52.42

48.76
79.25
53.17
84.21
30.95

70.0
70.09
86.08
42.03
78.65
71.96

61.4
87.93
84.42
83.75
70.83
79.63

75.38
63.06
74.73

75.4
60.87
57.79

91.1
58.21
77.21

100.0
80.25
76.92
86.41

88.1
87.78
95.59
88.46
96.26
90.32
93.55
98.08
94.12

50.0
100.0
95.92
98.61
99.07
92.06
89.13
77.42
78.67

100.0
93.51
78.95
84.81
90.91
86.21
86.55
90.24
88.46
97.85
83.15
98.48
91.54
90.57
92.65
93.65
94.12
15.27
94 .56
86.96
91.3
94.3
95.65
88.2
97.8
96.15
94.4

37
51
60
43
47
43
46
70
42
65
32
72
56
65
24
63
32
54
47
39
70
112

80
54
117
39
59
33
56
42
53
59
86
34
62
75
39
28
47
102
80
96
80
91
49
124
69
118
57

173
304
231
324
199

333
279
321
323
342

287

271

281
239

160

328
280
360
282

211

263
459

500
333
473
295
288

186

405
321
265
365
412

232

462
431
293
214
357
557
546
479
485
515

328

702
543

649
441

bogus_wi Idcard)

2.0717 (check_rrs)
2.0898 (cache_add_dhcp_entry)
2.1083 (complete_context6)
2.1227 (add_ednsO_config)
2.2109 (parse_hex)
2.3724 (add_to_ipset)
2.4171 (reload_servers)
2.6042 (check_servers)
2.6161 (log_context)

2.629 (in_arpa_name_2_addr)
2.6567 (surf)

2.71 (cache_insert)
2.7529 (tcp_interface)
2.8412 (cache_scan_free)
2.8664 (questions_crc)
2.9025 (add_prefixes)
3.0338 (log6_opts)
3.0505 (set_ipvepktinfo)
3.066 (delay_dhcp)

3.188 (do_doctor)

3.272 (is_name_synthetic)
3.3457 (enumerate_interfaces

-part.1)

3.4642 (lease_update_file)
3.4793 (make_icmp_sock)
3.515 (enumerate_interfaces)
3.6554 (check_tftp_listeners)
3.6983 (cache_reload)
3.9202 (dhcp_update_configs)
3.9515 (check_source)
4.2092 (add_pseudoheader)
4.4032 (periodic_slaac)
4.4705 (random_sock)
4.5101 (cache_find_by addr)
4.5146 (periodic_ra)
4.5785 (ipset_init)
4.5855 (my_syslog)
4.6332 (rrfilter)
5.0515 (inotify_dnsmasq_init)
5.397 (relay_upstream6)
5.8808 (check_dns_listeners)
5.8911 (add_address)
6.2549 (dhcp_read_ethers)
6.4184 (poll_resolv)
6.8037 (dhcp6_packet)
7.3379 (dump_cache)
7.4719 (option_string)
7.8494 (lease_init)

8.0985 (receive_query)
8.2468 (dhcp6_reply)

Approved for public release; Distribution is unlimited

121

0Ox1fe70
0x7b80

0x1e550
0x39e70
0x1d000
0x2e2a0
0x2c7e0
0x20b80
0x36030
0x35a00
0x4197

0x1a430
0x8330

0x16760
0x2d180
0x39b90
0x17300
0x2c3d0
0x34520
0x2f440
0x2a0e0
0x16FF0
0x36800
0x19cd0
Oxaf60

0x1b9c0
0x23bf0
0x4180

0x17670
0x28880
0x28040
0x18160
0x18d90
0x18890

0x27eal
0xc420
0xc2c0

100.0
100.0
32.76
100.0
100.0
100.0
100.0

5.29
100.0
100.0
32.36
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
83.92
12.17
60.96

1.88
100.0
100.
100.
100.

O OO O0OO0OO0O0OO0OO0OO0OOoOOoOOoOOoOOo

o O o

100.0
100.0
100.0

85.14
65.79
21.05
52.46
78.99
54.55
78.01
12.57
60.29
70.91
21.89
57.19
58.17
74.23
79.1
54.72
84.55
76.69
63.8
44 .51
58.31
66.24
58.75
61.99
77.42
48.34
54.76
19.9
24.73
6.04
55.77
60.69
61.34
58.63

98.54
74.05
28.39
100.0
97.28
95.88
95.22
11.72

89.8
99.12
51.46
95.73
96.03
82.67
100.0
97.96
87.21

94.1

104
142
137

45

90
138
113
140

96

80
250
190

96

89

30

80

92
159
220
317
177
128
417
279
167
107
483
371
230
173
106

98
111
170

641
611
702
221
557
664
663
662
463
456
1057
1019
574
410
251
418
455
950
1162
1939
1107
679
2429
1497
866
588
2804
1726
1150
1171
480
655
765
1112

8.7407 (dhcp_packet)
9.4551 (cache_find_by name)
9.4863 (set_dns_listeners)
9.5152 (inotify_check)
10.3167 (oin_multicast)
10.5669 (add_options)
11.4995 (dhcp6_init)
12.4845 (address_allocate)
13.0177 (slaac_add_addrs)
13.2661 (icmp6_packet)
14.0618 (do_options)
14.9909 (reply_query)
15.4437 (read_hostsfile)
15.4847 (read_file)
16.5987 (address6_allocate)
20.8015 (set_dynamic_inotify)
23.0008 (read_servers_file)
24.6418 (construct_worker)
25.6991 (send_ra_alias)
29.9317 (dhcp6_maybe_relay)
33.4803 (tftp_request)
34_.7735 (expand_filelist)
44_.2194 (answer_auth)
44 .3584 (forward_query.isra.2)
60.863 (extract_addresses)
61.8368 (iface_allowed)
82.9658 (dhcp_reply)
129.8539 (main)
132.8848 (read_opts)
152.7092 (create_helper)
222.2085 (iface_enumerate)
268.803 (tcp_request)
278.8898 (send_from)
287.7557 (process_reply
.isra.0.constprop.3)
300.0993 (netlink_init)
761.5563 (answer_request)
777.2109 (setup_reply)

Instruction count:
Unknown instrs
Function count
Function coverage:

544
85.53%

Esp precision
Reads precision :

90.54%
66.27%

Approved for public release; Distribution is unlimited

122

Writes precision: 84 _.65%

Calls : 4605
Analysis time : 4583.36 secs
Iterations : 8

4.2.1.3 comparison with source code

Source files with 0 functions compiled:

LOC name

98 src/conntrack.c
2277 src/dnssec.c
857 src/dbus.c

145 src/tables.c
151 src/blockdata.c
450 src/bpf.c
3978

Number of functions in dnsmasq

CH (raw) CH (lib) CH (net) IDA (raw) IDA (lib) IDA (net)

32-bit stripped 519 142 377 682 286 396
32-bit unstripped 544 142 402 691 284 407
64-bit stripped 826 403 423

raw: raw function count
lib: number of dynamically loaded functions
net: number of application functions

The following functions exist in the C source code, but are not present
in the (unstripped) executable under the same name. Some of these have
apparently been replaced with an optimized version, as indicated.
constprop: constant propagation
isra : interprocedural scalar replacement of aggregates
part : partial evalution?
: add_attr (src/ipset)
2: add_dns_client (src/edns0)
3: add_mac (src/edns0)
: add_source_addr (src/edns0)
5: async_event (src/dnsmasq)
6: buff_alloc (src/helper) -> buff_alloc.part.1

Approved for public release; Distribution is unlimited

123

7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

build_ia (src/rfc3315) -> build_ia.isra.4
cache_link (src/cache)

cache_unlink (src/cache)

calc_interval (src/radv)

calc_lifetime (src/radv)

calc_prio (src/radv)

calc_time (src/rfc2131) -> calc_time.isra.l
calculate_times (src/rfc3315) -> calculate_times.isra.0
char64 (src/edns0)

check ia (src/rfc3315) -> check_ia.isra.2
check_tftp_fileperm (src/tftp)

crec_ttl (src/rfcl035) -> crec_ttl.isra.0

dhcp6_no_relay (src/rfc3315)

dhcp_skip_opts (src/rfc2131)

do_usage (src/option)

encoder (src/edns0)

end_ia (src/rfc3315) -> end_ila.part.7

fatal_event (src/dnsmasq) -> fatal_event.isra.0
find_exclude (src/auth)

find_overload (src/rfc2131)

find_subnet (src/auth)

forward_query (src/forward) -> forward_query.isra.2
free_entry (src/log)

get_addrp (src/edns0)

get_id (src/forward)

hide_meta (src/option)

in_list (src/rfc2131) -> in_list.part.3
is_expired (src/cache) -> is_expired.isra.2._part.3
is_outdated_cname_pointer (src/cache) -> is_outdated cname_pointer.part.1l
lookup_frec (src/forward)

lookup_frec_by_sender (src/forward)

loop_make_probe (src/loop)

mark_context_used (src/rfc3315) -> mark_context_used.isra.3
my_readlink (src/inotify)

new_add_to_ipset (src/ipset)

new_timeout (src/radv) -> new_timeout.isra.l
next_uid (src/cache)

old_add_to_ipset (src/ipset)

opt6_Ffind (src/rfc3315) -> opt6_find.part.1
opt6_next (src/rfc3315)

opt6_uint (src/rfc3315)

option_addr (src/rfc2131)

option_find2 (src/rfc2131)

option_uint (src/rfc2131)

parse_dhcp_opt (src/option)

private_net6 (src/rfcl035)

process_reply (src/forward) -> process_reply.isra.0.constprop.3
read_leases (src/lease)

relay_reply4 (src/dhcp)

relay_upstream4 (src/dhcp)

search_domain (src/domain)

Approved for public release; Distribution is unlimited 124

58: send_ra (src/radv)

59: server_id (src/rfc2131)

60: set_prefix (src/option)

61: split (src/option)

62: unhide_meta (src/option)

63: unhide_metas (src/option)

64: update_leases (src/rfc3315) -> unhide_metas.part.0

The following functions exist in the (unstripped) executable, but are not
present in the C source code under that name. Some of these are optimized
functions that replace the original; some of these are optimized functions
that are in addition to the original function; some of these are internal
compiler-generated functions

: _ _do_global_dtors_aux

- _ _libc_csu_fini

- __libc_csu_init

: _ stack_chk_fail_local

o umoddi3

: _ x86.get_pc_thunk.ax

: _ x86.get_pc_thunk.bp

: _ x86.get_pc_thunk.bx

: _ x86.get_pc_thunk.cx
10: _ x86.get_pc_thunk.di
11: _ x86.get_pc_thunk.dx
12: _ x86.get_pc_thunk.si

13: _fini

14: _init

15: _start

16: add_extradata_opt.part.4

17: buff_alloc.part.1 (replaces original)
18: build_ia.isra.4 (replaces original)

19: cache_get_cname_target.part.5

20: calc_time.isra.l (replaces original)

21: calculate_times.isra.0 (replaces original)
22: check_1a.isra.2 (replaces original)

23: crec_ttl.isra.0 (replaces original)

24: deregister_tm_clones

25: end_ia.part.7 (replaces original)

26: enumerate_interfaces.part.1
27: extended_hwaddr.part.6

28: fatal_event.isra.0 (replaces original)
29: forward_query.isra.2 (replaces original)
30: frame_dummy

31: in_list.part.3 (replaces original)
32: is_expired.isra.2.part.3 (replaces original)

33: is_outdated_cname_pointer.part.1 (replaces original)
34: mark_context_used.isra.3 (replaces original)
35: match_netid.part.1l

Approved for public release; Distribution is unlimited

125

36:
37:
38:
39:
40:
41:
42:
43:
44:

new_timeout.isra.l
opt6_find.part.1l
process_reply.isra.0.constprop.3
ra_start_unsolicited.part.4
record_source.part.6
register_tm_clones
sanitise.part.4
set_option_bool.part.5
unhide_metas.part.0

(replaces original)
(replaces original)
(replaces original)

(replaces original)

4.2.2 Analysis Results: mips dnsmasq

function

esp reads writes unrc blocks

instrs time

0x431020 100.0 0
0x402790 100.0 0
0x402c10 100.0 100.0 100.0
0x402a80 100.0 0

0 0

0x402190 100. 100. 100.0
0x402b20 100.0 100.0 100.0
0x402eb0 100.0 100.0 100.0
0x402740 100.0 100.0 100.0
0x402bc0 100.0 100.0 100.0
0x402d60 100.0 100.0 100.0
0x402860 100.0 100.0 100.0
0x402ba0 100.0 100.0 100.0
0x402700 100.0 100.0 100.0
0x402c00 100.0 100.0 100.0
0x402680 100.0 100.0 100.0
0x4028b0 100.0 100.0 100.0
0x402db0 100.0 100.0 100.0
0x402e70 100.0 100.0 100.0
0x402760 100.0 100.0 100.0
0x402910 100.0 100.0 100.0
0x402a40 100.0 100.0 100.0
0x402b60 100.0 100.0 100.0
0x402f10 100.0 100.0 100.0
0x4028c0 100.0 100.0 100.0
0x402ac0 100.0 100.0 100.0
0x4027b0 100.0 100.0 100.0
0x4027f0 100.0 100.0 100.0
0x402910 100.0 100.0 100.0
0x402cc0 100.0 100.0 100.0
0x402e80 100.0 100.0 100.0

0x4029d0 100.
0x402b70 100.
0x402ce0 100.
0x4026¢0 100.

100.0 100.0
100.0 100.0
100.0 100.0
100.0 100.0

o O O o

P R RPRRPRRPRPRRPRPRRPRRPRRPRPRPRRPRRPRPRPRPRPRRRRERERSPR

e

A ADMIAMDMADAMDAEDMAEDMMAEDMAMDIMMDMADDDAEDMMMADMDDDDLDN

A DA DD

0.0199 (__libc_csu_fini)

0.0226 (chdir)

0.0226 (execl)

0.0228 (strchr)

0.0228 (dbus_message
_new_method_return)

0.023 (strcasecmp)

0.023 (inet_addr)

0.0231 (inet_ntoa)

0.0231 (fileno)

0.0231 (fclose)

0.0232 (geteuid)

0.0232 (__errno_location)

0.0233 (memcpy)

0.0233 (__vsnprintf_chk)

0.0234 (dup)

0.0234 (textdomain)

0.0234 (fopen64)

0.0234 (sigaction)

0.0235 (ftruncate64)

0.0235 (dbus_watch_get_flags)

0.0235 (kilbD)

0.0235 (ungetc)

0.0235 (pclose)

0.0236 (setgroups)

0.0236 (fsync)

0.0237 (dbus_connection_ref)

0.0237 (recvfrom)

0.0237 (__fxstat64)

0.0237 (popen)

0.0237 (dbus_message_append
_args)

0.0238 (malloc)

0.0238 (writev)

0.0238 (setlocale)

0.0239 (memmove)

Approved for public release; Distribution is unlimited

126

0x4028a0
0x4028d0
0x402c20
0x402c50
0x4027a0

0x402950
0x402be0
0x402fa0
0x402c70
0x4025e0

0x402870

0x402ec0

0x402690
0x402880
0x402b50
0x4026T0
0x402830
0x402e20

0x402F00
0x402600
0x402770
0x4029b0
0x402a10
0x402d70
0x402e60
0x4025b0
0x402650
0x402850
0x402af0

0x403000
0x402750
0x402780
0x402ae0
0x402da0

0x402ef0
0x402630
0x402810
0x402920
0x402a30
0x402b90
0x402f50
0x402890
0x402de0
0x402fe0

100.
100.
100.
100.
100.

o O O oo

100.
100.
100.
100.
100.

o O O o o

100.0

100.0

100.
100.
100.
100.
100.
100.

o O O O o o

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O O O O OO0 OO0 o OoOOo

100.
100.
100.
100.
100.

o O O oo

100.
100.
100.
100.
100.

o O O o o

100.0

100.0

100.
100.
100.
100.0
100.0
100.0

o O O

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0

100.0

100.0

100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

PR R R PR P R R RRPRRRRRPRR S PR R R R PR R R R

P PR RPRRRRRPRR

A DA DDA D

A DA DA D A DA DDA DdMMMDMDdMDADdDLDN A A DDA DMDN A DA DA D

A DA DA DdDDdMDdMDdMDdMDID

0.0239
0.0239
0.0239
0.0239

0.024

(nfct_new)
(getsockopt)
(pipe)
(_printf_chk)
(dbus_message_iter

_get_arg_type)

0.024
0.024
0.024
0.0241
0.0242

(__vsyslog_chk)
(prctl)
(opendir)
(_longjmp_chk)
(dbus_message

_get_member)

0.0242

(dbus_message

_iter_append_basic)

0.0242

(nfct_callback

_register)

.0243
.0243
.0243
.0244
.0244
.0244

O O O O o o

(if_indextoname)
(unlink)
(memset)
(inet_pton)
(getuid)
(dbus_message_is

_method_call)

.0244
.0245
.0245
.0245
.0246
.0246
.0246
.0247
.0247
.0247
.0247

O O O O OO0 0O o oo

(umask)

(strcmp)

(sleep)
(nfct_set_attr_u32)
(__memcpy_chk)
(recvmsg)
(__fprintf_chk)
(getpwnam)
(read)

(wait)
(dbus_connection

_dispatch)

.0247
.0248
.0248
.0248
.0248

O O O o o

(__sprintf_chk)
(memcmp)

(select)

(fchown)
(dbus_message_iter

_next)

.0248
.0249
.0249
.0249
.0249
.0249
.0249
0.025
0.025
0.025

O O O O O O o

(__xstat64)
(dbus_bus_get)
(sysconf)
(capget)

(exit)
(putchar)
(recv)
(nfct_open)
(getpeername)
(__ctype b_loc)

Approved for public release; Distribution is unlimited

127

0x402a20
0x402c60
0x402ee0
0x4025a0
0x402710
0x402a60
0x402b10
0x402bf0
0x402df0
0x402ea0

0x402640

0x402aa0
0x402ab0
0x402b00
0x402bd0
0x402160
0x402660
0x402840
0x402990
0x402a00
0x402d80
0x402dc0

0x402620

0x402670
0x402f40
0x402120
0x430998
0x402930
0x402c80
0x402c90
0x402d10
0x402180
0x4027e0
0x402b40
0x402e30
0x402800
0x4028f0
0x402ca0
0x4028e0
0x402a50

0x402bb0
0x402e40
0x402fb0
0x4025d0
0x4027c0
0x402a90

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

100.

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

100.

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

100.
100.
100.
100.
100.
100.

O O O OO O0OO0OOo0OOoO oo o O OO O OO0 0O OoO oo

o

O O O O 0O O0OO0OO0OO0OO0OO0OO0OOo0OOoOOoOOoOOo

o O O O o o

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0

P P RRPRRPRRRPRRER = P R R R R RRRRPR

[EN

P R R RRPRRPRRPRRPRPRRPRRRERRRPRR

PR R R R R

A A DA EN A DA DdMDAMDMDAMDMDDIAD

N

A A DMDAEDdMAMDdMADMMDIAAEDMMDAEDMDNDDDLDN

A DA DM DMDMDN

0.0251
0.0251
0.0251
0.0252
0.0252
0.0252
0.0252
0.0252
0.0252
0.0252

(nfct_destroy)
(sendto)
(if_nametoindex)
(setsockopt)
(nfct_close)
(setsid)

(open64)

(difftime)
(dbus_message_unref)
(dbus_message

_iter_init)

0.0253

(dbus_message

_iter_get _basic)

0.0253
0.0253
0.0253
0.0253
0.0253
0.0254
0.0254
0.0254
0.0254
0.0254
0.0254

(fscanf)

(strlen)

(write)
(dbus_watch_handle)
(close)
(nfct_set_attr_ul6)
(dbus_connection_send)
(nfct_get_attr_u32)
(strerror)
(getsockname)
(dbus_connection

_set_watch_functions)

0.0255

(dbus_connection_set

_exit_on_disconnect)

0.0255
0.0255
0.0256
0.0256
0.0257
0.0257
0.0257
0.0257
0.0257
0.0258
0.0258
0.0258
0.0259
0.0259
0.0259

0.026

0.026

(fflush)
(getgrnam)
(strtol)

(waitpid)
(strtok)
(nfct_query)
(fputc)
(nfct_set_attr_u8)
(dcgettext)
(bind)
(readdir64)
(rewind)
(accept)

(fork)

(ioctl)
(dbus_watch_get

_enabled)

0.026
0.026
0.026
0.0261
0.0261
0.0261

(strncpy)
(nanosleep)
(getgrgid)
(__snprintf_chk)
(ctime)
(nfct_set_attr)

Approved for public release; Distribution is unlimited

128

0x402dd0

0x402e10
0x402940
0x402970
0x402730
0x4029e0
0x4026a0
0x4029¢c0
0x402d40
0x402e90
0x402F30
0x402820
0x402c40

0x403010
0x402cT0
0x402900

0x402fc0
0x402980
0x4027d0
0x402F10
0x402d30
0x402e00
0x402e50
0x4026€0
0x402a70
0x402960
0x402b80

0x402cd0
0x402d20
0x402d00
0x402610
0x4026b0
0x402558
0x402720
0x402d50
0x4026d0
0x402d90
0x402f70
0x40d744
0x402c30
0x402ed0
0x402cb0
0x4025c0
0x402fd0
0x4025f0
0x402b30
0x402ad0

100.0

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O O O OO O0OO0OO0OOoOOoOOoOOo

100.
100.
100.

o O o

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O O O OO 000 o oo

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0

100.
100.
100.
100.
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

o O O o

100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

P R RRPRRRPRRRRRERR

[N

[EN

P R RRPRRRRRPRRR

P P RRPRRPRRPRRPRRPRNRRPRRPRRRPRRRERRRPRER

A A DMDMDAMDMMDADMDADdMDMDN

A DA D

A ADMMIADMMDADdDMDDADdDN

A DA DdDdMDdMDdMDdMODMIAEAMMOOEDSEDLDN™LDN

0.0261

(dbus_connection

_register_object _path)

.0261
.0263
.0263
.0264
.0264
.0265
.0265
.0265
-0265
-0265
.0266
-0266

O O O O O0OO0OO0OO0OO0oOOoOOoOOo

(capset)
(strcat)
(Iseek64)
(time)
(setgid)
(_exit)
(gethostname)
(openlog)
(bindtextdomain)
(connect)
(_10_geto)
(dbus_message

_iter_init_append)

o

.0266
.0267
0.0268

o

(strncat)
(listen)
(dbus_message

_new_signal)

0.0268
0.0269
0.027
0.027
.0272
.0272
.0272
.0274
.0275
.0276
.0276

O O O O O O o

(dbus_bus_request_name)
(getpid)

(alarm)

(shutdown)
(dbus_error_is_set)
(inet_ntop)
(socket)

(free)
(getopt_long)
(strcpy)
(dbus_watch_get

unix*Fd)

.0277
.0277
.0278
.0279
.0279
0.028
0.028
0.028
.0281
.0282
.0282
.0285
.0287
.0287
.0292
.0293
.0294
.0301
.0335
.0341

O O O o o

O OO O O0OO0OO0OO0OO0oOOoO oo

(sendmsg)
(setuid)
(strrchr)
(__vfprintf_chk)
(dbus_error_init)

(fgets)
(idna_to_ascii_Iz)
(_setjmp)
(sprintf)
(closedir)
(dnsmasq_time)
(__strcpy_chk)
(strncmp)
(sigemptyset)
(dup2)
(__ctype_tolower_loc)
(strstr)

(fentld)

(setenv)

Approved for public release; Distribution is unlimited

129

0x4262c8
0x431180
0x41F900
0x41d5d4
0x40d6d0
0x402548
0x40d74c
0x42ed18
0x40e05c
0x405ebc
Ox42eee4
0x42eel0
0x40e290
0x417c48
0x40e078
0x42e3f4
0x40d4b8
0x41f2c4
Ox42eea8
0x4062dc
0x40d818
0x40d864
0x4174e0
0x41e488
0x41c3f0
0x431140
0x42ee60
0x42ef18
0x40d5b4
0x42dccc
0x405dcc
0x402508
0x40e4a4
0x4310e0
0x425118
0x41d678
0x4309hb8
0x42edb8
0x425190
0x41d120
0x4068d4
0x41b43c
0x406274
0x40e2d8
Ox41alc8
0x40ele0
0x419994
Ox41leba4d
0x42640c
0x415080
0x42ece0

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

100
100
100
100
100
100
100

100.
100.
100.
100.
100.
100.

40.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O O OO0 0000000 Oo0OO0OOoOOoOOoOOo

.0

O OO0 000000000000 O0O0O0O0O0OOooo oo

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
0.0
100.0
100.0
33.33
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
80.0
100.0
100.0
100.0
100.0
100.0
25.0
83.33
0.0
100.0
100.0
100.0
100.0
83.33
100.0
100.0
100.0
100.0

O OO O OO0 oo oo

o

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
0.0
100.0
0.0
100.0
100.0
100.0
100.0
100.0
100.0
0.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
75.0
100.0
100.0
0.0

P woowounonYoudwuwomoadPhraP adgwdwnw®P®ANOONOROODNOOOWWDAOWEREN®R P PP

0.0355
0.0359
0.036
0.0362 (lease4_allocate)
0.037 (sa_len)
0.0379
0.0384 (is_same_net)
0.0397 (save_counter)
0.0437 (bump_maxfd)
0.0514
0.0552 (put_opt6_char)
0.0577 (put_opt6)
0.0603 (set_prefix)
0.0609 (Fix_Ffd)
0.0617 (retry_send)
0.0626 (Join_multicast)
0.065 (safe_malloc)
0.0666
0.0671 (put_opt6_short)
0.0672
0.07 (addré6part)
0.0715 (setaddr6part)
0.0725 (indextoname)
0.0725
0.0728
0.0728 (__libc_start_main)
0.0742 (put_opt6_long)
0.0761 (put_opt_string)
0.0763 (whine_malloc)
0.0763
0.082
0.0836 (_init)
0.0836
0.0843
0.0845 (my_setenv)
0.0854 (lease_set_expires)
0.0863
0.088 (new_opt6)
0.0887
0.0929 (lease_find_by addr)
0.096
0.0967
0.0978 (is_expired)
0.0984 (is_tag_prefix)
0.11
0.1143 (rand_init)
0.1167
0.1168
0.1208
0.1214
0.1219 (end_optb6)

Approved for public release; Distribution is unlimited

130

0x41d600
0x42e73c
0x41fdf0
0x42e5fc
Ox4lecfc
0x42e564
0x4286¢0
0x4263b0
0x41c458
0x40e74c
0x40de60
0x406224

0x4084e0
Ox41a8fc
0x426788
0x40d75c
0x41cc88
0x40deac
0x428618
0x40d6T0
0x428568
0x42e694
0x405ef0
0x40e340
0x4061a8
0x40a7f0
0x431028
0x407a84
0x419b28
0x40d354
0x408480
0x41c4f18
0x40e3d4
0x405e20
0x41f22c
0x415000
0x409568
Ox4leda4
0x42ed34
0x4267f4
0x41d28c
0x408c04
0x41e850
0x41850c
0x40d520
0x427b24
0x4065c8
0x425250
0x40d294
0x41b980

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O O O OO 0000 o oo

O O O O 0O 0000000000000 O0D0D0D0D0D0O0OO0O0DO0DO0OO0OO0OO0OO0OO0OOoOOoOOoOOo

100.0
0.0
100.0
50.0
100.0
50.0
100.0
100.0
100.0
100.0
0.0
100.0

77.78
70.0
71.43
88.24
100.0
100.0
100.0
0.0
80.0
66.67
60.0
66.67
100.0
100.0
75.0
100.0
100.0
100.0
40.0
100.0
66.67
88.89
81.82
100.0
100.0
100.0
100.0
100.0
84.62
100.0
33.33
100.0
100.0
100.0
69.23
91.67
87.5
60.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0

60.0
100.0
100.0
100.0
100.0
100.0

50.0
100.0
100.0

75.0
100.0
100.0
100.0
100.0
88.89
100.0
100.0
100.0

75.0
100.0
71.43
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O O O OO0 O0O oo oo

o
a1
~
[ERy

100.0
100.0
100.0

|_\
W

o Nw oo oo oo

N © ©® 0 oo~ O NG

[=Y
B N oW w o e

o ©

12

P W oy 0o O,

10

18

11

14

14
13

30
33
23
38
46
38
46
27
40
17
19
20

43
28
27
47
32
a4
42
25
34
42
33
37
33
28
44
45
55
53
24
31
39
39
40
32
23
45
33
50
50
31
50
57
83
27
52
45
48
39

0.1221 (lease6_allocate)
0.1243
0.128
0.1296
0.1302 (option_put_string)
0.1308
0.1322
0.1328
0.1376 (lease_allocate)
0.1378
0.139 (memcmp_masked)
0.1442 (is_outdated
__chame_pointer)
0.1445 (querystr)
0.1478
0.1516
0.154 (is_same_net6)
0.1541
0.1544 (expand_buf)
0.1561
0.1565 (hostname_isequal)
0.1599
0.1631
0.1733
0.1759 (split_chr)
0.177
0.1783 (add_mac)
0.1785 (__libc_csu_init)
0.1793
0.1815
0.182 (canonicalise)
0.1826 (record_source)
0.1836
0.1839 (split)
0.1851
0.1878
0.1935
0.196
0.2002 (pxe_misc)
0.2119 (expand)
0.2122
0.2166 (lease6_find_by addr)
0.218
0.2274
0.2283
0.2288 (safe_pipe)
0.2322
0.234
0.2371 (grab_extradata)
0.2409 (legal_hostname)
0.2438

Approved for public release; Distribution is unlimited 131

0x427b90
0x408d34
0x40df5c
0x429578
0x41b324
0x417ca4
0x40e534
0x40e5dc
0x4262d8
0x40d628
0x419c04
0x418304
0x4219a0
0x40cd90
0x408c80
0x417430
0x42d9c8
0x429038
Ox41fe4dc
0x40692c
0x419cdc
0x41919c
0x40b0d0
0x40d9c8
0x41d160
0x41e910
0x428bc8
Ox41facc
0x417€d8
Ox40al4c
0Ox40e4ec
0x40e790
0x429850
0x423bfc
0x40d894
0x41e6T0
0x403020
0x4268bc
0x424bf4
0x407b38
Ox42e44c
0x42de74
0x408b00
0x41e9c8
0Ox41c2e0
Ox41lec04
0x42d6ec
0x429940
0x407240
0x405f74
0x429428

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

O OO OO0 000000000 OoOOoOOoo

o

100.0
100.0
93.33
43.75
38.89
100.0
81.82
100.0
100.0
100.0
100.0
50.0
90.91
88.46
100.0
81.25
50.0
85.71
77.78
92.31
100.0
73.33
55.56
100.0
70.59
57.14
100.0
82.35
100.0
100.0
83.33
80.0
100.0
100.0
100.0
95.65
91.67
100.0
100.0
37.5
66.67
100.0
0.0
59.09
100.0
78.57
100.0
50.0
80.0
95.24
73.68

100.0
100.0
100.0
71.43
71.43
100.0

75.0
100.0
100.0
100.0
100.0
100.0

87.5

90.0
100.0
100.0

75.0
100.0
100.0
83.33
100.0
100.0
100.0
100.0

75.0
83.33
100.0
33.33
100.0
100.0
85.71
92.86
100.0
100.0
66.67
91.67
91.67
100.0
100.0
33.33
100.0
100.0
100.0
22.22
100.0
83.33
100.0
100.0
100.0
100.0
100.0

13

17
17

12

11
12
10

17

11

11
11
14
19
11
15
13
19
10
10
17
11

20
25

12
10
19
22

11
13
13
18
33
11
13
11
10
14
11
15

67
34
64
68
70
55
a4
43
51
42
54
24
40
83
45
43
32
51
47
58
100
54
59
114
75
46
80
67
64
60
88
106
57
83
77
89
97
75
98
38
70
72
65
123
68
62
79
43
60
70
84

0.2461
0.2634
0.2634
0.2662
0.2738
0.2742
0.2799
0.2805
0.285
0.286
0.2895
0.2913
0.311
0.3148
0.3175
0.3239
0.3249
0.326
0.3281
0.3351
0.3426
0.3559
0.3664
0.368
0.3709
0.3715
0.3779
0.3792
0.3802
0.3816
0.393
0.4037
0.4054
0.4197
0.4208
0.4254
0.4432
0.4437
0.4494
0.4555
0.4588
0.4615
0.4669
0.4715
0.4884
0.4897
0.49
0.4978
0.4992
0.5068
0.5073

(print_mac)

(sockaddr_isequal)

(check_name)

(find_boot)

(extract_request)
(prettyprint_time)
(lease6_find)

(create_listeners)

(prettyprint_addr)

(cache_unhash_dhcp)

(free_space)

(eatspace)

Approved for public release; Distribution is unlimited

132

0x41dc30
0x406690
0x42d8b8
0x40e3dc
0x40e678
0x426190
0x42d308
0x41b208
Ox41cfdc
0x41F324
0x41d354
0x407178
Ox41ceal
0x42d778
0x4180d0
0x41d4c0
0x413bf4
0x40blbc
0x41f808
0x424fcc
0x424e94
0x424d7c
0x42fa40
0x41a96¢
0x424334
0x40b380
0x423ac0
0x418204
0x41583c
0x41fbdO
0x416220
0x427c94
0x423910
0x40858c
0x429688
0x409170
0x428224
0x417d80
0x4287bc
0x41F920
0x418364
0x40608c
0x406cc8
0x415990
Ox4lab7c
0x40b504
0x42df94
0x42da48
0x417548
0x419f6¢
0x41e4b8

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O OO 0O 0O 0000000000000 0D0DO0D0D0D00D0D0D0D0D0D0D0D0D0D0D0D0D00D0DO0DO0DO0ODO0OO0OO0OOOOoOOoOOo

55.0

90.0
69.57
72.73
84.62
100.0
95.83
53.85
60.87
72.22
86.67

37.5
86.36
100.0
100.0
66.67
83.33
100.0
89.47
100.0
66.67

60.0
85.71
100.0
80.65
70.59
96.43

68.0
86.36
68.57
74.19
100.0
100.0
91.67
68.42
95.24
81.82
100.0
100.0
100.0
100.0
95.35
78.38
100.0

62.5

72.5
53.33
26.32
63.16

72.5
66.67

100.0
88.89
100.0

75.0

80.0
100.0
93.75
100.0
100.0
100.0
100.0
100.0
93.75
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

75.0
100.0
100.0
100.0
100.0
100.0
91.67

60.0
68.75
84.62
100.0
100.0
100.0
100.0
100.0
80.77
100.0
100.0
100.0
100.0
88.24
94.44
100.0
88.89
100.0
83.33
57.14

75.0
71.43
66.67

13
21
19
15
16

12
24

19

11
15

29
14
28
21
17
12
19
16
20
32
18
16
15
25
34
24
17
41
28
15
37
28
14
15
18
22
27
13
24
17
21
43
36
26
30

58
88
68
52
72
78
67
71
81
61
91
50
79
80
77
69
128
113
114
115
82
70
140
132
93
105
79
64
85
138
135
113
90
143
114
121
211
150
119
111
108
141
146
125
131
132
102
165
127
153
142

0.5138
0.517
0.5187
0.5235
0.5241
0.5274
0.5402
0.5438
0.5588
0.567
0.5754
0.5763
0.5924

0.595
0.6282
0.6382
0.6393
0.6457
0.6514
0.6826
0.6908
0.693
0.7439
0.7476
0.7494
0.7545
0.7779
0.7848
0.7882
0.789
0.9082
0.9381
0.9664
0.985
0.9857
1.0
1.0057
1.0128
1.0384
1.0432
1.0645
1.0777
1.0911
1.0926
1.1344
1.1604
1.1746
1.2134
1.321
1.3221
1.3479

(canonicalise_opt)

(lease_find_max_addr6)

(lease_prune)
(recv_dhcp_packet)

(log_query)

(make_sock)

(gettok)

(option_filter)
(iface_check)

Approved for public release; Distribution is unlimited

133

0x430a18
0x4185f0
Ox4la6ac
0x40d420
0x419280
0x42d420
0x4095c4
0x41cd08
0x40db80
0x418804
0x4285cc
0x42ff64
Ox41balc
0x426480
0x40cedc
0x406308
0x406ef8
0x427e58
0x425eec
0x423a70
0x4087b8
0x4067d8
0x4154F0
0x40a23c
0x42¥fc70
0x40e0c8
Ox41ee58
0x428d08
0x408dbc
0x430658
0x419e7c
0x41f418
0x41773c
0x4299e4
0x4150d4
0x418dcc
0x41cc60
0x409d0c
0x41d8c0
0x406a0c
0x416bc4
0x417074
0x42e7c0
0x41e308
0x42f168
0x407bcO
0x42dd10
0x41dd18
0x413df4
0x41a250
0x427718

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O O O 0O 0000000000000 0D0D0D0D0D0D000D0D0D0D0D0D00D0D0D0DO0D0DO0DO0O0DO0DO0ODO0OO0OO0OO0OOOoOOoOOo

50.0

97.
56.

14
25

25.0
60.0
89.8

65.
48.
85.
88.

71
48
71
89

80.7

88.
58.
98.
88.
46.
69.
95.

89
82
15
24
15
77
24

100.0

95.

65

100.0

93.
96.

55
77

100.0

81.

63

100.0

72.
70.
66.
64.

13
83
67
91

75.0
80.0

88.
97.
79.

33
33
69

93.1

61.

97

100.0

87.
72.

04
92

72.5

76.
58.
75.
72.
83.
85.
99.
63.
90.

12
62
29
37
33
92
08
16
57

80.0

100.0
100.0
71.43
0.0

60.0
92.31
72.73
100.0

80.0
92.31
80.77
88.89
100.0
81.48
91.89

68.0
65.52
84.85
100.0
86.11
100.0

70.0

92.0
100.0
100.0
100.0
51.52
96.97
67.86
88.89
100.0
72.73
95.24
86.27
100.0
68.06
93.75
100.0
89.47
62.86
100.0
96.97
73.68
91.67
95.92

60.0
88.37
86.96
77.42
83.72
65.71

81
23
25

18

33
31
46
34
38
16
42
14
47
38
18
46
44
44
29
45
39
33
39
34
47
17
40
34
59
35
63
52
46
56
68
32
53
25
52
43
66
52
84
46
51
50
56
57
40
38
36

390
135
150
a4

166
179
229
104
188
128

230

72
186
194

238
176
170
243
171
263
213
153
213
165
189

74

245
204
241
210

264

258
243
339
267

244
200
174
226
185

304
241
337
225
311

237
332
382
221
252

265

1.
1.
1.

3531
3575
3894

1.4702 (do_r¥cl1035_name)
1.4857

1.5053 ((Join_multicast_worker)
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.

6033
6692
6884
7612
7763
7978
8072
8858
9943
0513
0577
1149
1257

2.173

2.
2.
2.

2089
2663
3416

2.358
2.429

2.
2.
2.
2.
2.
2.

4344
4384
5183
6066
8745
9296

3.012

3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
-9259
-0629

hbbh}hw

1392
1529
2115
3027
4978
5168
5553
6349
6795
7236
7314

2421

-3949
.4126
.4252
.5037
4.

8936

(parse_hex)

(surf)

(my_syslog)
(queue_script)

(read_write)
(pxe_opts)

(lease_set_hostname)

(send_ra)
(cache_add_dhcp_entry)

Approved for public release; Distribution is unlimited

134

0x4189fc 100.0 73.08
0x41d6¢c4 100.0 80.0
0x414160 100.0 44 .26
0x41c574 100.0 65.49
0x409fc4 100.0 86.67
0x41abT0 100.0 83.87
0x419508 100.0 59.46
0x429b64 100.0 60.0
0x407744 100.0 78.99
0x415b84 100.0 84.96
0x407f5c 100.0 76.47
0x42e124 100.0 50.0
0x41643c 100.0 77.07
0x429104 100.0 70.45
0x425304 100.0 75.58
0x409950 100.0 70.0
0x426920 100.0 82.86
0x414458 100.0 62.61
Ox41bcfc 100.0 60.0
0x429f6c 100.0 73.62
0x40a860 100.0 78.18
0x407330 100.0 100.0
0x4305fc 99.75 47.83
0x417bec 99.75 51.43

0x403040 100.
0x41b480 100.
0x41ff08 100.
0x423d48 100.
0x404028 100.
0x413650 100.
0x40b714 100.

O OO0 OO0 o0 O
N
~
o)
©

44
64
48
92
24
76
79
36
89
81
68
35
96
33
173
44
176
132
87
193
110
32
105
100
283

414

4.9084
5.6152 (lease_set_hwaddr)
6.4359

6.7027

6.757 (questions_crc)
7.3192

8.0185 (check_dns_listeners)

8.0852

9.62

9.883
10.0952 (dump_cache)
10.602
13.9192 (forward_query)
28.8268
41.875 (create_helper)
46.0342
47.9203
52.7695 (read_opts)
58.1208 (dhcp_read_ethers)
58.5708
66.2842
85.2826 (read_hostsfile)
102.1399
113.5804

118.8713 (do_options)
129.6706

139.5511
345.7794 (iface_enumerate)
411.8559 (main)
1758.0871

9148.6134

Instruction count: 47908
Unknown instrs : 0
Function count : 456
Function coverage: 77.25%
Analysis Summary

Esp precision 99.97%
Reads precision : 78.9%
Writes precision: 89.08%
Calls : 2446
Analysis time : 13421.38 secs
Iterations : 11

Approved for public release; Distribution is unlimited

135

4.2.3 LLVM Infrastructure

Example output from chx_read_bitcode.py ptr_add_one —dump:

Magic: 186106078
Version: 0
Offset: 20

Size: 1816

cpu type: 7
header data: 3737142082

1 Enter block 13 (IDENTIFICATION_BLOCK) with blockcode size 5 and wordcount 7

IDENTIFICATION: APPLE 5 =44.4.7=.6_4
EPOCH: O
End block 13

10 Enter block 8 (MODULE_BLOCK) with blockcode size 3 and wordcount 442
1: [1]

12 Enter block O (BLOCKINFO) with blockcode size 2 and wordcount 19

None
None
None

End block 0O

34 Enter block 10 (PARAMATTR_GROUP_BLOCK) with blockcode size 3 and wordcount 166

ENTRY:
ENTRY:0,correctly-rounded-divide-sqrt-fp-math,false,disable-tail-calls,
false, less-precise-fpmad, false,no-frame-pointer-elim, true,
no-frame-pointer-elim-non-leaf,no-infs-fp-math, false,no-jump-tables, false,
no-nans-fp-math, false,no-signed-zeros-fp-math, false,no-trapping-math, false,
stack-protector-buffer-size, 8, target-cpu,penryn,target-features,+cx16,+fxsr,
+mmx, +sse,+sse2,+sse3,+ssed .1, +ssse3, +x87 ,unsafe-fp-math, false,use-soft-float,
false
ENTRY:

End block 10

202 Enter block 9 (PARAMATTR_BLOCK) with blockcode size 3 and wordcount 2

2: [1, 2]
2: [3, 2]
End block 9

206 Enter block 17 (TYPE_BLOCK_NEW) with blockcode size 4 and wordcount 13

NUMENTRY: 11

i32

132*

i32* (i32%)

i32* (i32*) *

i8

18*

i8**

i32 (i32,i8*%)

i32 (i32,i8**) *

METADATA

void
End block 17
TRIPLE: 1386-apple-macosx10.12.0
DATALAYOUT: e-m:0-p:32:32-f64:32:64-80:128-n8:16:32-S128
FUNCTION: type: i32* (i32*) ; paramattr: 1

Approved for public release; Distribution is unlimited 136

FUNCTION: type: 132 (i32,i8**) ; paramattr: 2

SOURCEFILE_NAME: ptr_add_one.c
VALUE_SYMTAB_OFFSET: 442

260 Enter block 11 (CONSTANTS_BLOCK) with blockcode size 4 and wordcount 6

SETTYPE: 132
i32 1
i32 0
i32 2
End block 11

268 Enter block 22 (METADATA_KIND_BLOCK) with blockcode size 3 and wordcount 104

KIND: 0 dbg

KIND: 1 tbaa

KIND: 2 prof

KIND: 3 fpmath

KIND: 4 range

KIND: 5 thbaa.struct
KIND: 6 invariant.load
KIND: 7 alias.scope
KIND: 8 noalias

KIND: 9 nontemporal

KIND: 10 Ilvm.mem.parallel_loop_access

KIND: 11 nonnull
KIND: 12 dereferenceable

KIND: 13 dereferenceable or null

KIND: 14 make.implicit

KIND: 15 unpredictable

KIND: 16 invariant.group

KIND: 17 align

KIND: 18 1Ilvm.loop

KIND: 19 type

KIND: 20 section_prefix

KIND: 21 absolute_symbol
End block 22

374 Enter block 15 (METADATA _BLOCK) with blockcode size 4 and wordcount 45

STRINGS: 3,4,85,178,6,0 NumRegisterParametersPIC LevelApple LLVM version 9.0.0

VALUE: O
VALUE: O
VALUE: 0
NODE: 4,1,5
NODE: 4,2,6
NODE: 3
NAME: Blvm.module.flags
NAMED NODE: 6,7
NAME: Blvm.ident
NAMED NODE: 8

End block 15

A wWN

(clang-900.0.39.2)

421 Enter block 21 (OPERAND_BUNDLE_TAGS_BLOCK) with blockcode size 3 and wordcount 11

OPBUNDLETAG: deopt

OPBUNDLETAG: funclet

OPBUNDLETAG: gc-transition
End block 21

434 Enter block 12 (FUNCTION_BLOCK) with blockcode size 4 and wordcount 2

DECLAREBLOCKS: 1
function-code-43: 1,0,1,4
INST_RET: 1

End block 12

Approved for public release; Distribution is unlimited

137

438 Enter block 12 (FUNCTION_BLOCK) with blockcode size 4 and wordcount 2

DECLAREBLOCKS: 1
INST_RET: 4
End block 12

442 Enter block 14 (VALUE_SYMTAB_BLOCK) with blockcode size 4 and wordcount 9

FN:1: main (at offset: 438)
FN:0: ¥ (at offset: 434)
End block 14
End block 8
Block 13: IDENTIFICATION_BLOCK

filename: ptr_add _one.c

Constants

i32% (i32%)
i32% (i32*%) *

i8~k~k
i32 (i32,i8*%)
i32 (i32,i8**) *
- METADATA
: void

S(.OGJ\IO’U‘IJ}(A)NI—‘O
[ee]
*

Function signatures

FUNCTION: type: i32* (i32*) ; paramattr: 1
FUNCTION: type: 132 (i32,i18**) ; paramattr: 2

Value symbol table

FN:z1: main (at offset: 438)
FN:0: f (at offset: 434)

Functions

LLVM Function f: i32* (i32%)

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 1
RETURN: %2

LLVM Function main: 132 (i32,i18*%*)

DECLAREBLOCKS: 1
RETURN: i32 0O

Approved for public release; Distribution is unlimited 138

424 LLVM Test Cases

4.2,5 Addition
4.25.1 add_int arg

int f(int x, int y) {
return x+y;

Ox4ed [0] mov eax, 0x8(esp,,1l) eax = arg.0008 (= arg-0008_in)
ox4f1 [0] add eax, Ox4(esp,,l) eax := (eax + arg.0004) (= (arg-0008 in
+ arg.0004_in))
ox4f5 [0] ret return (eax (= (arg-0008_in + arg.0004_in)))

x86 to LLVM Function f: i32 (i32,i32)
DECLAREBLOCKS: 1

%3 = ADD %1, %O

RETURN: %3

mips
0x4005c0 [0] <ret> return (a0O_in + al_in)
0x4005c4 [0] addu $vO, $a0, $al vO := (a0 + al) (= (a0_in + al_in))

mips to LLVM Function f: 132 (i32,i132)

DECLAREBLOCKS: 1
%3 = ADD %O, %1
RETURN: %3

int f(int x) {
return x+42;

Approved for public release; Distribution is unlimited 139

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] add eax, Ox2a eax := (eax + 42) (= (arg-0004_in + 42))
ox4f4 [0] ret return (eax (= (arg.0004_in + 42)))

DECLAREBLOCKS: 1
%2 = ADD %0, 42:132
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0O_in + 42)
0x4005c4 [0] addiu $v0, $a0, 42 vO := (a0 + 42) (= (a0_in + 42))

mips to LLVM Function f: 132 (i32)

DECLAREBLOCKS: 1
%2 = ADD %0, 42:i32
RETURN: %2

int F(int x) {
return x+1;

Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg-0004_in)
ox4f1 [0] add eax, Ox1 eax := (eax + 1) (= (arg.0004_in + 1))
ox4f4 [0] ret return (eax (= (arg-0004_in + 1)))

DECLAREBLOCKS: 1

Approved for public release; Distribution is unlimited 140

%2 = ADD %0, 1:i32
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0O_in + 1)
0x4005c4 [0] addiu $v0, $a0, 1 vOo := (a0 + 1) (= (a0_in + 1))

mips to LLVM Function f: 132 (i32)
DECLAREBLOCKS: 1

%2 = ADD %0, 1:i32

RETURN: %2

int F(int x) {
return x+2;

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] add eax, 0x2 eax := (eax + 2) (= (arg.0004_in + 2))
ox4f4 [0] ret return (eax (= (arg.0004_in + 2)))

DECLAREBLOCKS: 1
%2 = ADD %0, 2:i32
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0O_in + 2)
0x4005c4 [0] addiu $vO, $a0, 2 vOo := (a0 + 2) (= (a0_in + 2))

mips to LLVM Function f: 132 (i32)

DECLAREBLOCKS: 1
%2 = ADD %0, 2:i32

Approved for public release; Distribution is unlimited 141

RETURN: %2

4.2.6 Branch
4.2.6.1 br_ge_const

void f(int *p, int n) {
if (n >=42) {
p[o] = O;
} else {

Ox4ed [0] mov eax, Ox4(esp,.,1l) eax = arg.0004 (= arg.-0004_in)
ox4f1 [0] cmp 0x8(esp,,l), 0x29

ox4f6 [0 1 Jg 0x500 if (arg.0008_in > 41) goto 0x500
ox4f8 [0] mov Ox4(eax), 0x0 arg.0004_in[4] =0

ox4aff [0] ret return (eax (= arg.0004_in))
0x500 [0] mov (eax), OxO arg.0004_in[0] =0

0x506 [0] ret return (eax (= arg.0004_in))

DECLAREBLOCKS: 4
%3 = ICMP SGT %1, 41:i132
BR i1l %3, label %4, label %5

; <label>:4:
STORE 132 0, %0, align 4
BR label %7

; <label>:5:

%6 = getelementptr inbounds 132, %0, 132 1
STORE 132 0, %6, align 4

BR label %7

; <label>:7:
RETURN

Approved for public release; Distribution is unlimited

142

0x4005c0 [0] slti $al, $al, 42 al := 1 if (al < 42) (= (al_in < 42))
else O
0x4005c4 [0] bne $al, $zero, 0x4005d4 if (al <> 0) (= (al_in < 42))

then goto 0x4005d4
0x4005c8 [0] <nop>

0x4005cc [0] <ret> return vO_in
0x4005d0 [0] sw $zero, ($a0) a0_in[0] =0
0x4005d4 [0] <ret> return vO_in
0x4005d8 [0] sw $zero, 0x4($a0) a0_in[4] =0

DECLAREBLOCKS: 4
%3 = ICMP SLT %1, 42:i132
BR il %3, label %4, label %6

; <label>:4:

%5 = getelementptr inbounds 132, %0, 132 1
STORE 132 0, %5, align 4

BR label %7

; <label>:6:
STORE 132 0, %0, align 4
BR label %7

; <label>:7:
RETURN

void f(int *p, int n) {
if (n>=0) {
p[o] = O;
} else {
p[1] = O;
}
}

Approved for public release; Distribution is unlimited

143

Ox4ed [0] cmp 0x8(esp,,1l), 0x0
ox4f2 [0] Js Ox4ff if (arg.0008_in < 0) goto Ox4ff

ox4f4 [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg.-0004_in)
ox4f8 [0] mov (eax), OxO arg.0004_in[0] =0
Ox4fe [0] ret return (eax (= arg.0004_in))

ox4ff [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
0x503 [0] mov Ox4(eax), 0x0 arg.0004_in[4] =0
Ox50a [0] ret return (eax (= arg.0004_in))

DECLAREBLOCKS: 4
%3 = ICMP SLT %1, i32 0
BR 11l %3, label %4, label %6

; <label>:4:

%5 = getelementptr inbounds 132, %0, 132 1
STORE 132 0, %5, align 4

BR label %7

; <label>:6:
STORE 132 0, %0, align 4
BR label %7

; <label>:7:
RETURN

0x4005c0 [0] bltz $al, 0x4005d0 if (al < 0) (= (al_in < 0)) then

goto 0x4005d0
0x4005c4 [0] <nop>

0x4005c8 [0] <ret> return vO_in
0x4005cc [0] sw $zero, ($a0) a0_in[0] =0
0x4005d0 [0] <ret> return vO_in
0x4005d4 [0] sw $zero, Ox4($a0) al_in[4] := 0

DECLAREBLOCKS: 4
%3 = ICMP SLT %1, i32 0O
BR 11l %3, label %4, label %6

Approved for public release; Distribution is unlimited

144

; <label>:4:

%5 = getelementptr inbounds 132, %0,
STORE 132 0, %5, align 4

BR label %7

; <label>:6:
STORE 132 0, %0, align 4
BR label %7

; <label>:7:
RETURN

4.2.7 Comparison
4.2.7.1 ge_arg_arg (mips only)

int f(int x, int y) {
return x >= y;

i32 1

0x4005c0 [0] slt $v0, $a0, $al

0x4005c4 [0] <ret>
0x4005c8 [0] xori $v0, $v0, 1

mips to LLVM Function f: 132 (i32,i132)

DECLAREBLOCKS: 1

%3 = ICMP SGE %O, %1
%4 = ZEXT %3 to 32
RETURN: %4

int f(int x) {
return x >= 42;

Approved for public release; Distribution is unlimited

=1 if (a0 < al) (= (a0_in < al_in))

return (a0_in >= al_in)
vO = (vO xor 1) (= ((a0_in < al_in) xor 1))

145

0x4005c0 [0] slti $v0, $a0, 42
0x4005c4 [0] <ret>
0x4005c8 [0] xori $v0, $v0, 1

mips to LLVM Function f: 132 (i32)

DECLAREBLOCKS: 1

%2 = ICMP SGE %0, 42:i32
%3 = ZEXT %2 to 132
RETURN: %3

int f(int x) {
return x >= 0;

}

mips
0x4005c0 [0] nor $v0, $zero, $al
0x4005c4 [0] <ret>
0x4005c8 [0] srl $v0, $vO, 31

mips to LLVM Function f: i32 (i32)

DECLAREBLOCKS: 1

%2 = ICMP SGE %0, 132 O
%3 = ZEXT %2 to 32
RETURN: %3

4.2.8 Mixed expressions
4.2.8.1 mixed_mul_plus

vO := 1 if (a0 < 42) (= (a0_in < 42)) else 0

return (a0_in >= 42)

vO = (vO xor 1) (= ((a0_in < 42) xor 1))

vO := (0 bnor a0) (= (0 bnor a0O_in))
return (a0_in >= 0)

vO := (VO / 0x80000000) (= ((O bnor a0_in)

/ 0x80000000))

Approved for public release; Distribution is unlimited

146

int f(int x, int y) {
return (3 * x) + (4 * y);

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] lea eax, (eax,eax,2) eax = (eax + (2 * eax)) (= (arg-0004_in
+ (2 * arg.0004_in)))

ox4f4 [0] mov edx, Ox8(esp,,l) edx = arg.0008 (= arg-0008_in)

ox4f8 [0] lea eax, (eax,edx,4) eax = (eax + (4 * edx)) (=

((3 * arg.0004_in) + (4 * arg.0008_in)))
ox4afb [0] ret return (eax (= ((4 * arg.0008_in)
+ (3 * arg.0004_in))))

mips to LLVM Function f: i32 (i32,i32)

DECLAREBLOCKS: 1
%3 = MUL 4:i32, %1
%4 = MUL 3:i32, %0
%5 = ADD %3, %4
RETURN: %5

mips
0x4005c0 [0] sl $v0, $a0, 1 VO := (a0 * 2) (= (2 * a0_in))
0x4005c4 [0] addu $v0, $v0, $a0 VO := (vO + a0) (= (2 * a0_in) + a0_in))
0x4005c8 [0] sll $al, $al, 2 al := (a1l * 4) (= (4 * al_in))
0x4005cc [0] <ret> return ((3 * a0_in) + (4 * al_in))
0x4005d0 [0] addu $v0, $v0, $al VO := (vO + al) (= (B * a0_in)

+ (4 * al_in)))

mips to LLVM Function f: 132 (i32,i132)

DECLAREBLOCKS: 1
%3 = MUL 3:i32, %0
%4 = MUL 4:i32, %1
%5 = ADD %3, %4
RETURN: %5

Approved for public release; Distribution is unlimited 147

4.2.9 Multiplication
4.2.9.1 mul_int_arg (mips only)

int f(int x, int y) {
return x*y;

0x4005c0 [0] mult $a0, 3$al
0x4005c4 [0] mflo $vO
0x4005c8 [0] <ret>
0x4005cc [0] <nop>

mips to LLVM Function f: 132 (i32,i132)

DECLAREBLOCKS: 1
%3 = MUL %O, %1
RETURN: %3

int f(int x) {
return x*42;

¥

mips
0x4005c0 [0] slIlI $v0, $a0, 1
0x4005c4 [0] sl $a0, $a0, 3
0x4005c8 [0] subu $a0, $a0, $vO
0x4005cc [0] sl $v0, $a0, 3
0x4005d0 [0] <ret>
0x4005d4 [0] subu $v0, $v0, $a0

mips to LLVM Function f: 132 (i32)

DECLAREBLOCKS: 1

(hi,lo) := (a0 * al) (= (a0_in * al_in))
vO := (a0_in * al_in)
return (a0_in * al_in)

vO := (a0 * 2) (= (2 * a0_in))

a0 := (a0 * 8) (= (8 * a0_in))

a0 := (a0 - vO) (= (6 * a0_in))

vO := (a0 * 8) (= (48 * a0_in))
return (42 * a0_in)

vO := (vO - a0) (= (42 * a0_in))

Approved for public release; Distribution is unlimited

148

%2 = MUL 42:i32, %0
RETURN: %2

int f(int x) {
return x*3;

Ox4ed [
ox4afi [0]

ox4afa [0]

0] mov eax, Ox4(esp,.,1l)
lea eax, (eax,eax,2)

eax
eax

return

= arg.0004 (= arg-0004_in)

= (eax + (2 * eax)) (= (arg.-0004_in
+ (2 * arg.0004_in)))

(eax (= (B * arg-0004_in)))

x86 to LLVM Function f: 132 (i32)
Local constant definitions

DECLAREBLOCKS: 1
%2 = MUL 3:i32, %0
RETURN: %2

vOo := (a0 * 2) (= (2 * a0_in))
return (3 * a0_in)

mips
0x4005c0 [0] sl $v0, %a0, 1
0x4005c4 [0] <ret>
0x4005c8 [0] addu $vO, $vO, $a0

vO :

= (V0 + a0) (= ((2 * a0_in) + a0_in))

DECLAREBLOCKS: 1
%2 = MUL 3:i32, %0
RETURN: %2

4.29.4 mul_int_two

Approved for public release; Distribution is unlimited

149

int f(int x) {
return x*2;

Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg.0004_in)

ox4f1 [0] add eax, eax eax := (eax + eax) (= (arg.0004_in
+ arg.0004_in))
ox4f3 [0] ret return (eax (= (2 * arg.0004_in)))

x86 to LLVM Function f: 132 (i32)

DECLAREBLOCKS: 1
%2 = MUL 2:i32, %0
RETURN: %2

mips
0x4005c0 [0] <ret> return (2 * a0_in)
0x4005c4 [0] sl $v0, $a0, 1 vOo := (a0 * 2) (= (2 * a0_in))

mips to LLVM Function f: 132 (i32)

DECLAREBLOCKS: 1
%2 = MUL 2:i32, %0
RETURN: %2

4.2.10 Phi Expressions
4.2.10.1 phi_ge_zero

int f(int *p, int n) {
int x;
if (n>0){
x = p[0] + 1;
} else {
x = p[1];
}
return Xx;

}

Approved for public release; Distribution is unlimited

150

Ox4ed [0] cmp 0x8(esp,,1l), 0x0

ox4f2 [0] Jle Ox4fe if (arg.0008_in <= 0) goto Ox4fe

ox4f4 [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg.0004_in)

ox4f8 [0] mov eax, (eax) eax = arg.0004_in[0] (= arg.0004_in[0]_in)
Ox4fa [0] add eax, Ox1 eax := (eax + 1) (= (arg.-0004_in[0]_in + 1))
ox4fd [0] ret return (eax (= (arg-0004_in[0O]_in + 1)))
Ox4fe [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg-.0004_in)

0x502 [0] mov eax, Ox4(eax) eax = arg.0004_in[4] (= arg.0004_in[4]_in)
0x505 [0] ret return (eax (= arg.0004_in[4] _in))

DECLAREBLOCKS: 4
%3 = ICMP SLE %1,

BR i1 %3,

label %4,

; <label>:4:
%5 = getelementptr inbounds 132, %0, 132 1

%6 = LOAD 132, %5, align 4

BR label %10

; <label>:7:

%8 = LOAD 132, %0, align 4

%9 = ADD %8, 1:i32
BR label %12

; <label>:10:
i32 [%6, %4] [%9, %7]

%11 = PHI
RETURN

i32 0
label

%7

0x4005c0

0x4005c4

$al, 0x4005d4 if (al <= 0) (= (al_in <= 0))
then goto 0x4005d4

0x4005c8
0x4005cc
0x4005d0

$v0, ($a0) vO := a0_in[0]_in
return (@0_in[0]_in + 1)
$v0, $v0, 1 vO = (VO + 1) (= (a0_in[0]_in + 1))

0x4005d4
0x4005d8

[01
[L 01
L 01
[L 01
L o1
[L 01
[o1

return a0_in[4]_in
$v0, Ox4($a0) VO := a0_in[4]_in

Approved for public release; Distribution is unlimited

151

mips to LLVM Function f: void (i32*,i132)

DECLAREBLOCKS: 4

%3 = ICMP SLE

; <label>:4:

%1,
BR i1 %3, label %4,

i32 0
label %7

%5 = getelementptr inbounds 132, %0, 132 1
%6 = LOAD i32, %5, align 4

BR label %10

; <label>:7:

%8 = LOAD 132, %0, align 4

%9 = ADD %8, 1:

BR label %12

; <label>:10:

132

%11 = PHI i32 [%6, %4 1 [%9, %7]

RETURN

4.2.11 Pointer expressions
42111 ptr_add_arg

int *f(int *p,
return p + n;

int

n {

mov eax, O0x8(esp,,1l) eax = arg.0008 (= arg.0008_in)
shl eax, 0x2 eax = (4 * eax) (= (4 * arg.0008_in))
add eax, Ox4(esp,,l) eax := (eax + arg.0004) (= ((4
* arg.0008_in) + arg.0004_in))
ret return (eax (= ((4 * arg.0008_in)
+ arg.0004_in)))

DECLAREBLOCKS: 1
%3 = getelementptr inbounds 132, %0, %1

RETURN: %3

Approved for public release; Distribution is unlimited 152

0x4005c0 [0] sll $v0, $al, 2 VO := (@l * 4) (= (4 * al_in))
0x4005c4 [0] <ret> return (@a0_in + (4 * al_in))
0x4005c8 [0] addu $vO, $a0, $vO vO := (a0 + v0) (= (a0_in + (4 * al_in)))

mips to LLVM Function f: i32* (i32*,i132)
DECLAREBLOCKS: 1

%3 = getelementptr inbounds 132, %0, %1
RETURN: %3

int *f(int *p) {
return p + 42;

Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg-0004_in)
ox4f1 [0] add eax, Oxa8 eax := (eax + 168) (= (arg-0004_in + 168))
ox4f6 [0] ret return (eax (= (arg.0004_in + 168)))

x86 to LLVM Function f: i32* (i32*)

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, i32 42
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0O_in + 168)
0x4005c4 [0] addiu $vO, $a0, 168 v0 := (a0 + 168) (= (a0_in + 168))

mips to LLVM Function f: §32* (i32%)

Approved for public release; Distribution is unlimited 153

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 42
RETURN: %2

int *f(int *p) {
return p + 1;

Ox4ed [0] mov eax, Ox4(esp,.,1l) eax = arg.0004 (= arg.0004_in)

ox4f1 [0] add eax, 0x4 eax := (eax + 4) (= (arg.0004_in + 4))

ox4f4 [0] ret return (eax (= (arg-0004_in + 4)))

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 1
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0_in + 4)
0x4005c4 [0] addiu $vO, %a0, 4 vO := (a0 + 4) (= (a0_in + 4))

mips to LLVM Function f: i32* (i32%)

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 1
RETURN: %2

int f(int *p) {
return p[42];
}

Approved for public release; Distribution is unlimited

154

Ox4ed [0] mov eax, Ox4(esp,,l) eax
ox4f1 [0] mov eax, Oxa8(eax) eax

(:
ox4f7 [0] ret return

arg.0004 (= arg.0004_in)
arg.0004_in[168]

arg.0004_in[168]_in)
(eax (= arg.0004_in[168]_in))

DECLAREBLOCKS: 1

%2 = getelementptr inbounds 132, %0, 132 42
%3 = LOAD 132, %2, align 4

RETURN: %3

0x4005c0 [0] <ret>
0x4005c4 [0] Iw $v0, Oxa8($a0)

v0 :=

return a0_in[168]_in
i

a0_in[168]_in

mips to LLVM Function f: 132 (i32%)

DECLAREBLOCKS: 1

%2 = getelementptr inbounds 132, %0, i32 42
%3 = LOAD 132, %2, align 4

RETURN: %3

int f(int *p) {
return p[1];

Oxded [0] mov eax, Ox4(esp,,l)
ox4f1 [0] mov eax, Ox4(eax)
ox4f4 [0] ret

eax
eax

arg.0004 (= arg-0004_in)
arg.0004_in[4] (= arg.0004_in[4]_in)

return (eax (= arg.0004_in[4] _in))

Approved for public release; Distribution is unlimited

155

x86 to LLVM Function f: 132 (i32%)
DECLAREBLOCKS: 1

%2 = getelementptr inbounds 132, %0, 132 1
%3 = LOAD 132, %2, align 4

RETURN: %3

mips
0x4005c0 [0] <ret> return a0_in[4] _in
0x4005c4 [01 Iw $v0, 0x4(%$a0) v0 := a0_in[4]_in

mips to LLVM Function f: 132 (i32%)

DECLAREBLOCKS: 1

%2 = getelementptr inbounds 132, %0, 132 1
%3 = LOAD i32, %2, align 4

RETURN: %3

int f(int *p) {
return p[O0];

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] mov eax, (eax) eax = arg.0004_in[0] (= arg.0004 in[0]_in)
ox4f3 [0] ret return (eax (= arg.-0004_in[0]_in))

DECLAREBLOCKS: 1
%2 = LOAD i32, %0, align 4
RETURN: %2

0x4005c0 [0] <ret> return a0_in[0]_in

Approved for public release; Distribution is unlimited 156

0x4005c4 [0] Iw $v0, ($a0) vO := a0_in[0]_in

mips to LLVM Function f: 132 (i32%)

DECLAREBLOCKS: 1
%2 = LOAD 132, %0, align 4
RETURN: %2

void f(int *p) {
pL42] = O;

Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg-0004_in)
ox4f1 [0] mov Oxa8(eax), 0OxO arg.0004_in[168] = 0
ox4fb [0] ret return (eax (= arg.-0004_in))

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 42
STORE 132 0, %2, align 4

RETURN

mips
0x4005c0 [0] <ret> return vO_in
0x4005c4 [0] sw $zero, 0xa8(%$a0) a0_in[168] := 0

DECLAREBLOCKS: 1

%2 = getelementptr inbounds 132, %0, 132 42
STORE 132 0, %2, align 4

RETURN

Approved for public release; Distribution is unlimited 157

void f(int *p, int ¢) {
pL42] = c;

}
x86
Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg.-0004_in)
ox4f1 [0] mov edx, 0x8(esp,,1l) edx = arg.0008 (= arg-0008_in)
ox4f5 [0] mov Oxa8(eax), edx arg.0004_in[168] = edx (= arg-0008_in)
ox4fb [0] ret return (eax (= arg.-0004_in))

DECLAREBLOCKS: 1
%3 = getelementptr inbounds 132, %0, 132 42
STORE %1, %3, align 4

RETURN
mips
0x4005c0 [0] <ret> return vO_in
0x4005c4 [0] sw $al, Oxa8(%a0) a0_in[168] := a1l (= al_in)

DECLAREBLOCKS: 1

%3 = getelementptr inbounds 132, %0, i32 42
STORE %1, %3, align 4

RETURN

Approved for public release; Distribution is unlimited

158

void f(int *p) {
p[42] = 43;

Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] mov Oxa8(eax), Ox2b arg.0004_in[168] = 43
ox4fb [0] ret return (eax (= arg.0004_in))

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 42
STORE 132 43, %2, align 4

RETURN
mips
0x4005c0 [0] i $v0, 43 v0 = 43
0x4005c4 [0] <ret> return 43
0x4005c8 [0] sw $v0, Oxa8($a0) a0_in[168] := vO (= 43)

DECLAREBLOCKS: 1

%2 = getelementptr inbounds 132, %0, i32 42
STORE 132 43, %2, align 4

RETURN

void f(int *p) {
p[1] = O;

Approved for public release; Distribution is unlimited 159

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] mov Ox4(eax), 0x0 arg.0004_in[4] =0

oxafs [0]

DECLAREBLOCKS: 1

ret return (eax (= arg.0004_in))

%2 = getelementptr inbounds 132, %0, 132 1
STORE 132 0, %2, align 4

RETURN

mips
0x4005c0 [0] <ret> return vO_in
0x4005c4 [0] sw $zero, 0x4($a0) a0_in[4] :=0

DECLAREBLOCKS: 1

%2 = getelementptr inbounds 132, %0, 132 1
STORE 132 0, %2, align 4

RETURN

void f(int *p) {
pLO] = O;

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] mov (eax), OxO arg.0004_in[0] =0

ox4f7 [0]

DECLAREBLOCKS: 1

ret return (eax (= arg.-0004_in))

STORE 132 0, %0, align 4

Approved for public release; Distribution is unlimited

160

RETURN

mips
0x4005c0 [0] <ret> return vO_in
0x4005c4 [0] sw $zero, ($a0) a0_in[0] =0

DECLAREBLOCKS: 1
STORE 132 0, %0, align 4
RETURN

int *f(int *p, int n) {
return p - n;

}
x86
Ox4ed [0] mov eax, 0x8(esp,,1l) eax = arg.0008 (= arg.0008_in)
ox4f1 [0] shl eax, 0x2 eax = (4 * eax) (= (4 * arg.0008_in))
ox4f4 [0] mov edx, Ox4(esp,,l) edx = arg.0004 (= arg-0004_in)
ox4f8 [0] sub edx, eax edx := (edx - eax) (= (arg.-0004_in
- (4 * arg.0008_in)))
Ox4fa [0] mov eax, edx eax = edx (= (arg-0004_in
- (4 * arg.0008_in)))
ox4afc [0] ret return (eax (= (arg.0004_in

- (4 * arg.0008_in))))

DECLAREBLOCKS: 1

%3 = SUB 132 0, %1

%4 = getelementptr inbounds 132, %0, %3
RETURN: %4

0x4005c0 [0] slli $v0, $al, 2 VO = (al * 4)
(= (4 * al_in))

Approved for public release; Distribution is unlimited 161

0x4005c4 [0] <ret> return (a0_in - (4 * al_in))
0x4005c8 [0] subu $v0, $a0, $vO v0 := (a0 - v0)
(= (@0_in - (4 * al_in)))

mips to LLVM Function f: i32* (i32*,i132)

DECLAREBLOCKS: 1

%3 = SUB 132 0, %1

%4 = getelementptr inbounds 132, %0, %3
RETURN: %4

int *f(int *p) {
return p - 42;

Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg.-0004_in)
ox4f1 [0] sub eax, Oxa8 eax := (eax - 168) (= (arg-0004_in - 168))
ox4f6 [0] ret return (eax (= (arg-0004_in - 168)))

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 -42
RETURN: %2

0x4005c0 [0] <ret> return (a0_in - 168)
0x4005c4 [0] addiu $vO, $a0, -168 vO := (a0 + -168) (= (a0_in - 168))

mips to LLVM Function f: i32* (i32%)

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 -42

Approved for public release; Distribution is unlimited 162

RETURN: %2

int *f(int *p) {
return p - 1;

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)

ox4f1 [0] sub eax, 0x4 eax := (eax - 4) (= (arg.0004_in - 4))

ox4f4 [0] ret return (eax (= (arg-0004_in - 4)))

x86 to LLVM Function f: i32* (i32*)

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 -1
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0O_in - 4)
0x4005c4 [0] addiu $vO0, $a0, -4 vO := (a0 + -4) (= (a0_in - 4))

mips to LLVM Function f: i32* (i32%)

DECLAREBLOCKS: 1
%2 = getelementptr inbounds 132, %0, 132 -1
RETURN: %2

4.2.12 Subtraction
4.2.12.1 sub_int_arg

Approved for public release; Distribution is unlimited

163

int f(int x, int y) {
return x-y;

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
ox4fl [0] sub eax, 0x8(esp,,1) eax := (eax - arg.0008)
(= (arg-0004_in - arg.0008 _in))
ox4f5 [0] ret return (eax (= (arg-0004_in - arg.0008_in)))

DECLAREBLOCKS: 1
%3 = SUB %0, %1
RETURN: %3

mips
0x4005c0 [0] <ret> return (a0_in - al_in)
0x4005c4 [0] subu $vO, $a0, $al vO := (a0 - al) (= (a0_in - al_in))

mips to LLVM Function f: 132 (i32,i32)

DECLAREBLOCKS: 1
%3 = SUB %0, %1
RETURN: %3

int f(int x) {
return x-42;

Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] sub eax, Ox2a eax := (eax - 42) (= (arg.-0004_in - 42))
ox4f4 [0] ret return (eax (= (arg.0004_in - 42)))

x86 to LLVM Function f: i32 (i32)

Approved for public release; Distribution is unlimited 164

DECLAREBLOCKS: 1
%2 = SUB %0, 42:132
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0_in - 42)
0x4005c4 [0] addiu $vO0, $a0, -42 vO = (a0 + -42) (= (a0_in - 42))

mips to LLVM Function f: 132 (i32)

DECLAREBLOCKS: 1
%2 = SUB %0, 42:i132
RETURN: %2

int f(int x) {
return x-1;

Ox4ed [0] mov eax, Ox4(esp,,1l) eax = arg.0004 (= arg-0004_in)
ox4f1 [0] sub eax, 0x1 eax := (eax - 1) (= (arg.0004_in - 1))
ox4f4 [0] ret return (eax (= (arg.0004_in - 1)))

DECLAREBLOCKS: 1
%2 = SUB %0, 1:i32
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0O_in - 1)
0x4005c4 [0] addiu $vO, $a0, -1 vO := (a0 + -1) (= (a0_in - 1))

Approved for public release; Distribution is unlimited 165

mips to LLVM Function f: i32 (i32)
DECLAREBLOCKS: 1

%2 = SUB %0, 1:i32

RETURN: %2

int f(int x) {
return x-2;

Ox4ed [0] mov eax, Ox4(esp,,l) eax = arg.0004 (= arg.0004_in)
ox4f1 [0] sub eax, 0x2 eax := (eax - 2) (= (arg.0004_in - 2))
ox4f4 [0] ret return (eax (= (arg.0004_in - 2)))

DECLAREBLOCKS: 1
%2 = SUB %0, 2:i32
RETURN: %2

mips
0x4005c0 [0] <ret> return (a0O_in - 2)
0x4005c4 [0] addiu $vO, $a0, -2 vO := (a0 + -2) (= (a0_in - 2))

DECLAREBLOCKS: 1
%2 = SUB %0, 2:i32
RETURN: %2

Approved for public release; Distribution is unlimited 166

5.0 CONCLUSION

Detailed provenance tracking provides information that can be critical to the rapid understanding
of information and privacy leaks. To date, however, the overhead and complexity of obtaining such
information has hampered the development of systems that can deliver this information.
ClearScope, with its combination of split device/server design and effective compiler
optimizations, enables, for the first time, the ability to collect the information required to build a
complete, byte-level provenance web that tracks the complete path each byte follows through the
system. Experience using ClearScope on the Adups FOTA malware highlights the benefits that
this information can deliver in this context; performance results highlight the performance benefits
that its compiler optimizations can deliver.

Approved for public release; Distribution is unlimited 167

6.0 References

[1] Samak, M., Kim, D., and Rinard, M., “Synthesizing Replacement Classes,” in
47th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL)

[2] Achour, Sara and Rinard, Martin, “Time Dilation and Contraction for Programmable Analog Devices with
Jaunt,” in Proceedings of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ACM, New York, NY, USA, ASPLOS 18, pp. 229-242,
URL http://doi.acm.org/10.1145/3173162.3173179

[3] Gordon, Michael, Eikenberry, Jordan, Eden, Anthony, Perkins, Jeff, and Rinard, Martin, Precise and
Comprehensive Provenance Tracking for Android Devices, Technical report, MIT/CSAIL, October 2019,
https://hdl _handle.net/1721.1/122968

[4] Cito, Jiirgen, Rubin, Julia, Stanley-Marbell, Phillip, and Rinard, Martin, “Battery-aware Transformations in
Mobile Applications,” in Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ACM, New York, NY, USA, ASE 2016, pp. 702-707, URL
http://doi.acm.org/10.1145/2970276.2970324

[5] Shen, Jiasi and Rinard, Martin C., “Using Active Learning to Synthesize Models of Applications That
Access Databases,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ACM, New York, NY, USA, PLDI 2019, pp. 269-285, URL
http://doi.acm.org/10.1145/3314221.3314591

[6] Rinard, Martin C., Shen, Jiasi, and Mangalick, Varun, “Active Learning for Inference and Regeneration of
Computer Programs That Store and Retrieve Data,” in Proceedings of the 2018 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, ACM, New York,
NY, USA, Onward! 2018, pp. 12-28, URL http://doi .acm.org/10.1145/3276954 .3276959

[7] Enck, William, Gilbert, Peter, Chun, BG, and Cox, LP, “TaintDroid: an information flow tracking system
for real-time privacy monitoring on smartphones,” in OSDI

[8] Sun, Mingshen, Wei, Tao, and Lui, John C.S., “TaintART: A Practical Multi-level Information-Flow
Tracking System for Android RunTime,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ACM, New York, NY, USA, CCS ’16, pp. 331-342, URL
http://doi.acm.org/10.1145/2976749.2978343

[9] Bell, Jonathan and Kaiser, Gail, “Phosphor: llluminating Dynamic Data Flow in Commaodity Jvms,” in
Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
& Applications, ACM, New York, NY, USA, OOPSLA ’14, pp. 83-101, URL
http://doi.acm.org/10.1145/2660193.2660212

[10] LLC, KryptoWire, “Kryptowire Discovers Mobile Phone Firmware that Transmitted Personally
Identifiable Information (PI1) Without User Consent or Disclosure,”
https://ww.Kkryptowire.com/adups\s\do6(s)ecurity\s\do6(a)nalysis.html, 2016
[11] Stavrou, Angelos, personal communication

[12] Android, “Using Binder IPI,”
https://source.android.com/devices/architecture/hidl/binder-ipc, 2017

Approved for public release; Distribution is unlimited 168

http://doi.acm.org/10.1145/3173162.3173179
https://hdl.handle.net/1721.1/122968
http://doi.acm.org/10.1145/2970276.2970324
http://doi.acm.org/10.1145/3314221.3314591
http://doi.acm.org/10.1145/3276954.3276959
http://doi.acm.org/10.1145/2976749.2978343
http://doi.acm.org/10.1145/2660193.2660212

[13] Cousot, Patrick and Cousot, Radhia, “Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints,” in Robert M. Graham, Michael A.
Harrison, and Ravi Sethi, editors, POPL, ACM, pp. 238-252

[14] Karr, Michael, “Affine Relationships Among Variables of a Program,” Acta Inf., 6, 1976, pp. 133-
151
[15] Cousot, Patrick and Halbwachs, Nicolas, “Automatic Discovery of Linear Restraints Among

Variables of a Program,” in Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski, editors, POPL,
ACM Press, pp. 84-96

[16] Balakrishnan, Gogul and Reps, Thomas W., “DIVINE: Dlscovering Variables IN Executables,” in
Byron Cook and Andreas Podelski, editors, VMCAI, Springer, volume 4349 of Lecture Notes in Computer
Science, pp. 1-28

[17] Corporation, Pendragon Software, “CaffeineMark 3.0,”
http://www.benchmarkhqg.ru/cm30/, 2016

[18] ADUPS, “adups fota,” , 2016, URL http://www.adups.com/index.php

[19] Kryptowire, “Kryptowire Discovers Mobile Phone Firmware That Transmitted Personally

Identifiable Information (P11) Without User Consent Or Disclosure,” , 2017, URL
https://www.kryptowire.com/adups\s\do6(s)ecurity\s\do6(a)nalysis.html

[20] Apuzzo, Matt and Schmidt, Michael S., “Secret Back Door in Some U.S. Phones Sent Data to
China, Analysts Say,” New York Times, November 2016

Approved for public release; Distribution is unlimited 169

http://www.adups.com/index.php
https://www.kryptowire.com/adups/s/do6(s)ecurity/s/do6(a)nalysis.html

AOSP
APT
ART
CDM
CTS
JNI
Pl

TC

7.0 List of Symbols, Abbreviations, and Acronyms

Android Open Source Platform
Advanced Persistent Threat
Android Runtime

Common Data Model
Compatibility Test Suite

Java Native Interface
Personally-identifiable Information

Transparent Computing

1, 3,5, 56, 107

ii, 7, 107

I, 3,4,6, 20,21, 54, 55, 56
ii, 81, 98, 100, 101, 103

i, 5,60

4,40, 41, 55, 57

106

2,3,73,81

Approved for public release; Distribution is unlimited

170

	1.0 SUMMARY
	2.0 INTRODUCTION
	2.1 Complementary Provenance Tracking Mechanisms
	2.2 Evaluation and Results
	2.3 Contributions
	2.4 Conclusion and Next Steps

	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 ClearScope
	3.1.1 System Design
	3.1.1.1 Provenance Events
	3.1.1.2 Provenance Tags
	3.1.1.3 System Design
	3.1.1.4 Provenance Propagation

	3.1.2 Provenance Formalization
	3.1.2.1 System definition
	3.1.2.2 Provenance tracking

	3.1.3 Java-Based Instrumentation Implementation
	3.1.4 Dynamic instrumentation
	3.1.5 Sources and sinks generation
	3.1.5.1 Binder
	3.1.5.1.1 How do we support these calls?
	3.1.5.1.2 Special Classes to support
	3.1.5.1.3 Parcel
	3.1.5.1.4 How tags are passed
	3.1.5.1.5 User-defined Parcelables
	3.1.5.1.6 AIDL Translation
	EXAMPLE:
	AIDL OUTPUT:

	3.1.5.2 Linux.java / Posix.java

	3.1.6 JNI interface
	3.1.6.1 Native methods

	3.1.7 Reflection
	3.1.8 Proxy Classes
	3.1.9 Reporting
	3.1.9.1 Protocol Buffers
	3.1.9.2 How tags are defined
	3.1.9.3 Sources (with read example)
	3.1.9.4 Sinks (with write example)

	3.1.10 Build environment
	3.1.10.1 Protocol Buffer Integration

	3.1.11 Array aggregation / deaggregation
	3.1.12 ART modifications
	3.1.12.1 Garbage collector
	3.1.12.2 Mirror classes
	3.1.12.3 Optimizations

	3.1.13 Upgrades to new Android versions
	3.1.13.1 Describe process and pain points
	3.1.13.2 Java 8
	3.1.13.3 Strings

	3.1.14 String (and Primitive Wrapper) interning
	3.1.15 SELinux
	3.1.16 Compatibility Test Suite (CTS) modifications and results
	3.1.17 Binary Tracking and Reporting Implementation
	3.1.17.1 Kernel Modifications
	3.1.17.1.1 Controlling tracing of system calls
	3.1.17.1.2 Tracing mechanism
	3.1.17.1.3 Kernel interfaces

	3.1.17.2 User-Level Design and Implementation
	3.1.17.2.1 Runtime linker (/system/bin/linker)
	3.1.17.2.2 Same-thread-tracing library (/system/lib/libcsblam.so)
	Constructor
	Syscall Procedures
	Dynamic memory allocation

	3.1.17.2.3 Provenance union
	3.1.17.2.4 Lang transitions
	3.1.17.2.5 Reporting
	3.1.17.2.6 Provenance Messenger (/system/bin/provmsgr)

	3.1.17.3 System Calls
	3.1.17.4 Whitelist
	3.1.17.5 Protections

	3.1.18 CDM Translation

	3.2 ELF – MIPS – LLVM
	3.2.1 Introduction
	3.2.2 Background
	3.2.2.1 CodeHawk Tool Suite
	CHIF
	Abstract Domains

	3.2.2.2 CodeHawk Binary Analyzer
	3.2.2.2.1 Disassembler
	3.2.2.2.2 Function Construction
	3.2.2.2.3 Translation into CHIF
	3.2.2.2.4 Variable Discovery

	3.2.3 Phase 1: ELF Support
	3.2.3.1 ELF Module
	3.2.3.2 Data Export
	3.2.3.3 Source-code Cross References
	3.2.3.4 Dnsmasq
	3.2.3.5 Deliverables

	3.2.4 Phase 2: MIPS Disassembler
	3.2.4.1 MIPS Module
	3.2.4.2 Python MIPS Module
	3.2.4.3 Dnsmasq
	3.2.4.4 Deliverables

	3.2.5 Phase 3: Translation into LLVM
	3.2.5.1 Basic Design Decisions
	3.2.5.2 LLVM Infrastructure
	Bitcode Reader
	Bitcode Generator

	3.2.5.3 LLVM TestCases
	Test programs
	Test specifications
	Results

	3.2.5.4 Deliverables

	4.0 RESULTS AND DISCUSSION
	4.1 ClearScope
	4.1.1 TC Engagements
	4.1.1.1 Engagement 1
	4.1.1.2 Engagement 2
	4.1.1.2.1 Bovia Scenario
	4.1.1.2.2 Pandex Scenario

	4.1.1.3 Engagement 3
	4.1.1.4 Engagement 4
	4.1.1.5 Engagement 5

	4.1.2 Performance Analysis
	4.1.3 Adups FOTA: Forensic Case Study
	4.1.3.1 24-Hour Exfiltration Cycle
	4.1.3.2 72 Hour Exfiltration Cycle
	4.1.3.3 Discussion

	4.2 ELF – MIPS – LLVM
	4.2.1 Analysis Results: x86 dnsmasq
	4.2.1.1 stripped
	4.2.1.2 not stripped
	4.2.1.3 comparison with source code

	4.2.2 Analysis Results: mips dnsmasq
	4.2.3 LLVM Infrastructure
	4.2.4 LLVM Test Cases
	4.2.5 Addition
	4.2.5.1 add_int_arg
	4.2.5.2 add_int_const
	4.2.5.3 add_int_one
	4.2.5.4 add_int_two

	4.2.6 Branch
	4.2.6.1 br_ge_const
	4.2.6.2 br_ge_zero

	4.2.7 Comparison
	4.2.7.1 ge_arg_arg (mips only)
	4.2.7.2 ge_arg_const (mips only)
	4.2.7.3 ge_arg_zero (mips only)

	4.2.8 Mixed expressions
	4.2.8.1 mixed_mul_plus

	4.2.9 Multiplication
	4.2.9.1 mul_int_arg (mips only)
	4.2.9.2 mul_int_const (mips only)
	4.2.9.3 mul_int_three
	4.2.9.4 mul_int_two

	4.2.10 Phi Expressions
	4.2.10.1 phi_ge_zero

	4.2.11 Pointer expressions
	4.2.11.1 ptr_add_arg
	4.2.11.2 ptr_add_const
	4.2.11.3 ptr_add_one
	4.2.11.4 ptr_load_const
	4.2.11.5 ptr_load_one
	4.2.11.6 ptr_load_zero
	4.2.11.7 ptr_store_const
	4.2.11.8 ptr_store_const_arg
	4.2.11.9 ptr_store_const_const
	4.2.11.10 ptr_store_one
	4.2.11.11 ptr_store_zero
	4.2.11.12 ptr_sub_arg
	4.2.11.13 ptr_sub_const
	4.2.11.14 ptr_sub_one

	4.2.12 Subtraction
	4.2.12.1 sub_int_arg
	4.2.12.2 sub_int_const
	4.2.12.3 sub_int_one
	4.2.12.4 sub_int_two

	5.0 CONCLUSION
	6.0 References
	7.0 List of Symbols, Abbreviations, and Acronyms
	CoverPage.pdf
	afrl-rY-wp-tR-2020-0013

	SF298.pdf
	REPORT DOCUMENTATION PAGE

	undefined:
	undefined_2:
	JOHN F CARR Chief:

