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1. Introduction 

Researchers at the US Combat Capabilities Development Command Army 
Research Laboratory recently performed a survey of pulse-identification techniques 
presented in the open literature. This effort represented the first step in the 
development of a capability to identify radar pulses without access to a priori 
information about the transmitting system. The final objective is to monitor a 
suspected radar’s behavior and note changes that might indicate an increased (or 
decreased) threat level. For example, a change in pulse width (PW) and/or pulse 
repetition interval (PRI) could signal a change from an acquisition mode to a track 
mode. If a vehicle under radar surveillance were to recognize this change, it could 
implement appropriate countermeasures.    

Many different approaches have already been proposed, some attempting to 
characterize pulse modulation and others attempting to characterize only PW and 
PRI. The majority of the modulation-estimation algorithms focus on classifying 
communications signals. The ones adapted for radar, however, usually require the 
preliminary determination of the radar’s carrier frequency. Some even require the 
presence of only the signal and noise samples from a single radar system. In these 
cases, a preprocessing stage must be included to extract the pulse data input to the 
modulation estimator.   

In what follows, we summarize many representative approaches to radar pulse 
detection and characterization found in the open literature. We restrict attention in 
this report to PW and PRI estimation algorithms, including (as part of PRI 
estimation) the pulse de-interleaving problem. A sister report addresses the 
identification of intra-pulse modulations present within a given pulse sequence. We 
begin in Section 2 with techniques for directly estimating PW. Section 3 describes 
representative approaches for estimating PRI based on autocorrelation and 
histogram techniques. Section 4 outlines other PRI estimation approaches based on 
detection statistics (features) and methods associated with them. These include 
clustering techniques and network-based approaches. A list of references is 
included at the conclusion of the report.  

2. Direct PW Estimation 

An accurate pulse detector and PRI estimator constitute critical parts of any pulse 
characterization algorithm. These pulse detection schemes can operate in the time 
domain, in the frequency domain, or in both via a spectrogram or other  
time–frequency transform. They must all, however, first reduce their processed 
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spectrum to a band centered about a particular carrier frequency. If the detector 
functions agnostically (i.e., without a priori information about the radar system), 
this carrier frequency must be extracted via preliminary surveys of the 
electromagnetic (EM) environment. Thus, the input data for all algorithms consist 
of a stream of pulses that occupy some bandwidth and exhibit either constant or 
variable PRIs. In the most general case, the PW and intra-pulse modulation may 
also vary.  

Many authors present approaches that operate directly on the time–domain pulse 
sequence. An appealing and intuitive approach incorporates a moving average filter 
and attempts to identify the transitions between low and high levels within the 
filter’s output stream.1–5 While Adam et al.3 describe the most straightforward 
implementation of a moving average of measured power, their methodology would 
not be readily transferable to an operational system. Ahmad et al. 4 employ a global 
threshold, based on the maximum amplitude of the smoothed (filtered) pulse, to 
extract pulse information. Their technique could be realized in an operational 
system. Several authors1,2,5 describe well-formulated systems exploiting the 
difference among outputs of spatial filters that have been displaced in time. Their 
approach is based on edge-detection concepts, and their difference of boxes reduces 
to a slightly modified application of a Haar filter. Rather than computing a bipolar 
filter output directly, Fan et al.5 calculate normalized moving averages within two 
boxes in an effort to simplify the threshold selection process. Their final edge 
detection statistics are defined as   

 𝑦𝑦(𝑘𝑘)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �∑ |𝑆𝑆(𝑢𝑢)+𝑁𝑁𝜎𝜎(𝑢𝑢)|𝑘𝑘
𝑢𝑢=𝑘𝑘−𝑁𝑁+1
∑ |𝑆𝑆(𝑣𝑣)+𝑁𝑁𝜎𝜎(𝑣𝑣)|𝑘𝑘−𝑁𝑁−1
𝑣𝑣=𝑘𝑘−2𝑁𝑁

� (1a) 

 𝑦𝑦(𝑘𝑘)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 = � ∑ |𝑆𝑆(𝑣𝑣)+𝑁𝑁𝜎𝜎(𝑣𝑣)|𝑘𝑘−𝑁𝑁−1
𝑣𝑣=𝑘𝑘−2𝑁𝑁

∑ |𝑆𝑆(𝑢𝑢)+𝑁𝑁𝜎𝜎(𝑢𝑢)|𝑘𝑘
𝑢𝑢=𝑘𝑘−𝑁𝑁+1

� (1b) 

where N is the size of each box, k is the test index, and S(u) and Nσ(u) represent, 
respectively, the signal and noise components of the measured pulse data. Note that, 
since the summation runs from k – 2N to k, the algorithm will detect a rising or 
falling edge after a lag of N samples. It should be noted this technique can be 
applied either in the time domain or in the frequency domain (e.g., in conjunction 
with a short-time Fourier transform [STFT] to locate the edges of the signal band). 
Liu et al.2 outline just such an approach that combines the STFT and edge detection 
to extend PW estimation accuracy to lower signal-to-noise ratios (SNRs). Here, an 
additional frequency-domain constant false-alarm rate algorithm must be applied 
to extract the pulse’s spectral content.2,5 We note this modified approach could, 
potentially, enable detection of multiple, simultaneous pulses if they are sufficiently 
separated in frequency.   
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3. Autocorrelation and Histogram-Based PRI Estimators  

Other popular time-domain algorithms for pulse characterization leverage various 
auto-correlation techniques.6–10 These approaches have been known for some time,6 
and they often form part of a larger PRI and/or pulse estimation strategy. For 
example, Schmidt6 considers the un-normalized autocorrelation of a thresholded 
pulse sequence (i.e., comprising ones and zeros), and transforms it into the PRI 
domain. This representation assigns a single value summarizing the number of 
pulses observed with each particular pulse spacing. Hence, both multiple PRIs and 
harmonics of the finer-spaced PRIs would both be evident. Nelson7 compiles 
several correlation functions designed to track radar video sync pulses. Among 
these, the cross-power spectrum estimator seems to be the most promising—in 
particular for a single, non-jittered PRI. Chan et al.8,9 perform an initial auto-
convolution of the pulse envelope to get a coarse estimate of the pulse location. 
They next perform convolutions of the entire pulse with the left and right halves of 
the pulse to get a finer estimate of PW and time of arrival (TOA). While they could 
extend the technique to obtain an estimate of the PRI, they do not discuss this 
potential application. The approach, although interesting, requires estimates of 
additional parameters and may not be practical to implement. Nishiguchi and 
Kobayashi10 use the autocorrelation function as a baseline and define a complex 
PRI transform,  

𝐷𝐷(𝜏𝜏) = � � 𝛿𝛿(𝜏𝜏 − 𝑡𝑡𝑟𝑟 + 𝑡𝑡𝑚𝑚)exp (2𝜋𝜋𝜋𝜋𝑡𝑡𝑟𝑟 𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑚𝑚⁄ )
𝑟𝑟−1

𝑚𝑚=0

𝑁𝑁−1

𝑟𝑟=1

 

which for a single pulse train with PRI p becomes:  

𝐷𝐷(𝜏𝜏) = (𝑁𝑁 − 1)𝛿𝛿(𝜏𝜏 − 𝑝𝑝) exp(𝜋𝜋2𝜋𝜋𝜋𝜋) + ∑ 𝛿𝛿(𝜏𝜏 − 𝑙𝑙𝑝𝑝)𝑁𝑁−1
𝑓𝑓=2

sin (𝑁𝑁𝑁𝑁/𝑓𝑓)
sin (𝑁𝑁/𝑓𝑓)

exp �𝑁𝑁𝑟𝑟(𝑁𝑁−1+2𝜂𝜂)
𝑓𝑓

�,      (2) 

versus the expression for the autocorrelation function:  

𝑪𝑪(𝝉𝝉) = (𝑵𝑵 − 𝟏𝟏)𝜹𝜹(𝝉𝝉 − 𝒑𝒑) + ∑ (𝑵𝑵 − 𝒍𝒍)𝜹𝜹(𝝉𝝉 − 𝒍𝒍𝒑𝒑)𝑵𝑵−𝟏𝟏
𝒍𝒍=𝟐𝟐   (3) 

Here, 𝑡𝑡𝑟𝑟 = (𝑛𝑛 + 𝜋𝜋)𝑝𝑝, 𝑛𝑛 = 0, 1, 2, …𝑁𝑁 − 1 are the pulse arrival times, and 𝜋𝜋 is a 
constant used to define the phase of a pulse train. This phase is defined by 𝜃𝜃 =
2𝜋𝜋𝜋𝜋 mod (2𝜋𝜋) , which for the single pulse train with PRI p = tn – tn–1 becomes 

 𝜃𝜃 = (2𝜋𝜋𝑡𝑡𝑟𝑟 (𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑟𝑟−1)⁄ ) mod (2𝜋𝜋) , (3a) 

providing a link back to the value of η. Plots of D(τ) and C(τ) are provided in the 
paper for a sequence of pulses with three different PRIs, and they indicate the 
effectiveness of the approach. The authors next note that severe problems arise 
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when the PRIs experience only a small amount of jitter. They proceed to present a 
modification to address the problem and evaluate it using simulated data. Results 
are promising, but are not compared with results from other algorithms also 
designed to address the jitter problem. These alternative approaches attack the 
problem in stages, rather than attempting to eliminate errors as part of an initial data 
transformation.  

After an algorithm has grouped pulses into candidate PRIs, it often performs 
additional processing to eliminate errors due to aforementioned timing jitter and 
other effects. Histogram-based techniques represent powerful tools for addressing 
this problem, and many authors have incorporated them into their PRI-estimation 
paradigms.11–16 This is particularly true for algorithms relying exclusively on TOA 
to perform pulse de-interleaving. And, the authors of several works11, 13–16 also 
begin with a thresholded pulse sequence, consisting of only 1s and 0s. They next 
calculate histograms of the sequential differences between TOAs, observing that 
this output corresponds to an autocorrelation output. For a single (perfect) pulse 
stream with PRI = p, the histogram and autocorrelation function will have peaks at 
kp where k is a positive integer. Similarly, if two pulse streams with PRI = p are 
interleaved with offset = q, the histogram will have large peaks at kp, and smaller 
peaks at kq and k(p – q). To increase computational efficiency, Mardia11 introduces 
a procedure for calculating the cumulative difference histogram, as follows:  

1) Calculate the histogram of the difference between adjacent TOAs. That is 
calculate ti+n – ti for ti , ti+n elements of the TOA sequence, and n = 1.  

2) Identify differences with histogram values above a threshold.  

3) Tag this as a PRI value and eliminate those samples from future 
consideration.  

4) Repeat Steps 1–3 for n ≥ 2 until all samples are exhausted or a stopping 
criterion has been satisfied.  

This author also incorporates a weighted two-pass difference to deemphasize 
widely spaced, short bursts of contiguous pulses. That is, given a common PRI, the 
weighting scheme would favor a longer burst of contiguous pulses followed by a 
longer contiguous non-transmission interval over multiple, short bursts of 
contiguous pulses interspersed with shorter “dead” intervals. Milojevic and 
Popovic13 introduce methods for determining optimum threshold values and 
guarding against the selection of PRI harmonics instead of the true PRI. By 
considering a Poisson distribution, they obtain an exponential form for the 
threshold as a function of histogram bin. Xi et al.14 modify the approaches to the 
sequential search and threshold adjustment presented in earlier work and present 
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results obtained using simulated data. Their simulation included three radar systems 
transmitting different PRIs—two of the PRIs constant and one of them jittered by 
5% to 10%. Liu and Zhang15 describe the sequential difference approach and its 
shortcomings in some detail. They then propose a clustering scheme to raise 
histogram values that are artificially low due to jitter. They also incorporate the PRI 
transform presented by Nishiguchi and Kobayashi.10 Finally, Ge et al.16 introduce 
the Multi-Level time-difference of arrival (TDOA) histogram. They describe both 
the algorithm and the threshold selection method in detail, providing both 
pseudocode and flowchart depictions of the algorithm flow.  

Many of the above approaches attempt to exploit specific characteristics of the 
pulse stream to estimate other characteristics, in particular PW and/or PRI. These 
observations can then be used to associate a set of pulses with a potential threat 
radar. Some approaches, however, exploit multiple statistics (available from the 
receiver system) to calculate a set of features.17–23 These features then serve as input 
to a PRI estimator or, in some cases, an emitter classifier. In some cases, the data 
stream itself serves as the input and the decision network extracts the features 
necessary to perform PRI estimation.  

4. Feature-Based PRI Estimators and Clustering Techniques  

Song et al.17 note that a critical piece of the PRI estimation problem resides in 
correct identification of PRI modulation. They consider TOA estimates and define 
a difference of PRIs (DPRI) to be  

 d(i) = (ti+2 – ti+1) – (ti+1 – ti), 

where ti represents the time of arrival of pulse i. Note that some sort of preliminary 
processing is required to determine these values.  

The DPRI sequence is then transformed into a symbol sequence, sd(i), according 
to,  

𝑠𝑠𝑑𝑑(𝜋𝜋) = �
0,𝑑𝑑𝑚𝑚𝑟𝑟𝑟𝑟 ≤ 𝑑𝑑(𝜋𝜋) < −𝜀𝜀

1, −𝜀𝜀 ≤ 𝑑𝑑(𝜋𝜋) < +𝜀𝜀 
 2, +𝜀𝜀 ≤ 𝑑𝑑(𝜋𝜋) < 𝑑𝑑𝑚𝑚𝑓𝑓𝑚𝑚

 

This symbol sequence then constitutes the input to multiple feature calculators, 
each determining whether the PRI belongs to a specific modulation class. The first 
of these calculates the Shannon entropy of the symbol sequence, and this feature 
detects if jitter is present. The second calculator determines the sample kurtosis and 
uses it to segregate out “wobulated” modulation. The final feature uses normalized 
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second-order sample moment to distinguish between constant PRI and PRIs that 
monotonically increase or decrease across a specified time interval.     

Liu and Cui18 create a feature vector comprising TOA, carrier frequency, PW, and 
direction of arrival (DOA). They then cluster these features using an adaptive 
approach that does not require prespecification of the number of clusters. Each of 
the output clusters then represents a radar with the indicated pulse parameters.  

Guo et al.,19 like Song et al.,17 also use higher-order statistics as well as Shannon 
entropy. They also assume that noisy radar signals can be modeled as fractals, 
exhibiting fractal geometric patterns. Hence, they include fractal dimension as part 
of the feature vector. This vector is then used as input to a K-nearest-neighbors 
clustering algorithm, and the output clusters indicate emitters with designated 
characteristics. Wilkinson and Watson20 employ a 2-D clustering technique based 
on both DOA and carrier frequency. A table of candidate emitters is maintained, 
and the distance between table entries and the new data samples is maintained.   

Several authors21–23 also describe clustering techniques of different types. Scherreik 
and Rigling21 outline a Bayesian approach that requires no prespecification of the 
number of clusters. It adjusts the number of clusters dynamically based on the 
Chinese Restaurant Process and its critical parameter α. Here, the probability that 
a new data sample is assigned to specific cluster is defined by  

𝑝𝑝(𝑧𝑧𝑟𝑟 = 𝑘𝑘|𝒵𝒵𝑟𝑟) ≜ �

𝑁𝑁𝑟𝑟𝑘𝑘

𝛼𝛼 + 𝑁𝑁 − 1
,𝑘𝑘 = 1,2, … ,𝐾𝐾

𝛼𝛼
𝛼𝛼 + 𝑁𝑁 − 1

,𝑘𝑘 > 𝐾𝐾
 

where, 𝒵𝒵𝑟𝑟 is the set of clusters with at least one element without counting element 
n, and 𝑁𝑁𝑟𝑟𝑘𝑘  is the count of cluster elements in each cluster, without counting 
element n. To improve adaptability and speed of execution, the authors define a 
“minibatch” to be a subset of the entire data stream that is buffered and processed 
by the clustering routine. Monte Carlo results are presented to illustrate 1) a 
decrease in the execution time relative to an adaptive approach and 2) an increase 
in performance (with a slight increase in run time) relative to the standard K-means 
approach. Liu et al.22 use the minimum description length to group predefined 
feature vectors into clusters. Here, some knowledge of pulse location is necessary, 
because feature vectors are created by sampling the complex data at regular 
intervals, T. If pulses are present, then these samples are assumed to come from 
them. Ata’a and Abdullah 23 also define features based on outputs from a 
preliminary detection algorithm to segregate pulses into sets of signals transmitted 
by different radars. The first stage of their detection procedure leverages a  
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well-documented clustering technique, the Fuzzy ART network, to perform a  
de-interleaving operation. The feature vector for this stage comprises quantities 
extracted from the pulse description words (PDWs) of candidate pulses, namely the 
DOA and the signal RF information. After pulses have been de-interleaved 
(clustered), the resulting cluster elements are further processed to obtain PRI 
estimates.    

Tang et al.24 perform initial preprocessing in an attempt to identify missing pulses, 
and they are the only ones within this survey to address the problem in this way. 
Their heuristic, however, may introduce additional problems under more general 
operating conditions. They define three physics-based, yet intuitively pleasing, 
features based on differences between estimated PRIs. That is, the authors denote 
the detected PRI sequence by  

 𝐹𝐹(𝑛𝑛) = �

PRI1,𝑛𝑛 =  1, 2,⋯ ,𝑁𝑁1

PRI2,𝑛𝑛 =  𝑁𝑁1 +  1,⋯ ,𝑁𝑁1 +  𝑁𝑁2

⋮
PRI𝑚𝑚,𝑛𝑛 =  𝑁𝑁𝑚𝑚 −  1 +  1,⋯ ,𝑁𝑁𝑚𝑚 −  1 +  𝑁𝑁𝑚𝑚

 ,    

where PRI1, PRI2⋯PRIm represent the m values in a PRI sequence, while N1, 
N2⋯Nm represent the number of pulses. They then define their features using the 
PRI difference sequence 𝐷𝐷(𝑛𝑛)  =  𝐹𝐹(𝑛𝑛 +  1)  −  𝐹𝐹(𝑛𝑛),𝑛𝑛 =  1, 2,⋯ ,𝑁𝑁 –  1 .  

These features are defined as 

1) 𝑓𝑓1  = Num(𝐷𝐷(𝑟𝑟) ⋅ 𝐷𝐷(𝑟𝑟 + 1) < 0)
𝑁𝑁 − 1

, 𝑛𝑛 =  1, 2,⋯ ,𝑁𝑁 −  2, where Num(∙) 
indicates the number of n that satisfy the condition in the parentheses.  

2) 𝑓𝑓2 = ∑ 𝑠𝑠2(𝑛𝑛)/(𝑁𝑁 − 1)𝑁𝑁−1
𝑟𝑟=0    , where 

𝑠𝑠(𝑛𝑛) = �
−1,𝐷𝐷(𝑛𝑛) < −𝜀𝜀
    0, | 𝐷𝐷(𝑛𝑛)| ≤ 𝜀𝜀
+1,   𝐷𝐷(𝑛𝑛) > 𝜀𝜀

  

3) 𝑓𝑓3 = ∑ 𝑆𝑆𝑆𝑆(𝑘𝑘)
𝑡𝑡(𝑘𝑘)

𝑁𝑁−1
𝑘𝑘=1   , where  

𝑆𝑆𝑝𝑝(𝑘𝑘) = ∑ 𝑟𝑟(𝑟𝑟)
𝑁𝑁−1

,𝑘𝑘 = 1,2 … ,𝑁𝑁 − 1𝑘𝑘
𝑟𝑟=1  and   

𝑡𝑡(𝑘𝑘) = �𝑘𝑘,𝑘𝑘 ≥ 0
0,𝑘𝑘 < 0     

The authors select a decision tree to decide which PRI is present in the input data 
stream. Their test data include various PRI configurations, but they do not include 
any examination of the effects of SNR.  
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Cain et al.25 and Li et al.26 both use neural networks (NNs) to address slightly 
different problems. Cain et al.25 first define a 3-D feature vector based on the natural 
logarithms of the PW, the PRI and the (RF) carrier frequency of each detected pulse 
in a sequence. These features are first normalized to the interval [0,1]; they then 
serve as inputs to a convolutional NN (CNN). Since this method uses supervised 
learning, it requires both full knowledge of the emitter types to be encountered and 
a large amount of training data. The approach of Li et al.,26 also based on the CNN, 
is subject to the same limitations as the approach of Cain et al.25 Here, however, the 
authors only attempt to identify certain PRIs by inputting the raw data stream. That 
is, the authors do not attempt to extract specific features to use as input.   

While searching for various PW and PRI estimation strategies, we also uncovered 
some techniques that did not fit nicely into the broad categories described 
previously. One of these approaches considers a relatively short Fast Fourier 
Transform and directly analyzes the frequency domain representation of a pulse 
chain.27 The authors essentially perform a STFT and evaluate the spectrum at each 
location. When multiple pulses are present within the STFT window, then estimates 
of both PW and PRI can be obtained based on the spectral content of a rectangular 
pulse train. A preliminary two-filter input stage attempts to improve the system 
response, based on an assumed range of pulse parameters. A constant PRI was 
assumed throughout the duration of the STFT (five PRIs). Another approach 
modelled the received signal as the sum of independent contributions (signals) from 
multiple sources.28 This enabled the author to analyze the interpulse covariance 
matrix, and apply information theoretic concepts to estimate the number of emitters 
without having to first estimate and associate PRIs.    

5. Summary and Conclusion 

We have provided a brief overview of various techniques available for estimating 
PW and PRI. We began with methods for directly estimating PW through the 
implementation of specialized finite impulse response filters. Following that, we 
presented autocorrelation-based algorithms that could provide a PW estimate as a 
byproduct of estimating PRIs. Some authors observed how methods based on 
histograms of TOA differences (i.e., potential PRI values) were similar to certain 
autocorrelation formulations, and they described various adaptations of the 
histogram paradigm. Some authors formulated specialized transforms to highlight 
the presence of PRIs and perform a degree of de-interleaving.   

Some authors exploited TOA differences and other properties of the pulse sequence 
to create vectors of detection features. These features, when properly normalized, 
could then be input to clustering algorithms to associate pulses assumed to originate 
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from the same radar system. Other feature-based approaches included NN 
implementations—one CNN operating on a predefined feature set, while another 
operated on the raw input data.  

We have provided citations for all of the algorithms described in this report. These 
references also include additional citations for the interested reader to expand 
horizons even further. This is by no means a comprehensive list; our intention has 
been to provide an introduction that could guide the initial steps into a rich area of 
current research.     
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional 

3-D 3-dimensional 

CNN convolutional neural network  

DOA direction of arrival 

DPRI difference of pulse repetition intervals 

EM electromagnetic  

NN neural network 

PDW pulse description word 

PRI pulse repetition interval 

PW pulse width 

RF radio frequency 

SNR signal-to-noise ratio 

STFT short-time Fourier transform 

TDOA time-difference of arrival 

TOA time of arrival 
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