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Abstract 

 This research compares the ability of two granular activated carbons (GAC) from 

different material sources to adsorb perfluoroalkyl substances (PFAS) in deionized water. 

A bottle study design was used to conduct the research, which measured the reduction in 

perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). The carbons 

used were the bituminous coal based Calgon Filtrasorb 600 (F600) and the coconut shell 

based Evoqua AquaCarb 1230CX (AC1230CX). Additionally, the research focused on 

the rates at which the two contaminants were removed and compared them to previous 

research conducted with different forms of GAC. Results showed that both GACs were 

capable of reducing the concentration >95% for both PFOS and PFOA, and that the more 

sustainable and cheaper Evoqua AC1230CX was able to compete with a bituminous coal 

based carbon. Additionally, PFOS was removed more quickly than PFOA, showing a 

preference to perfluoroalkane sulfonic acids (PFSA) over perfluorocarboxylic acids 

(PFCA) similar to that which has been observed in previous research.  
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COMPARISON OF THE PFAS ADSORPTION CAPABILITIES OF A 
COCONUT SHELL BASED GRANULAR ACTIVATED CARBON AND A 

BITUMINOUS COAL BASED GRANULAR ACTIVATED CARBON 
 

I. Introduction 

General Issue 

 Per- and polyfluoroalkyl substances (PFAS) make up a class of anthropogenic, or 

man-made, chemicals that have been utilized for a wide variety of industrial processes 

since their development in the 1940s (EPA, 2018a). Their use in textile manufacturing, 

non-stick coatings, and stain resistant materials, among other applications, has led to their 

ubiquitous presence in environmental media throughout the world. This presence has 

resulted in significant contamination of water supplies in areas that are home to the 

manufacturing or use of these products. In addition to these commercial uses, PFAS 

compounds, most prevalently perfluorooctanoic acid (PFOA) and 

perfluorooctanesulfonic acid (PFOS), have been identified as reliable components of 

high-intensity fire suppressants. This quality has led to manufacturers of the firefighting 

agent aqueous film forming foam (AFFF) to include PFAS in their blends. This 

characteristic is due to the chemical composition of PFAS. A PFAS molecule has two 

parts: a head and a tail. The tail of the molecule is composed of carbon-fluorine bonds 

and is hydrophobic (repulsed by water). The makeup of the head is dependent on the type 

of PFAS concerned but is made of a functional group. This functional group is 

hydrophilic (attracted to water). This composition can be seen in Figure 1-1, specifically 

of a PFOA molecule. This molecular makeup makes PFAS particularly useful against 

Class-B hydrocarbon fires. The combination of the hydrophilic and hydrophobic 

qualities, as well as the surface tension lowering qualities of the surfactants, cause the 
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AFFF to move to the air-liquid interface and effectively suffocate the fire (Pabon & 

Corpart, 2002; Korzeniowski, Buck, Kempisty, & Pabon, 2018).  

Despite the obvious desirable qualities of a compound that is capable of providing 

such wide-ranging benefits, PFAS present several problems that have come under 

significant scrutiny. The first is that PFAS are bioaccumulative. This means that the 

compounds accumulate in organisms because they are persistent and do not readily 

decompose. They can easily enter the body and they are expelled slowly. This 

characteristic increases with the length of the carbon chain so that long-chain PFAS are 

more worrisome than short chain variants (Dauchy, 2019; ATSDR, 2018). Long chain 

PFAS are defined by the type of PFAS. Perfluoroalkane sulfonic acids (PFSAs, such as 

PFOS and perfluorohexane sulfonic acid (PFHxS)) with a carbon chain length of six or 

more are considered long-chain. On the other hand, perfluorocarboxylic acids (PFCAs, 

such as PFOA) with a carbon chain-length of eight or more are deemed long-chain 

(FluoroCouncil, 2019). Studies showing that apex predators within food chains, such as 

polar bears, had the highest concentrations of PFAS also indicate that these compounds 

biomagnify, increasing the risk of toxicological effects to these species (ATSDR, 2018). 

This is consistent with the bioaccumulation issue identified.  

Figure 1-1: Diagram of a PFOA Molecule 
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Bioaccumulation of PFAS in organisms is concerning due to the evidence of toxic 

effects surrounding these chemicals. Toxicological data for PFAS compounds has been 

gathered for some time now, with studies dating as early as 1980. After over 70 years of 

use in various industries, it is becoming increasingly evident that some PFAS compounds 

readily absorb into the tissues of humans in a manner similar to the other mammals 

studied (Whittaker & Heine, 2018). The focus of many of these studies is currently on 

long-chain PFAS that break down and metabolize at slower rates, as compared to the 

short-chain PFAS which, although they persist in the environment, are not thought to 

accumulate in mammals to the extent of the long-chain variants (Klein & Braun, 2018; 

Rice, 2018; Whittaker & Heine, 2018; ATSDR, 2018). Many of the studies have focused 

on the effects identified in laboratory rodents and other mammals, although some 

epidemiological studies have been conducted on humans as well. While the 

epidemiological studies are able to focus on the effects borne out in humans without the 

uncertainty of extrapolation from rodents to humans, the rodent toxicological studies can 

identify and isolate the effects thought to be caused by PFAS exposure with fewer 

confounding factors. The human body systems that are of most concern, according to the 

Agency for Toxic Substances and Disease Registry (ATSDR), are the liver and immune 

systems, as well as effects on the development of young children. Additional effects are 

suspected in the reproductive system and the thyroid. Finally, there is concern over the 

carcinogenicity of PFAS compounds (Klein & Braun, 2018; Rice, 2018). 

While water treatment plants are able to remove many organisms and chemicals 

from drinking water supplies, PFAS compounds are not effectively removed through 

conventional water treatment techniques. These techniques include coagulation, 
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flocculation, activated sludge, sedimentation, ultraviolet (UV) technology, and others. 

Their low reactivity, which makes PFAS so useful in numerous applications, is 

responsible for this quality. It is also this characteristic that makes them so persistent in 

the environment (Darlington, Barth, & McKernan, 2018). This attribute has made it 

particularly difficult for public water systems (PWS) to eliminate PFAS to the level of 

newly instituted Health Advisory Levels (HALs) imposed by the United States 

Environmental Protection Agency (EPA). A HAL is non-regulatory in nature and is an 

attempt to institute some form of limit on emerging contaminants. This intermediate step 

is necessary to give guidance and protect the public during the lengthy process which is 

taken to impose final regulatory limits, called Maximum Contaminant Levels (MCLs). 

Although they are non-regulatory, HALs often affect the mindset of the relevant 

population in a similar manner, and populations typically expect their PWS to take action 

to reduce the contaminant anyway. Additionally, government authorities may still take 

action to prevent further harm to populations affected by the contaminant, as illustrated 

by the case of PFOS and PFOA contamination at Wright-Patterson Air Force Base. In the 

case of these two chemicals, final HALs were established on May 19, 2016. The next 

day, the Ohio EPA sent a letter to Wright-Patterson Air Force Base mandating immediate 

shut down of several wells that were known to be contaminated with PFOS and PFOA, in 

addition to other actions such as the provisioning of other sources of water and issuance 

of a drinking water advisory (Brannon, 2018). 

 Other agencies have also promulgated alternative levels to the EPA’s 70 parts per 

trillion (PPT). These alternative levels are not inconsequential, such as the ATSDR’s 

Minimum Risk Level (MRL) of 7 ppt, a reduction that is one-tenth of the EPA’s HAL 
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(ATSDR, 2018). While it should be noted that this MRL is still in draft form and 

awaiting further review, this sharp reduction in one agency’s recommended level is 

indicative of the ongoing research and the uncertainty surrounding effects of PFAS on 

human health. 

These issues of low-reactivity and new guidelines present an obvious problem for 

PWSs, regulators, or anyone concerned about drinking water supplies being contaminated 

with these compounds. If conventional methods do not work, what will? Much research 

has been conducted looking at Granular Activated Carbon, or GAC. GAC is a common 

adsorbent used to treat a wide variety of contaminants in water. These can include both 

natural and synthetic organic compounds, and compounds that cause taste or odor in the 

water. Adsorption is a process by which the chemical and physical properties of the 

adsorbent attract another compound. This causes the targeted compound to accumulate on 

the surface, or at the interface between the solid and liquid phases. GAC is commonly 

used due to its porosity, and therefore large surface area, lending itself to accumulate high 

amounts of contaminants (EPA, 2007).  

GAC is produced by numerous companies but is typically produced in a similar 

fashion. Utilizing materials that contain high carbon content (i.e. wood, peat, coal, 

coconut, etc.), the producer slowly heats the source with little oxygen. This process 

allows for the material to be dried out, as well as removes any impurities that are left in 

the carbon. The result is a material known as char. At this point, char is processed using 

various chemical and physical processes which increase the surface area and the 

adsorption capacity of the carbon. These processes also increase the binding capability of 
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the GAC and can be modified for specific contaminants that are present in the targeted 

water (Oxbow, 2015). 

Problem Statement 

PFAS presence in the environment and humans is prolific throughout the United 

States and globally. According to the EPA, between 1999 and 2001, a study using a 

sample population indicative of the United States population at large found that 99% of 

the people tested had detectable levels of PFOS and PFOA in their blood serum (EPA, 

2019a). Due to the low reactivity of PFAS and the inefficiency of conventional water 

treatment techniques, alternative methods to purifying PFAS-contaminated water have 

been researched, to include GAC. 

Other research has focused on comparing the efficiencies of different types of 

GAC. Because GAC can be derived from a variety of sources, characteristics such as the 

porosity, pore size, and surface area can vary between specific GACs. This makes some 

GACs more suitable to removing specific compounds (Water Quality Association, 2013). 

Past research has shown that virgin bituminous coal based GAC is more effective at 

removing PFAS from water than GACs derived from other sources. Specifically, Calgon 

Filtrasorb ® 600 was shown to outperform three other GAC products in the adsorption of 

PFOS (Schmidt, 2017).   

Two of the main issues that arise when selecting a GAC to proceed with in a 

water treatment system are cost and renewability of the resource. The cost of the selected 

GAC is something that will affect the water treatment system on a recurring basis as the 

carbon must be replaced when it becomes saturated and fouled. This fact affects the 

financial bottom line of any system, whether it is a private or government run entity. 



7 

Therefore, the most cost-effective GAC that can still perform well is likely to be 

preferable.  

In addition to the question of cost, the renewability of a resource is increasingly 

becoming a significant aspect of decision making. As citizen groups and leaders continue 

to focus on the effects that certain activities and the use of resources have on the 

environment and sustainability, research should focus on finding solutions that fit within 

the boundaries of what is sustainable. Therefore, in the search for the most effective and 

efficient GAC, research should focus efforts on GAC that is sustainable. 

This research will compare two different types of GAC: one produced from 

coconut shell, and one from bituminous coal. This research differs from the past research 

done by Schmidt because of the use of the newly enhanced coconut shell-based carbon 

from Evoqua, AC1230CX. The broad marketing claim from Evoqua suggests that its 

product is capable of competing with the traditionally more efficient coal-based carbons 

when it comes to purifying water contaminated with organic compounds, such as PFAS 

(Evoqua, 2017). This may have effects in future research and application due to the 

sustainability of coconut based GAC versus coal based GAC, as well as the cost of 

implementing a GAC system. 

Methodology 

 This study utilized a bottle study setup to determine the effectiveness of two 

different GACs on two PFAS compounds. Solutions consisting of PFAS and deionized 

water were placed into centrifuge tubes, along with GAC, and rotated on an automatic 

tumbler. At various time intervals, the tubes were removed from the tumbler and 

centrifuged to separate the solution from the GAC. The remaining solutions were 
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decanted to separate the solution containing the analyte from the carbon. Experiments 

were designed to determine the effectiveness of the GAC’s adsorption capability on the 

reduction of PFAS in the water at time intervals ranging from 15 minutes to 24 hours. 

 Samples from the bottle studies were transported to the Environmental Protection 

Agency (EPA) laboratory in Cincinnati, Ohio. There, they were analyzed for 

concentration of PFAS and compared to the starting concentration, or C0, which was also 

analyzed. The analysis of the samples followed the EPA’s Method 537, which is the 

process of determining concentrations of select PFAS in water. Specifically, this method 

uses solid phase extraction and liquid chromatography/tandem mass spectrometry 

(LC/MS/MS) to determine concentrations (Shoemaker & Tettenhorst, 2018). 

Research Objectives and Hypotheses 

 This research is focused on understanding the capabilities of coconut-based GAC 

compared to a bituminous coal based GAC that has been utilized in earlier studies 

(Schmidt, 2017). There are three research objectives associated with this study. 

Research Objective One 

The first research objective is to determine whether one carbon is more efficient 

at reducing the amount of PFAS in a deionized water source. The hypothesis associated 

with this research objective is that there will not be a significant difference between the 

coconut shell-based Evoqua AC1230CX and previously more efficient Calgon 

Filtrasorb® 600. While Schmidt found that the F600 outperformed the other GACs in his 

study, AC1230CX was not available at that time and was not tested (Schmidt, 2017). 

Evoqua claims that this newly enhanced carbon is capable of competing with traditional 

bituminous coal-based carbons in the adsorption of organic compounds (Evoqua, 2017). 



9 

This research will compare the concentration at different time intervals with the initial 

concentration (C/C0) for both carbons and with both PFAS compounds to determine if 

there is significant difference.  

Research Objective Two 

The second research objective is to determine whether the PFOS or PFOA is 

removed at a more rapid rate. The hypothesis is that the PFOS will be removed at a more 

rapid rate due to previous research. Multiple studies have shown that PFOS sorbs to GAC 

at a higher rate, potentially due to the sulfonic functional group of the PFSA creating a 

greater electrostatic effect when compared to the carboxylic functional group found on  

the perfluorinated carboxylic acid PFOA. This electrostatic effect generates a higher 

attraction between the PFAS compound and the carbon adsorbent when compared to the 

Van der Waals forces typically associated with adsorption (Appleman et al., 2014; 

McCleaf et al., 2017).  

This research objective leads to another hypothesis regarding the removal of the 

compounds when they are mixed into one solution. Based on the aforementioned 

research, the hypothesis is that a higher rate of removal will be seen for the PFOS in the 

mixture. Due to the competition between the two compounds for adsorption sites, this 

will likely decrease the amount of PFOA removed when compared to the solution with 

just PFOA (Appleman et al., 2014; McCleaf et al., 2017).   

Assumptions, Scope, and Limitations 

 This study assumed that the results from the methods used will be applicable to a 

full-scale treatment system. There are differences in kinetics of a full-scale system and a 

bottle study. This has much to do with the fact that tin a full-scale, fixed bed system, the 
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carbon is packed together. This reduces the amount of surface area. The assumption is 

that this change would affect both carbons equally, and thus the results from this bottle 

study will still apply. Results of the tests, and comparisons between the Calgon 

Filtrasorb-600 bituminous coal-based GAC and Evoqua AC1230CX coconut shell-based 

GAC, can therefore be carried forward with future research into PFAS treatment and 

remediation. Additionally, this study utilized one source of water, which was deionized. 

Future research should be mindful of this fact with future studies that involve water 

sources with different matrices. These sources will not be as pure and may have co-

contaminants in them which will likely compete with the PFAS for adsorption sites. 

 The scope of this study focused solely on water treatment techniques. While the 

contamination of water, in particular drinking water, is of great concern to the community 

of researchers investigating the problem, PFAS is also a contaminant of concern in soils 

and air worldwide (EPA, 2019b). This research was also focused on the evaluation and 

comparison of two GAC sources: the bituminous coal-based Calgon Filtrasorb-600 and 

the coconut shell-based Evoqua AC1230CX. Filtrasorb 600 was chosen due to a study 

conducted by Christopher Schmidt in 2017 which showed that it outperformed three other 

GAC sources in remediation of PFOS and AFFF. On the other hand, the coconut-based 

carbon was chosen due to new innovations in its design that are reported by Evoqua to 

have drastically increased its ability to adsorb various organic contaminants (Evoqua, 

2017). Finally, while there are numerous PFAS present in soil, water, and air, this study 

focused on the ability of the two selected GACs to adsorb two of the more prevalent 

PFAS: PFOS and PFOA. Each of these is considered a long-chain PFAS, which are 

persistent in the environment, bioaccumulative, and toxic to humans. These are also two 
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of the common PFAS in legacy, military standard (MILSPEC) AFFF, and are thus the 

focus of significant attention within the DOD (ITRC, 2018). 

 Finally, this study faced some inherent limitations due to the equipment and 

substances used. While these limitations will be discussed in detail in Chapter Four, a 

broad understanding of them here will be useful to the reader. The first limitation came 

from errors induced by the equipment. Although each piece of equipment used to 

measure volume or mass was within its calibration period, the allowable ranges of 

precision and accuracy led to various levels of potential error. This was compounded by 

the fact that the volumes and masses of GAC and PFAS were small, and therefore the 

error could have been a larger percentage.  

 Other error was introduced by the substances themselves. In particular, the PFOS 

that was used was a technical grade PFOS (T-PFOS) obtained from Sigma-Aldrich. A 

substance that is labeled as “technical grade” has a specified range of purity that is 

allowable. In this instance, the certificate of analysis (COA) obtained from the Sigma-

Aldrich website states that the range of concentration for their T-PFOS is 35%-45% 

weight-to-weight in water (Sigma-Aldrich, 2018). For the purposes of this study, the 

midpoint of the range was used, and the concentration was assumed to be 40%. 

Measurements were made accordingly. In contrast, the study used a form of PFOA that 

was 96% concentration and not considered technical grade. 

Summary 

 Chapter one introduced the concept of PFAS, its various uses, and the issues 

presented by the ubiquitous presence of PFAS in the environment. These issues include 

problems of bioaccumulation and toxic effects associated with the uptake of these 
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compounds. This chapter also introduced GAC as a popular treatment technique for water 

contaminated with PFAS. The research will focus on two forms of GAC and their 

adsorption ability with respect to PFOS, PFOA, and a combination. Additionally, the 

assumptions made in the study and analysis were discussed, along with the scope and the 

limitations of the research. Chapter two presents previous research that has been 

conducted regarding PFAS, its presence, effects, and treatment. Later chapters detail the 

conduct of the study, its results, and conclusions that were drawn by the researcher.  
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II. Literature Review 

Overview 

 The majority of chapter two is a review of the literature surrounding poly- and 

perfluoroalkyl substances (PFAS). The body of research surrounding PFAS is extensive 

and continues to grow. This research includes topics such as their presence in the 

environment, their toxicological properties, and the various treatment methods available 

that are effective in the removal of these substances. Understanding these different 

subjects and furthering the research into them is important due to the evidence that PFAS 

are bioaccumulative and toxic to numerous species, to include humans (ATSDR, 2018). 

Agencies focused on the health of the environment and humans should prepare to 

continue efforts aimed at remediating PFAS contamination due to past, present, and 

future manufacturing and use of these compounds. The necessity of long-term planning 

for remediation of environmental media affected by these compounds is due to the stable 

nature of PFAS produced by the strong bond between the carbon and fluorine atoms 

(Crone et al., 2019). Therefore, even with more stringent regulations and a focus on 

reduction in the use of PFAS, environmental officials will continue to have to contend 

with the effects for many years to come. 

This thesis focuses on the treatability of perfluorooctanesulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA) (sometimes referred to as perfluorooctane sulfonate and 

perfluorooctanoate respectively). Therefore, the majority of this literature review includes 

studies conducted using these two compounds. Some studies have also included work 

with other PFAS such as perfluorohexanesulfonic acid or perfluorohexane sulfonate 

(PFHxS), perfluorobutanesulfonic acid or perfluorobutane sulfonate (PFBS), and 
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perfluorobutanoic acid or perfluorobutanoate (PFBA). To show the scope of these 

authors’ works, as well as some of the differences between various forms of PFAS, these 

comparisons were included in the literature review. These occur in the toxicological data 

and treatment methods sections. 

Key Terms 

PFAS: Per- and polyfluoroalkyl substances 

PFOS: Perfluorooctanesulfonic acid 

PFOA: Perfluorooctanoic acid 

Effluent: Water discharged after treatment 

Health Advisory Level: Non-regulatory numerical quantity of a contaminant that the EPA 

considers detrimental to the health of humans (Brannon, 2018) 

Presence of PFAS 

  Various industries have utilized poly- and perfluoroalkyl substances in different 

ways since the substance was developed in the late 1940s. PFAS is produced by stripping 

hydrocarbons of their hydrogen atoms and replacing them with fluorine atoms. This 

process creates a new chemical structure that is a highly stable molecule. This molecule 

has properties that include a stronger acidic molecule, higher surface activity, and water 

and oil repellant features. Regulatory agencies around the world have begun to 

understand the ramifications that the stability and toxicity of these chemicals represent. 

Due to this understanding, these agencies have started regulating the different types of 

PFAS and the amounts allowed in various industries. The main focus of these regulations 

has been placed on long-chain PFAS such as PFOS and PFOA. Still, the legacy use of 

these substances, as well as their precursors, presents an issue of remediation that is likely 
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to last well into the future. Although researchers have conducted numerous studies on 

PFOS and PFOA, there are many more PFAS varieties that scientists have not studied. 

Because industry is replacing long-chain PFAS such as PFOS and PFOA with these 

substitutes, PFAS will continue to occur in the environment (Wang, Dewitt, Higgins & 

Cousins, 2017). 

 In one study conducted by Kaboré et al. (2018), the researchers measured the 

occurrence of multiple PFAS in drinking water around the world. Countries that were 

studied included Canada, United States, Burkina Faso, Chile, Ivory Coast, France, Japan, 

Mexico, and Norway. Researchers took 97 samples, with triplicates run on each sample. 

The study found that 86% of the tap water samples contained detectable levels of PFOA 

while 85% contained detectable levels of PFOS. The study also found that the maximum 

level for PFOA and PFOS were 4.9 ng L-1 and 4.1 ng L-1 respectively. Both of these 

levels are well below the EPA’s Health Advisory Level (HAL) of 70 ng L-1 (Kaboré et 

al., 2017). Although these are below the limits, due to the small sample size, proliferation 

of PFAS in other countries, and the fact that the locations tested were not necessarily in 

close proximity to manufacturing sites, researchers should still be concerned. 

Additionally, this level may be concerning to sensitive populations such as young 

children, pregnant women, and elderly adults. 

 Other studies have focused on areas that are relatively close to PFAS discharge 

points. One such study was conducted by researchers in northern France near an 

industrial wastewater treatment plant that treats raw sewage coming from a manufacturer 

of various PFAS. The study investigated the river, as well as three drinking water 

treatment plants located downstream in order to understand the effectiveness of their 



16 

systems on PFAS removal. This study found significant amounts of compounds which 

are precursors to a class of PFAS called perfluorocarboxylic acids, or PFCAs. This is 

important because PFOA is a part of the PFCA class. Precursors are not as stable as 

PFCAs or PFSAs, but their ability to breakdown into more stable varieties is concerning 

to regulators and researchers. While the study did not find that PFOA was the most 

significant contaminant, the presence of multiple precursors, some of which have not 

been well researched, could present issues in the future (Boiteux et al., 2017).   

 PFAS is also a large contributor of contamination at Department of Defense 

(DOD) sites. This is especially true at air bases and other installations that conduct 

frequent firefighting training. Legacy aqueous film forming foam (AFFF) has been in use 

since the 1960s as an additive to water that effectively controls large hydrocarbon fires. 

Although the characteristics of PFAS that control these fires are beneficial, the stability 

of the compounds, as well as the lack of options to remediate environmental media that is 

impacted, has caused high levels of contamination at these sites. Studies have indicated 

high levels of long-chain PFAS in multiple environmental media (soil, surface water, 

groundwater, etc.) at air bases and fire training areas (FTAs) (Baduel, Mueller, Rotander, 

Corfield & Gomez-Ramos, 2017); (Anderson, Long, Porter & Anderson, 2016).   

 Numerous other studies throughout literature describe similar occurrences of 

PFAS in environmental media. The studies discussed above suggest that the major 

problems and concentrations tend to occur closest to manufacturing and/or discharge 

sites. Although this may be the case, it is evident that the compounds are transported 

throughout the environment and are still found in environmental media in areas that are 

not in close proximity to these types of places. Although many studies find levels that are 
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lower than current advisory levels, the state of the science is still evolving, and PFAS is 

still prolific around the globe. Additionally, as toxicological and epidemiological studies 

become more advanced, and regulatory agencies continue to refine recommended 

contaminant levels, limits may dip below levels observed in studies of the general 

environment causing more concern for even some of the lower levels observed in 

historical research. 

Toxicological Data 

 Toxicological data for PFAS compounds has been gathered for some time now, 

with some studies dating as early as 1980. After over 70 years of use in various 

industries, it is becoming more evident that some PFAS compounds readily absorb into 

the tissues of humans and other mammals. Compounding the problem is the fact that 

PFAS bioaccumulate to levels that are concerning to toxicologists and epidemiologists 

(Whittaker & Heine, 2018). The focus of many of these studies is currently on long-chain 

PFAS that break down and metabolize at slower rates when compared to short-chain 

PFAS which, although they persist in the environment, are not thought to accumulate in 

mammals and cause health concerns to the extent of the long-chain variants (Klein & 

Braun, 2018; Rice, 2018; Whittaker & Heine, 2018; Agency, 2018). Many of the studies 

have focused on the effects identified in laboratory rodents and other mammals, although 

some epidemiological studies have been conducted on humans as well. Both types of 

study present advantages and disadvantages. Epidemiological studies are able to focus on 

the effects borne out in humans, without the uncertainty of extrapolation from rodents or 

other laboratory animals to humans. However, toxicological studies that use laboratory 

animals can identify and isolate the effects thought to be caused by PFAS exposure with 
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fewer confounding factors. According to the Agency for Toxic Substances and Disease 

Registry (ATSDR), the liver, immune, and child developmental systems are at most risk 

for negative effects from PFAS exposure. Additional effects are suspected in the 

reproductive and thyroid systems. Finally, there is concern over the carcinogenicity of 

PFAS compounds (Klein & Braun, 2018; Rice, 2018). The following paragraphs will 

summarize the observed effects on these organ systems. 

 According to the ATSDR’s PFAS Toxicological Profile, studies show that various 

PFAS compounds have significant effects on the health of the liver in rodents. Exposure 

to PFOS and PFOA correlated with increased liver weights, hepatocellular (liver cell) 

hypertrophy, and decreases in serum cholesterol and triglyceride levels. The profile also 

indicates that the risk of liver effects increases with the length of the carbon chain, up to a 

length of ten, with most of the studies involving PFOS and PFOA (Agency, 2018). 

Despite these findings in the majority of studies done on rodents, epidemiological studies 

of humans have found less correlation between PFAS exposure and these effects. 

Additionally, an increase in serum cholesterol was found in some humans, as opposed to 

the decrease found in rodents. As such, the effects on humans remain unclear for liver 

health (Rice, 2018) 

 Indicators of immunotoxicity, such as thymic and splenic atrophy, were observed 

in laboratory studies involving rodents and monkeys. While both rodents (rats and mice) 

experienced some level of atrophy, mice exhibited symptoms at a higher rate than rats. 

Additionally, T-dependent antibody response (TDAR) was inhibited at levels as low as 

0.05 mg PFOS/kg in male mice. Epidemiological studies of humans have also observed a 
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suppression of the immune system, making this one of the major areas of concern in the 

toxicological and epidemiological communities (Agency, 2018; Rice, 2018). 

 Due to the sensitivity of young children populations to certain contaminants, 

significant attention has been paid to the effects of PFAS on developmental progress. In 

fact, these studies have been influential in the development of guidance values and the 

EPA HALs discussed previously. Rodents exposed to PFAS both in utero and through 

pregnancy have experienced increased instances of low birth weight, neonatal fatality, 

and developmental delays. According to Klein and Braun, these instances are not 

dependent on breastfeeding practices, indicating that the fetus may be susceptible in utero 

(2018). Furthermore, studies have observed that PFAS increases the rate at which puberty 

occurs in rodents at low levels (< 10 mg/kg/day) when compared to the control. However, 

at a level of 20 mg/kg/day, there was a noticeable delay in male puberty (Klein & Braun, 

2018). 

 In studies involving rodents and exposure to PFAS compounds, the contaminant 

of most concern in terms of direct effect on the male reproductive system was 

perfluorododecanoic acid, or PFDoDA. Exposure to this contaminant correlated with 

decreased male fertility and spermatogenesis. This occurred at 105 mg/kg. Although this 

was the only direct effect, other studies have shown correlations between exposure to 

PFAS compounds and decreased male hormones in serum, damage to the testes to 

include atrophy, abnormal sperm, and decreased steroidogenesis. Epidemiological studies 

for humans are inconclusive at this time although concerns over the above stated effects 

exist in the toxicological community (Rice, 2018; Agency, 2018). Effects on the female 

reproductive system are similarly complicated. Some doses of PFDoDA and PFOS were 
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linked to abnormal periods of diestrus. Additionally, PFOA was found to have effects on 

the mammary gland development in mice that were exposed prenatally. As with the male 

reproductive system, epidemiological data for exposure to PFAS is inconclusive, yet still 

of concern due to the possible effects found in rodents. Still, some evidence exists for 

decreased fertility and increased time to get pregnant. Many of these effects are thought 

to have potential for being confounded by reverse causality. As such, the classification of 

PFAS as being toxic to the human reproductive system remains unclear (Rice, 2018; 

Agency, 2018). 

 Studies related to thyroid toxicity in laboratory rats are sparser than studies on the 

previously discussed organ systems. The results have also been mixed in outcomes and 

significance levels. In a study conducted by Van Otterdijk in 2007, rats administered 

2700 mg/kg experienced thyroid follicular cell hypertrophy, which could lead to 

decreased levels of the thyroid hormones T3 and T4 (Rice, 2018). Other studies have 

shown that cynomolgus monkeys that were exposed to PFAS experienced decreased 

levels of T3 and T4, as well as rats that experienced thyroid follicular cell adenoma. In 

epidemiological studies, results have varied for thyroid effects from finding none to 

finding direct associations in the general population between serum PFOA levels and 

thyroid disease. Others have found negative associations between serum 

perfluorohexanesulfonic acid (PFHxS) levels and free T4. As with other organs, the 

association is still unclear for human health, and must be investigated further (Rice, 

2018). 

 PFOA and PFOS are the primary PFAS compounds that have been studied for 

carcinogenic effects. Both compounds have shown tendencies to produce malignancies in 
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the liver. PFOA has also been linked to tumors in the pancreas and testes, while PFOS is 

tied to thyroid tumors in male rats. In epidemiological studies of humans, high levels of 

PFOA exposure have correlated with increased incidence of kidney and testicular tumors. 

Interactions of these compounds with human body systems can manifest themselves 

differently than in rats (as with other effects).  It is therefore vital that studies continue to 

determine what levels are safe for humans, and what steps can be taken to mitigate the 

effects (Rice, 2018). 

Treatment Methods 

Researchers have conducted numerous studies to understand the physico-chemical 

properties of PFAS. These properties vary with carbon-chain length (categorized as short 

and long chain compounds), as well as functional groups (perfluoroalkane sulfonic acids 

and perfluoroalkyl carboxylic acids) (EPA, 2018c). As of now, the EPA recognizes three 

different technologies as being effective at treating PFAS: activated carbon, anion 

exchange resins, and high-pressure membrane filtration (EPA, 2018b). Each of these 

have their own advantages and disadvantages, depending on the targeted compound and 

the presence of other contaminants. 

 Granular Activated Carbon, or GAC, is a common adsorbent used to treat a wide 

variety of contaminants in water. These include both natural and synthetic organic 

compounds and compounds that cause taste or odor in the water. Adsorption is a process 

by which the chemical and physical properties of the adsorbent attract another compound. 

This causes the targeted compound to accumulate on the surface, or at the interface 

between the solid and liquid phases. GAC is commonly used due to its porosity and high 
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surface area. These properties allow carbon to accumulate high amounts of contaminants 

(EPA, Water Treatability Database: Granular Activated Carbon). 

 GAC is produced by numerous companies but is typically produced in a similar 

fashion. Utilizing materials that contain high carbon content (i.e. wood, peat, coal, 

coconut, etc.), the manufacturer slowly heats the source with little oxygen. This process 

allows for the material to be dried out, as well as removes impurities that are left in the 

material. The result is a material known as “char”. Once the char is produced, it is 

processed using various chemical and physical processes that increase the surface area 

and the adsorption capacity of the carbon. These processes also increase the binding 

capability of the GAC and can be modified for specific contaminants that are present in 

the targeted water (Oxbow, 2015). 

 Most of the research on GAC adsorption of PFAS has focused on long-chain 

PFAS compounds, such as PFOS and PFOA. However, several studies have placed some 

emphasis on short-chain compounds such as perfluorobutane sulfonate (PFBS) and 

perfluorobutanoic acid (PFBA). These studies have shown a positive correlation between 

the chain length of the specific PFAS compound and ability of the GAC to adsorb the 

contaminant. This is typically measured in breakthrough time, or the time that it takes for 

the adsorbent to lose the ability to adsorb the adsorbate due to saturation (Dickenson & 

Verdugo, 2018; Inyang & Dickenson, 2017; Carter and Farrel, 2010; McCleaf & et. al, 

2017).  

 One issue with the use of GAC, or of other forms of activated carbon such as 

powdered activated carbon (PAC) or biochar, is the presence of other types of organic 

matter. As an adsorbent, activated carbon has different levels of affinity to material based 



23 

on certain chemical and physical properties. This property has been noticed in laboratory 

tests that compare the adsorption capacity of GAC used in various qualities of water. 

Intuitively, laboratory-grade water, which is already filtered and does not contain 

noticeable levels of contaminants prior to introduction of contaminants of concern, allows 

for a higher adsorption rate of PFAS compounds than other types of water such as 

wastewater. These different levels of affinity for adsorption can be due to the charge of 

the various contaminants, the hydrophobicity, or other chemical and physical properties 

of the competing substances (Dickenson & Verdugo, 2018; Roccaro & et. al, 2018). In 

the Department of Defense, which is a large user of AFFF that contains PFAS, this has 

created a dilemma due to the many other contaminants contained in AFFF. Some of these 

contaminants have a higher affinity for adsorption to GAC, and therefore foul the 

adsorbent before it can effectively remove the PFAS. An example of this is the total 

organic carbon (TOC) which increases as a result of the use of AFFF. This was one focus 

of research conducted by Dyson in which a treatment train was designed to reduce the 

concentration of TOC prior to remediating the PFAS contamination with GAC (Dyson, 

Schmidt, & Stubbs, 2018).  More research is necessary and ongoing to determine the best 

method for dealing with these issues, to include the ideal size of GAC and treatment 

trains that optimize the removal of PFAS compounds.  

 While GAC has been frequently studied as a treatment technology for PFAS due 

to its well-known adsorptive capabilities for a wide variety of contaminants, recent 

studies have also focused on the use of anion exchange resins. Ion exchange is a process 

which removes ions from a solution based on their charge. After removal, the ion is 

replaced by another ion from the resin or other material. This replacement happens 
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because of the mobility of the ions that are attached to the immobile functional acid or 

base group. In anion exchange, which is utilized for removal of PFAS, these ions are 

negatively charged. Once the capacity of the resin is reached, it is possible to regenerate 

it using brine, strong acids, or strong bases (EPA, Ion Exchange). 

 In one study conducted by Zaggia, Conte, Falletti, Fant, and Chiorboli, the 

researchers found that the ability of the anion resins to exchange with the PFAS 

compounds was largely dependent on the chain length and the hydrophobicity of the 

selected anion exchange resin. Utilizing three different resins that had hydrophobicity 

levels of low, intermediate, and high, the study found that, especially for short-chain 

PFAS (in this case PFBS and PFBA), the higher the hydrophobicity level of the resin, the 

higher the equilibrium exchange capacity between the resin and the PFAS. The resins 

used were Purolite A600E (non-hydrophobic), A520E (fairly hydrophobic), and A532E 

(highly hydrophobic). For PFBS, a short-chain PFAS with a sulfonate functional group, 

the equilibrium exchange capacity (Ceq) for these resins were as follows: A600E-36.6 mg 

g-1; A520E-53.8 mg g-1; A532E-109.2 mg g-1. The capacities increase dramatically with a 

long-chain PFAS with a sulfonate functional group. This study used PFOS, and found Ceq 

of 186.2 mg g-1, 210.4 mg g-1, and 260.5 mg g-1 respectively. The sulfonate groups also 

had higher Ceq than the corresponding carboxylate PFAS (PFBA and PFOA). This study 

also concluded that anion exchange is more appropriate and effective for removal of trace 

concentrations of PFAS than GAC, as GAC is less selective and therefore may become 

saturated with contaminants other than PFAS (Conte, Fant, Chiorboli, Falletti, & Zaggia, 

2015). The ability of anion exchange resins to be tailored to specific compounds such as 
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PFAS, and therefore have increased efficiency from the outset, makes this technology an 

attractive solution. 

 Although anion exchange resins are better suited for long-chain PFAS, there has 

been some success with removal of short-chain compounds via the resins. Dickenson and 

Verdugo point to a study conducted by Appleman in 2014 which found that Purolite 

FerrlX A33e ion exchange resin successfully removed PFBS at a rate of 81%. This is in 

contrast to multiple studies done on breakthrough of GAC by short-chain PFAS 

compounds. In fact, according to Dickenson and Verdugo, to treat water contaminated 

with short-chain PFAS compounds via GAC, it is necessary to supplement the treatment 

with other technologies. These may be ion exchange, nanofiltration, or reverse osmosis 

(Dickenson & Verdugo, 2018). Necessary considerations for choosing between the 

technologies include cost effectiveness, specific compounds that are present, and 

technologies available to the specific site. 

The final treatment method that the EPA focuses on is high pressure membrane 

technology. The effectiveness of high-pressure membranes varies based on the size of the 

pores in the system. Studies have shown that nanofiltration and reverse osmosis have 

consistent removals rates of over 93%, and as high as 99.4%. Interestingly, Dickenson 

and Verdugo cite a 2017 study by Soriano et al. that found 99.4% removal of PFHxA 

using a DowFilm NF270 nanofiltration membrane (Dickenson & Verdugo, 2018; Soriano 

et. al, 2017). This is significant as interested parties attempt to understand the differences 

in removal of long-chain and short-chain PFAS.  

 In contrast, high-pressure membranes with larger pore sizes have been shown to 

be significantly less effective than their smaller-pore counterparts. According to 
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Dickenson and Verdugo, one water treatment plant that attempted to use a microfiltration 

system alone, with 0.2-micron-rated pore size, did not reduce PFOA or PFOS. Another 

found that utilizing a microfiltration and ultrafiltration system in series with each other 

led to small reductions in long-chain compounds only (24-44% removal rates) 

(Dickenson & Verdugo, 2018). 

 While nanofiltration and reverse osmosis technologies are effective at the removal 

of PFAS, there are some very serious downsides to the use of them. One is that, in many 

instances, it is cost prohibitive and energy intensive. The use of high-pressure membranes 

carries with it a high capital cost, requires high amounts of energy, and has significant 

training to operate on a large scale (Speith & et. al, 2018). Additionally, there is an issue 

with the highly concentrated brine which remains behind after the process in completed. 

Reverse osmosis and nanofiltration are efficient systems with around 80% of the water 

fed into the system (feed water) being filtered and usable after the process. However, the 

other 20%, the brine, presents a significant problem. This water is extremely concentrated 

with salts and other contaminants, to include PFAS. It is so concentrated that it is not 

effective to put it through the system again. The issue that arises is the handling and 

disposal of such a contaminated source of water (EPA, 2018c; Dickenson & Verdugo, 

2018). While some concentrates can be treated by various wastewater treatment designs, 

PFAS is unaffected by conventional water treatment technologies, and thus must be 

disposed of or treated in other ways (Speith & et. al, 2018). These factors have led to the 

Environmental Protection Agency suggesting that high-pressure membrane technologies 

be utilized as a point of use technology for individual homeowners. This would reduce 

the volume that is being pushed through the membranes, and enable longer lasting, more 
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efficient membranes to be utilized (EPA, 2018c). Still, this would pose a significant cost, 

and eventually lead to the same issues of treatability and concentrated contaminants. 

Additionally, the concern of expertise necessary for operation is not necessarily mitigated 

by point of source use. If high-pressure membranes were more energy efficient, less 

costly, and treatment trains were designed to enable the effective treatment of the 

concentrate that remains, they may be a viable option in the future. 

Coal Based and Coconut Based GAC Comparison 

Previous studies have shown that bituminous coal based GAC outperformed other 

types of GAC, including those produced using coconut shell, when adsorbing compounds 

with larger molecular weights, such as PFAS (Evoqua, 2017; Schmidt, 2017). This is 

likely related to the increased sorption kinetics observed in GACs that are mesoporous in 

structure (such as GAC derived from coal) (Du et al. 2014; Evoqua, 2017). However, 

claims made by Evoqua regarding their enhanced AC1230CX coconut shell based carbon 

require research into the ability of certain types of biochar based GACs to compete with 

coal based versions. According to Evoqua, they have been able to create this carbon with 

the typical microporous structures that allow for adsorption of lower molecular weight 

compounds, but also an enhanced mesoporous structure that is capable of targeting higher 

weight contaminants (Evoqua, 2017). With this is mind, some municipalities, such as 

Kennebunkport & Wells Water District, are upgrading their systems to use this relatively 

new GAC, showing that there is belief that it may in fact compete with coal based 

products (Evoqua, 2018). 

These issues are important due to the sustainability and cost associated with both. 

Currently, according to communication with Evoqua in January 2020, AC1230CX is 
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priced at $2.50 per pound. In contrast, a 2018 cost estimate by the United States Navy for 

remediation using Calgon F600 shows a cost of $2.75 per pound (NAVFAC, 2018). 

Additionally, the Calgon Corporation plans to increase the cost of many products 10-

15%, according to a press release by the company (Calgon, 2019). Furthermore, as 

concerns continue to rise over the sustainability implications of the use of coal based 

products in general, coconut and other biochar based products will provide alternatives 

that are not susceptible to these issues.  

Summary 

 The body of knowledge surrounding PFAS is progressing rapidly. Recent studies 

have shown that the past use of these compounds has resulted in wide occurrence of 

environmental contamination throughout the globe. The high stability of many PFAS 

ensures that its presence in soil, groundwater, and surface water will be a lingering issue 

for environmental agencies, regulators, and engineers. PFAS presence must be dealt with 

due to the numerous toxicological problems that the substances present, especially with 

the level of uncertainty that still exists. This uncertainty is evident in the different values 

of limits that have been calculated by regulatory agencies. The first provisional health 

advisory levels (HAL) promulgated by the EPA were 0.2 and 0.4 µg/L for PFOS and 

PFOA, respectively. Seven years later, the EPA updated these to 0.07 µg/L for a 

combined concentration (Via, 2019); (EPA, 2016). Meanwhile, a 2018 draft toxicological 

profile for PFAS by the Agency for Toxic Substances and Disease Registry produced a 

recommended level of .007 µg/L combined concentration (ATSDR, 2018). These 

agencies continue to work with industry to phase out certain compounds and remediate 

areas that have already been contaminated. They are accomplishing this through the use 
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of novel technologies such as GAC, anion exchange, and high-pressure membranes. Still, 

the effectiveness of these technologies, as well as their feasibility in regard to cost, must 

be studied in more depth, especially as new forms come into production. The 

methodology explained in chapter three will further investigate the capability of two 

forms of GAC to adsorb PFOS and PFOA.  
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III. Methodology 

Introduction 

 This chapter describes the procedures followed to answer the research questions 

of which granular activated carbon (GAC) adsorbs perfluorooctanesulfonic acid (PFOS) 

and perfluorooctanoic acid (PFOA) most efficiently and which substance will be 

removed more quickly. These research questions are important due to the impact that 

PFOA and PFOS have on the environment and human health. These bioaccumulative 

substances, along with other varieties of poly- and perfluoroalkyl substances (PFAS), 

have been linked to numerous toxicological impacts, both carcinogenic and non-

carcinogenic. The impacts of PFAS are most readily apparent from exposures to long-

chain varieties of PFAS, such as the common PFOA and PFOS (ATSDR, 2018). As 

municipalities, public water systems, and regulatory agencies continue to remediate 

drinking and other waters impacted by the presence of PFAS, understanding the answers 

to these questions will aid in the determination of best practices for improving the levels 

of PFAS in water. This is most important in locations that are home to fire training areas, 

aircraft operations, and PFAS manufacturing industries. These areas have the highest 

concentrations of PFAS due to the proximity, as well as the relatively high discharges of 

the chemicals (Korzeniowski, Buck, Kempisty, & Pabon, 2018; Pabon & Corpart, 2002). 

Theory 

 This research used a bottle study design to determine the efficiency of two forms 

of GAC in removing PFOS and PFOA from water. Christopher Schmidt conducted a 

similar bottle study to determine the effectiveness of a variety of GACs. His study 

focused solely on PFOS and used different brands of GAC (2017). This thesis carried 
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over the most efficient GAC (Calgon Filtrasorb 600) for comparison to a newly enhanced 

GAC (Evoqua Aqua Carb 1230CX). PFOS and PFOA were chosen because they are two 

of the most ubiquitous forms of PFAS. Furthermore, regulatory agencies are most 

concerned about their presence in the environment as a result of their persistence and 

toxicological impacts (ATSDR, 2018). 

 GAC can be derived from a variety of sources. Two of these sources are 

bituminous coal and coconut shell. These and other materials used for GAC contain high 

amounts of carbon. Carbon is an efficient adsorbent for many contaminants due to its 

high porosity and binding capability (Oxbow, 2015). Although previous research has 

found that GAC derived from bituminous coal is most efficient at PFAS removal, Evoqua 

has recently created an enhanced version of their coconut shell-based GAC (Evoqua, 

2017). The coconut-shell based GAC may have some cost benefits, as well as 

sustainability implications. The mining of coal, as well as the non-renewable nature of 

the material causes some concern to the sustainability community even though its 

effectiveness in PFAS adsorption is, thus far, unmatched. If coconut shell-based GAC, or 

other forms of biochar, can become competitive with coal-based GAC, it may become a 

preferred alternative to the status quo. The processes used to determine the efficiency of 

both forms of GAC will be described in detail in the remainder of this chapter. 

Materials and Equipment 

Water 

 The study utilized water from a deionized source. Because this research was 

focused solely on the removal of PFAS from water, co-contaminants were undesirable 

due to the competition for adsorption sites that they would have caused. The deionized 
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water source mitigated these concerns by removing contaminants prior to the spiking of 

the water with PFAS. 

PFAS 

 The two PFAS compounds that were studied were PFOS and PFOA. These two 

were selected due to their wide proliferation in industrial goods, legacy firefighting 

foams, and their bioaccumulative nature in the environment. Additionally, both of these 

are long-chain PFAS and are suspected to cause multiple carcinogenic and non-

carcinogenic toxicological effects in humans (ATSDR, 2018). The PFOS that was used 

was a technical grade, 40% by weight solution in water manufactured by Sigma Aldrich. 

The PFOA was a 96% pure crystalline form of the substance and was also manufactured 

by Sigma Aldrich. The beginning forms of each of these substances can be seen in figure 

3-1. 

 

Figure 3-1: Original forms of PFAS solutions. PFOS (left) began as a 40% solution in 
water while the PFOA (right) was a 96% pure crystal form. 
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Table 3-1: Concentrations and Forms of Stock PFAS 

 
 

Preparation of Study Solutions 

 Both forms of PFAS were prepared in similar manners, with the only difference 

being the use of a crystalline form of PFOA. In order to ensure a well-mixed solution, a 

serial dilution procedure was followed. Because of the different concentrations between 

the starting substances, calculations were made to determine the mass of substance 

necessary to attain the desired starting concentration. The actual amounts that were 

measured are shown in Table 3-2. Due to limitations of the equipment used, an error of 5 

mg for the PFOS solution and 5 mg for the PFOA crystals was deemed acceptable. To 

begin with, the equivalent of 200 mg of PFAS was targeted to be placed in 50 ml of 

water. The resulting solution can be seen in Figure 3-2. This made a solution with a 

concentration of 4 g/L. In the figure, the white area at the tip of the solution is a layer of 

foam caused by the surfactant properties of PFAS.  

Table 3-2: Targeted and Measured Mass of Analytes in Initial Solutions 

 
 

Analyte Concentration Form
PFOA 96% w/w Crystal
PFOS 40% w/w Solution in H2O

Analyte
Target Mass in 
Initial Solution

Measured Mass 
in Initial 
Solution

PFOA 
Crystals

208.3 mg 209.4 mg

PFOS 
Solution

500 mg 497.9 mg
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Figure 3-2: The first stage of the serial dilution. 
 

All 50 ml of this solution were then added to 950 ml in a 1 L bottle. This 1 L solution 

(shown in Figure 3-3) was shaken to mix the constituents, and then allowed to sit and mix 

at room temperature for 24 hours before the next step in the process. In the figure, it is 

evident that the concentration is drastically diminished due to the disappearance of much 

of the foam from the PFAS. During this 24-hour period, the solution was mixed regularly 

to ensure that the solution was well mixed and did not become stratified. This was 

especially important for the next step in which part of this solution was drawn off to 

make the next concentration. 



35 

 

Figure 3-3: The second step of the serial dilution.  
 

After this solution mixed for 24 hours, 200 µL were drawn and added to 999.8 ml of 

deionized water (seen in  Figure 3-4). This created a solution with a concentration of 40 

µg/L. Due to the low concentration of this solution, it was allowed to sit and mix for five 

days.  
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Figure 3-4: The third step of the serial dilution combined.  
 

Finally, a total of 4 L of solution were made by combining this solution with 3 L of 

water. This final dilution created a solution that had a concentration of 10 µg of PFAS per 

1 L of water. The volumes used at each step, as well as the concentrations produced at 

each step, are shown in Table 3-3. 

 
 
 
 
 

Table 3-3: Volume of Solution and Water, and Concentration, at Steps in Serial Dilution 
Process 
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Amount 
drawn from 

previous step 

Volume 
of Water PFAS Concentration 

Initial Mass 50 ml 4 g/L 
50 ml 950 ml 200 mg/L 
200µL 999.8 ml 40 µg/L 

1 L 3 L 10 µg/L 

 

Of note, the PFOA crystals were more difficult to get into solution than the PFOS. 

Therefore, some of the time intervals used for the PFOA solution dilutions were 

extended. This is likely due to the fact that the PFOS was already in a solution of water. 

This characteristic caused the PFOS to mix more readily in a larger solution. In contrast, 

the crystallized PFOA had less propensity to be quickly dissolved. To reduce the impact 

of this characteristic of the PFOA, several steps were taken. First, in the early stages of 

the serial dilution, the tube was continually inspected for visible PFOA crystals. While in 

the 50 ml tube, these were readily apparent, and the solution remained in the tube until 

there were no more visible crystals. Second, the 50 ml tube was placed on the automatic 

tumbler for the time that it contained the solution. This increased the kinetics within the 

solution and encouraged the PFOA to dissolve. Third, once the solution was placed in the 

1 L and 4 L bottles, it was again placed on the automatic tumbler. This was to ensure that 

the solution was well mixed and reduced stratification of the contaminant. Figure 3-5 

shows the setup of the automatic tumbler such that it could hold the 1 L bottle through 

the dilution process, while Figure 3-6 shows the setup for the 4 L bottle. 
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Figure 3-5: Automatic tumbler setup for the 1 L bottle with PFOA.  
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Figure 3-6: Automatic tumbler setup for the 4 L bottle with PFOA.  
 

Granular Activated Carbon 

 This research studied the efficiency of two different forms of GAC. One was 

Calgon Filtrasorb 600 (F600) that was previously used in Schmidt’s research. This is a 

GAC derived from bituminous coal (Schmidt, 2017). The other GAC utilized was 

Evoqua’s Aqua Carb 1230CX GAC, which is made from coconut shell and has enhanced 

properties to make it more suitable for the removal of PFAS (Evoqua, 2017). 
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Other equipment 

 Various pieces of laboratory equipment were utilized throughout the conduct of 

the study. Containers such as the 1 L and 4 L bottles, as well as the centrifuge tubes, were 

made of plastics approved by the EPA to hold solutions containing PFAS. The selection 

of these materials was important because of concern with some types of bottles and 

materials, such as glass, and the propensity of PFAS to adsorb to them. This means that 

some of the PFAS would adsorb to the bottle and the analysis would find a lower 

concentration than what was actually contained in the solution upon separation from the 

GAC. Additionally, an automatic tumbler was utilized to ensure that the solutions 

containing PFAS and carbon were well-mixed and homogeneous. Finally, a centrifuge 

was used to remove the carbon from the solution after the specified time periods, 

ensuring that the carbon did not remain in contact with the solution in the time frame 

between the study and analysis at the EPA. 

Procedures and Process 

Each study began by measuring 2 mg of carbon. Because of the minute amount of 

carbon being measured, there was concern over some of the carbon being lost to residue 

on a measuring vessel. In order to reduce the chances of leaving carbon behind on a 

separate vessel used for measurement, the carbon was measured in the centrifuge tube 

that it would be in for the study (as opposed to a weigh boat). The tube was place in a 

piece of styrofoam and centered on the scale. The scale was then tared with the holder 

and tube on it, and the carbon was then measured. These tubes were then labeled so that it 

was identifiable throughout the study and tracked during analysis. The setup for 

measuring the GAC can be seen in Figure 3-7. 
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Figure 3-7: Setup of the centrifuge tube and scale used for weighing the carbon 
used in the study. The white piece under the tube is a piece of styrofoam used to hold the 

tube during the measurement. 
 

The carbon was measured 24 hours in advance of each study. This was done to 

increase the fluidity of the studies, making sure that on the day of the study actions were 

focused on executing the application of solution to the carbon and mixing the substances 

for the appropriate time. This reduced the amount of activity happening in the lab, and 

likewise lowered the possibility of time intervals being missed.  
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At the beginning of each time interval, 50 ml of solution were added to a 

centrifuge tube containing carbon. The studies used an automatic tumbler set at 2 

rotations-per-minute (RPM) to hold the centrifuge tubes that contained the solution in 

order to ensure the well mixing of the solution and the suspended carbon contained in 

each tube. This was important to allow the carbon to remain well-mixed throughout the 

solution and remain in contact with the contaminants present in the solution. The 

automatic tumbler can be seen in Figure 3-8. 

 

Figure 3-8: Automatic tumbler used to continuously rotate samples. 
 

 Each wheel on the tumbler had multiple 50 ml centrifuge tubes attached to it 

using zip ties, allowing for concurrent tests to be run at various time intervals. This 

method allowed for an appropriate speed to be applied, and easy access to the bottles that 

needed to be removed from the tumbler. For each carbon and PFAS combination, 8 



43 

samples, with triplicates at each time interval, were run and analyzed at the EPA. The 

time intervals for carbon-PFAS contact are shown in Table 3-4. 

Table 3-4: Sample Time Intervals 

 

 At the end of the appropriate time interval, the tubes were placed in a centrifuge 

to separate the carbon from the solution. The centrifuge was set to the parameters 

displayed in Table 3-5. 

Table 3-5: Centrifuge Settings 

 

Analysis of the concentration of PFAS contained in each sample was conducted at 

the EPA’s laboratory in Cincinnati, Ohio. This was done using a direct injection method 

with ultra-high performance liquid chromatography (UHPLC)-tandem mass spectrometry 

(MS/MS) (EPA, Analysis). Once results were returned, the concentration of PFAS in 

each sample was normalized to the initial concentration, or C0. Average concentration at 

each time period was determined, along with standard deviation to allow for analysis of 

the variation in concentrations, and the determination of the most efficient GAC. In order 

to determine statistical significance of any differences in the data, F-Tests and T-Tests 

were then conducted. This will be discussed further in Chapter Four. 

Sample Number Time Interval
1 0 minutes
2 15 minutes
3 30 minutes
4 60 minutes
5 120 minutes
6 240 minutes
7 24 hours
8 Blank

Parameter Setting
Temperature 6°Celcius

RPM 4000
Time 10 Minutues
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Conclusion 

 This methodology allowed for the comparison between the PFOS and PFOA 

adsorption capabilities of two GACs. It also allowed for a comparison of the rates at 

which PFOS and PFOA are removed from water. This is important due to the 

proliferation of these chemicals in the environment and their toxicological effects on 

humans and other species. As the DOD, industry, and regulatory agencies continue to 

wrestle with the most efficient and cost-effective ways to contend with this problem, it is 

important that they understand the benefits presented by different technologies, to include 

varying forms of GAC. Chapter 4 will discuss the results that were obtained by the 

procedures followed in this chapter. Detailed analysis of the meaning of these results will 

be discussed in detail. 
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IV. Results and Analysis 

Chapter Overview 

This chapter presents the results gathered from the conduct of the bottle studies 

described in the previous chapters. This data will be presented as it pertains to the two 

research objectives and the associated hypotheses, showing that there is support for each 

of the hypotheses discussed. The results of the adsorption of PFOS, PFOA, and the 

combined solutions by both forms of GAC will be discussed and supported by 

appropriate charts and illustrations. 

PFOS Adsorption Results 

The first experiment to be conducted was the PFOS removal comparing both 

carbons. Results were gathered from the EPA in ng/ml. The results at each time interval 

were then averaged and the standard deviation was calculated. There was some concern 

in the recovery percentage during the analysis of the results. This resulted in some 

unexpected values for initial concentration. In order to normalize the data such that it 

could be compared, the averages for each time interval were used to relate the average 

concentration at that time interval with the average concentration at the initial time. This 

is the C/C0 ratio. The equation for this is shown in Equation 1. This mitigates the issue 

with the recovery percentages because it is simply a ratio of the analyzed concentration at 

each time interval compared to the analyzed initial concentration. As long as the recovery 

percentage remained the same throughout each individual analysis, which it was assumed 

that it did,  these ratios could be used to effectively compare the results between each of 

the substances and carbons.  
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𝐶𝐶
𝐶𝐶0

=
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 𝐶𝐶

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶 = 0)
 

Equation 1 

Table 4-1 provides the concentration of PFOS over time for Evoqua AC1230CX, 

while Table 4-2 provides the data for Calgon F600. Both tables also provide the averages, 

standard deviations and C/C0 data. Figure 4-1 takes the data from both of these tables and 

charts the C/C0 data together so that one can easily visualize the trend of PFOS removal 

from both carbons.  

 From these tables, it appears that the Evoqua AC1230CX begins removing PFOS 

more quickly than Calgon F600. Through the 120-minute mark, the coconut-based 

carbon had a lower C/C0 ratio, indicating that it was removing more of the PFOS. 

However, at the 240-minute time interval this trend began to change. At this point, the 

C/C0 ratios for Evoqua and Calgon were 0.0515 and 0.0340 respectively. This continued 

through the 24-hour period with the ratios for Evoqua and Calgon being 0.0013 and 

0.0006 respectively.  
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Table 4-1: Results for PFOS Removal by Evoqua AC1230CX
 

 
 
 
 
 
 
 
 
 
 
 
 

Concentration of PFOS Over Time (ng/ml) With Evoqua AC1230CX 
Triplicate Blank 0 Minutes 15 Minutes 30 Minutes 60 Minutes 120 Minutes 240 Minutes 24 Hours 

1 0 6.23 0.03 0.29 0.07 0.02 0.79 0.01 
2 0 4.99 0.38 0.02 0.02 0.23 0 0.01 
3 0 4.51 0.36 0.01 0.04 0.02 0.02 0 

Avg 0 5.2433 0.2567 0.1067 0.0433 0.0900 0.2700 0.0067 
Std Dev 0 0.8875 0.1966 0.1589 0.0252 0.1212 0.4504 0.0058 

           
Time Evoqua C/C0  

       
0 1.0000  

       
15 0.0490  

       
30 0.0203  

       
60 0.0083  

       
120 0.0172  

       
240 0.0515  

       
1440 0.0013               
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Table 4-2: Results for PFOS Removal by Calgon F600 
Concentration of PFOS Over Time (ng/ml) With Calgon F600 

Triplicate Blank 0 Minutes 15 Minutes 30 Minutes 60 Minutes 120 Minutes 240 Minutes 24 Hours 
1 0.03 4.77 1.16 0.04 0.53 0.03 0.14 0.01 
2 0.05 5.44 0.64 0.2 0 0.21 0.05 0 
3 0 5.36 0.8 0.51 0.02 0.05 0.34 0 

Avg 0.0267 5.1900 0.8667 0.2500 0.1833 0.0967 0.1767 0.0033 
Std Dev 0.0252 0.3659 0.2663 0.2390 0.3004 0.0987 0.1484 0.0058 

          
Time Calgon C/C0  

       
0 1.0000  

       
15 0.1670  

       
30 0.0482  

       
60 0.0353  

       
120 0.0186  

       
240 0.0340  

       
1440 0.0006               
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Figure 4-1: C/C0 at selected time intervals for PFOS removal by Evoqua AC1230CX and Calgon F600 GAC. 
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 To determine whether these differences were significant, a Student’s T-Test was 

calculated between the two GACs’ C/C0 at each time interval. It was assumed that data 

for each time interval, if the sample size were to be large enough, would be normal. 

Differences in surface area and solution concentration would be distributed in a way that 

would meet this assumption. With a larger sample size, this theory could be tested with 

tests such as the Shapiro-Wilk test. The hypotheses for the tests were as follows: 

H0: µc-µe=0 

Ha: µc-µe≠0 

Where: 

µc=Average C/C0 for Calgon at the specified time interval 
µe=Average C/C0 for Evoqua at the specified time interval 
 
An alpha level of 0.05 was chosen for the level of significance (α=.05). The equation for 

the t-score is shown in Equation 2 (McClave, Benson, & Sincich, 2014). 

𝐶𝐶 = (�̅�𝑥1−�̅�𝑥2)−𝐷𝐷0

�𝑠𝑠𝑝𝑝 
2 ( 1

𝑛𝑛1
+ 1
𝑛𝑛2

)
                                       

Equation 2 

Where:  

�̅�𝑥1 = Average C/C0 for Evoqua PFOS adsorption 
�̅�𝑥2 = Average C/C0 for Calgon PFOS adsorption 
𝐷𝐷0 = Hypothesized difference between the averages (in this case, 0) 
𝑠𝑠𝑝𝑝 
2  = Pooled variance 
𝐶𝐶1 = Number of observations for Evoqua 
𝐶𝐶2 = Number of observations for Calgon 

 For the purposes of this research, the Microsoft Excel Data Analysis Tool was 

used to calculate the t-statistics and the p-values. Additionally, F-Tests were run to 
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determine any significant difference in variance. Where this was the case, the T-Test in 

Excel that accounts for this with fewer degrees of freedom was selected. The results of 

the F-Tests and T-Tests for PFOS C/C0 at each time interval are recorded in Table 4-3.  

Table 4-3: F-Test and Student’s T-Test P-Values for PFOS C/C0 
Time Interval (Minutes) F-Test P Value T-Test P-Value 

15 0.59 0.06 
30 0.49 0.38 
60 0.01 0.49 

120 0.70 0.99 
240 0.25 0.84 

1440 0.87 0.62 
 

Based on the calculated data, there is not a statistically significant difference 

between the PFOS adsorption ability of the Evoqua AC1230CX and Calgon F600 GACs. 

Therefore, the null hypothesis was not able to be rejected, and the data supports the 

hypothesis of the study that there would not be a significant difference between the 

enhanced coconut GAC and the previously more efficient Calgon F600 coal- based GAC.  

PFOA Adsorption Results 

The second experiment focused on the GACs’ abilities to adsorb PFOA and 

remove it from the water. The samples were run with the same procedure as the PFOS, 

and results gathered in ng/ml. Similar to the PFOS results, the concentrations at each time 

interval were averaged and concentrations were compared to the initial concentration. 

 Table 4-4 shows the raw data gathered for PFOA removal by Evoqua 

AC1230CX, while Table 4-5 shows the same data for Calgon F600. This data includes 

the averages, standard deviations, and C/C0 data for each GAC. Figure 4-2 shows the 

C/C0 data in chart form so that it can be easily visualized. 
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 Similar to the PFOS results, the Evoqua initially appears to remove the PFOA at a 

more rapid rate. This trend continued until the 120-minute time interval where the 

average C/C0 ratio for Evoqua and Calgon were 0.0210 and 0.0107 respectively. This 

also continued through the rest of the 24-hour period. 
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Table 4-4: Results for PFOA Removal by Evoqua AC1230CX 
Concentration of PFOA Over Time (ng/ml) With Evoqua AC1230CX 

Triplicate Blank 0 Minutes 15 Minutes 30 Minutes 60 Minutes 120 Minutes 240 Minutes 24 Hours 
1 0.02 8.29 1.99 0.44 0.54 0.17 0.17 0.31 
2 0.02 9.58 1.93 0.33 0.25 0.17 0.16 0.28 
3 0.04 8.30 1.37 0.48 0.22 0.21 0.16 0.36 

Avg 0.0267 8.7233 1.7633 0.4167 0.3367 0.1833 0.1633 0.3167 
Std Dev 0.0115 0.7419 0.3420 0.0777 0.1767 0.0231 0.0058 0.0404 

           
Time Evoqua C/C0         

0 1.0000         
15 0.2021         
30 0.0478         
60 0.0386         

120 0.0210         
240 0.0187         

1440 0.0363               
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Table 4-5: Results for PFOA Removal by Calgon F600 
Concentration of PFOA Over Time (ng/ml) With Calgon F600 

Triplicate Blank 0 Minutes 15 Minutes 30 Minutes 60 Minutes 120 Minutes 240 Minutes 24 Hours 
1 0.00 4.53 0.99 0.40 0.30 0.47 0.06 0.04 
2 0.02 3.58 0.83 0.83 1.26 0.25 0.05 0.02 
3 0.02 4.08 0.90 1.19 0.59 0.18 0.02 0.05 

Avg 0.0133 4.0633 0.9067 0.8067 0.7167 0.3000 0.0433 0.0367 
Std Dev 0.0115 0.4752 0.0802 0.3955 0.4924 0.1513 0.0208 0.0153 

          
Time Calgon C/C0         

0 1.0000         
15 0.2231         
30 0.1985         
60 0.1764         

120 0.0738         
240 0.0107         

1440 0.0090               
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Figure 4-2: C/C0 at selected time intervals for PFOA removal by Evoqua AC1230CX and Calgon F600 GAC. 
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As was done with the PFOS results, a Student’s T-Test was conducted to 

determine whether there was a statistically significant difference between the PFOA 

removal rates for the two GACs. The hypotheses for these tests were: 

H0: µc-µe=0 

Ha: µc-µe≠0 

Where: 

µc=Average C/C0 for Calgon at the specified time interval 
µe=Average C/C0 for Evoqua at the specified time interval 

Again, the alpha level was set to 0.05 and F-Tests were conducted to ensure the data met 

the assumption of equal variance. If the datasets were not equally variable, the modified 

T-Test with fewer degrees of freedom was utilized. The results of the F-Tests and T-Tests 

at each selected time are provided in Table 4-6. 

Table 4-6: F-Test and Student’s T-Test P-Values for PFOA C/C0 
Time Interval (Minutes) F-Test P Value T-Test P-Value 

15 0.07 0.39 
30 0.03 0.06 
60 0.05 0.16 

120 0.03 0.04 
240 0.26 0.06 

1440 0.36 0.00 
 
 In this case, there is one time interval, 24 hours, at which there was a significant 

difference between the C/C0 for Evoqua and Calgon. This is one of the intervals where 

the Calgon F600 C/C0 was lower than the Evoqua equivalent. While this is counter to the 

hypothesis that there would be no significant difference, the overall trend of no statistical 

significance in the difference supports the hypothesis for PFOA as it did with PFOS. 
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Removal Comparison between PFOS and PFOA 

The final analysis was done to determine whether PFOS or PFOA were removed 

more quickly. To do this, the researcher began by comparing the average C/C0 values for 

each carbon’s adsorption of PFOS and PFOA to identify any trends in the data. The 

average C/C0 values are provided in Tables 4-7 and 4-8 and graphically in Figures 4-3 

and 4-4. 

               Table 4-7: Evoqua PFOS and PFOA C/C0 
Time  Evoqua PFOS C/C0 Evoqua PFOA C/C0 

0 1.0000 1.0000 
15 0.0490 0.2021 
30 0.0203 0.0478 
60 0.0083 0.0386 

120 0.0172 0.0210 
240 0.0515 0.0187 

1440 0.0013 0.0363 
 

                               Table 4-8: Calgon PFOS and PFOA C/C0 

Time Calgon PFOS C/C0 Calgon PFOA C/C0 
0 1.0000 1.0000 

15 0.1670 0.2231 
30 0.0482 0.1985 
60 0.0353 0.1764 

120 0.0186 0.0738 
240 0.0340 0.0107 

1440 0.0006 0.0090 
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Figure 4-3: PFOS and PFOA C/C0 over time using Evoqua AC1230CX 
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Figure 4-4: PFOS and PFOA C/C0 over time using Calgon F600
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These tables show an overall trend of PFOS being removed more quickly by both 

GACs. The only exception among the averages was observed at the 240-minute time 

interval. This trend supported the hypothesis that PFOS would be removed more quickly 

due to its sulfonic functional group that creates a stronger bond with the surface of the 

adsorbent.  

Next, the researcher conducted the F-Test and T-Test for each dataset to 

determine the significance of these results. An alpha level of 0.05 (α=0.05) was once 

again utilized. However, in contrast with the previous T-Test, a one-tailed test was used. 

This was due to previous literature indicating that PFOS is typically removed quicker 

than PFOA. Therefore, the alternative hypothesis was that the average C/C0 for PFOS 

would be lower than that of PFOA. The hypotheses were:  

H0: µs-µa=0 

Ha: µs-µa<0 

Where: 

µs=Average C/C0 for PFOS at the specified time interval 
µa=Average C/C0 for PFOA at the specified time interval 

The resulting p-values at each time interval are shown in Tables 4-9 and 4-10. 

Table 4-9: F-Test and T-Test Results for Evoqua PFOS and PFOA Removal 
Time Interval (Minutes) F-Test P Value T-Test P-Value 

15 0.88 0.01 
30 0.39 0.06 
60 0.05 0.04 

120 0.05 0.41 
240 0.00 0.30 

1440 0.04 0.00 
 

 

Table 4-10: F-Test and T-Test Results for Calgon PFOS and PFOA Removal 
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Time Interval (Minutes) F-Test P Value T-Test P-Value 
15 0.02 0.15 
30 0.30 0.04 
60 0.31 0.09 

120 0.52 0.03 
240 0.07 0.11 

1440 0.23 0.01 
 

 From these values, the significance of the difference is primarily evident in three 

instances for Evoqua (15 minutes, 60 minutes, and 24 hours) and three time intervals for  

Calgon (30 minutes, 120 minutes, and 24 hours). At each of these times, PFOS was 

removed more efficiently than PFOA, again supporting the hypothesis that the carbons 

would remove it at a more rapid rate. 

 Due to issues with the analytical equipment, analysis on the PFOS and PFOA 

combined solution was not able to be completed. While this would have shown how the 

competition for adsorption sites affects the adsorption of each individual solution, the 

results from the individual solutions help understand how the chemicals interact with the 

carbons. With the overall trend showing the adsorption affinity of PFOS being stronger, it 

is likely that it would have outcompeted the PFOA for adsorption sites in a combined 

solution as well. 

Limitations 

There were two main sources of limitations and potential sources of error 

throughout the study: equipment and materials. The first of these, equipment, was due to 

the minute amount of materials that were measured during the study. Most of the masses 

were in the low milligrams range (such as the 2 milligrams of carbon used in each 

centrifuge tube), while some of the volumes were measured in microliters, particularly 

for the mixing of the solutions. While appropriate pipettes and scales were used, these 
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instruments introduce their own error which may be magnified when using such small 

amounts. Additionally, impurities within the materials themselves introduced some error 

into the study. In particular, one concern is the use of technical grade PFOS, which has a 

range of purity between 35% and 45% (Sigma-Aldrich, 2018). As was discussed in the 

methodology, the researcher used the average of these two numbers and measured the 

mass of PFOS mixed in solution based on an assumption of 40%. The results show a 

lower initial concentration of PFOS than expected, indicating that this chemical may not 

have been as pure as the researcher assumed. This could be mitigated in the future by 

utilizing a purer alternative to the technical grade PFOS. 

Summary 

This chapter discussed the results of the study in detail. It went through each step 

of the results and analysis phase of the experiment, showing data that overall supported 

the hypotheses made during the research objectives discussion in Chapter One. In 

Chapter Five, the conclusions made from these results will be discussed, along with 

recommendations for future research into PFAS remediation.  
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V. Conclusions and Recommendations 

Chapter Overview 

This chapter provides the significance of the results that were observed and 

discussed in Chapter Four. The research objectives and hypotheses will be briefly 

reintroduced, and the answers to those questions discussed. The significance of this 

research will also be discussed as it relates to the furtherance of the field of study into 

PFAS remediation efforts. 

 Finally, recommendations for how this study can lead to future research will be 

discussed. Although this data will be useful and further the ability for researchers to 

broaden treatment options, more work on the topic remains due to the limitations 

discussed previously. Optimization of the methodology will be important in enhancing 

the relevance of similar data. 

Research Objectives and Hypotheses Discussion 

The first objective that was discussed was determining whether there was a 

difference in the efficiency of PFAS removal between the two different carbons. The 

hypothesis for this objective was that there would not be a significant difference between 
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the two. This objective was of interest due to previous literature that has shown that 

bituminous coal is more efficient, and other claims that Evoqua’s new AC1230CX 

enhanced coconut carbon is capable of competing with coal based GAC (Schmidt, 2017; 

Evoqua, 2017). Additionally, there may be some benefit in terms of cost and 

sustainability. Overall, the data supported the hypothesis with two exceptions. One of the 

exceptions was in favor of Evoqua, while the other was in favor of Calgon. Therefore, the 

hypothesis that there would be no significant difference, and that Evoqua AC1230CX 

would compete with the previously more efficient F600, was accepted. 

 The second research objective was to determine which form of PFAS would be 

removed more quickly: PFOS or PFOA. The first hypothesis related to this objective was 

that PFOS would be removed at a more rapid rate due to its functional group and 

tendency to be attracted to GAC more readily while in individual solutions. The data 

shows three significant differences between the C/C0 of PFOS and PFOA for each GAC. 

Each point that was significant was in favor of PFOS being removed more rapidly, which 

was in line with the overall trend of that data. Therefore, this hypothesis was accepted. 

The second hypothesis also related to the two compounds, but when they were in solution 

together. As discussed in the results section, this part of the study was delayed due to 

analytical equipment. However, the data for the individual solutions indicates that a more 

rapid adsorption of PFOS would have been observed. Further research should be 

conducted on this matter in order to fully understand the amount of effect that this 

difference would have on the adsorption of both compounds as co-contaminants. 
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Significance of Research 

The DOD continues to explore new methods of remediating drinking water that is 

contaminated with PFOS and PFOA, as well as other types of PFAS. These 

contamination issues are the result of decades of legacy AFFF use which used long-chain 

forms of PFAS that do not readily degrade in the environment or in the human body. 

These chemicals may go on to cause significant non-cancerous disease in organs such as 

the thyroid, reproductive, and liver organs, as well as cancer. 

 While significant research has been done on numerous treatment methods, this 

research expanded the body of knowledge by exploring a new possibility for effective 

GAC. Previously, bituminous coal based GAC has been the premier form of GAC due to 

its efficiency and effectiveness. However, bituminous coal presents a sustainability and 

cost issue. Evoqua’s claim that its enhanced coconut based GAC AC1230CX is as 

effective at removing contaminants as bituminous coal presented an opportunity to 

compare these two side-by-side.  

 With the results presented and the conclusions made, this research provides 

justification to further explore the possibility of utilizing more sustainable products for 

remediation in the future. The study showed that biochar GACs, when enhanced by the 

manufacturer, are capable of competing with coal-based carbons when used to remediate 

PFAS contaminated water. Additionally, due to the potential cost savings, more 

exploration into the benefits is warranted. 

Recommendations for Future Research 

While this research was able to show that the coconut-based GAC was able to 

compete with the bituminous coal-based GAC, more research needs to be done that is 
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more representative of a full-scale system. The next step beyond bottle studies of this 

type is likely work with a Rapid Small-Scale Column Test (RSSCT). This would enable 

the results of the two carbons to be further evaluated when the GAC is compacted 

together and has water steadily running through it. 

Furthermore, future research should focus on determining the optimal ratio of 

carbon to PFAS and determine the behavior of adsorption at higher and lower amounts. 

This research focused solely on one level for each constituent and the results at those 

concentrations. This particular ratio contributed to a rapid rate of removal. In order to 

attain more granularity, the ratio of PFAS to carbon should be increased to slow down the 

removal rate. 

Finally, water that is not deionized and contains other constituents should be 

utilized in the future. This would enable the researcher to understand the effect of other 

organic matter and contaminants on the carbons. Some work has been done previously on 

this matter with other carbons, but these effects may be more or less from one carbon to 

the next. 

Summary 

 This research studied the propensity of two different types of GAC to adsorb and 

remove PFOS and PFOA from a deionized water source. The results were compared 

using statistical analysis. While biochar GACs have historically shown less capability in 

remediation efforts of PFAS, the AC1230CX enhanced coconut-based GAC by Evoqua 

competed in these bottle studies with Calgon’s F600 bituminous coal-based GAC. This 

shows that there may be reason in the future to consider more sustainable, cost-effective 
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sources of GAC as municipalities and industries pursue effective PFAS remediation 

techniques. 
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