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ABSTRACT

Machine Learning (ML) has an increasing role within many mission areas
across the Laboratory. Yet, it remains to be seen how robust and secure these algo-
rithms are to inputs that are intentionally designed to cause a ML model to make
a mistake, i.e., adversarial examples. Many potential issues arise from the existence
of adversarial examples. Examples include an adversary biasing the training data
via data poisoning techniques for Automatic Target Recognition (ATR) systems or
attacking cybersecurity systems by inserting malicious content that appears legiti-
mate. Building a framework to evaluate and build robustness into ML algorithms
will become increasingly important as the USG invests in new capabilities.

The unique set of mission areas across the Laboratory offers a set of challeng-
ing problems for generating attacks; namely, the adversary is often limited in its
ability to fully understand the defenses capability. Yet, the adversary may have
a good understanding of the training data used for any given ML model; e.g., for
ATR radar systems such as those needed for Ballistic Missile Defense, the adver-
sary controls what the defense observes when conducting system capability tests
leading to the possibility of potential data poisoning attacks. This project aims to
adapt and expand on existing approaches to effectively red team adversarial attacks
for evaluating the robustness of Laboratory ML algorithms, while also developing
techniques to build resiliency into the models.

Radio frequency (RF) sensors are used alongside other sensing modalities to
provide rich representations of the world. Given the high variability of complex-
valued target responses, RF systems are susceptible to attacks masking true target
characteristics from accurate identification. In this work, we evaluate different tech-
niques for building robust classification architectures exploiting learned physical
structure in received synthetic aperture radar signals of simulated 3D targets.
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1. INTRODUCTION

Active sensors (i.e., radar) can provide autonomous systems with a rich representation of the
physical world, which can be used to augment the information collected from traditional static
sensors (i.e., cameras). As a radio frequency sensor, radar offers unique capabilities to accurately
measure physical attributes that other sensors cannot, such as range to target, radial velocity,
and other physical characteristics [1]. Radar can be used to help with scene characterization and
automatic target recognition (ATR) to classify different detected targets (e.g., cars, pedestrians,
obstacles) in the presence of different types of clutter (buildings, trees, other noise sources).

ATR using Synthetic Aperture Radar (SAR) is a common radar application for classifying
targets using a sensor mounted on moving vehicles such as aircraft and automobiles. ATR has long
been performed with handcrafted features [2], an approach that has begun to give way to data-
driven approaches following the success of deep learning architectures in image classification [3–5].
However, recent applications of these techniques to radar problems do not explicitly account for
the rich physical properties of the signals provided for classification [6–8]. Using simulated radio
wave interactions with 3D targets, we train a model that approximates the relationship between
the radar signal response and underlying target class.

Machine learning models have been shown to be vulnerable to adversarial attacks in which in-
puts to the model are purposely manipulated in order to produce erroneous results [9]. In response,
numerous methods have been proposed for generating attacks, building defenses, and measuring the
robustness of algorithms to adversarial perturbations [10–13]. SAR systems may also be susceptible
to attack given the high variability of possible complex-valued signatures for a given target. This
variability results from a number of factors, including diverse environments, sensor parameters,
viewing geometries, clutter, target shapes and materials, all of which impact the signal returned to
the radar. This variability is difficult to model, and hence difficult to incorporate into the training
data for a given radar system. Further, this high variability of possible target signatures leaves
opportunity for radar systems to be fooled by an adversary.

In this work, we evaluate a suite of techniques for building ATR architectures that intend to
be robust to adversarial attacks. The techniques we consider include conditional training based on
target pose estimation, feature similarity embedding, and adversarial learning by perturbing the
complex-valued target response before processing the image. We evaluate these techniques using
physics-based simulations of SAR images for a target shape classification problem, and demonstrate
their ability to increase the robustness (and accuracy) of our radar classifier.
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2. PRELIMINARIES

2.1 NEURAL NETWORKS

Neural networks, most notably those used in applications of Deep Learning, have emerged
as effective near-universal approximators of complex systems and functions. The primary unit of
a neural network is called a neuron. A neuron, or node, can be described as a non-linear mapping
over a weighted linear combination of other nodes or some external input. As such, the output of
a collection of nodes, described as a layer in the network, can be represented as

x̃(k+1) = σ
(
W̃ (k) · x̃(k) + w

(k)
b

)
(1)

where x̃(k) ∈ Rn is the input vector, W̃ (k) ∈ Rm×n is the weight matrix and w
(k)
b is the weight

bias of the kth layer of the network. σ(·) is an element-wise nonlinear mapping, often called an
activation function that controls for translational invariance as well as introducing the capability
of modeling more complex behavior. The output vector x̃(k+1) ∈ Rn is then used as input to the
next layer in the network. The collection of all weight matrices and biases across the layers of a
network are known as the parameters of the network and may be represented by the variable Θ.

For notation purposes, we subsume the biases w
(·)
b into the weight matrices and augment the

input x by adding a 1 as an additional dimension. Thus the parameters of the layer k can be
compactly represented by the matrix W (k). The final output of an N -layer neural network can be
formulated as

ŷ = fΘ(x) = σ
(
W (N) · σ

(
W (N−1) · · ·σ

(
W (0) · x

)))
(2)

The network parameters Θ are “learned” through optimization to approximate an unknown
function f : RnI → RnO . This is done by a process called training in which the calculated state of
the output ŷ is compared to target values, y, corresponding to the datum as input to the network,
x. The total deviation from the target value is termed as the error of the neural network, the signal
of which is then used to update Θ. The standard algorithm for propagating the error through the
network is known as backpropagation [14].

Based on the application there are various approaches to measure this error, known as the loss
function. In practice, the loss function and hyperparameters used by the backpropagation algorithm
are the most important aspects, followed by the structure of the nodes and edges that make up
the computation graph, of training an accurate neural network and learning a good representation
of the collected data. Depending on the complexity of the defined neural network, difficultly of
learning the representation of the data, the size of the data set used to train the neural network,
etc. influences the number of iterations needed for the backpropagation algorithm to optimize the
parameters Θ appropriately.

2.2 ROBUSTNESS AND ADVERSARIAL PERTURBATIONS

The goal of any machine learning task is to train the algorithm to perform well on data in
the training set, while maintaining performance on data it has not seen before (i.e., maintain high
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in-sample and out-of-sample accuracy). This property is referred to as generalization [15]. Out-of-
sample performance can be estimated by using a separate test set that is withheld from the training
process, or through performing cross-validation of the training set.

A second property that is desired of a machine learning algorithm is that it will maintain
its performance given small perturbations to its inputs. It is this property that has been found to
be violated in many instances by adversarial perturbations [9,16]. An adversarial perturbation for
a correctly classified input, x, is a small perturbation, r satisfying ‖r‖ < ε, that when applied to
the input results in an incorrect classification decision, i.e., fΘ(x + r) 6= fΘ(x) (see Figure 1). A
classifier for which adversarial perturbations exist for many of its examples is not considered robust
since the model can easily be fooled by small changes to the inputs.

Figure 1. Notional classifier with adversarial perturbation (red arrow) applied to one of the green samples.

Once a classifier has been trained, an adversarial perturbation for a given input x can be
found by using a gradient-based optimization procedure to search for minimum perturbations to
the input that maximize the loss function. Methods range from quick approximations that take
only a single gradient step such as Fast Gradient Sign Method (FGSM) [10], to solving the full
optimization problem as in [17]. While FGSM is not guaranteed to find an adversarial example,
solving the full optimization problem is nontrivial, so in [11] the authors propose an alternative
method, called DeepFool, that iteratively projects the input onto the decision boundary of the
locally-linearized classification model. Once adversarial perturbations have been found, they can be
used in a robustness metric or to create additional training examples for the classifier. Training on
adversarial examples, referred to as adversarial learning, has been shown to increase robustness [10].

In general, there is a trade-off between accuracy and robustness for any given classifier. Op-
timization techniques used during model training tend to craft highly complex decision boundaries
in an attempt to precisely differentiate between each class. Such precision leads to greater accu-
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racy yet introduces some deficiencies as those final, tough to classify data points now lie close to
the decision boundary, only needing to be “nudged” slightly in order to be misclassified. In this
manner, a highly accurate model may not be robust. By optimizing for robustness, any decision
boundary learned to separate the classes is effectually kept from becoming too precise. While less
accurate, a robust model is likely far more reliable in execution.
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3. AUTOMATIC TARGET RECOGNITION WITH SYNTHETIC
APERTURE RADAR

We focus on data derived from simulating an airborne SAR, which produces a high-resolution
representation of the scene in range and cross-range [1]. Similar to the data set generated in [18],
we consider the SAR scenario illustrated in Figure 2 with an example input image for an hourglass-
shaped target. The target shapes we consider are described in detail Section 4.2. The aircraft flies
in a circular orbit around the target of interest while sending Linear Frequency Modulated (LFM)
pulses to the target, and collecting the received backscattered pulses. A SAR image is generated
from the complex-valued frequency history of a given orbital segment using back-projection around
the target (i.e., spotlight extraction). The goal of the ATR classifier is to determine the target class
given the normalized magnitude of the image.

Figure 2. Notional ATR with SAR scenario (top) with simulated SAR image for an hourglass target (bottom)

3.1 OVERVIEW OF SAR

The principle behind SAR is is to use a traditional mono-static radar with a LFM pulse that
provides high range resolution and utilize the motion path of the host platform to produce an
“simulated” large aperture that can also provide high cross-range resolution. Without the motion
path the angular resolution of the mono-static processed data will be coarse. For a SAR platform
following a motion path, and observing a stationary target, the antenna phase center is defined as,

Xp = [xp, yp, zp] (3)

where there are p = 1, . . . , Np collects across the across the synthetic aperture. The distance to the
radar phase center is then given by

Rp =
√

(xp − x0)2 + (yp − y0)2 + (zp − z0)2 (4)

where the position of the stationary target is X0 = [x0, y0, z0] defined to be the geometric center
of the target shape. The output of the receiver at time tp is a sequence of frequency samples
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delayed by the round trip time between the transmitted signal and the back-scattered response of
the target. There are K frequency samples per received signal denoted by fk. The received signal
for each sequence can formulated as

Ek,p = ET (fk) exp (−i4πfkRp/c) (5)

where ET is the complex response for target T and Rp is the distance to the phase center defined
above. There exists a number of techniques to convert these complex valued frequency histories
into a 2D image. We utilize the back-projection algorithm described in [19].

3.2 TARGET CLASSIFICATION ARCHITECTURE

Given a set of complex valued frequency histories across a synthetic aperture illuminating
a single target, S = {Ek,p|k = 1, . . . ,K and p = 1, . . . , Np}, process the collection through a
signal processing function, g : RK×Np → RN×N , that to produce a 2D real valued image for
target classification. For this paper, the function g consists of the back-projection algorithm and a
transformation from a complex to real valued image:

xc = backprojection(S), (6)

x = (20 log10(|xc|)− µ)/D. (7)

where µ and D are set such that most of the values of x fall within the range of [−1, 1].

The input image, x, is assumed to only contain a single target of class y out C different target
classes. To classify the target within the processed image, execute a neural network consisting of a
feature extractor, f : RN×N → RM , and classifier, c : RM → RC , given by,

h = fΘf
(x), (8)

ŷ = cΘc(h), (9)

where ŷ is the estimated class probability vector. The functions f and c are neural networks whose
parameters, Θf and Θc, are estimated by minimizing by the following cross-entropy loss using a
form of backpropagation,

Lclf (x, y; Θf ,Θc) = −
P∑
i

ŷi log(yi). (10)

3.3 ROBUSTNESS TECHNIQUES

Pose Estimation The first approach we consider to improve robustness and provide better
feature learning is to jointly estimate the target class and pose, θ ∈ [0, 2π], which is the angle
between the target body axis and radar line-of-sight (see Figure 2). Joint training may improve
feature learning by forcing the neural network to output features that best represent the information
needed to classify a target and estimate its pose. We discretize the angle into T bins and use the
categorical distribution to estimate the pose, θ̂, via a neural network,

θ̂ = pΘp(h) , θ ∈ RT . (11)
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The parameters of the pose estimator is trained along with the feature and classification parameters
by minimizing an additional loss function,

Lpose(x, y; Θp) = −
T∑
i

θ̂i log(θi) (12)

Similarity Embedding It is expected that similar inputs will result in feature vectors that are
close given a distance metric. Learning a feature space that embeds this property will improve
classifier robustness to small changes in target phenomenology (see appendix of [12]). Similarity
depends on the specific application; for ATR using SAR, we define input similarity based on three
properties: 1) targets belong to the same class, 2) targets have similar size, and 3) the targets have
similar pose. To embed similarity into our network, we define a binary similarity label, s, (0 if
inputs are similar, 1 if not) and consider the contrastive loss between two extracted feature vectors
h1 and h2, from separate SAR images x1 and x2,

Lsim(h1, h2, s; Θf ) = (1− s)‖h1 − h2‖22 + smin(1− ‖h1 − h2‖2, 0)2. (13)

This loss is minimized in conjunction with the classification loss.

Figure 3. Overview of applying FGSM on radar signals.

Adversarial Learning Adversarial Learning with FGSM [10] has shown an ability to improve
the robustness of a classification model. We utilize FGSM to perturb the complex-valued target
frequency history before back-projection, providing a more “realistic” adversarial perturbation of
the target response and aiming to improve robustness against small variations in a target’s complex-
valued phenomenology. That is, for a radar, we want to consider perturbations of the signal being
received at the sensor rather than on the “pixels” of the input image to the target classifier,
Figure 3 outlines the approach to generating perturbations of the signal. To do this, define the
signal processing function, x = g(s), that takes the received signal, s, and processes the signal
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through the back-projection algorithm and normalizing functions defined in Equations 6 and 7.
The perturbation defined by FGSM is given by,

η = εsign(∇xLclf (x = g(s), y; Θf ,Θc)). (14)

Then the perturbed input image the neural network is

x′FGSM = g(s+ η). (15)

For adversarial training, we minimize the additional loss term,

Ladv(x
′
FGSM, y; Θf ,Θc) = −

P∑
i

ŷ′i log(yi) (16)

where y is the label of the original image, x, and ŷ′i is the label of the perturbed image, x′FGSM.
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4. EXPERIMENTS

4.1 DATA

The data set consists of 715 unique 3D targets of various size corresponding to four shape
classes shown in Figure 4: cylinder, cone, dome-cylinder, and hour-glass. For each individual
target, 1000 SAR images are generated, resulting in a total of 715,000 images to train and test our
classifiers. This data set varies the target pose θ, radar altitude a, orbital radius r, initial orbit
location ϕ0, and background noise (see Figure 2). Each SAR image represents a six meter window
in the xy-plane with 160 samples (depiction of SAR scenario and sample image shown in Figure 2).

4.2 RF SIMULATION

Figure 4. Description of shapes in data set.

This data set utilizes four different shape classes that are depicted in Figure 4. These shapes
are modeled in 3D by assuming the targets are symmetric along the body-axis (roll symmetric).
To generate a random sample of target shapes we define the distribution of parameters shown in
Figure 4 as:

L ∼ U [1, 4] (17)

D ∼ U [1, 2] (18)

D1 ∼ U [1, 2] (19)

D2 ∼ U [1, 2] (20)

LC = L/2 + 0.1 (21)

DC = 0.1. (22)

The distribution of parameters are defined to challenge a classification algorithm to estimate
the shape class independent of the objects sizes. In addition to modeling the geometric shape, half
the samples will include basic “ring” (e.g., notch or groove) randomly along the body axis and is
also roll symmetric.

We utilize an RF simulation tool developed internally to provide the frequency response for a
given look angle and target shape. The simulations utilize Geometric Diffraction Theory (GDT) [20]
to model the responses for a select number of scattering centers for a given shape. GDT is applicable
in the high frequency region we focus on in this data set, the electromagnetic field can be written
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as
E(fk, sn) = A(fk, sn, θ) exp (−i4πfkrn/c) (23)

where there are K frequency samples per signal denoted by fk, sn is the scattering center at a
given range rn, A(fk, sn, θ) is the complex amplitude response of the scattering center for given
line-of-sight θ to the radar (see Figure 5), and c is the speed of light constant. See [21] and [22] for
an example of how to model the complex amplitude of cones.

Figure 5. Description of line-of-sight.

An RF simulation is conducted for a randomly sampled shape, frequencies, and rotation
angles about the geometric center of the object. For this data set, the center frequency is 24 GHz,
bandwidth is B = 0.5 GHz, and the number of frequency samples is K = 64. A simulation for a
sampled target, T , is then given by

EPT (fk, φ) =

N∑
n=1

A(fk, sn, θ) exp (−i4πfkrn/c) (24)

where the scattering center range, rn, is defined to be relative to the geometric center of the target,
and P is one of the four possible polarization combinations: HH, HV, VH, and VV. For images
generated in this paper, we utilize the circular polarized signal: ET = 0.5(EHHT + EV VT ). An
example of simulated RF responses for each shape are show in Figure 6 as a function range relative
to the geometric center of the shape versus the line-of-sight angle. As desired, the data set will
challenge ATR, that is, the classification algorithm must distinguish between the different shapes
by extracting features that separate the shapes based subtle changes observed across the viewing
angles. For example, rear viewing angles will be challenging due to similarities in phenomenology
between the different shapes while forward viewing angles provide the most variability.

4.3 TARGET CLASSIFICATION MODEL

The feature extraction architecture is a simple convolutional neural network (CNN) with
layers C(16, 20, 1, 0) - C(32, 3, 2, 1) - C(64, 3, 2, 1) - C(128, 3, 2, 1) - C(256, 3, 2, 1) - P(5),
where C(n, k, s, p) is a convolution layer followed by a ReLU non-linearity where n is the number
of output channels, k is the kernels size in both dimensions, s is the stride, and p is the padding.
The last layer is an average pooling layer with a kernel size such that the output is a vector of size
256.

The classifier function is a fully connected neural network of two linear layers: L(64) followed
by a ReLU, and L(4) followed by a soft-max layer.
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TABLE 1

Summary of accuracy and robustness results for ATR with SAR

Accuracy Robustness
BASIC 0.896 ± 0.011 0.0201 ± 0.0011
POSE 0.899 ± 0.009 0.0209 ± 0.0006
SIM 0.921 ± 0.013 0.0204 ± 0.0008
POSE+SIM 0.912 ± 0.013 0.0204 ± 0.0018
ADV 0.871 ± 0.006 0.0213 ± 0.0011
ADV+SIM 0.889 ± 0.005 0.0224 ± 0.0026

The pose estimator is a fully connected neural network of two linear layers: L(64) followed
by a ReLU, and L(180) followed by a soft-max. We discretize the angle space into T = 180 angle
bins.

The normalizing parameters in Equation 7 are µ = −40 and D = 50. For adversarial learning,
the scale of the perturbation in Equation 14 is set to ε = 0.001.

4.4 EVALUATION METRICS

We perform 4-fold cross-validation to train and estimate the out-of-sample accuracy of each
classifier. To evaluate the robustness of a classifier to adversarial perturbations, we use the metric,
ρ̂adv(f), introduced in [11]:

ρ̂adv(f) =
1

|D|
∑
xεD

‖r̂(x)‖2
‖x‖2

. (25)

‖ · ‖2 represents the Euclidean (i.e., L2) norm. The minimum adversarial perturbation, r̂(x), for
each SAR image, x, in the validation data set, D, is computed using the DeepFool algorithm. When
comparing two classifiers, if ρ̂adv(f1) > ρ̂adv(f2), we conclude classifier f1 is more robust than f2.

4.5 RESULTS

We compare the basic architecture of feature extractor followed by classifier (BASIC) with
the following augmented training schemes: pose estimation (POSE), similarity embedding (SIM),
pose estimation and similarity embedding (POSE+SIM), adversarial learning with FGSM (ADV),
and adversarial learning and similarity embedding (ADV+SIM). Overall results are summarized in
Table 1 and Figure 7.

First lets examine results qualitatively to gain some insight. Figure 8 demonstrates both
classification and pose estimation for the different shapes and viewing angles. Results appear to
be intuitive, for instance, by examining the two dome-cylinder results, we see that small viewing
angles lead to uncertainty in the pose due to the strong spherical response of the target while
higher viewing angles are more uncertain in the target classification due to the similarities in

17 of 25



phenomenology with the other shapes. A look at the cylinder results shows an expected bi-modal
distribution in the pose estimate since the cylinder target is symmetric. The hour-glass result shows
a multi-modal pose estimate distribution due to the complex and varying symmetry of the shape.
Lastly, the cone example demonstrates both accuracy in classification and pose estimation from
smaller viewing angles due to the conic nature of the target that is different from the other shapes.
From these results, we can see that by adding pose, we learn a better representation of the data
that also supports our intuition.

Examining the overall results in Table 1, we see that each of the augmented training techniques
leads to an increase in robustness over the basic classifier. Adversarial learning with similarity
embedding has the highest robustness to adversarial perturbations, which is expected because this
approach directly optimizes a loss function that applies small perturbations to the classifier input.
However, since FGSM is a form of regularization, adversarial learning results in a slight drop
in accuracy compared to the basic classifier. On the other hand, pose estimation and similarity
embedding both result in increases in accuracy. We theorize that by conditioning the classifier on
information such as pose and similarity properties, we learn more effective representations of the
data and hence achieve higher accuracy.

The set of shapes used for this experiment were designed to be challenging (see Section 4.2).
For viewing geometries with small pose angles (front viewing) each of the objects exhibit the highest
amount of variability in their phenomenology, but all objects look similar from rear viewing geome-
tries, e.g., the base of the cone and cylinder look similar. Therefore we expect better classification
performance in front viewing geometries. Figure 6 illustrates the varying phenomenology between
the different shapes and viewing angles. Performance across different viewing geometries are shown
in Figure 7. As expected, classification performance is better for front viewing geometries for
all classification architectures and degrades as viewing angles increase. Additionally, as described
above, we see a drop in overall accuracy for the both types of adversarial learning architectures,
yet robustness increases across all viewing angles. Broadside is usually specular in nature and
therefore exhibits little phenomenology to perform classification between differing shape, therefore
small variations in the signal can lead to miss-classification.

Examining the behavior across the different training methods, adversarial learning clearly
improves the robustness of the classifier over all viewing angles while reducing the overall accuracy.
Yet, the results demonstrate that adding similarity embedding to adversarial learning improves
the robustness while also improving the accuracy over basic adversarial learning. Adding pose is
expected to improve accuracy and remains to be seen in future analyses if robustness also improves.
In addition to augmenting the training architecture, additional studies are needed to examine the
accuracy and robustness as a function of the magnitude of the perturbation. Figure 9 demonstrates
an initial study to show the impact on classification of the cone when increasing the magnitude of
the perturbation. As the perturbation increases, the amount of reduction in accuracy also increases.
Yet, by using adversarial learning with similarity embedding we see an improvement in the accuracy
as the perturbation increases. We plan to expand on this study in future work while examining
techniques to visualize the results via some form of class activation map.

18 of 25



5. DISCUSSION AND FUTURE WORK

In this project report, we present a convolutional neural network architecture and selection of
training techniques for learning accurate and robust representations of 3D targets in active sensing
environments, such as radar. We investigate these techniques using a simulated SAR for ATR
scenario, and find adversarial learning to be the approach that achieves the highest robustness to
adversarial attack, while pose estimation with similarity embedding increases the robustness while
also achieving the highest accuracy.

To this point, this program has investigated the generation of adversarial examples using
existing state-of-the art techniques such as Fast Gradient Sign Method (FGSM). While the de-
velopments this past year have just touched on the capabilities of these approaches to generate
attacks, our technical focus going forward will expand on these techniques to develop a framework
for producing attacks that effectively counter defenses trained to account for adversarial examples.
This line of inquiry will assist in future development of ML algorithms that are resilient against
this nature of attack.

Future work will include incorporating additional robustness metrics, performing similar anal-
ysis on other existing radar data sets (e.g., MSTAR [2]), and exploring the applicability of generative
modeling for adversarial data augmentation that avoid the need to calculate the gradient. In-line
with other current work, we are developing generative models, such as Generative Adversarial Net-
works (GAN) [23], to sample simulated radar observations that are within the target distribution
but fool our classifiers [6, 13].

FGSM and other gradient-based approaches used to generate adversarial examples typically
introduce small variations in the target or environment which leads to slight changes across the
entire radar signal response (see Fig. 10(left)). While this approach may be effective in producing
adversarial examples that stress classification algorithms, this signal variation may not correspond
to any one physical feature that an adversary may add to a target to confuse algorithmic defenses.
To better control for specific changes that an adversary may make to the target design (e.g., bolts,
grooves, antennas, etc.) we hope to constrain our generative model to place realistic structure in
the signal scattering response that may lead to misclassification of the target (see Fig. 10(right)).
We hypothesize that training with these generative models will help increase robustness in data-
starved radar applications by supplementing the training data with stressing adversarial examples
that represent a fuller distribution of possible physical realizations of potential targets.
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Figure 6. Example of simulated RF responses for each shape
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Figure 7. Accuracy (top) and Robustness (bottom) results of the described classification architectures for
ATR of the simulated SAR images
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Figure 8. Example results across shape and viewing geometries.
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Figure 9. Accuracy of classification of cone shape as the magnitude of the perturbation increases.

Figure 10. Approaches to radar signal variation.
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