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1 Introduction 
The DARPA Computers and Humans Exploring Software Security (CHESS) program seeks 

to increase the speed and efficiency with which software vulnerabilities are discovered and 
remediated, by integrating human knowledge into the automated vulnerability discovery process 
of current and next generation Cyber Reasoning Systems (CRS). As with most technological 
advancements that seek to supplant what was once the exclusive domain of human expertise, the 
best and the most convincing way to measure success is against a human baseline. 

Combining Hacker Expertise Can Krush Machine Assisted Target Exploitation 
(CHECKMATE), the CHESS Technical Area 4 (TA4) control team, focuses on providing the 
CHESS program with a team of expert hackers with extensive domain experience as a consistent 
baseline against which the TA1 and TA2 performers will be measured. Vulnerability research is 
a constantly evolving area of cyber security, which means that the baseline for measuring the 
success of the CHESS program is a moving target. The control team must keep pace with the 
most recent advancements to remain an effective baseline for comparison. The CHECKMATE 
team not only needs to stay on top of the state-of-the-art research and technology solutions, but 
also capture the most emerging and trending techniques across all relevant vulnerability classes, 
tools, and methodologies. This Edge of the Art report aggregates the most recent advances in 
vulnerability research (VR), reverse engineering (RE), and program analysis tools and 
techniques that the CHECKMATE team considers when planning for the next CHESS evaluation 
event.  

Staying current with the ongoing advancements of such a fast-moving field requires constant 
engagement with the cyber security community. The contents of this report are drawn from four 
specific areas of engagement:  

1. Social Media - Participating in social media platforms, including online forums and chat
applications, to identify key influencers, build relationships, and identify new research
directions.

2. Online Code Repositories - Monitoring code repositories for new tools and deciding
when a tool has reached a baseline level of maturity for our team to evaluate and include
in our toolset.

3. Top Security Conferences - Attending a selected set of top cyber security conferences
that focus on VR, RE, and program analysis to provide a formal venue for learning and
exchanging new techniques.

4. Academic Literature - Surveying academic literature frequently to ensure complete
coverage of novel algorithms and approaches driven by academic research

To stay on the Edge of the Art, this report will be updated every six-months with 
enhancements in the current state-of-the-art and new tools and techniques emerging in the cyber 
security community.  
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2 Scope of the Document 
The main purpose of this first Edge of the Art (EotA) report is to define and establish a set of 

baseline criteria for the “edge.” Each subsequent EotA report will document those things that 
have come into existence (or significantly matured) since the last report. This first report will 
also discuss several tools that are considered standard-bearers, because newness and novelty are 
often a result of deficiencies in the current state-of-the-art. In other words, this report presents 
emergent tools and techniques, as well as the origins of these tools, to make it a foundation for 
all subsequent reports.  

The EotA reports will be produced using an “aggregate and filter” approach. The 
CHECKMATE team constantly monitors many different sources in an attempt to aggregate all 
known and emerging tools and techniques. This information is then filtered into what the 
CHECKMATE team considers worth reporting. The definition of the “edge” is governed by the 
filter criteria, which differ across tools and techniques. It is anticipated that these criteria, and 
therefore the definition of “edge,” will evolve over the life of the CHESS program.  

2.1 Tools Criteria 

The following criteria govern which tools are included in this report.  

Year Released – “Cutting edge” has an obvious temporal component, but it is less obvious 
where the cut-off should lie. Every tool in this report has been introduced within the last five 
years (i.e. first released in 2014 or later). Over two-thirds of the tools were released in or after 
2017, and most of those were released in or after 2018. Those released earlier, such as Frida and 
rr, are included because they have significantly matured since their initial release and represent 
major gains in runtime debugging, interaction, and interoperability. 

Capability – New tool capabilities, and how they compare to the current state-of-the-art, are 
a primary consideration for inclusion in this report. The novel aspect of a new tool capability is 
dependent on the category of tool, and each section of this report starts with an introduction that 
lays out its specific considerations. 

Theory and Approach – Tools which offer novel ideas, approaches, or new research are 
important even when the tools have poor implementations or do not necessarily outperform the 
current state-of-the-art. For example, the fuzzer Eclipser does not necessarily outperform the 
state-of-the-art, but does represent a promising approach that could complement current state-of-
the-art fuzzers. Another example is FUZE, a Linux kernel exploitation framework, that, while 
currently a prototype implementation, provides an interesting new look at exploitation 
frameworks. 

Usability – In contrast with Theory and Approach, Usability considers tools which may not 
represent groundbreaking research, but enable the user to harness existing capabilities more 
effectively. For example, Lighthouse, which displays coverage information, did not invent a new 
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analytical approach, but it enables the user to more intuitively compare and contrast coverage 
data. Thus, it is included in this report.  

Current State-of-the-Art – The line between edge-of-the-art and state-of- the-art is hazy. 
There is rarely a single moment where a tool or technique definitively transitions from one 
category to another. In some cases, including a tool that one might consider state-of-the-art is 
necessary to compare to the edge-of-the-art. In other cases, the tool has new capabilities which 
keep it on the edge-of-the-art. 

2.2 Technique Criteria 

Most techniques are implemented by at least one tool, and are documented in that tool’s 
description. The “Other Techniques” section attempts to cover techniques which are not 
implemented by any tool. They all emerged in 2014 or later and are grouped into categories like 
Just In Time (JIT) Exploitation Techniques, ROP Techniques, Heap Techniques, etcetera. Areas 
experiencing heavy research focus but not related to any one of the CHESS vulnerability classes 
or target architectures, like embedded device security and hardware side channels, are considered 
out of scope and not included in this report. 
 

3 Tools and Techniques 
The CHECKMATE team has deep experience and expertise with a wide array of different 

tools and techniques to find, exploit, and remediate vulnerabilities. This draft report will not 
provide an exhaustive list of tools with detailed description of capabilities and usage. Instead, 
this section describes a representative subset of the tools and techniques that serves as a baseline 
for discussing and understanding the edge-of-the-art. 

3.1 Tool and Technique Categories 

There are many ways to categorize the tooling and techniques used for vulnerability 
discovery and exploitation. Cyber Reasoning Systems (CRS) tend to view the problem as a 
combination of analytical techniques, such as dynamic analysis, static analysis, and fuzzing. 
These analytical techniques are a bit too broad to use as tool categories because each technique 
summarizes a set of actions that are performed by different tools. Some tools may utilize 
multiple analytical techniques and thus fall in multiple categories.  Alternatively, existing tool 
categorizations, like the Black Hat Arsenal tool repository, are both too specific (e.g. 
“ics_scada”), or include categories that are irrelevant to VR, RE, and exploit development (e.g. 
“phishing”). 

The CHECKMATE team has adopted a tool categorization that encompasses the VR and 
exploit development process followed by most researchers. Broadly, this process involves three 
overarching steps: 1) find points of interest (PoI) that may contain a vulnerability; 2) verify the 
existence of a vulnerability at each PoI; and 3) build an input that triggers the vulnerability to 
generate a specific effect (e.g. crash, info leak, code execution, etc.). As part of this process, the 
researcher will typically engage in six types of activities: Comprehension, Translation, 
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Instrumentation, Analysis, Fuzzing, and Exploitation. These activity classes form the basis for 
the tool categorization used in this report. 

This initial version of the Edge of Art report describes tools in the categories of Fuzzing, 
Disassembly and Decompilation, Static Instrumentation, Dynamic Analysis and Exploitation, 
and Symbolic and Concolic Execution. Subsequent versions of this report will cover 
advancements to existing tools, as well as new tools and techniques.  

3.2 Fuzzing 

The goal of fuzzing is to search the input space of a program for inputs that trigger a 
previously unknown vulnerability. Generally, fuzzing assumes no knowledge of where a 
vulnerability is located. Instead, it assumes that if a vulnerability exists, then it can be triggered 
with the correct combination of input values, which in turn generates an observable that the 
fuzzer uses to record its existence. While fuzzing could be considered just another form of 
dynamic analysis, the plethora of available fuzzers and fuzzing techniques warrants a category 
all its own. 

Fuzzers and fuzzing techniques have evolved in the past three decades. Modern fuzzers are 
sophisticated automatic input generators and instrumentation engines which draw upon an active 
field of academic research. Every year scores of new fuzzers and fuzzing research emerge, 
promising better performance using novel techniques. Fuzzing consistently produces verified 
vulnerabilities (e.g., CVEs) and has proven to be an extremely effective method of finding 
vulnerabilities. 

The difficulty in comparing fuzzers is a lack of well-defined criteria [1]. American Fuzzy 
Lop (AFL) is a very popular fuzzer that fuzzing research often uses for comparison. For 
example, the Eclipser fuzzer uses an interesting technique to generate relatively convincing 
metrics showing it outperforms AFL [2]. However other researchers found that each fuzzer 
outperformed the other on different test problems, thereby demonstrating a no one-size-fits-all 
approach to fuzzing [3]. 

The Eclipser example shows the difficulties in defining good metrics to measure and 
compare fuzzing tools and techniques. Fuzzers which do not significantly outperform a state-of-
the-art fuzzer on certain test suites may still have utility by offering different coverage paths, 
different instrumentation options, or different results. This point is summarized succinctly by the 
security firm Trail of Bits, “In fuzzing, diversity is not just helpful, it is essential if you really 
want the best chance to find every last bug. No fuzzer will be best for all programs under test, or 
for all bugs in a given real-world program [3].”  

3.2.1 Section Organization 

The rest of section 3.2 is organized as follows. Section 3.2.2 introduces the state-of-the-art 
fuzzing tool AFL, along with the most recent improvements and novel approaches to enhance it. 
Section 3.2.3 describes other non-AFL based fuzzers, such as Eclipser [7] and Angora [8], which 
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attempt to achieve the benefits of concolic execution without the computational costs by solving 
path constraints without symbolic execution. Section 3.2.4 describes two Just In Time (JIT) 
fuzzers that implement novel methods to generate semantically and syntactically correct inputs 
for JavaScript engines. These techniques are independent of JavaScript and could be repurposed 
for other fuzzing targets. Section 3.2.5 describes DeepState [9], which is a fuzzing framework 
that combines fuzzers (AFL, LibFuzzer) and symbolic execution engines (angr) into a common 
interface [3]. Current research in this fuzzing topic area shows that combining different fuzzing 
techniques can improve better coverage of a target complex system. It can also make the 
instrumentation easier on new platforms. These edge-of-the-art enhancements are highlighted in 
that section. 

3.2.2 American Fuzzy Lop (AFL) Fuzzers 

AFL is an open-source fuzzer that was first released in 2014. Named for the American Fuzzy 
Lop, a breed of rabbit, it utilizes code coverage and genetic algorithms to generate test cases 
[11]. AFL has established itself as the enduring state-of-the-art fuzzer upon which many edge-of-
the-art variants have been built. Although the latest release was in November 2017, many of the 
recent significant advances in fuzzing are based on projects that fork the AFL codebase. 
Discussed below are several of the latest tools that were built upon AFL. 

3.2.2.1 AFL-Unicorn 

Reference Link https://github.com/Battelle/afl-unicorn 
Target Type Binary 
Host Operating System Linux 

With Constraints: Android; iOS; Windows 
 Target Operating System x86 (32, 64) 

Host Architecture x86 (32,64) 
Target Architecture x86 (16, 32, 64); ARM (32, 64); MIPS (32, 64); M68K; SPARC 
Initial Release October 31, 2017 
License Type Open-Source 
Maintenance Maintained by Nathan Voss 

Overview 

AFL-Unicorn is designed to fuzz arbitrary binary code snippets with AFL using emulation. 
To mutate inputs, AFL requires an instrumented binary that can generate code coverage 
information for each input [11]. For applications with standard architectures and operating 
systems, and straightforward inputs (e.g., an x86 Linux binary that receives input from the 
command-line), instrumentation is added either during compilation or using AFL’s QEMU 
mode. For less conventional software systems, such as embedded systems or software with 
unconventional inputs, AFL does not provide a solution. AFL-Unicorn was created in 2017 by 
Nathan Voss at Batelle to address this problem. By combining Unicorn, an emulation engine 
built on top of the QEMU emulator, with AFL’s QEMU mode, AFL can fuzz arbitrary un-
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instrumented code. A Unicorn-based harness is used to emulate the code, while information from 
the emulator is used to determine code coverage and ultimately mutate inputs [12]. 

Design and Usage 

AFL-Unicorn works by building a Unicorn Mode into AFL using a Unicorn harness to load 
and emulate the target code. The harness is passed to AFL as an argument, along with typical 
arguments like input and output paths. A harness must load the binary into memory and set up 
the initial register and memory state, then AFL-Unicorn will run the emulation and mutate the 
inputs based on the coverage and crash information returned.  While running, the tool interacts 
with the user as AFL typically does, showing its distinctive command-line display and outputting 
the inputs that triggered crashes to a specified path [12], [13]. Figure 3-1 illustrates how AFL 
interacts with Unicorn to achieve the desired result [12].  

Figure 3-1 AFL-Unicorn architecture [12] 

Use Cases 

The significance of Unicorn Mode is the expansion of AFL to fuzz portions of binary code 
for which source is not available, as well as providing a model for how to combine Unicorn with 
other fuzzers. Although the amount of reverse engineering needed to run AFL on nonstandard 
target code is reduced, writing an effective Unicorn harness is nontrivial and Unicorn mode has 
limitations, such as handling kernel calls and runtime memory allocation. Thus, the primary 
benefit of AFL-Unicorn is with embedded devices and firmware. On the other hand, AFL-
Unicorn can be applied to applications on desktop operating systems when combined with 
additional AFL-Unicorn modules and significant reverse engineering of the targeted code. AFL-
Unicorn has a set of scripts, referred to as Unicorn Context Dumpers, which save the state of the 
program at a specific breakpoint to disk. This state information is the context that is loaded by 
the harness in order to emulate the code. Context Dumpers exist for several debuggers including 
IDA Pro, GDB and LLDB. The Unicorn Loader module enables the user to manage emulation, 
including APIs to dump the current register contents and force crashes so AFL can detect them 
[12], [13]. 
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Limitations 

Despite these promising and helpful additions, the AFL-Unicorn repository has not been 
updated since July 2018 and is not actively maintained at the time of this report. As an open-
source tool, it provides a useful framework and a set of techniques that vulnerability researchers 
continue to develop. More broadly, it represents a shift in the field of automated program 
analysis towards fuzzing increasingly large and complex applications [12], [13].  

3.2.2.2 AFLGo 

Reference Link https://github.com/aflgo/aflgo 
Target Type Source (C/C++/Objective C) 
Host/Target Operating System Linux; BSD 

With Constraints: macOS, Solaris 
 Host/Target Architecture x86 (32, 64);  
With Modification: ARM (32, 64); PPC (32, 64); MIPS (32, 64); 
etc. 

Initial Release October 30, 2017 
License Type Open-Source 
Maintenance Last code commit August 2019 

Overview 

AFLGo is an open-source implementation of a November 2017 paper by Marcel Bohme, 
Van-Thuan Pham, Manh-Dung Ngyuen and Abhik Roychoudhury of the University of 
Singapore, called Directed Greybox Fuzzing [14]. The paper proposes a technique that centers 
around a directed fuzzer which “spends most of its time budget on reaching specific target 
locations without wasting resources stressing unrelated program components [14, p. 1].” 
Previously, directed fuzzers used symbolic execution, which had a significant performance cost. 
Directed greybox fuzzing attempts to improve that by creating a directed fuzzer that utilizes the 
distance between generated seeds and the target locations. The applications of a directed fuzzer 
envisioned by the creators of this technique are patch testing, crash reproduction, static analysis 
report verification, and information flow detection [14]. 

Design and Usage 

AFLGo is based on AFL’s LLVM mode, and uses Bohme et al.’s directed greybox fuzzing 
technique to create a graph modeling the distance between the input seed and the target. To use 
AFLGo, the user populates a plaintext file with the target locations, where each target takes the 
form of a path to a source code file and a line number. As such, AFLGo only works on 
applications for which there is source code. Next AFLGo generates a set of graphs and distance 
values. Then it builds the target application with its distance instrumentation. After this, the user 
runs AFLGo’s version of afl-fuzz on the resulting binary [6], [14].  
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Use Cases and Limitations 

The most obvious drawback of AFL-Go is that it requires source code. However, it does well 
as a patch testing tool. As such, it is integrated with the OSS-Fuzz project which seeks to fuzz 
open-source projects for vulnerabilities. AFLGo does not appear to be under active development, 
but is actively maintained, with its latest codebase commit in February 2019. 

Regardless, the paper on which it was based presented a novel technique for instrumenting 
applications for directed fuzzing and may be built upon by future tools and techniques [6], [14]. 

3.2.2.3 AFLFast 

Reference Link https://github.com/mboehme/aflfast 
Target Type Source (C/C++/Objective C); 

QEMU Mode: Binary 
Host/Target Operating System Linux; BSD 

With Constraints: macOS, Solaris 
 Host Architecture Primary: x86 (32, 64);  
With Modification: ARM (32, 64); PPC (32, 64); MIPS (32, 64); etc. 

Target Architecture x86 (32, 64);  
QEMU Mode: QEMU Supported Architectures 

Initial Release October 28, 2016 
License Type Open-Source 
Maintenance Incorporated into the AFLPlusPlus tool 

Overview 

AFLFast was developed by several of the authors of AFLGo (Bohme, Pham, and 
Roychoudhry) and is based on their paper Coverage-based Greybox Fuzzing as Markov 
Chain [15]. Their goal is to improve coverage-based greybox fuzzing by developing an 
effective way to identify and use seeds that generate inputs that explore less frequently 
followed paths. Their technique uses a Markov chain model to develop several new 
approaches to generating inputs for low frequency paths. AFLFast is a version of AFL 
that is modified to implement these new approaches. In their paper the authors claim 
that AFLFast produced more unique crashes than AFL by an order of magnitude [15, 
p.1].

Design and Usage

The authors use a Markov chain to model the probability that a seed input, which 
follows a path i, will generate a divergent path j. This model is used to optimize a 
scoring system or “power schedule [15, p. 2]” for seeds based on their ability to generate 
inputs that follow low frequency paths. AFL already gives performance scores to seeds 
based on coverage data and creation time. AFLFast incorporates these scores into their 
power schedules by assigning scores to seeds in a way that is inversely proportional to 
the path frequency. This means that a low scoring seed is one that is more likely to 
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generate inputs which follow a high frequency path, while a high scoring seed is one 
which follows a low frequency path. The score is then used to determine how many new 
inputs should be generated from the seed. The paper offers six power schedules, which 
all differ in how they assign scores to seeds [15].  

To implement these power schedules, the authors modified AFL to change how seeds were 
chosen and ordered. AFL defines a function in afl-fuzz.c called calculate_score which calculates 
the performance score of a seed. In AFLFast the authors modify this function so that users can 
select a power schedule with an AFL flag at runtime. These six options are as follows: 

EXPLOIT: This is the original scoring system used by AFL, which is based on metrics such 
as coverage data and when the seed was created [15, p.7]. The flag to use this power schedule is -
p exploit [16]. 

EXPLORE: This takes the original scoring system, as described in EXPLOIT, and divides it 
by a constant value. This keeps all scores low and decreases significant prioritization of certain 
seeds [15, p.7]. The flag to use this power schedule is -p explore. 

FAST: This is the default schedule used by AFLFast. It is calculated using the original 
scoring system described in EXPLOIT but it also uses another metric, the path frequency of the 
seed’s path. This generates a score in inverse proportion to that path frequency, which means 
seeds that follow high frequency paths will get lower scores [15, p.7]. The flag to use this power 
schedule is -p fast [16]. 

LINEAR: Like FAST but increases scores in a linear manner [15, p.7]. The flag to use this 
power schedule is -p lin [16]. 

QUAD: Like FAST but increases scores in a quadratic manner [15, p.8]. The flag to use this 
power schedule is -p quad [16]. 

COE: Like FAST, but it does not fuzz any seed with a path frequency above a certain 
threshold. This means that seeds that follow paths that are followed at a high enough frequency 
will not be fuzzed until that frequency is lower than the threshold [15, p.7]. The flag to use this 
power schedule is -p coe [16]. 

 AFLFast also implements new search strategies to determine the order in which seeds are 
chosen. It prioritizes seeds which have been chosen less often and that follow low frequency 
paths [15, p.8]. 

Use Cases and Limitations 

One contribution of this paper is modeling seed mutations with Markov chains and using it to 
reason about scoring seeds. The paper also demonstrates that the AFLFast approach produced 
more unique crashes than AFL by an order of magnitude [15, p.1].  
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A recent paper, Evaluating Fuzz Testing [83], found that AFLFast did not outperform AFL in 
other testcases not used in the original AFLFast paper, suggesting that “evidence of AFLFast’s 
superiority… was weakened.” However after the AFLFast paper was published, some of the 
AFLFast improvements had been incorporated into AFL and Evaluating Fuzz Testing used a 
version of AFL that included these change. The paper states that because of this their “goal is not 
to reproduce AFLFast’s results [83, p.4].”  

The code for AFLFast has been integrated into the actively maintained repository of 
AFLPlusPlus, which builds a number of additional patches into a fork of AFL [16]. 

3.2.2.4 AFLPlusPlus 

Reference Link https://github.com/vanhauser-thc/AFLplusplus 
Target Type Source (C/C++/Objective C); 

QEMU Mode: Binary 
Host/Target Operating System Linux; BSD 

With Constraints: macOS, Solaris 
 Host Architecture Primary: x86 (32, 64);  
With Modification: ARM (32, 64); PPC (32, 64); MIPS (32, 64); etc. 

Target Architecture x86 (32, 64);  
QEMU Mode: QEMU Supported Architectures 

Initial Release June 4, 2019 
License Type Open-Source 
Maintenance Maintained by Marc Heuse and Heiko Eissfeldt 

Overview 

AFL’s popularity has resulted into a slew of fuzzers that fork the AFL codebase to add a 
small number of enhancements or features. These improvements and features are dispersed 
across these various AFL-based fuzzers, and many of the fuzzers are not actively maintained. 
AFL itself has not been actively maintained since 2017. These challenges were the impetus for 
AFLPlusPlus, an actively maintained version of AFL which integrates patches written by the 
community. For instance, it uses AFLFast’s capabilities, and maintains AFL and its 
dependencies, such as QEMU. As of the writing of this report, AFL does not work with QEMU 
v3.1, however AFLPlusPlus upgraded AFL in this regard [17]. This tool is actively maintained 
by Marc Heuse and Heiko Eissfeldt. 

Design and Usage 

AFLPlusPlus incorporates the changes made by AFLFast and adds support for QEMU v3.1. 
Additionally, a variety of other enhancements have been made to this version of AFL. These 
include LLVM modifications to only instrument relevant blocks, and QEMU modifications to 
enable caching. AFLPlusPlus incorporates the laf-intel tool, which increases code coverage in 
LLVM mode, and also adds support for PowerPC.  
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The basic usage of AFLPlusPlus is the same as that of AFL [17].  

Use Cases and Limitations 

AFLPlusPlus can be used as a drop-in replacement for AFL. It is actively maintained, has up-
to-date support for dependencies like QMEU, and also contains suggested improvements to AFL. 
However, a user may prefer to use the original version of AFL if they want to avoid certain 
optimizations or changes made in AFLPlusPlus. 

3.2.2.5 WinAFL 

Reference Link https://github.com/googleprojectzero/winafl 
Target Type Source (C/C++/Objective C) 
Host/Target Operating System Windows 
Host/Target Architecture x86 (32, 64); 

 Initial Release July 7, 2016 
License Type Open-Source 
Maintenance Maintained by Ivan Fratric 

Overview 

AFL is designed for Unix-like systems and uses instrumentation mechanisms that do not 
work on Windows. To address this limitation, Google’s Project Zero designed WinAFL, a fuzzer 
built on AFL that implements several alternative instrumentation approaches designed for 
Windows. The three instrumentation modes are dynamic instrumentation with DynamoRIO, 
hardware tracing with Intel Processor Trace Tools, and static instrumentation with Syzgy. One of 
the key capabilities of WinAFL is persistent fuzzing mode, which takes a target function 
specified by the user and instruments it to run in a loop [5].  

Design and Usage 

The design of WinAFL can best be understood by examining each of the three 
instrumentation modes. 

DynamoRIO Instrumentation Mode – This mode uses DynamoRIO, which is a dynamic 
instrumentation platform to measure and extract target code coverage [18]. It takes a number of 
possible instrumentation options, including a target function (the function you wish to fuzz), a 
target module (the module containing the target function), a coverage module (the module for 
which coverage is recorded), the coverage type to be recorded, and the maximum number of 
iterations to loop the target function. These options are in addition to a subset of AFL options 
which are supported. This mode also enables ‘In App Persistence’ mode which, rather than 
looping the target function, assumes a loop is built into the program and restarts instrumentation 
when it reencounters the function [5], [18].  
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Intel PT Mode – This mode leverages Intel’s Processor Tracing (PT) capability, which 
enables the CPU to generate tracing instructions natively. As the GitHub README describes, 
“When a target is fuzzed with WinAFL in Intel PT mode, WinAFL opens the target in a 
debugger. The debugger implements the WinAFL persistence (looping over target function 
without the need to restart the process for every iteration), monitors for crashes, loaded modules 
etc. Before every iteration, the debugger enables Intel PT tracing for the target process and, after 
the iteration finishes, the trace is retrieved and analyzed, updating the AFL coverage map [19].”  

Static Instrumentation via syzygy – Syzygy is a framework to decompose a 32-bit Portable 
Executable (PE). As the GitHub README describes, “Decomposing a binary is the term used to 
mean taking in input a PE32 binary and its Program Database file (PDB), analyze and 
decompose every function, every block of code / data in a safe way and present it to 
transformation ‘passes’. A transformation pass is a class that transforms the binary in some way. 
Once the pass has transformed the binary, it passes it back to the framework which is able to 
relink an output binary (with the transformations applied of course) [20].”  

Use Cases and Limitations 

The explicit use case for WinAFL is fuzzing Windows applications, as AFL does not support 
these applications by default. However, constructing an effective target function, which is 
necessary to use WinAFL, can be difficult. The documentation for WinAFL’s DynamoRIO 
Instrumentation Mode states that “[i]n some applications it's quite challenging to find a target 
function that with a simple execution redirection won't break global states and will do both 
reading and processing of inputs [5], [18].” This may require relatively advanced Windows 
internals knowledge. These additional requirements complicate WinAFL usage and may lead to 
problems, such as a target function loading a DLL at every iteration, significantly slowing down 
execution. Therefore, fuzzing a specified function may require significant modification to the 
Windows binary, which can be difficult. 
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3.2.3 Non-AFL Fuzzers 

3.2.3.1 LibFuzzer 

Reference Link https://llvm.org/docs/LibFuzzer.html 

Target Type Source 
Host/Target Operating System Linux; BSD; macOS; Windows 
Host/Target Architecture x86 (32, 64) 

With Modification: ARM (32, 64); MIPS (32, 64) 

Initial Release 2015 
License Type Open-Source 
Maintenance Maintained by the LLVM Project 

Overview 

LibFuzzer is an in-process, coverage-guided, evolutionary fuzzing engine developed by 
LLVM and built into Clang. The key component of LibFuzzer is its integration with LLVM’s 
Sanitizer Suite to enable coverage instrumentation. Additionally, as an in-process fuzzer, 
LibFuzzer does not start a new process for every test case. In use since at least 2015, LibFuzzer 
is actively maintained, and continues to be updated with new capabilities [21].  

Design and Usage 

LibFuzzer is now a built-in capability of Clang, and runs on a fuzz target, which is defined by 
LLVM as “a function that accepts an array of bytes and does something interesting with these 
bytes using the API under test.” Figure 3-2 shows an example fuzz target given in the LLVM 
documentation. [21].  

Figure 3-2 An example fuzzing target form the LLVM documentation [21] 

Prior to compiling the target function, it is also necessary to compile all of its dependencies 
with Clang using the -fsanitize=fuzzer flag, as well as the Clang capabilities AddressSanitizer 
and UndefinedBehaviorSanitizer. Compiling with these capabilities is what enables LibFuzzer’s 
coverage guidance. After compilation and corpus generation, the target binary is executed with 
an array of flags that control different aspects of how the fuzzer will behave [21].  

Use Cases and Limitations 

In their documentation, LLVM suggests use cases for LibFuzzer, “This Fuzzer might be a 
good choice for testing libraries that have relatively small inputs, each input takes < 10ms to run, 
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and the library code is not expected to crash on invalid inputs. Examples: regular expression 
matchers, text or binary format parsers, compression, network, crypto [21].”  

The in-process nature of this fuzzer means that excessive memory consumption and infinite 
loops in the target library are hard to protect against. The most significant drawback, however, is 
that as a built-in capability of Clang, LibFuzzer must be run on source code compiled with 
Clang, which excludes prebuilt binaries (Trail of Bits has attempted, somewhat successfully, to 
apply LibFuzzer to a binary lifted to LLVM bytecode using their McSema tool [22]). However, 
this can also be considered a benefit, because LibFuzzer has an edge over fuzzers without built-
in sanitizer support, like AFL. LibFuzzer also enables easy viewing of coverage with Clang 
Coverage. However, the benefits may be offset by LibFuzzer requiring more setup and harness 
development than AFL [21]. 

3.2.3.2 Eclipser 

Reference Link https://github.com/SoftSec-KAIST/Eclipser 
Target Type Binary 
Host/Target Operating System Linux 
Host/Target Architecture x86 (32, 64) 
Initial Release May 31, 2019 
License Type Open-Source 
Maintenance Maintained by SoftSec Lab at KAIST 

Overview 

Modern day fuzzers are designed to analyze code coverage data from previous runs and 
produce new inputs that will explore new code paths. However, there is no guarantee that the 
new code paths will be significantly different from the previous path. Symbolic execution, by 
comparison, explores all possible paths but incurs considerable compute and memory costs. 
Hybrid fuzzing has emerged as a technique to leverage the benefits of both fuzzing and symbolic 
execution while minimizing their respective costs (e.g., Driller [23]). However, many hybrid 
fuzzers still suffer from the significant overhead costs of symbolic execution [2].  

Eclipser hopes to provide an alternative approach that increases code coverage through 
means inspired by hybrid fuzzing, but without any of the costs of symbolic execution. This 
fuzzer is based on the ICSE 2019 paper Grey-box Concolic Testing on Binary Code by Jaeseung 
Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha [2]. Eclipser approximates path 
constraints rather than solving for them, which significantly increases code coverage in certain 
cases. They demonstrate that on LAVA-M benchmarks and real Debian packages Eclipser finds 
more bugs than AFLFast and laf-intel [2]. Other tests by Trail of Bits have shown slightly worse 
performance than AFL overall [3]. 
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Design and Usage 

Instead of relying on SMT solvers (which are notoriously computationally expensive) to 
solve path constraints, Eclipser approximates them. Doing so results in constraints which are 
intended to be solved much faster [2].  

Eclipser is written primarily in F# and run on .NET Core. An example of basic usage given 
in the README is below [7]: 

Use Cases and Limitations 

From a technical perspective, a possible criticism of their approach is its lack of precision, 
which Eclipser addresses in the paper: 

“Naturally, the path constraints generated from Grey-Box concolic testing are imprecise, but, 
in practice, they are precise enough to quickly explore diverse execution paths. The primary 
design decision here is to trade off simplicity for precision [2, p. 2].”  

As a practical matter, the metrics offered in the paper are promising, and their evaluation 
techniques are robust. However, other evidence shows that Eclipser does not outperform AFL in 
certain cases. Trail of Bits tested Eclipser against AFL and LibFuzzer with their tool DeepState 
and found that, 

“While Eclipser is exciting, our preliminary tests indicate that it performs slightly worse than 
everyone’s favorite workhorse fuzzer, AFL, on both the file system and red-black-tree. In 
fact, even with the small set of testing problems we’ve explored in some depth using 
DeepState, we see instances where Eclipser performs best, instances where LibFuzzer 
performs best, and instances where AFL performs best. Some bugs in the red black tree 
required a specialized symbolic execution test harness to find (and Eclipser does not help, we 
found out). Moreover, even when one fuzzer performs best overall for an example, it may not 
be best at finding some particular bug for that example [3].”  

Eclipser is still a helpful addition and can be used in tandem with AFL to increase path 
coverage and find more bugs. 

dotnet build/Eclipser.dll fuzz \ 
-p <target program path> -v <verbosity level> -t <timeout second> 

\ 
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3.2.3.3 Angora 

Reference Link https://github.com/AngoraFuzzer/Angora 
Target Type Source (C/C++) 
Host/Target Operating System Linux 
Host/Target Architecture x86 (32, 64) 
Initial Release March 28, 2019 
License Type Open-Source 
Maintenance Maintained by Byte Dance AI Lab 

Overview 

Angora is another AFL-inspired fuzzer that aims to increase code coverage by solving path 
constraints without symbolic execution. It uses similar AFL code coverage metrics and 
instrumentation that includes byte-level taint analysis, function call context tracking, input length 
exploration, and data shape and type inference. The byte-level taint analysis and data width and 
type inference enable Angora to precisely manipulate subsections of an input. These metrics add 
constraints to memory that can be solved by searching for inputs using gradient descent instead 
of symbolic execution [8], [24]. Based on the authors’ results, Angora “found eight times as 
many bugs as the second best-fuzzer while fuzzing the program who” [24]. 

Design and Usage 

Fuzzing with Angora is a two-step process: instrumentation and execution. Similar to AFL, it 
first instruments branches to trace execution, but extends the instrumentation to include context 
sensitive transitions, such as calling a function with different arguments. It then associates all 
variables in a program with a taint label that describes what byte offset in an input flows into 
each variable. The taint labels are then stored into a tree data structure with nodes that represent 
each taint label, byte width, and inferred type. As variable relationships are discovered they are 
added to this tree. Angora’s key insight is that this taint analysis only needs to be computed once, 
amortizing the cost of the analysis over the fuzzing duration [8], [24].  

Once taint analysis and tracing instrumentation has completed, fuzzing can begin. However, 
effectively generating a seed requires repeatedly solving path constraints. Angora’s key insight is 
that all conditional statements can be represented as either <, <=, or == relationships. To solve 
for these constraints two traces are needed - a control and a mutation whose traces are inspected 
for differences. If the traces are the same, there has been no new coverage and the variable is 
randomly mutated. If the traces differ at earlier points in execution, a derivative is calculated 
representing the rate of change for the inspected variable. The more quickly the traces diverge, 
the steeper the gradient becomes, indicating the need for greater mutation. Eventually the 
variable is mutated to such a degree that it satisfies either <, <= or == constraints and execution 
continues [8], [24]. 

To fuzz an application, one must first compile two files: a taint analysis file and an 
instrumented file. These files are then provided to Angora for execution. The recommended 
compilation and execution steps are shown below [8].  
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Use Cases and Limitations 

One limitation of Angora is that it can only operate on source code. Another limitation is that 
its mutation engine lacks the capabilities of AFL. Therefore, it is suggested to combine them, 
leveraging AFL’s mutation capabilities and speed with Angora’s analyses. This can be done by 
running both in parallel as shown in the following [8].   
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3.2.4 Just In Time (JIT) Fuzzers 

The following two fuzzers, Fuzzilli and CodeAlchemist are designed primarily for fuzzing 
JavaScript JIT compilers, which have emerged as a major target in attacks on browsers because a 
JIT compiler generates executable code. Fuzzing a core interpreter like a browser’s JIT compiler 
presents an additional challenge: generation of semantically correct inputs. Mutating a large 
number of samples and testing for validity is not a sufficient solution, because the chance of a 
correct mutation is extremely low. This challenge can be addressed in multiple ways, two of 
which are implemented by Fuzzilli and Code Alchemist. 

3.2.4.1 Fuzzilli 

Reference Link https://github.com/googleprojectzero/fuzzilli 
Target Type Browser JIT Engine 
Targets JavaScript; Spidermonkey; v8 
Host/Target Operating System Linux; macOS 
Host/Target Architecture x86 (32, 64) 
Initial Release March 20, 2019 
License Type Open-Source 
Maintenance Maintained by Samuel Groß 

Overview 

Fuzzilli is an actively-maintained, open-source fuzzer, released in March 2019 by Samuel 
Groß of Google Project Zero, and intended primarily for fuzzing JavaScript JIT compilers. It is 
written in Swift and addresses the challenge of generating semantically correct JavaScript 
programs by creating a custom intermediate language called FuzzIL that is translated to 
executable JavaScript. 

Fuzzilli has found a significant number of vulnerabilities in different browser’s JIT compilers 
including JavaScriptCore (Webkit), Spidermonkey (Mozilla) and v8 (Chromium) [25]-[27]. 

Design and Usage 

FuzzIL is “defined on which mutations to the control and data flow of a program can more 
directly be performed” [25] which is then translated to executable JavaScript. FuzzIL is a list of 
instructions, which themselves are operations that have input and output variables (as opposed to 
immediate values which are never used as inputs). Instructions can sometimes take parameters 
enclosed by single quotation marks. A (rough) example of FuzzIL and subsequently translated 
JavaScript is shown below. 
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FuzzIL [25]: 

which crudely translates into this JavaScript [25]: 

FuzzIL code can be mutated via a number of mutation scripts. CombineMutator and 
SpliceMutator are the simpler ones: they combine multiple programs. InputMutator and 
OperationMutator changes instruction input values and operation parameters, respectively. 
InsertionMutator is more complex and uses a list of predefined code generators to create new 
code and place it randomly in the program [25]-[27]. 

Fuzzilli works from a Corpus which saves FuzzIL samples that produced interesting results, 
that is, results which explore new code paths. The Corpus will add or evict samples based on the 
Evaluator, which evaluates the execution that the sample produced. These FuzzIL samples are 
supplied to the FuzzerCore, which uses them to produce new samples using the above mutation 
techniques, among others. Then, it evaluates the samples for semantic correctness. The Lifter 
translates the mutation into JavaScript and the ScriptRunner executes it, aided by an Enviroment 
script which contains information about the execution environment [25]-[27].  

Fuzzilli is run by first compiling the target JavaScript engine with instrumentation and then 
building the fuzzer with Swift. Finally, using Swift to run the fuzzer on the target [25].  
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The command line usage as defined by comments in Fuzzilli/Sources/FuzzilliCli/main.swift: 

The user can choose two modes of execution. Forkserver mode forks a new child for every 
new sample (similar to AFL), and Read-Eval-Print-Reset-Loop (REPRL) mode receives the 
script over an IPC and resets the internal state after it executes the script. The latter mode is 
faster [25].  

Use Cases and Limitations 

This fuzzer was very specifically designed for JavaScript engines in browsers. The 
techniques developed for these fuzzers could be applied to other instances in which semantically 
correct inputs are necessary and hard to randomly generate, such as WASM execution. Browsers 
have become a major target for exploitation, and fuzzing techniques such as these are 
increasingly necessary [25]-[27].  

Fuzzilli’s approach to generating JavaScript code has the benefit of being able to 
theoretically explore all possible patterns given enough computing power. This is not the case 
with a hardcoded generator, like CodeAlchemist. 

However, a major limitation of the Fuzzilli approach is that it uses more computing power to 
generate inputs, as compared to Code Alchemist [25], [28]. 

The most notable benefits of Fuzzilli are its user friendliness and flexibility. Its rich set of 
options enable a user to control how Fuzzilli will operate based on their specific needs. These are 
areas in which CodeAlchemist, by comparison, falls short. 
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Future Work 

Fuzzilli is actively maintained, supported by Google Project Zero, and continues to find 
vulnerabilities in modern browsers. Groß, its author, has indicated that going forward he hopes to 
implement a “compiler” to translate JavaScript to FuzzIL and extend FuzzIL’s language 
capabilities, among other improvements [27].  

3.2.4.2 CodeAlchemist 

Reference Link https://github.com/SoftSec-KAIST/CodeAlchemist 
Target Type Browser JIT Engine 
Targets JavaScript; Spidermonkey; v8; ChakraCore 
Host/Target Operating System Linux 
Host/Target Architecture x86 (32, 64) 
Initial Commit March 29, 2018 
License Type Open-Source 
Maintenance Maintained by SoftSec Lab at KAIST 

Overview 

While Fuzzilli uses a detailed Intermediate Language (IL), CodeAlchemist leverages 
Abstract Syntax Trees (ASTs) to create an algorithmic approach, called “semantics-aware 
assembly”, to generate semantically and syntactically correct JavaScript. Working from a set of 
JavaScript seeds, it breaks them into fragments, termed ‘code bricks’, which represent valid 
ASTs. Then a set of constraints is applied to each code brick in order to combine code bricks, 
mixing and matching them to create new samples [28].  

Although some runtime errors still occur in the samples produced, this method significantly 
minimizes this. As a novel approach which will generate a different set of inputs it provides a 
complementary alternative to Fuzzilli [28].  

To run CodeAlchemist, the user first prepares the seeds and configuration and then uses the 
.NET Core to execute the fuzzer [29].  

Design and Usage 

CodeAlchemist first parses a JavaScript seed into a set of valid ASTs. It then defines pre- and 
post- conditions to split these into code bricks. These are then instrumented and combined with 
one another based previous executions to generate new inputs [28]. 

 Figure 3-3, Figure 3-4, Figure 3-5 are from the CodeAlchemist paper. 
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Figure 3-3 shows its architecture. 

Figure 3-3: Architecture of CodeAlchemist [28, Fig. 5] 

Figure 3-4 shows how code bricks are defined. 

Figure 3-4: Definition of code bricks [28, Fig. 4] 
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Figure 3-5 gives an example of an input and the seed from which it was generated. 

Figure 3-5: Examples of input seeds [28, Fig. 6]

Code Alchemist is written in primarily F# and is run on .NET Core. The user creates a 
configuration file with the format described in Figure 3-6: 

Figure 3-6: CodeAlchemist/conf/README.md [29] 

The user first preprocesses JavaScript input seeds by calling 
dotnet bin/Main.dll rewrite <absolute path to configuration file> 

Then the user fuzzes with 
 dotnet bin/Main.dll fuzz <absolute path to configuration file> 
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Use Cases and Limitations 

This fuzzer was very specifically designed for JavaScript engines in browsers. The 
techniques developed for these fuzzers could be applied to other instances in which semantically 
correct inputs are necessary and hard to randomly generate, such as WASM execution. Browsers 
have become a major target for exploitation, and fuzzing techniques such as these are 
increasingly necessary [25]-[27].  

Fuzzilli’s approach to generating JavaScript code has the benefit of being able to 
theoretically explore all possible patterns given enough computing power. This is not the case 
with a hardcoded generator, like CodeAlchemist. 

However, a major limitation of the Fuzzilli approach is that it uses more computing power to 
generate inputs, as compared to Code Alchemist [25], [28].  

The most notable benefits of Fuzzilli are its user friendliness and flexibility. Its rich set of 
options enable a user to control how Fuzzilli will operate based on their specific needs. These are 
areas in which CodeAlchemist, by comparison, falls short. 

3.2.5 Fuzzing Frameworks 

3.2.5.1 DeepState 

Reference Link https://github.com/trailofbits/deepstate 
Target Type Source (C/C++) 
Host/Target Operating System Linux 
Host/Target Architecture x86 (32, 64) 
Initial Release 2018 
License Type Open-Source 
Maintenance Maintained by Trail of Bits 

Overview 

DeepState is a new tool from Trail of Bits designed to be a symbolic execution and fuzzing 
framework for C and C++. It provides developers with a common framework to use tools 
integrated into DeepState, which at the time of this report were Manticore, angr, LibFuzzer, AFL 
and Eclipser. The project intends to make it easier to not just create a common interface for 
fuzzing but to “make a series of push-button front-ends to promising tools that require more 
work to apply than AFL or LibFuzzer.” This was one of the motivations behind adding Eclipser 
and angr [3].  
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Design and Usage 

It is built as a Python library which can be used to write test harnesses [9]. An example of 
one such harness is given in the README and shown in Figure 3-7.  

Figure 3-7: An example test harness [9] 
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Use Cases and Limitations 

The goal of DeepState is to make it easier to fuzz C and C++ programs with just one 
framework but many fuzzers, and to simplify less user-friendly tools such as Eclipser. Its main 
appeal is that it enables the user to write only one harness and then reuse it with multiple fuzzers. 
DeepState also includes capabilities that aid fuzzing and can be expanded to include more. 
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3.3 Disassembly and Decompilation 

Disassemblers and decompilers are two primary tools used in reverse engineering. A 
disassembler translates a program’s machine code into assembly language instructions. A 
decompiler converts a program’s machine code into a high-level language, such as C or C++. 
The goal of both is to transform a compiled program into a more human readable form. The 
difference is that a decompiler generates something closer to the original source code, but is not 
guaranteed to create a semantically faithful representation of the underlying machine code (due 
to the number of transformations applied). A decompiler, on the other hand, is performing a 
direct conversion from a binary representation of the program to the lowest level human readable 
form. While errors can occur in this translation, it is much less likely. 

For over a decade, IDA Pro, with its decompiler Hex-Rays, was the de facto tool for reverse 
engineering. In 2016, Vector 35 released Binary Ninja, a reverse engineering platform with a 
user interface and program analysis capabilities that made it an attractive alternative to IDA Pro. 
However, Binary Ninja could not fully compete with IDA Pro because it lacked a decompiler at 
the time of its release. Binary Ninja’s decompiler is under active development and is expected to 
be released in the near future.  

In March of 2019, the United States National Security Agency (NSA) released Ghidra, a 
disassembler and decompiler with comparable performance to IDA Pro. Originally developed as 
an internal NSA tool, Ghidra is now free open-source software, which contrasts with IDA Pro’s 
significant license fees as proprietary software. Having a well-tested open-source 
disassembler/decompiler (Ghidra has been actively developed and used by the NSA for over a 
decade) was seen as a benefit to a community which had for years relied on a single closed-
source, albeit well performing, product. 

The entrance of these new competitors is already having noticeable effects. The program 
analysis capabilities at the core of the Binary Ninja product has created a strong differentiator 
from IDA Pro, even without a decompiler. Their license fees are also significantly less than IDA 
Pro, and they have publicly released their Low- and Medium-Level Intermediate Languages. 
Since then, IDA Pro finally made available their Intermediate Representation, Microcode. After 
Ghidra was released with a built-in ‘Undo’ capability, IDA Pro added an ‘Undo’ capability as 
well (something IDA Pro has notoriously lacked). However, IDA Pro has been the state-of-the-
art, not just due to lack of competition, but because of its high quality and accuracy, which came 
from years of expert development and careful tuning.  

The following sections introduce and compare each of these tools. While none of them 
clearly represent the edge-of-the-art, each one continues to evolve and introduce new advances 
that help define the edge-of-the-art in decompilation and binary analysis. These sections will 
examine how each of these tools has contributed to this area in recent years, and how the 
increased competition in this space will affect future innovations. 
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3.3.1  IDA Pro (Interactive DisAssembler) and Hex-Rays 

Reference Link https://www.Hex-Rays.com/ 
Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Windows: PE (Portable Executable);  

MS DOS/MS DOS Driver/MS DOS Com; Windows Crash Dump; etc. 
macOS/iOS: Mach-O; etc. 
Linux: ELF; etc. 
Android: DEX Format; etc. 
Other: JAR Format; COFF (Common Object File Format);  
Raw Binary; etc.  

Host Architecture x86 (32, 64) 
Target Architecture IDA Pro Disassembler: x86 (16, 32, 64); ARM (32, 64); PPC (32; 64); 

MIPS (32, 64); SPARC (32, 64); PIC (12, 16, 17, 18, 24);  
Java bytecode; DEX bytecode; etc. 
Hex-Rays Decompiler: x86 (32, 64); ARM (32, 64); PPC (32; 64);  
MIPS (32, 64); etc.  

Initial Release Disassembler Release (Commercial): 1996 
Decompiler Release: 2007 

License Type Proprietary 
Maintenance Maintained by Hex-Rays SA 

Overview 

IDA Pro (Interactive DisAssembler) and Hex-Rays are a disassembly framework and 
decompiler, respectively. IDA Pro boasts a large number of applicable processor targets and 
offers a variety of additional capabilities including a debugger, a custom scripting language 
(IDC), and an interface to execute python scripts called IDA Pro Python (IDAPython). 

Since the early 2000s IDA Pro has been regarded as the ‘state-of-the-art’ in disassemblers. 
With the release of their decompiler in 2005 [30], they established themselves as a leader in 
automated decompilation for more than a decade. While not considered the edge-of-the-art, the 
fact that IDA Pro is actively adding new capabilities and refining their existing ones justifies a 
discussion of the tool in this report. This discussion will focus on its new capabilities and future 
direction, which is the edge-of-the-art as it pertains to IDA Pro. These new additions include the 
introduction of their Intermediate Representation (IR) language, value-range analysis engine, and 
support for ARM v8.3 [32]. 

New Features 

Microcode – In recent years, competing disassemblers like Binary Ninja and Ghidra have 
been cutting into IDA Pro’s market share. As such, IDA Pro has evolved, most notably by 
publicizing their IR, Microcode, to compete with Binary Ninja’s multiple ILs. Microcode has 
been around for most of IDA Pro’s history, but it was never public and was never API 
accessible. When Microcode was released it came with a C++ API but no support for IDA Pro 
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Python. It has various “maturity phases” that it optimizes the code, and the API can be used to 
select a desired level [31].  

iOS Support – IDA Pro has also responded to new security capabilities and industry 
priorities by adding support for Pointer Authentication Code (PAC), as Apple leveraged ARM’s 
PAC capability in its latest version of iOS. They also added numerous other capabilities to 
support iOS 12, such as debugger capability to handle new OSX and iOS capabilities, like stack 
unwinding [32].  

Value-Range Analysis Support – IDA Pro continues to improve their decompiler. One of 
the optimizations is integration of value-range analysis, which Hex-Rays discusses in their 
release announcement of IDA Pro 7.2: 

“Now the decompiler has a powerful value-range analysis engine. More than that, it can be 
used from the Decompiler SDK. The value-range analysis improves the decompilation 
quality and will also be used to improve the analysis performed by IDA. On the left side is 
the decompiler output of v7.1, on the right side the decompiler output of v7 [31].” 

Figure 3-8: An example of IDA Pro value range analysis [31]. 

Use Cases and Limitations 

IDA Pro is a mature tool that has both benefits and drawbacks. It was one of the only 
decompilers on the market until 2019, and as the industry standard for more than a decade, a 
plethora of plugins, techniques, educational materials, etc. have been developed for it. It has also 
been well tested and comes with paid support. However, an IDA Pro license with the Hex-Rays 
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decompiler is expensive (a Binary Ninja license is at least an order of magnitude less expensive, 
and Ghidra is free).  

Compared to Ghidra – Ghidra offers a free alternative to IDA Pro, with similar disassembly 
and decompilation capabilities. Its decompilation approach is based on the same academic work 
as Hex-Rays [36] and decompilation can often return similar results in both tools. The Hex-Rays 
decompiler does perform significantly better and more reliably than Ghidra’s; the latter struggles 
with switch statements and no-return functions, among other issues. However, Ghidra can 
decompile anything it can disassemble, and thus supports many more architectures than IDA Pro. 
This makes it more attractive for decompiling certain nonstandard architectures, like those used 
in firmware and embedded systems. Additional architectures can also be added with custom 
processor modules. Ghidra also has a much more usable IR than IDA Pro, and a better scripting 
capability to interact with the IR [33], [34], [37].  

The ability to see and interact with Ghidra’s source code enables better, more integrated 
plugins. However, IDA Pro as a proprietary product, offers more reliable maintenance and 
customer support. IDA Pro also has more sophisticated support for iOS and macOS, as well as 
other capabilities that Ghidra lacks [33], [34], [37].  

Compared to Binary Ninja – Binary Ninja is not open-source software like Ghidra, but a 
license is significantly less expensive than an IDA Pro license. Regarding decompilation, Binary 
Ninja cannot compete with Hex-Rays, as Binary Ninja currently has no publicly available 
decompiler. 

However, Binary Ninja was created to be a sophisticated, interactive program analysis tool. 
Binary Ninja’s IR is a set of multiple, composable intermediate languages (ILs) with built-in 
Single Static Assignment (SSA), and the other capabilities described in the previous section. 
IDA Pro’s Microcode is difficult to use and not designed to be interacted with by users. Binary 
Ninja’s Python also has more capability than IDA Pro’s IDAPython. Lastly, its GUI is more 
modern and easier to use [35]. 
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3.3.2 Ghidra 

Reference Link https://ghidra-sre.org 
Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Windows: PE (Portable Executable); etc. 

macOS/iOS: Mach-O; etc. 
Linux: ELF; etc. 
Android: DEX Format; etc. 
Other: COFF (Common Object File Format); Raw Binaries; etc. 

Host Architecture x86 (32, 64) 
Target Architecture Disassembler and Decompiler: x86 (16, 32, 64); ARM (32, 64);  

PPC (32; 64); MIPS (32, 64); SPARC (32, 64); PIC (12, 16, 17, 18, 24); 
Java bytecode; DEX bytecode; etc.  

Initial Release March 2019 
License Type Open-Source 
Maintenance Maintained by the National Security Agency (NSA) 

Overview 

For years IDA Pro, and its decompiler, Hex-Rays, was the most widely used tool for 
automated decompilation. Although other decompilers have been developed, Hex-Rays was the 
only tool of its kind available to the public. That changed when the National Security Agency 
(NSA) fully open-sourced their own decompilation tool in March 2019. As the newest tool 
available to the public, Ghidra could be considered the current edge-of-the-art in decompilation, 
but it has been in development and use since at least the mid 2000s. In addition to being an open-
source decompiler, Ghidra brings with it a fully integrated Intermediate Representation (IR), P-
Code, which users can interact with via multiple APIs, native scripting in Java, as well as the 
ability to use Python via Jython, and the built in ability to have a shared Project on a Ghidra 
Server [34], [36]. 

Design and Usage 

Ghidra is written in Java and run with OpenJDK. It’s decompiler works by first lifting binary 
code to P-Code, and then decompiling from the P-Code. This means that anything Ghidra can 
disassemble accurately to P-Code can also be decompiled.  

To use Ghidra, one first creates a project and then imports a file to be analyzed. Its default 
UI, CodeBrowser, is similar to that of IDA Pro. An example is shown in Figure 3-9 for a sample 
x86 ELF binary. It shows windows for “Program Trees”, “Symbol Tree”, “Data Type Manager”, 
a disassembly “Listing” window, a “Decompile” window, and a scripting console. Ghidra will 
also generate a Function Graph for the loaded binary, as shown in Figure 3-10 [34], [36].  
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Figure 3-9 Ghidra CodeBrowser 
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Figure 3-10: Ghidra Function Graph 

Scripting – Scripting in Ghidra is primarily in Java but can also be done in Python via 
Jython. It also comes with over 200 preinstalled scripts that not only provide additional 
capability but are helpful examples for developers. Ghidra has two main APIs, the Ghidra 
Program API which is heavily object oriented and its simplified counterpart, the 
FlatProgramAPI. Ghidra also provides integration with Eclipse, which enables script 
development in a full IDE. Lastly, Ghidra offers a Python interpreter window, which also uses 
Jython [34], [36]. 
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P-Code – One of the most interesting capabilities of Ghidra is its P-Code IR. P-Code
operates on varnodes, which represent a register or a memory location that are comprised of the 
address space (RAM), the offset in that space and the size [36]. Instructions are abstracted to P-
Code’s operations, which is a small instruction set [37]. P-Code is not in SSA form until 
decompilation [34]. Ghidra’s processor specification language, SLEIGH, will lift a variety of 
architectures to P-Code. 

Shared Projects – An issue that has long plagued IDA Pro users is the lack of support for 
collaboration. Many attempts to create an IDA Pro plugin for collaboration were at best partially 
successful due to the lack of inherent support for the capability. Ghidra enables multiple users to 
work on the same project at once by creating a Shared Project with a Ghidra Server [34].  

Use Cases and Limitations 

Compared to IDA Pro – Ghidra offer a free alternative to IDA Pro, with similar 
disassembly and decompilation capability. Its decompilation approach is based on the same 
academic work as Hex-Rays [36] and decompilation can often return similar results in both tools. 
The Hex-Rays decompiler does perform significantly better and more reliably than Ghidra’s 
decompiler; the latter struggles with switch statements and no-return functions, among other 
issues. However, Ghidra can decompile anything it can disassemble, and thus supports many 
more architectures than the ones supported by IDA Pro. This makes it more attractive for 
decompiling nonstandard architectures, like those used in firmware and embedded systems. 
Additional architectures can also be added with custom processor modules. Ghidra also has a 
much more usable IR than IDA Pro, and a better scripting capability to interact with the IR [33], 
[34], [37]. 

The ability to see and interact with Ghidra’s source code enables better, more integrated 
plugins. However, IDA Pro as a proprietary product, offers more reliable maintenance and 
customer support. IDA Pro also has more sophisticated support for iOS and macOS, as well as 
other capabilities that Ghidra lacks [33], [34], [37]. 

Compared to Binary Ninja – Ghidra offers an integrated decompiler, which Binary Ninja 
currently lacks. The ability to see and interact with Ghidra’s source code enables better, more 
integrated plugins [35], [36]. However, as a disassembler, Binary Ninja offers significant 
benefits that Ghidra does not. Ghidra’s P-Code is not designed to be human readable and is not 
inherently SSA. It also lacks the multiple levels of ILs that Binary Ninja offers. 

Binary Ninja was built on top of years of program analysis work that Ghidra, due to its age, 
was not. This results in Binary Ninja being far more suited for automated program analysis, 
because that capability is scriptable. Yet, as a decompiler with a scriptable IR, Ghidra does offer 
program analysis capabilities that Binary Nina does not [35].  

Approved for Public Release; Distribution  Unlimited. 
34



3.3.3 Binary Ninja 

Reference Link https://binary.ninja 
Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Windows: PE (Portable Executable); etc. 

macOS/iOS: Mach-O; etc. 
Linux: ELF; etc. 
Other: COFF (Common Object File Format); Raw Binary; etc. 

Host Architecture x86 (32, 64) 
Target Architecture 

 Supported Architectures [35] 

Initial Release 2016 
License Type Proprietary 
Maintenance Maintained by Vector 35 

Overview 

Binary Ninja emerged in 2016 as one of the more formidable competitors to IDA Pro in the 
disassembler market. Although lacking a decompiler, Binary Ninja carved a niche as a modern 
reverse engineering platform built for modern program analysis techniques [35].  

Design and Usage 

Binary Ninja is built for contemporary reverse engineering and ease of use, while also 
incorporating the capability for complex program analysis techniques. IDA Pro and Ghidra were 
both written over a decade ago and this is reflected in the look of their interfaces. By contrast 
Binary Ninja is modern and easy to use. After choosing a binary, a user is presented its default 
Graph View, an example of which is shown in Figure 3-11. Similar to other disassemblers, 
Binary Ninja also offers Hex and Linear Views, the latter shown in Figure 3-12 [35].  
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Figure 3-11: Binary Ninja default graph view 

Figure 3-12: Binary Ninja Linear View 
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Intermediate Languages – One of Binary Ninja’s most useful capabilities are its 
intermediate languages (ILs). Binary Ninja’s IR consists of an entire family of ILs: low, medium 
and soon a high-level IL (shown in Figure 3-13). The user can easily switch between 
disassembly and low-level IL (LLIL) in graph view with a hotkey. In contrast with IDA Pro’s 
Microcode, and to a lesser extent Ghidra’s P-Code, Binary Ninja’s LLIL is meant to be human 
readable. Binary Ninja’s ILs are also more sophisticated, using Single Static Assignment, 
deferred flag calculation, the ability to transform assembly instructions to generic ones that 
enable for equations with multiple operations, and showing comparisons instead of flag setting. 
Much of this happens in Binary Ninja’s Medium Level IL (MLIL) [35], [38], [39].  

Figure 3-13: Binary Ninja’s various intermediate languages [38] 
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Python Scripting – Binary Ninja’s Python scripting tool and API were integrated from the 
start, enabling the user access to an array of capabilities, either through writing scripts or using 
the IPython command-line. Like Ghidra, Binary Ninja’s Python scripting tool interfaces with its 
ILs. However, in Binary Ninja’s case, it offers far more capability, especially considering that it 
can interact with both the LLIL and the MLIL [35], [38], [39].  

Use Cases and Limitations 

Binary Ninja is designed for modern day program analysis and could be considered the 
current “cutting edge” in program analysis disassembly frameworks. The biggest limitation that 
Binary Ninja has is its lack of a decompiler. Users must use Binary Ninja in conjunction with 
IDA Pro or Ghidra if they also need automatic decompilation. 

Binary Ninja does outstrip both IDA Pro and Ghidra in the area of program analysis. It has a 
far more sophisticated set of ILs and better integration with its scripting tool. Its scripting tool is 
also often considered superior. 

Comparison to IDA Pro – Binary Ninja is not open-source software like Ghidra, but a 
license costs several orders of magnitude less than an IDA Pro license. In the area of 
decompilation Binary Ninja cannot compete with Hex-Rays, as Binary Ninja does not offer a 
publicly available decompiler. 

However, Binary Ninja was created as a sophisticated program analysis tool. IDA Pro’s 
Microcode is difficult to use and not designed to be interacted with in the way as Binary Ninja’s 
multiple ILs. That Binary Ninja has multiple ILs is also a major benefit. The ILs themselves also 
make Binary Ninja an attractive alternative to IDA Pro, with built-in SSA, and the other 
capabilities described in the previous section. Binary Ninja’s Python interface can offer more 
capabilities than IDA Pro’s IDAPython. Lastly, its GUI is more modern and easier to use [35]. 

Comparison to Ghidra – Ghidra offers an integrated decompiler, which Binary Ninja 
currently lacks. The ability to see and interact with Ghidra’s source code enables better, more 
integrated plugins [35], [36].  

However, as a disassembler, Binary Ninja offers significant benefits that Ghidra does not. 
Ghidra’s P-Code is not designed to be human readable and is not inherently SSA. It also lacks 
the multiple levels of ILs that Binary Ninja offers. 

Binary Ninja was built on top of years of program analysis work that Ghidra, due to its age, 
was not. This means Binary Ninja is much better suited for automated program analysis, because 
that capability is scriptable. Yet, as a decompiler with a scriptable IR, Ghidra does offer program 
analysis capabilities that Binary Ninja does not [35].  
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3.4 Static Instrumentation 
Instrumentation facilitates debugging, tracing, and profiling, which in turn enables higher 

level analysis like fuzzing, symbolic execution, etc. This section discusses several tools that have 
made significant gains in their specific niche and have more recently come into wider use. 

3.4.1 Multiverse 

Reference Link https://github.com/utds3lab/multiverse 
Target Type Binary 
Host/Target Operating System Linux 
Host/Target Architecture x86 (32, 64) 
Initial Release February 2018 
License Type Open-Source 
Maintenance Last commit February 2018 

Overview 

Multiverse is a static binary rewriter based on the paper Superset Disassembly: Statically 
Rewriting x86 Binaries Without Heuristics by Erick Bauman, Zhiqiang Lin and Kevin W. 
Hamlen of the University of Texas at Dallas. It operates either as a standalone executable with 
limited capability, or a more robust Python library [40], [41]. 

Many tools exist to dynamically instrument binaries in a variety of ways, but few do so 
statically. Static rewriters are one class of static instrumentation tools that serve a variety of code 
transformation purposes, including adding (or, in a malicious case, removing) security 
capabilities like stack protectors and Control Flow Integrity (CFI). Current static rewriters often 
require binaries with debugging symbols or relocation entries that are disassembled correctly, 
among other constraints. Multiverse, however, is able to perform the same capability with far 
fewer limitations on its binary targets [40], [41]. 

Multiverse does so by disassembling the binary into a superset disassembly which contains 
“all legal instructions” [41, p. 1]. It also uses an instruction rewriter to relocate instructions and 
modify control flow [40], [41].  

The resulting tool can rewrite binaries with or without instrumentation.  When run from the 
command line as a Python file, it can only rewrite binaries without instrumentation. When used 
via its Python library, it can rewrite binaries with instrumentation [40].  

Design 

The authors of Superset Disassembly offer an overview of the two techniques which 
comprise their tool. They describe their superset disassembly technique as one which “does not 
make any assumptions on where a legal instruction should start and instead disassembles and 
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reassembles each offset, achieving complete recovery of original instructions.” They then 
describe their static instruction reassembling technique as one which, “translates all indirect 
control flow transfer instructions (including those in the library) and redirects their target 
addresses to correct ones, achieving the soundness of original program execution.” Figure 3-14 
below provides an overview of Multiverse that the authors included in their paper [41].  

Figure 3-14: An overview of multiverse [41, Fig. 2] 

This is all done without heuristics, unlike the reassembling tool DDisasm. However, this does 
function like a reassemble, albeit disassembling into a specific superset of assembly designed for 
the instruction rewriter. [41] Multiverse is written in Python and built on top of the Capstone 
disassembler [40].  

Usage 

Multiverse can be run either directly from the command line as a Python file or used as a 
Python library. The former only rewrites binaries without instrumentation. Multiverse offers this 
option to “make sure that everything is installed correctly or to debug changes to the rewriter 
[40].” It works by executing a command in the format: 

./multiverse.py [options] <filename>
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Several options are available including --so (rewrites a shared object), -- execonly (rewrites a 
main binary using the original, unmodified libraries), --nopic (rewrites binary without support for 
position independent code) and --arch (specify the binary’s architecture). 

To fully utilize the instrumentation capabilities of Multiverse, the user must employ the 
tool’s Python library. The user creates a Rewriter object whose constructor takes three boolean 
arguments corresponding to the first three options listed for the command line usage defined 
above, in that same order [40]. Below in Figure 3-15 is an example of a simple Python file which 
uses Multiverse to add a NOP after every instruction in an x64 binary. 

Figure 3-15: An example python file which uses Multiverse to add a NOP after every instruction in an x64 
binary (multiverse/addnop.py) [40] 

Use Cases and Limitations 

As discussed in the overview, Multiverse and its techniques have a plethora of potential uses, 
many of which previously required a dynamic instrumentation tool. For example, the paper 
demonstrates using Multiverse to insert a shadow stack (a separate memory region that preserves 
the state of the stack when a function is called to check its integrity after the function returns). 
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Another potential use is instrumenting prebuilt binaries with AFL’s instrumentation, enabling the 
user to run AFL directly on the binary without QEMU mode or some other emulation. 

However, the Multiverse implementation is a prototype based on their paper and is not 
currently being maintained. It only supports x86 ELF binaries and shared library object files. 
There are several ways it can be optimized, and much of the potential capability has yet to be 
implemented. 

3.4.2 DDisasm 

Reference Link https://github.com/GrammaTech/ddisasm 
Target Type Binary 
Host/Target Operating System Linux 
Host/Target Architecture x86 (32, 64) 
Initial Release April 16, 2018 
License Type Open-Source 
Maintenance Maintained by GrammaTech 

Overview 

Disassembly is one of the first steps reverse engineers take when analyzing a binary. 
Surprisingly, there are few tools concerned with automatically reassembling disassembled code. 
In a 2015 paper, Reassembleable Dissassembling, the authors Shuai Wnag, Pei Wang and 
Dinghao Wu of Pennsylvania State University claimed that at the time “no existing tool is able to 
disassemble executable binaries into assembly code that can be correctly assembled back in a 
fully automated manner, even for simple programs. Actually, in many cases, the resulted 
disassembled code is far from a state that an assembler accepts, which is hard to fix even by 
manual effort. This has become a severe obstacle. [42, p. 1]” The paper presented a tool that 
could disassemble a binary over a set of rules which made the resulting disassembly relocateable, 
which they claim is the “key” to reassembling [42]. 

Since 2015, this technique has been improved, notably by the creators of angr who built a 
reassembling tool called Ramblr [43]. More recently, the tool DDisasm was introduced in a June 
2019 paper, Datalog Dissassembly, by Antonio Flores-Montoya and Eric Shulte of 
GrammaTech, Inc. [44]. Their technique disassembles binaries with accurate symbolic 
information which, as they write in their abstract, enables “cross-referenc[ing] for analysis and… 
[the] adjustment of code and data pointers to accommodate rewriting. Our technique capabilities 
multiple static analyses and heuristics in a combined Datalog implementation [44, p. 1].” They 
claim that this technique significantly out-performs Ramblr, which they term “the current state-
of-the-art [44, p. 1].”  

Alongside their paper they provide an open-source implementation, written in Datalog, 
which disassembles binaries in a way that enables them to be reassembled by common compilers, 
specifically gcc and Clang [45]. 
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Design 

Using analysis of common compiler and assembler methods and static program analysis, the 
authors were able to reason about instruction boundaries, symbolization information and function 
boundary identification, along with other aspects of binary code. Instruction boundary 
identification addresses the issue that binaries lack clear beginnings and ends to instruction, and 
this can be difficult to discern, especially for architectures with variable length instructions. 

Symbolization information, on the other hand, concerns discerning between literals and 
references. The authors provide an example that, “[i]f we modify a binary, for example by 
moving a block of code, all of the references that point to that block, and to all of the 
subsequently shifted blocks, have to be updated. On the other hand, literals, even if they coincide 
with the address of a block, have to remain unchanged [44, p. 1].”  

They implement their tool in Datalog and provide it as an open-source repository alongside 
the paper. 

Usage 

The tool is invoked from the command line as follows: 

ddisasm my_binary --asm my_output_file.s 

The tool can take a number of flags including --asm which specifies the output file, --debug 
which prints debug information along with information, --keep- functions which prints skipped 
functions like _start, and --sect arg (=.plt.got,.fini,.init,.plt,.text,) which enables the user to 
specify sections to decode. The tool works on stripped binaries as well [45]. 

Reassembling the code simply requires running gcc on the disassembly file: 

gcc my_output_file.s 

Use Cases 

The authors of DDisasm argue that their tool is the better than angr’s Ramblr, the current 
state-of-the-art. One of the examples they provide for this is evaluating the tools on binaries from 
the Cyber Grand Challenge (CGC). 

“We disassemble the binaries with DDisasm and Ramblr, we reassemble the resulting 
assembly code gcc and we run the original tests on the new binaries. We also perform the 
experiment with stripped versions of the binaries. In that case, we strip the binaries before 
running the disassemblers. 

“DDisasm is able to produce reassembleable assembly code for all the binaries and only 3 
in the CGC benchmark fail some of the tests. Note that the number of binaries that fail some 
tests is smaller [than] the number of broken binaries according to our previous experiment… 
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“This is because the test suites of the binaries are not exhaustive. The results also show that 
DDisasm does not depend on the information present in symbol tables and can perform 
equally well with stripped binaries. 

“On the other hand, there are many binaries that fail to reassemble with Ramblr and the 
results of the tests are worse than those of the symbolization information. We have found and 
reported several bugs to the Ramblr authors which they have promptly fixed but there might 
be others that cause additional failures. Ramblr fails to produce reassembleable assembly for 
the stripped versions of most programs in Coreutils and the real-world benchmarks. Many of 
the failures are because Ramblr does not find the main function or generates assembly with 
undefined labels. We believe that these are not fundamental issues and should be easy to fix 
in most cases [44, p. 12].” 

Limitations 

From the tool evaluation example quoted above, it is clear that the reassembly is not always 
accurate, and can at times cause the new binary to have inaccurate information or fail tests. Their 
tool resulted in broken binaries 1.66% of the time on the real-world programs they chose to 
evaluate [44, p. 12]. By comparison, Ramblr resulted in likely broken binaries 35.5% of the time 
on the same tests [44, p. 12]. This does not account for the binaries that may have been broken 
but were not identified through their tests. 

3.4.3 LIEF 

Reference Link https://lief.quarkslab.com 
Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Linux; macOS; Windows; Android 
Host/Target Architecture x86 (32, 64) 
Initial Release April 4, 2019 
License Type Open-Source 
Maintenance Maintained by Quarkslab 

Overview 

LIEF, or “Library to Instrument Executable Formats,” is an open-source tool used to parse, 
modify, and abstract executables. It offers a Python, C++, or C API with which to parse, edit and 
analyze portions of executables. By abstracting common characteristics of executables, the user 
can compare across different types [46]. 

One of the most attractive capabilities of LIEF is its robust documentation and ease of use. It 
offers a clean, simple way for users to work with executable formats, which is in demand in 
reverse engineering and program analysis communities. It has a sophisticated, interactive 
alternative to bare bones tools like objdump. It runs on all three major desktop operating systems 
(not just Linux), and can handle their executable formats as well [46]. 
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Design and Usage 

Figure 3-16 shows LIEF’s architecture. 

Figure 3-16:  Architecture of LIEF [47] 

The documentation offers the following example of how LIEF would parse an ELF 
executable using the Python library. The ELF::Parser class contains the function parse() which 
takes a file path to an executable and parses it. It does so by splitting the ELF into its various 
parts so segments will each become ELF::Segment objects and sections become ELF::Section 
objects. These ELF:Segment objects then become part of an ELF::Binary object, which is 
returned by parse() [48]. 

Example usage below: 

binary = lief.parse(“path/to/executeable”) 

This ‘binary’ object contains ‘binary.segments’ and ‘binary.sections’ and the user can retrieve 
the objects they contain and modify their contents. The documentation offers this example of 
doing so to the .text section: 

text =binary.get_section(".text") 

text.content = bytes([0x33] * text.size) 
This object is modifiable: its type, size, content, etc. can be changed. It can then be rebuilt 

with the ELF::Builder class by calling binary.build(). A diagram of this process applied to the 
executable /bin/ls is provided by the documentation and shown in Figure 3-17 [48].  
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Figure 3-17: Applying LIEF to /bin/ls [48] 

LIEF enables the same to be done with Windows PEs, but goes further by enabling the user 
to create a PE from scratch. Additional capabilities include hooking into ELFs and PEs, 
manipulating the PLT and GOT, and converting an ELF into a library. LIEF also has an entire 
set of capabilities designed for Android formats. It offers Python, C++, and C APIs and 
integration with Frida [46].  

Use Cases and Limitations 

LIEF offers a number of use cases in reverse engineering and program analysis, anywhere 
from simply analyzing a binary to instrumenting it. It can be used to dynamically reverse 
engineer a binary, hook a library and manipulate symbolic data. While LIEF is a well 
maintained, well documented, and organized tool, it also does not have a significant breadth or 
depth of capabilities. None of the operations described here are novel. It cannot statically rewrite 
binaries like DDisasm or instrument them like Multiverse. LIEF, however, makes the operations 
it can perform easy and painless, which is its appeal. 
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3.5 Dynamic Analysis and Exploitation 

Dynamic Instrumentation enables the analysis of binaries during execution. Frida and  
rr significantly provide a way to control and modify execution. Tools like Lighthouse 
complement Frida, and state-of-the-art tools like DynamoRIO, by enabling the user to better 
interpret their results. Exploitation frameworks like FUZE automate certain dynamic tasks 
necessary to exploitation. 

3.5.1 Lighthouse 

Reference Link https://github.com/gaasedelen/lighthouse 
Target Type Plugin: IDA Pro; Binary Ninja 

Coverage Data: DynamoRIO; Intel Pin; Frida 
Host Operating System IDA Pro Plugin: Windows; Linux; macOS 

Binary Ninja Plugin: Windows; Linux 
Host Architecture x86 (32, 64) 
Initial Release March 8, 2017 
License Type Open-Source 
Maintenance Maintained by Ret2 Systems 

Overview 

Lighthouse is a code coverage plugin, primarily for IDA Pro but with experimental support 
in Binary Ninja. It colorfully displays coverage data generated by DyanamoRIO, Intel Pin, or 
Frida in regular IDA Pro views, and presents users with a widget for viewing and interacting 
with the coverage data. Furthermore, it helps examine relationships between multiple coverage 
sets as coverage compositions. Lighthouse includes a syntax for creating compositions and a UI 
for evaluating these compositions in real-time, called Hot Shell [10], [50], [51].  

Design and Usage 

Coverage data is loaded as a .log file generated by one of three tools, DynamoRIO, IntelPin, 
and experimentally Frida. Lighthouse gives the user Coverage Painting and Coverage Overview 
views, examples of which are shown in Figure 3-18 and Figure 3-19, respectively. Code Painting 
enables the user to see “the active coverage data [painted] across the three major IDA Pro views 
as applicable, whereas Coverage Overview is a “dockable widget that provides a function level 
view of the active coverage data for the database [10].”  
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Figure 3-18: Lighthouse Coverage Painting view [10, README] 

Figure 3-19: Lighthouse Coverage Overview [10, README] 

Coverage Overview displays a number of useful metrics, such as cyclomatic complexity, and 
helps the user manipulate or interact with the data in the table [10]. The user may load multiple 
coverage sets and create coverage compositions via the composition syntax. Coverage sets 
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correspond to a symbol and are operated on by logical operators. For example, if A, B and C are 
each coverage sets, (A & B) | C is a valid expression. This can be entered into the input field of 
the Hot Shell window, a UI that enables the user to explore compositions, including to search it 
and jump to various addresses [10]. 

Use Cases and Limitations 

The primary purpose of this tool is to easily examine code coverage. The fact that it 
integrates with two of the major disassemblers, reads data generated by well-known tools, and 
requires no extra formatting makes this tool very user friendly. It is useful for differential 
analysis of multiple program executions and examining and comparing fuzzing runs. It is billed 
as ‘only a prototype and code resource for the community’ and has had 8 releases, the latest in 
October 2018 [10]. 

3.5.2 Frida 

Reference Link https://www.frida.re/ 
Target Type Binary (Application) 
Host/Target Operating System Linux; macOS; iOS; Windows; Android; QNX 
Host/Target Architecture x86 (32, 64); ARM (32, 64) 
Initial Release December 31, 2013 
License Type Open-Source 
Maintenance Maintained by Ole André V. Ravnås and Håvard Sørbø 

Overview 

Frida is a dynamic instrumentation toolkit useful in reverse engineering and security 
research. It injects a JavaScript engine into a native application running on one of the supported 
operating systems, and then executes JavaScript code in the target process’ context. That script 
has full access to memory, hooking functions and native functions inside the process. Users 
primarily interact with Frida via its Python library, which in turn leverages Frida’s JavaScript 
API to hook into the process and run JavaScript. However, Frida’s capabilities goes far beyond 
this, giving the user access to a JavaScript API, a C API, a Swift API, and providing a number of 
tools including Frida CLI, frida-ps, frida-trace, frida-discover, frida-ls- devices, and frida-kill 
[52], [53].  

Design and Usage 

Frida has three modes of operation, Injected, Embedded and Preloaded. 

Injected – Frida creates a shared object that contains an agent consisting of all user-defined 
logic that will be injected into a remote process. Under the hood, Frida uses operating system 
specific means (e.g., ptrace()) to hijack an existing thread and launch a new thread with the agent 
attached that will then internally communicate with the process. This is a hook that will facilitate 
access and modification to memory, registers, and the threads of the process. In addition to 
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setting up the connection, Frida supplies an importable library with calls to inspect a process’ 
functions, modify their arguments, and create custom calls. Frida’s library comes with methods 
like Memory.alloc() and Memory.protect() to manipulate process memory and create structs and 
arrays. 

With these commands and capabilities, Frida can serve as a way to facilitate the fuzzing and 
testing of a process by injecting strings/integers/structs into memory, calling a function, and 
observing the resulting behavior [54]. 

Embedded – In embedded mode, Frida provides a shared library, frida-gadget, which 
leverages injection mode capabilities on incompatible systems, such as those that require explicit 
root privileges and/or are jail-broken. The gadgets modify the code of a program, patch certain 
libraries, and reflect these changes into the dynamic linker at run-time. This enables functions 
like ptrace() to be called with normal user privileges. Frida-gadgets comes with “Listen” mode, 
similar to Frida-server in the injection mode, which can be used to listen to a specific connection. 
Embedded mode can also be used in conjunction with LIEF to modify ELF formats by 
embedding the frida-agent as a dependency of native libraries. After invoking the parse method 
of LIEF on a Frida-agent then calling .add_library to inject it into a process’ native library, it is 
possible to observe, log, and modify code on the process [54]. 

Preloaded – Preloaded mode uses dynamic linker capabilities like LD_PRELOAD and 
DYLD_INSERT_LIBRARIES to load pre-existing scripts from the filesystem into a process 
before it is executed. This is useful when running a process over a connection, to ensure that 
Frida-gadgets are executed from the entry-point after successfully connecting to a socket. Frida 
also has ScriptDirectory interaction which is used to run scripts based on the particular process. 
This is specified in a configuration file that has a filter object that defines under what conditions 
a script should be run [54]. 

Use Cases and Limitations 

Frida is designed for dynamic reverse engineering and offers a powerful range of capabilities. 
Developers can use it to easily add custom diagnostics and logging without creating an entirely 
new build or black-box test production code. Reverse engineers can inject code to trace 
execution, spy on processes and dump runtime information. The ability to inject custom 
JavaScript into a process opens the door to new methods of reverse engineering and dynamic 
binary instrumentation and enables many operations that are currently performed by more 
cumbersome tooling. It can also be used with Lighthouse, the code coverage tool also described 
in this report. Frida is supported by a number of operating systems and has bindings for a wide 
variety of platforms like Swift, .NET and Node.js. [53]. 

Frida is designed primarily for native desktop applications, and therefore lacks the ability to 
work with low level software and less common operating systems and architectures. Even native 
desktop applications may not be feasible to use with a tool that uses ptrace to inject a JavaScript 
engine into a target [53]. 
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3.5.3 rr 

Reference Link https://rr-project.org/ 
Target Type Binary 
Host/Target Operating System Linux; macOS; Windows; 
Host/Target Architecture x86 (32, 64); 
Initial Release March 24, 2014 
License Type Open-Source 
Maintenance Maintained by rr project community, Mozilla 

Overview 

rr is an open-source debugger which enables the user to deterministically replay execution. It 
also enables users to ‘reverse-execute’ to where a breakpoint was hit in gdb. rr seeks to address 
the inability to deterministically retrigger crashes and events found with fuzzing and debugging 
[55]. In their 2017 paper Engineering Record and Replay for Deployability, Extended Technical 
Report [56] by Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll and 
Nimrod Partush, the authors of rr described how and why they developed this tool. 

“The ability to record and replay program executions with low overhead enables many 
applications, such as reverse-execution debugging, debugging of hard-to-reproduce test 
failures, and “black box” forensic analysis of failures in deployed systems. Existing record-
and-replay approaches limit deployability by recording an entire virtual machine 
(heavyweight), modifying the OS kernel (adding deployment and maintenance costs), 
requiring pervasive code instrumentation (imposing significant performance and complexity 
overhead), or modifying compilers and runtime systems (limiting generality). We 
investigated whether it is possible to build a practical record-and-replay system avoiding all 
these issues. The answer turns out to be yes — if the CPU and operating system meet certain 
non-obvious constraints. Fortunately, modern Intel CPUs, Linux kernels and user-space 
frameworks do meet these constraints, although this has only become true recently. With 
some novel optimizations, our system RR records and replays real-world low parallelism 
workloads with low overhead, with an entirely user-space implementation, using stock 
hardware, compilers, runtimes and operating systems [56].” 

A program can be run and recorded with rr and then re-run with the exact same execution as 
the recorded run. This replay can then be debugged using common gdb commands [55]. 

Design and Usage 

rr is run via command line, with the user first recording their application with the command: 

rr record /path/to/application --arguments 

This recording will be saved to the disk, including any crash or failure that caused the issue. 
The user can then run this recording with the command: 
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rr replay 

This enables the user to debug the recording, which replays every part of the recorded 
execution exactly as it happened (to include memory allocations), rather than a nondeterministic 
re-execution of the program. 

Use Cases and Limitations 

The ability to deterministically replay crashes and failures is useful in a number of areas of 
reverse engineering, program analysis and exploitation, from determining how a program works, 
to examining an input discovered from fuzzing, to testing an exploit. 

3.5.4 FUZE 

Reference Link https://github.com/ww9210/Linux_kernel_exploits 
Target Type Linux Kernel (32, 64) 
Host/Target Operating System Linux; 
Host/Target Architecture x86 (32, 64); 
Initial Release August 14, 2018 
License Type Open-Source 
Maintenance Last commit September 2018 

Overview 

FUZE is a Python tool for exploiting Linux kernels. It is an implementation of a 2018 
USENIX paper entitled FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-
Free Vulnerabilities by Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xin, Xiaorui Gong, Wei Zou. [57] 
FUZE, as the title suggests, provides a framework for exploiting UAF Linux Kernel 
vulnerabilities. The authors describe it thusly, 

“The design principle behind this technique is that we expect the ease of crafting an exploit 
could augment a security analyst with the ability to evaluate the exploitability of a kernel 
UAF vulnerability. Technically, FUZE utilizes kernel fuzzing along with symbolic execution 
to identify, analyze and evaluate the system calls valuable and useful for kernel UAF 
exploitation. In addition, it leverages dynamic tracing and an off-the-shelf constraint solver to 
guide the manipulation of vulnerable object [57, p. 1].”  

The underlying technique of FUZE consists of three parts. First, it extracts information 
relating to the spatial and temporal metadata of the vulnerability, then uses fuzzing to find 
different contexts which trigger kernel panics, and subsequently symbolic execution to explore 
exploitability in those contexts. 

The Heap Attacks subsection of the Other Techniques portion of this report contains a 
discussion of exploit templates surrounding another somewhat similar (in intention) framework 
created by security researcher Sean Heelan and others. In a blog post on the subject, Heelan 
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predicts that the “future of automatic exploit generation is going to look more like template-
based approaches than end-to-end solutions [58].” Although this tool is arguably a beta 
implementation of a research paper, is not actively maintained, and lacks the documentation 
necessary to be easily useable, it is worth discussing as an example of an exploit framework. 

Design and Usage 

As described above, FUZE extracts metadata information about the vulnerability, fuzzes to 
find new contexts which trigger kernel panics, and then symbolically executes over those 
contexts to explore their exploitability. It is worth reading their summary of how FUZE works: 

“To be more specific, our system first takes as input a PoC program which does not perform 
exploitation but causes a kernel panic. Then, it utilizes kernel fuzzing to explore various 
system calls and thus to mutate the contexts of the kernel panic. Under each context 
pertaining to a distinct kernel panic, FUZE further performs symbolic execution with the goal 
of tracking down the primitives potentially useful for exploitation. To pinpoint the primitives 
truly valuable for exploiting a UAF vulnerability and even bypassing security mitigation, 
FUZE summarizes a set of exploitation approaches commonly adopted, and then utilizes 
them to evaluate primitives accordingly [57, p. 2].”  

This tool lacks usage documentation and exists as a set of Python libraries. Given its lack of 
current maintenance, it is incumbent on the user to read through the source code and examples to 
discern usage. (There are numerous examples provided, corresponding to CVEs.) It is, however, 
configured for installation which is easily done with Python’s setuptools package. The tool 
consists of four packages, vminstance, concolicexecutor, statebroker and kernelrop. The tool 
relies on a modified version of angr [59]. 

Use Cases and Limitations 

The largest and most apparent limitation of this tool is the lack of usability and maintenance. 
However, it does provide an example framework for partial automated exploit development, 
specifically for developing multiple exploits for a known vulnerability. This is useful in 
evaluating exploitability and enabling software vendors to assess on which vulnerabilities to 
focus. Conversely, this also helps attackers determine which vulnerabilities to focus on and helps 
them craft exploits. 
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3.6 Symbolic and Concolic Execution 

Symbolic execution is an aptly named technique that involves executing a program with 
symbols rather than concrete values. In order to reason about a symbolically executed path, the 
engine compiles a logical expression representing the constraints that resulted from the execution 
of the path. Then an SMT solver (e.g., z3) solves for a concrete value to each constraint. The 
primary purpose of symbolic execution in a vulnerability research context is similar to that of 
fuzzing, to explore program execution to find crashes and vulnerabilities. 

There are many symbolic execution engines available today, often available as open-source 
tools. The current state-of-the-art began with KLEE, which was presented in a 2008 paper and is 
built on top of LLVM. Another symbolic execution engine, SAGE, was developed by Microsoft 
as an internal tool. Many subsequent engines have emerged, including angr, which was released 
in 2013 and has become the state-of-the-art.  

Symbolic execution, although powerful, comes with significant limitations. For example, it 
notoriously suffers from the path explosion problem, which results in exorbitant computational 
and memory costs. Concolic execution was developed to address these issues by combining 
concrete execution with symbolic (many symbolic execution machines like angr use this 
approach). Merging concolic execution with fuzzing has produced hybrid fuzzing engines like 
Driller, which is derived from a combination of angr and AFL. 

QSYM offers a new approach to the hybrid fuzzing technique, along with two other new 
tools that have emerged in the last two years. MemSight relies on symbolic pointer reasoning to 
address the cost issue of mapping concrete memory addresses to data. Manticore, on the other 
hand, does not provide a novel technique, but implements a simple and usable symbolic 
execution engine addressing many of the usability issues of these tools. 

Symbolic execution continues to become more sophisticated, effective, and less costly with 
regard to time and space. There are currently numerous options for symbolic execution, and 
much cross pollination (e.g., MemSight could be integrated into angr). As both symbolic 
execution and fuzzing advance, so too will hybrid approaches. Symbolic execution will also 
become available to more platforms, including embedded systems. 
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3.6.1 angr 

Reference Link angr: http://angr.io/ 
Driller: https://github.com/shellphish/driller 

Target Type Binary 

Host/Target Operating System angr: Linux; macOS; Windows 
Driller: Linux 

Host/Target Architecture angr: x86 (32, 64); ARM (32, 64); PPC (32, 64); MIPS (32, 64); 
Java via Soot, etc.  
Driller: x86 (32, 64) 

Initial Release angr: 2013 
Driller: 2016 

License Type Open-Source 
Maintenance Maintained by Computer Security Lab at UCSB and 

SEFCOM at Arizona State University 

Overview 

angr is one of the current state-of-the-art symbolic execution engines and offers a wide array 
of capabilities. Built as a Python framework, angr targets binaries of many different 
architectures. In addition to symbolic execution angr includes angrop which builds ROP chains, 
angr-managment, a GUI for analyzing binaries with angr, rex which automatically generates 
exploits, and the Ramblr reassembler [60], [82]. 

3.6.1.1 Driller 

Driller is a concolic execution engine that combines the symbolic execution of angr with the 
AFL fuzzer. This tool implements the paper Driller: Augmenting Fuzzing Through Selective 
Symbolic Execution by Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu 
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel and Giovanni Vigna. The 
following excerpt from the paper explains how Driller’s core components function. 

“Input test cases. Driller can operate without input test cases. However, the presence of 
such test cases can speed up the initial fuzzing step by pre-guiding the fuzzer toward certain 
compartments. 

“Fuzzing. When Driller is invoked, it begins by launching its fuzzing engine. The 
fuzzing engine explores the first compartment of the application until it reaches the first 
complex check on specific input. At this point, the fuzzing engine gets “stuck” and is unable 
to identify inputs to search new paths in the program. 

“Concolic execution. When the fuzzing engine gets stuck, Driller invokes its selective 
concolic execution component. This component analyzes the application, pre-constraining 
the user input with the unique inputs discovered by the prior fuzzing step to prevent a path 
explosion. After tracing the inputs discovered by the fuzzer, the concolic execution 
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component utilizes its constraint-solving engine to identify inputs that would force execution 
down previously unexplored paths. If the fuzzing engine covered the previous compartments 
before getting stuck, these paths represent execution flows into new compartments. 

“Repeat. Once the concolic execution component identifies new inputs, they are passed 
back to the fuzzing component, which continues mutation on these inputs to fuzz the new 
compartments. Driller continues to cycle between fuzzing and concolic execution until a 
crashing input is discovered for the application [23, p. 4].” 

The example usage from the Driller repository uses a testcase’s trace to generate new test 
cases and is shown in Figure 3-20. 

Figure 3-20: Example of using Driller from the README [61] 

New or Notable Features 

Veritesting – Veritesting is a symbolic execution technique implemented in the paper, 
Enhancing Symbolic Execution with Veritesting by Thanassis Avgerinos, Alexandre Rebert, 
Sang Kil Cha, and David Brumley of Carnegie Mellon University [62]. Veritesting is described 
in the paper as follows. 

“At a high level, there are two main approaches for generating formulas. First, dynamic 
symbolic execution (DSE) explores programs and generates formulas on a per-path basis. 
Second, static symbolic execution (SSE) translates program statements into formulas, where 
the formulas represent the desired property over any path within the selected statements. 

… 
“The path-based nature of DSE introduces significant overhead when generating 

formulas, but the formulas themselves are easy to solve. The statement-based nature of SSE 
has less overhead and produces more succinct formulas that cover more paths, but the 
formulas are harder to solve. 

“Veritesting alternates between SSE and DSE. The alternation mitigates the difficulty of 
solving formulas, while alleviating the high overhead associated with a path-based DSE 
approach. In addition, DSE systems replicate the path- based nature of concrete execution, 
enabling them to handle cases such as system calls and indirect jumps where static 
approaches would need summaries or additional analysis. Alternating enables [the symbolic 
execution system] with veritesting to switch to DSE-based methods when such cases are 
encountered [62, p. 1].” 

angr implements the veritesting technique in the script angr/veritesting. 
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Ramblr – Ramblr is a static binary rewriter presented in the 2017 paper Ramblr: Making 
Reassembly Great Again by Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind 
Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna of University of 
California Santa Barbara. [43] It is implemented in the angr/reassembler.py script. For further 
discussion on reassemblers, refer to the DDisasm tool. 

Symbion – Symbion is a new path exploration technique designed to replace modeling for 
complex procedures. Modeling enables more deliberate symbolic execution and minimizes path 
explosion, however not every possible procedure can have a prebuilt model. Symbion addresses 
this by concretely executing through a complex procedure and then switching to symbolic 
execution. A blogpost by the maintainers of angr expands on its capability in the following 
excerpt accompanied by the graphic in Figure 3-21. 

“Analysts may wish to symbolically reason about control flow of a program between two 
program points B and C but cannot even execute from point A to point B due to unmodeled 
behaviors. With Symbion, they can execute concretely up to point B, switch into angr’s 
symbolic context, and compute the program input needed to reach point C. The solution 
obtained by angr can then be written into the program’s memory and by resuming the 
concrete execution reaching beyond point C [63].” 

Figure 3-21: Overview of the Symbion path exploration technique [63] 
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3.6.2 Manticore 

Reference Link https://github.com/trailofbits/manticore/ 
Target Type Binary 

Host/Target Operating System Linux; macOS 
Host/Target Architecture x86 (32, 64); ARM (32, 64); EVM/Native Bytecode Executables 
Initial Release May 5, 2017 

License Type Open-Source 
Maintenance Maintained by Trail of Bits 

Overview 

Trail of Bits bills their Manticore tool as “symbolic execution for humans”, a tool which 
enables the user to avail themselves of “symbolic execution, taint analysis and instrumentation” 
to analyze binaries. Manticore’s main capabilities are input generation, error discovery, 
execution tracing and a programmatic interface, all of which were designed with Manticore’s 
goal of simplicity and usability in mind [64], [65]. 

Design and Usage 

Manticore prioritizes simplicity and usability, by eschewing an intermediate representation 
and minimizing external dependencies while creating a usable Python API and command line 
tool. The Manticore Documentation offers the following overview of its capabilities: 

• “Input Generation: Manticore automatically generates inputs that trigger unique code
paths” [65]

• “Error Discovery: Manticore discovers bugs and produces inputs required to trigger
them” [65]

• “Execution Tracing: Manticore records an instruction-level trace of execution for each
generated input” [65]

• “Programmatic Interface: Manticore exposes programmatic access to its analysis
engine via a Python API” [65]

Manticore is a tool based around Python and as such can be installed using pip. Once 
installed it can either be used via the command line or API. Figure 3-22 shows an example of 
using Manticore as a command line tool [65].  

Figure 3-22: Example of using Manitcore as a command line tool [65] 

Manticore’s more extensive capability is its Python API. Figure 3-23 shows an example of a 
basic Manticore Python script to evaluate a binary that takes an input and decrypts a key for a 
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certain set of inputs. The “hook” call acts as a breakpoint which freezes the state and enables the 
user to execute a function before the instruction at that address is called [64], [65]. 

Figure 3-23: A basic Manticore Python script to evaluate a binary that takes an input and decrypts a key for a 
certain set of inputs 

Figure 3-24: manticore-examples/RPISEC_MBE/lab1B.py [65] 
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Manticore can be used for crash analysis and exploit generation; rather than exploring all 
possible paths, the user can explore the path known to trigger a crash to create a working 
payload. 

Use Cases and Limitations 

Manticore is useful in cases where the user needs to perform symbolic analysis and tracing 
(with objectives such as program exploration, crash analysis and exploit generation), with a 
simple tool that has an easy to use API. Manticore was designed to be used without an extensive 
background in program analysis or reverse engineering. In their documentation, Trail of Bits 
offers a comparison between Manticore and angr that describes their intentions with the tool: 

“Manticore is simpler. It has a smaller codebase, fewer dependencies and capabilities, and an 
easier learning curve. If you come from a reverse engineering or exploitation background, 
you may find Manticore intuitive due to its lack of intermediate representation and overall 
emphasis on staying close to machine abstractions [66].”  

However, the simplicity also brings limitations. Manticore lacks the breadth of angr’s 
analysis capabilities. Manticore is mainly a simple symbolic execution engine, and because it 
lacks an IR, it cannot offer analysis support similar to angr. 

One of Manticore’s unique capabilities is its support for Ethereum smart contracts, including 
capabilities and documentation specific to the Ethereum EVM. 

3.6.3 QSYM 

Reference Link https://github.com/sslab-gatech/qsym 
Target Type Binary 

Host/Target Operating System Linux 
Host/Target Architecture x86 (32, 64) 
Initial Release August 16, 2018 

License Type Open-Source 
Maintenance Last commit December 2018 

Overview 

This hybrid fuzzer is the implementation of a paper presented at USENIX 2018 entitled 
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing [67]. The intention 
of the fuzzer is to reform current hybrid fuzzing techniques to make them scalable and more 
effective. The authors write that 

“The key idea is to tightly integrate the symbolic emulation with the native execution using 
dynamic binary translation, making it possible to implement more fine-grained, so faster, 
instruction-level symbolic emulation. 
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Additionally, QSYM loosens the strict soundness requirements of conventional concolic 
executors for better performance, yet takes advantage of a faster fuzzer for validation, 
providing unprecedented opportunities for performance optimizations, e.g., optimistically 
solving constraints and pruning uninteresting basic blocks [67 p. 1].”  

The authors found that they were able to achieve performance gains in their evaluations over 
state-of-the-art fuzzers, in addition to finding multiple vulnerabilities. QSYM is built with AFL. 

Design and Usage 

The user works within a Python virtualenv and then can run Hybrid fuzzing with AFL via the 
following sample command-line input from the GitHub README. 

# require to set the following environment variables 
# AFL_ROOT: afl directory (http://lcamtuf.coredump.cx/afl/) 
# INPUT: input seed files 
# OUTPUT: output directory 
# AFL_CMDLINE: command line for a testing program for AFL (ASAN 
+ instrumented)

# QSYM_CMDLINE: command line for a testing program for 
QSYM (Non-instrumented) 

# run AFL master 
$ $(AFL_ROOT)/afl-fuzz -M afl-master -i $(INPUT) -o $(OUTPUT) -- 
$(AFL_CMDLINE) 
# run AFL slave 
$ $(AFL_ROOT)/afl-fuzz -S afl-slave -i $(INPUT) -o $(OUTPUT) -- 
$(AFL_CMDLINE) 
# run QSYM 
$ bin/run_qsym_afl.py -a afl-slave -o $(OUTPUT) -n qsym -- 

$(QSYM_CMDLINE) 

Use Cases and Limitations 

QSYM presents a technique which can be implemented with current state-of- the-art fuzzers 
and symbolic execution engines to increase the efficacy and yield of hybrid execution, while 
making this software testing technique more scalable than it has been. 
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3.6.4 MemSight 

Reference Link https://github.com/season-lab/memsight 
Target Type Binary 

Host/Target Operating System Linux 
Host/Target Architecture x86 (32, 64) 
Initial Release 2017 

License Type Open-Source 
Maintenance Maintained by SEASON Lab 

Overview 

MemSight is an open-source symbolic execution tool that is built on angr and based on a 
2017 paper presented at the ASE conference, Rethinking Pointer Reasoning in Symbolic 
Execution. 

“When memory addresses are symbolic, and could possibly refer to large areas of 
memory, this is handled by concretizing the address [69]. MemSight seeks to address this by 
introducing a different approach. “Rather than mapping address instances to data as previous 
tools do, our technique maps symbolic address expressions to data, maintaining the possible 
alternative states resulting from the memory referenced by a symbolic address in a compact, 
implicit form [69, p. 1].”  

The implementation accompanying the paper is written in Python and built on angr. 

Usage 

The MemSight repository contains two main Python scripts for exploration. 
MemSight/explore.py does exploration line-by-line, and MemSight/run.py does not. Both take as 
arguments a path to the ‘MetaBinary’ which is a binary and a configuration script to setup 
exploration. 

Use Cases and Limitations 

The paper claims MemSight reduces the need for concretization and enables more precise 
pointer reasoning and broader state explorations. This explores alternative program states which 
are missed due to current symbolic memory concretization techniques. This increases the number 
of possible programmatic paths explored, expanding and making more comprehensive the 
analysis a symbolic execution can perform. 
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4 Other Techniques 
Many new and popular techniques were discussed in the preceding Tools section, such as 

new research into concolic fuzzing or replayable debugging. This section will address the 
techniques that do not directly correspond with one or more tools. 

4.1 JIT Attacks 

Browser based attacks have become one of the most popular areas of exploitation, with 
specific focus on JIT based attacks. A JIT engine generates executable code at runtime, which 
provides a number of potentially exploitable attack vectors. 

JIT Spray – In their 2018 paper, Make JIT Spray Great Again [70], Robert Gawlik and 
Thorsten Holz of Ruhr-Universitat Bochum surveyed the landscape of JIT attacks and their 
current mitigations. They discuss several different types of JIT attacks, like JIT Spray: 

“If expressions with constant values of a high-level language are Just-In-Time (JIT) 
compiled into native code, they can be abused to embed malicious code bytes at run time. 
This bypasses DEP because data is (indirectly) injected as code. Additionally, if the 
adversary manages to create many regions of this code, their locations become predictable. 
Hence, by spraying many code regions, she can predict the address of one region to bypass 
ASLR. Finally, only control over the instruction pointer is needed to redirect the control flow 
to the injected code. Thereby, a use-after-free, type confusion or heap-buffer overflow 
vulnerability is sufficient [70, p. 1].”  

Gawlik and Holz found that, while protections against JIT-Spray attacks have improved, JIT-
Spraying is still an effective attack. In 2016, they noted that “WebGL shaders were usable inside 
JavaScript of Internet Explorer and Microsoft Edge. 

“The WARP JIT compiler produced native code not protected by MS-CFG. Thus, the 
authors were able to inject code to predictable addresses with the Windows Advanced 
Rasterization Platform (WARP) Shader JIT compiler [67, p. 4].”  

JIT-Based Code Reuse – A more recent attack, they claim, is JIT-Based Code Reuse: 

“The first (academic) work which used runtime compiled gadgets from a JIT compiler 
arouse from the need to bypass code-reuse protections in 2015. If static code of a program is 
gadget-free, then code-reuse is usually not an option. However, if gadgets are produced by 
the JIT compiler, code-reuse becomes feasible again. Athanasakis et al. targeted IonMonkey 
on 32-bit Linux and Chakra of 64-bit Internet Explorer 9 on Windows. In general, they 
provoked the JIT compiler to emit gadgets containing only a few instructions and were using 
two-byte JavaScript constants. This bypassed constant blinding in Internet Explorer and 
various other JIT-related defenses which were incorporated at that time. However, note that 
the authors needed memory disclosures to locate the gadgets in memory. Hence, we do not 
count it as JIT- Spray because JIT-Spray does not require info leaks but only control over the 
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instruction pointer to redirect control flow to a predetermined address containing the JIT-
compiled attacker code [67, p. 7].”  

Mitigation Bypasses – Mitigations are often what give rise to new techniques, developed to 
bypass them. Gawlike and Holz discuss several such bypasses, including one from 2017, in 
which a data-only attack on Microsoft Edge’s JavaScript Engine targeted Chakra’s Intermediate 
Representation (IR). “Instead of creating/modifying code or code pointers, they crafted malicious 
C++ object representing IR statements with the prerequisite of a read/write primitive from within 
JavaScript. As the JIT compiler uses these objects to generate native code, the authors were able 
to create and execute their code of choice [67, p. 8].”  

In 2015, a paper which laid out the technique JIT Code Reuse was published for the IEEE 
Symposium on Security and Privacy by Kevin Snow, Fabian Monrose, Lucas Davi, Alexandra 
Dmitrienko, Christopher Liebchen, and Ahmad- Reza Sadeghi. In the paper, titled Just-In-Time 
Code Reuse: On the Effectiveness of Fine-Grained Address Space Layout Randomization, Snow 
et al. describe the technique they term JIT-ROP to bypass ASLR. Their “key observation” is that 
“by exploiting a memory disclosure multiple times we violate implicit assumptions of the fine-
grained exploit mitigation model and enable the adversary to iterate over mapped memory to 
search for all necessary gadgets on-the-fly, regardless of the granularity of code and memory 
randomization [71, p. 1].” They offer a diagram of their attack (Figure 4-1) and explain it as 
follows: 

“An adversary constructing a new exploit need only conform their memory disclosure to our 
interface and provide an initial code pointer in Step 1, then let our framework take over in 
Steps 2 to 5 to automatically (and at exploit runtime) harvest additional code pages, find API 
functions and gadgets, and just-in-time compile the attacker’s program to a serialized 
payload useable by the exploit script in Step 6 [71, p.2].”  

JIT Compiler Logic Errors – As JIT machines are hardened against these kinds of attacks, 
JIT Compilers are an increasingly common attack vector, especially as optimizations 
unintentionally add logic bugs. These bugs are ones that lead to generating incorrect executable 
code that can subsequently be exploited. Some of these include bugs in bounds-check 
elimination, escape analysis, register allocation and redundancy elimination [72]. A common bug 
pattern is assumptions at compile time without corresponding runtime checks [72]. These are the 
kind of logic bugs sought by the fuzzers Fuzzilli and CodeAlchemist, which are discussed in the 
tools section. 
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Figure 4-1: An overview of JIT code reuse [71] 

4.2 ROP-Based Attacks 

In addition to JIT-ROP, described above, several attack techniques based on Return-Oriented 
Programming (ROP) attacks have emerged in recent years. 

Blind Return Oriented Programming (BROP) – Around 2014, BROP emerged as a way to 
use ROP without having a binary or source code. A Stanford University paper titled Hacking 
Blind by Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, Dan Boneh [73] first 
described the technique. A subsequent Stanford University post elaborated as follows: 
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“The BROP attack makes it possible to write exploits without possessing the target's 
binary. It requires a stack overflow and a service that restarts after a crash. Based on whether 
a service crashes or not (i.e., connection closes or stays open), the BROP attack is able to 
construct a full remote exploit that leads to a shell. The BROP attack remotely leaks enough 
gadgets to perform the write system call, after which the binary is transferred from memory 
to the attacker's socket. Following that, a standard ROP attack can be carried out [73].” 

Apart from attacking proprietary services, BROP is very useful in targeting open-source 
software for which the particular binary used is not public (e.g., installed from source setups, 
Gentoo boxes, etc.) [74].  

They also provide a more specific attack outline (quoted below): 
1. “Break ASLR by "stack reading" a return address (and canaries).

2. “Find a "stop gadget" which halts ROP chains so that other gadgets
can be found.

3. “Find the BROP gadget which lets you control the first two
arguments of calls.

4. “Find a call to strcmp, which as a side effect sets the third argument
to calls (e.g., write length) to a value greater than zero.

5. “Find a call to write.

6. “Write the binary from memory to the socket.
7. “Dump the symbol table from the downloaded binary to find calls to

dup2, execve, and build shellcode [74].”

Sigreturn Oriented Programming (SROP) – In 2014, Erik Bosman and Herbert Bos of 
Vrije Universiteit laid out their technique, SROP, in a paper for the IEEE Symposium. They 
described their attack as similar to ROP in that “sigreturn oriented programming constructs what 
is known as a ‘weird machine’ that can be programmed by attackers to change the behavior of a 
process [75].”  

However, to program this machine, “attackers set up fake signal frames and initiate returns 
from signals that the kernel never really delivered. This is possible, because UNIX stores signal 
frames on the [process’s] stack.” They assessed the significance of their technique as follows. 

“Sigreturn oriented programming is interesting for attackers, OS developers and 
academics. For attackers, the technique is very versatile, with preconditions that are different 
from those of existing exploitation techniques like ROP. Moreover, unlike ROP, sigreturn 
oriented programming programs are portable. For OS developers, the technique presents a 
problem that has been present in one of the two main operating system families from its 
inception, while the fixes (which we also present) are non-trivial. From a more academic 
viewpoint, it is also interesting because we show that sigreturn oriented programming is 
Turing complete [75, p. 1].”  
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Tainted-Based Return Oriented Programming (T-ROP) – In 2018, Colas Le Guernic and 
François Khourbiga laid out their T-ROP technique [76]. They describe it as follows. 

“There are roughly two kinds of tools for return oriented programming (ROP): 

“_syntactic_ tools that return the disassembly of gadgets and sometimes perform template 
based automatic chaining, and _symbolic_ tools that compute a symbolic representation of 
the output state for each gadget and enable more powerful manipulations. The former are 
very fast but only enable regex queries, the latter enable symbolic queries but are much 
slower. We propose an intermediate approach, faster than symbolic tools and enableing more 
expressive queries than syntactic tools: taint-based ROP (T-Brop). T- Brop uses a coarse 
semantic of instructions. Instead of a precise symbolic I/O relationship, it only relies on a 
dependency matrix reflecting how a taint would be propagated by a given gadget [77].”  

4.3 Heap Attacks 

Automatic Heap Layout Manipulation for Exploitation – The heap has long been a 
popular target for exploitation, and as such many heap attacks, especially generalized ones, have 
been well known for decades. However, not much had been done in the way of automating and 
facilitating heap attacks, until recently. In their 2018 paper, Automatic Heap Layout 
Manipulation for Exploitation [78], presented at the USENIX conference, Sean Heelan, Tom 
Melham, and Daniel Kroenig present “the first automatic approach” to heap layout manipulation. 
Heelan summarizes the paper as follows: 

“The main idea of the paper is that we can isolate heap layout manipulation from much of the 
rest of the work involved in producing an exploit, and solve it automatically using blackbox 
search [58].”  

Reasoning about heap layout is a major step in constructing heap-based exploits such that the 
exploit will function properly while maintaining the integrity of the heap. Heap layout 
manipulation is hindered by other unwanted but unavoidable heap calls which create 
interference, and by the diversity and constraints of heap allocators. The authors offer the 
following overview of heap manipulation. 

“An analyst examines the allocator’s implementation to gain an understanding of its 
internals; then, at run-time, they inspect the state of its various data structures to determine 
what interactions are necessary in order to manipulate the heap into the required layout. Heap 
layout manipulation primarily consists of two activities: creating and filling holes in memory. 
A hole is a free area of memory that the allocator may use to service future allocation 
requests. Holes are filled to force the positioning of an allocation of a particular size 
elsewhere, or the creation of a fresh area of memory under the management of the allocator. 
Holes are created to capture allocations that would otherwise interfere with the layout one is 
trying to achieve [78, p. 4].”  
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The authors seek to automate heap layout manipulation by addressing a problem they 
construct with a limited scope: “finding a solution that places two allocations in memory at a 
specified distance from each other [58].” 

They attempt a pseudo-random black box search approach for this and found that with no 
interference and no segregated storage it performed very well and could be leveraged with the 
appropriate computational resources. They subsequently apply the technique to the PHP 
Language Interpreter [78]. 

Moving forward more research in this area could produce tooling that effectively automates 
heap layout manipulation, making it easier for exploiters to manage the heap. 

Exploit Templates – The paper Automatic Heap Layout Manipulation for Exploitation also 
explores the idea of exploit templates, which Heelan expands on subsequently in a blog post on 
the subject. He describes an exploit template as follows and includes an example found in Figure 
4-2.

“An exploit template is a simply a partially completed exploit where the incomplete parts 
are to be filled in by some sort of automated reasoning engine. In the case of the above paper, 
the parts filled in automatically are the inputs required to place the heap into a particular 
layout. Here’s an example template [Figure 4-2], showing part of an exploit for the PHP 
interpreter. The exploit developer wants to position an allocation made by imagecreate 
adjacent to an allocation made by quoted_printable_encode. 

“SHRIKE (the engine that parses the template and searches for solutions to heap layout 
problems) takes as input a .php file containing a partially completed exploit, and searches for 
problems it should solve automatically. Directives used to communicate with the engine 
begin with the string X-SHRIKE. They are explained in full in the above paper, but are fairly 
straightforward: HEAP-MANIP tells the engine it can insert heap  manipulating code at this 
location, RECORD-ALLOC tells the engine it should record the nth allocation that takes place 
from this point onwards, and REQUIRE-DISTANCE tells the engine that at this point in the 
execution of the PHP program the allocations associated with the specified IDs must be at the 
specified distance from each other. The engine takes this input and then starts searching for 
ways to put the heap into the desired layout [58].” 

Figure 4-2: An example exploit template [58] 
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Heelan goes on to expound on the benefits of this approach, 

“So, what are the benefits of this approach? The search is black-box, doesn’t require the 
exploit developer to analyze the target application or the allocator, and, if successful, outputs 
a new PHP file that achieves the desired layout and can then be worked on to complete the 
exploit. This has the knock-on effect of making it easier for the exploit developer to explore 
different exploitation strategies for a particular heap overflow. In ‘normal’ software 
development it is accepted that things like long build cycles are bad, while REPLs are 
generally good. The reason is that the latter supports a tight loop of forming a hypothesis, 
testing it, refining and repeating, while the former breaks this process. Exploit writing has a 
similar hypothesis refinement loop and any technology that can make this loop tighter will 
make the process more efficient [58].”  

Heelan also notes that the security industry tends to focus myopically on problems with only 
fully automated solutions as opposed to partially automated ones like this, and predicts that the 
“future of automatic exploit generation is going to look more like template-based approaches 
than end-to-end solutions” [58]. 

Revery - The paper Revery: From Proof of Concept to Exploitable by Wang et al. [84] 
proposes what they consider to be a novel method of Automatic Exploit Generation for heap-
based vulnerabilities. This paper aims to address several issues with automatically generating 
exploits for heap-based vulnerabilities, including manipulating the program to put it in an 
exploitable state, issues caused by path-explosion in symbolic execution, and the complexity of 
heap management systems [84, p. 2]. 

Revery takes an already identified vulnerability from which it attempts to derive an exploit. 
This is a three step process that is described in the paper as follows:  

1. Vulnerability Analysis: Revery analyzes the given vulnerability by constructing “a
layout-contributor diagraph data structure” which characterizes the memory layout of the
vulnerability [84, p. 3-4].

2. Diverging Path Exploration: This step uses the constructed diagraph to guide a fuzzer
in order to find divergent paths with exploitable states. This process does not require
symbolic execution, thus avoiding the issue of path explosion [84, p.3-4].

3. Exploit Synthesis: Finally this process uses “a novel control-flow stitching solution, to
stitch crashing paths and diverging paths together” and then uses “lightweight symbolic
execution” to synthesize the exploit [84, p. 3-4].
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4.4 Side Channel Attacks 

Side channels seek to exploit a program through a “side door,” or by exploiting the 
implementation itself rather than a flaw in the code. These attacks have become very popular in 
recent years. Side channel attacks encompass a broad range of attacks, including software-based 
side channel attacks on which this section will primarily focus. Some software is more 
susceptible to these attacks, such as cryptographic implementations which require no information 
leaks and often involve cryptographic primitives with repetitious arithmetic operations. These 
attacks are also made easier by increasingly complex process level functionality, like 
multithreading and different kinds of caching. Cloud computing provides a good platform for 
these attacks, which can exploit the ability for one user to share hardware with a separate user. 

Page Cache Attacks – A 2019 paper entitled Page Cache Attacks [79] describes a technique 
that exploits the page cache state as follows: 

“Bringing the page cache into a known state is not trivial, as it behaves like a fully 
associative cache. Previous approaches for page cache eviction can lead to out-of-memory 
situations or consume too much time and impose system pressure. This is not practical when 
evicting pages often, e.g., multiple times per second. Hence, they have not been used in 
published side-channel attacks so far, but only to support other attacks, e.g., relocation of a 
page for Rowhammer. For Linux, we devise a working- set-based eviction strategy that 
efficiently accesses groups of other pages more frequently than the page to evict [79, p. 3].”  

The paper also provides the following attack overview accompanied by the diagram in Figure 
4-3.

“The attacker wants to measure when the function foo() is called by a victim program. 
The attacker determines the page which contains the function foo(). By observing when the 
page is in the page cache, the attacker learns when foo() was called. 

Our attack continuously runs through the following steps: Initially, the target pages are in 
the page cache (on Linux) respectively the working set of the victim process (on Windows). 
After the eviction, the page is not in the page cache (Linux) or process working set 
(Windows) anymore. The attacker can now continuously probe when the page is added back 
in. As soon as the page is found in the page cache (Linux) or the process working set 
(Windows), the attacker logs the memory access and evicts the page again [79, p. 4].”  
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Figure 4-3: Overview of page cache attacks [79, Fig. 1] 

Differential Address Trace Analysis (DATA) – DATA is a framework to detect address-
based side channels in binaries using trace analysis. Although put forth as a defensive tool, its 
trace analysis techniques can also be used to locate these side channels and exploit them. 

The methodology is described in the paper which presented the technique [80]: 

“In the difference detection phase, we execute the target program multiple times with varying 
secret inputs and record all accessed addresses with dynamic binary instrumentation in so-
called address traces. Thereby, we ensure to capture both, control flow and data leakages at 
their exact origin. The recorded address traces are then compared, and address differences are 
reported. 

“The leakage detection phase verifies whether reported address differences are actually 
secret-dependent and filters all that are statistically independent. For this step, the program is 
repeatedly executed with one fixed secret input and a set of varying (random) secret inputs. 
In contrast to the previous phase, only the initially reported differences need to be monitored. 
The address traces be- longing to the fixed input are then compared to those of the random 
inputs using a generic leakage test. Statistical differences are reported as true information 
leaks [80, p. 2].”  
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Hardware-Based Attacks – In recent years hardware-based side channel attacks have 
become increasingly popular. SPECTRE and MELTDOWN have disrupted the security industry 
with their severity and lack of simple solutions, such as patching. These attacks exploit 
speculative execution and branch prediction to leak data. The most recent in this series are 
ZombieLoad, Fallout and RIDL. Many of these attacks are not remote, reducing their efficacy 
significantly. 

5 Conclusion 
This Edge of the Art report has captured both the state-of-the-art and significant advances to 

it. In doing so it defines what “edge” means, both in abstract as well as in concrete terms. 
Subsequent EotA reports will discuss what new and novel tools and techniques are developed 
after this report, to keep pace with the ever-expanding boundary that is the “edge” of the 
vulnerability discovery and exploitation discipline. 
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