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1 Introduction

Semiconductors exhibit a multitude of nonlinear optical responses for resonant as well as non-resonant
excitation.[1] One of the most prominent nonlinear features is the generation of higher harmonics
of the exciting frequency. When the frequency of the incoming field is tripled one speaks of third
harmonic generation (THG). Such THG can be employed in spectroscopy and provides important
insights into biological processes[2, 3] or even for palaeontology.[4] In semiconductors, THG has, for
example, been studied in coupled quantum wells,[5, 6] quantum cascade structures,[7] quantum wires
and dots,[8, 9] while it is also of interest in newly developed materials like graphene[10] and atomically
thin semiconductors.[11]

In order to understand THG one requires a description of the optical fields and the material which
is excited by them and generates the nonlinear interaction. Here we focus on the photointeraction of
semiconductor quantum wells (QW) with ultrashort light pulses. To this end, we employ an auxiliary
differential equation finite difference time domain (FDTD) approach to describe the dynamics of the
light field along with the dynamics of the carriers in the QW. This approach goes beyond rotating wave
approximation and slowly-varying envelope approximation, allowing to treat fundamental and third
harmonic on the same footing and describe photonic structures that vary on scales much smaller than
the wavelength. The combination of FDTD with density matrix models through auxiliary differential
equations includes not only the effect of the field on the material but also self-consistently describes
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the effect of the material on the field. This feature allows, for example, to describe propagation of
SIT solitons in 1 and 2 dimensions[12–14] and to study loss compensation and lasing dynamics in
metamaterials[15–18] or plasmonic stopped-light lasers.[19] However, the few-level models employed
in those studies can not describe the complicated behavior of an interacting electron gas excited in
semiconductor QWs.[20–22]

On the other hand more complex wave-vector resolved semiconductor models have been de-
veloped that also consider Coulomb interaction between excited carriers within different levels of
approximation[1, 22, 23] or spatially resolved quantum kinetics calculations.[24–26] Such models have
been used to investigate various non linear effects such as the two-band Mollow triplet in thin GaAs
films,[27] the carrier-wave Rabi flopping in bulk GaAs[28] and THG from carbon nanotubes both in
the perturbative and non-perturbative regime.[29, 30] These approaches, however, do not include the
self-consistent, spatially resolved resolution of electromagnetic fields.

Combining a spatially dependent full time-domain (FDTD) approach with a description of semi-
conductor QWs containing a wave-vector resolved, many-level density matrix description of the QW
in a two-band approximation, has been pioneered in Böhringer and Hess [31, 32] to describe the
spatio-temporal dynamics of semiconductor lasers and recently to describe lasing of semiconductor
nanowires.[33]

In this report we show how the model can be simplified and adapted to the simulation of spatially
extended semiconductor systems, such as QW lasers. In particular, we can explore these systems
beyond the previously used slowly-varying envelope approximation and therefore we are not restricted
to consider a finite set of previously decided modes but all possible frequency are included in our
calculation. Furthermore, both the field and the semiconductor in our model are resolved on a sub-
wavelength spatial scale, allowing us to access previously inaccessible dynamics. What we are now
concentrating on is exploring how the appearance of wavelength sized structures in the carrier density
affects the behaviour of the semiconductor laser.

Our recently published work in which the model described here is used and extended to include
Coulomb interaction in Hartree-Fock approximation, allows us to describe the excitonic nature of the
QW absorption[34]. The model is used to explore the response to a ultrashort pulse excitation of
a QW embedded in a Bragg mirror structure typical for a semiconductor saturable absorber mirror
(SESAM). We observed the carrier dynamics associated with excitation of the QW exciton and study
the intensity dependence of THG generated from this QW. We find that the power-law exponent of
the intensity dependence of the THG strongly varies with excitation frequency. For far off-resonant
pulses the expected cubic behavior is found, while for pulses resonant with the exciton energy the
exponent is reduced due to saturation effects. Similar findings have been reported in theoretical and
experimental studies on the excitation of carbon nanotubes with ultrashort laser pulses.[29, 30]

2 Theoretical model

We describe the quantum well (QW) as a (quasi) two-dimensional infinitely extended system, resulting
in a two-dimensional reciprocal space k = (kx, ky). Since we are interested in the interrelationship of
carriers and light dynamics, we are only interested in the region of the semiconductor band structure
which lies in the proximity of the (direct) band-gap. We therefore apply a parabolic-band/effective-
mass approximation to the lowermost conduction and uppermost valence bands which are respectively
characterised by the effective electron, me, and hole, mh, masses. At the same time the electron
movement in the cross direction is confined by the difference in band structure between the well
material and the barrier material, resulting in a discrete spectrum of subbands.

2.1 Envelope function approximation (EFA)

In order to calculate the discrete spectrum of subbands we apply the envelope function approximation
and consider the movement in the cross direction as an independent one-dimensional quantum system
subject to a potential well whose depth is determined by the bandgap mismatch between well and
barriers material.
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The difference in bandgap
∆g = εbg − εwg (1)

has to be split between electrons and holes. To do so we consider that at equilibrium there should
be no exchange of carriers between well and barriers, i.e., the two materials should have the same
chemical potential µb = µw. By assuming both to be intrinsic (i.e., undoped and with µ well within
the bandgap) and at equilibrium (i.e., no inversion) we can express the chemical potential as

µν =
1

2
ενg +

3

4
kBT ln

(
mν
e

mν
h

)
ν = b, w (2)

where the zero of energy is set at the top of the respective valence band. By setting a common
reference for the energy at the top of the valence band in the barrier region, we get

µb =
1

2
εbg +

3

4
kBT ln

(
mb
e

mb
h

)
(3a)

µw =
1

2
εwg +

3

4
kBT ln

(
mw
e

mw
h

)
+ Vh, (3b)

which, together with Ve + Vh = εbg − εwg , can be solved for the confining potential for electrons and
holes, giving

Ve =
1

2
∆g +

3

4
kBT ln

(
mw
h

mb
h

mb
e

mw
e

)
(4a)

Vh =
1

2
∆g +

3

4
kBT ln

(
mb
h

mw
h

mw
e

mb
e

)
. (4b)

This fully defines the piecewise Hamiltonian of the system as that of a particle subject to the
potential well shown in Fig. 1a:

He/h =


− ~2

2mb
e/h

∂2

∂z2
+ Ve/h for z ≤ −L

2

− ~2
2mw

e/h

∂2

∂z2
for − L

2 ≤ z ≤
L
2

− ~2
2mb

e/h

∂2

∂z2
+ Ve/h for z ≥ L

2

(5)

which can be solved similarly to the common quantum mechanical problem of a particle in a finite
depth potential well, the only difference being the presence of different masses in different regions,
resulting in a modified boundary condition for the derivative of the wave function at z = ±L

2 ;

1

mw
e/h

∂zψe/h (z)

∣∣∣∣∣
L
2

−
=

1

mb
e/h

∂zψe/h (z)

∣∣∣∣∣
L
2

+

(6)

As a result of the EFA, the total energy of an electron/hole with respect to the bottom of the
respective bulk band is

εne/h (k) =
~2k2

2me/h
+ εne/h, (7)

with the two-dimensional wave-vector, k, and the discrete index n = 1, 2, . . . nmax, see Fig. 1b. The
dipole matrix element for the transition from the j-th hole subband to the i−th electron subband is
obtained from the 1D envelope functions as

di,j = dcv

∫
dzψ∗h,j (z)ψe,i (z) , (8)

where dcv is the dipole matrix element of the v → c transition in the bulk material. As a consequence
optical transitions are only allowed between subbands with the same inversion parity, and the dominant
transitions will be i→ i.

From here on we consider a single subband model, where we only consider the i = 1 subband for
electrons and holes and therefore drop from the notation all indeces referring to subbands.

3
Distribution A Distribution Approved for Public Release: Distribution Unlimited



Figure 1: (a) Bandgap energy in the cross direction of the QW, showing the confining potentials of
electrons and holes as well as the eigenvalues obtained by solving the Hamiltonian in eq. 5. (b) QW
energy subbands (eq. 7)

ε
b/w
g (eV ) me(m) mh(m) ε1e(meV ) ε1h(meV ) d1,1/dcv

barrier Al0.3Ga0.7As 1.798 0.0879 0.585
34.4 5.9 0.9848

QW GaAs 1.424 0.063 0.51

2.2 Time domain response of QW

By neglecting Coulomb interaction, the QW band structure can be described as a set of non-interacting
two-level system, whose transition frequency is a function of the wave-vector k. We can therefore write
the Bloch equations for each state as

∂tPk (r, t) = − (iωk + γ)Pk (r, t)− i
ed ·E (r, t)

~

(
fek + fhk − 1

)
(9a)

∂tn
e/h
k = i

ed ·E (r, r)

~
(P∗k − Pk) = 2

ed ·E
~
= (Pk) , (9b)

with the complex polarisation, Pk = pk + p′k, the transition frequency,
ωk = (εe (k) + εh (k) + εg) /~ (see eq. 7), the polarisation dephasing, γ, the dipole matrix element, d
(see eq. 8), the time- and space-resolved electric field, E, and the equilibrium Fermi-Dirac distribution
for electrons and holes in effective mass approximation, fek and fhk , which depend on position and
time through their dependence on the chemical potential. Furthermore, we only track the change in
density at the macroscopic level, ∂tN , i.e., by performing a k-sum of eq. 9b. We can split eq. 9a in its
real (pk) and imaginary (p′k) parts

∂tpk (r, t) = ωkp
′
k (r, t)− γpk (r, t) (10a)

∂tp
′
k (r, t) = −ωkpk (r, t)− γp′k (r, t)− ed ·E (r, t)

~

(
fek + fhk − 1

)
(10b)

and eliminate p′k to get a second order differential equation in the real part of the polarisation(
∂2t + 2γ∂t +

(
ω2
k + γ2

))
pk (r, t) =

eωkd ·E (r, t)

~

(
1− fek (r, t)− fhk (r, t)

)
. (11)

From this, we can calculate the (2D) macroscopic polarisation as

P2 (r, t) =
2ed

A

∑
k

pk (r, t) (12)
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and finally get the ”proper” macroscopic polarisation, which will enter Maxwell’s equations, as

P (r, t) =
NQW

Lact
P2 (r, t) (13)

where NQW is the number of QWs in the active region of length Lact.

The two-dimensional sheet-density of carriers as a spatio-temporal quantity is tracked at the macro-
scopic level

∂tN (r, t) =
1

A

∑
k

∂tn
e
k (r, t)− γnrN (r, t) (14)

where γnr is the non radiative decay rate and
∑

k ∂tn
e
k (r, t) is obtained from eq. 9b. By exploiting

eq. 10a, rewritten as

p′k (r, t) =
1

ωk
(∂tpk (r, t) + γpk (r, t)) , (15)

we can write eq. 14 as

∂tN (r, t) =
1

A
E (r, t) · (∂tQ + γQ)− γnrN, (16)

where Q is

Q =
2ed

A

∑
k

pk
~ωk

. (17)

The microscopic occupations entering eq. 11 are calculated as

f
e/h
k

(
µe/h

)
=

1

e
β
(
ε
e/h
k −µe/h

)
+ 1

(18)

with µe/h the quasi-chemical potential for electrons (holes) obtained from the macroscopic density
through

βµe/h (N) = ln
(

e~
2βπN/me/h − 1

)
. (19)

The model for the QW is now complete and its main equations are 11 and 16 with the auxiliary
equations 17, 18 and 19 and the coupling to the field provided through equation 13.

2.3 Gain model and further simplifications

The system we are simulating is one dimensional, therefore r → x. Furthermore we can focus on a
single light polarisation so that we don’t need to consider the electric field as a vector, resulting in
E→ E and d→ d.

If we now look at eq. 11 and recall that we have an isotropic energy dispersion εe/h (k) = εe/h (k)
we can conclude that in our model the microscopic polarisation will always be isotropic. We can
therefore replace everywhere the index k with its magnitude k = |k| and introduce the density of
states for a two dimensional system

D (k) dk =
k

π
dk. (20)

Lastly we discretize the energy bands in such a way as to get a set of states equally spaced in transition
frequency. This means that the set of two level systems we will use to describe the semiconductor is
linear in transition frequency ω:

εe (ω) =
m∗

me
(~ω − εg) (21a)

εh (ω) =
m∗

mh
(~ω − εg) (21b)

k =

√
2m∗ (~ω − εg)

~
(21c)
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where m∗ is the elctron-hole reduced mass and we are now setting εe/h (ω) with respect to the subband
and including the subband energy in the gap, i.e., εg = εg + εe + εh. This also results in the new
density of states

D (ω) dk =
m∗

π~
dω, (22)

allowing us to transform all the k-sums of the model into integrals in energy space

P (x, t) =
NQW

Lact

m∗

π~

∫ ωmax

ωg

q (ω) dω (23a)

Q (x, t) =
m∗

π~

∫ ωmax

ωg

q (ω)

~ω
dω (23b)

where ~ωg = εg is the frequency corresponding to the band gap and ωmax is the maximum frequency
included in the model and q (ω) = 2ed p (k (ω)).

2.4 Diffusion and pumping

Following Hess and Kuhn [35], we add spatial transport of carriers through means of a macroscopic
diffusion equation in the density

∂tN (x, t) = D∂2xN (x, t) . (24)

Pumping of carrier is assumed to be from applying a constant current density through the active
region. By further assuming that the injected carriers reach the active region following an equilibrium
distribution[36], we can formulate pumping macroscopically as

∂tN (x, t) =
ηJ

e
, (25)

where η is the injection efficiency and J the applied current density.
As a result of all these added terms, the density in the model evolves according to

∂tN (x, t) = D∂2xN (x, t) + E (x, t) (∂tQ (x, t) + γQ (x, t))− γnrN (x, t) +
ηJ

e
. (26)

3 Results

In this section we will show some of the preliminary results obtained from the presented model with
particular interest for lasing and the field dynamics and how the carrier dynamics affects the output
of the laser. The simulated system is a one dimensional cut of a QW laser, where the single axis is
located in the QW plane (Fig. 2). The laser is a semiconductor segment of length L described as the
superposition of a background dielectric constant of ε = 12.25 and an active medium as described
in Section 2 surrounded by air. The simulation domain is terminated through absorbing boundary
conditions, in order to describe an open system, and the field propagating right is recorded before
leaving through the right edge. Since the description of the field provided by the FDTD method is
completely classical, one cannot rely on quantum fluctuations in the field to start the lasing process
but a different mean of creating polarisation in the QW is required. This is obtained here through a
”starter” field, i.e., a single pulse injected in the simulation domain through the TFSF technique and
pointing at the semiconductor. The pulse is much weaker than the lasing field obtained as output and
is composed of a Gaussian ramp up, followed by a sinusoidal wave and a final Gaussian ramp down.

3.1 Linear response of the QW model

We performed some initial testing of the model by looking at its response to a weak field. In this
context both the pumping and diffusion effects (Eqs. 24 and 25) are turned off and the ”starter” field
is replaced by a very short Gaussian pulse, allowing us to look at the response over a wide spectral
range.
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Figure 2: Graphical representation of the simulated system. The main element is a region of semicon-
ductor (active material) of length L, described as a background dielectric constant with the addition
of the QW model. The semiconductor is surrounded by air and the simulation region is delimited
with absorbing boundary conditions, thus describing an open system. An initial field outside of the
semiconductor is initially used to create some polarisation and the field is collected at the opposite
end of the simulation domain.
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We initially validated the model by looking at the spectrum of the absorption from a semiconductor
of L = 20 nm, which correspond to a single cell in the FDTD grid. The percentage of absorbed field
is calculated as

α (ω) = 1− E2
t (ω) + E2

r (ω)

E2
i (ω)

, (27)

where Ei (ω) is the spectrum of the incident field, Et (ω) the spectrum of the transmitted field and
Er (ω) the one of the reflected field. Figure 3a shows that the absorption is about constant in the
spectral region close to the band gap, as one would expect from looking at the joint density of states.

By looking at the linear response we can also understand how the parameters that enter the
model affect the results. Figure 3a, for example, shows how the absorption depends on the number of
reciprocal space points that we use to describe the system (nk), i.e., the number of points for which
Eq. 11 is solved and the integrals of Eqs. 23 are calculated over. A higher number of points will better
represent the continuous k-space parametrising the semiconductor bands, whereas a smaller number
will allow for a larger spatial extension of the material in the simulation.

Another important parameter to determine is the maximum energy included in the model, i.e.,
the upper limit of the integrals contained in Eq. 23. This has a very straightforward effect on the
spectral range that we are interested in exploring, as any field beyond ωmax will mainly experience
the background dielectric constants. It also has a more subtle relationship with the values of the
macroscopic density that can be reached in the simulation. In particular as the density grows the
quasi-chemical potential grows with it and it can approach ωmax resulting in very high occupation of
most of the states included in the model. This results in a grow of the spectral region where gain
is obtained at the expense of the absorptive region. This is represented in Fig. 3b, where the gain
spectrum of a L = 100 nm region of semiconductor is shown for different values of the macroscopic
sheet density, N .

3.2 Lasing

After validating the model, we explored the lasing regime in a much larger, L = 20 µm, semiconductor
system by turning on the pumping, Eq. 25, and setting J = 5 A/mm2. This allows the system to
build up inversion that can act as optical gain for the field through the process of stimulated emission.
As a result a field much stronger than what is used to start the process is outputted from the system,
as can be seen in Fig. 4a. This is obtained in the limiting case of D = 0, i.e., without any form of
spatial transport of carriers acting in the model. The resulting effect is that every one of the active
modes impresses its own spatial profile on the density, resulting in a very strong spatial hole burning,
as shown in Fig. 4c. This is the main source of the multimode behaviour that we observe in the system
and that is highlighted by looking at the optical region of the spectrum, Fig. 4b. In particular, due
to the absence of carrier redistribution mechanisms, the pattern burnt into the density by a mode is
going to deplete the gain available to the mode itself more than that available to neighbouring modes.

Since the multimode behaviour of the system is a direct consequence of the strong spatial hole
burning produced in the absence of carrier redistribution, we expect it to change when diffusion is
included. This is shown in Fig. 5a, where the optical spectrum of the output field is plotted for different
values of the diffusion coefficient, D. The values have been selected to be distributed over the range
in which a change from multimode to singlemode behaviour is observed in our results. As expected,
the stronger the diffusion is, the quicker the carriers are in redistributing themselves into a spatially
homogeneous system, which naturally favours the mode located the closest to the gain maximum, cf.
Fig. 3b.
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(a) Time trace of the field as recorded at the right-
most edge of the simulation domain.

(b) Optical region of the field spectrum in Fig. 4a

(c) Macroscopic density N (x, t) as a function of
space and time.

(d) Spectrogram of the output field.

Figure 4: Output field of the semiconductor laser in the case of no diffusion, i.e., D = 0 m2/s.
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4 Linear and nonlinear optical response of semiconductor (MoS2)
monolayers

In this section we will show how the semiconductor model we developed can be easily extended in
order to describe different systems. In particular, we will be focussing on monolayer transition metal
dichalcogenides (TMDCs), the calculation of their optical response under weak and strong excitation.
We will further show that our model is well suited to the calculation of systems consisting of emitters
(i.e., TMDCs) embedded in a dielectric cavity, thus allowing the design of a dielectric or metallic
environment [37] that can tailor the optical response of a suitable emitter.

This system presents few significant differences with respect to what was presented in Sec. 3,
namely:

1. The semiconductor component of the system is not pumped to an inverted state, but starts at
equilibrium and is electrically isolated from its environment;

2. The time scale of the dynamics is much shorter;

3. The characteristics of the semiconductor are different, especially regarding the number of in-
volved bands and the selection rules shown for the optical transitions.

From the first two points we can also draw the conclusion that transport does not play an important
role in the system dynamics.

4.1 Model

In order to adapt the model presented in Sec. 2 to the new system, we first have to take a step back
and modify Eq. 9 as:

∂tPk (r, t) = − (iωk + γ)Pk (r, t)− i
ed ·E (r, t)

~

(
nek (r, t) + nhk (r, t)− 1

)
(28a)

∂tn
e/h
k (r, t) = i

ed ·E (r, r)

~
(P∗k (r, t)− Pk (r, t)) = 2

ed ·E
~
= (Pk (r, t)) , (28b)

where we replaced the quasi-equilibrium carrier distributions f
e/h
k with the dynamically calculated

occupations n
e/h
k (r, t). This is necessary as a consequence of the shorter time scale over which the

system evolves, which breaks the quasi-equilibrium approximation employed in Eq. 9 (cf. Eq. 18) and
therefore requires a model describing the microscopic dynamics of the carrier occupations as opposed
to the macroscopic sheet-density of carriers.1

Another important difference in the system comes from considering a semiconductor in the intrinsic
regime as opposed to an inverted one. As a consequence the carrier dynamics is more strongly
influenced by carrier carrier interaction, leading to the necessity to include Coulomb interaction in the
model. This is achieved at the Hartree-Fock level by renormalising the transition frequencies, ω̃k (r, t),
as well as introducing a renormalised Rabi frequency, Ω̃k (r, t)[34],

~ω̃k (r, t) = ~ωk −
∑
k′ 6=k

(
V ee
|k−k′|n

e
k′ (r, t) + V hh

|k−k′|n
h
k′ (r, t)

)
(29a)

~Ωk (r, t) = ed ·E (r, t) +
∑
k′ 6=k

V eh
|k−k′|Pk′ (r, t) , (29b)

where V ee (V hh) are the Coulomb matrix elements associated with electron-electron (hole-hole) inter-
action and V eh with electron-hole interaction.2 In the case of monolayer TMDCs, we use the following

1This modelling of the microscopic carrier occupations is facilitated by ignoring spatial transport of carriers, as this
is more easily represented at the macroscopic level through a diffusion model (cf. Eq 24). The two (microscopic and
macroscopic) pictures can still be reconciled, or one can introduce a microscopic transport model as presented in Hess
and Kuhn [35].

2We are neglecting Auger-like processes due to the high band gap energy.
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K valley K' valley

BA A B

Figure 6: Band structure of a TMDC monolayer close to the K and K ′ points of the (hexagonal)
reciprocal lattice. The colour identify the spin polarisation of the band/exciton, while the arrow
shows the allowed optical transitions and their polarisation.

screened version of the two-dimensional Coulomb matrix element

Vq =
e2

ε0εsA

1

q (1 + r0q)
, (30)

which has been extensively discussed in the TMDC literature [38–43]. Here e is the elementary charge,
ε0 the dielectric constant and A the area. The screening length is given by r0 = tε⊥/εs, with the inplane
dielectric constant of the bulk material, ε⊥ and the monolayer thickness, t. The dielectric constant εs
accounts for screening from the environment

εs = εsuper + εsub, (31)

which is the sum of the dielectric constant of the substrate, εsub, and the superstrate, εsuper. Indeed,
it was found that the exciton binding energy depends sensibly on the surrounding material [44, 45].

Another interesting feature that was observed in TMDC monolayers is that both the valence and
conduction band are split by a strong spin-orbit coupling, resulting in the presence of two strong
resonances in the absorption spectra, termed A and B excitons. Furthermore their band structure
show the presence of two valleys, with the same transition energies, located at the K and K ′ points
of the hexagonal reciprocal lattice, as is sketched in Fig. 6. In order to study the dynamics of this
8 band system, we expand Eq. 28 to include a composite index, ν ∈ {AK,BK,AK′,BK′}, on most
quantities, resulting in four sets of Maxwell-Bloch equations, one for each of the electron/hole band
pairs. This different sets of equations are further weakly coupled through Coulomb interaction.

Due to the missing inversion symmetry in the monolayer, however, the K and K ′ valley are not
equivalent. This has a double effect: it produces a swap in the ordering of the spin-split bands and
it introduces different optical selection rules for the transitions. Indeed it was observed that different
valleys couple to circularly polarised light of opposite handedness [46]. This can be included in the
model by replacing the dipole matrix elements, dν , with the complex vectors

Mcv
ν = (Mx,±iMy, 0) , (32)

where Mx/y ≥ 0, the ± selects the handedness and x and y are the in-plane directions of the monolayer.
Another consequence of the lack of inversion symmetry is the presence of even harmonics in the

optical response of TMDC monolayers, in particular a very strong second harmonic generation has
been observed experimentally and has been a major research focus due to its possible applications [47–
52]. However, the equations of motion we have presented up to know can only be used to reproduce
odd harmonic generation. We therefore introduce in the Hamiltonian that generates Maxwell-Bloch
equation and additional term that describes a further coupling with the field

Hpd = −eE (r, t) ·
∑
ν,k

[
Mc

ν ĉ
†
ν,kĉν,k −Mv

ν d̂
†
ν,kd̂ν,k

]
(33)

where ĉ†ν,k (d̂†ν,k) and ĉν,k (d̂ν,k) are the electron (hole) creation and annihilation operators. This term
describes the energy present in the system due to the direct interaction of the optical fields with the
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Figure 7: Absorption spectra of MoS2 in different environments, i.e., for different values of εs. The
vertical dashed lines identify the bandgap energy for the A and B bands. (a) Free-standing. (b) Glass
substrate. (c) Glass substrate and superstrate.
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when sweeping the exciting frequency across the
region containing the A and B excitons.
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electronic states that are polarised due to the broken inversion symmetry. In particular, we choose
the intraband dipole moment of the conduction (valence) band to be laying in the monolayer plane

Mc(v)
ν =

(
M c(v)
ν,x ,M

c(v)
ν,y , 0

)
. (34)

A similar Hamiltonian, including permanent intraband dipoles and a second order susceptibility χ(2),
has been used to describe tilted quantum wells [53, 54]. Furthermore, we note that the SHG is
polarization dependent, i.e. for certain symmetry axes the second harmonic is weak [52, 55] and for
not perfectly aligned stacked TMDC layers strong second harmonic signals can be found [56, 57]. To
account for such effects a k-dependent matrix element could be taken into account, while here we
make the approximation of k-independent intraband dipole moment.

In the equations of motions (cf. Eq. (28)) the interaction with the intraband dipole enters in the
polarization Pν,k (r, t) via

∂tPν,k (r, t)|Hpd
= − i

~
E (r, t) · (Mc

ν −Mv
ν)Pν,k (r, t) (35)

The equations of motion now also contain a coupling in second order of the electric field in the
polarization, hence we can calculate second harmonic generation and also higher even harmonics. We
stress that here we have a dynamical electric field E(r, t) and obtain the non-linear signals directly
from the dynamical calculation.

Lastly, we change the macroscopic polarisation (cf. Eq. 13) that acts as a source in Maxwell’s
equation in order to allow the changes in the model to affect the fields

P (r, t) =
NQW

Lact

e

A

∑
ν,k

(
P∗ν,k (r, t)Mcv

ν + Pν,k (r, t)Mcv∗
ν

)
(36)

The results shown in the following sections are obtained for a MoS2 monolayer, using the param-
eters summarised in Tab. 1.

effective mass electron me 0.480 m0

effective mass hole A mv
A 0.575 m0

effective mass hole B mv
B 0.660 m0

band gap Egap 2.84 eV
valence band splitting ∆v 160 meV
conduction band splitting ∆c 0 meV
dipole matrix element |M cv|x = |M cv|y 0.2 nm
intraband dipole |M c −Mv|x,y 0.02 nm
layer thickness d 0.312 nm
in-plane dielectric constant ε⊥ 12
dephasing rate γ 1/30 fs−1

Table 1: Parameters of MoS2 with m0 being the free electron mass

4.2 Linear response

We start by analysing the optical response of the monolayer in linear regime as this allows us to
validate some of the features of our model. To do so, we send a weak pulse from one side onto the
structure, e.g. a free-standing TMDC monolayer or a more sophisticated photonic structure with an
embedded TMDC monolayer. The light pulse then propagates through the structure and interacts
with the TMDC monolayer. We record the reflected and transmitted fields with the intensities Irefl
and Itrans, respectively [34]. The spectrum α is then calculated via

α (ω) = 1−
Irefl (ω) + Itrans (ω)

Iinc (ω)
(37)
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Figure 9: (colour) Refractive index profile of the dielectric cavity used to enhance SHG in MoS2

monolayers. (black) Profile of the fundamental optical mode of the cavity.

with Iinc the intensity of the incoming pulse. We choose the polarization of the incoming pulse to be
right-handed circular polarization, thereby addressing only the K-valley. The results are the same for
left-handed circular polarization, where only the K ′ excitons would appear.

First we characterise the linear response of a free-standing monolayer whose absorption spectrum
is shown in Fig. 7a. This absorption shows two strong resonances at 1.90 eV and 2.05 eV. We attribute
these to the formation of ground state excitons in the A and B band that are known to appear when
including Coulomb interaction in dynamical model[34]. From these resonances and the bandgap values
reported in Table 1 we can calculate the binding energy of the excitons, which turns out to be of about
850 meV. This is comparable with the strong binding energies reported in previous theoretical and
experimental works [58, 40, 59–61, 41]. Furthermore, the energy splitting between the A and B exciton
is dominated by the spin orbit splitting of the bands (cf. Table 1), whereas the different strength can
be traced back to the different band gap energies.

Due to the strong Coulomb interaction and strong binding energy, our absorption spectrum also
shows resonances corresponding to the first few excited states of the A and B excitons. Studies of the
exciton series in TMDC monolayers is still a very active research field, because strong deviations from
the Rydberg series were found [47, 59].

Another interesting aspect that has been observed in previous work is the strong dependence of
TMDCs exciton energies on the dielectric environment. This is a consequence of the material being
a monolayer resulting in Coulomb field lines that can penetrate deep into the sub- and superstrate
[38–41]. We show how this effect changes the absorption spectrum of a MoS2 monolayer in Fig. 7b,
where we include in the simulation a glass substrate with a refractive index n = 1.50. This results
in a blue-shift of the A and B exciton peaks by about 250 meV to energies of 2.15 eV and 2.30 eV
respectively. Another effect on the energy of the exciton might be the renormalization of the band
gap, as reported from DFT calculations [62, 63, 45], which can be easily included by changing the
input parameters of the simulation.

Lastly we consider the case of a MoS2 monolayer sandwiched in glass. This is of particular impor-
tance when the monolayer is going to be embedded in a dielectric cavity. In Fig. 7c we see a further
decrease in exciton binding energies resulting in excitonic resonances at 2.28 eV and 2.43 eV.
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Figure 10: (green,right axis) Dependence of the energy of the fundamental mode over the length of the
cavity. (black, left axis) Intensity of SHG generated by the TMDC monolater when excited resonant
with the energy of the optical mode of the cavity.

4.3 Non-linear response

As a first example we consider the non-linear optical response of a freestanding MoS2 monolayer.
For the optical excitation we use a sech pulse of the form E(t) = E0 cos(ωpt)sech(t/τ) with linear
polarization. The laser pulse excites the system at the energy εp = ~ωp with a full width at half
maximum FWHM of the pulse 2τ log(2 +

√
3) = 200 fs. The strength of the pulse is set to E0 =

108 V/m. We first set the energy of the laser pulse to half of the A-exciton energy with εp = 0.95 eV
and calculate the spectrum shown in Fig. 8a. Note that the spectrum is shown on a logarithmic scale.

In the spectrum the most pronounced peak occurs at the exciting frequency ε = ~ωp = 0.95 eV
being half of the A exciton energy. At multiples of the exciting frequency we see additional peaks
appearing, because higher harmonics generation takes place. The peak at ε = 2~ωp is the second
harmonic generation (SHG) signal and coincides with the energy of the A exciton of a freestanding
monolayer. The field of the second harmonic is about 8 orders of magnitude below the intensity of
the fundamental peak. We also see the appearance of the third harmonic at ε = 3~ωp. Here, the
field is about 13 orders of magnitude lower than the fundamental reflecting the higher order of the
process. Third harmonic generation has also been experimentally observed in TMDC monolayers
[57]. We emphasize, that we calculate the higher harmonic generation within a full dynamical picture
without the explicit use of the susceptibility. In our approach, the interaction of the light field with the
Coulomb-interacting carriers in the semiconductor leads to the generation of these non-linear optical
signals.

It is also interesting to note that even though the exciton energies are not an explicit input in
our calculation, but are rather a result of our model, we find a strong dependence of the strength of
the higher harmonic generation on the exciton energy. For this, we sweep the energy of the exciting
laser pulse εp and plot the resulting strength of the second harmonic signal in Fig. 8b. We find
that at εp = 0.95 eV and εp = 1.03 eV the second harmonic generation is particularly strong. These
energies can be identified with half of the energy of the A and B exciton of the freestanding monolayer,
respectively. We conclude, that non-linear processes are much more efficient when a final state for the
higher harmonic is present.

To enhance the non-linear optical response of the TMDC monolayer, we propose to embed the
TMDC into a photonic structure consisting of two distributed Bragg mirrors of layers of glass (re-
fractive index 1.50) and silicon nitrite (refractive index 2.23) as shown in Fig. 9. Each glass layer is

15 
Distribution A Distribution Approved for Public Release: Distribution Unlimited



chosen as 180 nm thick and each silicon nitride layer is 120 nm thick. This results in a broad photonic
stop band around an energy of 1 eV, with a sharp resonance (corresponding to a cavity mode) whose
energy can be tuned by changing the length of the cavity. This dependence is illustrated in Fig. 10
and appears to be approximately linear as in this region the modes lie well within the photonic stop
band. The fundamental mode of the cavity for a length of L = 370 nm is represented by the black
line in Fig. 9 and shows that a strong field enhancement can be achieved.

Now we include the TMDC monolayer at the field maximum of the cavity and consider the strength
of the second harmonic signal. Note that the exciting frequency of the impinging laser pulse is always
chosen such that it matches the frequency of the cavity mode. The strength of the second harmonic
generation as function of cavity length is displayed in Fig. 10 (black curve). We find that for a cavity
length of 300 nm and for 370 nm a pronounced enhancement occurs as for this length the energy of
the cavity mode becomes resonant with half of the energy of the B and A excitons respectively. Due
to the cavity structure the second harmonic signal is up to 3 orders of magnitude stronger than for
the free standing monolayer. We have thus managed to considerably enhance the nonlinearity of the
semiconductor monolayer.

5 Research plan

During the final year of the project there are a number of exciting avenues that have been started.

Thanks to recent experimental results [64] we can see that a Fabry-Pérot QW laser should have an
multimode behaviour, in which multiple longitudinal modes in competition with each other are simul-
taneously emitting. By comparing this with our simulation, we are now investigating the possibility
that a previously well-accepted diffusion model is not suitable for the description of carrier transport
in our case of a multi-mode laser, as experimentally measured values of D ' 1×10−3 m2/s[35, 65, 66]
reduce our simulation to single-mode behaviour. Our current understanding is that this is a con-
sequence of our innovative high (sub-wavelength) spatial resolution, whereas the classical diffusion
equation was derived in the context of the slowly varying envelope approximation.

In order to exclude a dependence of this behaviour on system size, we are now working on extending
the length of the semiconductor, as well as the simulation time. Even though we will never be able to
achieve a size comparable with a realistic experimental setup, we hope to be able to identify a trend in
the value of D for which the change from multimode to singlemode behaviour happens (Cf. Fig. 5b).

In Sec. 4 we showed how our model of combined semiconductor and field dynamics can be readily
extended to describe different systems as well as different optical environments. Thanks to FDTD, our
simulation can easily be extended to metallic or metallodielectric cavities in order to exploit plasmonic
effects to further enhance and confine the field [37].
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