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1. Introduction
In the US, African American (AA) men are at 60% higher risk of developing prostate cancer (PCa) than
European American (EA) men, and AA men are 2.4 times more likely to die from PCa than EA men.(1)
The objective of this study is to identify novel genetic and epigenetic factors that might contribute
significantly to racial/ethnic disparity in PCa risk and progression.  We will examine the association of
inherited polymorphisms in genes in the microRNA (miRNA) biogenesis pathway as well as the
association of plasma miRNA levels with prostate cancer aggressiveness and biochemical recurrence 
(BCR) among AA and EA men with PCa from the Karmanos Cancer Institute (KCI) in Detroit, MI. Little 
is known about the role of microRNAs (miRNAs) and their biogenesis in prostate cancer (PCa), and
less is understood about the possible race-specific role of miRNAs in PCa aggressiveness and
outcomes. We hypothesized that polymorphisms in genes in the miRNA biogenesis pathway and
plasma miRNA levels are potential prognostic indicators for PCa aggressiveness and/or outcome and 
that these associations may be linked to race. The specific aims of this project are to 1) determine the
associations between polymorphisms in genes within the miRNA biogenesis pathway and (a) PCa
aggressiveness and (b) biochemical recurrence in AA and EA men with PCa, 2) determine the 
associations between plasma levels of PCa-related miRNAs and PCa aggressiveness, and 3)
determine the associations between genetic polymorphisms in miRNA biogenesis pathway genes and
plasma levels of miRNAs known to regulate genes in prostate cancer pathways. To increase the
potential for translating our results into disease management strategies, we included miRNAs with cell-
line evidence of transcriptional regulation by miRNA promoter methylation and evidence of gene-
expression regulation within prostate carcinogenic pathways. This project is built on a previously funded
study of metabolic syndrome, PCa aggressiveness, and outcomes (CDMRP award W81XWH-09-1-
0203, PI: Isaac Powell, MD). We used that study’s infrastructure to enroll additional patients recently
diagnosed PCa, ~60% of whom are AA and ~35% of whom have aggressive disease. During Years 1-
3, 688 study subjects were enrolled, and 668 men completed surveys (Tasks 1.a and 1.d: completed),
586 participants provided blood samples for DNA extraction (Task 1.b), and 116 men had a plasma
sample collected prior to initiation of prostate cancer treatment (Task 1.c). Following national trends,
the number of prostate cancer patients eligible for the study declined in the clinic over the course of the
study. Our enrollment rate among eligible men was ~95%, with no differences by race.  Because many
miRNAs are regulated by promoter methylation, they are potential targets for treatment with
demethylating agents to prevent or slow PCa carcinogenesis;(2,3) target miRNAs may vary by race.
Identifying risk profiles of men who may benefit from such treatment, based on race, inherited
genotypes and/or plasma miRNA levels will provide momentum for developing the field of personalized 
medicine.

2. Keywords
prostate cancer, microRNA, racial disparities, African American, genetic polymorphisms, biochemical
recurrence, epidemiology 
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3. Overall Project Summary 
Current Objectives 

Since final recruitment and data collection activities were completed near the end of year 3, final DNA 
extractions from blood samples were obtained in year 4 (Task 1.b: completed). Further activities during 
the fourth year of the project were focused on determining circulating miRNA levels in pre-treatment 
blood, genotyping, analyzing data and preparing manuscripts for publication. We sent the 116 samples 
that were obtained prior to treatment initiation to Exiqon (with an approved material transfer agreement 
in place) where miRNA was extracted from plasma (Task 1.c: completed).  miRNA was quantified by 
Exiqon using their cancer miRNA panel (Task 4: completed).  We performed genotyping on DNA 
samples from 480 men (Task 3: completed).  The originally proposed genotyping platform (Illumina 
custom SNP panel) was no longer available, so we genotyped a dense panel of genome-wide SNPs 
using the Illumina Mega panel.  This panel has the advantage of good gene coverage of all of our 
genes of interest in the miRNA biogenesis pathway, and also includes ancestry informative markers.  
The cost, however, was substantially higher than for the custom panel, so we selected all EA 
participants, all high risk AA men, and a random sample of low risk AA men for inclusion in the 
genotyping sample. 

As stated in Task 2 of our statement of work, we have been actively following all of the enrolled men in 
the cohort (from the previously funded study and from the current protocol) who did not have extensive 
disease at diagnosis for PSA outcomes. We continue to abstract the most recent follow-up of PSA test 
results through medical records and Caisis database, and will perform a final linkage with Metropolitan 
Detroit SEER registry (MDCSS) for vital status.   

Results, Progress and Accomplishments with Discussion. 

We evaluated associations between plasma levels of miRNAs and prostate cancer aggressiveness, 
and a manuscript describing the findings was published in Carcinogenesis (4) (Task 5.c, Appendix 1). A 
brief summary of our findings follows. 

We investigated the patterns of expression of 68 cancer-related plasma-derived microRNAs (miRNAs) 
in a cohort of African American (AA) and European American (EA) prostate cancer patients (n=114, 
Table 1). miRNA qPCR results were evaluated for association with aggressive disease using a novel 
extension of CART methods. Aggressive disease was defined as Gleason sum > 4+3, and non-
aggressive disease was defined as Gleason sum < 3+4. Our data demonstrate that a previously 
unreported circulating miRNA signature consisting of two distinct combinations of interacting miRNAs 
(miR-17/miR-192, Table 2 and Figure 1) and (miR-146a/miR-20a/miR26b, Table 3 and Figure 2) is 
capable of segregating aggressive and non-aggressive prostate cancer in both AA and EA patients. 
The interacting miRNAs outperformed independent miRNAs in identifying aggressiveness. Our results 
suggest that these circulating miRNAs may constitute novel biomarkers of prostate cancer 
aggressiveness in both races. 
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Table 1. 

Variable Level Non-aggressive Aggressive χ2 p-value 
Age    0.685 

 <=60 37(0.46) 13(0.39)  
 >60 44(0.54) 20(0.61)  
     

BMI    0.760 

 <=25 17(0.21) 8(0.24)  
 (25,30] 33(0.41) 11(0.33)  
 >30 31(0.38) 14(0.42)  
     

Race    0.449 

 African American 68(0.84) 25(0.76)  
 European American 13(0.16) 8(0.24)  

Table 2.  

Group Non-aggressive Aggressive % Aggressive 
C1 65 14 17.7 
C2 13 7 35.0 
C3 3 12 80.0 

Figure 1. 

 

 

 

 

 

 

 

 

6



Table 3.  

 

 

 

 

 

Figure 2.  

 

The methods used for a separate analysis of this data were developed by the biostatistician on this 
project, and were published using data from this project in the American Journal of Cancer Research; 
the manuscript is included as Appendix 2 (5). In that paper focused on the African American subset of 
our cohort, we found that both extrema of circulating miR-17 are associated with aggressive prostate 
cancer (Figure 3 shows the scatterplot with a smoothed spline fit). This effect was observed in tumor 
samples from separate datasets measured on different assays representing different populations 
(Figure 4) of prostate cancer patients. Our result is consistent with the conflicting findings on the impact 
that miR-17 has in PCa progression, namely that it controls both oncogenic and tumor-suppressive 
genes. 

 

 

 

Group Non-aggressive Aggressive % Aggressive 

R1 22 1 4.3% 

R2 50 13 20.6% 

R3 5 9 64.3% 

R4 4 10 71.4% 
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Figure 3.  

 

Figure 4.  

 

 

We have begun our analyses of the SNP data in association with prostate cancer aggressiveness 
(Task 5a), and anticipate completing these and submitting a manuscript for publication soon.  Using the 
methods described in the referenced papers, we estimated global ancestry 
(https://www.ncbi.nlm.nih.gov/pubmed/18683858) for each sample and local ancestry 
(https://www.ncbi.nlm.nih.gov/pubmed/23910464) for each gene within each sample to adjust for 
genetic background in the statistical models. Logistic regression was used to identify germline SNPs 
from genes in the miRNA biogenesis pathway that are predictive of prostate cancer aggressiveness. 
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We fit both unadjusted models and models adjusted for age, BMI, global ancestry, and local ancestry 
(see Appendix 3 for a full listing of the analysis results).  Multiple SNPs in TARBP1, DROSHA and 
DICER1 were significant for the AA sample (requiring at least 10 minor allele carriers), adjusted for 
covariates listed previously. Fewer SNPs were significant for the EA subset, mostly in TARBP1 and 
DROSHA. Only 1 SNP was significant for both the African American and European American adjusted 
analyses: rs4920247, which is an intronic SNP located in TARBP1. The interesting finding from the 
race-specific analyses is that the implicated genes are consistent between the analyses; different 
locations within those genes are shown to be associated with disease aggressiveness.  

We will next evaluate the SNP data in association with prostate cancer recurrence (Task 5b) and 
examine associations between SNPs and miRNA levels (Task 5d) and prepare manuscripts describing 
the results. 

4. Key research Accomplishments 
Nothing to report. 

5. Conclusion 
Our results suggest that circulating miRNAs may constitute novel biomarkers of prostate cancer 
aggressiveness in both races. Our data demonstrate that a previously unreported circulating miRNA 
signature consisting of two distinct combinations of interacting miRNAs (miR-17/miR-192) and (miR-
146a/miR-20a/miR26b) is capable of segregating aggressive and non-aggressive prostate cancer in 
both AA and EA patients.  

When we evaluated SNPs in genes involved in the miRNA biogenesis pathway, multiple SNPs in 
TARBP1, DROSHA and DICER1 were significantly associated with PCa aggressiveness in the AA 
sample. Fewer SNPs were significantly associated with PCa aggressiveness in the EA subset, and 
were primarily located in TARBP1 and DROSHA. Only 1 SNP was significant for both the AA and EA 
adjusted analyses: rs4920247, which is an intronic SNP located in TARBP1. The interesting finding 
from the race-specific analyses is that the implicated genes are consistent between the analyses; 
different locations within those genes were associated with disease aggressiveness. 

6. Publications, Abstracts, and Presentations 
Presentations: 

 1. MicroRNA and Prostate Cancer Disparities, Karmanos Cancer Institute Prostate Cancer 
Research Team seminar, April 22, 2016  

 2. Exploring Genes and MicroRNAs in Prostate Cancer Disparities, Karmanos Cancer Institute 
Population Studies and Disparities Research Program Seminar, March 4, 2016 

3. MicroRNA in Prostate Cancer Racial Disparities and Aggressiveness, Karmanos Cancer 
Center Prostate Cancer Research Team SPORE planning retreat, June 25, 2013 

Publications: 

1. Farran, B., Dyson, G., Craig, D., Dombkowski, A., Beebe-Dimmer, J. L., Powell, I. J., Podgorski, I., 
Heilbrun, L., Bolton, S., Bock, C. H. (2018). A study of circulating microRNAs identifies a new 
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potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis, 39(4), 556-
561. doi:10.1093/carcin/bgy025 (Appendix 1) 

2. Dyson, G., Farran, B., Bolton, S., Craig, D. B., Dombkowski, A., Beebe-Dimmer, J. L., Powell, I. J., 
Podgorski I., Heilbrun, L. K., Bock, C. H. (2018). The extrema of circulating miR-17 are identified as 
biomarkers for aggressive prostate cancer. Am J Cancer Res, 8(10), 2088-2095.  (Appendix 2) 

1. Inventions, Patents and Licenses 
Nothing to report. 

2. Reportable Outcomes  
Nothing to report. 

3. Other Achievements 
The miRNA expression data was used in a manuscript describing the novel extension of CART 
methods used in this study; this manuscript was published in the American Journal of Cancer Research 
and is included in Appendix 2. 

A review paper describing miRNA as a theranostic in prostate cancer has been written, and it is 
currently under review at Carcinogenesis. 
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Abstract

Prostate cancer is one of the most common cancers in men worldwide. Currently available diagnostic and prognostic 
tools for this disease, such as prostate specific antigen, suffer from lack of specificity and sensitivity, resulting in over- 
and misdiagnosis. Hence, there is an urgent need for clinically relevant biomarkers capable of distinguishing between 
aggressive and nonaggressive forms of prostate cancer to aid in stratification, management and therapeutic decisions. To 
address this unmet need, we investigated the patterns of expression of a panel of 68 plasma-derived microRNAs (miRNAs) 
in a cohort of African American (AA) and European American (EA) prostate cancer patients (n = 114). miRNA qPCR results 
were analyzed using in-depth statistical methods, and a bioinformatics analysis was conducted to identify potential 
targets of the differentially expressed miRNAs. Our data demonstrate that a new previously unreported circulating miRNA 
signature consisting of a combination of interacting miRNAs (miR-17/miR-192) and an independent miRNA (miR-181a) are 
capable of segregating aggressive and nonaggressive prostate cancer in both AA and EA patients. The interacting miRNAs 
outperformed independent miRNAs in identifying aggressiveness. Our results suggest that these circulating miRNAs may 
constitute novel biomarkers of prostate cancer aggressiveness in both races and warrant further investigation.

Introduction
Prostate cancer is the second most frequently diagnosed cancer 
and the fifth leading cause of mortality among men worldwide 
(1). In 2016, an estimated 180 890 new prostate cancer cases 
were diagnosed in the USA alone, representing up to 10.7% of 
reported cancer cases, with over 3 million men living with the 
disease in the USA (2). The highest rates of prostate cancer inci-
dence across five continents occur consistently among African-
American (AA) populations (2). Incidence rates are also relatively 
high in black populations in Africa and the Caribbean, despite 
the lack of prostate specific antigen (PSA) screening, indicating 
that genetic predisposition could influence the risk of develop-
ing this disease (1,3). While the exact causes of prostate cancer 

remain largely unknown, established risk factors encompass 
advancing age, black race, family history of the disease, excess 
body weight and economic development (1).

MicroRNAs (miRNAs) are small noncoding RNA molecules 
(~22 nucleotides) that repress protein expression by cleaving 
mRNA or inhibiting its translation, thus modulating the expres-
sion of key oncogenes and tumor suppressor genes implicated 
in cell-cycle progression, cell growth and apoptosis. Recent 
studies have revealed the critical impact of alterations in the 
expression of cancer-related miRNAs on tumor progression. 
Pioneering research suggests that miRNA expression might be 
modified during the initial stages of carcinogenesis (4), render-
ing them early drivers of genomic instability and highlighting 
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their potential as promising biomarkers for several solid can-
cers, including prostate cancer (5). Building on these findings, 
Calin and Croce (6) suggested that variations in the expression 
of miRNAs could be inherited in the germline, thus contribut-
ing to cancer predisposition by deregulating the intricate bal-
ance between tumor suppressor genes and oncogenes. Applying 
these ground-breaking concepts to the study of prostate can-
cer disparities between AA and European-American (EA) males, 
Calin and Croce (6) were the first to identify a set of miRNAs that 
are differentially expressed in AA versus EA patients (miR-301, 
miR-219, miR-26a, miR-1b-1 and miR-30c-1).

In 2008, Mitchell et al. published an innovative study dem-
onstrating that miRNAs originating in human prostate cancer 
xenografts are secreted into the circulation and can be detected 
in patient plasma (7,8), thus providing the original proof of the 
presence of miRNA in the plasma of prostate cancer patients. 
This ground-breaking discovery has ushered in a new age of 
research aimed at uncovering sensitive noninvasive biomarkers 
of diagnosis and prognosis that could lessen the shortcomings 
of PSA-based screening and allow accurate prediction of disease 
aggressiveness, recurrence and chemoresistance. Improved diag-
nosis could reduce the mortality of prostate cancer by informing 
effective targeted therapy choices, but also curtail over-diag-
nosis and over-treatment, which pose other health threats. 
Circulating miRNAs constitute attractive diagnosis markers for 
various reasons. First, miRNAs appear to be frequently deregu-
lated in cancer, where they display unique expression patterns 
in comparison with healthy controls and contribute to aberrant 
cell differentiation, proliferation and progression (7,8). They are 
stable, possess greater longevity than mRNA, are impermeable 
to degradation by nucleases due to their short sequence length 
and packaging in sheltering lipid microvesicles and are ame-
nable to reliable extraction and measurement (5). Furthermore, 
circulating miRNAs overcome the limitations of clonal hetero-
geneity that reduce the diagnostic precision of tissue markers. 
They reflect the entire tumor mosaic by encapsulating the sum 
of heterotypic cellular and clonal interactions with the tumor 
microenvironment (9). Finally, miRNAs can be utilized as a 
low-cost noninvasive detection procedure and quantified by a 
variety of standard techniques, such as qRT-PCR, microarray or 
small RNA sequencing (5,7).

Recent profiling studies have endeavored to find a discrimi-
natory circulating miRNA signature that can identify patients 
at risk of developing aggressive prostate disease that requires 
effective treatment, castration-resistant or chemotherapy 
refractory disease or simply to guide therapeutic strategies. 
These efforts have led to the detection of a few recurrent miRNA 
alterations that associate with prostatic carcinogenesis. In fact, 
three diagnostic and prognostic biomarkers emerge repeatedly 
in at least 17 studies (miR-141, miR-375 and miR-21), where one 
or more miRNAs were found to be concomitantly upregulated 
in the serum, plasma or urine of prostate cancer patients (7,8). 
Although discordant results have been published for a number 
of miRNAs (8), the quest for clinically relevant markers has not 
subsided as the need for novel diagnostic tools is still unmet. 
The goal of this study was to examine the association between 
circulating miRNA levels and prostate cancer aggressiveness to 
identify a panel of miRNAs that better distinguishes aggressive 

from nonaggressive disease. The cohort included both AA and 
EA prostate cancer patients to evaluate potential differences by 
race in miRNA associations with prostate cancer aggressiveness.

Materials and methods

Sample collection
The current study population was part of a larger prostate cancer cohort 
study. Cases diagnosed with prostate cancer between January 2004 and 
December 2016 were recruited through Karmanos Cancer Institute (KCI) 
clinics in metropolitan Detroit, MI. All participants self-identified as AA 
or non-Hispanic white were aged 75 years or younger at date of diagnosis 
and did not have a history of any invasive cancer prior to prostate cancer 
diagnosis. KCI cases were identified primarily through the hospital’s Caisis 
database as eligible and approached for enrollment into the study at the 
time of their clinic appointment with consent of their treating physician. 
All participants provided written informed consent, and the study protocol 
was approved by the Wayne State University Institutional Review Board.

Participants completed a written, self-administered questionnaire at 
the time of their consent to participate in the study. This captured demo-
graphics, family history of prostate cancer, medical history and prostate 
cancer screening behaviors. At the time of study entry, each patient had 
their height, weight, waist and hip circumference measured according to 
a standardized protocol by trained study personnel. Blood was collected in 
CPT tubes for plasma isolation. Samples were stored at −80°C.

All medical records related to each patient’s prostate cancer diagno-
sis, treatment and follow-up were reviewed. Age at diagnosis, prediagnos-
tic PSA, clinical stage, biopsy Gleason grade, primary treatment, tumor 
pathologic stage, margin status and pathologic Gleason grade (for radical 
prostatectomy patients), nodal status and evidence for metastases were 
obtained from medical records. Aggressive disease was defined by Gleason 
score (4 + 3 and higher) from radical prostatectomy (if performed), other-
wise from diagnostic biopsy.

RNA sample preparation
Plasma samples were thawed on ice and centrifuged at 3000g for 5 min 
in a 4°C microcentrifuge. An aliquot of 200 μl per sample was transferred 
to a FluidX tube. Sixty microliters of lysis solution BF, containing 1 μg car-
rier-RNA per 60 μl lysis solution BF, and RNA spike-in template mixture 
was added to the sample, mixed for 1  min and incubated for 7  min at 
room temperature, followed by the addition of 20 μl Protein Precipitation 
Solution BF. Total RNA was extracted from the samples using miRCURY 
RNA isolation Kit–Biofluids (Exiqon, Vedbaek, Denmark) in an automated 
96-well format. The purified total RNA was eluted in a final volume of 50 μl.

miRNA real-time qPCR
RNA, 4 μl, was reverse transcribed in 20 μl reactions using the miRCURY 
LNA™ Universal RT miRNA PCR, Polyadenylation and cDNA synthesis 
kit (Exiqon). cDNA was diluted 50× and assayed in 10  μl PCR reactions 
according to the protocol for miRCURY LNA™ Universal RT miRNA PCR; 
each miRNA was assayed once by qPCR on the miRNA Ready-to-Use PCR, 
CANCer Focus panel using EXILENT SYBR® Green Master mix. Including 
5 RNA spike-ins controls and 2 small noncoding RNAs (endogenous con-
trols), 92 miRNAs were measured on the miRNA panel. Negative controls 
excluding templates from the reverse transcription reaction were per-
formed and profiled like the samples. The amplification was performed 
in a LightCycler® 480 Real-Time PCR System (Roche) in 384-well plates. 
The amplification curves were analyzed using the Roche LC software, 
both for determination of Cq (by the second derivative method) and for 
melting curve analysis. Internal RNA isolation and cDNA synthesis con-
trols indicated that the extraction efficiency was similar for all samples 
and that none harbored inhibitors. miR-103, miR-23a and miR-30c, which 
are known to be expressed at a steady level in many sample types, were 
employed as controls to assess the miRNA content of the analyzed sam-
ples. To verify that the miRNAs detected in our samples did not originate 
from blood contamination through hemolysis but were shed by the pros-
tatic tumor burden itself, thus accurately mirroring neoplasm stage, two 
miRNAs were used: miR-451, which is highly expressed in red blood cells, 
and miR-23-a, which is relatively stable in serum and plasma and not 

Abbreviations 

AA  African American
CART  classification and regression trees
EA  European American
miRNAs  microRNAs.
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affected by hemolysis. The dCp value was calculated as the ratio of miR-
451 relative miR-23a for all plasma samples.

Statistical methods
Aggressive and nonaggressive cases were evaluated for differences in age, 
BMI, PSA at diagnosis and race using the chi-square test. Any characteris-
tics that were statistically significant at 0.05 level were included in further 
models.

The median polish method (10) was used to estimate miRNA and 
person-specific effects that will allow for normalization of the miRNA 
array data. These quantities, along with the overall median Cq value 
across all samples, were subtracted from the observed Ct values, 
resulting in a score describing the deviation of the observed Ct from 
expectation. To ease the interpretation (so that higher score values 
indicate higher miRNA expression), the scores were multiplied by −1. 
As a result of the median polish, the miRNA values are centered within 
each miRNA.

We used classification and regression trees (11) (CART) to identify 
miRNAs along with patient characteristics, which were associated with 
high or low prostate cancer aggressiveness. CART was implemented 
using the rpart function in the rpart package (12) in the R program-
ming environment (13). We used the default parameters except that we 
forced the minimum size of a terminal node to consist of at least 10 
observations. Categorized age, race and BMI were included as potential 
splitting factors in the CART analyses. Standard logistic regression was 
also used to associate each individual miRNA with the aggressiveness 
phenotype. Multiple approaches were used to allow for the possibil-
ity that heterogeneous mechanisms may lead to aggressive prostate 
cancer.

In the absence of publically available circulating miRNA datasets on 
prostate cancer patients, bootstrapping was used to estimate predic-
tion accuracy. Briefly, for each bootstrap sample, a model was developed 
using the same variables and input parameters as when constructing the 
model for the original database. Predictions using the model built from 
the bootstrap sample were made to the observations not included in the 
bootstrap sample to compute model accuracy. The prediction accuracy 
was defined as the median accuracy across all bootstrap samples. Given 
the relatively small sample size, we anticipated that both approaches 
would have a tendency to overfit the data. We utilized bioinformatic tools 
(described in the next section) to corroborate any miRNA relationship 
that we observe.

Targets and pathway analysis
Distinct sets of miRNAs identified as being associated with disease aggres-
siveness were used to identify associated gene targets in the KEGG (14) 
prostate cancer pathway (hsa05215) using the DIANA-miRPath v3.0 (15) 
KEGG reverse search feature. For each set composed of an individual 
miRNA, a list of gene targets for that miRNA was compiled. For the two 
signature sets containing multiple miRNAs, we compiled a list of gene 
targets common to all miRNAs in the set.

Results

Participant characteristics

Plasma samples collected prior to prostate cancer treatment 
initiation were available for 116 cohort members. One sam-
ple was excluded due to suggested hemolysis (dCp > 8)  and 
one sample was excluded because >25% of miRNAs were not 
detected. After excluding 17 miRNAs that were missing for at 
least 25% of the samples, 68 plasma-derived miRNAs in 114 
patients, n = 93 AA and n = 21 EA, were eligible for inclusion in 
our analyses. On average, 66 miRNAs were detected per sam-
ple, and 44 miRNAs were detected in all 114 samples. Table 1 
describes age, BMI, PSA and race characteristics in our sample. 
Only PSA at the time of diagnosis was significantly associated 
with aggressiveness.

A circulating miR-17a/miR-192 signature is 
associated with disease aggressiveness

CART analysis segregated the prostate cancer cases into three 
distinct groups based on the combined effects of two miRNAs: 
miR-17 and miR-192. Age, BMI, PSA and race were not utilized 
by CART to discriminate aggressive and nonaggressive prostate 
cancer. We found that the upregulation of miR-192 exerted a 
moderating effect on prostate cancer aggressiveness for patients 
with upregulated miR-17. As shown in Figure  1 and Table  2, 
patients with reduced miR-17 levels (group C1) were classified 
as having low likelihood of being aggressive, regardless of miR-
192 expression level (17.7% aggressive). Patients with upregu-
lated miR-17 and miR-192 levels, shown in group C2, were more 
likely to have aggressive disease (35% aggressive). Patients who 
had high levels of miR-17 but reduced levels of miR-192, shown 
in group C3, were most likely to have aggressive disease (80% 
aggressive).

Individual miRNAs with marginal association with 
disease aggressiveness

Standard logistic regression was subsequently used to associate 
each miRNA with the aggressiveness phenotype in the prostate 
cancer samples while adjusting for race. As shown in Figure 2, 
we observed an association between the aberrant expression of 
three circulating miRNAs (miR-150a, miR-181a and miR-22) and 
prostate cancer aggressiveness. Plasma miR-181a level [odds 
ratio = 0.28 (relative to a 1-unit increase in the miR), P = 0.0004] 
and plasma miR-150a (odds ratio  =  0.67, P  =  0.032) level were 
negatively associated with disease aggressiveness. Plasma miR-
22 (odds ratio = 1.94, P = 0.017) level was positively associated 
with disease aggressiveness. When adjusting for age, BMI, PSA 
at diagnosis and race, we observed only two significant miRNA 
(miR-181a & miR-93). Plasma miR-181a level (odds ratio = 0.24, 
P = 0.001) remained negatively associated with disease aggres-
siveness, while plasma miR-93 (odds ratio = 3.76, P = 0.042) level 
was positively associated with disease aggressiveness.

The dysregulated miRNAs affect key signaling 
pathways in prostate cancer development

To identify potential target genes and/or pathways of our miR-
NAs, we established their putative biological targets using the 
DianaTools-mirPath v.3 KEGG Reverse Search platform. Focusing 
on the prostate cancer pathway, we observed that the miR-17/
miR-192 and miR-146a/miR-20a/miR-26b signatures affected 

Table 1. Summary of the patient cohort under investigation in this 
study

Variable Level Nonaggressive Aggressive χ2 P-value

Age 0.685
≤60 37(0.46) 13(0.39)
>60 44(0.54) 20(0.61)

BMI 0.760
≤25 17(0.21) 8(0.24)
(25, 30) 33(0.41) 11(0.33)
>30 31(0.38) 14(0.42)

Race 0.449
AA 68(0.84) 25(0.76)
EA 13(0.16) 8(0.24)

PSA <0.001
<10 75 (0.93) 14 (0.42)
>10 6 (0.07) 19 (0.58)
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different tumorigenesis pathways. miR-17 had 31 target genes, 
encompassing most of the genes in the prostate cancer path-
way, while miR-192 possessed 9 targets. These two miRNAs 
shared three common gene targets, EP300, IGF1R and MDM2. On 
the other hand, miR-146a possessed 4 potential gene targets, 
while miR-20a and miR-26b had 23 and 21 targets, respectively. 
The three miRNAs shared two common gene targets, CDKN1A 
and MDM2, while miR-146a and miR-26b shared another target, 
NFKB1. We also analyzed the putative gene targets of our three 
independent markers and identified three interesting targets of 
miR-150, CDKN1B, EP300 and FGFR1. miR-181a had 25 gene tar-
gets, including the oncogenes NRAS, KRAS, HRAS, HSP90, PI3K3R 
and BCL2. Finally, miR-22 was predicted to interact with 18 gene 
targets, including EP300, CDKN1A, PTEN and TP53. The complete 
lists of target genes identified for each miRNA are shown in 
Supplementary Material, available at Carcinogenesis Online.

Discussion
In this study, we have shown that a previously unreported com-
bination of interacting miRNAs (miR-17/miR-192) and three 
independent miRNA markers can distinguish between patients 
with aggressive versus nonaggressive prostate cancer in a 
cohort of AA and EA men. Bioinformatics analysis unmasked 
key target genes and cancer pathways potentially impacted by 
these differentially altered miRNAs. The novelty of our approach 

lies in the analytical and statistical tools we employed to assess 
the association between groups of miRNAs and disease aggres-
siveness, as opposed to identifying individual miRNA targets.

Based on CART analysis, the miR-17/miR-192 pair identified 
disease aggressiveness according to three distinct expression 
cut points (downregulated/upregulated; upregulated/upregu-
lated; upregulated/downregulated), indicating that the progres-
sive induction of miR-17a and loss of miR-192a translated into 
increased incidence of aggressive cancer. Although we estab-
lished a diagnostic connection between the impaired expression 
of specific interacting miRNA signatures and prostate cancer 
stage in both races, we did not identify discrepancies in miRNA 
expression in AA versus EA men, as suggested by previous stud-
ies (9). This limitation indicates that the relatively smaller size of 
our cohort could have diluted the influence of miRNA variances 
on racial disparities in prostate cancer incidence, signifying that 
a larger population might be required to better assess these dif-
ferences. Furthermore, our miRNA panel only measured a frac-
tion of the total known miRNAs, implying that we might have 
missed an important miRNA interaction. The lack of circulating 
miRNA measurements in publically available prostate cancer 
datasets constituted another limitation. We employed bioinfor-
matics tools to confirm the mechanisms and suggest potential 
targets. However, we will need to corroborate our findings in 
another dataset of prostate cancer. Despite these limitations, 
our findings indicate that the miR-17/miR-192 could provide 
novel clinically relevant information that might improve the 
diagnosis and management of prostate cancer in both AA and 
EA patients. These findings warrant validation in a larger cohort 
to ascertain their clinical utility.

The upregulation of miR-17 has been consistently reported in 
various hematopoietic and solid malignancies including breast, 
lung, pancreas, prostate, stomach cancers and B-cell lymphomas 
(16). This miRNA belongs to a cluster of six oncogenic miRNAs, 
miR-17–92 (17), known as oncomir-1 or first oncomir (18). miR-
17 has been repeatedly found to be enriched in prostate cancer 
cells, exosomes (19,20), tissue (21) and the serum of high-risk 
patients (22,23), indicating that our results agree with previous 
findings (24). miR-17 exerts its oncogenic effect by inhibiting an 
intricate network of tumor suppressors, antiproliferative, antia-
poptotic and cell cycle genes, including PTEN (25), the loss of 
which constitutes one of the hallmarks of prostate cancer (26), 
HIF1A (27) and CDKN1A (28).

miR-192 downregulation has been documented in several 
cancer types, including multiple myeloma, colorectal, ovarian 
and renal cell carcinomas (29) but has only been observed in 
prostate cancer cell lines (30). Our study is the first to report 
reduced miR-192 levels in the plasma of aggressive prostate can-
cer patients. miR-192 is directly induced by p53 (31) and func-
tions as a tumor suppressor implicated in the regulation of the 
angiogenic switch (29) and the cell cycle (32). Its targets com-
prise genes overexpressed in aggressive prostate cancer, includ-
ing the oncogene BCL2 (32) and MYLK, described as one of the 
most informative cancers for prostate tumorigenesis (33).

Our bioinformatics analysis unraveled two common puta-
tive target pathways of miR-17 and miR-192, comprising genes 
such as EP300, IGF1R and MDM2. This suggests that the dysregu-
lation of this miRNA pair could contribute to aberrant G1 and 
G2 arrest, reduced apoptosis and genomic instability through 
impaired p53 signaling, as well as increased PI3K-AKT signaling. 
Previous work has shown that the acetyltransferase EP300 is a 
major promoter of prostate cancer development. It is thought 
to exercise its oncogenic activity by promoting epithelial–mes-
enchymal transition (34) and has been linked to worse disease 

Table 2. Percent of aggressive versus nonaggressive patients in CART 
subgroups

Group Nonaggressive Aggressive % Aggressive

C1 65 14 17.7
C2 13 7 35.0
C3 3 12 80.0

Figure 1. A miR-17/miR-192 signature is associated with prostate cancer aggres-

siveness. Scatter plot illustrating the graphical relationship between levels of 

expression of circulating miR-17 and miR-192 and prostate cancer aggressive-

ness in three patient subgroups constructed by the CART analysis. The error rate 

from bootstrapping was 36% for this model. Higher values on the x- and y-axis 

scores indicate higher miRNA expression.

D
ow

nloaded from
 https://academ

ic.oup.com
/carcin/article-abstract/39/4/556/4868135 by W

ayne State U
niversity user on 19 D

ecem
ber 2018

14

http://carcin.oxfordjournals.org/lookup/suppl/doi:10.1093/carcin/bgy025/-/DC1


560 | Carcinogenesis, 2018, Vol. 39, No. 4

prognosis (35). Although the miR-17–92 cluster has been shown 
to regulate EP300 expression in the myocardium (36), the inter-
action between miR-192 and EP300 has not been investigated. 
We hypothesize that miR-17 and miR-192 might be exerting 
opposing effects by inhibiting key tumor suppressors (miR-17) 
and upregulating oncogenes (miR-192) in this pathway, resulting 
in a synergistic effect that promotes tumorigenesis. The para-
doxical relation between altered miR-17/miR-192 and EP300 in 
prostate cancer thus warrants further examination.

To complement our diagnostic model, we identified three inde-
pendent markers of disease aggressiveness, miR-150a, miR-181a 
and miR-22. Plasma miR-150 levels were decreased in aggressive 
prostate cancer cases, in agreement with tissue (37) and urine-
based studies (8). Pathway analysis identified three important 
targets of miR-150, including EP300, FGFR1 and the tumor sup-
pressor CDKN1B (p27), found to be significantly upregulated in 
clinical samples of prostate cancer (38). Furthermore, reduced lev-
els of circulating miR-181a were associated with disease aggres-
siveness in our cohort, in agreement with previous findings (39). 
Putative targets of miR-181a included NRAS, KRAS, HRAS, HSP90, 
PI3K3R and BCL2, highlighting its involvement in a wide web of 
signaling pathways, including the PI3K-AKT and MAPK cascades. 
The final marker, miR-22, has been described as a proto-onco-
gene in prostate cancer cells (40). However, our study is the first to 
report its upregulation in the plasma of prostate cancer patients. 
After adjusting for age, BMI, PSA at diagnosis and race, the sta-
tistically significant negative association between miR-181a and 
aggressiveness was not appreciably changed; however, miR-150a 
and miR-22 were no longer associated with aggressiveness, and 
miR-93 was marginally associated with disease aggressiveness.

In this pilot study, we have identified a novel panel of cir-
culating miRNAs, consisting of a combination of interacting 
miRNAs and three independent markers. Our study has several 
limitations. First, our cohort of 116 patients is relatively small, 
which diluted discrepancies in miRNA expression in AA ver-
sus EA men. Second, our miRNA panel only measured a frac-
tion of the total known miRNAs. Third, the miRNAs detected in 
this study were not validated in independent samples. Despite 
these limitations, our panel was able to successfully distin-
guish between aggressive versus nonaggressive prostate cancer. 
Bioinformatics analysis revealed that the dysregulated miRNAs 
regulate key cellular functions and could potentially drive an 
aggressive neoplastic phenotype. Hence, this novel miRNA sig-
nature warrants further investigation in a larger cohort to assess 
its potential as a diagnostic tool for prostate cancer.

Supplementary material
Supplementary data can be found at Carcinogenesis online.
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Abstract: MicroRNAs (miRNAs) constitute short non-coding RNAs that can post-transcriptionally modulate the ex-
pression of many oncogenes and tumor suppressor genes engaged in key cellular processes. Deregulated serum 
miRNA signatures have been detected in various solid cancers including prostate cancer, suggesting that circulat-
ing miRNAs could function as non-invasive biomarkers of tumor emergence and progression. To determine whether 
serum miRNA expression levels are different between patients with aggressive and non-aggressive prostate cancer, 
we analyzed a panel of miRNAs from the blood of African American (AA) prostate cancer patients using a new recur-
sive partitioning method that allows hypothesis testing of each split. We observed that both extrema of circulating 
miR-17, i.e. upregulation and downregulation, are associated with aggressive prostate cancer. A similar effect was 
observed in tumor samples from a separate dataset representing a different population of prostate cancer patients 
and in AA prostate cancer samples from the TCGA. The dual effect is consistent with the contradictory findings on 
the role of miR-17 in prostate cancer progression, whereby it controls important oncogenic and tumor-suppressive 
genes.

Keywords: Prostate cancer, microRNA, miR-17, classification, hypothesis testing, regression trees

Introduction

Prostate cancer (PCa) constitutes the second 
most frequently diagnosed cancer and fifth 
leading cause of mortality among men world-
wide [1]. Its incidence is higher in the industrial-
ized world, suggesting that diet and lifestyle 
represent potential risk factors [2]. In fact, 
nutrition and exercise modulate serum factors 
that limit growth and elicit apoptosis in andro-
gen-dependent PCa cells, whereas increased 
body mass index, blood pressure and metabol-
ic factors provoke an increased risk of PCa 
death [3]. The highest rates of PCa are observed 
in African American (AA) and Caribbean popula-
tions, suggesting that genetic predisposition 
might contribute to disease development and 
aggressiveness [1]. Current screening methods 
for PCa include digital rectal exam, serum level 
of prostate-specific antigen and transrectal 
ultrasound guided biopsy [3]. These methods 

do not have high sensitivity and specificity, 
often leading to misdiagnosis or over-diagnosis, 
highlighting the need for improved methods of 
early detection and management. 

Circulating microRNAs (miRNAs) have emerged 
as promising diagnostic and prognostic bio-
markers in various solid cancers including PCa 
due to their increased stability, bio-availability, 
and frequent deregulation during tumorigene-
sis. miRNAs are small non-coding RNA mole-
cules that repress protein expression by cleav-
ing mRNA or inhibiting its translation, which 
enables them to fine-tune the expression of an 
intricate network of oncogenes and tumor sup-
pressor genes implicated in key cellular func-
tions, such as cell cycle progression, cell growth 
and apoptosis. Aberrant expression of miRNAs 
contributes to tumorigenesis by de-repressing 
or silencing key regulatory proteins. Extensive 
research efforts are currently underway to 
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uncover clinically relevant tissue and serum 
miRNA signatures of diagnostic and prognostic 
value for the stratification and monitoring of 
PCa [4-6].

Recursive partitioning (RP) is a statistical tool 
used to create subgroups of objects (individu-
als) with differential levels of the phenotype; 
utilizing binary splits derived from values of the 
input variables to create the subgroups. A thor-
ough review [7] of RP reveals a rich history of 
statistical developments since the algorithm 
was first published [8]. Highlights of this review 
include a brief account of the incremental 
advancements in RP theory and a description 
of modifications to apply to various classes of 
outcome data. A central part of the research on 
the RP algorithm is defining a rule for when to 
stop growing a tree (or how much to prune) to 
yield an optimal prediction model. Classification 
and regression trees (CART) [9] were developed 
to classify objects using binary splits with either 
a continuous or categorical response based in 
part on the idea formed from research on RP. 
The key additions of the CART algorithm were 
pruning large trees to a parsimonious size using 
a complexity parameter and utilizing crossvali-
dation to estimate error in prediction. A cross-
validation heuristic is typically used to select 
the optimal size of the tree via the complexity 
parameter; e.g., select the tree that results in 
the smallest crossvalidation error or select the 
smallest tree where the crossvalidation error  
is within one standard deviation of the mini-
mum crossvalidation error [10]. Further enhan- 
cements which made an effort to incorporate 
statistical testing into the CART fitting process 
focused on methods to optimize the pruning 
process [11, 12]. Subsequent research led to 
the development of conditional trees, which 
embeds RP in a conditional inference frame-
work and includes stopping rules based on mul-
tiple testing [13]. Ensemble methods like ran-
dom forests [14] have also been utilized to 
increase prediction accuracy while conse-
quently sacrificing the interpretability of the 
resultant model [15]. 

The objective of the RP with hypothesis testing 
(RP-HT) method introduced in this paper is to 
eliminate the parameters, heuristics, and prun-
ing algorithms utilized by RP methods by utiliz-
ing hypothesis testing at each potential split in 
the tree. In doing so, new splitting objective 

functions for continuous and categorical res- 
ponses are developed. The proposed RP-HT 
method builds upon previous work [16] incorpo-
rating hypothesis testing into the Patient Rule-
Induction Method [17]. A dataset measuring a 
panel of circulating microRNAs from African 
American prostate cancer patients is analyzed 
using this new technique. The models produced 
by RP-HT will be compared with those produced 
by CART and a simulation study is utilized to 
estimate the overall Type I error. 

Statistical methods

The new objective function developed for RP-HT 
will evaluate the splits that maximize the pro-
portion of each of the observed classes for a 
categorical response variable, or maximizes 
the mean rank for a continuous response  
variable. The rank rather than the observed 
response variable is used for continuous 
responses to provide a robust estimate that is 
not sensitive to outlying responses, and to 
allow for normal distribution theory of order sta-
tistics to be applied to data that may not be nor-
mally distributed. RP-HT will continue splitting 
the data and building the tree until there is no 
statistically significant split available at each of 
the existing nodes. Like many other RP-based 
algorithms, RP-HT is greedy in the sense that it 
selects the optimal split at a given node without 
looking forward or going back on earlier deci-
sions [18]. RP-HT is especially greedy as it does 
not identify the split that results in the smallest 
p-value, but rather the largest result proportion 
or mean rank.

A support parameter and its selection process 
are also introduced to regularize the RP-HT fit-
ting process. This parameter is the minimum 
proportion of the observations under consider-
ation (from the mother node) that are required 
to be in both of the daughter nodes. A range of 
support parameters between 0.05 and 0.50 
incremented by 0.005 will be considered. The 
lower bound is set at 5% to ensure that terminal 
nodes have adequate size. The upper bound is 
the maximum value that the support parameter 
could be, given that both daughter nodes have 
to meet the size requirement. The greediness 
of the RP-HT algorithm is controlled by this sup-
port parameter (which is the same at every 
node in the tree): the smaller the support 
parameter, the smaller the created sub-nodes 
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will be. A smaller support parameter will in gen-
eral lead to a tree with more terminal nodes. 
For a continuous response, the support param-
eter that maximizes the Kendall’s tau correla-
tion [19] between the observed response and 
the predicted response is selected (among 
trees with at least one significant split). For cat-
egorical responses, the support parameter that 
minimizes the sum of one minus the predicted 
probability for the true class squared is select-
ed (among trees with at least one significant 
split).

Using a support parameter and the objective 
function, RP-HT determines the optimal split at 
a given node. For each potential split, the RP-HT 
performs exact hypothesis testing for categori-
cal responses and exact or asymptotically exact 
hypothesis testing for continuous responses to 
determine if the split was statistically signifi-
cant, conditional on the number of possible 
splits from all potential explanatory variables. 
The derivation of the null distribution for both 
categorical and continuous responses to con-
struct a p-value is detailed in the Supplemental 
Methods. At each node in the tree-building pro-
cess, the RP-HT algorithm will determine the 
most statistically significant split, given the 
support parameter. If the p-value from that split 
is smaller than the input nominal significance 
level, then that spilt is incorporated into the 
definition of the tree. This process will then be 
conducted on the daughter nodes created from 
that split. If the p-value from a split is not small-
er than the nominal significance level, then the 
algorithm denotes it to be a terminal node and 
all observations in that node are assigned to 
that output class. The algorithm continues until 
there is no split available with a p-value less 
than the nominal significance level at each 
available node and therefore every observation 
has been assigned to a terminal node class. 
For categorical responses, the predicted value 
for an observation in a particular terminal node 
is the response category with a plurality of 
members of that terminal node. For continuous 
responses, the predicted value for an observa-
tion in a particular terminal node is the median 
of the raw responses of all of the observations 
that make up the terminal node. The median is 
used instead of the mean to lessen the impact 
of outlier observations. 

As the implementation of the original CART 
algorithm is proprietary, we use the version in 

the rpart package [20] in R programming envi-
ronment [21] to compare with our proposed 
algorithm. The rpart version uses the Gini index 
to select the optimal splits for categorical 
response variables [22]. Other parameters 
included in this implementation include “min-
bucket” (the minimum number of observations 
required in all daughter nodes), complexity 
parameter (the minimum decrease in lack of fit 
required to consider a split), and “minsplit” (the 
minimum number of observations in a mother 
node needed to attempt a split) that are used 
to control the tree-fitting process [22]. For our 
comparison we used to the default value for 
theses parameters, with the exception of “min-
bucket” which we set to 10. We chose not to 
compare RP-HT with ensemble method like ran-
dom forests, bagging and boosting to maintain 
the interpretability of resultant model and 
ensure a fair comparison.

Clinical methods

miRNA discovery study

A panel of 92 plasma microRNA levels were 
assayed in a cohort of blood samples from 116 
PCa patients from the Karmanos Cancer 
Institute in Detroit MI, USA using the Exiqon 
microRNA PCR Cancer Focus panel. Expression 
levels are normalized using the median polish 
method [23]. Full details on the cohort, array 
and pre-processing steps are found in a sepa-
rate manuscript [24]. As a consequence of the 
median polish, the median expression within 
each miRNA will be 0. For this paper we utili- 
ze the subset of 93 men with self-identified  
AA race and the subset of 44 miRNAs with 
detectable levels on all of them. Of the 93 men, 
68 have non-aggressive PCa (defined as a 
Gleason score of 7 (3 + 4) or lower); while 25 
have aggressive PCa (defined as a Gleason 
score of 7 (4 + 3) or higher). The objective is to 
identify miRNAs that are associated with dis-
ease aggressiveness.

miRNA replication studies

In the absence of publically available circulat-
ing miRNA datasets on prostate cancer pa- 
tients, we chose to use two other studies that 
examined miRNAs expressed in tumor tissue. 

One study (denoted Taylor study) [25] examined 
miRNAs (on the Agilent-019118 human miRNA 
microarray) expressed in metastatic and pri-
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mary PCa tumors. Combining the data from the 
supplement to the source paper [25] and the 
online repository in GEO (GSE21032), we are 
able to define Gleason’s score as we did in our 
study. As in our study, we normalize all the mea-
sured miRNA expression levels using median 

of 7 (3 + 4) or less and 34 samples with a 
Gleason score of 7 (4 + 3) or more. 

Prostate cancer samples from the Cancer 
Genome Atlas (TCGA) had miRNA expression 
quantification measured via miRNA-Seq [26] as 
part of the data collection process. Linking the 
phenotype data downloaded from cBioPortal 
[27], we are able to define Gleason score as we 
did in our study. Unfortunately (for our valida-
tion purposes), only 7 (5 with Gleason score of 
7 (3 + 4) or lower and 2 with Gleason score of 7 
(4 + 3) or higher) of these samples were AA, 
while 146 (78 with Gleason score of 7 (3 + 4) or 
lower and 68 with Gleason score of 7 (4 + 3) or 
higher) were EA. Like the Taylor study, the TCGA 
study also cannot be considered a true ‘replica-
tion’ as it is measured in tumor tissue from a 
diverse population using sequencing (all differ-
ent than our study). As in our study, we normal-
ize all the measured miRNA expression levels 
using median polish, although we only examine 
miR-17 as part of this validation exercise. 

Results

The optimal support parameter was identified 
as 0.26 for this dataset. Three subgroups were 
created, defined by a single circulating miRNA: 
miR-17. A CART analysis identified 4 subgroups, 
defined by 2 miRNAs. A comparison of the 
RP-HT and CART models is shown in Figure 1. 
Figure 2 displays a scatterplot of miR-17 versus 
jittered disease aggressiveness and the identi-

Figure 1. Tree diagrams of the RP-HT (A) and CART (B) analysis of the miRNA 
dataset. For both trees, the text above a split indicates the Boolean state-
ment that defines the split; taking the left-hand path if the text statement 
is true and the right-hand path if the statement is false. The two numbers 
below each split indicate the <number of controls>/<number of cases> at 
each step in the process. 

polish, although we only 
examine miR-17 as part of 
this validation exercise. Note 
that as only 16 of the 110 
samples in the Taylor study 
are AA, results on the whole 
cohort are presented here. 
Therefore, although we can-
not consider the Taylor study 
as a true ‘replication’ dataset, 
since it measures miRNAs 
from a different biospecimen 
type (tumor tissue) in a (most-
ly) different population using 
a different assay, we will 
determine if any significant 
findings from our miRNA anal-
ysis is also detected in this 
dataset. There are 76 Taylor 
samples with a Gleason score 

Figure 2. Scatterplot of miR-17 versus jittered ag-
gressiveness status. The vertical lines indicate the 
cutpoints (-0.778, 0.350) defined by RP-HT. The 
group of samples at the negative and positive ex-
trema have an aggressiveness incidence of 0.471 
(8/17) and 0.500 (15/30), respectively. The middle 
group of samples has an incidence of 0.043 (2/46). 
A smoothed spline fit to the non-jittered data empha-
sizes the U-shaped distribution of aggressive disease 
incidence.
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fied RP-HT thresholds. The left-hand subgroup 
consists of 17 individuals, 8 with aggressive 
disease and 9 without (incidence = 0.47). The 
right-hand subgroup consists of 30 individuals, 
half with and half without aggressive PCa (inci-
dence = 0.50). The sample of 46 individuals in 
the middle of the distribution contains only 2 
aggressive cancers (incidence = 0.043). A 
smoothed spline fit to the non-jittered data 
(using 0 and 1 as the response variable) empha-
sizes the U-shaped distribution of aggressive 
disease incidence.

Taylor dataset

Figure 3 shows a plot of miR-17 versus jittered 
disease aggressiveness for the Taylor dataset. 
Utilizing the same thresholds from the analysis 
of our dataset, we find that the group of sam-
ples at the negative and positive extrema have 
an aggressiveness incidence of 0.625 (5/8) 
and 0.406 (13/32), respectively. The middle 
group of samples has an incidence of 0.229 
(16/70). The fitted smooth spline (using the 
non-jittered response) shows a similar, albeit 
weaker, U-shaped pattern of incidence (even 

after excluding the right-most point); although 
the race categorization and biospecimen type 
were different between the 2 studies. Appling 
the CART-defined tree to this dataset yielded 
poor prediction, as miR-130 was not discrimi-
natory (data not shown).

Figure 4 shows a plot of miR-17 versus jittered 
disease aggressiveness for the TCGA AA sub-
set. Utilizing the same thresholds from the 
analysis of our dataset, we find that the group 
of samples at the negative and positive extre-
ma have an aggressiveness incidence of 0.333 
(1/3) and 1.000 (1/1), respectively. The middle 
group of samples has an incidence of 0.000 
(0/3). We obviously cannot read too much into 
this result as the sample size is much too small, 
but the result is at least promising. The 
U-shaped pattern was not observed in the EA 
subset (data not shown). 

A simulation study was undertaken to estimate 
an experiment-wide error rate. To that end, we 
computed the 5th percentile (out of 1000 itera-
tions) of the logistic regression p-value for null 

Figure 3. Scatterplot of miR-17 versus jittered ag-
gressiveness status for the Taylor study. A similar 
U-shaped pattern of aggressiveness incidence is ob-
served in the Taylor dataset. The curve is a smooth 
spline fit to the non-jittered data, while the vertical 
lines indicate the thresholds derived from our da-
taset (-0.778, 0.350). The group of samples at the 
negative and positive extrema have an aggressive-
ness incidence of 0.625 (5/8) and 0.406 (13/32), 
respectively. The middle group of samples has an 
incidence of 0.229 (16/70).

Figure 4. Scatterplot of miR-17 versus jittered ag-
gressiveness status for the AA TCGA study. A simi-
lar U-shaped pattern of aggressiveness incidence 
is observed in the AA TCGA dataset. The curve is a 
smooth spline fit to the non-jittered data, while the 
vertical lines indicate the thresholds derived from 
our dataset (-0.778, 0.350). The group of samples 
at the negative and positive extrema have an aggres-
siveness incidence of 0.333 (1/3) and 1.000 (1/1), 
respectively. The middle group of samples has an in-
cidence of 0.000 (0/3).
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data sets (the predictor variables are not asso-
ciated with the binary response) under various 
conditions. The detailed results from the simu-
lation are in Supplementary Table 1. For our 
miRNA database, utilizing 1,000 iterations with 
68 “0” s, 25 “1” s and 44 null predictor vari-
ables, we found that 49 (5%) resulted in a 
smaller or equal p-value than observed in the 
data analysis of the actual data set. A total of 
909 (91%) resulted in an outputted tree; while 
CART produced a tree for each iteration. So 
even when there is no association between pre-
dictors and response, 90% of the null RP-HT 
analyses and 100% of the null CART analyses 
returned a tree, highlighting the need for com-
putation of an experiment-wide error rate, 
regardless of whether an external validation 
dataset is available.

Discussion

RP-HT overcomes obstacles inherent in an RP 
analysis including the lack of hypothesis testing 
of each potential split, the lack of a consistent 
mechanism to stop growing the tree and the 
need for subjective input parameters, and 
instead a nominal p-value is the only require-
ment. Overfitting will still be an issue (typical of 
greedy classification models); hence the need 
for p-value calculation, external replication, and 
validation of any significant finding. The RP-HT 
technique identified a U-shaped pattern in 
aggressive disease as a function of miR-17, 
whereby samples at the positive (upregulation) 
and negative (downregulation) extrema were 
associated with aggressive PCa. This duality is 
consistent with the contradictory findings on 
miR-17’s role in PCa progression, as illustrated 
by studies reporting both its upregulation and 
downregulation in cells and tissue [28, 29]. 
miR-17 belongs to the miR-17-92 cluster, which 
is implicated in the regulation of many onco-
genes and tumor suppressor genes involved in 
distinct and opposing pathways [30]. This dual-
ity encapsulates the complexities of cancer 
progression and enables miR-17-92 to fine-
tune the levels of pro-apoptotic and anti-apop-
totic genes respectively. 

Using a systems biology approach, Cloonan, et 
al. [31] demonstrated this dichotomy by un- 
masking an extensive yet contradictory net-
work of genes regulated by miR-17-5p, includ-
ing inhibitors of cellular proliferation such as 
TSG101, RBL1 and MAPK9 and promoters of 

cellular proliferation such as MYCN, NCOA3 
and NR4A3. Other studies have similarly cap-
tured this duality. For instance, miR-17 upregu-
lation was reported to enhance tumor growth 
by directly repressing PTEN [32] and TIMP3 
[33] and to convey chemoresistance to cisplat-
in in human PCa cell lines [28]. Conversely, oth-
ers observed a tumor suppressive role for miR-
17-5p in PCa cells, revealing that miR17 loss 
induced progression to anti-androgen resis-
tance by upregulating FGD4, LIMK1, cyclin D1 
and SSH1 cell cycle regulatory proteins [29]. 
Other targets of miR-17, such as E2 F1, have 
also been reported to function as oncogenes or 
tumor suppressor genes depending on the 
nature of the other driving oncogenic mutations 
present [5]. These contrasting findings high-
light the contextual character of miR-17 func-
tion and stress the importance of considering 
cancerous phenotypes as a product of clonally 
heterogeneous and complex genetic networks 
subject to multiple layers of dysregulation [31]. 

Several limitations exist for our study. Firstly, 
the RP-HT takes longer to run than a standard 
CART analysis, as it analyzes 91 potential sup-
port parameters. The CART analysis of our 
miRNA dataset was instantaneous using rpart, 
while HT-RP took approximately 40 seconds to 
complete. Datasets with a larger number of 
variables will intensify this issue, while utilizing 
parallel processing on multiple computing 
nodes will mitigate it. Secondly, none of the 
publically available miRNA PCa datasets had a 
majority of AA samples and had measurements 
of circulating miRNA. Thus we were compelled 
to verify our miR-17 result using a dataset of 
PCa men with mostly European ancestry, mea-
sured from tumor samples and a small number 
of AA TCGA samples. Checking the incidence of 
aggressive PCa relative to miR-17 in another 
circulating miRNA dataset of AA men will be 
necessary before miR-17 is validated as a bio-
marker for aggressive PCa. Lastly, the sample 
sizes of both our discovery and replication 
datasets were small, increasing the chance of a 
spurious result. Although the procedure we uti-
lized in this paper, including the estimation of 
an overall experiment-wise error rate and exter-
nal replication, should lessen that chance.

In conclusion, utilizing a new statistical tool, we 
have observed that both extrema of circulating 
miR-17 are associated with aggressive pros-
tate cancer. This effect was observed in tumor 
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samples from separate datasets measured on 
different assays representing different popula-
tions of prostate cancer patients. Our result is 
consistent with the conflicting findings on the 
impact that miR-17 has in PCa progression, 
namely that it controls both oncogenic and 
tumor-suppressive genes.
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Supplemental methods

Null hypothesis derivation

Categorical responses: The derivation of the null distribution for RP-HT for a categorical response is as 
follows. Let V indicate the set of valid potential splits (defined by a continuous or categorical explana-
toryvariable): subsets that are sized between [n × β] and n-[n × β] that have a relative frequency ofa 
response category greater than the input relative frequency of that same response category. Let m1 
denote the frequency of the response category of interest in a sample of size m taken without replace-
ment from the population of size n which has n1 of the response category of interest. Then the density 
function of the null distribution [ƒ(θ|V)] as a function of the observed relative frequency values (θ) is 
defined as:
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where m is assumed the be marginally discrete uniform and m1 follows a hypergeometric distribution. 
Additionally, define N as the number of potential valid subsets for a response category and F(θ|V) as the 
cumulative distribution function of θ values that satisfy V for a response category. The algorithm then 
proceeds to enumerate all possible combinations of m1 and m that satisfy V to derive the null distribu-
tion. As the number of observable combinations could be very large, we used 10,000 values evenly 
spaced between the input relative frequency and maximal observable relative frequency to estimate the 
density functions for a response category. The computed density is rounded up to the nearest of these 
10,000 categories for storage. Then the null distribution of the maximum relative frequency is given by 
N × ƒ(θ|V) × F(θ|V)N-1 for a response category.

From the null distribution for each of the response categories, a p-value is computed given the observed 
maximal relative frequency obtained from each response category. If multiple splits within a response 
category result in the same maximal response, the split with the larger number of observations is 
selected. If there are multiple splits with the same maximal response and number of observations, one 
of the splits is chosen at random to be selected. The split/response category combination that results 
in the smallest p-value is then outputted. If multiple splits/response category combinations result in the 
same minimum p-value, a similar algorithm examining the relative frequency and number of observa-
tions is used to select the outputted split/response category, randomly outputting a split if all elements 
are tied. As the response categories will likely have different input relative frequencies, a single null 
distribution is not possible. However, to allay concerns about multiple testing, the outputted p-value is 
multiplied by the number of response classes as a Bonferroni correction. The simulation study in sec-
tion 5 explores this issue of multiple testing in further detail.

Continuous responses: We rank the response breaking ties randomly, since tied ranks are not consis-
tent with the distribution theory requirements used in the hypothesis testing component of the RP-HT 
algorithm. As a consequence, continuous response variables with tied values may result in different 
resultant RP-HT objects, even with the same support parameter. The responses are re-ranked at each 
node in the tree. Therefore, the rank for the same observation will change at each node.
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Mathematically, the objective function at each node is to select from the input set of integers from 1 to 
n, a subset of size m with a statistically significantly higher mean than in the input population. Potential 
valid subsets (denoted as V) must be sized between [n * β] and n-[n * β] and have a mean response 
greater than the input mean (n + 1)/2. The null distribution for this algorithm will be either a weighted 
enumeration of all valid subsets or a normal approximation if n gets too large. The enumeration of valid 
subsets is weighted to ensure that the marginal distribution of m is discrete uniform. Other formulations 
of the marginal distribution of m can be entertained, including an unweighted enumeration which is 
equivalent to treating all possible combinations of subsets across all possible m values as equally likely. 
Once the approximation gets close enough (in terms of Kullbeck-Leibler [KL] divergence) to the exact 
distribution, then RP-HT will switch over to the approximation to save computational time and resources. 
The exact calculation involves enumerating the mean responses of all possible valid subsets given n 
and β to construct the null distribution. As with the categorical responses, the enumerated mean values 
are rounded up to the nearest of the 10,000 values for storage. Finally, the distributions for all possible 
m values are combined to produce a single density function.

We use normal distributional properties of order statistics to construct the approximation. A randomly 
selected subset of size m taken from a set of integers from 1 to n without replacement has a normal 
distribution with mean (n + 1)/2 and variance (n-m) × (n + 1)/(12 × m) in the limit. The observable mean 
responses (θ) given n and m that satisfy V will be the midpoints of the nonoverlapping intervals of width 
1/m used to estimate the density. The probability that the above normal distribution falls within each of 
these intervals corresponding to each observable θ is then computed. This value is then scaled by the 
relative frequency of the marginal distribution of m for valid subsets to ensure that m is marginally dis-
crete uniform. As with the categorical response, 10,000 values evenly spaced between the mean of the 
input response and maximal observable response across the range of m values are used to estimate 
the density function. Computed density values from the proper normal distribution are rounded up to 
the nearest of the 10,000 values for storage. Finally, the densities for all possible m values are com-
bined to produce a single density function. When m is less than 4 or greater than n-4, the exact calcula-
tion is used since the approximation poorly matches the exact distribution near the extrema of m. When 
n is greater than or equal to 22, the RP-HT will use the approximation rather than the exact computation 
as the KL difference between the two distributions is less than 0.001 for the range of possible support 
parameters (data not shown). Since the objective function selects the subset with the largest θ from all 
valid subsets, the null probability distribution function of the largest θ is given by the probability density 
function of the maximum order statistic of the null distribution, namely N × ƒ(θ|V) × F(θ|V)N-1, where N 
is the number of potential valid subsets for one of the response categories and ƒ(θ|V) and F(θ|V) are the 
distribution and cumulative distribution functions of observable θ values that satisfy V.

Supplementary Table 1. Estimated experiment-wide error rate utilizing a variety of number of obser-
vations, percentage of cases, covariates, alpha level and splits. The first row in the table indicates the 
result for the dataset analyzed in the manuscript

Number of observations Percentage of 
‘cases’

Number of 
covariates Alpha Number of splits 5% experiment wide er-

ror threshold
93 0.27 44 0.05 2 1.745E-06
50 0.25 20 0.01 1 1.321E-04
100 0.25 20 0.01 1 1.272E-04
200 0.25 20 0.01 1 8.903E-05
50 0.5 20 0.01 1 1.425E-04
100 0.5 20 0.01 1 7.889E-05
200 0.5 20 0.01 1 6.714E-05
50 0.25 50 0.01 1 5.676E-05
100 0.25 50 0.01 1 3.944E-05
200 0.25 50 0.01 1 3.354E-05
50 0.5 50 0.01 1 5.157E-05
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100 0.5 50 0.01 1 3.653E-05
200 0.5 50 0.01 1 3.025E-05
50 0.25 100 0.01 1 5.064E-05
100 0.25 100 0.01 1 1.973E-05
200 0.25 100 0.01 1 1.333E-05
50 0.5 100 0.01 1 1.797E-05
100 0.5 100 0.01 1 1.584E-05
200 0.5 100 0.01 1 1.095E-05
50 0.25 20 0.05 1 1.838E-04
100 0.25 20 0.05 1 1.272E-04
200 0.25 20 0.05 1 8.060E-05
50 0.5 20 0.05 1 1.425E-04
100 0.5 20 0.05 1 1.089E-04
200 0.5 20 0.05 1 6.714E-05
50 0.25 50 0.05 1 5.676E-05
100 0.25 50 0.05 1 6.007E-05
200 0.25 50 0.05 1 2.915E-05
50 0.5 50 0.05 1 5.157E-05
100 0.5 50 0.05 1 4.585E-05
200 0.5 50 0.05 1 2.476E-05
50 0.25 100 0.05 1 3.119E-05
100 0.25 100 0.05 1 2.403E-05
200 0.25 100 0.05 1 2.735E-05
50 0.5 100 0.05 1 2.710E-05
100 0.5 100 0.05 1 1.910E-05
200 0.5 100 0.05 1 1.581E-05
50 0.25 20 0.01 2 7.108E-05
100 0.25 20 0.01 2 3.981E-05
200 0.25 20 0.01 2 9.983E-06
50 0.5 20 0.01 2 1.259E-04
100 0.5 20 0.01 2 1.357E-05
200 0.5 20 0.01 2 1.282E-05
50 0.25 50 0.01 2 5.676E-05
100 0.25 50 0.01 2 5.723E-06
200 0.25 50 0.01 2 1.284E-06
50 0.5 50 0.01 2 5.157E-05
100 0.5 50 0.01 2 3.233E-06
200 0.5 50 0.01 2 1.383E-06
50 0.25 100 0.01 2 3.119E-05
100 0.25 100 0.01 2 1.676E-06
200 0.25 100 0.01 2 4.753E-07
50 0.5 100 0.01 2 1.797E-05
100 0.5 100 0.01 2 4.851E-07
200 0.5 100 0.01 2 3.181E-07
50 0.25 20 0.05 2 1.374E-05
100 0.25 20 0.05 2 4.405E-06
200 0.25 20 0.05 2 3.422E-06
50 0.5 20 0.05 2 8.345E-06
100 0.5 20 0.05 2 3.139E-06
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200 0.5 20 0.05 2 2.262E-06
50 0.25 50 0.05 2 3.019E-06
100 0.25 50 0.05 2 1.104E-06
200 0.25 50 0.05 2 7.479E-07
50 0.5 50 0.05 2 1.337E-06
100 0.5 50 0.05 2 3.871E-07
200 0.5 50 0.05 2 2.384E-07
50 0.25 100 0.05 2 7.422E-07
100 0.25 100 0.05 2 1.796E-07
200 0.25 100 0.05 2 1.467E-07
50 0.5 100 0.05 2 4.355E-07
100 0.5 100 0.05 2 1.034E-07
200 0.5 100 0.05 2 1.270E-07
50 0.25 20 0.01 3 1.229E-04
100 0.25 20 0.01 3 1.099E-05
200 0.25 20 0.01 3 3.298E-06
50 0.5 20 0.01 3 1.259E-04
100 0.5 20 0.01 3 9.955E-06
200 0.5 20 0.01 3 3.070E-06
50 0.25 50 0.01 3 5.676E-05
100 0.25 50 0.01 3 3.338E-06
200 0.25 50 0.01 3 6.830E-07
50 0.5 50 0.01 3 4.828E-05
100 0.5 50 0.01 3 1.939E-06
200 0.5 50 0.01 3 4.971E-07
50 0.25 100 0.01 3 1.506E-05
100 0.25 100 0.01 3 7.059E-07
200 0.25 100 0.01 3 1.307E-07
50 0.5 100 0.01 3 1.504E-05
100 0.5 100 0.01 3 1.489E-07
200 0.5 100 0.01 3 9.257E-08
50 0.25 20 0.05 3 3.805E-06
100 0.25 20 0.05 3 1.698E-06
200 0.25 20 0.05 3 5.017E-07
50 0.5 20 0.05 3 2.186E-06
100 0.5 20 0.05 3 2.087E-07
200 0.5 20 0.05 3 1.404E-07
50 0.25 50 0.05 3 6.965E-07
100 0.25 50 0.05 3 9.309E-08
200 0.25 50 0.05 3 2.502E-08
50 0.5 50 0.05 3 2.210E-07
100 0.5 50 0.05 3 3.725E-08
200 0.5 50 0.05 3 1.457E-08
50 0.25 100 0.05 3 8.472E-08
100 0.25 100 0.05 3 2.410E-08
200 0.25 100 0.05 3 3.982E-09
50 0.5 100 0.05 3 9.685E-08
100 0.5 100 0.05 3 3.474E-09
200 0.5 100 0.05 3 2.419E-09
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rs75271503 AGO1 -0.0705 0.877 0.5048 0.604 -0.5117 0.330 5 18

rs76379471 AGO1 0.5413 0.052 0.5234 0.066 15.0959 0.162 85 1

rs143228790 AGO1 1.5576 0.216 1.8606 0.240 14.1559 0.321 2 1

rs12727197 AGO1 -0.0967 0.843 0.7085 0.480 -0.3081 0.587 5 15

rs636832 AGO1 0.0205 0.934 -0.2229 0.470 0.5345 0.235 209 29

rs34002152 AGO1 0.1471 0.823 -0.2866 0.818 0.3381 0.671 3 7

rs595961 AGO1 -0.0904 0.805 -0.1150 0.765 0.2118 0.880 104 149

rs528594571 AGO1 1.2128 0.127 1.2182 0.131 NA NA 7 0

rs12751941 AGO1 0.0560 0.845 0.4382 0.363 -0.1579 0.658 26 51

rs116344388 AGO1 -0.0226 0.966 -0.0265 0.960 NA NA 18 0

rs3738356 AGO1 -0.2918 0.320 -0.3652 0.239 0.4257 0.738 69 6

rs61751004 AGO1 -2.2456 0.008 0.4837 0.753 -17.9044 0.000 2 8

rs41308339 AGO1 0.3563 0.584 -0.8502 0.416 2.0668 0.053 6 5

rs7527165 TARBP1 0.3146 0.175 0.4846 0.085 0.0128 0.976 193 123

rs6669190 TARBP1 0.3460 0.104 0.4608 0.077 0.1512 0.692 136 112

rs1802871 TARBP1 -0.4468 0.068 -0.2246 0.452 -0.8352 0.074 208 27

rs2175593 TARBP1 0.3085 0.177 0.5854 0.044 -0.1461 0.710 209 118

rs143561161 TARBP1 0.5384 0.359 0.5658 0.337 NA NA 13 0

rs12031728 TARBP1 -0.0989 0.699 -0.6252 0.116 0.3173 0.384 40 47

rs116094080 TARBP1 0.4185 0.375 0.3937 0.406 NA NA 21 0

rs73101929 TARBP1 0.0861 0.833 0.0286 0.945 NA NA 31 0

rs3820605 TARBP1 -0.0035 0.989 -0.3200 0.379 0.2645 0.463 46 47

rs12137933 TARBP1 0.6738 0.065 0.2677 0.636 1.1276 0.030 16 20

rs12073170 TARBP1 0.1467 0.552 0.0262 0.928 0.5367 0.270 74 22

rs17517734 TARBP1 -0.5229 0.067 -0.5616 0.248 -0.4789 0.188 28 48

rs74147465 TARBP1 -0.1660 0.580 -0.4710 0.267 0.2072 0.653 33 26

rs270522 TARBP1 0.5279 0.013 0.7612 0.007 0.2111 0.542 194 100

rs61825881 TARBP1 -0.3170 0.406 -1.1426 0.250 -0.2364 0.582 7 29

rs750813 TARBP1 -0.4996 0.025 -0.4533 0.135 -0.5511 0.104 74 70

rs74869729 TARBP1 0.1096 0.855 0.0670 0.911 NA NA 13 0

rs2273871 TARBP1 0.1997 0.400 0.2329 0.414 0.1693 0.701 79 28

rs78047188 TARBP1 -0.1965 0.701 -0.0237 0.964 -14.9275 0.186 20 1

rs111283864 TARBP1 -0.8156 0.151 0.4184 0.659 -1.4565 0.047 6 11

rs915184 TARBP1 0.1202 0.597 0.1395 0.609 0.0745 0.862 92 31

rs139597411 TARBP1 -12.9735 0.350 NA NA -14.2873 0.292 0 1

rs150153532 TARBP1 -0.7578 0.221 -0.7657 0.221 NA NA 16 0

rs6682410 TARBP1 0.4449 0.051 0.4573 0.139 0.3525 0.319 60 56

rs72763886 TARBP1 0.3403 0.404 0.6196 0.396 0.0908 0.857 9 20

rs2273872 TARBP1 -13.1972 0.307 NA NA -14.7677 0.211 0 1

rs116789741 TARBP1 -0.1195 0.892 0.0591 0.950 -14.5304 0.322 5 1

rs111585333 TARBP1 0.0123 0.983 -0.0449 0.958 0.0415 0.959 7 7

rs116387638 TARBP1 0.0752 0.709 0.0699 0.785 0.0227 0.947 154 77
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rs3768286 TARBP1 0.0806 0.688 0.0651 0.800 0.0521 0.877 155 77

rs4920246 TARBP1 0.1113 0.581 0.1284 0.618 0.0188 0.956 161 78

rs139816698 TARBP1 -0.8156 0.151 0.4184 0.659 -1.4565 0.047 6 11

rs10489896 TARBP1 -0.0138 0.945 -0.0737 0.772 0.0083 0.980 143 78

rs270524 TARBP1 0.0567 0.798 0.0575 0.831 0.0871 0.831 180 37

rs1619856 TARBP1 0.2137 0.332 0.0248 0.925 0.6737 0.105 138 120

rs4920247 TARBP1 0.7152 0.003 0.7559 0.028 0.6987 0.040 54 62

rs17378272 TARBP1 1.0810 0.045 2.1534 0.033 0.5857 0.366 5 11

rs270519 TARBP1 -0.1286 0.573 -0.0526 0.839 -0.3600 0.481 134 21

rs12068114 TARBP1 -1.0954 0.256 -1.2453 0.193 NA NA 8 0

rs35562024 TARBP1 -0.1897 0.600 -0.1603 0.661 NA NA 43 0

rs2273876 TARBP1 0.3137 0.287 0.3422 0.252 -14.4225 0.339 74 1

rs3754308 TARBP1 0.3099 0.278 0.4206 0.192 -0.1629 0.800 57 11

rs116085005 TARBP1 -1.6338 0.059 -1.6846 0.051 NA NA 11 0

rs76838713 TARBP1 0.4333 0.387 0.4667 0.355 NA NA 19 0

rs270505 TARBP1 0.0549 0.803 0.2457 0.349 -0.5564 0.200 144 125

rs10910438 TARBP1 -0.2100 0.367 -0.0445 0.867 -0.6325 0.223 127 21

rs10910439 TARBP1 0.2751 0.570 0.3771 0.446 -14.9087 0.189 20 1

rs3736838 TARBP1 -0.0282 0.925 -0.0285 0.932 0.2486 0.753 52 11

rs17378453 TARBP1 -0.9844 0.198 -14.9592 0.067 -0.3727 0.688 4 5

rs57114612 TARBP1 -0.2700 0.394 -0.2709 0.448 0.0326 0.969 46 10

rs60683618 TARBP1 -0.2270 0.318 -0.1633 0.540 -0.2017 0.665 169 27

rs6694349 TARBP1 -0.2091 0.384 -0.0498 0.854 -0.6367 0.254 117 18

rs3754307 TARBP1 -0.4633 0.115 -0.5168 0.124 -0.1158 0.870 57 13

rs6697342 TARBP1 0.2564 0.559 0.3747 0.404 -14.4013 0.342 25 1

rs271776 TARBP1 0.1265 0.558 0.2603 0.319 -0.2027 0.612 134 118

rs75859973 TARBP1 -0.2957 0.316 -0.1061 0.748 -0.9548 0.166 56 11

rs12083221 TARBP1 0.3278 0.499 0.2766 0.570 NA NA 21 0

rs528774 TARBP1 0.5006 0.018 0.2731 0.309 0.8416 0.017 186 93

rs34912197 TARBP1 0.2894 0.268 0.5300 0.097 -0.2804 0.540 55 24

rs544322 TARBP1 0.0237 0.915 0.2994 0.262 -0.5297 0.212 165 125

rs12082553 TARBP1 0.0392 0.883 -0.0105 0.969 16.3116 0.044 123 3

rs4920255 TARBP1 -0.0792 0.733 0.0599 0.821 -0.3633 0.496 143 21

rs4920256 TARBP1 -0.0897 0.750 0.1433 0.673 -0.5240 0.342 50 20

rs111299145 TARBP1 0.1905 0.577 0.1056 0.761 34.4027 0.012 47 1

rs512643 TARBP1 0.2703 0.260 0.7080 0.020 -0.4918 0.224 93 118

rs56394394 TARBP1 0.2368 0.537 -0.0220 0.973 0.4702 0.343 13 20

rs271748 TARBP1 -0.2054 0.345 -0.0427 0.878 -0.4388 0.216 100 100

rs12080320 TARBP1 -0.2203 0.490 -0.1446 0.656 -16.6609 0.092 58 2

rs78315114 TARBP1 -0.3249 0.453 -0.2921 0.506 -14.4225 0.339 29 1

rs45927 TARBP1 -0.2094 0.320 -0.0862 0.738 -0.4287 0.257 154 108

rs12085070 TARBP1 -0.1226 0.630 -0.0863 0.793 -0.2242 0.585 54 32

rs3951276 TARBP1 0.2810 0.168 0.3629 0.166 0.1820 0.588 171 85

rs79300169 TARBP1 -0.2976 0.477 -0.3255 0.437 NA NA 31 0

rs140423225 TARBP1 0.0292 0.959 0.0264 0.963 NA NA 15 0

rs11587891 TARBP1 0.1355 0.667 0.3523 0.342 -0.3516 0.561 38 13

rs2175591 TARBP1 -14.0357 0.098 NA NA -15.2828 0.070 0 3
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rs6667048 TARBP1 -0.2483 0.257 -0.1372 0.613 -0.4765 0.222 152 116

rs519250 TARBP1 0.1807 0.441 0.3367 0.284 -0.0064 0.986 61 47

rs2793861 TARBP1 0.3736 0.065 0.4628 0.070 0.2345 0.501 148 61

rs141995027 PRKRA 0.1610 0.713 0.3827 0.468 -0.1672 0.832 17 7

rs72953357 PRKRA 0.5466 0.132 0.3886 0.460 0.6705 0.196 18 18

rs334581 DROSHA 0.2876 0.177 0.5392 0.036 -0.2623 0.519 151 32

rs2330696 DROSHA -0.0611 0.798 0.2544 0.481 -0.3860 0.253 245 68

rs116682738 DROSHA 0.7828 0.198 0.9871 0.121 -16.6651 0.187 11 1

rs75685666 DROSHA -0.3611 0.241 -0.3343 0.286 -34.3278 0.023 67 2

rs146263195 DROSHA -0.1430 0.818 -0.2051 0.742 NA NA 13 0

rs116166271 DROSHA 0.4973 0.416 -13.7496 0.235 0.9021 0.206 2 10

rs458586 DROSHA -0.1868 0.432 -0.0067 0.982 -0.5284 0.187 69 36

rs115882176 DROSHA -0.0123 0.985 -0.1361 0.913 -0.2792 0.727 3 7

rs28488546 DROSHA 0.2666 0.361 0.2672 0.372 -0.6615 0.696 73 3

rs17403765 DROSHA -0.0985 0.627 -0.1010 0.693 -0.1339 0.696 148 92

rs13186629 DROSHA 0.0263 0.912 0.0079 0.981 0.0630 0.858 74 100

rs76562197 DROSHA 0.4262 0.499 15.6722 0.023 -0.1586 0.823 2 10

rs77219111 DROSHA -0.2993 0.452 -0.2634 0.678 -0.2821 0.587 14 19

rs5015011 DROSHA -0.0571 0.812 0.0079 0.981 -0.1195 0.738 74 96

rs146917657 DROSHA 0.7573 0.303 0.4705 0.747 0.7628 0.383 2 6

rs115847896 DROSHA 1.2456 0.091 1.2737 0.085 NA NA 8 0

rs16901060 DROSHA 0.4769 0.158 0.5041 0.139 NA NA 48 0

rs545046 DROSHA 0.1512 0.487 0.3653 0.178 -0.1987 0.599 92 41

rs12188316 DROSHA -0.1192 0.571 0.0607 0.817 -0.4476 0.228 179 108

rs60082636 DROSHA 0.5314 0.040 0.6429 0.042 0.1786 0.695 55 24

rs114470207 DROSHA -0.6135 0.187 -0.6260 0.181 NA NA 28 0

rs77504242 DROSHA 1.1166 0.037 1.1532 0.034 NA NA 16 0

rs71627305 DROSHA 0.0409 0.903 0.1922 0.761 -0.0676 0.866 14 35

rs10719 DROSHA -0.2778 0.279 -0.0574 0.885 -0.4126 0.240 242 60

rs3805525 DROSHA 0.0039 0.987 -0.0610 0.825 0.1619 0.730 123 127

rs2241337 DROSHA -0.5255 0.011 -0.4569 0.082 -0.6318 0.072 131 56

rs73745744 DROSHA -0.0373 0.914 0.0251 0.943 -16.5755 0.197 50 1

rs3805521 DROSHA -0.0922 0.699 -0.1891 0.582 -0.0647 0.849 50 61

rs12186785 DROSHA 0.4419 0.229 0.0685 0.928 0.5541 0.199 9 28

rs624057 DROSHA 0.2649 0.330 0.1984 0.475 15.4315 0.266 131 4

rs3792830 DROSHA -0.2143 0.385 -0.0319 0.908 -0.7758 0.174 94 17

rs10520980 DROSHA -12.7300 0.399 -13.9978 0.347 NA NA 1 0

rs2287584 DROSHA -0.2675 0.244 -0.2476 0.443 -0.2746 0.417 221 70

rs2279797 DROSHA -0.2447 0.269 -0.1684 0.555 -0.4071 0.256 82 49

rs111678029 DROSHA 0.2404 0.532 0.2124 0.585 NA NA 37 0

rs56280959 DROSHA -0.1404 0.517 -0.3084 0.241 0.1861 0.648 132 118

rs639174 DROSHA -0.1217 0.599 -0.2065 0.529 -0.0449 0.894 225 74

rs4867329 DROSHA -0.1601 0.461 -0.3656 0.163 0.2509 0.543 134 118

rs17485810 DROSHA -0.4004 0.743 -13.5827 0.430 0.1446 0.921 1 2

rs78078120 DROSHA -0.1435 0.761 -0.1738 0.715 NA NA 24 0

rs16901168 DROSHA 0.0688 0.861 0.2558 0.544 -0.7182 0.553 28 4

rs7731057 DROSHA -0.2905 0.189 -0.4082 0.175 -0.1231 0.713 216 78
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rs573010 DROSHA -0.1306 0.533 -0.1073 0.692 -0.1737 0.612 97 65

rs114420423 DROSHA 0.2105 0.742 -14.6263 0.165 0.6836 0.365 3 8

rs10067066 DROSHA -0.0007 0.997 0.1498 0.564 -0.3898 0.389 120 26

rs140988484 DROSHA 14.8568 0.025 14.7888 0.206 15.4449 0.117 1 2

rs492176 DROSHA 0.0772 0.702 0.3206 0.211 -0.3543 0.294 135 86

rs144787103 DROSHA 0.6225 0.504 -13.9403 0.361 1.3747 0.223 1 4

rs6896679 DROSHA 0.1988 0.638 0.1585 0.740 0.3966 0.669 21 5

rs3805500 DROSHA 0.2216 0.320 0.6726 0.031 -0.3009 0.370 219 90

rs524138 DROSHA 0.1439 0.573 0.2284 0.392 -0.7062 0.477 121 6

rs10472774 DROSHA -0.1394 0.621 -0.0658 0.829 -0.9768 0.267 203 9

rs10068052 DROSHA 0.0620 0.795 -0.1148 0.670 0.7204 0.192 133 135

rs75466289 DROSHA 0.4040 0.476 -1.0158 0.342 1.1996 0.119 5 10

rs58178446 DROSHA 0.6748 0.216 0.6902 0.211 NA NA 16 0

rs112750085 DROSHA -0.0668 0.914 -0.0212 0.973 NA NA 13 0

rs12515221 DROSHA -0.0351 0.898 0.4072 0.296 -0.4914 0.230 246 37

rs4867337 DROSHA 0.0769 0.839 0.0762 0.851 0.2620 0.810 31 4

rs7712436 DROSHA -0.0093 0.972 0.0179 0.949 -0.0918 0.933 95 5

rs78047627 DROSHA -0.0735 0.862 0.0430 0.946 -0.3423 0.553 13 14

rs116270675 DROSHA -0.8303 0.146 -16.1597 0.016 -0.4322 0.529 6 11

rs77904217 DROSHA 0.1374 0.748 0.1571 0.716 NA NA 27 0

rs6876706 DROSHA -0.2735 0.419 -0.2882 0.398 NA NA 53 0

rs116425093 DROSHA -0.3769 0.654 -0.3735 0.660 NA NA 7 0

rs7737174 DROSHA -0.0958 0.636 0.2474 0.339 -0.6749 0.046 145 87

rs4323243 DROSHA 0.0737 0.835 -0.0118 0.975 0.6270 0.522 36 5

rs74400537 DROSHA -0.5872 0.148 -0.7186 0.369 -0.6138 0.202 10 23

rs4374769 DROSHA 0.1125 0.746 -0.0360 0.928 0.8319 0.292 33 8

rs7703802 DROSHA -0.1450 0.491 0.0784 0.762 -0.6975 0.070 168 112

rs17409275 DROSHA 0.3644 0.129 0.1257 0.693 0.7183 0.062 74 110

rs16901243 DROSHA -14.0275 0.172 NA NA -16.4248 0.131 0 1

rs9292432 DROSHA 0.0064 0.987 -0.0528 0.903 0.2499 0.776 28 6

rs55656741 DROSHA 0.2066 0.465 -0.4759 0.271 0.7886 0.045 50 113

rs1382883 DROSHA 0.1822 0.396 -0.1097 0.674 0.7886 0.045 180 116

rs77034974 DROSHA 0.0672 0.826 -0.0193 0.952 15.4297 0.266 68 4

rs17409624 DROSHA -0.1145 0.592 0.0196 0.940 -0.5244 0.189 164 118

rs56154830 DROSHA 0.3596 0.308 0.6752 0.275 0.0965 0.824 13 28

rs17409803 DROSHA 0.1382 0.616 -0.0540 0.915 0.3038 0.379 25 75

rs2257082 XPO5 -0.2515 0.240 -0.1250 0.658 -0.4236 0.211 90 72

rs115410573 XPO5 -0.4524 0.695 -0.5089 0.660 NA NA 4 0

rs61739889 XPO5 0.2610 0.650 0.3356 0.562 NA NA 14 0

rs145380094 XPO5 -0.8784 0.445 -13.0641 0.528 -0.9370 0.440 1 3

rs1096699 XPO5 0.2917 0.280 0.1055 0.821 0.3386 0.322 36 77

rs34324334 XPO5 -0.4794 0.297 -15.4796 0.064 -0.3395 0.508 6 20

rs4714687 XPO5 0.1931 0.794 0.3512 0.648 -14.9243 0.362 10 1

rs61762966 XPO5 -0.2148 0.673 -0.2124 0.676 NA NA 20 0

rs6578113 AGO2 -0.5302 0.052 -0.5104 0.110 -0.6679 0.217 66 17

rs9969410 AGO2 0.1258 0.732 0.0603 0.872 32.1850 0.022 38 1

rs78254118 AGO2 -0.0143 0.950 -0.0696 0.805 0.2754 0.508 89 35
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rs2944776 AGO2 -0.1423 0.579 -0.2157 0.455 0.5603 0.395 84 14

rs2977462 AGO2 -0.0458 0.835 0.0832 0.759 -0.3839 0.329 191 117

rs6994531 AGO2 0.1513 0.670 0.2066 0.604 -0.1962 0.807 33 7

rs3889488 AGO2 0.2579 0.235 0.5196 0.075 -0.1822 0.586 72 79

rs141277504 AGO2 -13.9310 0.184 NA NA -14.9569 0.182 0 1

rs12545019 AGO2 -0.5212 0.015 -0.4769 0.087 -0.4780 0.171 103 57

rs2293939 AGO2 0.2673 0.275 0.6944 0.055 -0.2374 0.488 43 72

rs73360466 AGO2 -0.8559 0.113 -1.0883 0.067 0.9912 0.624 19 2

rs62527843 AGO2 -0.2927 0.252 -0.2644 0.372 -0.6115 0.250 75 18

rs115526370 AGO2 0.0130 0.978 -0.0004 0.999 0.4684 0.774 20 2

rs148079280 AGO2 14.0826 0.162 NA NA 15.0793 0.164 0 1

rs143987786 AGO2 1.4302 0.019 1.4129 0.197 1.2853 0.090 4 10

rs143571422 AGO2 -0.7856 0.477 -14.5625 0.180 0.1487 0.920 3 2

rs2977482 AGO2 -0.1125 0.648 0.1428 0.674 -0.4367 0.241 69 103

rs10112329 AGO2 -0.0341 0.938 -0.1709 0.705 32.1362 0.023 26 1

rs2271738 AGO2 0.4975 0.017 0.4611 0.076 0.6057 0.089 162 99

rs2977485 AGO2 -0.1524 0.489 -0.1979 0.461 -0.0866 0.828 174 40

rs117377585 AGO2 -0.7536 0.219 -13.5711 0.436 -0.8862 0.165 1 12

rs73362311 AGO2 -0.3994 0.389 -0.7067 0.209 0.6046 0.537 18 6

rs2292775 AGO2 0.3269 0.179 0.4844 0.073 -0.6685 0.272 161 15

rs73362319 AGO2 0.4165 0.093 0.2545 0.378 0.9413 0.074 76 19

rs2977490 AGO2 -0.1306 0.555 0.1756 0.509 -0.7938 0.062 174 122

rs75885567 AGO2 0.0740 0.813 -0.1822 0.770 0.1273 0.734 18 42

rs2944755 AGO2 -0.4049 0.142 0.0792 0.870 -0.5790 0.086 36 71

rs7846322 AGO2 -0.2666 0.511 -0.2408 0.599 -0.5845 0.517 25 6

rs73362336 AGO2 0.3283 0.295 0.3928 0.238 -0.2071 0.832 49 5

rs74500398 AGO2 0.9043 0.225 0.8506 0.258 NA NA 8 0

rs115627791 AGO2 0.3671 0.314 0.2717 0.489 0.9035 0.420 33 4

rs9694342 AGO2 -0.2752 0.177 -0.0983 0.706 -0.4818 0.154 175 88

rs7828287 AGO2 0.7590 0.149 0.1005 0.934 0.8292 0.186 4 13

rs76170696 AGO2 -0.0815 0.853 -0.0825 0.852 NA NA 27 0

rs7825416 AGO2 -0.0264 0.903 -0.2330 0.401 0.2351 0.523 94 47

rs73362349 AGO2 0.9171 0.109 1.4511 0.093 0.5265 0.487 6 8

rs78796470 AGO2 -0.5342 0.245 -0.5381 0.243 NA NA 27 0

rs139665188 AGO2 13.7379 0.213 NA NA 14.5166 0.252 0 1

rs116283890 AGO2 0.2224 0.706 0.1914 0.745 NA NA 14 0

rs62529972 AGO2 0.0665 0.762 -0.0669 0.819 0.3395 0.326 211 87

rs4961271 AGO2 0.0613 0.765 0.0791 0.760 -0.0376 0.914 122 56

rs7841188 AGO2 0.0911 0.665 0.1028 0.700 0.0094 0.979 108 52

rs73362386 AGO2 -0.1956 0.376 -0.2569 0.327 -0.1995 0.656 127 28

rs74377429 AGO2 0.3951 0.332 0.9284 0.167 0.1047 0.839 12 18

rs2176397 AGO2 -0.1225 0.544 -0.3229 0.212 0.2209 0.512 172 76

rs10087629 AGO2 -0.1163 0.584 0.0658 0.802 -0.5063 0.176 175 111

rs369649929 AGO2 -0.3565 0.517 0.0051 0.993 -26.9475 0.052 14 3

rs11987214 AGO2 -0.2453 0.385 -0.1988 0.497 -2.0278 0.162 78 4

rs117665211 AGO2 -0.3370 0.655 -13.5784 0.434 -0.4910 0.550 1 7

rs73364314 AGO2 0.3814 0.499 0.8339 0.238 -0.4541 0.636 9 5

33



rs6983600 AGO2 -0.2034 0.531 -0.2606 0.431 32.1908 0.022 57 1

rs75396503 AGO2 0.1934 0.460 0.2020 0.459 -0.0025 0.998 99 4

rs1878478 AGO2 0.2901 0.169 0.0856 0.752 0.6745 0.052 182 57

rs140337057 AGO2 13.7488 0.211 NA NA 14.5216 0.251 0 1

rs7824622 AGO2 0.2063 0.592 0.1079 0.785 14.5526 0.246 33 1

rs116587291 AGO2 0.1001 0.805 0.0149 0.971 32.1850 0.022 30 1

rs4961278 AGO2 -0.2970 0.147 -0.2505 0.344 -0.5253 0.124 185 78

rs118159219 AGO2 -0.2795 0.819 -12.6362 0.462 0.0426 0.976 2 2

rs7837679 AGO2 -1.6590 0.075 -14.5220 0.093 -0.7500 0.540 5 3

rs6578129 AGO2 0.0480 0.829 -0.1400 0.634 0.2672 0.451 93 99

rs784567 TARBP2 -0.3356 0.241 -0.2567 0.549 -0.5145 0.196 56 115

rs61499963 TARBP2 -0.1208 0.778 -0.2455 0.579 34.6609 0.045 29 1

rs7307055 RAN 0.1288 0.540 0.2235 0.400 0.0378 0.916 167 94

rs111390894 RAN -0.0796 0.798 -0.0038 0.995 -0.0592 0.871 18 47

rs7298948 RAN -0.0941 0.829 -0.1666 0.718 -0.0401 0.978 24 2

rs3809142 RAN -0.1000 0.698 -0.1348 0.690 -0.0844 0.839 51 32

rs14035 RAN 0.0607 0.765 0.0710 0.783 0.1437 0.678 165 83

rs112363519 RAN 0.5951 0.462 0.5880 0.471 NA NA 7 0

rs117016470 RAN 0.4836 0.411 0.7180 0.593 0.6979 0.309 3 10

rs11061209 RAN 0.1000 0.631 0.0447 0.867 0.3351 0.344 118 92

rs56085972 RAN 0.1993 0.443 -0.0281 0.947 0.4922 0.154 38 69

rs73469107 RAN -0.1989 0.449 -0.3111 0.413 -0.0098 0.979 43 43

rs6486610 RAN 0.2038 0.513 0.0244 0.969 0.2416 0.510 15 45

rs77319118 RAN -0.0983 0.757 -0.0442 0.891 -0.7449 1.000 61 1

rs74242887 RAN -0.0973 0.730 -0.1103 0.808 0.0080 0.983 31 44

rs10848243 RAN -0.0620 0.766 -0.0408 0.876 -0.3586 0.326 122 101

rs112976942 RAN 0.0017 0.996 0.0794 0.803 NA NA 62 2

rs7978711 RAN 0.1794 0.384 0.1044 0.691 0.3094 0.368 178 63

rs7960030 RAN -0.0859 0.671 -0.0243 0.924 -0.0012 0.997 162 71

rs7135237 RAN 0.1973 0.678 0.3084 0.529 -15.5085 0.250 21 1

rs73469185 RAN -0.4889 0.472 -0.4865 0.477 NA NA 11 0

rs34365167 RAN -0.0876 0.746 -0.1022 0.716 0.8465 0.492 90 4

rs56123038 DICER1 0.2125 0.375 0.5072 0.088 -0.2920 0.486 74 32

rs111676151 DICER1 0.3209 0.543 0.3423 0.521 NA NA 17 0

rs8018330 DICER1 -0.3529 0.338 -0.5536 0.286 -0.2180 0.690 21 16

rs17091658 DICER1 0.7285 0.215 0.6855 0.247 NA NA 13 0

rs12892332 DICER1 -0.0108 0.958 -0.1264 0.637 0.2246 0.501 103 71

rs114712920 DICER1 0.3010 0.655 0.5600 0.426 -13.5575 0.467 9 1

rs143827989 DICER1 -1.0806 0.032 -1.0455 0.041 -14.2573 0.365 28 1

rs112369172 DICER1 -0.1073 0.744 -0.0886 0.789 -14.4217 0.339 56 1

rs117190345 DICER1 -15.0628 0.049 -13.7319 0.230 -15.1460 0.156 2 2

rs28542080 DICER1 0.1313 0.620 0.2473 0.362 -15.7330 0.066 125 3

rs28461943 DICER1 -0.1286 0.658 -0.1518 0.611 0.2610 0.878 83 2

rs1959870 DICER1 0.0515 0.833 -0.1662 0.654 0.2103 0.529 51 73

rs116282317 DICER1 -0.3952 0.392 -0.3933 0.398 NA NA 25 0

rs10148962 DICER1 -0.0432 0.846 -0.5005 0.106 0.5567 0.100 75 66

rs2257824 DICER1 0.0471 0.815 0.3468 0.174 -0.3755 0.265 135 73
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rs2798821 DICER1 0.0089 0.965 0.2602 0.313 -0.3597 0.278 157 77

rs2798820 DICER1 -0.1925 0.353 0.0062 0.982 -0.4286 0.200 186 77

rs12889327 DICER1 0.0049 0.981 -0.2449 0.348 0.4567 0.189 138 95

rs56331503 DICER1 0.0652 0.797 -0.0833 0.833 0.1917 0.578 43 56

rs116698691 DICER1 0.1874 0.733 0.1873 0.734 NA NA 16 0

rs61976498 DICER1 0.2711 0.500 0.2611 0.555 0.1677 0.879 25 6

rs10144811 DICER1 -0.0839 0.706 -0.2034 0.453 0.1662 0.682 192 120

rs74618975 DICER1 0.7900 0.146 0.7669 0.360 0.7793 0.279 7 9

rs76009236 DICER1 -12.8350 0.378 -13.7480 0.395 NA NA 1 0

rs147432772 DICER1 -0.4422 0.454 -0.4511 0.448 NA NA 15 0

rs111339908 DICER1 0.9130 0.449 0.8362 0.493 NA NA 3 0

rs143538814 DICER1 -0.0070 0.990 -0.0083 0.988 NA NA 16 0

rs2789384 DICER1 -0.0079 0.971 0.1296 0.632 -0.1411 0.701 95 47

rs4905266 DICER1 -0.0009 0.998 -0.1193 0.819 0.0885 0.820 22 37

rs8012576 DICER1 0.0148 0.961 -0.1172 0.842 -0.0599 0.868 19 50

rs35578596 DICER1 0.0625 0.810 -0.0984 0.745 0.6891 0.238 70 17

rs73342562 DICER1 0.5505 0.263 0.4839 0.327 NA NA 19 0

rs8015314 DICER1 -0.2674 0.327 -0.7184 0.089 -0.0550 0.878 247 53

rs7154873 DICER1 0.0144 0.966 -0.7915 0.238 0.2911 0.485 17 31

rs113434762 DICER1 0.6365 0.295 0.5678 0.352 NA NA 12 0

rs7141572 DICER1 -0.2904 0.640 -0.2211 0.726 NA NA 13 0

rs8011194 DICER1 0.0754 0.781 0.3724 0.277 -0.5878 0.190 46 26

rs74078723 DICER1 0.0122 0.960 -0.0790 0.773 0.3540 0.510 104 19

rs2096289 DICER1 -0.1182 0.640 0.0465 0.880 -0.5878 0.190 65 26

rs10139956 DICER1 -0.1420 0.517 -0.0133 0.960 -0.3552 0.388 112 33

rs10140127 DICER1 -0.2166 0.325 -0.2485 0.347 -0.1455 0.722 147 123

rs144182662 DICER1 0.2892 0.664 0.2777 0.679 NA NA 11 0

rs7160403 DICER1 -0.0164 0.945 0.1803 0.559 -0.4082 0.290 204 41

rs11852060 DICER1 -0.1330 0.544 0.1970 0.484 -0.6954 0.079 206 38

rs1954422 DICER1 -0.0003 0.999 0.0145 0.960 -0.0324 0.924 101 75

rs10140275 DICER1 0.1503 0.469 0.1488 0.564 0.2573 0.483 133 48

rs7146324 DICER1 -0.1131 0.620 -0.1071 0.718 -0.0927 0.799 220 107

rs117886030 DICER1 -0.4227 0.374 0.5852 0.470 -0.9082 0.131 8 14

rs72704678 DICER1 0.4138 0.261 0.1205 0.877 0.4550 0.288 9 29

rs79308079 DICER1 0.0115 0.983 0.8351 0.399 -0.2694 0.663 5 12

rs7148434 DICER1 0.0194 0.943 0.0787 0.787 -0.5400 0.463 78 9

rs12147295 DICER1 0.0564 0.783 -0.0705 0.784 0.2593 0.453 139 55

rs12433435 DICER1 -0.7038 0.403 -0.2217 0.860 -1.0425 0.362 3 4

rs2353567 DICER1 0.2125 0.326 0.2211 0.435 0.2464 0.477 205 87

rs7161418 DICER1 -0.1163 0.577 -0.0665 0.806 -0.2395 0.477 98 70

rs58788238 DICER1 0.2825 0.221 0.2555 0.415 0.3275 0.352 60 53

rs80152868 DICER1 0.1397 0.692 0.2966 0.512 -0.1844 0.753 25 14

rs8021127 DICER1 -0.3466 0.096 -0.3723 0.167 -0.3421 0.309 105 69

rs1954419 DICER1 0.4983 0.081 0.5683 0.215 0.4099 0.272 24 43

rs12879834 DICER1 -0.1522 0.511 -0.2203 0.511 -0.0125 0.971 69 61

rs12891219 DICER1 0.0110 0.960 0.0944 0.729 -0.0200 0.959 154 116

rs143564729 DICER1 -0.4586 0.528 -0.2130 0.871 -0.5037 0.565 3 6
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rs75081808 DICER1 0.0049 0.989 -0.0508 0.923 -0.0938 0.852 19 19

rs11621639 DICER1 0.3087 0.179 0.2702 0.385 0.4312 0.219 67 57

rs1891866 DICER1 -0.3327 0.122 -0.2884 0.305 -0.4548 0.181 90 73

rs8015157 DICER1 -0.2739 0.254 -0.2422 0.496 -0.4360 0.199 239 78

rs144830643 DICER1 0.9405 0.104 0.3847 0.800 1.0140 0.114 2 12

rs181025469 DICER1 -15.2190 0.040 -14.9919 0.104 -14.5582 0.301 3 1

rs112264755 DICER1 -0.1867 0.608 -0.1990 0.588 NA NA 44 0

rs12185038 DICER1 0.4214 0.050 0.5641 0.040 0.2013 0.565 87 54

rs79864812 DICER1 0.0712 0.853 0.1522 0.756 -0.0990 0.878 21 12

rs1891863 DICER1 0.0405 0.840 0.1025 0.688 -0.1593 0.635 142 74

rs1891862 DICER1 0.0297 0.900 0.3143 0.327 -0.1788 0.620 92 106

rs80216092 DICER1 1.4718 0.180 15.1902 0.151 0.8036 0.529 1 3

rs59746208 DICER1 0.0923 0.649 0.1867 0.469 -0.1307 0.696 121 75

rs10131361 DICER1 -0.2095 0.400 -0.2308 0.416 -0.1724 0.748 88 17

rs11622488 DICER1 -1.2646 0.086 -14.2878 0.227 -1.4136 0.077 3 8

rs143234445 DICER1 -0.0659 0.931 0.2210 0.781 -14.5582 0.301 7 1

rs7151227 DICER1 -0.1193 0.583 -0.1555 0.589 -0.1009 0.766 84 63

rs76567590 DICER1 -0.1453 0.848 -14.3881 0.281 0.2389 0.775 1 7

rs1187650 DICER1 -0.0570 0.782 -0.1974 0.446 0.1376 0.698 147 57

rs1057035 DICER1 0.0639 0.807 -0.2862 0.501 0.2943 0.395 43 92

rs142808371 DICER1 -13.1244 0.320 -14.1991 0.306 NA NA 1 0

rs10144436 DICER1 -0.8899 0.012 -0.8848 0.013 -14.5304 0.322 54 1

rs17784006 DICER1 0.1321 0.688 0.0182 0.971 0.1659 0.711 22 26

rs116247322 DICER1 0.2719 0.719 -0.0970 0.909 34.4027 0.012 7 1

rs140875148 DICER1 -13.2733 0.293 -14.4567 0.261 NA NA 1 0

rs140891457 DICER1 -0.3993 0.447 -0.8605 0.162 1.1279 0.425 17 3

rs1778057 DICER1 -0.2139 0.394 -0.7585 0.044 0.1922 0.597 49 49

rs149242330 DICER1 -12.4575 0.452 -13.5869 0.427 NA NA 1 0

rs61729795 DICER1 -0.5332 0.636 -0.5849 0.602 NA NA 4 0

rs4513027 DICER1 0.0017 0.994 0.2077 0.451 -0.7498 0.159 170 136

rs17091828 DICER1 -0.0583 0.850 -0.0719 0.817 NA NA 66 0

rs114947750 DICER1 0.7431 0.263 0.7119 0.288 NA NA 10 0

rs115818409 DICER1 -1.1839 0.215 -1.1642 0.226 NA NA 8 0

rs12897280 DICER1 0.0520 0.816 0.2608 0.347 -0.3777 0.338 88 38

rs67822993 DICER1 -0.2871 0.205 -0.0977 0.709 -0.8319 0.083 147 24

rs77034506 DICER1 0.1178 0.793 0.7897 0.267 -0.1983 0.731 10 14

rs113745694 DICER1 0.0613 0.852 -0.1994 0.729 0.2470 0.551 17 31

rs73331532 DICER1 0.2494 0.284 0.6275 0.028 -0.5279 0.211 76 32

rs142815547 DICER1 -13.8970 0.113 -13.7522 0.221 -13.5799 0.463 2 1

rs78987194 DICER1 -0.1002 0.813 -0.7340 0.364 0.0945 0.855 11 18

rs11160231 DICER1 -0.3639 0.112 -0.6256 0.041 -0.0630 0.861 220 59

rs11160232 DICER1 0.0567 0.821 0.1540 0.580 -0.4076 0.506 174 140

rs1558496 DGCR8 0.0417 0.881 0.0723 0.889 -0.0152 0.965 26 66

rs2073778 DGCR8 0.0056 0.986 -1.0759 0.133 0.3682 0.324 19 42

rs9606241 DGCR8 -0.3015 0.135 -0.4817 0.063 -0.0066 0.984 137 76

rs117148342 DGCR8 -0.0444 0.954 -12.8950 0.417 0.2414 0.778 2 6

rs35569747 DGCR8 -0.1446 0.855 16.0409 0.079 -0.8002 0.362 1 6

36



rs443678 DGCR8 -0.2090 0.365 -0.2307 0.486 -0.2502 0.459 68 82

rs77209867 DGCR8 -13.9565 0.180 -14.1231 0.334 NA NA 1 0

rs417309 DGCR8 -0.3503 0.393 1.0569 0.069 -1.6562 0.006 18 16
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