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1. Introduction 

Today’s combat vehicle platforms commonly use flat, monolithic aluminum or 
steel underbody armor plates. One commonly used material, rolled homogeneous 
armor, consists of a solid, rolled steel plate that is considered marginally effective 
at mitigating the effects of a buried improvised explosive device. Additional weight 
from add-on armor improves vehicle protection but has a negative impact on 
vehicle performance.1 While monolithic plate armor performs moderately well 
under blast scenarios, sandwich designs where a structure with free space is 
clamped between two solid plates generally outperform equivalent areal density 
monolithic plates for the majority of blast scenarios.2,3 In this work, the response of 
a novel Ti-6Al-4V structure that consists of a truss-like core, sandwiched between 
two plates, was investigated under loading from a buried blast. Ti-6Al-4V was 
chosen due to its high strength-to-weight ratio and its common use in additive 
manufacturing. The truss structure was chosen based on research that demonstrated 
the effectiveness of pyramidal structures in blast mitigation.3–5  

Since the truss is thicker than a monolithic plate of the same material and areal 
density, the total dynamic space claim should be taken as the sum of the truss depth 
and the peak dynamic deflection resulting from the blast. A physical gap between 
the armor and the floor that supports the occupants of the vehicle must be present 
to accommodate this deflection (Fig. 1). Success for the design will be determined 
by its ability to minimize the dynamic space claim.  

 

Fig. 1 Illustration of a military vehicle with underbody armor. The underbody armor is 
designed to deflect into the region enclosed in red to protect the occupants inside the vehicle.  

Analysis via a finite-element (FE) simulation was performed, which included a 
simplified treatment of the boundary conditions and material behavior. The 
material model was an elastic, perfectly plastic model that possessed a 1-GPa yield 
strength. Average properties of Ti-6Al-4V were used including density, Young’s 
Modulus, and Poisson’s ratio. The Momentum-Impulse Numerical Evaluation 
(MINE) code suite6 and the Offline Reconstruction of the Blast on Target (ORBIT) 
2-D-to-3-D interface7 were used to generate boundary conditions, which were 
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applied within LS-DYNA8 to conduct FE simulations of candidate designs in 
response to a buried charge. One truss design was fabricated via powder bed fusion 
in Ti-6Al-4V at subscale, bolted along two sides to a ballast mast, and subjected to 
loading from a buried explosive charge that was scaled accordingly. The truss 
design was shown to reduce peak deflection by 55% when compared with an 
equivalent weight Ti-6Al-4V monolithic plate, and close agreement was observed 
between the FE and experimental results. This work demonstrated that FE analysis, 
additive manufacturing, and direct experimentation can be used to design and 
assess the performance of small-scale structures intended to mitigate defeat during 
a buried blast event.  

2. Truss Design Using FE Simulations 

First, the pressure–time history as a function of the angle and radius from buried 
explosive is determined using the MINE program.6 The model is configured using 
2-D spherical coordinates (polar angle and radius) where all radial equations are 
solved analytically for the radial incompressible flow and the polar-angle equations 
are solved using discretization. ORBIT takes the output from MINE and then 
applies it to a 3-D geometry by creating a load curve for each element exposed to 
the blast during the simulation in LS-DYNA.7,8 

MINE requires 40 inputs to solve for pressure–time history as a function of the 
polar angle and radius for a given buried charge. The explosive is assumed to 
detonate instantaneously. The resulting blast wave propagates outward in a 
hemispherical manner imparting momentum to the soil, which ultimately impacts 
the target. The deeper a charge is buried the more significant the effects are created 
by the impulse.6 It is estimated that the Detasheet C explosive used in the 
experimental portion of this work releases 5% less mechanical energy per unit mass 
than TNT. Additionally, the detonator is estimated to release 1% of the total 
mechanical energy. 

MINE stores the blast field for the program ORBIT to subsequently generate the 
pressure–time histories to each target geometry element defined by *NODE, 
*ELEMENT, and *SEGMENT_SET in the LS-DYNA input file. ORBIT outputs 
a pressure–time history for each segment on the blast face of the model in the input 
file using keywords *DEFINE_CURVE and *LOAD_SEGMENT.7 The load curve 
and boundary conditions are then copied into the input file and the FE analysis run 
on a Department of Defense high-performance computer.  

With MINE providing loading conditions, the performance of various iterations for 
equilateral truss designs was quantified using FE simulations, as shown in Fig. 2. 
Parameters that were varied include the overall truss depth, number of truss bays, 
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number of total trusses (varied from 2 to 68), and thicknesses of the truss bars. 
Ultimately, truss Design 5 was chosen, which consists of nine trusses (each with 
15 bays) of depth 11.6 mm, each connected to each other by small stringer beams, 
for a total areal density 2.83 g/cm2.  

 

Fig. 2 An isometric section cut and side view of the various equilateral trusses considered 
at peak deflection during FE simulations. The warmer colors indicate a greater stress 
concentration. 

3. Buried Blast Experiment and Results 

The solid geometry of Design 5 was built in SolidWorks and then manufactured 
via powder bed fusion 3-D metal printing. The printed specimen is shown in Fig. 3. 
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Fig. 3 Isometric view of the 3-D printed specimen in Ti-6Al-4V via powder bed fusion 

It was experimentally tested at the US Army Combat Capabilities Development 
Command Army Research Laboratory’s small-scale buried blast facility located in 
Aberdeen, Maryland, which is shown in Fig. 4 and described in detail in Cummins 
et al. (2018).9 The structure was mounted to the ballast mass by seven #4-40 socket 
head cap screws along the length of each side as shown in Fig. 4. The standoff, 
measured from the surface of the soil to the lowest point of the specimen, was 2.44 
m.  

 

Fig. 4 Experimental setup inside the small-scale buried blast facility and associated 
terminology 
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A gram-scale explosive charge was emplaced in an engineered soil bed that was 
compacted to a roadbed representative state. The charge configuration and 
emplacement conditions matched a previous study carried out at the same facility.9 
High-speed cameras operating at rates of over 200,000 frames per second recorded 
the top and side views of the specimen during the blast, enabling the method of 
digital image correlation (DIC) to capture dynamic displacement measurements. 
DIC uses two of the high-speed cameras to measure the deflection of the 
randomized dots painted on the top plate, producing a deflection versus time plot 
(Fig. 5).  

 

Fig. 5 Screen capture from one of the high-speed cameras recording the experiment 

In addition to the printed structure, four monolithic plates of varying areal density 
were subjected to identical blast environment parameters, creating a baseline data 
set for comparison.9 The deflection of the truss design is compared to its mass 
equivalent Ti-6Al-4V plate as shown in Fig. 6. The ratio of the mass equivalent 
plate deflection to the truss deflection is termed the mass efficiency ratio, and is a 
useful metric for armor performance. In this case, the truss outperforms its mass 
equivalent plate by a factor of 2.2. However, the space claim of the truss exceeds 
the mass equivalent plate, since the thickness of the truss is much greater than the 
flat plate.  

 

Fig. 6 Deflection of the experimental specimen (Design 5) compared to a mass equivalent 
Ti-6Al-4V plate 
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4. FE Model of Plates and Chosen Prototype 

Simulations of the four monolithic plates as well as the sandwich truss structure 
were performed using LS-DYNA. All plates are Ti-6Al-4V, with the lightest having 
an areal density of 0.952 g/cm2 and the heaviest 2.99 g/cm2. The sandwich truss 
structure has a total areal density of 2.83 g/cm2. All simulations use the same 
material properties and boundary conditions. Sensitivity studies were performed on 
the models to ensure a proper balance of computational cost and mesh 
discretization.  

The plate models consist of 106,000 reduced-integration hexahedral elements, 
while the truss model consists of 630,000 elements. In the test setup, the plate is 
affixed to the ballast mast on two edges, using seven bolts per edge. To approximate 
these constraints without modeling the bolts explicitly, boundary conditions were 
placed through the depth of the plate at these seven locations (Fig. 7). All three 
degrees-of-freedom are constrained for these nodes.  

 

Fig. 7 Wireframe view of the truss structure with clamped boundary conditions 
highlighted in black 

The deflection–time history of the LS-DYNA simulation of the truss is plotted 
against the experimental result in Fig. 8. While the time of peak deflection appears 
to be correctly predicted by the simulation (to the accuracy the DIC sampling rate 
permits), the magnitude of the peak deflection is overestimated by the simulation. 
Of the simulations of the four plates, two of them overpredicted the peak deflection, 
while two of them underpredicted it. The peak deflections for all five simulations 
are plotted against the experimental results, as a function of areal density, in Fig. 9, 
and overall the simulations appear to reproduce salient features of the experimental 
results.  
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Fig. 8 Deflection–time history of the specimen during the explosion compared with LS-
DYNA simulations 

 

 

Fig. 9 Peak deflection for the five simulations plotted against the experimental results, as a 
function of areal density 
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5. Conclusion 

The MINE/LS-DYNA interface to conduct a simulation of a new underbody armor 
truss structure in comparison to a scaled blast test on a Ti-6Al-4V additively 
manufactured specimen showed close agreement. The results indicate that 
FE/computer-aided design modeling can be combined with additive manufacturing 
and scaled blast testing to rapidly assess the performance of structures intended to 
mitigate defeat due to buried blast. Improved boundary conditions and material 
models that capture strain rate sensitivity and material failure may improve 
predictive capability. To conclude, the prototype proved to be an effective 
improvement over a traditionally configured monolithic Ti-6Al-4V plate armor 
system. It reduced the peak displacement by 55% compared with an equivalent 
areal density flat plate of Ti-6Al-4V plate. Due to the thickness of the design, its 
dynamic space claim did not exceed that of a flat plate. Therefore, if plate thickness 
is a critical design feature for end use, then a flat plate should be used instead of the 
structure. However, if weight is the most important design parameter and thickness 
is of secondary importance, the truss structure produced in this work outperforms 
the flat plate. 
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