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Preface

There are text books and there are research monographs. Some believe that
a research monograph is supposed to bore rather than batter. The following
quotation is attributed to Voltaire: “Le secret d’etre ennuyeux s’est de tout
dire” — the art of being a bore consists in telling everything. A slight variation
is attributed to a French proverb, which, in English translation, says that the
art of being a bore consists in telling every detail. The reader might want
to stop for a moment and think about the difference between everything and
every detail, as well as the two main meanings of the verb to bore.

Our objective in this text book is to discuss as much of the SPDE-related
material as possible without going too much into the details: learning is not
very effective when it is boring, and so, unlike a research monograph, we
believe that a text book should batter rather than bore. While the objec-
tive of a research monograph is to document the results, the objective of a
graduate-level text book is to prepare the reader for independent research.
This preparation means providing the tools necessary not only to read and
understand the current paper and monographs on the subject, but also to cre-
ate new mathematics. In other words, our hope is that this book can help the
reader not only to understand the proofs of existing theorems about SPDEs,
but also to formulate and prove new theorems.

Most of the book is about linear equations; a separate volume dealing with
nonlinear equation is planned for the future.

Our intention was to make presentation as self-contained as possible; a
knowledgable reader coming across a definition of the standard Brownian
motion or the statement of Parseval’s identity should not take it personally.
We also tried to make the book readable not just from the beginning but also
from a random place (for possible use as a reference). As a result, there are
inevitable repetitions and redundancies, as well as page references in addition
to the number of the cited formula or theorem. A reader with a good memory
reading the book from the beginning should not take this personally either.
Some redundancy is also built into the subject index.



VIII Preface

A subtle message is sent to the reader at the end of many proofs: a com-
pleted proof is somewhat more complete than a concluded one, and a reader
might want to spend some extra time thinking about the concluded proofs.

Problems and exercises facilitate transition of a subject from the research
level to the level of a graduate or even undergraduate course. As the subject
of SPDEs is currently making this transition, the book attempts to present
enough exercise material to fill enough potential exams and homework assign-
ments. The distinction between a problem and an exercise is not always clear.
One possible distinction is provided by the following example: to solve the
quadratic equation ax2 + bx + c = 0 is a problem; to solve x2 + x + 1 = 0
is an exercise. In this book, the approach to problems and exercises is some-
what different. Exercises appear throughout the text and are usually directly
connected to the material discussed at the particular place in the text. The
question is usually to verify something, so that the reader already knows the
answer and, if pressed for time, can move on. Accordingly, there are no solu-
tions for the exercises (but there are often hints on how to proceed). We also
realize that exercises can present an extra challenge for those brave enough
to actually teach a class using this book.

The letter label of each exercise is supposed to convey three pieces of
information at once: the level of difficulty, the degree of relevance, and the
ambition of the reader. In other words, exercises labeled with a “C” are the
easiest, most relevant to the core material, and are intended for all readers; in
fact, many of the “C” exercises could have be labeled as examples or (easy)
lemmas, and the idea is that a different label might force the reader to think a
bit more about the corresponding result. Exercises labeled with an “A” are the
most difficult, least relevant, and are intended for the most ambitious readers.
Exercises labeled with a “B” fall somewhere in between in all three categories.
Of course, the gradation represents the subjective views of the authors.

Problems are collected at the end of each chapter and usually point to the
topics that were not discussed in the main text. While most problems have at
least an outline of the solution at the end of the book,

• Some of the solutions are not at the level that would earn the reader a
perfect score on a homework assignment,

• Even if the solution looks complete, the reader should not treat it as a
final judgement but rather as a call for further thinking and investigation.

And even if not attempting to solve any problems, the reader is encouraged
to look through both the problems and solutions, as some of the potentially
interesting information is hidden there. When a problem (or, for that matter,
an exercise) asks to show something, the solution assumes a derivation of
the result. An alternative, which is not necessarily an easy (or efficient) way
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out,1 is to verify that the result is true by taking it for granted and somehow
confirming that it makes sense.

As far as teaching a class, both authors did so on several occasions, more
or less following the order of the material in the book. It is indeed possible to
cover most of the material in about 40 hours of lectures, as long as not too
much time is spent on the general discussion of stochastic analysis in infinite
dimensions.

To summarize, the objective of this book is not to present all the re-
sult about stochastic partial differential equations, but instead to provide the
reader with the necessary tools to understand those results (by reading other
sources) and maybe even to discover a few new ones.

The authors gratefully acknowledge the support of several grants dur-
ing the period the book was written: ARO (DAAD19-02-1-0374) and NSF
(DMS-0237724 (CAREER) and DMS-0803378) [SL]; AFOSR (5-21024 (inter),
FA9550-09-1-0613) ARO (DAAD19-02-1-0374, W911NF-07-1-0044, W911NF-
13-1-0012), NSF (DMS 0604863, DMS 1148284), ONR (N0014-03-1-0027,
N0014-07-1-0044, OSD/AFOSR 9550-05-1-0613, and SD Grant 5-21024 (in-
ter.) [BR]. SL gratefully acknowledges hospitality of the Division of Applied
Mathematics at Brown University on several occasions that were crucial to
the success of the project.

Los Angeles, CA; Providence, R.I., Sergey Lototsky
May 2015 Boris Rozovsky

1 For example, would the reader rather plug in the function y(t) = et cos(t) into
y′′ − 2y′ + 2y = 0 to verify that it satisfies the equation or solve the equation
using the general theory and recognize the function as a particular solution?
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1

Introduction

1.1 Getting Started

1.1.1 Conventions and Notations

We use the same notation x for a point in the real line R or in a d-dimensional
Euclidean space R

d. For x = (x1, . . . , xd) ∈ R
d, |x| =

√
x2

1 + . . .+ x2
d; for

x, y ∈ R
d, xy = x1y1 + . . . + xdyd. Integral over the real line can be written

either as
∫

R
or as

∫ +∞
−∞ . Sometimes, when there is no danger of confusion, the

domain of integration, in any number of dimensions, is omitted altogether.
The space of continuous mappings from a metric space A to a metric space

B is denoted by C(A;B). For example, given a Banach space X , C
(
(0, T );X

)

is the collection of continuous mappings from (0, T ) to X . When B = R, we
write C(A). For a positive integer n, Cn(A) is the collection of functions with
n continuous derivatives; for γ ∈ (0, 1) and n = 0, 1, 2 . . ., Cn+γ(A) is the
collection of functions with n continuous derivatives such that derivatives of
order n are Hölder continuous of order γ. Similarly, C∞(A) is the collection
of infinitely differentiable functions and C∞

0 (A) is the collection of infinitely
differentiable functions with compact support in A.

We will encounter the space S(Rd) of smooth rapidly decreasing functions
and its dual S′(Rd), the space of generalized functions. Recall that f ∈ S(Rd)
if and only if f ∈ C∞(Rd) and

lim
|x|→∞

|x|N |Dnf(x)| = 0

for all non-negative integers N and all partial derivatives Dnf of every order
n. When necessary (for example, here), we use the convention D0f = f . For
specific partial derivatives, we use the standard notations

ut =
∂u

∂t
, uxixj =

∂2u

∂xi∂xj
;

also v̇ = dv/dt.



2 1 Introduction

The Laplace operator is denoted by ∆:

∆f =
d∑

i=1

fxixi .

The symbol i denotes the imaginary unit: i =
√
−1.

Notation ak ∼ bk means limk→∞ ak/bk = c ∈ (0,∞), and if c = 1, we will
emphasize it by writing ak ≃ bk. Notation ak ≍ bk means 0 < c1 ≤ ak/bk ≤
c2 < ∞ for all sufficiently larger k. The same notations ∼, ≃, and ≍ can be
used for functions. For example, as x→ ∞, we have

2x2 + x ∼ x2, x+ 5 ≃ x, x2(2 + sinx)/(1 + x) ≍ x.

Following a different set of conventions, η ∼ N (m,σ2) mens that η is a
Gaussian (or normal) random variable with mean m and variance σ2; recall
that N (0, 1) is called a standard Gaussian (or normal) random variable.

Here are several important simplifying conventions we use in this book:

• We do not distinguish various modifications of either deterministic or ran-
dom functions. Thus, in this book, all functions from the Sobolev space
H1(R) are continuous and so are all trajectories of the standard Brownian
motion.

• We will write equations driven by Wiener process either as du = . . . dw or
as u̇ = . . . ẇ (or ut = . . . ẇ, if it is a PDE).

With apologies to the set theory experts, we often use the words “set” and
“collection” interchangeably.

We fix the stochastic basis F = (Ω,F , {Ft}t≥1,P) with the usual

assumptions (Ft is right-continuous: Ft =
⋂
ε>0 Ft+ε, and F0 contains all

P-negligible sets, that is, F0 contains every sub-set of Ω that is a sub-set of
an element from F with P-measure zero.)

1.1.2 Dealing with Noise

A stochastic ordinary differential equation defines a function of time and is
driven by a noise process in time. A stochastic partial differential equation
describes a function of time and space and is driven by a noise process in time
and space. In what follows, we outline a construction of such space-time noise
processes.

Let ξk, k ≥ 1, be independent standard Gaussian random variables;
see Krylov [115, Lemma II.2.3] for the proof that countable many stan-
dard Gaussian random variables can exist on a suitable stochastic basis. If
{mk(t), k ≥ 1} is an orthonormal basis in L2((0, T )), then

w(t) =
∑

k≥1

(∫ t

0

mk(s)ds

)
ξk (1.1.1)
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is a standard Brownian motion: a Gaussian process with zero mean and co-
variance E

(
w(t)w(s)

)
= min(t, s).

Exercise 1.1.1 (C). Verify that Ew(t)w(s) = min(t, s). Hint. Note that∫ t

0
mk(s)ds is the Fourier coefficient of the indicator function of the interval [0, t]

and use the Parseval identity connecting the inner product of two functions to their

Fourier coefficients.

We now take this construction to the next level by considering a collection
{wk = wk(t), k ≥ 1} of independent standard Brownian motions, t ∈ [0, T ]
and an orthonormal basis {hk(x), k ≥ 1, x ∈ G} in the space L2(G), with
G = (0, L)d = (0, L) × · · · × (0, L), a d-dimensional hyper-cube. For x =
(x1, x2, . . . , xd), define

hk(x) =

∫ x1

0

∫ x2

0

. . .

∫ xd

0

hk(r1, . . . , rd)drd . . . dr1.

Then the process

W (t, x) =
∑

k≥1

hk(x)wk(t) (1.1.2)

is Gaussian,

EW (t, x) = 0, E
(
W (t, x)W (s, y)

)
= min(t, s)

d∏

k=1

min(xk, yk). (1.1.3)

Exercise 1.1.2 (C). Verify (1.1.3).

We call the process W from (1.1.2) the Brownian sheet.
The derivative of the standard Brownian motion, while does not exist in the

usual sense, is the standard model of the Gaussian white noise ẇ. The formal
term-by-term differentiation of the series in (1.1.1) suggests a representation

ẇ(t) =
∑

k≥1

mk(t)ξk. (1.1.4)

While the series certainly diverges, it does define a random generalized func-
tion on L2((0, T )) according to the rule

ẇ(f) =
∑

k≥1

fkξk, fk =

∫ T

0

f(t)mk(t)dt. (1.1.5)

Exercise 1.1.3 (C). (a) Verify that the series in (1.1.5) converges with prob-
ability one to a Gaussian random variable with zero mean and variance∑

k f
2
k =

∫ T
0 f2(t)dt.

(b) Let w be a standard Brownian motion and f ∈ L2((0, T )) a non-

random function. Show that the random variables ξk =
∫ T
0

mk(t)dw(t), k ≥
1, are iid standard normal. Then use these random variables to define ẇ

according to (1.1.4) and verify that
∫ T
0
f(s)dw(s) = ẇ(f).
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Let us now take (1.1.4) to the next level and write

Ẇ (t, x) =
∑

k≥1

hk(x)ẇk(t), (1.1.6)

where {hk, k ≥ 1} is an orthonormal basis in L2(G) and G ⊆ R
d is an open

set. We call the process Ẇ the (Gaussian) space-time white noise. It is a
random generalized function on L2((0, T ) ×G):

Ẇ (f) =
∑

k≥1

∫ T

0

(∫

G

f(t, x)hk(x)dx

)
dwk(t). (1.1.7)

Sometimes, an alternative notation is used for Ẇ (f):

Ẇ (f) =

∫ T

0

∫

G

f(t, x)dW (t, x). (1.1.8)

Even more confusing, (Ẇ , f) and Ẇf can also be used to denote Ẇ (f), al-
though we use these notations for (slightly) different purposes.

Exercise 1.1.4 (C). (a) Verify that

E
(
Ẇ (f)

)2
=

∫ T

0

∫

G

f2(t, x)dxdt. (1.1.9)

(b) Verify that

Ẇ (t, x) =
∑

k,n

mk(t)hn(x)ξk,n,

where ξk,n = Ẇ (mkhn).

Unlike the Brownian sheet, space-time white noise Ẇ is defined on every
domain G ⊆ R

d and not just on hyper-cubes (0, L)d, as long as we can find
an orthonormal basis {hk, k ≥ 1} in L2(G).

Alternative description of the Gaussian white noise is as a zero-mean Gaus-
sian process ẇ = ẇ(t) such that Eẇ(t)ẇ(s) = δ(t − s), where δ is the Dirac
delta function. Similarly, we have

EẆ (t, x)Ẇ (s, y) = δ(t− s)δ(x − y).

To construct noise that is white in time and colored in space, take a se-
quence of non-negative numbers {qk, k ≥ 1} and define

ẆQ(t, x) =
∑

k≥1

qkhk(x)ẇk(t), (1.1.10)

where {hk, k ≥ 1} is an orthonormal basis in L2(G), G ⊆ R
d. The noise is

called finite-dimensional if qk = 0 for all sufficiently large k.
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Exercise 1.1.5 (C). Verify that if

∑

k≥1

q2k sup
x∈G

h2
k(x) <∞

then the function q(x, y) =
∑
k≥1 q

2
khk(x)hk(y) is well defined and

EẆQ(t, x)ẆQ(s, y) = δ(t− s)q(x, y).

Similarly, expressions

Ẇ (x) =
∑

k≥1

hk(x)ξk (1.1.11)

and
ẆQ(x) =

∑

k≥1

qkhk(x)ξk ,

define, respectively, the Gaussian white noise and Gaussian colored noise
in space. Similar to (1.1.8), we write Ẇ (f) or

∫
G f(x)dW (x) to denote∑

k≥1 fkξk, with fk =
∫
G
f(x)hk(x)dx. According to (1.1.11), if Ẇ is a

Gaussian white noise in space and hk, k ≥ 1 is an orthonormal basis, then
ξk = Ẇ (hk), k ≥ 1, are iid standard Gaussian random variables.

Throughout this book we will be mostly working with Gaussian noise Ẇ
and ẆQ, although two other types of noise are becoming increasingly popular
in the study of SPDEs: the fractional Gaussian noise and Lévy noise.

1.1.3 A Few Useful Equalities

Itô formula: If F = F (x) is a smooth function and w = w(t) is a standard
Brownian motion, then

F
(
w(t)

)
= F (0) +

∫ t

0

F ′(w(s)
)
dw(s) +

1

2

∫ t

0

F ′′(w(s)
)
ds.

Itô isometry: if w is a standard Brownian motion and f , an adapted process,
then

E

(∫ T

0

f(t)dw(t)

)2

=

∫ T

0

Ef2(t)dt.

Fourier transform:

f̂(y) =
1

(2π)d/2

∫

Rd

f(x)e−ixydx, i =
√
−1.

Recall that f̂ is defined on the generalized functions from S′(Rd) by (f̂ , ϕ) =
(f, ϕ̂), f ∈ S′(Rd), ϕ ∈ S(Rd) (for a quick review, see Rauch [180, Section
2.4]).
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Inverse Fourier transform:

f̌(y) =
1

(2π)d/2

∫

Rd

f(x)eixydx = f̂(−y).

Standard normal density is unchanged under the Fourier transform:

1√
2π

∫ ∞

−∞
e−x

2/2e−ixydx =
1√
2π
e−y

2/2 (1.1.12)

For three different ways to establish this, see Andrews et al. [1, Exercise 1 for
Chapter 6].

Parseval’s identity: If {hk, k ≥ 1} is an orthonormal basis in a Hilbert
space X and f ∈ X , then

∑

k≥1

(f, hk)
2
X = ‖f‖2

X .

The result is essentially an infinite-dimensional Pythagorean theorem and
is named after the French mathematician Marc-Antoine Parseval des
Chênes (1755–1836).

Exercise 1.1.6 (C). Let {mk(t), k ≥ 1, t ∈ [0, T ], be an orthonormal basis
in L2((0, T )). Show that

∞∑

k=1

(∫ t

0

mk(s)ds

)2

= t. (1.1.13)

Hint.
∫ t

0
mk(s)ds is the Fourier coefficient of what function?

Plancherel’s identity or isometry of the Fourier transform: if f is a
smooth function with compact support in R

d and

f̂(y) =
1

(2π)d/2

∫

Rd

f(x)e−ixydx,

then ∫

Rd

|f(x)|2dx =

∫

Rd

|f̂(y)|2dy.

This result is essentially a continuum version of Parseval’s identity and is
named after the Swiss mathematician Michel Plancherel (1885–1967).

Stirling’s formula for the Gamma function

Γ (x+ 1) =
√

2πx
(x
e

)x (
1 +

1

12x
+

1

288x2
+ +O

(
1

x3

))
, x→ +∞,

named after the Scottish mathematician James Stirling (1692–1770). Re-
call that

Γ (x) =

∫ ∞

0

tx−1e−tdt, x > 0,

and
Γ (n+ 1) = n!, n = 0, 1, 2, . . . .
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1.1.4 A Few Useful Inequalities

Below, we summarize several inequalities that are always good to know:
Burkholder-Davis-Gundy, epsilon, Gronwall, Hölder, and Jensen, and recall
one particular embedding theorem for Sobolev spaces.

To state the Burkholder-Davis-Gundy inequality, recall that we are always
working on the stochastic basis F = (Ω,F , {Ft}t≥0,P). A square-integrable

martingale on F is a process M = M(t) with values in R
d such that M(0) =

0, E|M(t)|2 < ∞ and E
(
M(t)|Fs

)
= M(s) for all t ≥ s ≥ 0. The quadratic

variation of M is the continuous non-decreasing real-valued process 〈M〉
such that |M |2 − 〈M〉 is a martingale. A stopping (or Markov) time on F is
a non-negative random variable τ such that {ω : τ(ω) > t} ∈ Ft for all t ≥ 0.

Recall that a ∧ b means min(a, b).

Theorem 1.1.7 (Burkholder-Davis-Gundy (BDG) inequality).

For every p ∈ (0,+∞), there exist two positive real numbers cp, Cp such that,
for every continuous square-integrable martingale M = M(t) with values in
R

d and M(0) = 0, and for every stopping time τ ,

cpE〈M〉p/2(τ) ≤ E sup
t

|M(t ∧ τ)|p ≤ CpE〈M〉p/2(τ). (1.1.14)

In particular, if w is a standard Brownian motion and f , an adapted process,
then

E sup
0<t<T

∣∣∣∣
∫ t

0

f(s)dw(s)

∣∣∣∣
p

≤ CpE

(∫ T

0

f2(t)dt

)p/2
; (1.1.15)

more generally,

E sup
0<t<T

∣∣∣∣∣∣

∑

k≥1

∫ t

0

fk(s)dwk(s)

∣∣∣∣∣∣

p

≤ CpE


∑

k≥1

∫ T

0

f2
k (t)dt



p/2

. (1.1.16)

Proof. See, for example, Krylov [115, Theorem IV.4.1].

The result is named after three American mathematicians, Donald L.
Burkholder, Burgess J. Davis, and Richard F. Gundy, and can be
traced to their joint paper [17]. A more detailed historical analysis shows that
Burholder and Gundy [18] established the result for p 6= 1, and Davis, who
was a Ph.D. student of Burkholder, handled p = 1. For more inequalities of
this type, see, for example, Liptser and Shiryaev [132, Section I.9]. We will
re-visit Theorem 1.1.7 later in the context of Hilbert space-valued martingales
(see Theorem 3.2.47 on page 115).

The epsilon inequality is as useful as it is simple: for every a, b ∈ R and
ε > 0,

|ab| ≤ εa2 + ε−1b2. (1.1.17)
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Indeed, 0 ≤ (
√
ε|a| − |b|/√ε)2 = εa2 + ε−1b2 − 2|ab|.

A more general epsilon inequality is as follows;

|ab| ≤ ε|a|p + (εp)−q/pq−1|b|q, 1

p
+

1

q
= 1. (1.1.18)

Equivalently,
|a|1/p |b|1/q ≤ ε|a| + C(ε)|b|. (1.1.19)

This is true because |ab| ≤ |a|p/p+|b|q/q. See also comments about the Hölder
inequality below.

The following inequality is used very often in the study of evolution equations.

Theorem 1.1.8. If f = f(t), t ∈ [0, T ] is a non-negative integrable function
and C1, C2 are non-negative numbers so that

f(t) ≤ C1

∫ t

0

f(s)ds+ C2, t ∈ [0, T ], (1.1.20)

then
f(t) ≤ C2(1 + C1te

C1t), t ∈ [0, T ]. (1.1.21)

In particular,
sup

0<t<T
f(t) ≤ C2(1 + C1Te

C1T ). (1.1.22)

Proof. If F (t) =
∫ t
0 f(s)ds then F ′ ≤ C1F + C2, F (0) = 0, and

(F (t)e−C1t)′ = e−C1t(F ′ − C1F ) ≤ C2e
−C1t ≤ C2,

so that F (t) ≤ tC2e
C1t. By assumption f(t) ≤ C1F (t) + C2, and the result

follows.

Theorem 1.1.8 can go under several names: Gronwall’s lemma, Gronwall’s
inequality, the Gronwall-Bellman inequality, etc. Note that the right-hand side
of (1.1.21) can be written in many other ways, depending on how explicitly
we want to track down dependence on t. The Swedish-American mathemati-
cian Thomas Hakon Gronwall (Grönwall) (1877–1932) established the
result under an assumption very similar to (1.1.20) (see [60]); the American
mathematician Richard Ernest Bellman (1920–1984) established a simi-
lar result independently and under a more general assumption (see [9, Lemma
1]).

Next, we give three versions of the Hölder inequality:
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E|ξη| ≤
(
E|ξ|p

)1/p(
E|η|q

)1/q

(probabilistic version) (1.1.23)

∫
|f(x)g(x)|dx ≤

(∫
|f(x)|pdx

)1/p(∫
|g(x)|qdx

)1/q

(integral version)

(1.1.24)

∑

k

|akbk| ≤
(
∑

k

|ak|p
)1/p(∑

k

|bk|q
)1/q

(discrete version) (1.1.25)

Everywhere 1 < p, q <∞ and 1
p + 1

q = 1.

Proof. Note that |ab| ≤ |a|p
p + |b|q

q (using |ab| = exp((1/p) ln |a|p+(1/q) ln |b|q)
and convexity of the exponential function), and that it is enough to consider
the case when (for example, in the probabilistic version) E|ξ|p = E|η|q = 1.

The inequality is named after the German mathematician Otto Ludwig
Hölder (1859–1937), who discovered a version of it in 1884 while studying
convergence of Fourier series. The particular case p = q = 2 is also known as
the Cauchy-Scwarz (or Cauchy-Bunyakovsky-Schwarz) inequality and has an
interesting history of its own.

Exercise 1.1.9 (A). (a) Explain why inequality E|ξη| ≤ E|ξ|p E|η|q is im-
possible. Hint. Instead of ξ, consider cξ, c > 0.

(b) Use a scaling argument to convince yourself that, if (1.1.24) is to hold
for integrals over R, then one has to have 1/p + 1/q = 1. Hint. Consider

f(x) → f(x/c), g(x) → g(x/c).

Next (as we go in alphabetical order), we have

Theorem 1.1.10. (Jensen’s inequality). If F = F (x) is a convex func-
tion and E|ξ| <∞, then

F (Eξ) ≤ EF (ξ). (1.1.26)

Proof. Out of many characterizations of a convex function, the following one
works the best for the purpose of the proof: for every x0 there exists a number
λ = λ(x0) such that, for all x,

F (x) ≥ F (x0) + λ(x0)(x− x0) (1.1.27)

(if F is smooth, then λ(x0) = F ′(x0), and (1.1.27) says that the graph of F
is above the tangent to the graph at x0). Now put x0 = Eξ, x = ξ, and take
expectation on both sides.

Johan Ludwig William Valdemar Jensen (1859–1925) was from Den-
mark and worked for the Copenhagen Telephone Company most of his life.
He was doing mathematics essentially as a hobby. In his 1906 paper [91] he
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considers separately the cases of discrete and absolutely continuous random
variables ξ, but without using any probabilistic terminology. Still, the prob-
abilistic interpretation of the result is not only convenient, but also natural:
the underlying measure always has to be normalized to one.

For more on the epsilon, Gronwall, Hölder, Jensen, and some other related
inequalities, see Evans [45, Appendix B].

There are many different spaces of generalized functions beside S′(Rd): see, for
example, Triebel [204]. Some of these spaces are associated with the Russian
mathematician Sergei L’vovich Sobolev (1908–1989), who studied the
topic in the 1930s. A popular family of the Sobolev spaces is

Hγ
p (Rd) = {f ∈ S′(Rd) : F−1(f̂ wγ) ∈ Lp(R

d)},

where 1 ≤ p <∞, γ ∈ R, wγ(y) = (1+ |y|2)γ/2, f̂ is the Fourier transform of
f , F−1 is the inverse Fourier transform;

‖f‖p
Hγ

p (Rd)
= ‖F−1(f̂ wγ)‖pLp(Rd)

=

∫

Rd

∣∣F−1(f̂ wγ)(x)
∣∣pdx.

In the particular case p = 2, we will often omit the subscript p and write
Hγ(Rd) instead of Hγ

2 (Rd).
Given a domain G ⊂ R

d with smooth boundary, the Sobolev space
Hγ
p (G), γ > 0, is the collection of functions from Hγ

p (Rd), restricted to G.
For more information on the Sobolev spaces in this book, see Example 3.1.9,
page 73, about Hγ

2 (Rd), and Example 3.1.29, page 81, about Hγ
2 (G).

The parameter γ corresponds to the number of generalized derivatives.
One type of the Sobolev embedding theorems is a statement asserting that
existence of sufficiently many generalized derivatives implies existence of a
certain number of classical derivatives. For example,

Theorem 1.1.11. If r > 0 is not an integer and f ∈ H
r+(d/p)
p (Rd), then

f ∈ Cr(Rd).

Proof. See Triebel [204, Theorem 2.8.1].

We will be working with p = 2 and write Hγ
2 = Hγ . On the one hand,

having p = 2 significantly simplifies the description of the spaces:

f ∈ Hγ(Rd) ⇐⇒
∫

Rd

|f̂(y)|2(1 + |y|2)γdy <∞.

On the other hand, the corresponding Sobolev embedding for p = 2 is far from
optimal, especially for large d: one would need at least n+ (d/2) generalized
derivatives to have n classical derivatives. Still, this is good enough for our
purposes.
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Stirling’s formula for the Gamma function, an alternative form:

√
2πx

(x
e

)x
≤ Γ (x+ 1) ≤ 4

√
x
(x
e

)x
, x ≥ 0. (1.1.28)

In fact, with some extra effort, the 4 on the right can be taken down to
e = 2.718....

1.2 Some Sources of SPDEs

1.2.1 Biology

The three famous equations connected with biology are

vt = vxx +
√
v Ẇ (t, x), (1.2.1)

vt = vxx +
√
v(1 − v) Ẇ (t, x), (1.2.2)

ut = uxx − u+ g(u)Ẇ (t, x). (1.2.3)

Equations (1.2.1) and (1.2.2) describe time evolution of the (one-dimensional)
population density in a certain continuum limit. We come back to these equa-
tions in our discussion of particle systems. The “biological” difference between
the equations is that (1.2.1) models distribution of individuals (humans, ani-
mals), while (1.2.2) describes distribution of genes.

Equation (1.2.3) describes the passive nerve cylinder undergoing random
stimulus along its length (Walsh [208]).

1.2.2 Classical Probability Theory

Here are some of the sources of SPDEs in this area: (a) limits of particle sys-
tems; (b) analysis of distributions of diffusion processes; (c) study of flows of
stochastic diffeomorphisms. Below, we (briefly) discuss each of these area.

Particle systems. Consider n particles X1, . . . , Xn evolving in (discrete or
continuous) time, in (discrete or continuous) space. The number n of particles
can also change in time. Define the measure Vn(t) by

Vn(t) =

n∑

i,j=1

Aij(n, t)δXj(t), (1.2.4)

where Aij(n, t) are weights and δx is the point mass at x. If Aij(n, t) = δij/n,
then Vn(t) is the empirical (also known as occupation) measure of the system.
Other dependence of Aij on t and n makes it possible to consider different
scaling procedures. The double summation makes it possible to consider the
interactions between the particles in the definition of Vn. The possibility to
have the weights Aij random provides even more flexibility.
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The problem is to study the limit of the measure Vn(t) as n → ∞. The
result V (t, dx) is a measure-valued process. The description of this limit is a
hard problem and is impossible without a precise description of the evolution
of the individual particles, their interaction, and the scaling procedure. The
two famous classes of processes that are constructed according to this proce-
dure are the Dawson-Watanabe and the Fleming-Viot processes (see Ethier
and Krone [44]). If the measure V (t, dx) has a density v(t, x) with respect to
the Lebesgue measure, then the function v(t, x) is a solution of a stochastic
partial differential equation. For Dawson-Watanabe and Fleming-Viot pro-
cesses, the density exists only when x is one-dimensional (that is, particles
moving on the line). Examples of the equations satisfied by the corresponding
densities are

vt = vxx +
√
v Ẇ (t, x) (Dawson-Watanabe), (1.2.5)

vt = vxx +
√
v(1 − v) Ẇ (t, x) (Fleming-Viot). (1.2.6)

The particles that in the limit produce the process with density (1.2.5) move
as Brownian motions. Accordingly, the measure-valued process with density
(1.2.5) is known as the super-Brownian motion. Reimers [181] discusses
other examples leading to equations of the type vt = vxx + f(v) Ẇ (t, x).

Other particle systems on the line lead to other SPDEs. We mention two
example: the long-range contact process and the long-range voter process
(Muleller and Tribe [161]). In these models, the suitably re-scaled densities in
the limit satisfy

ut = uxx + u(1 − u) +
√
|u| Ẇ (t, x) (contact process),

ut = uxx + u(1 − u) +
√
|u(1 − u)| Ẇ (t, x) (voter process).

In all the above examples, the weights Aij are non-random. For examples
with random Aij see Kurtz and Xiong [122].
Distribution of diffusion processes. Let ξ be a Gaussian random vari-
able with zero mean and unit variance and let X = X(t) be the solution of
the stochastic ordinary differential equation driven by a standard Brownian
motion w:

dX(t) = −X(t)dt+
√

2 dw(t), X(0) = 0. (1.2.7)

Since X is a Gaussian process and EX2(t) = 1−e−t, it follows that, as t→ ∞,
the random variable X(t) converges in distribution to ξ.

More generally, for a suitable function V = V (x), x ∈ R
d, the solution

X = (X1, . . . , Xd) of the system of stochastic equations

dXi(t) = − ∂V

∂xi

(
X(t)

)
dt+

√
2 dwi(t), (1.2.8)

with arbitrary initial condition and independent standard Brownian motions
wi, converges in distribution to an R

d-valued random variable with the proba-
bility density function p(x) = ce−V (x), where c is a normalizing constant; see,
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for example, Robert and Casella [182, Section 7.8.5]. Note that (1.2.7) is a par-
ticular case of (1.2.8), with d = 1 and V (x) = x2/2, x ∈ R. For complicated
functions V , numerical solution of equation (1.2.8) as a way of generating a
random variable with the probability density function p(x) = ce−V (x) could
be a viable practical alternative to the traditional inverse transformation or
acceptance-rejection methods [182, Chapter 2].

Now instead of a random variable we consider a continuous Gaussian pro-
cess ξ = ξ(t), 0 ≤ t ≤ 1, defined by the equation

dξ(t) = aξ(t)dt+ dw(t), ξ(0) = 0, a ∈ R; (1.2.9)

ξ is also known as the Ornstein-Uhlenbeck process. It is a random element
with values in a suitable function space H , for example, H = L2((0, 1)), and
generates a measure Pξ in that space:

Pξ(A) = P
(
ξ(·) ∈ A

)
, A ⊂ H.

We just saw how distribution of a random vector can appear as a limiting
distribution of the solution of a stochastic ordinary differential equation. It
turns out that the distribution Pξ of a random process can appear as a limiting
distribution of the solution of a stochastic partial differential equation. Indeed,
let u = u(t, x) be the solution of

ut(t, x) = uxx(t, x) − a2u(t, x) +
√

2Ẇ (t, x), t > 0, x ∈ (0, 1), (1.2.10)

with zero initial condition u(0, x) = 0 and boundary conditions u(t, 0) = 0,
ux(t, 1) − au(t, 1) = 0. Then, as t → ∞, the distribution of u(t, ·) converges
to the distribution of ξ(·):

lim
t→∞

P
(
u(t, ·) ∈ A

)
= P

(
ξ(·) ∈ A

)
, A ⊂ L2((0, 1));

see Hairer et al. [65, Theorem 3.3]. Changing the boundary conditions in equa-
tion (1.2.10) leads to the distribution of various modifications of the process
ξ. For example, boundary conditions u(t, 0) = u(t, 1) = 0 correspond to the
Ornstein-Uhlebeck bridge, that it, the process ξ defined by (1.2.9) and
conditioned on coming back to zero at time t = 1: ξ(0) = ξ(1) = 0 (see [65,
Theorem 3.6]). Note that, unlike (1.2.9), equation (1.2.10) depends only only
|a|. This, in particular, implies that the Ornstein-Uhlebeck bridge obtained by
conditioning the stable Ornstein-Uhlebeck process dX(t) = −X(t)dt+ dw(t),
X(0) = 0, on coming back to zero at time t = 1 has the same distribution in
the space of continuous functions as the Ornstein-Uhlebeck bridge obtained by
conditioning the unstable Ornstein-Uhlebeck process dY (t) = Y (t)dt+dw(t),
Y (0) = 0, on coming back to zero at time t = 1.

Many other Gaussian and non-Gaussian diffusion processes can be inter-
preted as the stationary distribution of a suitable stochastic partial differential
equation. For details, see Hairer et al. [64, 65].
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Flows of stochastic diffemorphisms. Consider a stochastic ordinary dif-
ferential equation in R

d:

Xi(t) = xi +

∫ t

0

bi(s,X(s))ds+

m∑

k=1

σik(s,X(s))dwk(s), (1.2.11)

i = 1, . . . ,d, wk are independent standard Brownian motions. To simplify the
discussion, assume that all the functions bi = bi(t, x), σik = σi(t, x) are non-
random, bounded, infinitely differentiable in x, with all the derivatives also
bounded. Then, for every x ∈ R

d, equation (1.2.11) has a unique solution.
The difference between X as a random process and X as a flow is that, as

a flow (or dynamical system) the process X is studied for all initial conditions
x ∈ R

d. In other words, the flow is a random function X = X(t, x) of d + 1
variables. While equation (1.2.11) describes X(·, x) for each fixed x, behavior
of X as a function of x requires further investigation.

Uniqueness of solution implies that the trajectories of X(t, x) do not inter-
sect. In other words, for every t ≥ 0, the mapping x 7→ X(t, x) is one-to-one.
A natural question then is to describe the inverse mapping, which we denote
by Y (t, x), such that X(t, Y (t, x)) = x for all t and x. It turns out that the
individual components Yℓ, ℓ = 1, . . . ,d of the function Y satisfy stochastic
partial differential equations

Yℓ(t, x) = xℓ +

∫ t

0

(
d∑

i,j=1

m∑

k=1

σik
∂

∂xi

(
σjk

∂Yℓ
∂xj

)

− 1

2

d∑

i,j=1

∑

k≥1

σikσjk
∂2Yℓ
∂xi∂xj

−
d∑

i=1

bi
∂Yℓ
∂xi

)
ds

−
∫ t

0

ℓ∑

k=1

d∑

i=1

σik
∂Yℓ
∂xi

dwk(s).

(1.2.12)

We will discuss this result below (see Theorem 4.4.18 on page 202).

1.2.3 Economics and Finance

The main application of SPDEs in this area is to modeling term structure of
interest rates. The starting point is the Heath-Jarrow-Morton (HJM) model
of bond prices. Musiela’s formulations of the model replaces time of maturity
with time to maturity and results in the first-order hyperbolic equation

ut = ux + a(t, x) +
∑

k≥1

σk(t, x)ẇk(t), (1.2.13)

where wk, k ≥ 1 are independent standard Brownian motions and the func-
tions σk and a are related through the HJM no-arbitrage condition. For de-
tails, see Carmona and Tehranchi [21, Section 2.4]. Various modifications of
(1.2.13) have been suggested, such as a parabolic version (Cont [29]):
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ut = uxx + ux + a(t, x) +
∑

k≥1

σk(t, x)ẇk(t),

and a second-order hyperbolic version (Santa-Clara and Sornette [190]):

utt + ut = uxx + ux + a(t, x) +
∑

k≥1

σk(t, x)ẇk(t).

1.2.4 Engineering

We discuss two applications: (a) Nonlinear filtering of diffusion processes; (b)
Simulated annealing in shape optimization.

Nonlinear filtering. Although stated in purely mathematical terms, nonlin-
ear filtering is part of any problem with incomplete information and nonlinear
sensors. Nonlinear filtering was also one of the main early incentives for the
development of the theory of SPDEs.

The statement of the problem is as follows. Consider two diffusion pro-
cesses (X,Y ) defined by

Ẋi(t) = bi(t,X(t)) +

m∑

ℓ=1

σiℓ(t,X(t)) ˙̃wℓ(t)

Ẏk(t) = h(t,X(t)) + ẇk(t),

(1.2.14)

where 0 < t ≤ T , i = 1, . . . ,d, k = 1, . . . , n, wk, w̃ℓ are independent standard
Brownian motions, X(0) ∈ R

d is a random variable independent of wk, w̃ℓ,
Y (0) = 0. Thinking of X as an unobservable process and Y as observations,
the filtering problem is to find the conditional distribution of X(t) given
the observations Y (s), s ≤ t. The problem is called nonlinear because equa-
tions (1.2.14) are nonlinear.

Define aij(t, x) =
∑

ℓ σiℓ(t, x)σjℓ(t, x). Under some regularity conditions
on the coefficients in (1.2.14),

P
(
X(t) ∈ G|Y (s), 0 ≤ s ≤ T

)
=

∫
G
u(t, x)dx∫

Rd u(t, x)dx
,

where the function u = u(t, x) satisfies

ut =

d∑

i,j=1

∂2
(
aiju

)

∂xi∂xj
−

d∑

i=1

∂
(
biu
)

∂xi
+

n∑

k=1

hk u Ẏk;

the initial condition u(0, x) is the distribution density of X(0). Later, we es-
tablish a much more general result (Theorem 4.4.27 on page 215).
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Simulated annealing in shape optimization. In shape optimization prob-
lems, the objective is to find the global extremal of a functional defined on
the set of shapes (curves or surfaces). In this context, simulated annealing
refers to a randomization procedure intended to prevent the corresponding
optimization algorithm from getting stuck at a local extremum.

While randomizing a point in a Euclidean space means adding a random
number, randomizing a curve or a surface is less straightforward. Let us as-
sume that the curve or surface S = S(t) in question is a level set of a function
u = u(t, x):

S(t) = {x : u(t, x) = c}
for a fixed number c in the range of the function u. If x = x(t) is a position
vector of a point on S(t), then

d

dt
u
(
t, x(t)

)
= 0, or ut +

∑

i

uxiẋi(t) = 0, or

or
ut + ∇u · ẋ(t) = 0. (1.2.15)

We will take for granted that the standard procedure to perturb S(t) is to
move every point of S in the direction that is normal (perpendicular) to S
at that point; we also assume that S is smooth enough to have the normal
direction at every point. We know from calculus that the normal direction at
a point on a level curve is along the gradient of the function at that point.
That is,

ẋ(t) = b
(
t, x(t)

) ∇u(t, x(t))
|∇u(t, x(t))| ,

with a scalar function b representing the (signed) speed. Together with
(1.2.15), we get ut = −b|∇u|, or, writing f = −b,

ut = f(t, x)|∇u|. (1.2.16)

It is now clear that a random evolution of a curve will correspond to a stochas-
tic version of (1.2.16). This was the idea of Juan et al. [94], who argued that

• the noise should be regular in space, not to destroy the original shape;
• the resulting stochastic equation must be interpreted in the Stratonovich

sense, to preserve invariance of the time evolution under smooth transfor-
mations and to ensure well-posedness of the equation.

In [94], Juan et al. suggested the following equation for random evolution of
a level set:

ut = f(t, x)|∇u| +
n∑

k=1

σk(t, x)|∇u| ◦ ẇk(t), (1.2.17)

where the functions σk are smooth and compactly supported in x and wk, k ≥
1 are independent standard Brownian motions. The numerical experiments
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in [94] show improvement of the resulting randomized algorithms for shape
recognition, when compared to corresponding non-randomized algorithms.

Solvability issues for fully nonlinear equations such as (1.2.17) were studied
by P-L. Lions and Souganidis [127, 128, 129, 130].

1.2.5 Physics

With many deterministic PDEs coming from physical models, it is natural that
many stochastic partial differential equations have connections with physics
as well.

To introduce some of the terminology, let us consider three basic evolution
equations:

• The heat equation ut = ∆u+ f(t, x);
• The Schrödinger equation iut + ∆u+ V (t, x)u = 0;
• The wave equation utt = ∆u+ f(t, x).

The term f = f(t, x) in the heat and wave equations is usually called the
(external) force, even though in the case of the heat equation f represents
the external sources of heat. The function V = V (t, x) in the Schrödinger
equation is called potential because it is related to the potential energy of the
moving particle (the Laplace operator ∆ corresponds to the kinetic energy).
Just as with the force, the term potential is used for all other equations
where the term V (t, x)u might appear. For example, we can talk about heat
equation with a potential: ut = uxx + V (t, x)u even if there is no immediate
connection with potential energy. Moreover, terms of the form f(t, x, u) are
also sometimes called a (non-linear) potential.

There are two ways to get a stochastic partial differential equation from a
physical model described by a deterministic equation:

• direct randomization of the components of the equation;
• randomization at an earlier stage of the derivation of the equation.

The direct randomization approach works as follows: given a deterministic
equation, we introduce randomness by considering random driving force, ran-
dom potential, random initial and boundary conditions, etc. This randomness
may or may not make sense from the physical point of view, but the resulting
equation is usually an interesting mathematical object to study. The most
direct way is to add the term

(
f(t, x, u)+g(t, x)

)
Ṅ(t, x) to the equation, with

Ṅ representing the noise. The easiest choice is f = 0 and g = 1. If the posi-
tivity of the solution must be preserved, then the easiest choice is the random
potential uṄ , corresponding to f(t, x, u) = u and g = 0.

The most popular random perturbation Ṅ is Gaussian white noise Ẇ .
Other options are colored-in-space Gaussian noise ẆQ, fractional Gaussian
noise, and Lévy noise.

Applying this approach to the three deterministic equations (heat, Schrö-
dinger, wave), we easily get six stochastic counterparts:
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ut = ∆u+ Ẇ (t, x), iut + ∆u+ uẆ (t, x) = 0,

utt = ∆u+ Ẇ (t, x), ut = ∆u+ uẆ (t, x),

iut + ∆u = Ẇ (t, x), utt = ∆u+ uẆ (t, x).

Here are some other popular equations coming from physical models:

1. Reaction-diffusion equation ut = ∆u+ f(u). In particular,
• Kolmogorov-Petrovskii-Piskunov-Fisher equation, corresponding to
f(u) = u(1 − u); this equation can also go under the names KPPF,
Kolmogorov-Petrovskii-Piskunov, and KPP.
• Allen-Cahn equation, corresponding to f(u) = F ′(u) (that is, f is a
derivative of some other function; in the original model of S. M. Allen and
J. W. Cahn, F (u) = −(u2 − 1)2/4).

2. Equations coming from gas and fluid mechanics:
• Burgers equation ut + uux = uxx;
• Navier-Stokes equations

∂ui
∂t

+

d∑

j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
, i = 1, . . . ,d (1.2.18)

d∑

i=1

∂ui
∂xi

= 0, (1.2.19)

with unknowns u1, . . . , ud (components of the velocity field) and the pres-
sure p;
• Euler equations: same as (1.2.18), (1.2.19), but with ν = 0 in (1.2.18);
• Korteweg-de Vries (KdV) equation ut + uux + uxxx = 0;
• Camassa-Holm equation (u− uxx)t + uux + ux = uxuxx + uuxxx.

3. Equations coming from quantum physics
• Ginzburg-Landau equation ut = ∆u+ u− |u|2u;
• Gross-Pitaevskii equation iut = −∆u+ |u|2u.

4. Other equations:
• (Generalized) porous medium equation ut = ∆

(
f(u)

)
or, equivalently,

ut = div
(
f ′(u)gradu

)
; the original porous medium equation corresponds

to f(u) = uγ , γ > 0; the heat equation is a particular case with f(u) = u.
• Kuramoto-Sivashinsky equation ut = −∆2u − ∆u − |∇u|2, where
∆2f = fx1x1x1x1 + fx2x2x2x2 + . . . ; |∇f |2 = f2

x1
+ f2

x2
+ . . . .

• Cahn-Hillard equation ut = −∆2u+ ∆
(
F ′(u)

)
; in the original model

of J. W. Cahn and J. E. Hillard, F (u) = −(u2 − 1)2/4.

In all the above equations we scaled out most real-valued physical and math-
ematical constants to 1.

In the analysis of a physical model, the general philosophy is that at the
microscopic level of individual particles (atoms, molecules, etc.) the sys-
tem is inherently random, because of the quantum effects and/or because of
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the multiple collisions between the individual particles. The huge numbers of
particles make the overall system effectively untractable, and the idea is to
re-scale the system and pass to the limit.

At the macroscopic level [the objects we can see with a naked eye; math-
ematically, this is the scaling corresponding to the law of large numbers] the
randomness at the microscopic level averages out and leads to the correspond-
ing deterministic PDE (or an ODE) describing the system [an example would
be a derivation of the heat equation from a random walk model].

In between the microscopic and macroscopic levels, there is the meso-
scopic level [the objects visible in the optical microscope; mathematically,
this is the scaling corresponding to the central limit theorem]. At this level,
the microscopic random effects average out enough to be tractable but do not
disappear completely [an example is the original Brownian motion of pollen
particles suspended in liquid, as observed in 1827 by the Scottish botanist
Robert Brown (1773–1858)]. Thus, a careful passage to the limit from the
microscopic to mesoscopic level can lead to a stochastic differential equation,
either ordinary or with partial derivatives. The Kardar-Parisi-Zhang (KPZ)

equation [99] is an example:

ut = ∆u+ |∇u|2 + Ẇ (t, x).

A similar equation was suggested by Sandow and Trimper [189]:

ut = ∆u+
√

1 + |∇u|2 + Ẇ (t, x).

For more examples of this type, see Bertini and Giacomin [10].
For a detailed description of the transition from microscopic to mesoscopic

to macroscopic levels, see Kotelenez [109]. For an idea how the method works
at the macroscopic level, see L. Erdős et all. [42, 43] for a derivation of the
(deterministic) Gross-Pitaevskii equation from several microscopic models.

It is possible to introduce randomness at a later stage of the derivation
of the macroscopic limit. For example, re-tracing the derivation of the heat
equation leads to a more general form:

ut = div
(
a(t, x)gradu

)
+ f(t, x),

where div and grad denote the divergence and the gradient, respectively, and
(assuming inhomogeneous, non-stationary, but isotropic medium) the scalar
function a = a(t, x) is the thermal conductivity of the medium [for an inho-
mogeneous, non-stationary anizotropic medium the coefficient a = a(t, x) is
a tensor field]. Now, making a random leads to another interesting class of
SPDEs. The straightforward randomization of a, a(t, x) = a0 + εẆ (t, x), can
have some physical sense if ε is small compared to a0, but presents major an-
alytical problems. To keep a positive, one can try a(t, x) = a0 exp

(
εẆQ(t, x)

)

or, with some extra effort, a(t, x) = a0 exp
(
εẆ (t, x)

)
.
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As another example, Mikulevicius and Rozovskii [158] derive a stochas-
tic version of the Navier-Stokes equations (1.2.18), (1.2.19) by considering
random trajectories of individual particles in the flow. The resulting random
perturbation in (1.2.18) is

( d∑

j=1

σij(t, x)
∂ui
∂xj

− ∂p̃

∂xi

)
Ẇ (t, x).

1.2.6 Literature

Below is a brief survey of some of the major publications related to SPDEs.
The publications, mostly books, are separated into four groups:

[A ] Classical references;
[B ] Textbooks;
[C ] Specialized;
[D ] Everything else.

This classification is certainly incomplete and subjective, and should be mostly
considered an invitation to the reader to come up with something better.

Group A includes two books (Da Prato and Zabczyk [30], recently ap-
pearing as the second edition, and Rozovskii [186]), a long paper by Krylov
and Rozovskii [119], and lecture notes by Walsh [209]. Most SPDE-related
publications over the past 20 years cite at least one of these references.

Group B includes publications that can be (and often have been) used to
teach a class on SPDEs: the books by Chow [23], Gawarecki and Mandrekar
[54], Kallianpur and Xiong [97], Prévôt and Röckner[178]; a collection of pa-
pers from a summer school [32], and (for now, unpublished) lecture notes by
Hairer [63].

Group C is the biggest and included various research monographs and
edited volumes on the subject of SPDEs; just as all other lists, it is far from
complete: Blömker [12] on amplitude equations for SPDEs, a collection of six
major papers on SPDEs [20], Da Prato and Zabczyk [31] on ergodicity of
stochastic evolution equations, Flandoli [47] on flows for parabolic SPDEs,
Grecksch and Tudor [58] on certain approximation problems for stochastic
evolution equations, Holden, Øksendal, Ubøe, and Zhang on chaos solutions
of SPDEs, Jentzen and Kloeden [92] on numerical methods, Kotelenez [109]
on S(P)DEs as mesoscopic limits of microscopic systems, Liu [136] on stability
of SPDEs, Métivier [155] on strongly non-linear SPDEs, Peszat and Zabczyk
[173] on evolution equations driven by Lévy noise, Rozanov [185] on elliptic
SPDEs, Sanz-Solé [191] on Malliavin calculus for SPDEs.

Group D includes books where SPDEs appear in at least one chapter,
although not necessarily as the central topic: Carmona, R. A. and Tehranchi
[21] on interest rate theory, Khoshnevisan [102] on multi-parameter processes,
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Kunita [120] on stochastic flows, Nualart [166] [a standard general reference]
on Malliavin calculus, Omatu and Seinfeld [170] on distributed-parameter
systems, as well as books on optimal non-linear filtering, such as Bain and
Crisan [4], Kallianpur [96], and Xiong [214].
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Basic Ideas

2.1 Some Useful Facts

2.1.1 Continuity of Random Functions

Given a probability space (Ω,F ,P) and two measurable spaces, (A,A) and
(B,B), a random functionX is a (measurable) mapping from (A×Ω,A×F)
to (B,Y). In the traditional terminology, the random process corresponds
to A,B ⊂ R; a random field corresponds to A = R

d, B = R. A sample

path, or sample trajectory of X is the function X(·, ω) for fixed ω ∈ Ω.
A modification of X is a random function X̄ such that, for every a ∈ A,
P
(
X(a) = X̄(a)

)
= 1; note that this, in general, DOES NOT mean that

P
(
X(a) = X̄(a) for all a ∈ A

)
= 1 (although it does if both X and X̄ are

continuous.)
Many results about random functions state that, under certain conditions,

X has a modification with some good properties; sometimes, a different no-
tation is used for the modification, sometimes not. Keeping in mind that one
could consider the particular modification of X from the very beginning, we
will not distinguish between different modifications of a random function.

When both A and B are metric spaces, it is natural to study the continuity
properties of the sample trajectories. In the case A = R

d, the basic result is
commonly known as Kolmogorov’s continuity criterion, named after the
Russian mathematician Andrey Nikolaevich Kolmogorov (1903–1987).

We start with the easiest version, when X is a random process and A =
[0, T ].

Theorem 2.1.1 (Kolmogorov’s Continuity Criterion, part I). Let T
be a positive real number and X, a real-valued random process on [0, T ]. If
there exists a positive number C > 0, a positive number p > 1, and a positive
number q ≥ p such that, for all t, s ∈ [0, T ],

E|X(t) −X(s)|q ≤ C|t− s|p, (2.1.1)
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then (there is a modification of X such that) the sample trajectories are Hölder
continuous of every order less than (p−1)/q. More precisely, if (2.1.1) holds,
then, for every γ < (p − 1)/q, there exists a random variable η such that
P(0 < η <∞) = 1 and, for all t, s ∈ [0, T ],

|X(t) −X(s)| ≤ η |t− s|γ (with probability one).

Moreover, if E|X(t0)|q <∞ for some t0 ∈ [0, T ], then

E sup
t∈[0,T ]

|X(t)|q <∞.

Proof. This is a particular case of the two more general results, presented
below. For a direct proof, see Karatzas and Shreve [98, Theorem 2.2.8]. Also,
remember that we do not distinguish between the different modifications of
X , and will not mention the modifications in the future.

Recall that a process X is called Gaussian if
∑N

k=1 akX(tk) has normal
distribution for all ak ∈ R, tk ∈ [0, T ] and N ≥ 1). For such processes, it is
enough to consider (2.1.1) with p = 2.

Corollary 2.1.2. Assume that the process X is zero-mean (EX(t) = 0, t ∈
[0, T ]) and Gaussian. Also assume that there exists an ε ∈ (0, 2) with the
following property: for every δ ∈ (0, ε) there exists a number C, depending on
δ such that, for all s, t ∈ [0, T ],

E|X(t) −X(s)|2 ≤ C|t− s|ε−δ. (2.1.2)

Then the trajectories of X are Hölder continuous of every order less than ε/2.

Proof. If ξ is a zero-mean Gaussian random variable, then, for every positive
integer n, direct computations show that

Eξ2n =
(

Eξ2
)n n∏

k=1

(2k − 1). (2.1.3)

Thus, (2.1.1) holds with q = 2n and p = n(ε− δ). Since n can be arbitrarily
large and δ arbitrarily close to 0, the result follows.

In the setting of Corollary 2.1.2, we say that X is almost Cε/2((0, T )).

Exercise 2.1.3 (A). (a) Verify(2.1.3).
(b) Verify that (2.1.1) cannot hold with q < p (unless X does not depend on
t).
(c) In Corollary 2.1.2, we assume that EX(t) = 0; in Theorem 2.1.1, assump-
tion EX(t) = 0 is not necessary. Why?
(d) State and prove a version of Corollary 2.1.2 without assuming EX(t) = 0.
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As an example of Corollary 2.1.2, the reader can investigate the fractional
Brownian motion.

Exercise 2.1.4 (B). A fractional Brownian motion with Hurst para-

meter H ∈ (0, 1) is a zero-mean Gaussian process wH = wH(t) with co-
variance

E
(
wH(t)wH(s)

)
=

1

2

(
t2H + s2H − |t− s|2H

)
. (2.1.4)

(a) Show that w1/2 = w (that is, fractional Brownian motion with Hurst
parameter H = 1/2 is the standard Brownian motion.

(b) Show that the trajectories of wH are Hölder continuous of every order
less than H . Hint. E|wH(t) − wH(s)|2 = |t − s|2H .

Theorem 2.1.1 continues to hold when X takes values in a Banach space.

Theorem 2.1.5 (Kolmogorov’s Continuity Criterion, part II). Let T
be a positive real number, V , a Banach space with norm ‖ · ‖V , and X, a
measurable mapping from [0, T ] × Ω to V . If there exists a positive number
C > 0, a positive number p > 1, and positive number q ≥ p such that, for all
t, s ∈ [0, T ],

E‖X(t) −X(s)‖qV ≤ C|t− s|p,
then the sample trajectories X = X(t) are Hölder continuous of every order
less than (p − 1)/q. More precisely, for every γ < (p − 1)/q, there exists a
random variable η such that, for all t, s ∈ [0, T ],

‖X(t) −X(s)‖V ≤ η |t− s|γ .

Moreover, if E‖X(t0)‖qV <∞ for some t0 ∈ [0, T ], then

E sup
t∈[0,T ]

‖X(t)‖qV <∞.

Proof. See Kunita [120, Theorem 1.4.1].

Corollary 2.1.6. Let X be a zero-mean Gaussian process with values in V ,
that is,

∑N
k=1 ℓk(X(tk)) is a Gaussian random variable for all N ≥ 1, tk ∈

[0, T ], and bounded linear functionals ℓk on V . Assume that there exists an
ε ∈ (0, 2) with the following property: for every δ ∈ (0, ε) there exists a number
C, depending on δ such that, for all s, t ∈ [0, T ],

E‖X(t) −X(s)‖2
V ≤ C|t− s|ε−δ. (2.1.5)

Then the trajectories of X are Hölder continuous of every order less than ε/2.

Finally, we state the result for real-valued random fields.
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Theorem 2.1.7 (Kolmogorov’s Continuity Criterion, part III). Let
L > 0 be non-random, G = (0, L)d, a hype-cube in R

d, and X, a measurable
mapping from G×Ω to R. If there exists a positive number C > 0, a positive
number p > d, and positive number q ≥ p such that, for all x, y ∈ G,

E|X(x) −X(y)|q ≤ C

(
d∑

i=1

|xi − yi|2
)p/2

,

then the sample trajectories X = X(t) are Hölder continuous of every order
less than (p − d)/q. More precisely, for every γ < (p − d)/q, there exists a
random variable η such that, for all x, y ∈ [0, L]d,

|X(x) −X(y)| ≤ η

(
d∑

i=1

|xi − yi|2
)γ/2

.

Moreover, if E|X(x∗)|p <∞ for some x∗ ∈ G, then

E sup
x∈G

|X(x)|p <∞.

Proof. See Walsh [209, Corollary 1.2]. Note that, while X can be defined in
an arbitrary region in R

d, the result about Hölder continuity is stated in the
hyper-cube G. There is no loss of generality here, as long as the domain of X
is a bounded open set with a sufficiently smooth boundary.

As in the previous two cases, we have a special version when X is a zero-
mean Gaussian field; notice that the result in this case does not depend on
the dimension d of G.

Corollary 2.1.8. Assume that EX(x) = 0, x ∈ G and
∑N

k=1 akX(xk) is
Gaussian for all ak ∈ R, xk ∈ G and N ≥ 1. Suppose there exists an ε ∈ (0, 2)
with the following property: for every δ ∈ (0, ε) there exists a number C,
depending on δ such that, for all x, y ∈ G,

E|X(x) −X(y)|2 ≤ C|x − y|ε−δ. (2.1.6)

Then the trajectories of X are Hölder continuous of every order less than ε/2.

In the setting of Corollary 2.1.8, we say that X is almost Cε/2(G).
In the next two exercises, the reader is invited to apply Corollary 2.1.8 to

two particular Gaussian fields: the Brownian sheet and the Lévy Brownian
motion.

Exercise 2.1.9 (C). Consider the Brownian sheet W = W (t, x), t ∈ [0, 1],
x ∈ [0, π]:

W (t, x) =

√
2

π

∑

k≥1

(∫ x

0

sin(ky)dy

)
wk(t). (2.1.7)

Verify that the trajectories of W are Hölder continuous of order less than 1/2
in both t and x.
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Exercise 2.1.10 (B). The Lévy Brownian motion on R
d, d ≥ 2, is, by defi-

nition, a zero-mean Gaussian field L = L(x), x ∈ R
d, such that L(0) = 0 and

E(L(x) − L(y))2 = |x− y|. This random field was introduced in the 1940s by
the French mathematician Paul Pierre Lévy (1886–1971) as an extension
of the standard Brownian motion to a multi-dimensional time parameter [125,
Chapter VIII]. Verify that E

(
L(x)L(y)

)
= (|x|+ |y| − |x− y|)/2 and that the

trajectories of L are Hölder continuous of every order less than 1/2.

Theorems 2.1.1, 2.1.5, and 2.1.7 are enough for our purposes, but the
story about Kolmogorov’s criterion does not end here. In particular, the
result of Kunita [120, Theorem 1.4.1] provides even more general version
of the continuity criterion: for the Banach space-valued random functions
X = X(ω, x), x ∈ R

d; the result of Walsh [209, Corollary 1.2] provides a
more precise bound on |X(x) −X(y)| in the setting of Theorem 2.1.7.

2.1.2 Connection Between the Itô and Stratonovich Integrals

Recall that if w = w(t) is a standard Brownian motion (or Wiener process),
then

∫ T

0

w(s)dw(s) =
w2(T ) − T

2
(Itô ) (2.1.8)

∫ T

0

w(s) ◦ dw(s) =
w2(T )

2
(Stratonovich). (2.1.9)

Even though most of the time in this book we will be using the Itô integral,
in what follows we briefly review the Stratonovich integral (also known as
Fisk-Stratonovich integral).

Let T > 0 be fixed and non-random, and let A,B, P,Q be adapted pro-
cesses such that

E

∫ T

0

(
|A(t)| + |P (t)| +B2(t) +Q2(t)

)
dt <∞.

Consider two processes X and Y defined for 0 ≤ t ≤ T by

X(t) = X0 +

∫ t

0

A(s)ds+

∫ t

0

B(s)dw(s),

Y (t) = Y0 +

∫ t

0

P (s)dt+

∫ t

0

Q(s)dw(s),

(2.1.10)

and let

〈X,Y 〉(t) =

∫ t

0

B(s)Q(s)ds.

Also, recall the notation
a ∧ b = min(a, b).
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Given a non-random partition 0 = t1 < t2 < . . . < tN = T of the interval
[0, T ], let △N = maxk

(
tk+1−tk

)
. Recall that the Itô integral

∫ t
0 X(s)dY (s)

is defined by

∫ t

0

X(s)dY (s) = lim
△N→0

∑

k

X(tk)
(
Y (tk+1 ∧ t) − Y (tk ∧ t)

)
,

where the limit is in probability (Protter [179, Theorem II.21]). This integral
is named after the Japanese mathematician Kiyosi Itô (1915–2008), who
introduced it in 1944 [85].

It is possible to show that each of the following can be taken as the defi-
nition of the Stratonovich integral

∫ t
0
X(s) ◦ dY (s), 0 ≤ t ≤ T :

∫ t

0

X(s) ◦ dY (s) = lim
△N→0

∑

k

X(tk+1) +X(tk)

2

(
Y (tk+1 ∧ t) − Y (tk ∧ t)

)
;

∫ t

0

X(s) ◦ dY (s) = lim
△N→0

∑

k

X

(
tk+1 + tk

2

)(
Y (tk+1 ∧ t) − Y (tk ∧ t)

)
;

∫ t

0

X(s) ◦ dY (s) =

∫ t

0

X(s)dY (s) +
1

2
〈X,Y 〉(t), (2.1.11)

where the limits are in probability. For details, see Protter [179, Theorems
V.26 and V.30]. The integral is named after the Soviet scientist Ruslan
Leont’evich Stratonovich (1930–1997), who described it in 1964 [196].
It was also discovered independently by D. L. Fisk, but only appeared as a
part of his Ph.D. dissertation, written in 1964 under Herman Rubin at the
Department of Statistics, Michigan State University. For more details about
the history of stochastic calculus, see the paper by Jarrow and Protter [90].

Note that
∫ t
0 X(s) ◦ dY (s) =

∫ t
0 X(s)dY (s) when 〈X,Y 〉 = 0, which is the

case, for example, if either B = 0 or Q = 0, that is, either X or Y has no
martingale component.

The Stratonovich integral appears naturally in the following situation.
Suppose that the trajectories of the Brownian motion are approximated by
piece-wise continuously-differentiable functions wn = wn(t) so that

lim
n→∞

sup
0<t<T

|wn(t) − w(t)| = 0

with probability one. Consider the ordinary differential equation

dXn(t)

dt
= b
(
t,Xn(t)

)
+ σ

(
t,Xn(t)

)dwn(t)

dt
, Xn(0) = x.

By a result of Wong and Zakai [213], limn→∞ sup0<t<T |Xn(t)−X(t)| = 0 with
probability one, where X is the solution of the stochastic ordinary differential
equation in the Stratonovich form:
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dX(t) = b
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
◦ dw(t), X(0) = x.

The connection between the stochastic differential equations in the Itô and
Stratonovich forms is as follows.

Theorem 2.1.11. If X = X(t) satisfies

dX(t) = b
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
◦ dw(t),

and the function σ = σ(t, x) is continuously differentiable in x for all t, then
X satisfies

dX(t) = b
(
t,X(t)

)
dt+

1

2
σ
(
t,X(t)

)
σx
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dw(t).

Exercise 2.1.12 (B). Use (2.1.11) to prove Theorem 2.1.11. Hint. At least
when σxx exists, we have, by the Itô formula,

dσ(t,X(t)) = A(t)dt + σx(t,X(t))σ(t,X(t))dw(t),

and so
〈
σ(·, X(·)), w

〉
(t) =

∫ t

0
σx(s, X(s))σ(s,X(s))ds.

2.1.3 Random Change of Variables in Random Functions

As a motivation, we consider the following example. Let v = v(t, x), t > 0,
x ∈ R, be a smooth solution of the heat equation

vt(t, x) =
1

2
vxx(t, x); (2.1.12)

as usual, vt = ∂v/∂t, vxx = ∂2v/∂x2.
Let w = w(t) be a standard Brownian motion and define the function

u(t, x) = v(t, x+ w(t)). By the Itô formula, for every x ∈ R,

du(t, x) = vt
(
t, x+ w(t)

)
dt+ vx

(
t, x+ w(t)

)
dw(t) +

1

2
vxx
(
t, x+ w(t)

)
dt.

By (2.1.12),

vt(t, x+ w(t)) =
1

2
vxx
(
t, x+ w(t)

)
=

1

2
uxx(t, x),

and we conclude that the function u = u(t, x) satisfies the stochastic equation

du(t, x) = uxx(t, x)dt + ux(t, x)dw(t). (2.1.13)

Let us now try to go in the opposite direction, and start with the function
u = u(t, x), a smooth solution of (2.1.13). Next, define the function v =
v(t, x) by v(t, x) = u(t, x−w(t)). By construction, the function v must satisfy
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(2.1.12). On the other hand, if we apply the usual Itô formula to the function
u(t, x− w(t)), we get

dv = utdt− uxdw +
1

2
uxxdt, or vt =

3

2
vxx (!?!) (2.1.14)

The apparent difference between (2.1.12) and (2.1.14) suggests that the Itô
formula must be modified when the function is itself random: there could be
some interaction between the Wiener process in the argument of the function
u and the (same) Wiener process in the differential of the function. The cor-
responding modification is known as the generalized Itô formula or Itô

-Wentzell formula.

Theorem 2.1.13 (Itô -Wentzell formula, I). If dY (t) = b(t)dt+σ(t)dw(t)
and dF (t, x) = J(t, x)dt + H(t, x)dw(t), then, assuming all the necessary
smoothness of F and H,

dF
(
t, Y (t)

)
= J

(
t, Y (t)

)
dt+H

(
t, Y (t)

)
dw(t)

+ Fx
(
t, Y (t)

)(
b(t)dt+ σ(t)dw(t)

)
+

1

2
σ2(t)Fxx

(
t, Y (t)

)
dt

+Hx

(
t, Y (t)

)
σ(t)dt.

(2.1.15)

Proof. See Kunita [120, Theorem 3.3.1] or Rozovskii [186, Theorem 1.4.9].
The reader can easily recover the proof from the following observation. With
△Y = Y (t+ △t) − Y (t), we have

F
(
t+ △t,Y (t) + △Y ) − F (t, Y (t)

)

=
(
F
(
t+ △t, Y (t)

)
− F

(
t, Y (t)

))

+ F
(
t+ △t, Y (t) + △Y

)
− F

(
t+ △t, Y (t)

)
;

F
(
t+ △t,Y (t) + △Y

)
− F

(
t+ △t, Y (t)

)

≈ Fx
(
t+ △t, Y (t)

)
△Y +

1

2
Fxx

(
t+ △t, Y (t)

)
(△Y )2

Fx
(
t+ △t,Y (t)

)
△Y = Fx

(
t, Y (t)

)
△Y + △Fx△Y ;

remember that △F ∼ △Fx ∼ △Fxx ∼ △Y ∼ √△t. In the limit △t → dt,
the term △Fx△Y becomes Hx

(
t, Y (t)

)
σ(t)dt. That is, we have to distinguish

between Fx
(
t, Y (t)

)
△Y and Fx

(
t+ △t, Y (t)

)
△Y .

It is possible to write (2.1.15) in a more compact form. For two pro-

cesses X(t) = X0 +
∫ t
0 A(s)ds +

∫ t
0 B(s)dw(s) and Y (t) = Y0 +

∫ t
0 P (s)ds +∫ t

0 Q(s)dw(s) (see (2.1.10) on page 27), we define

〈X,Y 〉(t) =

∫ t

0

B(s)Q(s)ds,
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the cross variation of the martingale components of X and Y . Then

J
(
t, Y (t)

)
dt+H

(
t, Y (t)

)
dw(t) = dF (t, x)

∣∣∣
x=Y (t)

,

Fx
(
t, Y (t)

)(
b(t)dt+ σ(t)dw(t)

)
+

1

2
σ2(t)Fxx

(
t, Y (t)

)
dt

= Fx
(
t, Y (t)

)
dY (t) +

1

2
Fxx

(
t, Y (t)

)
d〈Y 〉(t),

Hx

(
t, Y (t)

)
σ(t)dt = d〈Fx, Y 〉(t),

and (2.1.15) becomes

dF
(
t, Y (t)

)
= dF (t, x)

∣∣∣
x=Y (t)

+ Fx
(
t, Y (t)

)
dY (t) +

1

2
Fxx

(
t, Y (t)

)
d〈Y 〉(t)

+ d〈Fx, Y 〉(t);

(2.1.16)

the last term, d〈Fx, Y 〉(t), represents the interaction between the randomness
in F and Y .

Example 2.1.14. If du(t, x) = 1
2uxxdt+uxdw(t), then dux = 1

2uxxxdt+uxxdw,
d〈ux, w〉(t) = uxxdt, and, for v(t, x) = u(t, x − w(t)), (2.1.16) becomes dv =
du− uxdw(t) + 1

2uxxdt− uxxdt = 1
2vxxdt, which now agrees with (2.1.12).

Exercise 2.1.15 (C). Let du = auxxdt + σuxdw(t) and, for b ∈ R, define
v(t, x) = u(t, x+ bw(t)). Find the equation satisfied by v and find b for which
the equation is deterministic. What is the relation between a and b to en-
sure that the equation for v is well-posed? Hint. b = −σ makes the equation

deterministic; the equation is well-posed if a ≥ b2/2.

A multi-dimensional version of (2.1.15) also exists.

Theorem 2.1.16 (Itô-Wentzel Formula, II). If dY (t)=b(t)dt+σ(t)dW (t)
and dF (t, x) = J(t, x)dt + H(t, x)dW (t), where x ∈ R

d, Y ∈ R
d, W ∈ R

m

(m-dimensional Wiener process with independent components), σ ∈ R
d×m,

H ∈ R
m, F ∈ R, then, assuming all the necessary smoothness of F and H

and writing Di = ∂/∂xi,

dF
(
t, Y (t)

)
= dF (t, x)

∣∣∣
x=Y (t)

+
d∑

i=1

DiF
(
t, Y (t)

)
dYi(t) +

1

2

d∑

i,j=1

m∑

k=1

DiDjF
(
t, Y (t)

)
σik(t)σjk(t)dt

+

d∑

i=1

m∑

k=1

DiHk

(
t, Y (t)

)
σik(t)dt.
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Proof. See Kunita [120, Theorem 3.3.1] or Rozovskii [186, Theorem 1.4.9].

When the Stratonovich integral is used throughout, the rules of the clas-
sical calculus apply: for example, in the one-dimensional setting, if dY (t) =
b(t)dt+ σ(t) ◦ dw(t) and dF (t, x) = J(t, x)dt+H(t, x) ◦ dw(t), then

dF
(
t, Y (t)

)
= J

(
t, Y (t)

)
dt+H

(
t, Y (t)

)
◦dw(t)+Fx

(
t, Y (t)

)
◦dY (t); (2.1.17)

see Kunita [120, Theorem 3.3.2].
The original Itô formula goes back to the 1951 paper by K. Itô [87]. The-

orem 2.1.13 can be traced to a 1965 note [207] by Alexander Dmitrievich
Wentzell.1 In fact, the note is so short that it does not appear as a sepa-
rate paper in the journal, but as a part of the collection “Summary Of Papers
Presented At The Meetings Of The Probability And Statistics Section Of The
Moscow Mathematical Society.”

2.1.4 Problems

Problem 2.1.1. Let wHk , k ≥ 1, be a collection of independent fractional
Brownian motions with the same Hurst parameter H ∈ (0, 1) (see Exercise
2.1.4 on page 25). For t ≥ 0, x ∈ (0, π), define

BH(t, x) =

√
2

π

∑

k≥1

1 − cos(kx)

k
wHk (t).

What are the continuity properties of BH in t and x?

Problem 2.1.2. Similar to the previous problem, define

BH̄(t, x) =

√
2

π

∑

k≥1

1 − cos(kx)

k
wHk

k (t),

where the fractional Brownian motions wHk

k are independent but have different

Hurst parameters Hk. What are the continuity properties of BH̄ in t and x?

Problem 2.1.3. There are at least two objects that can be considered an
extension of the standard Brownian motion to a multi-parameter case:

1. the Brownian sheet W = W (x), x ∈ R
d, a zero-mean Gaussian field with

EW (x)W (y) =

d∏

i=1

min(xi, yi);

1 Ventzell and Ventzel are two of the several other possible spellings of the name.
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2. the Levy Brownian motion L = L(x), x ∈ R
d, a zero-mean Gaussian field

with

EL(x)L(y) =
1

2
(|x| + |y| − |x− y|) .

Indeed, if d = 1 and x, y ≥ 0, then EW (x)W (y) = EL(x)L(y) = min(x, y),
which is the covariance of the standard Brownian motion.

(a) Compare and contrast W and L when d ≥ 2;
(b) Think of another possible generalization by constructing a covariance

function C = C(x, y) on R
d×d such that C(x, y) = min(x, y) when d = 1 and

x, y ≥ 0.

2.2 Classification of SPDEs

As the name suggests, a stochastic partial differential equation (SPDE) is
an equation combining the features of equations with partial derivatives and
stochastic differential equations. In the most general sense, an SPDE is a
partial differential equation in which at least one of the following is random:
coefficients, initial conditions, boundary conditions, the region in which the
equation is considered, including the terminal time, and the driving force (free
term).

There are three main types of problems for SPDEs: forward problems,
inverse problems, and synthesis problems.

The forward problem is the study of the equation given the input data:
coefficients, initial conditions, boundary conditions, the region in which the
equation is considered (including the terminal time), and the driving force
(free term). The first question is well-posedness of the equation: existence,
uniqueness, and continuous dependence on the input data. Sometimes we
can do more and show that the equation establishes a homeomorphism (one-
to-one and onto mapping, continuous in both directions) between suitably
chosen spaces of the solution and the input data. Other questions include
Markov properties of the solution, properties of the solution as a random
variable (existence and regularity of the density and various statistical mo-
ments), asymptotic problems (small parameter: large deviations, averaging,
and homogenization; large time behavior: existence of attractors and invari-
ant measures, ergodicity, stability), fine properties of the sample paths (local
times, level sets, potential theory, small ball probabilities), and methods of
computing the solution numerically.

The inverse problems consist in determining (some of) the input data
from the observations of the solution of the equation. The solution of an inverse
problem is only possible for equations that are well-posed. In the stochastic
setting, inverse problems are usually solved using the methods of statistical
inference.

Examples of the synthesis problems are optimal filtering and optimal
control of processes governed by SPDEs.
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The emphasis of this book is on well-posedness of various equations: exis-
tence, uniqueness, and regularity of the solution.

2.2.1 SPDEs as Stochastic Equations

Recall that a processX = X(t), t ≥ 0, on a stochastic basis (Ω,F , {Ft}t≥0,P)
is called adapted if X(t) is Ft-measurable for every t ≥ 0. Note that this
definition implicitly assumes that the process is indexed by a scalar parameter,
which is interpreted as time.

A stochastic differential equation (SDE) describes an adapted sto-
chastic process with values in a finite-dimensional Euclidean space, and has
a finite-dimensional initial condition. This interpretation of an SDE excludes
delayed equations (in which the initial condition is a function), backward
equations (in which a forward-adapted process is determined by the terminal
rather than initial value), anticipating equations (in which the solution does
not have to be adapted), equations describing multi-parameter processes, and
ordinary differential equations in which the independent variable has no clear
direction (such as two-point boundary value problems).

A stochastic ordinary differential equation (SODE) is a particular example
of an SDE. More generally, an SDE can allow dependence of the coefficients
on all past history of the solution. Beside a formal generalization of the theory,
this dependence on the past history can be a useful alternative representation
of the equation. For example, the second-order equation Ẍ(t) + a2X(t) =
ẇ(t) (with ˙ denoting the derivative with respect to time and w, the standard
Brownian motion) can be interpreted as a system of two first-order SODEs:
dX = Y dt, dY = −a2Xdt + dw(t). Alternatively, the process Y (t) = Ẋ(t)
solves an SDE (but not an SODE)

dY (t) = −a2

(∫ t

0

Y (s)ds

)
dt+ dw(t);

this interpretation can be useful in the study of the measure generated by the
process Y in the space of continuous functions.

Stochastic partial differential equations do not need to involve time (for
example, stochastic elliptic equations, including two-point boundary value
problems on an interval). In evolution equations, the time is present and
is assumed to go forward; the solution is adapted and determined by the initial
conditions. We will not discuss either backward or delayed equations.

A general form of the deterministic partial differential equation is

F (u,Du,D2u, . . .) = 0

where F is some functional relation (which can include all the independent
variables) and Dku is a k-th order partial derivative of the unknown function
u. Accordingly, a general stochastic partial differential equation is
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F (u,Du,D2u, . . .) = G(u,Du,D2u, . . .) ·N, (2.2.1)

where F and G can now be random (that is, depend on ω ∈ Ω), N is the
noise term, and · represents the suitable operation of stochastic integration.
Sometimes, the left-hand side of (2.2.1) is called the deterministic part

of the equation and the right-hand side, the stochastic part. In stochastic
evolution equations

ut = F (u,Du,D2u, . . .) +G(u,Du,D2u, . . .) ·N, (2.2.2)

with Dku now representing only spacial derivatives, the terms deterministic
part and stochastic part usually refer to F and G ·N , respectively.

As stochastic equations, SPDEs can be classified according to the following
features:

1. the type of the noise entering the equation;
2. the manner the noise enters the equation;
3. the type of the stochastic integral.

Some of the popular types of noise are Gaussian white, Gaussian fractional,
Possion, and α-stable. In this book, we will mostly consider Gaussian white
noise.

The noise can enter the equation in two main ways: additively (that is,
when the function G in (2.2.1) and (2.2.2) does not depend on u or any of
Dku), or multiplicatively (otherwise). Accordingly, we talk about equations
with additive or multiplicative noise. In the special case, when both F and
G are linear, equations with multiplicative noise are called bi-linear. For
example, du(t, x) = u uxx(t, x)dt + e−x

2

dw(t) is an equation with additive
noise, and du(t, x) = uxx(t, x)dt+ ux(t, x)dw(t) is a bi-linear equation.

The main types of stochastic integrals that appear in SPDEs are

1. Itô;
2. Stratonovich;
3. Skorokhod;
4. Wick-Itô-Skorokhod.

The only consistent extension of the Lebesgue-Stieltjes integral to the stochas-
tic setting is the integral with respect to a semi-martingale; the result is known
as the Bichteler-Dellacherie theorem, see Protter [179, Section III.7]. In
other words, the only process with unbounded variation that can be an inte-
grator is a continuous martingale. For such integrators, there are essentially
two types of stochastic integrals: Itô and Stratonovich. The Skorokhod integral
is the extension of the Itô integral to anticipating (non-adapted) setting.

For objects that are not semi-martingales (for example, fractional Brown-
ian motion wH with H 6= 1/2, or random functions with no time parameter),
there are different possible definitions of the stochastic integral. A popular
option is the Wick-Itô-Skorokhod integral, which is based on the Wick product
and will be discussed later (see page 247).
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2.2.2 SPDEs as Partial Differential Equations

As partial differential equations, SPDEs can be classified according to the
following features:

1. the order of the equation;
2. the type of the nonlinearity in the equation;
3. the type of the initial and boundary conditions;
4. elliptic/hyperbolic/parabolic.

The order of an SPDE is the highest order of the partial derivative appear-
ing in the equation. This order can depend on the type of the stochastic inte-
gral used in the equation. For example, consider the first-order Stratonovich
equation

du(t, x) = ux(t, x) ◦ dw(t). (2.2.3)

If the solution u is a smooth function of x, then u also satisfies the Itô equation

du(t, x) =
1

2
uxxdt+ uxdw(t) (2.2.4)

which is second-order.

Exercise 2.2.1 (C). Verify that if uxx exists and is continuous, then equa-
tions (2.2.3) and (2.2.4) are equivalent. Hint. Use (2.1.11) on page 28. Note that

dux = uxx ◦ dw(t).

Classification by the type of nonlinearity is identical to the deterministic
setting (see Evans [45, Section 1.1]). Consider the equation

F (u,Du,D2u, . . .) = G(u,Du,D2u, . . .) ·N. (2.2.5)

Equation (2.2.5) is called linear, if the operators

u 7→ F (u,Du,D2u, . . .) and u 7→ G(u,Du,D2u, . . .) (2.2.6)

are linear. For example, equations du = uxxdt + dw(t) and du = uxxdt +
uxxdw(t) are linear.

Equation (2.2.5) is called semilinear if the operators (2.2.6) are linear in
the highest-order derivative, with the coefficients independent of u or any of
the derivatives of u, for example,

du = (uxx − u3)dt+ uuxdw(t)

(this equation is second-order, and the operator u 7→ G(u, ux, uxx) does not
depend on uxx at all).

Equation (2.2.5) is called quasilinear if the operators (2.2.6) are linear
in the highest-order derivative, but the coefficients are allowed to depend on
u and its lower-order derivatives, for example,
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du = (uxuxx − u3)dt+ uuxdw(t).

Equation (2.2.5) is called fully nonlinear if the dependence on the
highest-order derivative is nonlinear, for example,

du = u2
x ◦ dw(t).

For a more detailed discussion of this classification and numerous references,
see Kotelenez [109, Section 13.1].

The only difference from the deterministic setting is the use of the term
bilinear equation as an alternative name for a linear equation with multi-
plicative noise. For example, equation du = uxxdt+ uxdw(t) is bilinear. One
reason for this special terminology is that bilinear equations are much more
difficult to study than linear equations with additive noise. This difficulty
manifests in several ways, such as

1. The solution of a bilinear equation is not a Gaussian process, even if the
noise and the initial/boundary conditions are.

2. The fundamental solution of a bilinear equation is random, which com-
plicates the use of the variation of parameters formula (see Problem 2.2.2
on page 47).

3. The stochastic part can influence the deterministic part. For example,
initial-value problem for equation du = auxxdt + σuxdw(t) is well-posed
in L2(Ω × R) if and only if σ2 ≤ 2a (see Exercise 2.2.2).

Exercise 2.2.2 (C). Verify that the equation du = auxxdt + σuxdw(t) is
well-posed in L2(Ω×R) if and only if σ2 ≤ 2a. Hint. If u is a classical solution,
then its Fourier transform û(t, y) satisfies

dû(t, y) = −ay2û(t, y)dt + i σ û(t, y)dw(t),

or
û(t, y) = û(0, y) exp

(
− (2a − σ2)y2t/2 + i σw(t)

)
.

The terminology concerning initial and boundary value problems for
SPDEs is the same as for deterministic equations; the only difference is that
initial and boundary conditions can now be random. The initial value prob-
lem is also known as the Cauchy problem. Two main types of boundary value
problems are the Dirichlet problem, when the value of the solution is specified
on the boundary of the domain, and the Neumann problem, when the value of
the normal derivative of the solution (derivative in the direction of the outer
normal vector to the boundary) is specified.

Stochastic elliptic/hyperbolic/parabolic equations with additive noise in-
herit the type of the corresponding deterministic equation. For example,
∆u(x) = Ẇ (x) is elliptic, utt = uxxdt + Ẇ (t, x) is hyperbolic, and du =
(uxx + uux)dt + dW (t, x) is parabolic. Equations with multiplicative noise
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are more difficult to classify because of possible interaction between the
deterministic and stochastic parts. Section 4.1.2 (page 138) provides more
information about the classification of deterministic equations into ellip-
tic/hyperbolic/parabolic type.

A useful alterative representation of partial differential equations, both
deterministic and stochastic, is provided by abstract equations, in which the
spatial variable is ignored and the solution, free terms, and initial and bound-
ary conditions are considered as elements of suitable function spaces. As a
result, it is no longer necessary to consider partial derivatives. Among the
advantages of this representation are a more compact form of the equation,
flexibility in choosing the function spaces, and availability of tools from func-
tional analysis. One of the disadvantages is absence of point-wise multiplica-
tion in many abstract spaces and the resulting difficulty in the study of some
bilinear and nonlinear equations.

For example, the abstract formulation of the Dirichlet problem for the
elliptic equation ∆u(x) = f(x), x ∈ G, u|∂G = 0, is Au = f , where A
is the Laplace operator with zero boundary conditions. One can then study
this equation in the scales of Sobolev or Hölder spaces, such as u ∈ H1

0 (G),
f ∈ H−1(G) or u ∈ C2+β(G), f ∈ Cβ(G).

When the time variable is present, the result is an abstract evolution

equation. The equation is often written in the integral form. For example,
the initial-boundary value problem for the heat equation

ut(t, x) = ∆u(t, x) + f(t, x), t > 0, x ∈ G; u(0, x) = h(x), u|∂G = 0,

becomes

u(t) = h+

∫ t

0

Au(s)ds+

∫ t

0

f(s)ds, t ≥ 0,

where A is the Laplace operator with zero boundary conditions. This repre-
sentation is especially convenient for stochastic equations, when the irregular
nature of the noise prevents the solution from having classical derivative in
time. For example, equation

du(t, x) = ∆u(t, x)dt + dw(t)

becomes

u(t) = u(0) +

∫ t

0

Au(s)ds+ w(t).

A similar interpretation of the stochastic equation with multiplicative space-
time white noise,

du(t, x) = uxxdt+ u(t, x)dW (t, x)

is possible, but is much more complicated (see Krylov [117, Section 8].)
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2.2.3 Various Notions of a Solution

In the probabilistic sense, a solution of an SPDE can be either strong (con-
structed on a given probability space) or weak (the probability space is con-
structed as part of the solution). Solution of a martingale problem is often
a synonym of a probabilistically weak solution. This is completely analogous
to the stochastic ordinary differential equations.

For reasons that might not be clear at this point, we also separate
square-integrable solutions from other possible solutions. A square-
integrable solution has, in some sense, a finite second moment; in the proba-
bilistic sense, the solution can be either weak or strong. As with many other
classifications in this book, this distinction is not widely accepted, partly be-
cause hardly anybody considers solutions that are not square-integrable. We
talk more about square-integrable solutions in Section 4.1.1 (see page 135
below).

In the PDE sense the solution of an SPDE can be

1. classical;
2. generalized:

• closed-form;
• mild;
• variational;

– strong;
– weak;
– measure-valued;
– chaos;

• viscosity;

A classical solution of an SPDE is a continuous function satisfying the
equation and the initial and boundary conditions point-wise on the same set
of probability one. If the equation has the time variable and can be formulated
as an abstract evolution equation, then the goal is to satisfy the integral form
of this evolution equation. For example, the function u(t, x) = x + w(t) is a
classical solution of the equation du(t, x) = ux(t, x)dw(t), u(0, x) = x, which
in the integral form becomes

u(t, x) = x+

∫ t

0

ux(s, x)dw(s).

Two factors can prevent the equation from having a classical solution:

1. structure of the equation
2. insufficient regularity of the input data (even the heat equation ut = uxx

might fail to have a classical solution if the initial condition is discontin-
uous).

In particular, if the noise is not regular in space, the equation is unlikely to
have a classical solution.
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Every solution that is not classical is usually called generalized. A gen-
eralized solution extends certain properties of a classical solution without
requiring existence of partial derivatives. The idea is to take one particular
property satisfied by the classical solution and then say that every function
having this property is a generalized solution.

A closed-form solution is a (more-or-less explicit) formula expressing
the solution in terms of the input data. For example, a closed-form solution of
the initial-value problem ut+ux = 0, u(0, x) = f(x) is u(t, x) = f(x− t). The
solution does not have to be classical: in this example, it is classical if and
only if f is continuously differentiable; for functions that are not continuously
differentiable, we define the solution to be f(x − t). In general, the meaning
of an explicit formula is not always clear. As a general guideline, we will
be thinking of a quadrature solution, that is, a formula involving (at most)
integrals of the input data. With this definition, every linear equation y′(t) =

a(t)y(t) has a closed-form solution y(t) = y(0) exp(
∫ t
0 a(s)ds), but the second-

order linear equation y′′(t) + (2 + sin(t))y(t) = 0 does not have a closed-form
solution.

Closed-form solutions are available only for a very limited number of equa-
tions and every partial differential equation admitting a closed-form solution
deserves special attention. A direct analysis of a closed form solution is not
always the best route to studying the properties of the solution. For example,
the closed-form solution of the heat equation ut = uxx, u(0, x) = f(x), x ∈ R,
is

u(t, x) =
1√
4πt

∫

R

e−(x−y)2/(4t)f(y)dy,

and it is not at all obvious from this expression that
∫

R

u2(t, x)dx ≤
∫

R

f2(x)dx

or equivalently, ‖u(t, ·)‖2
L2(R) ≤ ‖f‖2

L2(R). On the other hand, multiplying the
equation by u and integrating by parts shows right away that the function
‖u(t, ·)‖2

L2(R) is non-increasing in time. For stochastic equations, working with
closed-form solutions can be even more difficult, as the corresponding formulas
can involve anticipating stochastic integrals (see Problem 2.2.2 on page 47).

A mild solution is an extension of the closed-form solution and is mostly
used for equations that can be considered perturbations of a linear equation
with a closed-form solution. For example, consider the heat equation

vt(t, x) = vxx(t, x) + f(t, x), t > 0, x ∈ R.

The closed-form solution of this equation is

v(t, x) =
1√
4πt

∫

R

e−(x−y)2/(4t)v(0, y)dy

+

∫ t

0

1√
4π(t− s)

(∫

R

e−(x−y)2/(4(t−s))f(s, y)dy

)
ds;

(2.2.7)
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see Evans [45, Theorem 2.3.2].
Consider now a nonlinear equation

du(t, x) =
(
uxx − u3(t, x)

)
dt+ sin

(
u(t, x)

)
dw(t).

A mild solution of this equation is, by definition, the solution of the integral
equation

u(t, x) =
1√
4πt

∫

R

e−(x−y)2/(4t)u(0, y)dy

−
∫ t

0

1√
4π(t− s)

(∫

R

e−(x−y)2/(4(t−s))u3(s, y)dy

)
ds

+

∫ t

0

1√
4π(t− s)

(∫

R

e−(x−y)2/(4(t−s)) sin
(
u(s, y)

)
dy

)
dw(s).

(2.2.8)

It is convenient to introduce the notation

(
Φh
)
(t, x) =

1√
4πt

∫

R

e−(x−y)2/(4πt)h(y)dy,

and then to re-write equation (2.2.8) in a more compact form:

u(t, x) =
(
Φu(0, ·)

)
(t, x) −

∫ t

0

(
Φu3(s, ·)

)
(t− s, x)ds

+

∫ t

0

(
Φ sin(u(s, ·))

)
(t− s, x)dw(s).

(2.2.9)

The mild solution is especially useful in the study of equations that can
be formulated as abstract evolution equations. Let A be a linear operator and
let Φ = Φ(t) be the semi-group generated by A Alternatively, we can say that
Φ is the fundamental solution of the homogeneous linear equation

u(t) = u0 +

∫ t

0

Au(s)ds.

Recall that, in the finite-dimensional case, if A is represented by a matrix A,
then Φ(t) = etA, the matrix exponential. For more information in the general
case, see page 147 below.

With the semi-group notation, a closed-form solution of the inhomoge-
neous linear equation

u(t) = up +

∫ t

0

Au(s)ds+

∫ t

0

f(s)ds

is
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u(t) = Φ(t)u0 +

∫ t

0

Φ(t− s)f(s)ds,

as long as all expressions on the right-hand side are well-defined. By definition,
the mild solution of the stochastic equation

u(t) = u0 +

∫ t

0

Au(s)ds+

∫ t

0

F (s, u(s))ds+

∫ t

0

G(s, u(s))dw(s)

is the solution of the integral equation

u(t) = Φ(t)u0 +

∫ t

0

Φ(t− s)F (s, u(s))ds+

∫ t

0

Φ(t− s)G(s, u(s))dw(s).

Working with the mild solution, one should keep in mind that

• Just as a closed-form solution, a mild solution is not necessarily classical;
• While a generalization to time-dependent non-random operators A = A(t)

is relatively straightforward (the corresponding semi-group becomes a two-
parameter process Φ(t, s), 0 ≤ s ≤ t), it is much harder to work with
mild solutions when the operator A is both time-dependent and random
(such as a linear partial differential operator with random and adapted
coefficients), because, for fixed t, the process Φ(t, s) is not adapted as a
function of s (see Problem 2.2.2 on page 47).

• For nonlinear equations, it is often a difficult problem to show that a mild
solution is the same as a variational solution.

The idea of the mild solution helps to reduce many stochastic equation with
additive noise to random equations. For example, consider the equation

u(t) =

∫ t

0

Au(s)ds+

∫ t

0

F (s, u(s))ds+N(t), (2.2.10)

where A is a non-random linear operator and N is the noise term; the exact
nature of the noise is not important. Under very general assumptions on N ,
one can define the stochastic convolution

NA(t) =

∫ t

0

Φ(t− s)dN(s),

where Φ is the semi-group of A; since Φ is non-random, there is usually no
need to develop special theory of stochastic integration to compute NA. The
mild solution of (2.2.10) is the solution of the integral equation

u(t) = Φ(t)u0 +

∫ t

0

Φ(t− s)F
(
s, u(s)

)
ds+NA(t).

Define the new process v(t) = u(t) −NA(t). Then v(0) = u(0) and
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v(t) = Φ(t)v0 +

∫ t

0

Φ(t− s)F
(
s, v(s) +NA(s)

)
ds,

that is, v is a mild solution of the random evolution equation

v(t) = v(0) +

∫ t

0

Av(s)ds+

∫ t

0

F̃
(
s, v(s)

)
ds, (2.2.11)

where F̃ (t, u) = F
(
t, u + NA(t)

)
. Problem 2.2.4 invites the reader to think

about an alternative substitution v̄(t) = u(t) −N(t).

In the theory of deterministic PDEs, the idea of both the variational and the
viscosity solutions is to avoid computing partial derivatives of the unknown
function by using smooth test functions. This is best illustrated on an example.
Consider the heat equation on the whole line

ut(t, x) = uxx(t, x), 0 < t ≤ T ; u(0, x) = f(x). (2.2.12)

For simplicity, assume that f is a continuous function with compact support
in R.

Here are five different variational solutions:

[W1] Strong variational solution is a function u from L1

(
[0, T ];H2(R)

)

such that

u(t, x) = f(x) +

∫ t

0

uxx(s, x)ds

for almost all t ∈ [0, T ], x ∈ R;
[W2] Weak variational solution I is a function u from L1

(
[0, T ];H1(R)

)

such that, for every smooth function v = v(x) with a compact support in
R, the equality

(
u(t, ·), v

)
L2(R)

= (f, v)L2(R) −
∫ t

0

(
ux(s, ·), vx

)
L2(R)

ds

holds for almost all t ∈ [0, T ] (as usual, (f, g)L2(R) =
∫

R
f(x)g(x)dx);

[W3] Weak variational solution II is a function u from L1

(
[0, T ];L2(R)

)

such that, for every smooth function v = v(x) with a compact support in
R, the equality

(
u(t, ·), v

)
L2(R)

= (f, v)L2(R) +

∫ t

0

(
u(s, ·), vxx

)
L2(R)

ds (2.2.13)

holds for almost all t ∈ [0, T ];
[W4] Weak variational solution III is a function u that is locally inte-

grable on every compact subset of [0, T ] × R and such that, for every
smooth function v with compact support in [0, T )× R,

∫

R

v(0, x)f(x)dx +

∫ T

0

∫

R

u(t, x)
(
vt(t, x) + vxx(t, x)

)
dxdt = 0.
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[W5] (Measure-valued solution) is a collection µt = µt(dx) of sigma-finite
signed measures on (R,B(R)) such that, for every smooth compactly sup-
ported on R function ϕ = ϕ(x),

µt[ϕ] =

∫

R

ϕ(x)f(x)dx +

∫ t

0

µs[ϕxx]ds

where, for a bounded measurable function g, µt[g] =
∫

R
g(x)µt(dx).

Furthermore,

[W6] (Viscosity solution) of equation (2.2.12) is a continuous on [0, T ]×R

function with u(0, x) = f(x) and with the following two properties:
• if v = v(t, x) is a smooth function and u− v has a local maximum at

a point (t0, x0), then vt(t0, x0) ≤ vxx(t0, x0);
• if v = v(t, x) is a smooth function and u − v has a local minimum at

a point (t0, x0), then vt(t0, x0) ≥ vxx(t0, x0).

The main difference between the five variational solutions is the a priori
condition on the function u. There is certain similarity among [W1]–[W3]:
in all three cases, the underlying equation is required to hold in a suitable
function space (which is L2(R) for [W1], H−1(R) for [W2], and H−2(R) for
[W3]; the larger the space, the weaker the notion of the solution. The reason
for calling [W1] strong is that the solution u is required to belong to the
natural domain of the operator ∆.

Exercise 2.2.3 (C). Show that if µt is a measure-valued solution of (2.2.12)
and, for every t ∈ [0, T ], the measure µt has a density u = u(t, x) with respect
to the Lebesgue measure such that u ∈ C

(
[0, T ];L2(R)

)
, then u is a weak

variational solution [W3].

The classical solution satisfies each of the definitions (see Exercise 2.2.4),
and the corresponding generalization relies on moving the derivatives from
the solution u to a test function v (in [W1], test functions are used to
define the derivatives in the space H2(R)). For [W1]–[W5], the basic idea is
integration by parts; for [W6], the basic idea is the second partials test for the
local min/max of a function. Unlike [W1]–[W4] and [W6], the initial condition
in [W5] can be a measure, such as a point mass.

Definitions [W1]–[W6] extend to more general equations. In particular,
[W1]–[W4] can be used for a large class of linear, semi-linear, and quasi-linear
equations, as well as abstract evolution equations (when time is the only
independent variable and the unknown function is an element of an infinite-
dimensional Banach space); the viscosity solution [W6] is the only option for
fully nonlinear equations.

When there is no classical solution, there is no obvious reason to claim that,
for example, [W1] and [W3] define the same object. In fact, comparing different
variational solutions can be difficult, especially for nonlinear equations.
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Exercise 2.2.4 (C). Verify that a classical solution of the heat equation ut =
uxx satisfies [W1]–[W6]. Hint. For [W6], note that vt − ut = 0 at every critical

point, and vxx − uxx < 0 at the local maximum; for a classical solution, ut = uxx at

all points.

Now consider an abstract evolution equation

u(t) = u0 +

∫ t

0

Au(s)ds+

∫ t

0

g(s)ds, 0 ≤ t ≤ T, (2.2.14)

where A is a bounded linear operator from L1((0, T );H) to L1((0, T );X) (A
can depend on time), u0 ∈ U , g ∈ L1((0, T );X), and H,X,U are Banach
spaces such that U ⊆ X , H ⊆ X . In the interest of generality, we allow
Banach spaces rather than Hilbert space and require only L1 integrability in
time rather than stronger L2 integrability.

For this equation, there is essentially one definition of a variational

solution:

[WA] w(H,X) variational solution of an abstract evolution equation is
a process u with values in L1

(
(0, T );H

)
such that equality (2.2.14) holds in

L1((0, T );X).

There are often several ways to set up a concrete equation in the abstract
form (2.2.14), and the flexibility is usually in the choice of the spaces H,X,U .
Depending on the set-up, [WA] can correspond to one of the variational solu-
tions [W1]–[W5]. Let us illustrate this correspondence for equation (2.2.12),
in which A(s)u = uxx and F = 0. If H = H2(R), U = X = L2(R), then [WA]
corresponds to [W1]. If H = H1(R), U = L2(R), X = H−1(R), then [WA]
corresponds to [W2]. The reader is encouraged to think how to get [W3]–[W5]
out of [WA]. The viscosity solution [W6] cannot be defined for (2.2.14).

Depending on the type of the equation, each of the definitions [W1]–[W5],
[WA] can be formulated for an SPDE.

In an SPDE, the presence of yet another variable, the elementary outcome
ω, leads to an even larger selection of test functions. Of special interest is the
situation when the test functions are random and do not depend on t and x.
For example, if h = h(t) is a smooth, compactly supported function on (0, 1),
then the collection of the random variables

Eh = exp

(∫ 1

0

h(t)dw(t) − 1

2

∫ 1

0

h2(t)dt

)
, h ∈ C∞

0 ((0, 1)),

is everywhere dense in the space of square-integrable random variables that
are measurable with respect to the sigma-algebra of w(t), t ∈ [0, 1], (see, for
example, Oksendal [169, Lemma 4.3.2]). Thus, a square-integrable random
process u = u(t, x) is uniquely determined by the collection of deterministic
functions
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uh(t, x) = E
(
u(t, x)Eh

)
, h ∈ C∞

0 ((0, 1)).

In the case of an SPDE, every function uh will satisfy a deterministic PDE,
which can often be solved under more general conditions than the original
SPDE. This is the idea behind the chaos solution for SPDEs. While a chaos
solution is a particular case of a variational solution, it has no obvious analogy
for deterministic equations.

As an illustration, consider the stochastic equation

du(t, x) = auxx(t, x)dt + σux(t, x)dw(t), 0 < t < 1, x ∈ R, (2.2.15)

where w is a standard Brownian motion, a, σ are non-random constants, a > 0,
and the initial condition u(0, x) is non-random. If u = u(t, x) is a classical
solution of this equation, then uh is a classical solution of

∂uh(t, x)

∂t
= a

∂2uh(t, x)

∂x2
+ σh(t)

∂uh(t, x)

∂x
, 0 < t < 1, x ∈ R, (2.2.16)

where the initial condition uh(0, x) = u(0, x) is the same for all functions h.

Exercise 2.2.5 (C). Verify (2.2.16). Hint. Define Eh(t) by

dEh(t) = h(t)Eh(t)dw(t), E(0) = 1,

and note that, since Eh(t) is a martingale and uh is adapted,

uh(t, x) = E
(
u(t, x)Eh(t)

)
.

Then use Itô formula.

We saw in Exercise 2.2.2 that equation (2.2.15) is well-posed in L2(Ω×R)
if and only if 2a ≥ σ2. On the other hand, as long as a > 0, equation (2.2.16)
can have a classical, or any other type of solution available for deterministic
PDEs, without any restrictions on σ. The resulting collection of functions uh =
u(t, x), h ∈ C∞

0 ((0, 1)), is called the chaos solution of equation (2.2.15) and
can be used to establish well-posedness of the equation in a suitable space for
all σ ∈ R. Depending on the type of the solution used to find uh, one can
have classical chaos solutions, mild chaos solutions, strong chaos solutions,
viscosity chaos solutions, etc.

To summarize, the first step in the analysis of an SPDE is to prove that
the equation is well-posed. The successful completion of this step essentially
depends on two choices: (a) the type of the solution, and (b) the function
spaces for the input data and the solution. We just saw that there are plenty
of choices for the type of solution. Later, we will see that there are also many
choices for the function spaces.

2.2.4 Problems

Problem 2.2.1. (a) Let a = a(t) be a non-random continuous function and
define
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Ψ(t, s) = e
∫

t
s
a(r)dr, 0 ≤ s ≤ t.

Not that Ψ(s, s) = 1 and ∂Ψ(t, s)/∂t = a(t)Ψ(t, s), t ≥ s. Given a continuous

function f , verify that the function y(t) =
∫ t
0
Ψ(t, s)f(s)ds satisfies y′(t) =

a(t)y(t) + f(t), y(0) = 0.
(b) Let a = a(t) be a continuous function such that 1 ≤ a(t) ≤ 2 for all

t. Repeat part (a) for the heat equation ut = a(t)uxx + f(t, x), t > 0, x ∈ R,
with u(0, x) = 0, by finding a family of linear operators Φ = Φ(t, s) such that

u(t, x) =
∫ t
0

(
Φ(t, s)f(s, ·)

)
(x)ds.

Problem 2.2.2. (a) Consider the stochastic ordinary differential equation

dX(t) = X(t)dw(t), X(0) = 1. (2.2.17)

Verify that X(t) = ew(t)−(t/2); the process X is known as the geometric

Brownian motion. Note that (2.2.17) is a bilinear equation.
(b) Let f = f(t) be a non-random continuous function and consider the

equation
dY (t) = Y (t)dw(t) + f(t)dt, Y (0) = 0. (2.2.18)

From the point of view of general theory of linear differential equations,
(2.2.18) is the inhomogeneous version of (2.2.17). With X = X(t) from
(2.2.17), verify that

Y (t) =

∫ t

0

X(t)

X(s)
f(s)ds. (2.2.19)

In other words, Φ(t, s) = X(t)/X(s), 0 ≤ s ≤ t, is the fundamental solution

of (2.2.19). Note that, for fixed T > 0, the process g(t) = Φ(T, t), 0 ≤ t ≤ T,
is not Fw

t -adapted.
(c) What complications arise if we replace the term f(t)dt on the right-

hand side of (2.2.18) with the term f(t)dw(t) and still try to write

Y (t) =

∫ t

0

X(t)

X(s)
f(s)dw(s)?

(d) Do parts (a)–(c) starting with the equation dX(t) = a(t)X(t)dw(t),
X(0) = 1, where a = a(t) is an adapted process (precise conditions on a is a
part of the problem.)

Problem 2.2.3. (a) Define a classical solution for the abstract evolution
equation

u(t) = u0 +

∫ t

0

Au(s)ds.

What changes if we consider the same equation in the differential form u̇ =
Au?

(b) Let A be a partial differential operator. Define the measure-valued
solution for the evolution equation ut(t, x) = Au(t, x) using the notion of a
signed sigma-finite measure. Then consider three concrete operators on L2(R):
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A1f(t, x) = a(t, x)
∂2

∂x2
f(t, x);

A2f(t, x) =
∂

∂x

(
a(t, x)

∂

∂x
f(t, x)

)
;

A3f(t, x) =
∂2

∂x2
(a(t, x)f(t, x)) .

In each case, find the minimal conditions on the function a that are necessary
to define the measure-valued solution.

Problem 2.2.4. In equation (2.2.10) on page 42, make the substitution v̄(t) =
u(t) −N(t) and compare the result with (2.2.11). Which substitution results
in a better equation and why?

Problem 2.2.5. Consider the stochastic heat equation with multiplicative
space-time white noise:

du(t, x) = uxxdt+ u(t, x)Ẇ (t, x), t > 0, x ∈ (0, 1),

with zero Neumann boundary conditions. (a) Can this equation have a classi-
cal solution? (b) Define the variational solutions [W1]–[W4] for this equation
(see page 43). Which ones can actually exist? What about the measure-valued
solution?

Problem 2.2.6. Compare and contrast the four variational solutions [W1]–
[W4] and think of further possible modifications, especially in the case of
stochastic equations.

2.3 Closed-Form Solutions

While a closed-form solution is not always the best way to study the equation,
any mathematical problem with a closed-form solution is somewhat of a gem
and deserves special attention. Accordingly, in this section we discuss several
linear and nonlinear SPDEs that admit a closed-form solution. To simplify
the presentation, we will usually work in one space variable.

2.3.1 Heat Equation

Let a be a positive real number. Recall that the solution of the heat equation

ut(t, x) = auxx(t, x), t > 0, x ∈ R, (2.3.1)

is

uheat(t, x) =
1√
4aπt

∫

R

e−|x−y|2/(4at)u(0, y)dy. (2.3.2)
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If u(0, ·) ∈ Lp(R) for some 1 ≤ p ≤ +∞, then u(t, x) is a smooth function
of (t, x) for t > 0.

An equivalent way to write (2.3.2) is

uheat(t, x) = Eu
(
0, x+

√
2aB(t)

)
, (2.3.3)

where B = B(t) is a standard one-dimensional Brownian motion (Wiener
process); formula (2.3.3) is known as a probabilistic representation or the
Feynmann-Kac formula for the heat equation.

Note that, for a = 1/2, the solution of ut = auxx is

u(t, x) = Eu
(
0, x+B(t)

)
.

Exercise 2.3.1 (C). Let c = c(t) be a locally integrable function. Show that
the function

v(t, x) = uheat(t, x)e
∫ t
0
c(s)ds (2.3.4)

satisfies vt = vxx+ c(t)v. Note that v(t, x) is not necessary a smooth function
of t for t > 0: the regularity of v in time now depends on the regularity of the
function c.

Next, consider the equation

du(t, x) = auxx(t, x)dt + σu(t, x)dw(t), t > 0, x ∈ R, (2.3.5)

where a, σ are real numbers, a > 0. By analogy with (2.3.4), let us look for
a solution in the form u(t, x) = uheat(t, x)X(t) for some process X(t) with
X(0) = 1. Then du = uheat

t X(t)dt + uheatdX(t) = auxxdt + udX(t)/X(t).

Therefore, dX(t) = σX(t)dw(t) or X(t) = eσw(t)−(σ2t/2). As a result,

u(t, x) = uheat(t, x)eσw(t)−(σ2t/2). (2.3.6)

Exercise 2.3.2 (C). Establish (2.3.6) using the Fourier transform.

Formula (2.3.6) suggests that, similar to the deterministic heat equation,
equation (2.3.5) is natural to call parabolic: if u(0, ·) ∈ Lp(R), 1 ≤ p ≤ +∞,
then the solution u(t, x) is a smooth function of x, t > 0, and, as a function
of t, has the same regularity as the Wiener process w (Hölder continuous of
any order less than 1/2).

If B is a Wiener process independent of w then (2.3.3) and (2.3.6) imply

u(t, x) = eσw(t)−(σ2t/2)
Eu
(
0, x+

√
2aB(t)

)
. (2.3.7)

Exercise 2.3.3 (B). Find representations of the solution of the equation
du(t, x) = auxx(t, x)dt + h(t)u(t, x)dw(t) similar to (2.3.6) and (2.3.7). What
conditions on the process h do you need? Can h be random? Hint. See (2.3.8)

below.
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To summarize, the equation

du = (auxx + c(t)u)dt+ h(t)udw(t)

has the closed-form solution

u(t, x) = uheat(t, x) exp

(∫ t

0

c(s)ds+

∫ t

0

h(s)dw(s) − 1

2

∫ t

0

h2(s)ds

)
,

(2.3.8)
where uheat is defined in (2.3.2).

Next, consider the equation

du(t, x) = auxx(t, x)dt + σux(t, x)dw(t), t > 0, x ∈ R, (2.3.9)

a, σ are real numbers, a > 0. To find a representation of the solution, take the
Fourier transform in the x variable,

û(t, y) =
1√
2π

∫

R

e−ixyu(t, x)dx, i =
√
−1.

Then (2.3.9) implies that, for each y, û(t, y) is a geometric Brownian motion

dû(t, y) = −ay2û(t, y)dt+ iσ yû(t, y)dw(t)

or
û(t, y) = û(0, y)e−(a−(σ2/2))y2t+iσyw(t).

If c = a− (σ2/2) > 0, then we can invert the Fourier transform to find

u(t, x) = v(t, x+ σw(t)), v(t, x) =
1√
4cπt

∫

R

e−|x−y|2/(4ct)u(0, y)dy. (2.3.10)

Note by comparison that there are no restriction on σ to solve (2.3.5).
Alternatively, we can write (2.3.10) as

u(t, x) = E

(
u
(
0, x+

√
2a− σ2w̃(t) + σw(t)

)
|Fw
t

)
, (2.3.11)

where w̃ is a Wiener process independent of w and Fw
t is the sigma-algebra

generated by w up to time t.
If 2a = σ2, then u(t, x) = u0(x + σw(t)), and, for t > 0, the solution, as

a function of x, is as smooth as the initial condition. In this case, equation
(2.3.9) is called degenerate parabolic.

If 2a < σ2, then we cannot invert the Fourier transform unless û(0, y) is
very special, for example, has compact support. In this case, the initial value
problem for (2.3.9) is ill-posed in Lq(Ω;Lp((0, T ); R)) for every p, q ≥ 1.

Note that equation (2.3.9) in the Stratonovich form is

du = (a− (σ2/2))uxxdt+ σux ◦ dw(t). (2.3.12)

In particular, if 2a = σ2, we get a first-order equation du = σux ◦ dw(t) and a
full analogy with the deterministic transport equation vt = h(t)vx, whose

solution is v(t, x) = v
(
0, x+

∫ t
0
h(s)ds

)
.
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Exercise 2.3.4 (C). (a) Verify (2.3.10), (2.3.11), and (2.3.12).
(b) Write (2.3.7) as a conditional expectation similar to (2.3.11).

We now summarize some of the above observations as follows:

• The equation

du =
(
(a+

σ2

2
)uxx + b(t)ux + c(t)u

)
dt+

(
σux + h(t)u

)
dw(t), x ∈ R,

has closed-form solution

u(t, x) = uheat

(
t, x+

∫ t

0

b(s)ds+ σw(t)

)

× exp

(∫ t

0

c(s)ds+

∫ t

0

h(s)dw(s) − 1

2

∫ t

0

h2(s)ds

)
,

(2.3.13)

where uheat is defined in (2.3.2).
• In some sense, the first derivative in the stochastic part of an SPDE can

be as powerful as the second derivative in the deterministic part.
• Probabilistic representation of solutions of SPDEs involves an additional

Wiener process and conditional expectation.

To finish with parabolic equations on the whole line, the reader can think
about the following:

Exercise 2.3.5 (A). Can you extend formula (2.3.13) to time-dependent a
and σ? What conditions on the function a = a(t) will you need? How much of
the above will work for equations in R

d, d > 1? Hint. Use the Fourier transform.

Next, consider the heat equation driven by additive space-time white noise
on the bounded interval (0, π): ut = uxx+Ẇ (t, x). Equivalently, if hk, k ≥ 1, is
an orthonormal basis in L2((0, π)), and wk, k ≥ 1, are independent standard
Brownian motions, then

du = uxxdt+

∞∑

k=1

hk(x)dwk(t), t > 0, x ∈ (0, π). (2.3.14)

We assume zero boundary conditions u(t, 0) = u(t, π) = 0, and, for simplicity,
zero initial condition: u(0, x) = 0. Given zero boundary condition, it is natural
to take

hk(x) =
√

2/π sin(kx), k ≥ 1.

We look for the solution in the form

u(t, x) =

∞∑

k=1

uk(t)hk(x). (2.3.15)

Then
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duk(t) = −k2uk(t)dt+ dwk(t), uk(t) =

∫ t

0

e−k
2(t−s)dwk(s), (2.3.16)

and

u(t, x) =

∞∑

k=1

hk(x)

∫ t

0

e−k
2(t−s)dwk(s). (2.3.17)

Note that

Eu2(t, x) =

∞∑

k=1

h2
k(x)

∫ t

0

e−2k2(t−s)ds =

∞∑

k=1

h2
k(x)

1 − e−2k2t

2k2
, (2.3.18)

that is, the series in (2.3.17) converges with probability one for each (t, x) ∈
(0,∞)× [0, π]. Moreover, by the Burkholder-Davis-Gundy inequality (1.1.16)
on page 7,

E|u(t, x1) − u(t, x2)|p ≤ C(p, δ)|x1 − x2|(1−2δ)(p/2),

E|u(t1, x) − u(t2, x)|p ≤ C(p, δ)|t1 − t2|(1/2−δ)(p/2)
(2.3.19)

for every p ≥ 1 and δ ∈ (0, 1/2). By the Kolmogorov criterion we conclude
that the solution u = u(t, x) is Hölder continuous of any order less than 1/4
as a function of t, and is Hölder continuous of any order less than 1/2 as a
function of x. The details are left to the reader:

Exercise 2.3.6 (C). Verify (2.3.19) and confirm the stated Hölder continuity
of the solution. Hint. Note that, for every β ∈ (0, 1), we have |hk(x1)−hk(x2)|2β ≤
2k2β |x1−x2|2β and, as long as t2 > t1, we also have |1−e−k2(t2−t1)| ≤ k2β |t1− t2|β .

Then take β = 1/2 − δ.

Note that the coefficients uk defined by (2.3.16) are independent Gaussian
processes. In the limit t→ +∞, each uk converges in distribution to a normal
random variable with zero mean and variance

lim
t→∞

∫ t

0

e−2k2(t−s)ds =
1

2k2
.

Therefore, as t→ +∞, u(t, x) from (2.3.17) converges in distribution to

v(x) =

∞∑

k=1

ξk√
2 k

hk(x), (2.3.20)

where ξk, k ≥ 1, are independent standard normal random variables.

Exercise 2.3.7 (C). Consider the equation du = uxxdt+dw(t) on the interval
(0, π) with zero initial condition, where w is a standard Brownian motion.
You have a choice of three possible boundary conditions: zero Dirichlet, zero
Neumann, and periodic. (a) Which choice of the three boundary conditions is
the least convenient to study the equation?
(b) With your choice of boundary conditions, find the solution and determine
its regularity in time and space. Is there a limit, as t→ ∞, similar to (2.3.20)?
(Note that u(t, x) = w(t) CAN be a solution.)
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Analysis of equation du = ∆udt+ dW (t, x), x ∈ R
d, is Problem 2.3.5.

Further Directions

Equations with multiplicative space-time white noise du = (uxx+f(u, ux))dt+
g(u)dW (t, x) usually do not have closed-form solutions, but have been studied
extensively. In particular, under suitable assumptions on f and g, the solution
has the same regularity in time and space as in the additive case; see the
lecture notes by Walsh [209, Chapter 3] for equations on an interval, and the
paper by Krylov [117, Section 8.3] for equations on the whole line.

2.3.2 Wave Equation

Consider the stochastic wave equation in R with zero initial conditions, driven
by the space-time white noise:

utt(t, x) = uxx(t, x) + Ẇ (t, x), t > 0, x ∈ R, u(0, x) = ut(0, x) = 0. (2.3.21)

The function u = u(t, x) is the displacement of the string at time t at point x.

Define t̃ = (t − x)/
√

2, x̃ = (t + x)/
√

2, ũ(t̃, x̃) = u(t, x),
˙̃
W (t̃, x̃) = Ẇ (t, x).

Then (2.3.21) becomes

2
∂2ũ

∂t̃∂x̃
=

˙̃
W (t̃, x̃),

and so

u(t, x) =
1

2
W̃

(
t− x√

2
,
t+ x√

2

)
= Ẇ (G(t, x)) = (Ẇ ,1G(t,x)), (2.3.22)

where G(t, x) is the domain of dependence of the point (t, x) (the equilateral
right triangle ABC on Figure 2.3.1) and 1G(t,x) is the indicator function of the
set G(t, x) (see also (1.1.7) on page 4). It is known (see, for example, Evans

-

6

spacexA

B

C

time

t

G(t, x)

Fig. 2.3.1. Solving Wave Equation

[45, Page 81, Example (i)]) that if f = f(t, x) is a smooth function, then the
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solution of the one-dimensional wave equation on the line, utt = uxx + f(t, x)
with zero initial conditions, is

u(t, x) =

∫

G(t,x)

f(s, y) dsdy. (2.3.23)

Formula (2.3.23) can be used to get an alternative derivation of (2.3.22).
Two more examples of the stochastic wave equation on the line are left as

an exercise.

Exercise 2.3.8 (C). (a) Show that the solution of the equation utt = uxx +

ẇ(t), x ∈ R, where ẇ(t) is the time-only white noise, is u(t, x) =
∫ t
0
(t−s)dw(s).

(b) Use the Fourier transform to solve the equation utt = uxx + uẇ, t > 0,
x ∈ R, where ẇ is white noise in time. At which point do you have to stop?
(See the remark below.)

Remark 2.3.9. In the case of the heat equation, our ability to consider equa-
tions with multiplicative noise was guaranteed by solvability in closed form of
the first-order differential equation y′(t) = a(t)y(t) for any locally integrable
function a. The corresponding second-order equation y′′(t) = a(t)y(t) does
not have a closed-form solution for general functions a. As a result, we are
unable to find closed-form solutions for the stochastic wave equation with
multiplicative noise.

Let us now consider the wave equation on an interval; for simplicity, we
assume zero initial and boundary conditions:

utt = uxx + Ẇ (t, x), t > 0, x ∈ (0, π), (2.3.24)

where u(0, x) = ut(0, x) = u(t, 0) = u(t, π) = 0, and Ẇ (t, x) is space-time
white noise. The physical interpretation of (2.3.24) could be the sound pro-
duced by a one-string guitar left out in a sandstorm. Similar to (2.3.15) on
page 51 we look for the solution as a Fourier series

u(t, x) =

√
2

π

∞∑

k=1

uk(t) sin(kx).

Substitution into (2.3.24) results in

u′′k(t) = −k2uk(t) + ẇk(t), t > 0, uk(0) = u′k(0) = 0, (2.3.25)

where wk are independent standard Brownian motions. To solve (2.3.25) recall
that if f = f(t) is a continuous function and b, c are real numbers, then the
solution of the equation

y′′(t) + by′(t) + cy(t) = f(t), t > 0 (2.3.26)

with zero initial conditions y(0) = y′(0) = 0 is given by
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y(t) =

∫ t

0

g(t− s)f(s)ds, (2.3.27)

where g = g(t) satisfies g′′(t) + bg′(t) + cg(t) = 0, g(0) = 0, g′(0) = 1.
Therefore, it is natural to expect that

uk(t) =
1

k

∫ t

0

sin(k(t− s))dwk(s), (2.3.28)

and direct computations show that this function uk indeed satisfies (2.3.25).

Exercise 2.3.10 (B). (a) Verify that (2.3.27) indeed solves (2.3.26).
(b) Using integration by parts, verify that (2.3.28) satisfies (2.3.25), that is,

uk(t) =
∫ t
0
vk(s)ds, and vk(t) = −k2

∫ t
0
uk(s)ds+ wk(t).

As a result, the solution of (2.3.24) is

u(t, x) =

√
2

π

∞∑

k=1

1

k

(∫ t

0

sin(k(t− s))dwk(s)

)
sin(kx). (2.3.29)

Note that, for each t and x, u(t, x) is a Gaussian random variable with zero
mean and variance

Eu2(t, x) =
2

π

∞∑

k=1

1

k2

(∫ t

0

sin2(k(t− s))ds

)
sin2(kx)

=
2

π

∞∑

k=1

1

k2

(
t

2
− sin(2kt)

4k

)
sin2(kx).

(2.3.30)

Exercise 2.3.11 (A). Using estimates similar to (2.3.19) on page 52 (see also
Exercise 2.3.6), verify that, as a function of x, u(t, ·) is Hölder continuous of
order less that 1/2. What can you say about regularity of u as a function of
t?

Note that Eu2(t, x) does not have a limit as t→ ∞. As a result, unlike the
heat equation (2.3.14) on page 51, the solution of the stochastic wave equation
(2.3.24) does not have a limiting distribution. One possibility to have a wave
equation with a limiting distribution is to introduce damping; see Problem
2.3.2(c) on page 63.

2.3.3 Poisson Equation

Consider the equation

−u′′(x) = sinx+ Ẇ (x), x ∈ (0, π), u(0) = u(π) = 0. (2.3.31)

We look for the solution in the form of a Fourier series



56 2 Basic Ideas

u(x) =
∞∑

k=1

ukhk(x),

where the Fourier coefficients uk are random variables and

hk(x) =
√

2/π sin(kx), k ≥ 1. (2.3.32)

Writing Ẇ (x) =
∑∞

k=1 ξkhk(x), where ξk, k ≥ 1, are independent standard
Gaussian random variables, we conclude that uk = ξk/k

2, k ≥ 2, and

u(x) = sinx+

∞∑

k=1

ξk
k2

hk(x). (2.3.33)

The series in (2.3.33) converges uniformly in x for each ω ∈ Ω, and also
converges in L2

(
Ω;L2((0, π))

)
. Also, Eu(x) = sinx and v(x) = sinx is the

solution of the unperturbed equation −v′′(x) = sinx.

Exercise 2.3.12 (C). Derive the following representation for the function u:

u(x) = sinx+ x

∫ π

0

W (y)dy −
∫ x

0

W (y)dy. (2.3.34)

Suggestion: start by deriving the formula

u(x) = x

∫ π

0

(π − y)f(y)dy −
∫ x

0

(x − y)f(y)dy

for the solution of uxx(x) = f(x) on (0, π) with zero boundary conditions and a

continuous function f .

In the following exercise, you have an option of using either (2.3.33) or
(2.3.34). Make sure to use the representation that is more convenient for the
given question.

Exercise 2.3.13 (C). (a) Compute E
∫ π
0
u2(x)dx. Hint:

∑
k≥1 k−4 = π4/90.

(b) Verify that the function u = u(x) is continuously differentiable for x ∈
(0, π) and the first derivative u′ is Hölder continuous of any order less than
1/2.

Next, consider

−u′′(x) = sinx+ ξ u(x), x ∈ (0, π), u(0) = u(π) = 0, (2.3.35)

where ξ is a standard normal random variable. Direct computations show that

u(x) =
sinx

1 − ξ
, (2.3.36)

and, while u(x) is well-defined with probability one, Eu(x) does not exist in
the usual sense. The principal-value trick (see Problem 2.3.13 below) makes
it possible to define Eu(x) in the generalized sense, but the result is not zero.
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To summarize, a simple multiplicative perturbation of an elliptic equation
does not preserve the mean value of the solution.

Let us modify equation (2.3.35) to preserve the mean value of the solution.
To this end, recall the Hermite polynomials Hn(x), best understood via the
equality

ext−(t2/2) =
∞∑

n=0

Hn(x)

n!
tn. (2.3.37)

In particular, H0(x) = 1, H1(x) = x, H2(x) = x2 − 1. The reason for con-
sidering the Hermite polynomials is the following: if ξ is a standard normal
random variable, then, by direct computation,

EHn(ξ) = 0, n ≥ 1. (2.3.38)

Exercise 2.3.14 (C). Verify that

E
(
Hn(ξ)Hk(ξ)

)
=

{
n! if n = k;

0 if n 6= k.
(2.3.39)

Hint. Use (2.3.37) to write Υ (t, s) = esξ−(s2/2)etξ−(t2/2) as a power series in (t, s).

Take expected value on both sides and note that EΥ (t, s) = e((t+s)2−t2−s2)/2 = ets.

Let us modify equation (2.3.35) in such a way that

u(x) = sinx

∞∑

n=0

un(x)Hn(ξ),

with suitable functions un(x), is a solution of the modified equation. Even if
the series diverges, the equality EHn(ξ) = 0 for n ≥ 1 allows us to claim that,
in some sense, Eu(x) = sinx.

The only natural place for a modification of the equation is the definition
of the product ξ u: instead of the usual multiplication, we will use a different
operation ξ ⋄ u, defined so that

Hn(ξ) ⋄ Hk(ξ) = Hn+k(ξ), n, k ≥ 0. (2.3.40)

By linearity, this definition extends to a larger class of random variables,
because the collection {Hn(ξ), n ≥ 0} is an orthogonal basis in the space
of square-integrable random variables that are functions of ξ. Then direct
computations show that the formal series

u(x) = sin(x)

∞∑

n=0

Hn(ξ) (2.3.41)

satisfies

−uxx(x) = sinx+ ξ ⋄ u(x), x ∈ (0, π), u(0) = u(π) = 0. (2.3.42)
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Exercise 2.3.15 (C). Keeping in mind that H1(x) = x, verify that (2.3.41)
satisfies (2.3.42).

Note that (2.3.41) is a formal series. The series diverges with probability one,
and, similar to (2.3.36), we have E|u(x)|p = +∞ for all x ∈ (0, π) and p ≥ 1.
Still, because of (2.3.38), it is reasonable to expect that, in some generalized
sense, we have Eu(x) = sinx. The following exercise provides more evidence
that the operation ⋄ preserves the mean structure of the equation.

Exercise 2.3.16 (B). (a) Show that the function u(t, x) = e−t sinx satisfies
the heat equation ut = uxx, u(0, x) = sinx.
(b) Let ξ be a standard normal random variable. Show that the function
u(t, x) =

(
e−t sinx

)
eξt belongs to L2

(
Ω×(0, T )×(0, π)

)
, satisfies the stochas-

tic heat equation ut = uxx+ξu, u(0, x) = sinx, and Eu(t, x) = e−t+(t2/2) sinx.
(c) Let ξ be a standard normal random variable. Show that the function

u(t, x) = e−t sinx
∞∑

n=0

tnHn(ξ)

n!
=
(
e−t sinx

)
eξt−(t2/2)

belongs to L2

(
Ω;L2

(
(0, T );L2((0, π))

))
, satisfies the stochastic heat equation

ut = uxx + ξ ⋄ u, u(0, x) = sinx, and Eu(t, x) = e−t sinx.

We now summarize some of the above observations as follows:
• The solution of an elliptic equation with multiplicative noise is unlikely to
belong to L2(Ω).
• To preserve the mean structure of an equation with multiplicative spatial
noise, the operation ⋄ from (2.3.40) is the right choice.

The operation ⋄ is known as the Wick product, after the Italian theoret-
ical physicist Gian-Carlo Wick (1909–1992) who introduced it in 1950 in
connection with a problem from quantum field theory (see [211]). The paper
[68] provides one of the first mathematical discussions of ⋄.

2.3.4 Nonlinear Equations

Let us start by reviewing the reduction of certain semi-linear parabolic equa-
tions to the heat equation; for details, see Evans [45, Section 4.4.1]. In what
follows, a and b are real numbers and a > 0.

If u = u(t, x) satisfies ut = auxx − bu2
x, x ∈ R, and v(t, x) = e−bu(t,x)/a,

then, by direct computation, vt = avxx, and

u(t, x) = u∗(t, x) = −a
b

ln

(
1√

4πat

∫

R

e−(x−y)2/(4at)e−bu(0,y)/ady

)
. (2.3.43)

Similarly, if ut = auxx − uux, then u(t, x) = ũx(t, x), where ũt = aũxx −
(ũ2
x)/2, and
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u(t, x) = u∗∗(t, x) = −2a
∂

∂x
ln

(∫

R

e−(x−y)2/(4at)e−ũ(0,y)/(2a)dy

)
, (2.3.44)

where ũ(0, x) is an anti-derivative of u(0, x).

Exercise 2.3.17 (B). (a) Verify that (2.3.44) follows from (2.3.43).
(b) Write (2.3.43) and (2.3.44) in the probabilistic form similar to (2.3.3) on
page 49.
(c) Show that u∗∗ does not depend on the choice of an anti-derivative of
u(0, x).

The Austrian-American mathematician Eberhard Frederich Ferdi-
nand Hopf (1902–1983), of the Wiener-Hopf equations fame, and the Amer-
ican mathematician Julian David Cole (1925–1999) came up with for-
mula (2.3.44) independently and at about the same time [28, 74]. The
Hopf-Cole (or Cole-Hopf) transformation can mean either one of the for-
mulas (2.3.43), (2.3.44), or the corresponding change of the unknown function.

The Hopf-Cole transformation also works for “inhomogeneous” equations.

Exercise 2.3.18 (C). (a) Verify that if

ut = auxx − bu2
x + g(t, x),

then v = e−bu/a satisfies

vt = avxx −
b

a
vg

(b) Verify that if
ut = auxx − uux +Gx(t, x), (2.3.45)

then u = −2avx/v, where v satisfies

vt = avxx −
1

2a
vG.

As usual, Gx = ∂G/∂x.

We will now investigate the Hopf-Cole transformation for the correspond-
ing equations with additive noise. To begin, consider

du = (auxx − bu2
x)dt+ g(t, x)dw(t), t > 0, x ∈ R, (2.3.46)

where w is a standard Brownian motion and g is a known function. Substi-
tution v = e−bu/a results in dv = −(bv/a)du+ (1/2)(bg/a)2vdt (Itô formula)
and the following equation for v:

dv =

(
avxx +

b2g2

2a2
v

)
dt− b

a
v g dw(t). (2.3.47)

Given the amount of calculations, all the details are left to the reader.
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Exercise 2.3.19 (C). (a) Verify (2.3.47).
(b) Show that, in the special case g(t, x) = 1, the solution of (2.3.46) is
u(t, x) = u∗(t, x)+w(t), where u∗ is given by (2.3.43). Hint. The corresponding

equation for v is solvable by (2.3.13) on page 51.

Next, consider

du = (auxx − uux)dt+ dw(t), t > 0, x ∈ R. (2.3.48)

This time, u(t, x) = −2avx(t, x)/v, and

dv =

(
avxx +

x2

8a2
v

)
dt− 1

2a
v x dw(t). (2.3.49)

Once again, all the details are left to the reader.

Exercise 2.3.20 (B). (a) Verify (2.3.49).
(b) Show that the solution of (2.3.48) is

u(t, x) = u∗∗
(
t, x−

∫ t

0

w(s)ds

)
+ w(t), (2.3.50)

where u∗∗ is given by (2.3.44). Hint. One more substitution

v(t, x) = exp(−xw(t)/(2a))V (t, x)

leads to

Vt = Vxx − w(t)Vx +
w2(t)

4a
V,

which can be solved by (2.3.13) on page 51.

Next, we investigate some non-linear equations with multiplicative time-
only noise. We start with a generalization of the result from Exercise 2.3.1 on
page 49 to nonlinear equations. Consider the equation

vt = F (v, vx, vxx, . . .). (2.3.51)

Definition 2.3.21. (a) The function F is called homogeneous of degree γ ≥
1 if, for every λ > 0,

F (λx, λy, λz, . . .) = λγF (x, y, z, . . .). (2.3.52)

(b) Equation (2.3.51) is called homogeneous of degree γ ≥ 1 if the function
F is homogeneous of degree γ.

Let f = f(t) be a locally integrable function and define

gγ(t) =

∫ t

0

e(γ−1)
∫

s
0
f(r)drds. (2.3.53)

Next, consider the following equation:

ut = F (u, ux, uxx, . . .) + uf(t). (2.3.54)
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Proposition 2.3.22. Assume that F is homogenous of degree γ. A function
v = v(t, x) is a solution of (2.3.51) if and only if u(t, x) = v(gγ(t), x)e

∫
t
0
f(s)ds

is a solution of (2.3.54).

Proof. Assume that v satisfies (2.3.51). To simplify the notations, denote

e
∫ t
0
f(s)ds by f̃(t). We have ux = vx(gγ(t), x)f̃ (t), uxx = vxx(gγ(t), x)f̃ (t),

etc., and, since g′γ(t) = e(γ−1)
∫

t
0
f(s)ds = f̃γ−1(t), ut = vtf̃

γ(t)+ f(t)u. There-

fore, by (2.3.52), ut = F (f̃(t)v, f̃(t)vx, . . .)+f(t)u, that is, u satisfies (2.3.54).
The proof in other direction is left as an exercise.

Exercise 2.3.23 (B). Complete the proof of the proposition, that is, show
that if u solves (2.3.54), then v solves (2.3.51).

Consider next the stochastic Itô equation for the random field u = u(t, x),
t > 0, x ∈ R:

du = F (u, ux, uxx, . . .)dt+ u
(
g(t)dt+ f(t)dw(t)

)
, (2.3.55)

where f = f(t) is a locally square-integrable deterministic function, g is a lo-
cally integrable deterministic function, and w is a standard Brownian motion.
Define the functions

h(t) = exp

(∫ t

0

g(s)ds+

∫ t

0

f(s)dw(s) − 1

2

∫ t

0

f2(s)ds

)
,

Hγ(t) =

∫ t

0

hγ−1(s)ds.

(2.3.56)

Proposition 2.3.24. Assume that the function F is homogeneous of degree
γ. A function v = v(t, x) is a solution of (2.3.51) if and only if u(t, x) =
v(Hγ(t), x)h(t) is a solution of (2.3.55).

Exercise 2.3.25 (C). (a) Prove Proposition 2.3.24.
(b) Find a solution of the equation du(t, x) + u(t, x)ux(t, x)dt = u(t, x)dw(t),
t > 0, x ∈ R, where w is a standard Browinian motion. Hint. For the equation

vt + vvx = 0 use separation of variables v(t, x) = F (t)G(x) to find v(t, x) = x/t.

Then put f = 1, g = 0 in (2.3.56) to find u(t, x) = xh(t)/H2(t).

In the special case of equation ut = ∆(uγ) + au, a = const., the result of
Proposition 2.3.24 appears in [61]. For the general case, see [140].

As an application of Proposition 2.3.24, consider the porous medium

equation

vt(t, x) =
(
vγ(t, x)

)
xx
, t > 0, x ∈ R; γ > 1. (2.3.57)

This equation is homogeneous of degree γ. The function

vBT(t, x) =
1

tα

(
max

(
b− γ − 1

2γ
β
|x|2
t2β

, 0

))1/(γ−1)

, (2.3.58)
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where b > 0 and α = β = 1/(γ + 1), is known as Barenblatt’s solution of
(2.3.57), named after Grigory Isaakovich Barenblatt, who introduced
and studied it in [8]. For a derivation of (2.3.58), see Evans [45, Section 4.2.2];
for even more information on the porous medium equation, see Aronson [2]
and Vázquez [206]. Notice that the function vBT has compact support in x
for every t > 0, and the boundary points x∗ of the support (the interface)
satisfy

|x∗| = ctβ (2.3.59)

for some number c = c(b, γ). Now consider the stochastic porous medium
equation

du(t, x) = (uγ(t, x))xxdt+ u(t, x) f(t)dw(t), t > 0, x ∈ R, (2.3.60)

where f is a locally square-integrable deterministic function and w is a stan-
dard Brownian motion. Notice that it is important to use multiplicative noise
to preserve positivity (and hence the potential physical interpretation) of the
solution.

Let h = h(t) and Hγ = Hγ(t) be defined by (2.3.56). By Proposition
2.3.24,

uBT(t, x) = vBT(Hγ(t), x)h(t) (2.3.61)

is a solution of (2.3.60), where vBT(t, x) is given by (2.3.58). This solution has
compact support for all t > 0, and the interface points x∗ satisfy

|x∗| = c (Hγ(t))
β . (2.3.62)

If
∫∞
0 f2(t)dt < ∞, then

∫ t
0 f(s)dw(s), being a zero-mean square-integrable

Gaussian martingale, converges with probability one, as t→ ∞, to a Gaussian
random variable. Therefore, for large t, we have

|x∗| ≈ η tβ (2.3.63)

for some random variable η.
For a more detailed analysis of (2.3.60), including physical interpretations,

see [140].

Exercise 2.3.26 (A). Show that if
∫∞
0 f2(t)dt < ∞, then (2.3.63) holds.

Find the distribution of the random variable η.

2.3.5 Problems

The following problems provide more examples of equations with closed-form
solutions. Problem 2.3.1 extends (2.3.9) on page 50 to several dimensions of
x and many Brownian motions. Problem 2.3.2 is purely computational and
reinforces several ideas about the heat and wave equations. Problem 2.3.3
is another illustration that the condition 2a ≥ σ2 is necessary to have a
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square-integrable solution for the heat equation (2.3.9) on page 50. Problem
2.3.6 is an extension of the Poisson equation (2.3.31) on page 55. Problem
2.3.7 is a stochastic Poisson equation on the whole line. Problem 2.3.8 pro-
vides examples of deterministic equations with stochastic initial or boundary
conditions. Problem 2.3.9 describes several representations of the Brownian
bridge, one of them using a stochastic heat equation. Problems 2.3.10–2.3.12
are about Hermite polynomials. Problem 2.3.13 shows how one can define
the expected value of the random variable (2.3.36) using the principal value
method. Problem 2.3.14 leads deeper into the subject of chaos solution for
stochastic elliptic equations. Problem 2.3.15 is about equation (2.3.48) with
a more general random perturbation. Problem 2.3.16 is an extension of the
Hopf-Cole transformation to a multi-dimensional version of (2.3.45).

Problem 2.3.1. Let wk, k ≥ 1, be independent standard Brownian mo-
tions, and let σik, i = 1, . . . , d, k ≥ 1, be real numbers with the property∑∞

k=1 σikσjk < ∞ for all i, j. Let aij , i, j = 1, . . . ,d be real numbers. For
t > 0, x ∈ R

d consider the equation

du(t, x) =
d∑

i,j=1

aijDiDju(t, x)dt+
d∑

i=1

∞∑

k=1

σikDiu(t, x)dwk(t). (2.3.64)

(a) Find a diffusion process X = X(t) with X(0) = 0 such that the function
v(t, x) = u(t, x−X(t)) satisfies a deterministic equation.
(b) Under what condition on the numbers aij , σik will the initial value problem
for the function v be well-posed?
(c) Assume that, instead of x ∈ R

d, we consider equation (2.3.64) in a smooth
bounded domain G ∈ R

d with zero Dirichlet boundary conditions. Let X =
X(t) and v = v(t, x) be from part (a). Find the equation satisfied by v,
including the new domain and the boundary conditions.

Problem 2.3.2. For each of the following equations, find a representation of
the solution u = u(t, x), compute Eu2(t, x), establish regularity of u in t, x,
and determine whether the solution has a limiting distribution as t→ +∞.
(a)

du =
1

2
∆udt+ exp

(
− |x|2
f(t)

)
dw(t), t > 0, x ∈ R

d, (2.3.65)

where ∆ is the Laplace operator, u(0, x) = 0, w is a standard Brownian
motion, and f = f(t) is a positive, continuous on (0,+∞), deterministic
function.
(b)

du = uxxdt+ udw(t), t > 0, x ∈ (0, π), (2.3.66)

where u(0, x) = x(π− x), u(t, 0) = u(t, π) = 0, and w is a standard Brownian
motion.
(c)
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utt + but = uxx + f(t)Ẇ (t, x), t > 0, x ∈ (0, π), (2.3.67)

where u(0, x) = ut(0, x) = u(t, 0) = u(t, π) = 0, b is a real number, f is a
continuous deterministic function, and Ẇ (t, x) is space-time white noise.

Problem 2.3.3. Let w be a standard Brownian motion. Show that the initial-
boundary value problem

du = uxxdt+ 2uxdw(t), t > 0, x ∈ (0, π), (2.3.68)

with periodic boundary conditions, is ill-posed in L2(Ω;L2((0, T ) × (0, π)))
for every T > 0.

Problem 2.3.4. LetG be the unit disk. Consider the boundary value problem

ut = ∆u+ Ẇ , t > 0, x ∈ G, u|t=0 = u|∂G = 0,

where Ẇ is space-time white noise. Show that E‖u(t, ·)‖2
L2(G) = +∞ for all

t > 0.

Problem 2.3.5. Consider the initial value problem

ut = ∆u+ Ẇ , t > 0, x ∈ R
d, u|t=0 = 0,

where Ẇ is space-time white noise. Verify that if d > 1, then Eu2(t, x) = +∞
for all t > 0 and x ∈ R

d.

Problem 2.3.6. Let Ẇ be the space white noise in the d-dimensional cube
G = (0, π)d. Consider the Poisson equation

∆u = Ẇ , u|∂G = 0. (2.3.69)

(a) For d = 2, find the solution of the equation in the form

u(x, y) =
2

π

∞∑

n,k=1

unk sin(nx) sin(ky)

with suitable random variables unk and compute
∫∫
G

Eu2(x, y)dxdy.

(b) For what values of d is E‖u‖2
L2(G) finite?

Problem 2.3.7. Consider the equation

u(x) − uxx(x) = Ẇ (x), x ∈ R.

(a) Find the solution for which supx∈R
Eu2(x) < ∞ and verify that such a

solution is unique.
(b) Verify that u is continuously differentiable and u′ is locally Hölder con-
tinuous of any order less that 1/2.
(c) For what values of γ is the expression E‖u‖2

Hγ
2 (R) finite?
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Problem 2.3.8. (a) Consider the heat equation ut = uxx on the interval x ∈
(0, π) with boundary conditions ux(t, 0) = ux(t, π) = 0 and initial condition
u(0, x) = Ẇ (x). Find the solution and determine its regularity in (t, x).
(b) Consider the wave equation utt = uxx on the interval (0, π) with zero
boundary conditions and with initial conditions u(0, x) = 0, ut(0, x) = Ẇ (x).
Find the solution and determine its regularity in (t, x).
(c) Consider the Laplace equation ∆u = 0 in the unit disk G = {(x, y) :
x2 + y2 < 1} with the boundary condition u|∂G = Ẇ . Find the solution and
determine its regularity in (x, y). Suggestion: switch to polar coordinates.

Problem 2.3.9. A Brownian bridge B = B(t), t ∈ (0, T ) is a zero-mean
Gaussian process with the covariance function

E
(
B(t)B(s)

)
= min(t, s) − ts

T
. (2.3.70)

(a) Verify that, with probability one, B(0) = B(T ) = 0.
(b) Verify that each of the following represents the Brownian bridge:

1. B(t) = w(t) − tw(T )
T , where w is a standard Brownian motion;

2. B(t) = (T − t)
∫ t
0 (T − s)−1dw(s), that is, B(t) is the solution of

dB(t) = − B(t)

T − t
dt+ dw(t), B(0) = 0;

3. B(t) =
√

2T
π

∑
k≥1 ξk

sin(πkt/T )
k , where ξk, k ≥ 1 are iid standard random

variables;
4. B(·) is the limit in distribution, as t → ∞, of u(t, ·), where u = u(t, x) is

the solution of the stochastic parabolic equation

ut(t, x) = uxx(t, x) +
√

2 Ẇ (t, x), t > 0, x ∈ (0, T ),

with zero initial and boundary conditions: u(0, x) = u(t, 0) = u(t, T ) = 0;
Ẇ (t, x) is the space-time white noise.

5. B(·) is the solution of the stochastic elliptic equation
√
−∆u(x) = Ẇ (x),

x ∈ (0, T ), with zero boundary conditions u(0) = u(T ) = 0.

Comment on pros and cons of using each representation for numerical simu-
lation of the Brownian bridge.

Problem 2.3.10. Let Hn = Hn(x) be the Hermite polynomial defined in
(2.3.37) on page 57.

Define the operator D and δ by

Df(x) = f ′(x), δf(x) = −f ′(x) + xf(x).

(a) Verify that Dδf − δDf = f,
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∫ +∞

−∞

(
Df(x)

)
g(x)e−x

2/2dx =

∫ +∞

−∞
f(x)

(
δg(x)

)
e−x

2/2dx,

and then verify the following properties of the Hermite polynomials:

Hn = δ1, δHn = Hn+1, DHn = nHn−1, (D + δ)Hn = xHn, δDHn = nHn.

(b) Show that

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2.

(c) Let (ξ, η) be a two-dimensional Gaussian vector such that both ξ and η
are standard normal random variables. Show that, for n 6= m,

E

(
Hn(ξ)Hm(η)

)
= 0.

Note that ξ and η do not have to be independent.

Problem 2.3.11. Verify that {Hn(x)e
−x2/4, n ≥ 0} is a complete system

in L2(R). Equivalently, {Hn(ξ), n ≥ 1} is a complete system in the space of
square-integrable integrable functions of a standard Gaussian random variable
ξ.

Here is a possible outline. Let f = f(x) be such that
∫ +∞
−∞ f2(x)e−x

2/2dx <

∞ and
∫ +∞
−∞ f(x)Hn(x)e−x

2/2dx = 0 for all n. We need to show that f = 0.

For a complex number z, define F (z) =
∫
f(x)ezx−(z2/2)e−x

2/2dx. Argue that

F is analytic everywhere and F (z) = 0 for all z. Then note that F (−iy)e−y2/2

is the Fourier transform of f(x)e−x
2/2 and invert the Fourier transform.

Problem 2.3.12. Sometimes, it is convenient to consider a two-parameter
family of Hermite polynomials Hn(s, x), n = 0, 1, . . . ,, s > 0, x ∈ R defined
by

etx−(t2s/2) =

∞∑

n=0

Hn(s, x)

n!

Verify that the following identities:

Hn(s, x) = sn/2Hn(x/
√
s) [Hn(x) = Hn(1, x)],

Hn (s, x) =
(−s)n
n!

exp

(
x2

2s

)
∂n

∂xn
exp

(
−x

2

2s

)
, n = 0, 1, . . .

Hn(s, x) = xHn−1(s, x) − (n− 1)sHn−2(s, x), n = 2, 3, . . . ,
n∑

k=0

Hn−k(s, x)

(n− k)!

Hk(r, y)

k!
=

Hn(s+ r, x+ y)

n!
,

and verify that, for fixed s > 0, the collection of functions
{Hn(s, x)e

−x2/(4s), n ≥ 0, x ∈ R} is an orthogonal basis in L2(R).
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Problem 2.3.13. Take ϕ ∈ S(R) and define the action 〈ϕ, f〉 of f(x) =
1/(1 − x) on ϕ as

〈ϕ, f〉 = lim
ε→0

∫

ε<|y|<1/ε

ϕ(1 − y)

y
dy.

Show that this operation defines a distribution on the set S(R). Convince
yourself that 〈f, ϕ0〉, where ϕ0 is the standard normal density, can be taken
as a generalized expected value of the random variable 1/(1 − ξ). Show that
〈f, ϕ0〉 6= 0.

Problem 2.3.14. Consider the equation −uyy = sin y+u⋄ ξ, y ∈ (0, π), with
zero boundary conditions (see (2.3.42) on page 57). Let x be a real number
and define

Ex = exξ−(x2/2).

(a) Assume that u(y) =
∑

k≥0 uk(y)Hk(ξ) and suppose that Eu2(y) < ∞ for

all y ∈ (0, π). Define the function ŭ(y;x) = E
(
u(y)Ex

)
. Show that ŭ(y;x)

satisfies

−∂
2ŭ(y;x)

∂y2
= sin y + xŭ(y;x), ŭ(0;x) = ŭ(π;x) = 0; (2.3.71)

and therefore

ŭ(y;x) =
sin y

1 − x
. (2.3.72)

(b) We know from (2.3.41) on page 57 that u(y) =
∑∞
k=0 uk(y)Hk(ξ) with

uk(y) = sin y, and so Eu2(y) = ∞ for all y ∈ (0, π). On the other hand, the
function ŭ(y;x) is well-defined for all x ∈ (−1, 1), and

uk(y) =
1

k!

∂kŭ(y;x)

∂xk

∣∣∣
x=0

= sin y. (2.3.73)

Why does (2.3.73) hold even though u is not square-integrable?

Problem 2.3.15. Investigate existence of closed-form solutions for equation

du = (auxx − uux)dt+Gx(t, x)dw(t), t > 0, x ∈ R, (2.3.74)

where G = G(t, x) is a known non-random function, and Gx = ∂G/∂x. (On
Page 60 we discussed a particular case G(t, x) = x.)

Problem 2.3.16. The d-dimensional version of equation

ut + uux = auxx +Gx(t, x)

is

∂ui
∂t

+
d∑

j=1

uj
∂ui
∂xj

= a
d∑

j=1

∂2ui
∂x2

j

+
∂G(t, x)

∂xi
(2.3.75)
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or, with U = (u1, . . . , ud),

Ut + (U · ∇)U = a∆U + ∇G.

Derive the Hopf-Cole transformation for (2.3.75). An even more ambitious
reader is then invited to look at the multi-dimensional version of (2.3.74).



3

Stochastic Analysis in Infinite Dimensions

This chapter contains somewhat abstract but necessary, material on functional
analysis and stochastic calculus. To save time, one can move on to the following
chapters and come back as necessary.

The starting point in the study of stochastic ordinary differential equations
is the standard Brownian motion (also known as Wiener process). While this
process can also be used as a driving force in equations with partial derivatives,
one of the distinctive features of stochastic partial differential equations is the
possibility to have spacial structure in the noise. This spacial structure can
be introduced in several ways, and the objective of this chapter is to describe
the main constructions of the space-dependent noise and the corresponding
stochastic integral. As always, we fix the stochastic basis (Ω,F , {Ft}t≥0,P)
with the usual assumptions (P-completeness of F0 and right-continuity of Ft).
All processes are assumed Ft-adapted, and we do not distinguish between
different modifications of a process.

3.1 An Overview of Functional Analysis

A possible smooth transition from ODEs to PDEs (either deterministic or
stochastic) is to replace finite-dimensional Euclidean space with three infinite-
dimensional Hilbert spaces, and to replace matrices with operators acting
between those Hilbert spaces. The good news is that this transition from
finite to infinite dimensions requires only finitely many new definitions and
constructions. The bad news is that, depending on reader’s background in
functional analysis, this number can be large. One of the objectives of this
section is to provide all the necessary background to a reader who might not
have systematic knowledge of functional analysis and related topics.

The following objects frequently appear in the study of stochastic partial
differential equations:

1. Normal triple of Hilbert spaces;
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2. Hilbert scale;
3. Hilbert space tensor product;
4. Nuclear (trace class) operator;
5. Hilbert-Schmidt operator;
6. Reproducing kernel Hilbert space.

It is difficult to find all this in a single text book on functional analysis, and the
objective of the following two sections is to present a self-contained summary.

3.1.1 Spaces

A measure space (S,S, µ) is a set S, the sigma-algebra S of sub-sets of S,
and a measure µ on S. Recall that S contains S and is closed under the
operations of taking complements and countable unions and intersections.
Also recall that the measure µ is a countably additive function µ : S → R.
The measure space is called positive if the measure µ is positive, that is,
µ(A) ≥ 0 for all A ∈ S. The measure space is called finite if the measure µ
is finite: |µ|[S] =

∫
S |µ|(ds) <∞.

A topological space V is a set with a collection of sub-sets, called
topology, that contains the set itself, the empty set, and is closed under
the operations of taking arbitrary unions and finite intersections; every ele-
ment of the topology is, by definition, an open set. The availability of open
sets makes it possible to define

1. closed set as a complement of an open set;
2. closure of a set as the intersection of all closed sets containing it;
3. compact set, if every covering of the set by open sets has a finite sub-

covering;
4. neighborhood of a point, as an open set containing the point;
5. convergent sequence of points (every neighborhood of the limit con-

tains all but finitely many element of the sequence);
6. Borel sigma-algebra B(V ), as the smallest sigma-algebra containing all

open sets in V ;
7. continuous mapping between two topological spaces (pre-image of an

open set is open).

A dense subset of the topological space V is a set whose closure is V . A
separable space is a topological space possessing a countable dense subset.
A measure µ on a topological space is called regular if, for every Borel set
A and every ε > 0, there exist an open set Ao and a closed set Ac such that
Ac ⊂ A ⊂ Ao and µ(Ao) − µ(Ac) < ε.

A linear topological space is a linear space and a topological space
such that the operations of addition and multiplication by a scalar are contin-
uous. Unless mentioned otherwise, all scalars are assumed to be real numbers,
and thus all linear spaces are real.

In a metric space, we always consider the topology generated by open
balls. A particular case of a metric space is a normed space; unlike a general
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metric space, the definition of the norm requires the underlying space to be
linear. In a metric space, we have the notion of a Cauchy sequence; the space
is called complete if every Cauchy sequence has a limit. If the space is not
complete, we take the completion (equivalently, closure) of the space with
respect to the corresponding metric, by considering all equivalence classes of
all Cauchy sequences.

A subset A of a complete metric space X is compact if and only if every
sequence of points in A has a converging sub-sequence (in the metric of X)
and the limit is an element of A. In particular, compact sets in a complete
metric space are closed and bounded. In the finite-dimensional case, a set is
compact if and only if it is closed and bounded.

A norm in a normed space X is denoted by ‖ · ‖X . Two norms ‖ · ‖X,1 and
‖ · ‖X,2 in X are called equivalent if there exist two positive numbers c1, c2
such that

c1‖x‖X,1 ≤ ‖x‖X,2 ≤ c2‖x‖X,1
for all x ∈ X .

One useful fact about a complete metric space is the contraction

mapping theorem: a contracting mapping of a complete metric space to itself
has a unique fixed point. Below is a precise statement, with a proof, for a
normed space.

Definition 3.1.1. Let X be a normed space. A mapping F : X → X is called
a contraction if there exists a number α ∈ (0, 1) such that ‖F (x)−F (y)‖X ≤
α‖x− y‖X for all x, y ∈ X.

Theorem 3.1.2 (Contraction mapping theorem). If X is complete and
F : X → X is a contraction, then F has a unique fixed point: there exists a
unique x∗ ∈ X such that F (x∗) = x∗.

Proof. Uniqueness is immediate: if x∗ and y∗ are two fixed points, then ‖x∗−
y∗‖X = ‖F (x∗) − F (y∗)‖X ≤ α‖x∗ − y∗‖, meaning ‖x∗ − y∗‖X = 0. To
prove existence, do the fixed point iterations: take x0 ∈ X and define
xn = F (xn−1), n ≥ 1. Then x∗ = x0 +

∑
n≥1(xn − xn−1) (that is, x∗ =

limn xn). The series converges because ‖xn − xn−1‖X ≤ αn−1‖x1 − x0‖X ,
and, by completeness of X , the sum is in X .

A Polish metric space is a complete separable metric space; a Banach

space is a complete normed space; a Hilbert space is a Banach space in
which the norm is generated by an inner product. An inner product in a
Hilbert space H is denoted by (·, ·)H ; if H is a real Hilbert space (as we
usually assume), then

(x, y)H = (y, x)H .

Two topological spaces are called homeomorphic if there exists a bijective
(one-to-one and onto) mapping between them that is continuous in both
directions. Two metric spaces are called isomorphic (or isometrically
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isomoprhic) if there exists a bijective mapping between them that is metric-
preserving; such a mapping is necessarily continuous in both directions. Two
Hilbert spaces X,Y are called isomorphic if there exists a linear bijective
mapping A between them that preserves the inner product:

(Ax,Ay)Y = (x, y)X for all x, y ∈ X. (3.1.1)

Exercise 3.1.3 (C). Show that (3.1.1) is equivalent to

‖Ax‖2
Y = ‖x‖2

X for all x ∈ X. (3.1.2)

Hint. Use the parallelogram identity:

(x, y)H =
1

4

(
‖x+ y‖2

H − ‖x− y‖2
H

)
. (3.1.3)

A Banach space Y is continuously embedded into a Banach space X if Y is
a subset of X and there exists a number c > 0 such that ‖y‖X ≤ c‖y‖Y for
all y ∈ Y .

Exercise 3.1.4 (C). Assume that a Banach space Y is a sub-set of a Banach
space X and define the embedding operator ı : Y → X by ı(y) = y. Show
that Y is continuously embedded into X if and only if ı is continuous.

Definition 3.1.5. A normal triple of Hilbert spaces is an ordered collection
(V,H, V ′) of three Hilbert spaces with the following properties:

1. V is a dense sub-set of H and is continuously embedded into H,
2. H is dense subset of V ′ and is continuously embedded into V ′,
3. The inequality

|(v, h)H | ≤ ‖v‖V ‖h‖V ′ (3.1.4)

holds for all v ∈ V , h ∈ H,

Exercise 3.1.6 (C). For smooth functions f, g with a compact support in
R

d define

(f, g)n,r =
∑

0≤k≤n

∫

Rd

(1+ |x|2)rDkf(x)Dkg(x)dx, ‖f‖2
n,r = (f, f)n,r. (3.1.5)

where n ∈ {0, 1, 2, . . .}, r ∈ R, and the sum is taken over all partial derivatives
of order at most n; D0f = f . For example, for d = 2, n = 2, we have

‖f‖2
2,r =

∫∫

R2

(1 + x2
1 + x2

2)
r
(
f2 + f2

x1
+ f2

x2
+ f2

x1x1
+ f2

x1x2
+ f2

x2x2

)
dx1dx2.

Define the weighted Sobolev spacesWn,r,d as the closure of C∞
0 (Rd) in the

norm ‖ · ‖n,r.
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(a) Show that if f ∈ C∞(Rd) and |Dkf(x)| ≤ C(1 + |x|q) for all x ∈ R
d

and k = 0, . . . , n, then f ∈ Wn,r,d for all r < −(d + 2q)/2. (b) Show that
(Wn+2,r,d,Wn+1,r,d,Wn,r,d) is a normal triple of Hilbert spaces. (c) Use the
Sobolev embedding theorem to argue that if n > N + (d/2), then Wn,r,d is
continuous embedded into CN (Rd).

If (V,H, V ′) is a normal triple of Hilbert spaces v ∈ V , y ∈ V ′, hn ∈ H
and limn ‖y − hn‖V ′ = 0, define

[y, v] = lim
n

(v, hn)H . (3.1.6)

Exercise 3.1.7 (C). (a) Verify that if (3.1.4) is replaced with

|(v, h)H | ≤ c‖v‖V ‖h‖V ′

with some c independent of v and h, then an equivalent norm can be defined
in either V or V ′ so that (3.1.4) holds.
(b) Verify that the limit on the right-hand side of (3.1.6) exists and does not
depend on the particular sequence {hn, n ≥ 1} converging to y.

There is no coincidence that the notation of the third space in the normal
triple coincides with the commonly used notation for the dual of the first
space: see Exercise 3.1.22 on page 78 below.

Definition 3.1.8. A collection {Hr, r ∈ R} of Hilbert spaces is called a
Hilbert scale if

1. For every γ < ν, the space Hν is densely and continuously embedded in
Hγ ;

2. For every α < β < γ and x ∈ Hγ ,

‖x‖Hβ ≤ ‖x‖(γ−β)/(γ−α)
Hα ‖x‖(β−α)/(γ−α)

Hγ . (3.1.7)

Example 3.1.9 (Sobolev Spaces on R
d). Define Hr = Hr(Rd), r ∈ R, as the

completion of C∞
0 (Rd) (the set of smooth function with compact support in

R
d) in the norm ‖ · ‖r, where

‖f‖2
r =

∫

Rd

(1 + |y|2)r |f̂(y)|2dy <∞, r ∈ R, (3.1.8)

and

f̂(y) =
1

(2π)d/2

∫

Rd

e−ixyf(x)dx (3.1.9)

is the Fourier transform of f . Then {Hr, r ∈ R} is a Hilbert scale and, for
every γ ∈ R and r > 0,

(Hγ+r, Hγ , Hγ−r) (3.1.10)

is a normal triple with
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[f, g]γ =

∫

Rd

(1 + |y|2)γ f̂(y)ĝ(y)dy,

where ĝ(y) is the complex conjugate of ĝ(y).
If we define the operator Λ =

√
1 − ∆ by

Λ̂f(y) = (1 + |y|2)1/2f̂(y), (3.1.11)

then we get, for all γ, r ∈ R and f, g ∈ C∞
0 (Rd),

(f, g)γ = (Λrf, Λrg)γ−r, [f, g]γ = (Λmf, Λ−mg)γ . (3.1.12)

This concludes Example 3.1.9.

Exercise 3.1.10 (C). (a) Using the L2-isometry of the Fourier transform

(‖f‖2
0 = ‖f̂‖2

0) verify that ‖f‖2
1 = ‖f‖2

0 +
∑d

n=1 ‖fxn‖2
0, at least for f ∈

C∞
0 (Rd). Hint. Recall the the Fourier transform of fxn is iynf̂ .

(b) Verify that the norms (3.1.8) satisfy (3.1.7).
(c) Verify that, for an positive integer n, ‖f (n)‖2

0 + ‖f‖2
0 is an equivalent

norm in Hn(R), where f (n) is n-th derivative of f . Hint. Use isometry of

the Fourier transform to conclude that the norm ‖f‖n in Hn(R) is equivalent to

‖f‖0+‖f ′‖0+. . .+‖f (n)‖0. Then use (3.1.7) with α = 0, γ = n, and β = 1, . . . , n−1,

followed by the epsilon inequality (1.1.19) on page 8, to estimate every ‖f (m)‖0 in

terms of ‖f‖0 and ‖f (n)‖0.

(d) Verify that if n = 2k is a positive even integer and ∆ is the Laplace
operator, then the norm ‖f‖n in Hn(Rd) is equivalent to ‖f‖0 + ‖∆kf‖0.

The following result establishes a connection between normal triples and
Hilbert scales.

Theorem 3.1.11. (a) If {Hr, r ∈ R} is a Hilbert scale, γ ∈ R and m > 0,
then (Hγ+m, Hγ , Hγ−m) is a normal triple. (b) If (V,H, V ′) is a normal triple,
then there is a unique Hilbert scale {Hr, r ∈ R} such that H1 = V, H0 =
H, H−1 = V ′.

Proof. See Krein et al. [69, Section IV.1.10].

Yet another result shows that the analogue of the operator (1 − ∆)1/2

exists in a much more general situation.

Theorem 3.1.12. Let H and X be two Hilbert spaces such that H is densely
and continuously embedded into X. Then there exist a Hilbert scale {Hr, r ∈
R} and a positive-definite self-adjoint operator Λ with the following properties:

1. H1 = H, H0 = X;
2. for every r > 0, the domain of Λr is dense in X and Hr is the closure of

the domain of Λr in the norm ‖Λr · ‖X ;
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3. for every r ≤ 0, the domain of Λr contains X and Hr is the closure of X
in the norm ‖Λr · ‖X.

4. The scale {Hr, r ∈ R} is uniquely determined by the spaces H and X.

Proof. The operator Λ is defined as follows: Λ = A−1/2, where A : X → H
is the bounded linear operator such that, for every x ∈ H y ∈ X , (x, y)X =
(x,Ay)H . Existence and uniqueness of A follows from the Riesz representa-
tion theorem. The rest of the proof is direct verification of the corresponding
definitions; see Krein et al. [114, Theorem 4.1.12].

Exercise 3.1.13 (B). Verify existence of the operator A in the proof of The-
orem 3.1.12 and show that the operator is self-adjoint and positive-definite.

Definition 3.1.14. In the setting of Theorem 3.1.12, we say that the operator
Λ generates the scale {Hr, r ∈ R}, or, equivalently, the scale is generated by
the operator.

Remark 3.1.15. Uniqueness of the scale in Theorem 3.1.12 is in the sense that
any other scale with the same properties will have equivalent norms in every
space Hr. Many such equivalent scales can be generated if instead of the
operator Λ we use, for example, a+ bΛ or

√
a+ bΛ2, a, b > 0.

To summarize, every Hilbert scale is generated by a positive-definite self-
adjoint operator, and every positive-definite self-adjoint operator on a Hilbert
space generates a Hilbert scale.

Next, we review the tensor product of Hilbert spaces. If f = f(t) and g = g(s)
are real-valued square-integrable functions on (0, 1), we can define a square-
integrable function h = h(t, s) on (0, 1)×(0, 1) by h(t, s) = f(s)g(s). In general
Hilbert spaces, such an operation of point-wise multiplication is not defined,
but can often be replaced with the tensor product.

Given two linear spaces X,Y , the (algebraic) tensor product X ⊗ Y can
be defined in one of three equivalent ways:

• As the linear space such that every linear mapping from the Cartesian
productX×Y to a linear space V factors throughX⊗Y via a commutative
diagram. In other words, tensor product turns bi-linear maps into linear
maps.

• As a factor space of X ×Y modulo certain equivalence relations (see Wei-
dmann [210, Section 3.4]);

• as the collection of objects

{ N∑

i=1

cixi ⊗ yi, ci ∈ R, xi ∈ X, yi ∈ Y,N ≥ 1
}
. (3.1.13)

In (3.1.13) we have elementary building blocks, denoted by x⊗y, x ∈ X , y ∈ Y ,
and the algebraic tensor product X ⊗ Y of the spaces X and Y consists of all
finite linear combinations of these elementary building blocks.
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For two Hilbert spaces X,Y , define

(x1 ⊗ y1, x2 ⊗ y2)X⊗Y = (x1, x2)X (y1, y2)Y , (3.1.14)

and then extend the operation (·, ·)X⊗Y by linearity to X ⊗ Y :

(ax1 ⊗ y1 + bx2 ⊗ y2, x3 ⊗ y3)X⊗Y

= a(x1 ⊗ y1, x3 ⊗ y3)X⊗Y + b(x2 ⊗ y2, x3 ⊗ y3)X⊗Y .

The operation (·, ·)X⊗Y defines an inner product on the space X⊗Y , and the
corresponding norm ‖ · ‖X⊗Y satisfies

‖x⊗ y‖X⊗Y = ‖x‖X ‖y‖Y .

The closure (equivalently, completion) of the algebraic tensor product X ⊗ Y
of two Hilbert spaces X,Y with respect to the norm ‖ · ‖X⊗Y is called the
Hilbert space tensor product of X and Y and again denoted by X ⊗
Y . The completion is usually necessary: the algebraic tensor product of two
Hilbert spaces is complete if and only if at least one of the spaces is finite-
dimensional (Weidmann [210, Exercise 3.12]).

While we use the same notation X ⊗ Y for two different constructions,
there will be no ambiguity, as we will always consider the Hilbert space tensor
product if X and Y are Hilbert spaces.

Exercise 3.1.16 (C). (a) Verify that if X is a separable Hilbert space with
an orthonormal basis {mk, k ≥ 1} and Y is a separable Hilbert space with an
orthonormal basis {uk, k ≥ 1}, then X ⊗ Y is a separable Hilbert space with
an orthonormal basis {mi ⊗ uj , i, j ≥ 1}.
(b) Let X be a separable Hilbert space and let Y = L2(S) be the space of
real-valued square-integrable functions on a measure space (S,S, µ). In this
situation, we do have the possibility to multiply point-wise the elements of
X and the element of Y . If {mk, k ≥ 1} is an orthonormal basis in X and
{uk, k ≥ 1} is an orthonormal basis in Y , then show that the orthonormal
basis in X ⊗ Y is {uimj , i, j ≥ 1}.
(c) Let X = Y = L2((0, 1)). Verify that the mapping

(f ⊗ g) 7→ f(t) g(s)

defines an isomorphism between L2((0, 1))⊗L2((0, 1)) and L2((0, 1)× (0, 1)).
(d) Let (S,S, µ) and (R,R, ν) be measure spaces. Show that L2(S;L2(R))
(the space of square-integrable functions on S with values in the space of
square-integrable functions on R) is isomorphic to L2(S ×R).

Hint. Show that both are isomorphic to L2(S) ⊗ L2(R).

3.1.2 Linear Operators

LetX,Y be real Banach spaces with norms ‖·‖X , ‖·‖Y . Recall that a mapping
A : X → Y is called a linear operator if A(ax + by) = aAx + bAy for all
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a, b ∈ R and x, y ∈ X ; if Y = R, then A is called a linear functional on
X .

Definition 3.1.17. A linear operator A : X → Y is called

• bounded, if A is defined on all of X and there exists a number c such that
‖Ax‖Y ≤ c‖x‖X for all x ∈ X;

• closed, if the set {(x,Ax), x in the domain of A} is closed in the Carte-
sian product space X × Y ;

• compact (or completely continuous), if the image of every sequence that is
bounded in the norm of X has a sub-sequence that converges in the norm
of Y .

• nuclear, if there exist a sequence {ℓn, n ≥ 1} of bounded linear operators
from X to R, a sequence {yn, n ≥ 1} of elements from Y , and a sequence
{cn, n ≥ 1} of real numbers, such that
– sup

n
sup

x:‖x‖X≤1

|ℓn(x)| <∞, supn ‖yn‖Y <∞,
∑

n≥1 |cn| <∞;

– lim
N→∞

‖Ax−
N∑
n=1

cnℓn(x)yn‖Y = 0, x ∈ X, that is,

Ax =
∑

n≥1

cnℓn(x)yn. (3.1.15)

Note that a bounded linear operator A : X → Y is continuous and closed.
The interesting situation is when A : X → X is an unbounded closed operator.

Theorem 3.1.18. Let X be a Banach space and let A : X → X be an un-
bounded linear operator such that the domain H ⊂ X of A is a Hilbert space
and A : H → X is a bounded operator: ‖Ax‖X ≤ C0‖x‖H .

If there exists a positive number C such that, for all x ∈ H, ‖x‖H ≤
C
(
‖Ax‖X + ‖x‖X

)
, then A : X → X is a closed (unbounded) operator.

Proof. Let us point out that A is trivially a closed operator as a mapping
from H to X . We have to show that A is closed as a mapping from X to X .

By definition, A is closed as an operator from X to X if the set (x,Ax), x ∈
H , is closed in X × X . In other words, we have to show that, for every
{xn} ⊂ X such that xn ∈ H , ‖xn−x‖X → 0, and ‖Axn− y‖X → 0, it follows
that x ∈ H and Ax = y.

We have

‖xn − xm‖H ≤ C
(
‖Axn − Axm‖X + ‖xn − xm‖X

)
,

and therefore {xn} is a Cauchy sequence in H (because by assumption both
{Axn} and {xn} are Cauchy sequences in X . By completeness of H , limn xn
exists inH . Therefore, limn xn = x ∈ H . By continuity of A onH , limn Axn =
Ax, that is Ax = y.

Next, we discuss some properties of compact operators.
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Theorem 3.1.19. (a) A linear operator with a finite-dimensional range is
compact. (b) If An, n ≥ 1, are compact linear operators from X to Y and
A : X → Y is a bounded linear operator such that limn→∞ supx:‖x‖X≤1 ‖Anx−
Ax‖Y = 0, then A is compact.

Proof. (a) This follows from compactness of closed bounded sets in a finite-
dimensional Euclidean space. (b) See, for example, Dunford and Schwartz [39,
Lemma VI.5.3] or Yosida [215, Section X.2].

Exercise 3.1.20 (B). Verify that a nuclear operator is compact. Hint. Note
that AN : x 7→ ∑N

n=1 cnℓn(x)yn is an operator with at most N-dimensional range,
and

‖(AN − A)x‖Y ≤ C‖x‖X

∞∑

n=N+1

|cn|.

Recall that the (strong) dual space of a Banach Space X is the col-
lection X ′ of bounded linear functionals on X , equipped with the norm
‖ℓ‖X′ = supx:‖x‖X=1 |ℓ(x)|; X ′ is a Banach space (see, for example, Yosida
[215, Theorem IV.7.1]). A sequence {xn, n ≥ 1} is said to converge weakly

to x ∈ X if limn ℓ(xn) = ℓ(x) for every ℓ ∈ X ′.
When X is a Hilbert space, then the following Riesz representation

theorem allows us to identify X with X ′.

Theorem 3.1.21 (Riesz representation theorem). Let X be a Hilbert
space.

(a) If ℓ ∈ X ′, then there exists a unique yℓ ∈ X such that ‖ℓ‖X′ = ‖yℓ‖X
and ℓ(x) = (x, yℓ)X for all x ∈ X.

(b) If y ∈ X, then the mapping x 7→ (x, y)X defines a bounded linear
functional ℓy on X and ‖ℓy‖X′ = ‖y‖X.

Proof. See, for example, Yosida [215, Theorem III.6]. Keep in mind that we
assume that all the spaces are real.

The Riesz representation theorem (which is a common name for any result
providing a characterization of the dual of a Banach space, not just for Hilbert
spaces) is named after the Hungarian mathematician Frigyes (Frederic)
Riesz (1880–1956), who, around 1910, established the result in the setting of
Lp spaces, first for p = 2, and then for p 6= 2. Frigyes Riesz is not to be confused
with his younger brother Marcel Riesz (1886–1969), also a mathematician
after whom the Riesz kernel is named.

Exercise 3.1.22 (C). (a) Use the Riesz representation theorem to show that
if H is a (real) Hilbert space, then H is isomorphic to H ′. Hint. J0 : x 7→ (x, ·)H

is the required isomorphism.
(b) Let (V,H,X) be a normal triple of Hilbert spaces. Verify that X is iso-
morphic to V ′. Is there a contradiction with part (a)? Hint. Show that the
required isomorphism J : X → V ′ is defined by
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(Jx)(v) = [x, v];

see (3.1.6) on page 73. There is no contradiction: according to part (a), V is isomor-

phic to V ′ relative to the inner product in V ; in the normal triple (V, H,X), X is

isomorphic to V ′ relative to the inner product in H .

The following generalization of Theorem (3.1.21) helps in the study of
elliptic equations.

Theorem 3.1.23 (Lax-Milgram Theorem). Let H be a (real) Hilbert
space, and let B : H ×H → R be a mapping which is

• Bi-linear: for a, b ∈ R, x, y, h ∈ H, B(ax + bh, y) = aB(x, y) + bB(h, y),
B(x, ay + bh) = aB(x, y) + bB(x, h);

• Bounded: There exists K > 0 such that, for all x, y ∈ H, |B(x, y)| ≤
K‖x‖H ‖y‖H;

• Coercive (or strongly positive): There exists a c > 0 such that, for all
x ∈ H, B(x, x) ≥ c‖x‖2

H .

Then, for every bounded linear operator ℓ on H there exists a unique u ∈ H
such that, for every y ∈ H, B(u, y) = ℓ(y).

Alternatively, for every bounded linear operator ℓ on H there exists a
unique v ∈ H such that, for every x ∈ H, B(x, v) = ℓ(x).

Proof. The idea is to fix the first argument of B and to consider the bounded
linear functional y 7→ B(u, y). By the Riesz representation theorem, B(u, y) =
(xu, y), and then boundedness of B implies that the correspondence u 7→ xu
defines a bounded linear operator A : H → H so that B(u, x) = (Au, x). Also
by Theorem 3.1.21, ℓ(y) = (h, y)H for some h ∈ H . Coercivity of B implies
that the operator A has a bounded inverse, and then u = A−1h. For details,
see Evans [45, Theorem 6.2.1].

To prove the alternative statement of the theorem, we fix the second ar-
gument of B and repeat the argument.

The Riesz representation theorem is a particular case corresponding to
B(x, y) = (x, y)H .

This concludes the proof of Theorem 3.1.23.

Theorem 3.1.23 is named after the Hungarian-American mathematician Pe-
ter David Lax and the American mathematician Arthur Norton Mil-
gram (1912–1961), and can be traced to their joint paper [123].

Exercise 3.1.24 (A). Let B be from Theorem 3.1.23. Show that

|B(u, v) B(v, u)| ≤ B(u, u)B(v, v).

Hint. Note that B(u + λv, u + λv) ≥ 0, expand and optimize in λ.
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To conclude our discussion of the dual spaces, recall that a Banach space X is
called reflexive if (X ′)′ = X . In particular, every Hilbert space is reflexive
(by Theorem 3.1.21), and so is every Lp(G) for 1 < p <∞. A useful property
of a reflexive space is weak sequential compactness: if {xn, n ≥ 1} is a
sequence of elements in X and supn ‖xn‖X < ∞, then there exists an x ∈ X
and a subsequence {xn′} such that limn′ ℓ(xn′) = ℓ(x) for all ℓ ∈ X ′; see,
for example, Yosida [215, Theorem V.2.1]. In particular, if H is a Hilbert
space and supn ‖hn‖H < ∞, then there exists an h ∈ H such that, along a
subsequence hn′ , limn′(hn′ , x)H = (h, x)H for every x ∈ H .

Next, we summarize some facts about adjoint and self-adjoint operators.

Theorem 3.1.25. Let A : X → Y be a linear operator and let X, Y be Hilbert
spaces with inner products (·, ·)X and (·, ·)Y . If the domain of A is dense in
X, then there exists a unique linear operator A∗ : Y → X, called the adjoint

operator of A, defined by (x,A∗y)X = (Ax, y)Y for all x in the domain of
X. If A is defined on all of X and is bounded, then A∗ is defined on all of Y
and is a bounded linear operator from Y to X.

Proof. See Yosida [215, Sections VII.1, VII.2].

Definition 3.1.26. Let X be a Hilbert space. A linear operator A : X → X
is called

• self-adjoint if A = A∗;
• non-negative, if (Ax, x)X ≥ 0 for all x in the domain of A.

Exercise 3.1.27 (C). Let X, Y be Hilbert spaces and let A : X → Y be a
closed linear operator with a dense domain. Verify that the operators A∗A
and AA∗ are non-negative and self-adjoint.

The following theorem summarizes some useful properties of bounded self-
adjoint operators.

Theorem 3.1.28. Let A : X → X be a bounded linear operator on a separable
Hilbert space X.

(a) If A is non-negative and self-adjoint, then there exists a unique non-
negative self-adjoint operator B : X → X, such that BB = A. This operator
is denoted by

√
A,

(b) If A is compact and self-adjoint, then X has an orthonormal basis
consisting of the eigenfunctions of A.

Proof. (a) One can either use spectral representation theorem (e.g. Yosida
[215, Theorem XI.6.1]) or representation of C∗-algebras (e.g. Murphy [162,
Theorem 2.2.1]).

(b) See, for example, Murphy [162, Theorem 2.4.4].
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Example 3.1.29 (Hilbert Scale generated by a self-adjoint operator). Let H be
a separable Hilbert space and Ā : H → H , a positive-definite, compact, self-
adjoint operator. Choose the eigenfunctions H = {hk, k ≥ 1} of Ā to form
an orthonormal basis in H and denote by {ak, k ≥ 1} the corresponding
eigenvalues of Ā : Āhk = akhk. Since Ā is compact, we have limk→0 ak = 0.
With no loss of generality, assume that a1 ≥ a2 ≥ a3 ≥ . . ., and define the
numbers λk = 1/ak so that λ1 ≤ λ2 ≤ λ3 ≤ . . . and limk→∞ λk = +∞. It

turns out that the numbers λk and the corresponding operator Λ =
(
Ā
)−1

defined by
Λhk = λkhk, k ≥ 1,

are more convenient for our purposes than the numbers ak and the operator
Ā.

Let HF be the collection of all finite linear combinations of the elements of
H. Then, for r ∈ R, define Hr as the closure of HF in the norm ‖ · ‖r, where,
for f =

∑
k fkhk,

‖f‖2
r =

∑

k

λ2r
k f

2
k . (3.1.16)

Then {Hr, r ∈ R} is a Hilbert scale, and, for every m > 0 and γ ∈ R, the
duality between Hγ+m and Hγ−m relative to the inner product in Hγ is

[f, g]γ =
∑

k

λ2γ
k fkgk.

Note that, similar to (3.1.12) on page 74,

(f, g)γ = (Λrf, Λrg)γ−r, [f, g]γ = (Λmf, Λ−mg)γ , γ, r ∈ R. (3.1.17)

A special example is H = L2(G), where G is a smooth closed manifold or
a smooth bounded domain, and Λ = (−∆)1/2 on G (with suitable boundary
conditions if G is a domain); see Shubin [195, Section I.7]. In this case, the
spaces Hγ = Hγ(G) are known as the Sobolev spaces on G.

This concludes Example 3.1.29.

Exercise 3.1.30 (C). Verify that the norms (3.1.16) satisfy (3.1.7) on page
73.

Next, we recall the definition of the dual operator.

Theorem 3.1.31. Let A : X → Y be a bounded linear operator from a Ba-
nach space X to a Banach space Y . If A is defined on all of X, then there exists
a unique bounded linear operator A′ : Y ′ → X ′, called the dual operator of
A, such that, A′ is defined on all of Y ′ and, for every ℓ ∈ Y ′ and every x ∈ X,

(A′ℓ)(x) = ℓ(Ax).
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Proof. See, for example, Yosida [215, Theorem VII.1.2].

Exercise 3.1.32 (B). Let X,Y be Hilbert spaces and let JX : X → X ′, JY :
Y → Y ′ be the isomorphisms defined by the Riesz representation theorem.
Show that

A∗ = J−1
X A′JY (3.1.18)

The dual of a Hilbert space can be identified with various Hilbert spaces,
and, as the following example illustrates, the computations of A∗ and A′

depend on this identification.

Example 3.1.33. Let Hγ , γ ∈ R, be the Sobolev spaces on the interval (0, 1)
with zero boundary conditions: Hγ = ΛγL2((0, 1)), where Λ =

√
−∆ and

∆ is the Laplace operator with zero boundary conditions, defined on smooth
compactly supported functions by ∆u(x) = u′′(x) = d2u(x)/dx2. Denote by
(·, ·)γ the inner product in Hγ , so that

(f, g)γ = (Λγf, Λγg)0.

Consider the operator A : f(x) → a∆f , where a = a(x) is a smooth compactly
supported function: a ∈ C∞

0 . It is a bounded linear operator from Hγ+1 to
Hγ−1 for every γ ∈ R.

The formal adjoint A⊤ of A, defined by f → ∆(af), is also bounded
linear operator from Hγ+1 to Hγ−1 for every γ ∈ R. For a smooth compactly
supported function u, we have

A⊤u(x) =
d2(a(x)u(x))

dx2
,

so that (Au, v)0 = (u,A⊤v)0.
First, consider the normal triple (H1, H0, H−1) and identify (H1)′ with

H−1; denote by [f, g]0, f ∈ H1, g ∈ H−1, the duality between H1 and H−1

relative to the inner product in H0. Let us show that, for the operator A
acting from H1 to H−1,

A∗ = Λ−2A⊤Λ−2 : H−1 → H1, A′ = A⊤ : H1 → H−1. (3.1.19)

In particular,
A∗ = Λ−2A′Λ−2, (3.1.20)

which is consistent with (3.1.18), because Λ2 is an isomorphism from H1 to
H−1 and in this setting, H−1 = (H1)′.

To verify (3.1.19), take u, v ∈ C∞
0 ((0, 1)) and note that

(Au, v)−1 = (Λ−1Au, Λ−1v)0 = (Au, Λ−2v)0 = (u,A⊤Λ−2v)0

= (u, Λ−2A⊤Λ−2v)1 ⇒ A∗ = Λ−2A⊤Λ−2.

Similarly,
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[Au, v]0 = (Λ−1Au, Λv)0 = (Au, v)0 = (u,A⊤v)0 = (A⊤v, u)0

= (Λ−1A⊤v, Λu)0 = [A⊤v, u]0 ⇒ A′ = A⊤.

Next, consider the normal triple (H2, H1, H0) and identify (H2)′ with H0.
Denote by [f, g]1, f ∈ H0, g ∈ H2, the duality between H2 and H0 relative to
the inner product in H1. It follows that [f, g]1 = (Λ−1f, Λ1g)1. Let us show
that, for the operator A acting from H2 to H0, we have

A∗ = Λ−4A⊤ : H0 → H2; A′ = Λ−2A⊤Λ2 : H2 → H0. (3.1.21)

Indeed, for u, v ∈ C∞
0 ((0, 1)),

(Au, v)0 = (u,A⊤v)0 = (Λ−2u, Λ−2A⊤v)2 = (u, Λ−4A⊤v)2.

Similarly,

[Au, v]1 = (Λ−1Au, Λv)1 = (Au, Λ2v)0 = (u,A⊤Λ2v)0 = (Λ2u, Λ−2A⊤Λ2v)0

= (Λ−2A⊤Λ2v, Λ2u)0 = (Λ−3A⊤Λ2v, Λu)1 = [Λ−2A⊤Λ2v, u]1.

Note that (3.1.20) still holds, which is again consistent with (3.1.18), because
Λ2 is an isomorphism from H2 to H0 and, in our setting, H0 = (H2)′.

This concludes Example 3.1.33.

Exercise 3.1.34 (B). (a) In the setting of Example 3.1.33, show that, for
the operator A acting from Hγ+1 to Hγ−1, γ ∈ R, we have

A∗ = Λ−2γ−2A⊤Λ2γ−2 : Hγ−1 → Hγ+1,

A′ = Λ−2γA⊤Λ2γ : Hγ+1 → Hγ−1,
(3.1.22)

and verify that the result is consistent with (3.1.18).
(b) Show that (3.1.19) continues to hold if the function a is Lipschitz contin-
uous. (c) Show that (3.1.21) continues to hold if the function a is bounded
and measurable.

Exercise 3.1.35 (C). In the setting of Example 3.1.29 show that, for the
operator Λ acting from Hr to Hr−1, the adjoint operator Λ∗ satisfies Λ∗ =
Λ−1.

Hint (f, g)r−1 = (Λ−1f, Λ−1g)r.

The following is a useful result about the dual and adjoint of an inverse
operator.

Theorem 3.1.36. Let X,Y be Banach spaces and A : X → Y , a bounded
linear bijection. Then (A−1)′ = (A′)−1. If, in addition, X and Y are Hilbert
space, then also (A−1)∗ = (A∗)−1.
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Proof. Equality (A−1)′ = (A′)−1 follows from a theorem of Phillips (Yosida
[215, Theorem VIII.6.1]). Then equality (A−1)∗ = (A∗)−1 follows from the
result of Exercise 3.1.32.

The next result is the polar decomposition of bounded linear operators. A
real number x can be written as x = |x|sgn(x); a complex number z can be
written as z = |z| exp{i arg(z)}. The polar decomposition an analogue of these
representations for operators.

Theorem 3.1.37 (Polar decomposition of bounded operators). Let A :
X → Y be a bounded linear operator and let X, Y be Hilbert spaces.

(a) There exists a unique bounded linear operator S : X → X and a unique
bounded linear operator U : X → Y with the following properties:

• S is non-negative and self-adjoint;
• U∗U is an orthogonal projection on the orthogonal complement of the ker-

nel of S;
• A = US.

(b) If, in addition, A is compact, then there exists a collection {xk, k ≥ 1}
of elements in X, a collection {yk, k ≥ 1} of elements in Y , and a sequence
of real numbers {λk, k ≥} such that

• the collection {xk, k ≥ 1} is orthonormal in X: ‖xk‖X = 1, (xk, xm)X =
0, k 6= m;

• the collection {yk, k ≥ 1} is orthonormal in Y ;
• λk > 0, limk→∞ λk = 0;
• Ax =

∑
k≥1 λk(x, xk)X yk.

Proof. (a) Define S =
√

A∗A and then

Ux = 0, x ⊥ S(X); U(Sx) = Ax.

For more details, see, for example Shubin [195, Proposition A.3.4] or Murphy
[162, Theorem 2.3.4].

(b) If A is compact, then so is the corresponding operator S (because S =
U∗A). By Theorem 3.1.28(b), we can take xk and λk such that Sxk = λkxk;
then yk = Uxk.

Remark 3.1.38. The operator S in the polar decomposition A = US is often
denoted by |A|. The operator U is an example of partial isometry. For a
bounded linear operator U : X → Y each of the following can be taken as
the definition of partial isometry: (a) U = UU∗U; (b) UU∗ is an orthogonal
projection; (c) U∗U is an orthogonal projection; (d) ‖Ux‖Y = ‖x‖X for all x
in the orthogonal complement of the kernel of U. See Murphy [162, Theorem
2.3.3].

Definition 3.1.39. Let X,Y be Hilbert spaces, and let A : X → Y be a
bounded linear operator. The operator A is called
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• Hilbert-Schmidt, if
∑
k≥1 ‖Axk‖2

Y <∞ for every orthonormal collection
{xk, k ≥ 1} in X.

• trace-class, if
∑
k≥1(

√
A∗A xk, xk)X <∞ for every orthonomal collec-

tion {xk, k ≥ 1} in X.

Exercise 3.1.40 (C). Let X,Y be separable Hilbert spaces, and let A : X →
Y be a Hilbert-Schmidt operator.
(a) Show that A is compact. Hint. Use Theorem 3.1.19.

(b) Let M = {mk, k ≥ 1} be an orthonormal basis in X . Define ‖A‖2 by

‖A‖2 =


∑

k≥1

‖Amk‖2
Y




1/2

. (3.1.23)

Show that ‖A‖2 does not depend on the choice of M and defines a norm in
the space of Hilbert-Schmidt operators from X to Y .

Hint. Take an orthonormal basis {hk, k ≥ 1} in Y and show that
∑

k ‖Amk‖2
Y =∑

k ‖A∗hk‖2
X . Alternatively, use Theorem 3.1.37(b) to show that

∑
k ‖Amk‖2

Y =∑
k λ2

k.

Theorem 3.1.41. Let X,Y be separable Hilbert spaces, and let A : X → Y
be a bounded linear operator.

(a) The following conditions are equivalent:

1. A is Hilbert-Schmidt;
2. A∗ is Hilbert-Schmidt;
3. A is compact and

∑
k≥1 λ

2
k < ∞, where λk, k ≥ 1, are eigenvalues of√

A∗A .

(b) The following conditions are equivalent:

1. A is nuclear;
2. A∗ is nuclear;
3. A is trace-class;
4.
∑

k≥1(Amk, hk)Y <∞ for every orthonomal bases {mk, k ≥ 1} in X and
{hk, k ≥ 1} in Y ;

5. A is compact and
∑

k≥1 λk < ∞, where λk, k ≥ 1, are eigenvalues of√
A∗A;

6.
√

S is Hilbert-Schmidt, where S =
√

A∗A;
7.
∑

k≥1 ‖Amk‖Y <∞ for at least one orthonormal basis {mk, k ≥ 1} in X;
8. A = BC, where B and C are Hilbert-Schmidt;

Proof. Most of the arguments are rather straightforward and are left to the
reader. The details can be found in Murphy [162, Section 2.4] and Gelfand
and Vilenkin [55, Section I.2].
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Exercise 3.1.42 (C). True or false: if A is nuclear, then
∑

k≥1 ‖Amk‖Y <∞
for every orthonormal basis in X .

Hint. False: let both X and Y be the collection of square-summable sequences),

let {mk, k ≥ 1} be the standard unit basis in X, and let A be the orthogonal

projection on the vector f =
∑

k≥1 mk/k.

Definition 3.1.43. (a) If X,Y are separable Hilbert spaces and A : X → Y
is a nuclear operator, then the trace norm ‖A‖1 of A is defined by

‖A‖1 =
∑

k≥1

λk, (3.1.24)

where λk, k ≥ 1, are the eigenvalues of
√

A∗A.
(b) Let X be a separable Hilbert space with an orthonormal basis M =

{mk, k ≥ 1}, let Y be a separable Hilbert space with an orthonormal basis
H = {hk, k ≥ 1}, and let A : X → Y be a nuclear operator. The matrix

trace of A relative to M and H is
∑

k≥1(Amk, hk)Y .

Exercise 3.1.44 (C). Let X be a separable Hilbert space with an orthonor-
mal basis M = {mk, k ≥ 1} and let A : X → X be a nuclear operator. Define
the trace tr(A) of A by

tr(A) =
∑

k≥1

(Amk,mk)X . (3.1.25)

(a) Show that tr(A) does not depend on M and |tr(A)| ≤ ‖A‖1. Hint. Use

Theorem 3.1.37(b).

(b) Show that if A is non-negative and self-adjoint, then tr(A) = ‖A‖1.
(c) Show that, for two linear operators A : X → X and B : X → X ,

tr(AB) = tr(BA) (3.1.26)

if (i) A and B are both Hilbert-Schmidt operators, or if (ii) one of the operators
is trace-class and the other is bounded. Hint. See Murphy [162, Theorem 2.4.14].

(d) Show that if X = R
d, then tr(A) is the sum of the diagonal elements of

the matrix representation of A in some orthonormal basis. In particular tr(A)
does not depend on the choice of the orthonormal basis in R

d and (3.1.26)
holds for every two d × d square matrices.

This concludes Exercise 3.1.44.

Example 3.1.45 (Integral operators). Let (S,S, µ) be a positive measure space
and and let K = K(s, t) be a measurable real-valued function on S × S such
that ∫

S

∫

S

K2(s, t)µ(ds)µ(dt) <∞. (3.1.27)

Define the operator K : L2(S, µ) → L2(S, µ) by
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(Kf)(s) =

∫

S

K(s, t)f(t)µ(dt). (3.1.28)

(a) The operator K is Hilbert-Schmidt and

‖K‖2
2 =

∫

S

∫

S

K2(s, t)µ(ds)µ(dt)

(see Yosida [215, Example X.2.2]); the function K is called the kernel of K.
The converse is also true: every Hilbert-Schmidt operator on L2(S, µ) can be
written in the form (3.1.28) with the kernel satisfying (3.1.27) (see Dunford
and Schwartz [40, Problem XI.8.44]).

(b) The operator K is nuclear if there exist functions K1,K2 satisfying
(3.1.27) and such that

K(s, t) =

∫

S

K1(s, r)K2(r, t)µ(dr).

For such an operator,

tr(K) =

∫

S

K(s, s)µ(ds); (3.1.29)

see Dunford and Schwartz [40, Problem XI.8.49(c)].
(c) If K(s, t) = K(t, s), then the operator K is self-adjoint. In that case,

if λi, i ≥ 1, are the eigenvalues of K and ϕi, i ≥ 1, are the corresponding
eigenfunctions:

Kϕi = λiϕi,

then
K(s, t) =

∑

i≥1

λiϕi(s)ϕi(t), (3.1.30)

and the series converges in L2(S×S); see Dunford and Schwartz [40, Problem
XI.8.56].

(d) Assume that K(s, t) = K(t, s) and the corresponding operator K is
non-negative. If, in addition, S is a compact topological space, µ(S) < ∞,
the measure µ is regular, and the function K is continuous, then the series
(3.1.30) converges uniformly; see Dunford and Schwartz [40, Problem XI.8.58].
This result is known as Mercer’s theorem, after the British mathematician
James Mercer (1883–1932), who published it in 1909.

This concludes Example 3.1.45.

We finish this section with a brief discussion of the reproducing kernel

Hilbert space.

Definition 3.1.46. A Hilbert space H is called a reproducing kernel Hil-

bert space if

1. the elements of H are real-valued functions on a set S;
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2. for every s ∈ S, the operation of point-wise evaluation f 7→ f(s) is a
continuous mapping from H to R.

Exercise 3.1.47 (B). (a) Show that L2(R), as a set of function on R, is not
a reproducing kernel Hilbert space. Hint. Take f the indicator function of the

set [0, 1] and g, the indicator function of the set [δ, 1], δ > 0, and look at f(0)−g(0).

(b) Show that the Sobolev space H1(R) (see Example 3.1.9 on page 73) is a
reproducing kernel Hilbert space. Hint. For a smooth compactly supported f ,

f(x) = (2π)−1/2
∫

R
eixyf̂(y)dy. By the Cauchy-Schwarz inequality, |f(x) − g(x)| ≤

(1/
√

2)‖f − g‖1.

To understand the origin of the name, reproducing kernel Hilbert space,
we need one more definition.

Definition 3.1.48. Let S be a set. A real-valued function K defined on S×S
is called a positive-definite kernel on S if K(t, s) = K(s, t), s, t ∈ S,
and, for every integer N ≥ 1, every collection of points s1, . . . , sN from S,
and every collection of real numbers y1, . . . , yN , the following inequality holds:

N∑

i,j=1

K(si, sj)yiyj ≥ 0. (3.1.31)

In other words, every matrix of the form
(
K(si, sj), i, j = 1, . . . , N

)
is sym-

metric and non-negative definite.

Exercise 3.1.49 (B). (a) Verify that a positive-definite kernel K has the
following properties: (i) K(t, t) ≥ 0; (ii) |K(s, t)|2 ≤ K(s, s)K(t, t).
(b) Verify that a real continuous symmetric function K on [0, 1] × [0, 1] is a
positive-definite kernel on [0, 1] if and only if

∫ 1

0

∫ 1

0

K(s, t)f(s)f(t)dsdt ≥ 0

for every f ∈ L2((0, 1)).

The following theorem connects the reproducing kernel Hilbert spaces and
the positive-definite kernels.

Theorem 3.1.50. Let S be a set.
(1) For every reproducing kernel Hilbert space H of functions on S, there

exists a unique positive-definite kernel KH on S, called the reproducing

kernel of H, such that, for every s ∈ S and f ∈ H,

f(s) =
(
f,KH(s, ·)

)
H

(note that, for every fixed s, KH(s, ·) is a function on S and therefore can be
an element of H. )

(2) For every positive-definite kernel K on S, there exists a reproducing
kernel Hilbert space H of real-valued functions on S, such that K is the re-
producing kernel of H: KH = K.
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Proof. For the main idea, see parts (a) and (b) of the following exercise. For
details, see Aronszajn [3, Section I.2].

Exercise 3.1.51 (C). (a) Derive existence and uniqueness of KH from the
Riesz representation theorem. Hint. The continuity of f 7→ f(s) implies f(s) =

(f, gs)H for some gs ∈ H ; then KH(s, t) = gs(t).

(b) Show that, given a kernelK, the corresponding reproducing kernel Hilbert
space H can be constructed as the closure of the set of finite sums of the form∑

k akK(xk, ·). The closure in with respect to the norm generated by the inner
product

(
∑

k

akK(xk, ·),
∑

n

bnK(yn, ·)
)

H

=
∑

k,n

akbnK(xk, yn).

(c) Let H be a reproducing kernel Hilbert space. Show that

(
K(s, ·),K(t, ·)

)
H

= K(s, t).

(d) Let H be a reproducing kernel Hilbert space with an orthonormal basis
{mk, k ≥ 1}. Show that

KH(s, t) =
∑

k≥1

mk(s)mk(t).

3.1.3 Problems

Together with the conclusion of Problem 3.1.1, the reader should keep in mind
that while every two separable Hilbert spaces are isomorphic, they can be
very different. Problem 3.1.2 shows how, given an arbitrary separable Hilbert
space H , one can construct a Hilbert space H̃ such that the inclusion opera-
tor j : H → H̃ is Hilbert-Schmidt; this construction is commonly used in the
study of random elements with values in Hilbert spaces. Problem 3.1.3 pro-
vides two useful technical results: (a) a way to prove strong convergence in a
Hilbert space, and (b) an analogue of the fundamental theorem of calculus in
a normal triple of Hilbert spaces. Problem 3.1.4 introduces a class of Hilbert
spaces involving time, useful in the study of evolution equations. Problem
3.1.5 summarizes some facts about linear operators that were not mentioned
in the text. Problem 3.1.6 discusses linear operators in Hilbert space tensor
products. Problems 3.1.7 and 3.1.8 illustrate the importance of the underlying
set S in the study of reproducing kernel Hilbert spaces. Problems 3.1.9 and
3.1.10 present examples of constructing a reproducing kernel Hilbert space
given the kernel K. Problem 3.1.11 demonstrates a connection between the
Hilbert space tensor product and the Hilbert-Schmidt operators.

Problem 3.1.1. Show that every two separable Hilbert spaces are isomor-
phic.
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Problem 3.1.2. Let H be a separable Hilbert space with an orthonormal
basis {mk, k ≥ 1} and let {qk, k ≥ 1} be sequence of positive real numbers
such that

∑
k≥1 q

2
k <∞. Define the space H̃ as the closure of H with respect

to the norm

‖f‖H̃ =


∑

k≥1

q2k(f,mk)
2
H




1/2

.

Show that the inclusion j : H → H̃ is a Hilbert-Schmidt operator and tr(jj∗) =∑
k≥1 q

2
k = tr(j ∗ j).

Problem 3.1.3. (a) Let H be a Hilbert space and h, h1, h2, . . . ∈ H . Show
that limn ‖h − hn‖H = 0 (strong convergence) if and only if limn(hn, x)H =
(h, x)H for every x from a dense subset of H (weak convergence on a dense
subset) and limn ‖hn‖H = ‖h‖H (convergence of norms).

(b) Let (V,H, V ′) be a normal triple of Hilbert spaces and let u = u(t) be
an element of L2((0, T );V ) such that, for all t ∈ [0, T ],

u(t) = u0 +

∫ t

0

f(s)ds (3.1.32)

for some u0 ∈ H and f ∈ L2((0, T );V ′) (equality (3.1.32) is in V ′). Show that
u ∈ C((0, T );H) and

sup
0<t<T

‖u‖2
H(t) ≤

(
‖u0‖2

H +

∫ T

0

‖u‖2
V (s)ds+

∫ T

0

‖f‖2
V ′(s)ds

)
(3.1.33)

A comment. Part (b) of the problem can be considered a fundamental

theorem of calculus in a normal triple (if V = H = V ′, then the theorem
becomes the claim that an absolutely continuous function is continuous).

Problem 3.1.4. Show that the collection Y of functions from L2((0, T );V )
with representation (3.1.32) is a Hilbert space with norm

‖u‖2 = ‖u0‖2
H +

∫ T

0

‖u(s)‖2
V ds+

∫ T

0

‖g(s)‖2
V ′ds.

Problem 3.1.5. Let X,Y be separable Hilbert spaces. Introduce the follow-
ing notations:

• F(X,Y ), the collection of linear operators from X to Y with a finite-
dimensional range (that is, A ∈ F(X,Y ) if and only if A is linear and
A(X) is finite-dimensional).

• K(X,Y ), the collection of compact operators from X to Y ;
• L0(X,Y ), the collection of bounded linear operators from X to Y ;
• L1(X,Y ), the collection of nuclear operators from X to Y ;
• L2(X,Y ), the collection of Hilbert-Schmidt operators from X to Y .
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For A ∈ F(X,Y ), denote by λn, n ≥ 1, the eigenvalues of the operator
√

A∗A
and define

‖A‖0 = max
n

λn, ‖A‖1 =
∑

n

λn, ‖A‖2 =

(
∑

n

λ2
n

)1/2

. (3.1.34)

(a) Show that each ‖ · ‖i, i = 0, 1, 2, is a norm, and

‖A‖i = ‖A∗‖i, (3.1.35)

‖A‖0 ≤ ‖A‖2 ≤ ‖A‖1, (3.1.36)

‖A‖0 = sup
x:‖x‖X≤1

‖Ax‖Y , (3.1.37)

‖A‖2
2 = ‖A∗A‖1 = tr(A∗A) = ‖AA∗‖1 = tr(AA∗). (3.1.38)

(b) Show that K(X,Y ) is the closure of F(X,Y ) in the norm ‖ · ‖0, and,
for j = 1, 2, Lj(X,Y ) is the closure of F(X,Y ) in the norm ‖ · ‖j .

(c) Show that the spaces Li(X,Y ) with the corresponding norms ‖ · ‖i,
i = 0, 1, 2, are separable Banach space, K(X,Y ) is a closed subspace of
L0(X,Y ), and L2(X,Y ) is a separable Hilbert space with inner product
(A,B)2 = tr(B∗A), where tr is defined in (3.1.25). Also, show that

F(X,Y ) ⊂ L1(X,Y ) ⊂ L2(X,Y ) ⊂ K(X,Y ) ⊂ L0(X,Y ).

(d) Let A ∈ Lj(X,Y ), B ∈ L0(Y, Y ). Show that, for j = 1, 2, ‖BA‖j ≤
‖B‖0 ‖A‖j.

(e) Let A ∈ L2(X,Y ), B ∈ L2(Y, Y ). Show that ‖BA‖1 ≤ ‖B‖2 ‖A‖2.
(f) Let Let A ∈ K(X,Y ), B ∈ L0(Y, Y ). Show that BA ∈ K(X,Y ).

Problem 3.1.6. Let X,Y be separable Hilbert spaces and let A : X → X ,
B : Y → Y be bounded linear operators. Consider the Hilbert space tensor
product X ⊗ Y and consider the mapping defined by

x⊗ y 7→ (Ax) ⊗ (By). (3.1.39)

(a) Show that the mapping (3.1.39) extends to a bounded linear operator
A⊗B : X ⊗Y 7→ X ⊗Y and, using the notations from the previous problem,

‖A ⊗ B‖0 = ‖A‖0 ‖B‖0.

(b) What can you say about the operator A ⊗ B if both operators A and B
are (i) compact (ii) Hilbert-Schmidt (iii) nuclear?

Problem 3.1.7. Let H be a Hilbert space and let us identify H with its dual
H ′. Then every element h of H becomes a real-valued function on H defined
by h(x) = (h, x)H , x ∈ H . Show that H is a reproducing kernel Hilbert
space and find the kernel KH . Is there a contradiction with the conclusion of
Exercise 3.1.47(a) on page 88 if we take H = L2(R)?
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Problem 3.1.8. Let (V,H, V ′) be a normal triple. Identifying V with the dual
of V ′ relative to the inner product in H , we can think of V as a collection of
real-valued functions on V ′.

(a) Show that V is a reproducing kernel Hilbert space and find the repro-
ducing kernel of V .

(b) Now take V = L2(R), H = H−1(R), V ′ = H−2(R); see Example
3.1.9 on page 73 for the definition of the Sobolev spaces Hr(R). Is there a
contradiction between the result of part (a) and the conclusion of Exercise
3.1.47(a) on page 88?

Problem 3.1.9. Let A be a non-negative self-adjoint operator on a separable
Hilbert space X . For x, y ∈ X , define K(x, y) = (Ax, y)X . Show that the
reproducing kernel Hilbert space corresponding to K is

√
A(X).

Problem 3.1.10. Let K(s, t) = min(s, t), s, t ∈ [0, 1]. Verify that K is
positive-definite kernel on [0, 1] and find the corresponding reproducing kernel
Hilbert space.

Problem 3.1.11. Let X and Y be separable Hilbert spaces. Show that, for
x, x1 ∈ X, y ∈ Y ,

x⊗ y : x1 7→ y(x, x1)X

establishes an isomorphism between the tensor product Hilbert space X ⊗ Y
the space L2(X,Y ) of the Hilbert-Schmidt operators from X to Y .

3.2 Random Processes and Fields

The objective of this section is to review various constructions of the noise
process that can be used in the study of SPDEs: a real-valued multi-parameter
random processes, a random elements with values in a linear topological space,
and the canonical processes on a linear topological space with a suitable prob-
ability measure.

3.2.1 Fields (no time variable)

One way to define a real-valued random variable ξ is by a measurable map-
ping from an abstract probability space (Ω,F ,P) to the real line; the function
F (x) = P(ξ ≤ x) is called the cumulative distribution function of ξ. Alterna-
tively, one can start with a given cumulative distribution function F = F (x),
define a probability measure on (R,B(R)) by P((a, b]) = F (b)−F (a) and then
define the random variable ξ on (R,B(R),P) by ξ(x) = x. By construction, the
cumulative distribution function of ξ is F . The same two approaches extend
to random elements with values in linear topological spaces.

Consider a measurable space (V,B(V )), where V is a linear topological
space and B(V ) is the Borel sigma-algebra on V . A V -valued random element
X defines a probability measure on µ on (V,B(V )) as follows:
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µ(A) = P(X ∈ A), A ∈ B(V ).

This measure is called the probability distribution of X . Conversely, if
µ is a probability measure on (V,B(V )), then X(v) = v, v ∈ V , defines
a canonical V -valued random element on the probability space (V,B(V ), µ)
such that the probability distribution of X is µ. In the special case when
the elements of V are functions of time, the canonical random element is
usually called the canonical process. In particular, the Wiener measure is
the probability measure on the space V = {f ∈ C([0, T ]), f(0) = 0} with the
sup norm, such that the canonical process under this measure is the standard
Brownian motion.

In what follows, we will be working with Gaussian measures and Gaussian
random elements. For a comprehensive treatment of Gaussian measures on lin-
ear topological spaces see Bogachev [13]. Below, we present a short summary
of the main ideas.

Recall that a probability measure µ on (R,B(R)) is called Gaussian if
there exists a real number m and a non-negative number σ such that, for all
t ∈ R, ∫

R

eitxµ(dx) = eimt− 1
2 t

2σ2

, i =
√
−1.

The numbers m and σ are called the mean and the variance of µ, respectively.
If σ = 0, then µ is the point mass at m. If σ > 0, then µ has the density with
respect to the Lebesgue measure:

µ((a, b)) =
1√

2πσ2

∫ b

a

e−
(x−m)2

2σ2 dx.

The measure µ is called centered if m = 0. A (real-valued) random variable
is called Gaussian if its probability distribution is a Gaussian measure. A
standard Gaussian random variable has zero mean and unit variance.

Definition 3.2.1. A probability measure µ on (V,B(V )) is called Gaussian if,
for every linear functional ℓ on V , the probability measure ℓ∗µ on (R,B(R)),
defined by (ℓ∗µ)((a, b)) = µ{v ∈ V : ℓ(v) ∈ (a, b)} is Gaussian. The measure
µ is called centered if the measure ℓ∗µ is centered for every ℓ.

Exercise 3.2.2 (C). Let X be a Banach space and let X ′ be its dual. Show
that µ is a centered Gaussian measure on (X,B(X)) if and only if every
element of X ′ is a zero-mean Gaussian random variable on the probability
space (X,B(X), µ).

Exercise 3.2.3 (B). (a) Verify that, in the case V = R
d, µ is Gaussian if

and only if ∫

Rd

eiy⊤xµ(dx) = eim⊤y− 1
2y

⊤Ry (3.2.1)

for some d-dimensional vector m and a d × d-dimensional symmetric non-
negative definite matrix R; y⊤ means the transpose of the column-vector y.
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Hint. Rij =
∫

Rd xixjµ(dx).

(b) Denote by V ′ the set of linear functionals on V . Verify that a centered
Gaussian measure µ on V defines a positive-definite kernel C on V ′ by

Cµ(ℓ, h) =

∫

V

ℓ(v)h(v)µ(dv). (3.2.2)

For example, let V = {f ∈ C([0, 1]), f(0) = 0} with the sup norm. For
every s ∈ [0, 1], the point mass at s (Dirac delta-function) δs is a continuous
linear functional on V . If µ is the Wiener measure on V , then, since the
canonical process on (V,B(V ), µ) is the standard Brownian motion, we find

Cµ(δs, δt) =

∫

V

f(s)f(t)µ(df) = E (w(s)w(t)) = min(t, s). (3.2.3)

Computation of the general expression for Cµ in this example is the subject
of Problem 3.2.5 on page 118.

Definition 3.2.4. The reproducing kernel Hilbert space Hµ with the reproduc-
ing kernel Cµ is called the reproducing kernel Hilbert space of the Gaussian
measure µ. If X is a V -valued Gaussian random element with distribution µ,
then Hµ is also called the reproducing kernel Hilbert space of X.

There are two ways to look at the above definition. Recall that one of the
starting points in the construction of the reproducing kernel Hilbert space is
a collection of functions on a set S. In the setting of Definition 3.2.4, we take
S = V ′, and then, for fixed ℓ ∈ V ′, the mapping

h 7→ Cµ(ℓ, h) =

∫

V

ℓ(v)h(v)µ(dv) := K(ℓ, h). (3.2.4)

becomes a real-valued function on V ′. Following the procedure outlined in
Exercise 3.1.51(b) on page 89, the space Hµ becomes the closure of the set of
finite linear combinations of the type

∑

k

ak

∫

V

hk(v) v µ(dv)

and is, in particular, a sub-space of V . For an example illustrating this con-
struction, see Problem 3.2.6 on page 118 below.

Alternatively, one can look at (3.2.4) as a definition of an operator ℓ 7→
Cµ(ℓ, ·) from V ′ to (V ′)′, which could explain why Cµ is called the covariance
operator of the Gaussian measure µ. If V = H is a Hilbert space, identified
with its dual, then Cµ in this interpretation becomes an operator from H to
itself: for every h ∈ H , Cµ(h, ·) is the unique element hµ of H such that,
according to the Riesz representation theorem, Cµ(h, x) = (hµ, x)H .
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Theorem 3.2.5. Let H be a separable Hilbert space, identified with its dual:
H ′ = H.

(a) If µ is a Gaussian measure on H, then its covariance operator is nu-
clear.

(b) Conversely, if K : H → H is a self-adjoint non-negative nuclear op-
erator, then there exists a Gaussian measure µ on H such that Cµ(f, g) =
(Kf, g)H for all f, g ∈ H.

Proof. (a) Take an orthonormal basis hk, k ≥ 1 in H . Then

∑

k

Cµ(hk, hk) =
∑

k

∫

H

(hk, x)
2
Hµ(dx) =

∫

H

‖x‖2
Hµ(dx) <∞.

The last inequality follows from a result due to Fernique: for every Gaussian
measure µ on a Hilbert space H , there exists a positive number a such that∫
H e

a‖x‖2
Hµ(dx) <∞; see Bogachev [13, Theorem 2.8.5].

(b) Let Kmk = λkmk and assume that {mk, k ≥ 1} is an orthonormal
basis in H . Given iid standard Gaussian random variables ξk, we get the
measure µ as the probability distribution of the H-valued random element
X =

∑
k≥1

√
λkξkmk. The operator K can also be called the covariance oper-

ator of µ.

Given a Gaussian measure on a linear topological space V , we immediately
get a corresponding canonical Gaussian random element with values in V . We
will now discuss other ways of defining Gaussian random elements.

Definition 3.2.6. A Gaussian field on G ⊆ R
d is a collection of random

variables X = X(P ), P ∈ G, such that, for every {P1, . . . , Pn} ⊂ G, the
random variables X(Pi), i = 1, . . . , n, form a Gaussian vector.

In what follows, we consider zero-mean fields: EX(P ) = 0 for all P ∈ G. A
zero-mean Gaussian field is characterized by its covariance function

q(P,Q) = E
(
X(P )X(Q)

)
;

the field is called homogeneous if there exists a function ϕ = ϕ(t), t ≥ 0 such
that q(P,Q) = ϕ(|P −Q|), where |P −Q| is the Euclidean distance between
the points P and Q. We write P,Q instead of x, y to stress that the objects
are not tied to any particular coordinate system in R

d.
As an example and a motivation for the discussion to follow, let ℓ be the

Lebesgue measure R
d and let W be a random set function on {A : A ∈

B(Rd), ℓ(A) <∞}. We assume that W has the following properties:

1. W (A) is a Gaussian random variable with mean zero and variance ℓ(A);
2. if A

⋂
B = ∅, then W (A

⋃
B) = W (A)+W (B) and the random variables

W (A), W (B) are independent.
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To construct W take a collection {ξk, k ≥ 1} of independent standard Gaus-
sian random variables and an orthonormal basis {mk, k ≥ 1} in L2(R

d).
Then

W (A) =
∑

k≥1

ξk

∫

A

mk(x)dx. (3.2.5)

Indeed, if 1A is the indicator function of the set A ⊂ R
d (1A(x) = 1 if

x ∈ A and 1A(x) = 0 if x /∈ A), then, by Parseval’s identity,

E
(
W (A)W (B)

)
=

∫

Rd

1A(x)1B(x)dx. (3.2.6)

For r > 0 and P ∈ R
d, denote by Br(P ) the ball with center at P and

radius r. Then, for every fixed r > 0, the function

Wr(P ) =
W (Br(P ))

ℓ(Br(P ))
(3.2.7)

is a zero-mean homogeneous Gaussian field on R
d, and E

(
Wr(P )Wr(Q)

)
= 0

if |P −Q| > r. Once again, note that, up to this point, we have not been tied
to any particular coordinate system in R

d.
Let us now fix a Cartesian coordinate system in R

d and, given a point
x = (x1, . . . , xd) with xi > 0 for all i = 1, . . . ,d, consider a rectangular box
Ax defined by

Ax = [0, x1] × [0, x2] × · · · × [0, xd],

Then the random field
W (x) = W (Ax) (3.2.8)

is called Brownian sheet; cf. Walsh [209, Chapter 1].

Exercise 3.2.7 (B). (a) Show that limr→0Wr(P ) does not exist in distribu-
tion for any P . Hint. Consider the characteristic function of Wr(P ).

(b) Show that, for the Brownian sheet (3.2.8),

E
(
W (x)W (y)

)
=

d∏

i=1

min(xi, yi). (3.2.9)

Hint. Use (3.2.6).

Looking at (3.2.5), we realize that both limr→0Wr(x)
and ∂dW (x)/∂x1. . .∂xd, if existed, would have to be equal to a divergent
series

∑
k≥1 ξkhk(x). On the other hand, this divergent series can be inter-

preted as a generalized function Ẇ , acting on the functions from the Schwartz
space S(Rd) of rapidly decreasing functions according to the rule

Ẇ (f) =
∑

k≥1

ξkfk, where fk =

∫

Rd

f(x)hk(x)dx. (3.2.10)
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Recall that S(Rd) is the collection of infinitely differentiable functions on R
d

such that supx∈Rd(1 + |x|2)m|Dnf(x)| < ∞ for all positive integer m,n and
all partial derivatives Dn of f of order n; |x|2 = x2

1 + · · ·+ x2
d. Denote by R

d
+

the set {x ∈ R
d : x1 > 0, . . . , xd > 0}. Direct computations show that

Ẇ (f) ∼ N
(
0, ‖f‖2

L2(Rd)

)
, (3.2.11)

E
(
Ẇ (f)Ẇ (g)

)
= (f, g)L2(Rd), (3.2.12)

Ẇ (f) = (−1)d
∫

R
d
+

W (x)
∂df(x)

∂x1 · · ·∂xd
dx, f ∈ C∞

0 (Rd
+). (3.2.13)

Equality (3.2.13) shows that Ẇ is a generalized derivative of W . Equality
(3.2.12) shows that we can extend Ẇ from S(Rd) to L2(R

d). We call this
extension the Gaussian white noise on L2(R

d) and continue to denote it
by Ẇ .

Exercise 3.2.8 (C). Verify (3.2.11)–(3.2.13).

Sometimes, we use an alternative notation for Ẇ (f):

Ẇ (f) =

∫

Rd

f(x)dW (x).

The following definition combines the ideas from Gelfand and Vilenkin [55,
Sections III.1.2 and III.5.1] and from Métivier and Pellaumail [156, Section
15.1].

Definition 3.2.9. A generalized random field X over a linear topological
space V is a collection of random variables {X(v), v ∈ V } with the properties

1. X(au+ bv) = aX(u) + bX(v), a, b ∈ R, u, v ∈ V ;
2. if limn→∞ vn = v in the topology of V , then limn→∞ X(vn) = X(v) in

probability.

In other words, X is a continuous linear mapping from V to the space of
random variables. Alternative names for such an object are a cylindrical

random element and generalized random element.
For a generalized Gaussian random field over a Hilbert space, an alterna-

tive definition is often used (e.g. Nualart [166, Section 1.1.1]).

Definition 3.2.10. A zero-mean generalized Gaussian field B over a
Hilbert space H is a collection of Gaussian random variables {B(f), f ∈ H}
with the properties

1. EB(f) = 0 for all f ∈ H;
2. There exists a bounded, linear, self-adjoint, non-negative operator K on
H (called the covariance operator of B) such that

E
(
B(f)B(g)

)
= (Kf, g)H

for all f, g ∈ H, where (·, ·)H is the inner product in H.
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In the special case when K is the identity operator, alternative names for B are
Gaussian white noise on (or over) H and isonormal Gaussian process

on (or over) H.

If B is a Gaussian white noise on H , then E
(
B(f)B(g)

)
= (f, g)H . In the

particular case H = L2(G), G ⊆ R
d, we usually write Ẇ = Ẇ (x) to denote

Gaussian white noise on H and also use an alternative notation for Ẇ (f):

Ẇ (f) =

∫

G

f(x)dW (x).

In fact, as the following exercise shows, B generalizes the construction of Ẇ
from (3.2.10) to an abstract Hilbert space.

Exercise 3.2.11 (C). Let H be a separable Hilbert space with an orthonor-
mal basis {mk, k ≥ 1}.
(a) Let B be a Gaussian white noise on H . Verify that

{B(mk), k ≥ 1}

is a collection of iid standard Gaussian random variables.
(b) Let {ξk, k ≥ 1} be a collection of iid standard Gaussian random variables,
and, for f ∈ H , define

B(f) =
∑

k≥1

(f,mk)H ξk. (3.2.14)

Verify that B is a Gaussian white noise on H .

The next exercise establishes a connection between Definitions 3.2.9 and
3.2.10.

Exercise 3.2.12 (B). (a) Verify that a generalized Gaussian field is a general-
ized random field in the sense of Definition 3.2.9. Hint. Verify by direct computa-

tion that E

(
B(af+bg)−aB(f)−bB(g)

)2

= 0 and E(B(f)−B(fn))2 ≤ C‖f−fn‖2
H .

(b) Verify that if X is a generalized random field over a Hilbert space and ev-
ery random variable X(v) is Gaussian, then X is a generalized Gaussian field
in the sense of Definition 3.2.10 and the correlation operator K is uniquely
defined.

Hint. Use the Riesz representation theorem.

Definition 3.2.13. A generalized field X over a Hilbert space H is called
regular if there exists an H-valued random element X such that X ∈
L2(Ω;H) (that is, E‖X‖2

H <∞) and X(f) = (X, f)H for all f ∈ H.

Exercise 3.2.14. Let G ⊆ R
d, H = L2(G), and consider a regular zero-mean

Gaussian random field X(f) = (X, f)H . Show that the covariance operator K
of X is an integral operator on H with kernel K(x, y) = E

(
X(x)X(y)

)
, that

is,
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Kf(x) =

∫

G

K(x, y)f(y)dy.

Hint. Exchange integration and expectation.

There is a close connection between regular Gaussian fields and nuclear oper-
ators.

Theorem 3.2.15. A generalized Gaussian field X over a separable Hilbert
space H is regular if and only if the covariance operator K of X is nuclear.

Proof. (a) Assume that X(f) = (X, f)H and let {hk, k ≥ 1} be an orthonor-
mal basis in H . Then

∑

k≥1

(Khk, hk)H =
∑

k≥1

E(X, hk)
2 = E‖X‖2

H <∞,

which, by Theorem 3.1.41(b), implies that K is nuclear.
(b) Assume that K is nuclear and let {mk, k ≥ 1} be the orthonormal

basis in H consisting of the eigenfunctions of K; such a basis exists because K
is compact: see Exercise 3.1.20 and Theorem 3.1.28(b). Denote by λk, k ≥ 1,

the eigenvalues of K and define ξk = λ
−1/2
k X(mk) so that {ξk, k ≥ 1} are iid

standard Gaussian random variables. Then X(f) = (X, f)H , where

X =
∑

k≥1

√
λkξkmk.

Indeed, E‖X‖2
H =

∑
k≥1 λk = ‖K‖1 < ∞ (see (3.1.24)) and, with fk =

(f,mk)H ,

E

(
(X, f)H(X, g)H

)
=
∑

k

λkfkgk = (Kf, g)H .

This completes the proof of Theorem 3.2.15.

Recall that there is a one-to-one correspondence between a regular Gaus-
sian field X and Gaussian measure µ. The corresponding reproducing ker-
nel Hilbert space Hµ of µ is often called the reproducing kernel Hilbert

space of X and is denoted by HX . Below is the precise construction.

Exercise 3.2.16 (C). Assume that X(f) = (X, f)H is a regular Gaussian
field with the covariance operator K and define the Gaussian measure µ on
H by µ(A) = P(X ∈ A), A ∈ B(H). Let Cµ be the covariance operator of the
measure µ.
(a) Show that Cµ(f, g) = (Kf, g)H . Hint. It is obvious.

(b) Conclude that

Hµ =
√
K(H)

Hint. Use the result of Problem 3.1.9 on page 92.
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Let us have another look at the white noise. If B is a Gaussian white noise
on a separable Hilbert space H , then, by Definition 3.2.10, the covariance
operator of B is identity:

E

(
B(f)B(g)

)
= (f, g)H , (3.2.15)

and therefore, by Theorem 3.2.15, there is no H-valued random element B
such that B(f) = (B, f)H . On the other hand, if {mk, k ≥ 1} is an orthonor-
mal basis in H , then (3.2.14) suggests a representation

B =
∑

k≥1

B(mk)mk; (3.2.16)

we call (3.2.16) the chaos expansion of B. The following exercise justifies
the representation (3.2.16).

Exercise 3.2.17 (B). (a) Let H be a separable Hilbert space with an or-
thonormal basis {mk, k ≥ 1}, and let H̃ be a Hilbert space such that H ⊂ H̃
and the inclusion operator j : H → H̃ is Hilbert-Schmidt. Show that (3.2.16)
defines a regular generalized Gaussian field over H̃ with the covariance op-
erator K = jj∗. For a systematic way to construct the space H̃ , see Problem
3.1.2 on page 90.
(b) Show that every generalized Gaussian random field becomes regular when
considered on a suitably chosen extension of the original space.

Next, we will see how Theorem 3.2.15 works when H = L2(G).

Example 3.2.18. Consider a zero-mean Gaussian field W = W (x), x ∈ G ⊆
R

d (in the sense of Definition 3.2.6), with the covariance function q(x, y) =
E
(
W (x)W (y)

)
. Then EW 2(x) = q(x, x), and, under the assumption

∫

G

q(x, x)dx <∞, (3.2.17)

W ∈ L2(Ω;L2(G)) so that W defines a regular generalized Gaussian field over
L2(G) by

W (f) =

∫

G

W (x)f(x)dx.

Indeed, since E
(
W (f)W (g)

)
=
∫∫
G×G q(x, y)f(x)f(y)dxdy, the covariance

operator Q of this field is an integral operator with kernel q: Qf(x) =∫
G q(x, y)f(y)dy. Condition (3.2.17) ensures that the operator Q is nuclear:

see (3.1.29) on page 87; note also that, by the Cauchy-Schwarz inequality,
q2(x, y) ≤ q(x, x)q(y, y). If M = {mk, k ≥ 1} is an orthonormal basis in
L2(R

d) such that Qmk = λkmk, k ≥ 1, then the Fourier series expansion of
W in the basis M is
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W (x) =
∑

k≥1

ξkmk(x), ξk =

∫

G

W (x)mk(x)dx, (3.2.18)

Note that the zero-mean Gaussian random variables ξk have variance λk and
are independent for different k.

Representation (3.2.18) is known as the Karhunen-Loève expansion of
W , after the Finnish mathematician Kari Karhunen (1915–1992) and the
French–American mathematician Michel Loève (1907–1979), who estab-
lished the result independently in the mid 1940’s [100, 101, 137, 138].

If the function q(x, x) is Lebesgue-integrable on every compact subset of
G, then we can define a generalized random field Ẇ over the space C∞

0 (G) of
smooth functions with compact support in G:

Ẇ (f) = (−1)d
∫

G

W (x)D(d)
x f(x)dx, D(d)

x =
∂d

∂x1 . . . ∂xd
. (3.2.19)

Since E
(
Ẇ (f)Ẇ (g)

)
=
∫∫
G×G q(x, y)

(
D

(d)
x f(x)

)(
D

(d)
y g(y)

)
dxdy, we see that

the covariance operator of Ẇ is a generalized function on C∞
0 (G × G) and

is given by D
(d)
x D

(d)
y q(x, y). If there exists a C > 0 such that, for all f, g ∈

C∞
0 (G),

∣∣∣
∫∫

G×G
q(x, y)

(
D(d)
x f(x)

)(
D(d)
y g(y)

)
dxdy

∣∣∣ ≤ C‖f‖L2(G) ‖g‖L2(G),

then Ẇ extends to a zero-mean generalized Gaussian field over L2(G).

This concludes Example 3.2.18.

Next we define the action of a linear operator on a generalized random field.

Definition 3.2.19. Let H, Y be Hilbert spaces, A : H → Y , a bounded linear
operator, and B, a generalized Gaussian field over H. Then AB is a gener-
alized Gaussian field over Y defined by (AB)(f) = B(A∗f).

Exercise 3.2.20 (C). Verify that if K is the covariance operator of B, then
AKA∗ is the covariance operator of AB.

Example 3.2.21. Just as the dual of Hilbert space can be identified with dif-
ferent spaces, a generalized field can be considered over different spaces. For
example, let G be a smooth bounded domain and consider the Sobolev spaces
Hr(G) on G (see Example 3.1.29, page 81). Let Ẇ be a Gaussian white noise
over H = L2(G) = H0(G) and let A = Λ =

√
−∆ with zero boundary con-

ditions. Consider the field X = ΛẆ . By Definition 3.2.19, X is a Gaussian
white noise over Y = H−1(G). Indeed, in this setting Λ∗ = Λ−1, because
(Λf, g)−1 = (f, Λ∗g)0, f ∈ H0(G), g ∈ H−1(G), while the definition of the
inner product in H−1(G) implies

(Λf, g)−1 = (Λ−1Λf,Λ−1g)0 = (f, Λ−1g)0.
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Therefore for f, h ∈ H−1,

E

(
X(f)X(h)

)
= (Λ−1f, Λ−1h)0 = (f, h)−1.

On the other hand, let {mk, k ≥ 1} be the orthonormal basis in H con-
sisting of the eigenfunctions of Λ, and let λk, k ≥ 1, be the corresponding
eigenvalues. Then

Ẇ =
∑

k≥1

mkξk, X =
∑

k≥1

λkmkξk;

note that {λkmk, k ≥ 1} is an orthonormal basis in H−1(G). Given f =∑
k fkmk ∈ H1(G), we can define

X(f) =
∑

k≥1

fkλkξk.

Then, for f, g ∈ H1(G),

E

(
X(f)X(g)

)
=
∑

k≥1

λ2
kfkgk = (f, g)1,

that is, X can also be considered as a Gaussian white noise over H1(G). Thus,
X is a Gaussian white noise over two different spaces.

This concludes Example 3.2.21.

We conclude this section with a discussion of the Markov property for the
random fields. The definition of the Markov property for random processes,
namely, that the past and future are independent given the present, essentially
relies on the linear ordering of index set of the process, the real line. Since a
random field is indexed by a set without a linear ordering, there is no clear
analogue of the past and future and thus no natural way to define the Markov
property.

There are three main versions of the Markov property for random fields: the
sharp Markov property, the germ Markov property, and the global Markov
property. As in the case of processes, all definitions rely on conditions inde-
pendence, which we will now review.

Let Gi, i = 1, 2, 3, be three sigma algebras of events on the the prob-
ability space (Ω,F ,P). Recall that G1 and G2 are called conditionally

independent given G3 if, for every A ∈ G1 and B ∈ G2,

E
(
1A 1B|G3

)
= E

(
1A|G3

)
E
(
1B|G3

)

In this case, G3 is called the splitting sigma-algebra or the splitting

field for G1 and G2.
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If G3 is the trivial sigma algebra, then conditional independence becomes
the usual independence. Dependent events can become conditionally inde-
pendent given a non-trivial sigma-algebra. For example, values of a Markov
process at two different moments are usually dependent, but they become
independent given the value at an intermediate moment.

As another example, consider events A,B,C such that C ⊆ A∩B. By the
Bayes formula, A and B are conditionally independent given C (all conditional
probabilities are equal to one).

Exercise 3.2.22 (C). (a) Give an example of independent events that be-
come dependent after a conditioning. Hint. Roll a die twice and condition on

the sum.
(b) Show that if G1 and G2 are conditionally independent given G3, then
σ(G1 ∪G3) and σ(G2 ∪G3) are conditionally independent given G3. Hint. Con-

sider the events of the type A1 ∩ C1 and B1 ∩ C2, where A1 ∈ G1, B1 ∈ G2, and

C1, C2 ∈ G3. Taking such events helps because, for example, 1A1∩C1 = 1A11C1 and

1C1 is G3-measurable.

(c) Show that G1 and G2 are conditionally independent given G3 if and only
if, for every A ∈ G1,

E
(
1A|σ(G2 ∪ G3)

)
= E(1A|G3).

We are now ready to define the first version of the Markov property for (reg-
ular) random fields. Recall that, for two sets A,B, notation A \B means the
part of A that is not in B.

Definition 3.2.23 (Sharp Markov property). A random field X = X(x),
x ∈ S on a metric space S has the sharp Markov property relative to a
bounded open set B ⊂ S (with boundary ∂B and closure B) if the sigma-
algebras

σ
(
X(x), x ∈ B

)
and σ

(
X(x), x ∈ S \B

)

are conditionally independent given the sigma-algebra σ
(
X(x), x ∈ ∂B

)
.

In other words, a random field has the sharp Markov property relative to a
set if the values of the field inside and outside of the set are independent given
the values of the field on the boundary of the set. We take S a metric space
rather than a more general topological space because we want to have an easy
notion of a bounded set.

Exercise 3.2.24 (C). Verify that σ
(
X(x), x ∈ S \ B

)
can be replaced with

σ
(
X(x), x ∈ S \B

)
.

Hint. See Exercise 3.2.22(b).

Definition 3.2.23, fist suggested by P. Lévy [124], is both the most natural and
the most restrictive extension of the Markov property from one-parameter
processes to random fields. The definition is natural because the values of
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a field inside and outside of a set are clear analogues of the past and the
future of a process. The definition is restrictive because the boundary sigma-
algebra σ

(
X(x), x ∈ ∂B

)
is usually not big enough to ensure the conditional

independence required by the definition. As a result, to have the sharp Markov
property, one has to consider either very special random fields or special sets.
Here are some example:

• If a homogeneous Gaussian field on R
d, d > 1, has the sharp Markov

property with respect to all bounded open set with sufficiently regular
boundary, then the field is degenerate (essentially a single random variable;
for details, see Wong [212, Theorem 1]).

• The Brownian sheet on R
2 has the sharp Markov property relative to a

finite union of rectangles with the sides parallel to the axes (Russo [187]),
but not relative to a triangle with vertices at (0, 0), (1, 0), (0, 1) (Walsh
[209, Section 1]).

• The Brownian sheet in R
2 has the sharp Markov property relative to

bounded open sets with sufficiently irregular (“thick”) boundary, such as
a fractal curve (Dalang and Walsh [35]).

• Certain two-parameter pure jump processes have the sharp Markov prop-
erty relative to every bounded open set in R

2 (Dalang and Walsh [34]).

Exercise 3.2.25 (C). Verify that the Brownian sheet on R
2 has the sharp

Markov property relative to the square (0, 1) × (0, 1).

An extension of Definition 3.2.23 to generalized fields is possible in two direc-
tions:

1. by considering fields that, although generalized, still allow the definition
of some form of a boundary value (Walsh [209, Chapter 9], Wong [212,
Section 4]);

2. by considering the values of the field on the functions supported in an
open neighborhood of the boundary; this consideration leads to the germ
Markov property.

Let X be a generalized random field over a linear topological space V , and
assume that V is a collection of functions on a metric space S. Given a (mea-
surable) set C ⊂ S, define the germ sigma algebra (or the germ field)
B+(C) of X on C by

B+(C) =
⋂

A⊇C

σ
(
X(f), f supported in A

)
,

where the intersection is over all open sets A containing the closure of C.

Definition 3.2.26 (Germ Markov property). A generalized random field
X over functions on S has the germ Markov property relative to a bounded
open set B (with boundary ∂B and closure B) if the sigma algebras
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σ
(
X(f), f supported in B

)
and σ

(
X(f), f supported in S \B

)

are conditionally independent given B+(∂B).

Exercise 3.2.27 (C). Verify that X has the germ Markov property relative
to a bounded open set B if and only if the sigma algebras B+(B) and B+(S\B)
are conditionally independent given B+(∂B).

Definition 3.2.26 is usually attributed to McKean [154]. D. Nualart [165]
showed that the Brownian sheet in R

2 has the germ Markov property rel-
ative to every bounded open set.

For a regular zero-mean Gaussian field X = X(x), x ∈ G ⊆ R
d, the germ

Markov property is equivalent to the reproducing kernel Hilbert space HX

corresponding to the kernel K(x, y) = E
(
X(x)X(y)

)
being in a certain sense

local:

Theorem 3.2.28. Let X = X(x), x ∈ G ⊆ R
d be a continuous zero-mean

Gaussian random field. The field X has a germ Markov property relative to
bounded open sub-sets of G if and only if the reproducing kernel Hilbert space
HX of X has the following propoerties:

1. if v1, v2 from HX have disjoint supports, then (v1, v2)HX = 0.
2. if v = v1 + v2 ∈ HX and v1, v2 have disjoint supports, then v1 ∈ HX and
v2 ∈ HX .

Proof. See Künsch [121, Theorem 5.1] or Pitt [176, Theorem 3.3].

A slight modification of the germ Markov property is the global Markov prop-
erty.

Definition 3.2.29 (Global Markov Property). A generalized random field
X over functions on S has the global Markov property if, for every two
open sets A,B with A ∪B = S, the sigma algebras

σ
(
X(f), f supported in A

)
and σ

(
X(f), f supported in B

)

are conditionally independent given σ
(
X(f), f supported in A ∩B

)
.

Intuitively, by taking a sequence of sets A and B so that their intersection
A∩B becomes smaller and smaller, one could get the germ Markov property
from the global Markov property. This is indeed true: the global Markov
property implies the germ Markov property relative to bounded open sets
(Iwata [88, Theorem 1.19]). Moreover, for regular fields, the germ and global
Markov properties are equivalent [88, Remark 1.25].

Exercise 3.2.30 (C). Verify that the Gaussian white noise Ẇ on R
d has the

global Markov property.
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For another discussion of various Markov properties for random fields see
Balan and Ivanoff [5] and Iwata [88].

Let us summarize the main facts about zero-mean Gaussian fields on R
d:

1. A regular field W on R
d is a mapping from R

d to the space of zero-
mean Gaussian random variables, and is characterized by the covariance
function q(x, y) = E

(
W (x)W (y)

)
.

2. A generalized field B over L2(R
d) is a linear mapping from L2(R

d) to the
space of zero-mean Gaussian random variables and is characterized by the
covariance operator Q: E

(
B(f)B(g)

)
= (Qf, g)L2(Rd).

3. A regular field W on R
d defines a generalized field Ẇ over S(Rd) by

Ẇ (f) = (−1)d
∫

Rd

W (x)
(
D(d)
x f(x)

)
dx,

where D(d) = ∂n/∂x1 · · · ∂xd. The kernel of the corresponding covariance

operator of Ẇ is D
(d)
x D

(d)
y q(x, y), and usually must be interpreted as a

generalized function.
4. If the covariance operator of a generalized field B is nuclear, then there

exists a Gaussian field B = B(x), x ∈ R
d such that

B(f) =

∫

Rd

B(x)f(x)dx.

3.2.2 Processes

Let V be a Banach space.

Definition 3.2.31. (a) A V -valued stochastic (or random) processX =
X(t), t ∈ [0, T ], is a collection of V -valued random elements X(t), t ∈ [0, T ].
The sample trajectory of X is the function X(t, ω), t ∈ [0, T ] for fixed
ω ∈ Ω. Given a property of a V -valued function of time (continuity, dif-
ferentiability, etc.), the process is said to have this property if every sample
trajectory has this property.

(b) A V -valued stochastic process X is called Gaussian if, for every n ≥ 1,
t1, . . . , tn ∈ [0, T ] and every collection (ℓ1, . . . , ℓn) of bounded linear function-
als on V , the random variable ℓ1(X(t1)) + . . .+ ℓn(X(tn)) is Gaussian.

(c) A generalized random process, also known as cylindrical

process, is a collection of generalized random elements, indexed by points
in [0, T ]. If X = X(t) is a cylindrical process over V , then we write Xf (t) to
denote the value of the generalized random element X(t) on f ∈ V . A cylin-
drical process X is called Gaussian if {Xfi(tj), i = 1, . . . , N, j = 1, . . . ,M}
is a Gaussian system for every finite collection of fi ∈ V and tj ∈ [0, T ].

Recall that a real-valued Gaussian process X = X(t), t ≥ 0, is completely
specified by the mean-value function m(t) = EX(t) and the covariance func-
tion r(t, s) = E

(
(X(t) −m(t))(X(s) −m(s)

)
.
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Definition 3.2.32. The standard Brownian motion, also known as the
Wiener process w = w(t), t ∈ [0, T ], is a real-valued Gaussian process such
that Ew(t) = 0 and E

(
w(t)w(s)

)
= min(t, s).

Below are some properties of the standard Brownian motion:

1. w(0) = 0 with probability one;
2. w has independent increments: if t1 < t2 ≤ t3 < t4, then the random

variables w(t2) − w(t1) and w(t4) − w(t3) are independent;
3. with probability one, the trajectories of w are Hölder continuous of any

order less than 1/2 and are nowhere differentiable;

Exercise 3.2.33 (C). Verify the above properties of the standard Brownian
motion.

Next, we outline the connections of the standard Brownian motion w = w(t)
with other objects in probability and stochastic analysis.

1. Gaussian measures. Let V be the Banach space of continuous on [0, T ]
functions with v(0) = 0 and norm ‖v‖V = sup0<t<T |v(t)|. Then µ(A) =
P(w ∈ A) is a Gaussian measure on (V,B(V )). Recall that µ is called the
Wiener measure on V .

2. Generalized fields. Let {B = B(f), f ∈ L2((0, T ))} be a collection of
zero-mean Gaussian random variables such that

E
(
B(f)B(g)

)
=

∫ T

0

f(s)g(s)ds. (3.2.20)

For 0 < b ≤ T , define the indicator function of the interval [0, b]:

1[0,b](s) =

{
1, 0 ≤ s ≤ b,

0, otherwise,
(3.2.21)

Then
w(t) = B(1[0,t]). (3.2.22)

3. Orthogonal random measures. Let W be a random set function on
B([0, T ]) with the properties
a) for every A ∈ B([0, T ]), W (A) is a Gaussian random variable with

mean zero and the variance equal to the Lebesgue measure of A;
b) for every A,B ∈ B([0, T ]) such that A∩B = ∅, W (A) and W (B) are

independent and W (A ∪B) = W (A) + W (B).
Then (cf. (3.2.8) on page 96)

w(t) = W ([0, t]). (3.2.23)
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4. Chaos expansion. Let {mk, k ≥ 1} be an orthonormal basis in
L2((0, T )) and let {ξk, k ≥ 1} be independent standard Gaussian ran-

dom variables. Define Mk(t) =
∫ t
0

mk(s)ds. Then

w(t) =
∑

k≥1

Mk(t)ξk. (3.2.24)

5. White noise. Let {mk, k ≥ 1} be an orthonormal basis in L2((0, T ))
and let {ξk, k ≥ 1} be independent standard Gaussian random variables.
Then

ẇ(t) =
∑

k≥1

mk(t)ξk (3.2.25)

is a Gaussian white noise process on L2((0, T )) and

Eẇ(t)ẇ(s) = δ(t− s), (3.2.26)

where δ is the Dirac delta-function.

Exercise 3.2.34 (B). (a) Let {mk, k ≥ 1} be an orthonormal basis in
L2((0, T )) and let {ξk, k ≥ 1} be independent standard Gaussian random
variables. Verify that

B(f) =
∑

k≥1

(∫ T

0

f(s)mk(s)ds

)
ξk (3.2.27)

is a generalized Gaussian field over L2((0, T )) with the property (3.2.20).
(b) Verify (3.2.26). Hint. Fix t and interpret Eẇ(t)ẇ(s) as a distribution ϕt, acting
on smooth functions according to the rule

ϕt(f) =
∑

k≥1

(∫ T

0

f(s)mk(s)ds

)
mk(t).

(c) Verify that
∂2 min(t, s)

∂t∂s
= δ(t− s) in the sense of generalized functions.

The Wiener process is the usual driving force in stochastic ordinary differential
equations with continuous solutions. While the same process can be a driving
force in stochastic partial differential equations, there is also a possibility to
have spacial dependence in the stochastic driving force. Spacial dependence in
the Wiener process (or in any other process) can be introduced in at least two
ways: (a) by considering a process with values in a linear topological space;
(b) by considering a process indexed by both time and space variables. In
the case of the Wiener process, these considerations lead, respectively, to the
Q-cylindrical Brownian motion and to the Brownian sheet. In what follows,
we investigate both objects and the connections between them.

To begin, we define a Q-cylindrical Gaussian process.
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Definition 3.2.35. Let x = x(t) be zero-mean Gaussian process with the co-
variance function R(t, s) = E

(
x(t)x(s)

)
. A Q-cylindrical x-process on

(or over) a Hilbert space H is a collection XQ = {XQ
f (t), f ∈ H, t ∈ [0, T ]}

of zero-mean Gaussian random variables with the following property: there
exists a bounded linear non-negative self-adjoint operator Q : H → H such
that

E

(
XQ
f (t)XQ

g (s)
)

= (Qf, g)H R(t, s) (3.2.28)

for all f, g ∈ H and all t, s ∈ [0, T ]. If Q is the identity operator, then XQ is
called a cylindrical x-process and denoted simply by X.

In particular, a Q-cylindrical Brownian motion WQ = WQ(t), t ∈
[0, T ], also known as the Q-cylindrical Wiener process on (or over) a

Hilbert space H , is a collection {WQ
f (t), f ∈ H, t ∈ [0, T ]} of zero-mean

Gaussian random variables such that

E

(
WQ
f (t)WQ

g (s)
)

= (Qf, g)H min(t, s). (3.2.29)

A cylindrical Brownian motion, also known as the cylindrical Wiener

process, W corresponds to Q equal to the identity operator:

E

(
Wf (t)Wg(s)

)
= (f, g)H min(t, s). (3.2.30)

Definition 3.2.36. A Q-cylindrical x-process XQ over a Hilbert space H is
called regular over H if there exists an H-valued process XQ = XQ(t) such

that XQ
f (t) = (XQ(t), f)H , t ≥ 0, f ∈ H. In that case, XQ = XQ(t) is an

alternative notation for XQ.

If W is a cylindrical Brownian motion over a separable Hilbert space H ,
then it is convenient to represent W as a formal series

W (t) =
∑

k≥1

wk(t)mk, (3.2.31)

where {mk, k ≥ 1} is an orthonormal basis in H and {wk, k ≥ 1} are
independent standard Brownian motions. The following exercise outlines the
rationale behind this representation.

Exercise 3.2.37 (C). Let H be a separable Hilbert space with an orthonor-
mal basis {mk, k ≥ 1}.
(a) Show that if W is a cylindrical Brownian motion over H , then
{Wmk

(t), k ≥ 1} are independent standard Brownian motions.
(b) Show that if {wk, k ≥ 1} are independent standard Brownian motions,
then

{Wf (t) =
∑

k≥1

(f,mk)H wk(t), f ∈ H}

is a cylindrical Brownian motion over H .
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Similar to (3.2.31), every cylindrical x-process X over a separable Hilbert
space H can be written as

Xf (t) =
∑

k≥1

(mk, f)H xk(t), (3.2.32)

or
X(t) =

∑

k≥1

mk xk(t), (3.2.33)

where {mk, k ≥ 1} is an orthonormal basis in H and xk, k ≥ 1, are indepen-
dent copies of the process x. Since the series (3.2.32) does not converge in the
space H , a cylindrical x-process is not an H-valued process, but, similar to
Exercise 3.2.17 on page 100, we have the following result.

Exercise 3.2.38 (B). (a) Let x be a Gaussian process and X , a cylindrical
x-process over a separable Hilbert space H . Let H̃ be a Hilbert space such
that H ⊂ H̃ and the inclusion operator j : H → H̃ is Hilbert-Schmidt. Show
that (3.2.33) defines a Q-cylindrical x-process over H̃ with Q = jj∗, and X
is an H̃-valued process. For a systematic way to construct the space H̃ , see
Problem 3.1.2 on page 90.
(b) Show that every Q-cylindrical process becomes regular when considered
over a suitable extension of the original Hilbert space.

The following theorem shows that a Q-cylindrical Gaussian process over H is
regular over H if and only if the operator Q is nuclear.

Theorem 3.2.39. Let x be a Gaussian process and XQ, a Q-cylindrical x-
process over a separable Hilbert space H.

(a) If the operator Q is nuclear, then there exists an H-valued Gaussian

process XQ(t) such that XQ
f (t) = (XQ(t), f)H . This process is defined by

XQ(t) =
∑

k≥1

√
qk xk(t) hk, (3.2.34)

where xk, k ≥ 1, are independent copies of the process x, hk, k ≥ 1, are
the orthonormal eigenfunctions of Q and qk, k ≥ 1, are the corresponding
eigenvalues

(b) If there exists an H-valued Gaussian process Y = Y (t) such that

XQ
f (t) = (Y (t), f)H , f ∈ H, then the operator Q is nuclear and Y (t) = XQ(t),

where XQ(t) is defined by (3.2.34).

Proof. (a) Assume that Q is nuclear. Then Q is a compact operator (Exercise
3.1.20), and so H has an orthonormal basis consisting of the eigenfunctions of
Q (Theorem 3.1.28(b)). Moreover, by Theorem 3.1.41(b),

∑
k≥1 qk <∞ (note

that if Q is non-negative and self-adjoint, then
√

Q∗Q = Q). As a result,
(3.2.34) defines XQ(t) as an element of H for every t. Direct computations
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show that {(XQ(t), f)H , f ∈ H, t ∈ [0, T ]}, is a collection of zero-mean
Gaussian random variables with the property (3.2.28).

(b) Assume that XQ
f (t) = (Y (t), f)H for an H-valued Gaussian process

Y = Y (t), and choose an orthonormal basis {mk, k ≥ 1} in H . Then, by
(3.2.28), ∑

k≥1

E|XQ
mk

(t)|2 =
(
Ex2(t)

)∑

k≥1

(Qmk,mk)H .

On the other hand,

∑

k≥1

E|XQ
mk

(t)|2 =
∑

k≥1

E(Y (t),mk)
2
H = E‖Y (t)‖2

H <∞.

By Theorem 3.1.41(b), the operator Q is nuclear, and therefore the process
XQ(t) can be defined by (3.2.34). Since

Y (t) =
∑

k≥1

(Y (t),mk)Hmk =
∑

k≥1

XQ
mk

(t)mk =
∑

k≥1

(XQ(t),mk)Hmk,

it follows the Y (t) = XQ(t).

This completes the proof of Theorem 3.2.39.

Let us summarize the discussion as it applies to a Q-cylindrical Brownian
motion over a separable Hilbert space H :

• If {qk, k ≥ 1} is a bounded sequence of non-negative numbers and
{mk, k ≥ 1} is an orthonormal basis in H , then

WQ(t) =
∑

k≥1

√
qkmk wk(t), (3.2.35)

is Q-cylindrical Brownian motion and the linear operator Q is defined by
Qmk = qkmk. In particular, cylindrical Brownian motion has qk = 1 for
all k.

• If the operator Q is nuclear, then WQ(t) has representation (3.2.35), where
mk, k ≥ 1, are the eigenfunctions of Q, qk are the corresponding eigenval-
ues, and

∑
k qk <∞.

• In general, not every Q-cylindrical Brownian motion can be written in the
form (3.2.35). For example, (3.2.35) is impossible if the operator Q does
not have a complete system of eigenfunctions.

3.2.3 Martingales

Let F = (Ω,F , {Ft}t≥0,P) be a stochastic basis with the usual assumptions
(completeness of F0 and right-continuity of Ft). Recall that a real-valued,
Ft-adapted process M = M(t), t ≥ 0, with E|M(t)| < ∞ for all t ≥ 0, is
called
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• submartingale, if E
(
M(t)|Fs

)
≥M(s), t > s;

• martingale, if E
(
M(t)|Fs

)
= M(s), t > s;

• supermartingale, E
(
M(t)|Fs

)
≤M(s), t > s;

If M is a martingale and ϕ = ϕ(x) is a convex function (for example ϕ(x) =
x2), such that E|ϕ(M(t))| <∞, t ≥ 0, then, by Jensen’s inequality, the process
X(t) = ϕ(M(t)) is a sub-martingale.

A martingale M is called square integrable if E|M(t)|2 < ∞ for all
t ≥ 0. If M is a continuous square integrable martingale with M(0) = 0, then,
by the Doob-Meyer decomposition, there exists a unique continuous non-
decreasing process 〈M〉, called the quadratic variation of M , such that
〈M〉(0) = 0 and the process M2 − 〈M〉 is a martingale. For two continu-
ous square integrable martingales M, N with M(0) = N(0) = 0, the cross

variation process 〈M,N〉 is defined by

〈M,N〉 =
1

4
(〈M +N〉 − 〈M −N〉) ; (3.2.36)

see, for example, Karatzas and Shreve [98, Section 1.5]. Note that

〈M,M〉(t) = 〈M〉(t) and 〈cM〉(t) = c2〈M〉(t), c ∈ R.

If M1, . . . ,Mn are continuous square-integrable martingales, Mi(0) = 0, then

〈
n∑

k=1

Mk

〉
(t) =

n∑

k,ℓ=1

〈Mk,Mℓ〉(t). (3.2.37)

Exercise 3.2.40 (C). (a) Verify that 〈M,N〉 is the unique process in the
class of processes with bounded variation such that MN − 〈M,N〉 is a mar-
tingale. Hint. A square-integrable martingale with bounded variation is constant.

(b) Verify that if the sigma-algebras generated by the random variables
M(t), t ≥ 0, and N(t), t ≥ 0, are independent, then 〈M,N〉 = 0. Hint.

Use the uniqueness statement in part (a).

Definition 3.2.41. (1) A cylindrical process X over a linear topological space
V is called a martingale (submartingale, supermartingale) if the pro-
cess Xf (t), t ≥ 0, is a martingale (submartingale, supermartingale) for every
f ∈ V .

(2) A process M = M(t) is called a continuous square-integrable martin-
gale with values in a separable Hilbert space H (or an H-valued continuous,
square-integrable martingale) if the M has the following properties:

• M(t) ∈ H and E‖M(t)‖2
H <∞ for every t ≥ 0;

• lims→0 ‖M(t + s) − M(t)‖H = 0 for all t ≥ 0 and ω ∈ Ω, where, by
convention, M(t) = M(0) for t < 0;

• for every f ∈ H, the process Mf(t) =
(
f,M(t)

)
H

is a martingale.



3.2 Random Processes and Fields 113

Exercise 3.2.42 (C). Let H be a Hilbert space and let f = f(t), t ∈ R, be
an H-valued function. Verify that the two conditions are equivalent:

1. lims→0 ‖f(t+ s) − f(t)‖H = 0 for all t ∈ R;
2. the norm ‖f(·)‖ is a continuous function and, for every h ∈ H , the function
fh(t) = (f(t), h)H , t ∈ R, is continuous.

Hint. See Problem 3.1.3(a), page 90.

Our next objective is to define and study the quadratic variation of a
continuous H-valued martingale. As a motivation, consider an R

d-valued
continuous, square-integrable martingale M . Fixing an orthonormal basis in
R

d, we get a representation of M as a vector martingale (M1, . . . ,Md). If
f = (f1, . . . , fd) is a vector in R

d, then Mf =
∑
k=1 fkMk is a real-valued

continuous, square-integrable martingale and, by (3.2.37),

〈Mf 〉(t) =

d∑

k,n=1

fkfn〈Mk,Mn〉(t). (3.2.38)

We will now derive an alternative representation for 〈Mf 〉.
The process |M |2 =

∑d
i=1M

2
i is a sub-martingale, and |M |2 −∑d

i=1〈Mi〉
is a martingale. It is therefore natural to define

〈M〉 =

d∑

i=1

〈Mi〉 (3.2.39)

This definition seems to depend on the basis in R
d, but, on the other hand,

〈M〉 is such that |M |2 − 〈M〉 is a martingale; therefore, by the uniqueness
part of the Doob-Meyer decomposition, 〈M〉 must be the same in every basis.

Proposition 3.2.43. If N1 and N2 are two real-valued continuous, square-
integrable martingales, then the function 〈N1, N2〉 is absolutely continuous
with respect 〈N1〉 + 〈N2〉:

〈N1, N2〉(t) =

∫ t

0

d〈N1, N2〉(s)
d
(
〈N1〉 + 〈N2〉

)
(s)

d
(
〈N1〉 + 〈N2〉

)
(s).

Proof. It is known that the function 〈N1, N2〉 is absolutely continuous with
respect to both 〈N1〉 and 〈N2〉 (see, for example, Liptser and Shiryaev [132,
Theorem 2.2.8]). Since both 〈N1〉 and 〈N2〉 are absolutely continuous with
respect to 〈N1〉 + 〈N2〉, the result follows,

For a continuous square-integrable martingale M with values in R
d, we

use Proposition 3.2.43 to define the d × d symmetric matrix

QM (s) =

(
d〈Mi,Mj〉(s)
d〈M〉(s) , i, j = 1, . . . ,d

)
.
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Treating f as a column vector and writing f⊤ for the corresponding row
vector, we can then re-write (3.2.38) as

〈Mf 〉(t) =

∫ t

0

(
f⊤QM (s)f

)
d〈M〉(s).

Once we think of QM (s) as a matrix representation of some linear operator
QM (s) on R

d, and interpret 〈M〉 as the process that compensates |M |2 to
a martingale, we have all the ingredients for an intrinsic (coordinate-free)
interpretation of (3.2.38). The following theorem carries out this plan, and
also extends (3.2.38) to an infinite-dimensional setting.

Theorem 3.2.44. Let M be a continuous square-integrable martingale with
values in a separable Hilbert space H and M(0) = 0. Then

(a) the process ‖M‖2
H is a non-negative sub-martingale and there exists a

unique continuous non-decreasing process 〈M〉 such that ‖M‖2
H − 〈M〉 is a

martingale.
(b) There exists a unique process QM = QM (t), called the correlation

operator of the martingale M , with the following properties:

• for every t and ω, QM is a non-negative definite self-adjoint nuclear op-
erator on H;

• for every f, g ∈ H

〈(M, f)H , (M, g)H〉(t) =

∫ t

0

(
QM (s)f, g

)
H
d〈M〉(s). (3.2.40)

Proof. Let {mk, k ≥ 1} be an orthonormal basis in H .
(a) We have M(t) =

∑
k≥1Mk(t)mk and ‖M(t)‖2

H =
∑
k≥1M

2
k (t), where

Mk = (M,mk)H is a continuous square-integrable martingale. Then we can
take 〈M〉(t) =

∑
k≥1〈Mk〉(t). For a more detailed proof, see Rozovskii [186,

Section 2.1.8].
(b) For fixed t,

F̃f,g(t) = 〈(M, f)H , (M, g)H〉(t)

is a bi-linear form on H , and so F̃f,g(t) = (Q̃(t)f, g)H . The operator Q̃(t)
must be nuclear:

tr(Q̃(t)) =
∑

k≥1

〈(M,mk)H〉(t) =
∑

k≥1

〈Mk〉(t) = 〈M〉(t).

Then, for fixed f, g, look at F̃f,g(t) as a real-valued function of time and argue
that this function is absolutely continuous with respect to 〈M〉. For fixed t,
the corresponding Radon-Nykodim derivative defines a bi-linear form on H ,
and we get QM (t) from the relation

(QM (t)f, g)H =
dF̃f,g(t)

d〈M〉(t) .
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For details, see Métivier and J. Pellaumail [156, Theorem 14.3].

This completes the proof of Theorem 3.2.44.

Exercise 3.2.45 (B). (a) Verify that (3.2.40) implies that, for every t ≥ 0
and ω ∈ Ω, the operator QM (t) is self-adjoint, non-negative definite, and
tr(QM (t)) = 1.
(b) Let M be a continuous square-integrable H-valued martingale, X , a sepa-
rable Hilbert space, and A : H → X , a bounded linear operator. Show that the
process N(t) = AM(t) is a continuous square-integrable X-valued martingale
and

QN(t) =
AQM (t)A∗

tr
(
AQM (t)A∗) .

Hint. See Exercise 3.2.20 on page 101.

To summarize, if H is a separable Hilbert space with an orthonormal basis
{mk, k ≥ 1} and M is an H-valued continuous square-integrable martingale,
then, for each k, each process Mk(t) = (M(t),mk)H is a real-valued continu-
ous, square-integrable martingale and

M(t) =
∑

k≥1

Mk(t)mk, 〈M〉(t) =
∑

k≥1

〈Mk〉(t),

〈Mk,Mℓ〉(t) =

∫ t

0

(
QM (s)mk,mℓ

)
H
d〈M〉(s).

(3.2.41)

Exercise 3.2.46 (C). LetWQ be a Q-cylindrical Wiener process on a Hilbert
space H , and assume that the operator Q is nuclear. Show that WQ is an H-
valued martingale with 〈WQ〉(t) = t tr(Q) and QWQ(t) = Q/tr(Q).

Theorem 3.2.47 (Burkholder-Davis-Gundy (BDG) Inequality). If H
is a separable Hilbert space and M is an H-valued continuous square-integrable
martingale with M(0) = 0, then, for every p > 0, there exists a positive number
C, depending only on p, such that

E

(
sup
t≤T

‖M(t)‖H
)p

≤ CE
(
〈M〉(T )

)p/2
. (3.2.42)

Proof. We derive the result from the finite-dimensional version. Fix an integer
N ≥ 1 and use the notations from (3.2.41) to define

M̄ (N)(t) = (M1(t), . . . ,MN(t)).

Then M̄ (N) is a martingale with values in R
N and, as N ր ∞,

|M̄ (N)(t)| ր ‖M(t)‖H , 〈M̄ (N)〉(t) ր 〈M〉(t). (3.2.43)

By the finite-dimensional version of the BDG inequality applied to M̄ (N),
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E

(
sup
t≤T

|M̄ (N)(t)|
)p

≤ CE

(
〈M̄ (N)〉(T )

)p/2
, (3.2.44)

see, for example, Krylov [115, Theorem IV.4.1]. The key feature of the result
is that number C in (3.2.44) depends only on p; in particular, C does not
depend on N .

Then (3.2.42) follows after passing to the limit N → ∞ in (3.2.44)
and using the monotone convergence theorem together with (3.2.41) and
(3.2.43). Note that |M̄ (N)(t)| ≤ supt |M̄ (N)(t)|, so that supt ‖M(t)‖H ≤
limN supt |M̄ (N)(t)|. On the other hand, ‖M(t)‖H ≥ |M̄ (N)(t)|, and so
supt ‖M(t)‖H ≥ limN supt |M̄ (N)(t)|. That is,

sup
t

‖M(t)‖H = lim
N

sup
t

|M̄ (N)(t)|.

This completes the proof of Theorem 3.2.47.

Remark 3.2.48. It is not just a lucky coincidence that the constant in the BDG
inequality does not depend on the dimension of the space. A general result of
O. Kallenberg and R. Sztencel [95] shows that, for every continuous martingale
M , there exists a continuous two-dimensional martingale M ′ such that |M | =
|M ′| and 〈M〉 = 〈M ′〉. As a result, every inequality for a continuous two-
dimensional martingaleM involving only |M | and 〈M〉 extends to any number
of dimensions, including infinite, with the same constants.

3.2.4 Problems

Problem 3.2.1 outlines some computations related to Gaussian white noise
on L2(R

d) and introduces regularization of white noise. Problem 3.2.2 is yet
another version of the Kolmogorov continuity criterion, this time in terms of
Gaussian measures. Problem 3.2.3 is an exercise on finding the reproducing
kernel Hilbert space of a Gaussian measure. Problem 3.2.4 is yet another look
at the standard Brownian motion, via the Karhunen-Loève expansion and
the limiting distribution of a certain SPDE. Problem 3.2.6 is an example of
computing the covariance operator of a Gaussian measure. Problem 3.2.5 leads
to the notion of the Cameron-Martin space. Problem 3.2.7 introduces and
investigates homogeneous random fields. Problem 3.2.8 provides an example
of a homogeneous field: a Euclidean free field. Problem 3.2.9 investigates some
properties of the cross variation of two martingales. Problem 3.2.10 establishes
a useful technical result: completeness of the spaces of continuous square-
integrable martingales with values in a Hilbert space.

Problem 3.2.1. Let Ẇ = Ẇ (x) be Gaussian white noise on L2(R
d).

(a) For f ∈ S(Rd), define the regular field Ẇ[f ](x) (also known as a
regularization of white noise) by
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Ẇ[f ](x) = Ẇ (f(x− ·)) =

∫

Rd

f(x− y)dW (y). (3.2.45)

Show that, for every g ∈ S(Rd),

Ẇ[f ](g) = Ẇ (f • g), (3.2.46)

where (f • g)(y) =
∫

Rd f(x− y)g(x)dx.

(b) Let ϕ be an element of S(Rd) such that ϕ(x) = ϕ(−x), ϕ(0) > 0, and∫
Rd ϕ(x)dx = 1. For ε > 0, define ϕε(x) = ε−dϕ(x/ε). Show that, for every

f ∈ S(Rd),

lim
ε→0

E

(
Ẇ[ϕε](f) − Ẇ (f)

)2

= 0. (3.2.47)

(c) Let Wr(x) be the Gaussian field defined by (3.2.6) on page 96. Show
that, for every f ∈ S(Rd),

lim
r→0

E

(
Wr(f) − Ẇ (f)

)2

= 0. (3.2.48)

(d) How would you define a regularization of Gaussian white noise over
L2(G) for G 6= R

d?

Problem 3.2.2. Using Theorem 2.1.7 on page 26, Prove the following version
of Kolmogorov’s continuity criterion: If K = K(x, y) is a positive-definite

kernel on [0, 1]d × [0, 1]d and there exist real numbers α < 1 and C > 0 such
that

K(x, x) +K(y, y)− 2K(x, y) ≤ C|x− y|2α

then, for every β < α, there exits a centered Gaussian measure on the space
V = Cβ([0, 1]) (functions on [0, 1]d that are Hölder continuous of order β),
such that ∫

V

f(x)f(y)µ(df) = K(x, y).

Problem 3.2.3. Describe the reproducing kernel Hilbert space of a finite-
dimensional Gaussian vector.

Problem 3.2.4. (a) Show that the Karhunen-Loève expansion of the stan-
dard Brownian motion w = w(t) on [0, T ] is

w(t) =
√

2T
∑

k≥1

ξk
sin
((
k − 1

2

)
πt/T

)
(
k − 1

2

)
π

, (3.2.49)

where ξk are independent standard Gaussian random variables. Reconcile this
result with representation (3.2.24) on page 108.

(b) Show that the right-hand side of (3.2.49) appears as the limit in distri-
bution, as t→ ∞, of the solution u = u(t, x) of the stochastic heat equation

ut(t, x) = uxx(t, x) +
√

2Ẇ (t, x), t > 0, x ∈ (0, 1),

with zero initial condition u(0, x) = 0 and boundary conditions u(t, 0) = 0,
ux(t, 1) = 0.
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Problem 3.2.5. Let µ be the Wiener measure on the space V of continuous
on [0, 1] functions that are zero at t = 0. Find the corresponding covariance
operator Cµ. Recall that the dual space of V is the collection of regular mea-
sures on [0, 1]; see Dunford and Schwartz [39, Theorem IV.6.3].

Problem 3.2.6. Let B be a Gaussian white noise over a separable Hilbert
spaceH , and let H̃ be a bigger Hilbert space such that the embedding operator
j : H → H̃ is Hilbert-Schmidt.

(a) Verify that B extends to a regular Gaussian field over H̃ , with the
nuclear covariance operator K = jj∗.

(b) Verify that the corresponding Gaussian measure µ on H̃ has the co-
variance operator Cµ such that Cµ(f, g) = (Kf, g)H̃ = (j∗f, j∗g)H .

(c) Verify that H is a reproducing kernel Hilbert space with the reproduc-
ing kernel KH = Cµ.

Problem 3.2.7. Let B be a zero-mean generalized Gaussian field over the
space S(Rd).

For a function f ∈ S(Rd) and h ∈ R
d, define fh by fh(x) = f(x + h).

The field B is called homogenous if, for every N ≥ 1, (f1, . . . , fN) ⊂ S(Rd)
and h ∈ R

d, the vectors (B(f1), . . . ,B(fN )) and (B(fh1 ), . . . ,B(fhN )) have
the same distribution.

(a) Show that B is homogeneous if and only if there exists a positive
measure on µ on (Rd,B(Rd)) with the following properties:

1. There exists a non-negative number p such that

∫

Rd

µ(dx)

(1 + |x|2)p <∞; (3.2.50)

2. For every f, g ∈ S(Rd),

E
(
B(f)B(g)

)
=

∫

Rd

f̂(y)ĝ(y)µ(dy), (3.2.51)

where f̂ , ĝ are the Fourier transforms of f, g, and ĝ(y) is the complex
conjugate of ĝ(y).

The measure µ is called the spectral measure of B.
(b) Show that Ẇ , the Gaussian white noise on L2(R

d) (see (3.2.10) on
page 96), is homogeneous and, up to a constant, its spectral measure is the
Lebesque measure.

(c) We say that B is regular if there exists a zero-mean Gaussian field
B = B(x) such that

∫
G

EB2(x)dx < ∞ for every compact set G ⊂ R
d and

B(f) =
∫

Rd f(x)B(x)dx for every f ∈ S(Rd).

1. Show that a homogenous field over S(Rd) is regular if and only if its
spectral measure µ is finite: µ(Rd) <∞; equivalently, a finite µ means we
can put p = 0 in (3.2.50).
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2. Show that a non-trivial regular homogenous field over S(Rd) CANNOT
be extended to a regular field over L2(R

d).

A comment. Strictly speaking, the random fields discussed in this problem
are translation invariant; truly homogenous field would require a modifica-
tion of the definition to include an arbitrary isometry of R

d instead of only
translations fh(x) = f(x+ h) (see Wong [212, Section 4]).

Problem 3.2.8. Let X be a homogeneous field over S(Rd) with the spectral
measure µ(dy) = dy/(1 + |y|2) (see Problem 3.2.7). Such a field is called the
Euclidean free field

(a) For what d is X regular? Find the corresponding representation of X.
(b) Verify that X can be considered a Gaussian white noise over both

H1(Rd) and H−1(Rd).

Problem 3.2.9. Let M,N be continuous, square-integrable martingales with
values in a separable Hilbert space H , and, with {mk, k ≥ 1} denoting an
orthonormal basis in H ,

M(t) =
∑

k≥1

Mk(t)mk, N(t) =
∑

k≥1

Nk(t)mk.

Show that

〈M,N〉 =
1

4

(
〈M +N〉 − 〈M +N〉

)
, 〈M,N〉 =

∑

k≥1

〈Mk, Nk〉,

(M,N)H − 〈M,N〉 is a martingale,

〈M,N〉 = 0 if M,N are independent.

Problem 3.2.10. Show that the space of continuous, square-integrable mar-
tingales with values in a separable Hilbert space and starting at zero is com-
plete. In other words, let Mn = Mn(t), n ≥ 1, t ∈ [0, T ] be real-valued
continuous, square integrable martingales with values in a separable Hilbert
space H , Mn(0) = 0, and such that

lim
m,n→∞

E〈Mm −Mn〉(T ) = 0.

Show that there exists an H-valued continuous, square-integrable martingale
M such that M(0) = 0 and

lim
n→∞

E sup
0<t<T

‖Mn(t) −M(t)‖2
H = 0.

3.3 Stochastic Integration

3.3.1 Construction of the Integral

To begin, we review the construction of the stochastic Itô integral with respect
to a real-valued continuous, square-integrable martingale. Many books, such
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as Karatzas and Shreve [98, Section 3.2], Krylov [115, Section III.10], Kunita
[120, Section 3.2], Liptser and Shiryaev [132, Section 2.2], and Protter [179,
Chapter II], provide the details of the construction and the proofs of the
properties of the integral at different levels of generality. Below is the summary
of the main results.

Let M = M(t), t ≥ 0, be a real-valued continuous, square-integrable
martingale withM(0) = 0, and let f = f(t), t ≥ 0, be a real-valued continuous
adapted process such that

E

∫ T

0

f2(t) d〈M〉(t) <∞. (3.3.1)

The construction of the stochastic integral Mf =
∫ T
0
f(t)dM(t) proceeds in

the following three steps: (1) Integration of simple (can also be called elemen-
tary) functions; (2) An approximation result; (3) Integration of more general
functions. We say that f a simple predictable function if there exist non-
random times 0 = t0 < t1 < . . . < tN = T and bounded, Ftn−1-measurable
random variables fn, n = 1, . . . , N such that

f(t) =

N∑

ℓ=1

fℓ1(tℓ−1,tℓ](t),

where 1A(s) is the indicator function of the set A: 1A(s) = 1 if s ∈ A and
1A(s) = 0 if s /∈ A.

Here is a more detailed description of the three steps:
Step 1. If f is a simple predictable function, then define

Mf =

N∑

ℓ=1

fℓ
(
M(tℓ) −M(tℓ−1)

)

and show that

EM2
f = E

∫ T

0

f2(t) d〈M〉(t).

Step 2. If f is a continuous adapted process satisfying (3.3.1), show that there
exists a sequence {f (n), n ≥ 1} of simple predictable functions such that

lim
n→∞

E

(∫ T

0

(
f (n)(t) − f(t)

)2
d〈M〉(t)

)
= 0. (3.3.2)

Also show that, for every sequence {f (n), n ≥ 1} of simple predictable func-
tions satisfying (3.3.2), there is a unique square-integrable random variable
Mf such that

lim
n→∞

E

(
Mf −Mf(n)

)2

= 0 (3.3.3)
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Step 3. If f is a continuous adapted process satisfying (3.3.1), then define

∫ T

0

f(t)dM(t) = Mf ,

where Mf is the random variable from (3.3.3), and show that

E

(∫ T

0

f(t)dM(t)

)2

= E

∫ T

0

f2(t) d〈M〉(t).

It can be shown (Protter [179, Theorem II.21]) that the resulting integral∫ T
0 f(s)dM(s) is the limit in probability of the integral sums

∑

k

f(tk)(M(tk+1) −M(tk)), 0 = t0 < t1 < . . . < tN−1 = T,

as △N = maxn(tn+1 − tn) decreases to zero

Once we have
∫ T
0 f(s)dM(s) (a random variable), we define

∫ t
0 f(s)dM(s)

(a random process), 0 < t < T , by

∫ t

0

f(s)dM(s) =

∫ T

0

f(s)1(0,t](s)dM(s),

and prove that the process Mf = Mf (t), t ∈ [0, T ], is a continuous square-
integrable martingale with quadratic variation

〈Mf 〉(t) =

∫ t

0

f2(s) d〈M〉(s). (3.3.4)

More generally, if N = N(t) is another continuous square-integrable martin-

gale and g = g(t) is a continuous adapted process such that
∫ T
0
g2(t)d〈N〉(t) <

∞, then

〈Mf , Ng〉(t) =

∫ t

0

f(s)g(s) d〈M,N〉(s); (3.3.5)

see Kunita [120, Theorem 2.3.2].
Further analysis shows that the space of admissible integrands (functions

f) extends to the predictable processes (the closure of the set of simple pre-
dictable processes under the convergence (3.3.2)). After that, localization ar-
guments (using suitable stopping times) show that Mf can still be defined

when condition (3.3.1) is relaxed to P

(∫ T
0 f2(t) d〈M〉(t) <∞

)
= 1, and M

is a continuous local martingale.
Our next step is to define the stochastic Itô integral with respect to Hilbert

space-valued martingales. A popular approach is to repeat the above three-step
construction when f is an operator; the resulting integral is then an element
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of a suitable Hilbert space. This approach is used, in particular, by Chow [23,
Section 6.3], Da Prato and Zabczyk [30, Section 4.2], and Prévôt and Röckner
[178, Section 2.3].

An alternative approach, used by Rozovskii [186, Section 2.2], is to reduce
the construction to the one-dimensional case via expansions in suitable or-
thonormal bases. We will use this approach (in our opinion, it is less technical
and more explicit), and start with a very special class of integrands so that
the resulting integral is real-valued.

Let M = M(t), t ≥ 0, be a continuous square-integrable martingale with
values in a separable Hilbert space H , M(0) = 0. Denote by QM the corre-
lation operator of M (see Theorem 3.2.44 on page 114 for the definition of
QM ).

Definition 3.3.1. An H-valued process f = f(t), t ∈ [0, T ], is called an
M-admissible integrand if, for every h ∈ H, the process x(t) = (f(t), h)H
is a continuous adapted process and

E

∫ T

0

(
QM (t)f(t), f(t)

)
H
dt <∞, (3.3.6)

where QM is the correlation operator of M (see Theorem 3.2.44 on page 114).

Definition 3.3.2. Given an orthonormal basis M = {mk, k ≥ 1} in H,
and an M -admissible integrand f , we define the stochastic integral Mf(t) =∫ t
0
(f(s), dM(s))H by

Mf(t) =
∑

k≥1

∫ t

0

fk(s)dMk(s), (3.3.7)

where fk(t) =
(
f(t),mk

)
H
, Mk(t) =

(
M(t),mk

)
H

.

It follows from Definition 3.3.2 that the resulting operation of stochastic
integration is linear in both M and f : if a, b are real numbers, then

(aM + bN)f = aMf + bNf , Maf+bg = aMf + bMg.

Other properties of the stochastic integral are established below.

Theorem 3.3.3. The process Mf has the following properties:

1. Mf is a real-valued continuous square-integrable martingale and

〈Mf 〉(t) =

∫ t

0

(
QM (s)f(s), f(s)

)
H
d〈M〉(s). (3.3.8)

In particular,

E

(∫ t

0

(
f(s), dM(s)

)
H

)2

= E

∫ t

0

(
QM (s)f(s), f(s)

)
H
d〈M〉(s). (3.3.9)
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2. The definition of Mf does not depend on the choice of the basis in H: if
M̄ = {m̄k, k ≥ 1} is another orthonormal basis in H, f̄k = (f, m̄k)H ,
M̄k =

(
M, m̄k

)
H

, then, for all t ∈ [0, T ],

E sup
0<t<T


∑

k≥1

∫ t

0

fk(s)dMk(s) −
∑

k≥1

∫ t

0

f̄k(s)dM̄k(s)




2

= 0. (3.3.10)

Proof. To prove that Mf is a real-valued continuous, square-integrable mar-
tingale with quadratic variation (3.3.8), define

Mf,K(t) =

K∑

k=1

∫ t

0

fk(s)dMk(s), K ≥ 1.

It is a real-valued, continuous, square-integrable martingale. Then, keeping in
mind that 〈Mk,Mℓ〉(t) =

∫ t
0

(
QM (s)mk,mℓ

)
H
d〈M〉(s) (see Theorem 3.2.44

on page 114), we use (3.2.37) on page 112 to find, for K < N ,

〈Mf,N −Mf,K〉(T ) =

N∑

k,ℓ=K+1

∫ T

0

fk(s)fℓ(s) d〈Mk,Mℓ〉(s)

=
N∑

k,ℓ=K+1

∫ T

0

fk(s)fℓ(s)
(
QM (s)mk,mℓ

)
H
d〈M〉(s).

On the other hand,

E

∞∑

k,ℓ=1

∫ T

0

fk(s)fℓ(s)
(
QM (s)mk,mℓ

)
H
d〈M〉(s)

E

∫ T

0

(
QM (t)f(t), f(t)

)
H
dt <∞,

which means
lim

K,N→∞
E〈Mf,N −Mf,K〉(T ) = 0.

By the Burkholder-Davis-Gundy inequality with p = 2 (Theorem 3.2.47 on
page 115),

lim
K,N→∞

E sup
0<t<T

|Mf,N (t) −Mf,K(t)|2 = 0.

After these computations, to conclude that Mf is a continuous square-
integrable martingale we use completeness of the space of real-valued con-
tinuous square-integrable martingales (see, for example, Karatzas and Shreve
[98, Proposition 1.5.23] or Kunita [120, Theorem 2.1.2]).

To prove (3.3.10), define

Mk
f (t) =

∫ t

0

fk(s)dMk(s), M̄k
f (t) =

∫ t

0

f̄k(s)dM̄k(s). (3.3.11)
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Then, by equality (3.2.37) on page 112 and by the Burkholder-Davis-Gundy
inequality with p = 2,

E sup
0<t<T


∑

k≥1

∫ t

0

fk(s)dMk(s) −
∑

k≥1

∫ t

0

f̄k(s)dM̄k(s)




2

≤ C
∑

k,ℓ≥1

E〈Mk
f − M̄k

f ,M
ℓ
f − M̄ ℓ

f 〉(T ).

By Theorem 3.2.44 on page 114,

〈Mk
f − M̄k

f ,M
ℓ
f − M̄ ℓ

f 〉(t)

=

∫ t

0

(
fk(s)fℓ(s)

(
QM (s)mk,mℓ

)
H

+ f̄k(s)f̄ℓ(s)
(
QM (s)m̄k, m̄ℓ

)
H

)
d〈M〉(s)

−
∫ t

0

(
fk(s)f̄ℓ(s)

(
QM (s)mk, m̄ℓ

)
H

+ fℓ(s)f̄k(s)
(
QM (s)mℓ, m̄k

)
H

)
d〈M〉(s)

Note that
∑

ℓ≥1

fℓ(s)
(
QM (s)mk,mℓ

)
H

=
(
QM (s)mk, f(s)

)
H

and

∑

k≥1

fk(s)
(
QM (s)mk, f(s)

)
H

=
(
QM (s)f(s), f(s)

)
H
.

Similarly,
∑

ℓ≥1

f̄ℓ(s)
(
QM (s)mk, m̄ℓ

)
H

=
(
QM (s)mk, f(s)

)
H

and

∑

k≥1

f̄k(s)
(
QM (s)m̄k, f(s)

)
H

=
(
QM (s)f(s), f(s)

)
H
.

As a result,
∑

k,ℓ≥1

〈Mk
f − M̄k

f ,M
ℓ
f − M̄ ℓ

f 〉(T )

=

∫ T

0

((
QM (s)f(s), f(s)

)
H

+
(
QM (s)f(s), f(s)

)
H

)
d〈M〉(s)

−
∫ T

0

((
QM (s)f(s), f(s)

)
H

+
(
QM (s)f(s), f(s)

)
H

)
d〈M〉(s) = 0.

This completes the proof of Theorem 3.3.3.

Exercise 3.3.4 (C). (a) Show that

〈Mf ,Mg〉(t) =

∫ t

0

(
QM (s)f(s), g(s)

)
H
d〈M〉(s).
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An expression for 〈Mf , Ng〉 is impossible without introducing additional op-
erators.
(b) Show that

E sup
0<t<T

∣∣∣∣
∫ t

0

(
f(s), dM(s)

)
H

∣∣∣∣

≤ CE

(∫ T

0

(
QM (s)f(s), f(s)

)
H
d〈M〉(s)

)1/2

,

(3.3.12)

and, if E sup0<t<T ‖f(s)‖2
H <∞, then

E sup
0<t<T

∣∣∣∣
∫ t

0

(
f(s), dM(s)

)
H

∣∣∣∣ ≤
1

2
E sup

0<t<T
‖f(s)‖2

H + C1E〈M〉(T ). (3.3.13)

Hint. Use the BDG inequality with p = 1; for (3.3.13), remember that the

operator norm of QM is less than or equal to one and, for a, b, ε > 0, ab ≤ εa2+b2/ε.

Now, we consider a more general class of integrands. Let H,X be separable
Hilbert spaces. As before, let M = M(t), t ≥ 0, be a continuous square-
integrable martingale with values in H and with M(0) = 0. Denote by QM the
correlation operator of M (see Theorem 3.2.44 on page 114 for the definition
of QM ).

Definition 3.3.5. A collection B = B(t, ω) of (random) operators from H to
X is called an M-admissible integrand if

1. For every h ∈ H and x ∈ X, the process g(t) =
(
B(t)h, x

)
X

is continuous
and adapted.

2. For every t ∈ [0, T ] and ω ∈ Ω, the operator B(t, ω)QM (t, ω)B∗(t, ω)
(acting from X to X) is trace-class and

E

∫ T

0

tr
(
B(t)QM (t)B∗(t)

)
d〈M〉(t) <∞. (3.3.14)

Exercise 3.3.6 (C). Verify that if X = R, then (3.3.14) is equivalent to
(3.3.6).

Hint. The operator B in this case is given by B(t)h = (f(t), h)H , and B∗(t)r =

rf(t), r ∈ R.

Definition 3.3.7. Let H,X be separable Hilbert spaces, M = M(t), a con-
tinuous, H-valued square-integrable martingale, M(0) = 0, and B : H →
X, an M -admissible integrand. We define the stochastic integral MB(t) =∫ t
0 B(s)dM(s) as the unique X-valued process such that, for every x ∈ X, t ∈

[0, T ],

(MB(t), x)X =

∫ t

0

(
B∗(s)x, dM(s)

)
H
. (3.3.15)



126 3 Stochastic Analysis in Infinite Dimensions

Exercise 3.3.8 (C). Verify that the process f(t) = B∗(t)x is an M -
admissible integrand and thus we get the right-hand side of (3.3.15) from
Definition 3.3.2 on page 122.

Theorem 3.3.9. The process MB defined by (3.3.15) is an X-valued contin-
uous, square-integrable martingale such that, for all x, y ∈ X,

〈(MB, x)X , (MB, y)X〉(t) =

∫ t

0

(
B(s)QM (s)B∗(s)x, y

)
d〈M〉(s).

In particular,

E

∥∥∥∥
∫ t

0

B(s)dM(s)

∥∥∥∥
2

X

= E

∫ t

0

tr
(
B(s)QM (s)B∗(s)

)
d〈M〉(s). (3.3.16)

Proof. By Theorem 3.3.3 on page 122, the process Fx(t) = (MB(t), x)X is a
real-valued, continuous, square-integrable martingale for every x ∈ X and, by
Exercise 3.3.4,

〈Fx, Fy〉(t) =

∫ t

0

(
QM (s)B∗(s)x,B∗(s)y

)
H
d〈M〉(s).

Also, if {mk, k ≥ 1} is an orthonormal basis in X , then

E‖MB(t)‖2
X = E

∑

k≥1

〈Fmk
〉(t) = E

∑

k≥1

∫ t

0

(
B(s)QM (s)B∗(s)mk,mk

)
X
d〈M〉(s)

= E

∫ t

0

tr
(
B(s)QM (s)B∗(s)

)
d〈M〉(s) <∞.

This completes the proof of Theorem 3.3.9.

Exercise 3.3.10 (A). Find the correlation operator of the martingale MB.
Hint. Use Exercise 3.2.45 on page 115, but keep in mind that

tr
(
B∗(s)QM(s)B∗(s)

)
can be zero.

We conclude this section with a brief discussion of integrals with respect to
a Q-cylindrical Brownian motions WQ. The main difference from the general
construction is that, similar to the standard Brownian motion, every adapted,
and not just predictable, process can be admissible integrand for WQ. Oth-
erwise, the general construction applies because WQ is a square-integrable
martingale on a possibly bigger Hilbert space, and the resulting construction
does not depend on the choice of the bigger space; see Prévôt and Röckner
[178, Section 2.5]. Still, the special structure of WQ makes it possible to con-
struct the integral directly without enlarging the underlying Hilbert space
even if the operator Q is not trace-class; the details are outlined in Problem
3.3.1.
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3.3.2 Itô Formula

We start by reviewing the finite-dimensional result. Let A = A(t) be an R
d-

valued adapted process with bounded variation (each component Ak can be
written as a difference of two non-decreasing processes), A(0) = 0, M = M(t),
an R

d-valued continuous, square-integrable martingale, M(0) = 0, and f =
f(t, x), t ≥ 0, x ∈ R

d, a function that is continuously differentiable in t and
twice continuously differentiable in x. Define X(t) = X(0) + A(t) + M(t).
Then, with ft = ∂f/∂t, Dkf = ∂f/∂xk,

f(t,X(t)) = f(0, X(0)) +

∫ t

0

ft(s,X(s))ds+

d∑

k=1

∫ t

0

Dkf(s,X(s))dXk(s)

+
1

2

d∑

k,ℓ=1

∫ t

0

DkDℓf(s,X(s)) d〈Mk,Mℓ〉(s).

(3.3.17)

This result is known as Itô formula; see, for example, Karatzas and Shreve [98,
Theorem 3.6]. Of course, dXk = dAk + dMk;

∫
· · ·dAk is the usual Lebesque-

Stiltjes integral, and
∫
· · ·dMk is the stochastic Itô integral.

In particular, taking f(t, x) = |x|2, we find

|X(t)|2 = |X(0)|2 + 2

d∑

k=1

∫ t

0

Xk(s)dXk(s) +

d∑

k=1

〈Mk〉(t). (3.3.18)

Equivalently, writing (·, ·) for the inner product in R
d and using (3.2.39) on

page 113 to define 〈M〉,

|X(t)|2 = |X(0)|2 + 2

∫ t

0

(
X(s), dX(s)

)
+ 〈M〉(t). (3.3.19)

Exercise 3.3.11 (C). Verify that (3.3.18) follows from (3.3.17).

The main advantage of (3.3.19) over (3.3.18), beside a more compact form,
is that (3.3.19) suggests that the result does not depend on the choice of
the basis in R

d. Indeed, the inner product can be defined in an intrinsic
way, and so can 〈M〉, as the process compensating |M |2 to a martingale.
Having coordinate-independent formulas is useful for possible extensions to
an infinite-dimensional setting, so let us write (3.3.17) in a coordinate-free way.
For that, we need to recall the intrinsic definitions of the first two derivatives
of a function on R

d. We continue to use the notation (·, ·) for the inner product
in R

d.
Given a smooth function g on R

d, the first derivative (the gradient) of g
at a point P ∈ R

d, Dg(P ), is a linear mapping from R
d to R, and thus, by

the Riesz representation theorem, can be identified with a vector Dg(P ) in
R

d so that
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Dg(P )(x) =
(
Dg(P ), x

)
.

Similarly, the second derivativeD2g(P ) is a symmetric bi-linear mapping from
R

d ×R
d to R, and thus can be identified with a symmetric linear operator on

R
d so that

D2g(P )(x, y) =
(
D2g(P )x, y

)
.

In a given orthonormal basis {ek, k = 1, . . . d}, Dg(P ) is represented by the
vector

∇g(P ) =
(
Dg(P )(e1), . . . , Dg(P )(ed)

)
,

and Dg(P )(ek) = Dkg(P ) is the partial derivative of g or the derivative of g
at P in the direction of ek. Similarly, D2g(P ) is represented by the matrix of
the second partial derivatives of g at P . For details, see Zeidler [216, Section
4.1].

With these notations, (3.3.17) becomes

f(t,X(t)) = f(0, X(0)) +

∫ t

0

ft(s,X(s))ds+

∫ t

0

(
Df(s,X(s)), dX(s)

)

+
1

2

∫ t

0

tr
(
D2f(s,X(s))QM (s)

)
d〈M〉(s).

(3.3.20)

Exercise 3.3.12 (C). Verify that (3.3.17) can indeed be written as (3.3.20).
Hint. See the discussion prior to Theorem 3.2.44 on page 114 about the operator

QM .

Given a function g on a Hilbert space, we consider the Fréchet derivatives

Dg, D2g. Recall that Dg can be interpreted as an element of H and D2g, as a
bounded self-adjoint operator on H . For details about the Fréchet derivatives
see Zeidler [216, Sections 4.4 and 4.5]. Then (3.3.20) extends to processes with
values in a separable Hilbert space.

Theorem 3.3.13 (Infinite-dimensional Itô formula). Let H be a sepa-
rable Hilbert space. Consider the real-valued function F = F (t, h), t ∈ [0, T ],
h ∈ H, and an H-valued process X = X(t), and assume that

1. F, Ft, DF, D
2F exist and are continuous in [0, T ]×H, and are bounded

and uniformly continuous on bounded sub-sets of [0, T ]×H.

2. There exists an H-valued adapted process B with E
∫ T
0 ‖B(t)‖2

Hdt < ∞
and an H-valued continuous, square-integrable martingale M with corre-
lation operator QM and M(0) = 0, such that

X(t) = X(0) +

∫ t

0

B(s)ds +M(t). (3.3.21)
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Then

F (t,X(t)) = F (0, X(0)) +

∫ t

0

Fs(s,X(s))ds+

∫ t

0

(
DF (s,X(s)), dX(s)

)
H

+
1

2

∫ t

0

tr
((
D2F (s,X(s))

)
QM (s)

)
d〈M〉(s)

(3.3.22)

Proof. Equality (3.3.20) suggests that (3.3.22) must be true as well holds; a
complete proof is in Da Prato and Zabczyk [30, Theorem 4.1].

Exercise 3.3.14 (C). Verify that

‖X(t)‖2
H = ‖X(0)‖2

H + 2

∫ t

0

(
X(s), B(s)

)
H
ds

+2

∫ t

0

(
X(s), dM(s)

)
H

+ 〈M〉(t).
(3.3.23)

Hint. F (t, h) = ‖h‖2
H , DF = 2h, (1/2)D2F is the identity operator.

Let us take a closer look at (3.3.23), which looks identical to the final-
dimension formula (3.3.19). The main reason for this similarity is that X ,
B, and M all take values in the same space H . On the other hand, most
stochastic partial differential equations cannot be studied using a single space.
For example, consider

u(t, x) =

∫ t

0

uxx(s, x)ds+ h(x)w(t), x ∈ R,

where w is a standard Brownian motion and h is a smooth function with
compact support. This equation looks like (3.3.21) if we set X(t) = u(t, ·),
B(t) = uxx(t, ·), and M(t) = hw(t), but it is clear that X and B cannot
belong to the same space because the operator u→ uxx is not bounded. As a
result, formula (3.3.22) does not look especially helpful.

On the other hand, if we assume that u is smooth as a function of x, then,
for every fixed x, we can apply the one-dimensional Itô formula to u2(t, x)
and get

u2(t, x) = 2

∫ t

0

u(s, x)uxx(s, x)ds+ 2

∫ t

0

u(s, x)h(x)dW (s) + t. (3.3.24)

We can then integrate with respect to x, but the term
∫

R
u(s, x)uxx(s, x)dx

should be interpreted not as the inner product in L2(R) but as the duality [·, ·]
between the Sobolev spaces H1(R) and H−1(R) relative to the inner product
in L2(R):

‖u(t, ·)‖2
L2(R) = 2

∫ t

0

[uxx(s, ·), u(s, ·)]ds+ 2

∫ t

0

(
u(s, ·), h

)
L2(R)

+ t. (3.3.25)
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Using the notion of the normal triple of Hilbert spaces, we will now implement
this construction in a more general setting. The result, often known as the
energy equality in Hilbert spaces, is an extension of the Itô formula (3.3.23)
for the square of the norm to a normal triple of Hilbert space.

Theorem 3.3.15 (Energy Equality in Hilbert Spaces). Let (V,H, V ′)
be a normal triple of Hilbert spaces and [·, ·], the duality between V and V ′

relative to the inner product in H.
Let x be an F0-measurable random element, and let X = X(t), B = B(t),

and M = M(t) be adapted processes with the following properties:

1. x is H-valued and E‖x‖2
H <∞;

2. X is V -valued and E
∫ T
0
‖X(t)‖2

V dt <∞;

3. B is V ′-valued and E
∫ T
0
‖B(t)‖2

V ′dt <∞;
4. M is an H-valued continuous, square-integrable martingale;
5. For every v ∈ V and every t ∈ [0, T ],

(
X(t), v

)
H

= (x, v)H +

∫ t

0

[B(s), v]ds +
(
M(t), v

)
H

(3.3.26)

on the same set of probability one. In other words, the equality X(t) =

x+
∫ t
0
B(s)ds+M(t) holds in L2

(
Ω × (0, T );V ′).

Then

1. X ∈ L2(Ω; C((0, T );H)), that is, X has continuous trajectories as an H-
valued process, and there is a number C, independent of T , such that

E sup
0<t<T

‖X(t)‖2
H ≤ C

(
E‖x‖2

H + E

∫ T

0

‖X(t)‖2
V dt

+ E

∫ T

0

‖B(t)‖2
V ′ dt+ E〈M〉(T )

)
;

(3.3.27)

2. The following equality holds for all t ∈ [0, T ] on the same set of probability
one:

‖X(t)‖2
H = ‖x‖2

H + 2

∫ t

0

[B(s), X(s)]ds

+ 2

∫ t

0

(
X(s), dM(s)

)
H

+ 〈M(t)〉.
(3.3.28)

Proof. The complete proof is long and difficult, and we will not present it
here. An interested reader can find all the details in Rozovskii [186, Section
2.4] or Krylov and Rozovskii [119, Section 2.3].

In what follows, we explain why one should expect a result like this. First of
all, recall that we are not distinguishing different modifications of the process,
but in this case the distinction is crucial: it takes a lot of effort to show that X
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indeed has a modification that is continuous in H . On the other hand, under
the assumptions of the theorem, continuity of X as an H-valued process is
not at all surprising and is well known in the deterministic setting (M = 0),
when the proof is simple (see Problem 3.1.3 on page 90.)

It is also easy to convince oneself that (3.3.28) should hold. Indeed, take
an orthonormal basis {mk, k ≥ 1} in H and assume that mk ∈ V (since V is
dense in H , it is a reasonable assumption). Then write (3.3.26) with v = mk

to get an expression for the Fourier coefficients of X :

Xk(t) = xk +

∫ t

0

[B(s),mk]ds+Mk(t).

After that apply the one-dimensional Itô formula to X2
k :

X2
k(t) = x2

k + 2

∫ t

0

[B(s), Xk(s)mk]ds+ 2

∫ t

0

Xk(s)dMk(s) + 〈Mk〉(t).

To get (3.3.28), it now remain to sum over k ≥ 1, keeping in mind the Parceval
identity and the equality X(t) =

∑
kXk(t)mk.

Finally, (3.3.27) follows from (3.3.28) after taking the E sup0<t<T on both
sides. Note that |[B(s), X(s)]| ≤ ‖B(s)‖2

V ′ + ‖X(s)‖2
V and then all terms on

the right-hand side, except the stochastic integral
∫ t
0
(X(s), dM(s))H , become

non-decreasing in t. For the stochastic integral, we use the Burkholder-Davis-
Gundy inequality (see (3.3.13) on page 125) with p = 1, followed by the epsilon
inequality:

E sup
0<t<T

∣∣∣∣
∫ t

0

(X(s), dM(s))H

∣∣∣∣ ≤
1

2
E sup

0<t<T
‖X(t)‖2

H + C1E〈M〉(T ).

With this we end the proof of Theorem 3.3.15.

Exercise 3.3.16 (A). Find an expression for C in (3.3.27) in terms of the
corresponding constant in the BDG inequality.

Let us summarize the main points about the Itô formula:

• There is a relatively straightforward extension of a finite-dimensional Itô
formula to a separable Hilbert space.

• On the other hand, in a typical SPDE setting, there are several Hilbert
spaces, and then the only available extension of the Itô formula is the
energy equality (3.3.28), which is for the square of the norm.

• Both extensions are useful, and one does not immediately follow from the
other.
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3.3.3 Problems

Problems 3.3.1 and 3.3.2 discuss stochastic integration with respect to a Q-
cylindrical Brownian motion. Problem 3.3.3 is an exercise on the infinite-
dimensional Itô formula. Problem 3.3.4 suggests possible connections between
the Itô formulas in one space and in the normal triple (energy equality).

Problem 3.3.1. Consider the Q-cylindrical Brownian motion

WQ(t) =
∑

k≥1

√
qkmkwk(t),

where {mk, k ≥ 1} is an orthonormal basis in a separable Hilbert space H and
Qmk = qkmk (see the discussion on page 111).
(a) Let f = f(t) be an H-valued process such that, for every h ∈ H , the

process z(t) = (f(t), h)H is adapted and E
∫ T
0

(
Qf(t), f(t)

)
H
dt <∞; call this

process f admissible. Show that

WQ
f (t) =

∑

k≥1

(∫ t

0

fk(s)dwk(s)

)
mk,

is a real-valued continuous, square-integrable martingale and, for all admissi-
ble f, g,

〈WQ
f ,W

Q
g 〉(t) =

∫ t

0

(
Qf(s), g(s)

)
H
ds. (3.3.29)

(b) Let X be a separable Hilbert space and B = B(t, ω), a family of (random)
linear operators such that, for every h ∈ H and x ∈ X , the process z(t) =(
B(t)h, x

)
X

is adapted and

E

∫ T

0

tr
(
B(s)QB∗(s)

)
ds <∞.

Show that the X-valued process WQ
B (t), defined by

(
WQ

B (t), x
)
X

=
∑

k≥1

√
qk

∫ t

0

(
B(s)mk, x)Xdwk(s)

is an X-valued continuous, square-integrable martingale, and

〈(
WQ

B (t), x
)
X
,
(
WQ

B (t), y
)
X

〉
(t) =

∫ t

0

(
B(s)QB∗(s)x, y

)
X
ds. (3.3.30)

Problem 3.3.2. Recall that not every Q-cylindrical Brownian motion can
be written as WQ =

∑
k≥1

√
qkmkwk(t) (for example, if the operator Q

does not have any point spectrum). Nonetheless, show that stochastic inte-

grals WQ
f and WQ

B from Problem 3.3.1 can be defined for every Q-cylindrical
Brownian motion over a separable Hilbert space H without assuming that
WQ =

∑
k≥1

√
qkmkwk(t). Show that equalities (3.3.29) and (3.3.30) continue

to hold.
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Problem 3.3.3. Use Itô formula to establish a particular case of the BDG
inequality: for p ≥ 2,

E sup
0<t<T

∥∥∥∥
∫ t

0

B(s)dM(s)

∥∥∥∥
p

≤ CpE

(∫ T

0

(
tr
(
B(s)QM (s)B∗(s)

))
d〈M〉(s)

)p/2
.

Problem 3.3.4. Compare and contrast the infinite-dimensional Itô formula
in a single Hilbert space (Theorem 3.3.13) and the corresponding energy equal-
ity (3.3.23) with the energy equality in a normal triple of Hillbert spaces (The-
orem 3.3.15). Can one of the equalities (3.3.23), (3.3.28), be derived from the
other?





4

Linear Equations: Square-Integrable Solutions

4.1 A Summary of SODEs and Deterministic PDEs

There are many standard references on SODEs and even more standard refer-
ences on deterministic PDEs. Here are a few of each, listed in a non-decreasing
order of difficulty:
SODEs: Øksendal [169], Friedman [52], Krylov [115], Karatzas and Shreve
[98], Stroock and Varadhan [199], Kunita [120].
Deterministic PDEs: Strauss [197], Evans [45], Rauch [180], John [93],
Krylov [116, 118], Friedman [53].

No prior familiarity with any of these books is necessary to proceed.

4.1.1 Why Square-Integrable Solutions?

One of the main differences between ordinary differential equations (ODEs)
and equations with partial derivatives (PDEs) is availability of a general ex-
istence/uniqueness theorem: there one for ODEs, but there is none for PDEs.

Consider a deterministic ordinary differential equation

y′(t) = f(t, y(t)), t > t0, y(t0) = y0

If f is a continuous function of two variables, then a classical solution exists
in some neighborhood of the point (t0, y(t0)). The solution is unique if f is
Lipschitz continuous in the second argument. The solution exists globally in
time if f is at most of linear growth in the second variable or otherwise does
not allow a blow-up to happen. These existence and uniqueness results carry
over to stochastic equations essentially without any changes, see Problem 4.1.1
on page 155 below.

Existence of a continuous solution of an SODE implies that no a priori
integrability conditions are necessary to define the solution. For example, given
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two continuous real-valued functions a and b and a standard Brownian motion
w, consider the one-dimensional equation

dX(t) = a
(
X(t)

)
dt+ b

(
X(t)

)
dw(t), 0 < t ≤ T, X(0) = X0. (4.1.1)

It is natural to define a solution of (4.1.1) as a random process X = X(t)
with the following properties:

1. The trajectories of X are continuous on [0, T ] with probability one;
2. The equality

X(t) = X0 +

∫ t

0

a
(
X(s)

)
ds+

∫ t

0

b
(
X(s)

)
dw(s) (4.1.2)

holds with probability one for all t ∈ [0, T ] at once.

Note that if X is indeed continuous, then having equality (4.1.2) with prob-
ability one for each t separately is as good as having the equality for all t at
once: just take the intersection of all the probability-one sets corresponding to
the rational points in [0, T ]. Note also that by assumption a

(
X(t)

)
is a con-

tinuous function of t, and therefore the first integral on the right-hand side
of (4.1.2) is well defined. As far as the second (stochastic) integral, the basic
construction requires the integrand to be square-integrable in both time and
probability space, which would impose an additional condition on the process
X , namely,

E

∫ T

0

b2
(
X(t)

)
dt <∞. (4.1.3)

There are at least two ways to avoid condition (4.1.3):

1. An easy way: assume that b is bounded;
2. A (slightly) harder way: extend the construction of the stochastic integral

to integrands that are square-integrable in time with probability one; see
Krylov [115, Section III.4] or Liptser and Shiryaev [131, Section 4.2.6]. In
this path-wise construction condition (4.1.3) is replaced with

∫ T

0

b2
(
X(t)

)
dt <∞ with probability one, (4.1.4)

which holds automatically because of continuity of b and X .

As a result, to define a solution of equation (4.1.1), there is no need to impose
any integrability restrictions on the process X .

The situation is completely different for partial differential equations,
where there are very few universal existence and uniqueness results. One ex-
ample is the Cauchy-Kovalevskaya theorem about local existence and unique-
ness for real-analytic evolution equations. The theorem has many versions:
see, for example, Evans [45, Theorem 4.6.2] or Rauch [180, Theorem 1.3.3]).
Unfortunately, the theorem is not especially helpful because (a) the result is
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local, and (b) the result does not cover many specific examples, such as the
initial value problem for heat equation. Accordingly, every partial differential
equation usually requires individual analysis. In particular, one has to make
some a priori assumptions about the solution before starting to look for one.

Let us consider the initial value problem for the heat equation:

ut = uxx, t > 0, x ∈ R; u(0, x) = ϕ(x).

Taking the Fourier transform, we find ût = −y2û or û(t, y) = ϕ̂(y)e−ty
2

.
Assuming that we can indeed invert the Fourier transform, we get the familiar
formula for the solution:

u(t, x) =
1√
4πt

∫ +∞

−∞
e−(x−y)2/(4t)ϕ(y)dy. (4.1.5)

This formula suggests that the functions of the type fc(x) = ecx
2

, c > 0,
have special significance for the heat equation. For example, if the initial
condition grows at infinity slower than any function fc, then the integral in
(4.1.5) converges. Equality (4.1.5) also suggests that, for all practical purposes,
requiring |ϕ| not to grow too fast is the same as requiring

∫
R
|u(t, x)|2dx <∞

for all t > 0. More detailed analysis shows that the growth restriction on the
solution of the heat equation is essential to have uniqueness; see Körner [107,
Chapter 67].

Next, let us consider the stochastic equation

du = uxxdt+ σuxdw(t), t > 0, x ∈ R; u(0, x) = ϕ(x), (4.1.6)

with deterministic initial condition ϕ = ϕ(x). Then dû = −y2û dt +
σ i y û dw(t) or

û(t, y) = ϕ̂(y)e−ty
2(1−(σ2/2))+iσyw(t).

In particular, |û(t, y)| = |ϕ̂(y)|e−ty2(1−(σ2/2)). If we are to use the results about
the deterministic heat equation, then we have to assume σ2 < 2. Under the
assumption that ϕ is non-random, condition

∫

R

|u(t, x)|2dx <∞

with probability one is the same as

∫

R

E|u(t, x)|2dx <∞.

That is, solutions of (4.1.6) that are path-wise square-integrable in space are
also square-integrable as random variables. To put it differently, if we do not
require solutions of (4.1.6) to be square-integrable as random variables, the
equation will not be well-posed path-wise.



138 4 Linear Equations: Square-Integrable Solutions

If the initial condition in (4.1.6) is random, then it is not absolutely nec-
essary to consider square-integrable solutions. For example, one can consider
ϕ(x, ω) = ξ e−x

2

, where ξ is independent of w and has Cauchy distribution
with probability density function fξ(x) = 1/

(
π(1+x2)

)
, although the solution

will still be square-integrable when conditioned on ϕ.
Throughout this chapter, we will consider only square-integrable solutions.

4.1.2 Classification of PDEs

This section consists of two parts. In the first part, we describe a connec-
tion between a concrete elliptic (hyperbolic, parabolic) PDE and an ellipse
(hyperbola, parabola). In the second part, we explain how classification into
elliptic/hyperbolic/parabolic types works for abstract equations.

Second-order PDEs in two variables and conic sections

Recall that the regular circular cone is the surface defined in the three-
dimensional Cartesian coordinate system by the equation z2 = x2 + y2. It
is known that ellipse, hyperbola, and parabola can all be obtained by cutting
this surface with a suitable plane, hence the name conic section. For ex-
ample, the plane 2z = x+ 2 produces an ellipse, y = 1 produces a hyperbola,
and z = x+ 1, a parabola.

The general equation of a conic section in two variables (x, y) is

Ax2 + 2Bxy + Cy2 + ax+ by = K, (4.1.7)

where A,B,C, a, b,K ∈ R and A2 +B2 +C2 > 0. Then a “typical” equation
(4.1.7) defines

• an ellipse, if AC −B2 > 0;
• a hyperbola, if AC −B2 < 0;
• a parabola, if AC −B2 = 0.

We have to say “typical” because there are degenerate cases, such as x2+y2 =
−1 or x2 − y2 = 0.

Next, consider the second-order partial differential equation with constant
coefficients in two independent variables (x, y) for the unknown function u =
u(x, y):

Auxx + 2Buxy + Cuyy + aux + buy = 0, (4.1.8)

where A,B,C, a, b,K ∈ R andA2+B2+C2 > 0. The conditionA2+B2+C2 >
0 means that at least one of the numbers A,B,C is not zero; for both (4.1.7)
and (4.1.8), this condition ensures that the corresponding equation is indeed
of second order. In equation (4.1.8), we make a linear change of variables

s = c1x+ c2y, t = c3x+ c4y,
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with c1c4 6= c2c3, so that we can solve for (x, y) in terms of (s, t):

x = c̃1s+ c̃2t, y = c̃3s+ c̃4t.

Then we define a new function v = v(s, t) by

v(s, t) = u(c̃1s+ c̃2t, c̃3s+ c̃4t).

It turns out (and the reader is welcome to verify it by executing the linear
change of variables in (4.1.8) and then carefully considering the particular
cases) that one can choose the numbers c1, c2, c3, c4 in such a way that equa-
tion (4.1.8) becomes

• vss + vtt = a1vs + b1vt if AC −B2 > 0;
• vss − vtt = ā1vs + b̄1vt if AC −B2 < 0;
• vt = vss + ã1vs if AC −B2 = 0.

(4.1.9)

Now the connections between the ellipse and the Laplace (elliptic) equation,
a hyperbola and the wave (hyperbolic) equation, and a parabola and the heat
(parabolic) equation become clear: the conditions for equation (4.1.7) to define
an ellipse (hyperbola, parabola) are the same as the conditions for equation
(4.1.8) to be elliptic (hyperbolic, parabolic). Note also that

1. We omitted the long but elementary computations required to reduce both
(4.1.7) and (4.1.8) to the corresponding canonical form;

2. The connection between (4.1.7) and (4.1.8) essentially stops with the sign
condition on AC − B2: even the change of variables required for the re-
duction to the canonical form is different for the two equations;

3. When the coefficients A,B,C in equation (4.1.8) are functions of x and y,
a possibly non-linear change of variables can still reduce the equation to
one of the three canonical forms (4.1.9). For details, see John [93, Section
2.3].

Next, we discuss classification of equations in an abstract setting, when the
starting point is a normal triple of Hilbert spaces (V,H, V ′) and a linear
operator A. Recall that [v′, v], v′ ∈ V ′, v ∈ V , denotes the duality between
V and V ′ relative to the inner product in H . For a function u = u(t) with
values either in R

d or in an infinite-dimensional space, we write u̇ to denote
the time derivative: u̇ = du/dt.

Definition 4.1.1. We say that an operator A is acting in a normal triple

(V,H, V ′) if A is a bounded linear operator from V to V ′: there exists a number
c0 > 0 such that, for all v ∈ V ,

‖Av‖V ′ ≤ c0‖v‖V .
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Definition 4.1.2. An operator A acting in the normal triple (V,H, V ′) is
called elliptic if there exists a positive number cA such that

[Av, v] ≥ cA‖v‖2
V (4.1.10)

for all v ∈ V .

Problem 4.1.2 on page 156 below illustrates why the operator A satisfying
(4.1.10) is natural to call elliptic.

Definition 4.1.3. Let A be an elliptic operator acting in the normal triple
(V,H, V ′). Then we have the following classification of equations:

• equation Au = f , where f ∈ V ′, is called elliptic;
• equation ü+Au = A1u+Bu̇+f , where f ∈ L2((0, T );V ′) and A1 : V → H,

B : H → H are bounded linear operators, is called hyperbolic;
• equation u̇+ Au = A1u+ f , where f ∈ L2((0, T );V ′), and A1 : V → H is

a bounded linear operator, is called parabolic.

Let us now illustrate how condition (4.1.10) provides a link between concrete
and abstract equations.

Example 4.1.4. Consider the following setting: V = H1
0 ((0, 1)), H =

L2((0, 1)), V ′ = H−1((0, 1)), A = −d2/dx2, with zero boundary conditions.
We think of V as the closure of the set C∞

0 ((0, 1)) of smooth functions with
compact support in (0, 1) with respect to the norm

‖v‖V =
(
‖v‖2

H + ‖v′‖2
H

)1/2

.

Taking v ∈ C∞
0 ((0, 1)), we see that

[Av, v] = −
∫ 1

0

v′′(x)v(x)dx =

∫ 1

0

|v′(x)|2dx = ‖v′‖2
H ,

where the second equality follows after integration by parts. Next, we make
the following observations: if v ∈ C∞

0 ((0, 1)), then v(0) = 0 and

v(x) =

∫ x

0

v′(y)dy;

|v(x)|2 =

(∫ x

0

v′(y)dy

)2

≤
(∫ x

0

dy

)(∫ x

0

|v′(y)|2dy
)

≤ x ‖v′‖2
H ;

‖v‖2
H =

∫ 1

0

|v(x)|2dx ≤
(∫ 1

0

xdx

)
‖v′‖2

H ≤ 1

2
‖v′‖2

H .

(4.1.11)

Since ‖v‖2
V = ‖v‖2

H + ‖v′‖2
H , we conclude that

‖v‖2
V ≤ 1

2
‖v′‖2

H + ‖v′‖2
H =

3

2
[Av, v],
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that is, the operator A is elliptic and (4.1.10) holds with cA = 2/3.
An example of the corresponding hyperbolic equation is ü + Au = 0 or

utt = uxx, which is the wave equation. An example of the corresponding
parabolic equation is u̇+ Au = 0 or ut = uxx, which is the heat equation. In
other words, we see how a concrete setting under condition (4.1.10) reduces
abstract equations to familiar equations of the corresponding type.

This concludes Example 4.1.4.

Exercise 4.1.5 (C). Verify that the operator A in Example 4.1.4 is a
bounded operator from V to V ′.

Exercise 4.1.6 (A). Repeat Example 4.1.4 in
the normal triple (H1, H0, H−1) with the spaces Hr = Hr((0, 1)), r ∈ R;
see Example 3.1.29 on page 81. Show that in this setting [Av, v] ≥ π2‖v‖2

V .

4.1.3 Proving Well-Posedness of Linear PDEs

Our main objective in dealing with an equation is to show that the equation
is well posed. Well-posedness of an equation means that, given the input
(initial conditions, boundary conditions, and driving force) the solution exists,
is unique, and depends continuously on the input. In other words, we have to
find Banach spaces for the input and the solution, and to construct a bounded
linear operator (the solution operator) acting from the space of input to
the solution space.

To construct a variational solution, and the corresponding solution oper-
ator, one can follow these steps:

1. Construct a sequence of approximate solution, for example, using Galerkin
approximation.

2. Derive a uniform estimate on the approximate solutions.
3. Use a compactness argument to extract a converging subsequence and

identifying the limit as the solution.
4. Prove uniqueness of the solution.

For examples of this approach, see Evans [45, Sections 7.1,7.2].

A lot of information about the equation can be obtained from a priori bounds,
or estimates, on the solution. To derive an a priori bound (estimate), we
assume that the solution exists and is as regular as we want, and then derive
an upper bound on some norm of the solution in terms of some norm of the
input data. Along the way, we ignore the rule of formal logic that a false
assumption implies anything you want. The choice of the norms depends on
the structure of the equation, our ultimate goals, and the amount of work we
are willing to carry out.

Below, we use the heat equation on the line to demonstrate the derivation
of an a priori estimate. Then we discuss four different methods to construct the
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solution operator for the equation: (a) an explicit formula for the solution, (b)
the method of continuity, (c) the Galerkin approximation, or (d) the semigroup
method.

Theorem 4.1.7 below provides an example of an a priori estimate for the
heat equation on the line. To follow the argument, recall the Sobolev spaces
Hr(R) from page 73, together with the corresponding notations for the norms
‖ · ‖r and the duality [·, ·]0, in this case between H1(R) and H−1(R). We
also use that, because of the L2 isometry of the Fourier transform, ‖h‖2

1 =
‖h‖2

0 + ‖h′‖2
0; see Exercise 3.1.10 on page 74.

Theorem 4.1.7. Let u = u(t, x), t > 0, x ∈ R
d, be a classical solution of

ut = uxx + f, 0 < t ≤ T, x ∈ R, (4.1.12)

with initial condition u(0, x) = ϕ(x). Assume that

• ϕ ∈ C∞
0 (R),

• f ∈ C∞
0 ((0,+∞) × R),

• u(t, x) is continuously differentiable in x for all t ≥ 0,
• lim|x|→∞ |u(t, x)| = lim|x|→∞ |ux(t, x)| = 0 for all t ≥ 0.

Then

sup
0<t<T

‖u(t, ·)‖2
0 +

∫ T

0

‖u(s, ·)‖2
1ds

≤ C(T )

(
‖ϕ‖2

0 +

∫ T

0

‖f(t, ·)‖2
−1dt

)
,

(4.1.13)

where C(T ) = 4 + 8T (1 + 2Te2T ).

Proof. After multiplying both sides of the equation by 2u, integrating, first
with respect to x, then with respect to t, and noticing that, after integration
by parts,

∫

R

u(s, x)uxx(s, x)dx = −
∫

R

u2
x(s, x)dx = −‖ux(s, ·)‖2

0,

we find

‖u(t, ·)‖2
0 = ‖ϕ‖2

0 − 2

∫ t

0

‖ux(s, ·)‖2
0ds+ 2

∫ t

0

[f(s, ·), u(s, ·)]0ds

≤ ‖ϕ‖2
0 − 2

∫ t

0

(
‖u(s, ·)‖2

0 + ‖ux(s, ·)‖2
0

)
ds+ 2

∫ t

0

‖u(s, ·)‖2
0ds

+ 2

∫ t

0

‖u(s, ·)‖1 ‖f(s, ·)‖−1ds ≤ ‖ϕ‖2
0 − 2

∫ t

0

‖u(s, ·)‖2
1ds

+ 2

∫ t

0

‖u(s, ·)‖2
0ds+

∫ t

0

‖u(s, ·)‖2
1ds+

∫ t

0

‖f(s, ·)‖2
−1ds,

(4.1.14)
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or

‖u(t, ·)‖2
0 +

∫ t

0

‖u(s, ·)‖2
1ds ≤ ‖ϕ‖2

0 + 2

∫ t

0

‖u(s, ·)‖2
0 +

∫ T

0

‖f(s, ·)‖2
−1ds.

(4.1.15)
To get (4.1.13) from (4.1.15), we first drop the second term on the left-hand
side of (4.1.15) and use Gronwall’s inequality (1.1.22) on page 8 to estimate
sup0<t<T U(t). Then we put the result into the right hand-side of (4.1.15) to

get the estimate for
∫ T
0
‖u(s, ·)‖2

1ds.

This completes the proof of Theorem 4.1.7.

The proof of Theorem 4.1.7 illustrates some general features of deriving a
priori estimates:

1. Integration by parts;
2. Use of the epsilon inequality: it happened in (4.1.14) with ǫ = 1 during

the transition from 2‖u‖1‖f‖−1 to ‖u‖1 + ‖f‖−1;
3. Importance of Gronwall’s inequality.

There are also some features that the proof of Theorem 4.1.7 DOES NOT
show, for example:

1. We were somewhat lucky that ‖h‖2
1 = ‖h‖2

0 +‖h′‖2
0; usually, we do not get

exactly the norm we want, but only an equivalent norm. This happens,
for example, if we want to estimate the H2(R) norm of u.

2. Usually, one never bothers with the precise value of the ε when applying
the epsilon inequality, nor does one keep track of all the time dependence
in Gronwall’s inequality (so that C(T ) stays C(T )).

As a result, one might have to deal with multiple lines of computations where
there are letters C1, C2, ... (or N , or something else) denoting numbers whose
value can change from line to line. These numbers contain all the constants
that have been introduced in the calculations.

Finally, the reader is encouraged to think about the following:

1. What are a priori reasons to multiply both sides of the heat equation by
u, and not, say u2?

2. How do we know to interpret
∫
fu dx as [f, u]0 and not as (f, u)0?

The following exercise is a generalization of Theorem 4.1.7. The result will
be used later in this section.

Exercise 4.1.8 (C). Let a = a(t, x), b = b(t, x), and c = c(t, x) be smooth
bounded functions, with all the derivatives bounded, and 1 ≤ a(t, x) ≤ 2 for
all t, x. Let u, f, ϕ be the same as in Theorem 4.1.7, except that now u is a
classical solution of the equation

ut = auxx + bux + cu+ f, u|t=0 = ϕ. (4.1.16)

Show that (4.1.13) still holds with a suitable C(T ).
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Inequality (4.1.13) implies both uniqueness and continuous dependence on
the input data for the heat equation (4.1.12) in the following Hilbert spaces:
u ∈ L2

(
(0, T );H1(R)

)
, ϕ ∈ L2(R), and f ∈ L2

(
(0, T );H−1(R)

)
. Indeed, by

linearity, if

ut = uxx + f, u|t=0 = ϕ,

vt = vxx + g, v|t=0 = ψ,

then h = u− v satisfies ht = hxx + (f − g), h|t=0 = ϕ− ψ, and therefore, by
(4.1.13),

∫ T

0

‖u− v‖2
1ds ≤ C(T )

(
‖ϕ− ψ‖2

0 +

∫ T

0

‖f − g‖2
−1ds

)
.

In particular, if ϕ = ψ as elements of L2(R) and f = g as elements of
L2

(
(0, T );H−1(R)

)
, then u = v as elements of L2

(
(0, T );H1(R)

)
.

The best way to construct the solution operator for equation (4.1.12) is us-
ing the closed-form solution (2.2.7) on page 40. If ϕ, f are as in Theorem 4.1.7,
then taking the Fourier transform shows that u(t, x) from (2.2.7), as a function
of x, is an element of the Schwartz space S(R) and therefore satisfies assump-
tions of Theorem 4.1.7. Then (4.1.13) immediately extends the solution oper-
ator (2.2.7) from smooth input ϕ, f to ϕ ∈ L2(R), f ∈ L2

(
(0, T );H−1(R)

)
.

The solution constructed in this way is the weak variational solution [W2],
defined on page 43.

In the end, we conclude that, for every ϕ ∈ L2(R), f ∈ L2

(
(0, T );H−1(R)

)
,

equation ut = uxx+f has a unique solution u ∈ L2

(
(0, T );H1(R)

)
and (4.1.13)

holds.

The next question is how to construct the solution operator if a closed-form
solution is not available, for example, for equation (4.1.16). Below, we describe
several methods. The first is the method of continuity.

Theorem 4.1.9 (Method of Continuity). Let IH and X be two Banach
spaces. Suppose that we have a family of linear equations Aλu = f , λ ∈ [0, 1],
such that (a) a priori bound ‖u‖IH ≤ C‖f‖X holds for every solution u of every
equation, with the number C and the spaces IH,X independent of λ; (b) there
exists a µ ∈ [0, 1] such that equation Aµu = f has a solution, and (c) there
exists a positive continuous at zero function ̟ = ̟(s) such that ̟(0) = 0
and, for all h ∈ IH and all λ, ν ∈ [0, 1], ‖(Aλ − Aν)h‖X ≤ ̟

(
|λ− ν|

)
‖h‖IH.

Then, for every λ ∈ [0, 1] and every f ∈ X, the equation Aλu = f has a
unique solution u ∈ IH and ‖u‖IH ≤ C‖f‖X.

Proof. Denote by Ψµ : f 7→ u the solution operator for the equation Aµu = f ,
that is, for every f ∈ X , u = Ψµf is the solution of the equation. For a fixed

f ∈ X , define the operator Φ : IH → IH by Φu = Ψµ

(
f + (Aµ − Aλ)u

)
.

The next step is an exercise.
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Exercise 4.1.10 (C). (a) Verify that Φu = u if and only if Aλu = f .
(b) Verify that ‖Φ(u− v)‖IH ≤ C ̟

(
|µ− λ|

)
‖u− v‖IH .

As a result, the operator Φ is a contraction if C ̟
(
|µ − λ|

)
< 1/2, that

is, if |µ − λ| ≤ s0, where s0 is such that ̟(s) < 1/(2C) for all |s| ≤ s0 (s0
exists because by assumption ̟ is continuous at 0 and ̟(0) = 0). Since the
value of s0 does not depend on µ or λ, we can get from µ to every λ ∈ [0, 1]
in finitely many steps, thus solving Aλu = f for all λ.

This completes the proof of Theorem 4.1.9

For more discussions of the method of continuity and related topics, see Krylov
[116, Theorem 4.3.2] and [117, Section 2].

Example 4.1.11. Let us illustrate Theorem 4.1.9 for equation (4.1.16) when
ϕ = 0. Define

IH =
{
v ∈ L2

(
(0, T );H1(R)

)
: v(t) =

∫ t

0

g(s)ds, g ∈ L2

(
(0, T );H−1(R)

)}
,

X = L2

(
(0, T );H−1(R)

)
.

(4.1.17)

Problem 3.1.4 on page 90 shows that IH is a Hilbert space with norm

‖v‖2
IH =

∫ T

0

‖g(s)‖2
H−1(R)ds+

∫ T

0

‖v(s)‖2
H1(R)ds.

Define Aλ by Aλv = vt − (1 − λ)vxx − λ(avxx + bvx + cv) and consider the
family of equations Aλu = f, u(0) = 0, so that the usual heat equation
ut = uxx + f and equation (4.1.16) correspond to λ = 0 and λ = 1 respec-
tively. After Theorem 4.1.7 and Exercise 4.1.8, it is not hard to verify condi-
tions of Theorem 4.1.9 (with a linear function ̟) and to deduce solvability
of (4.1.16) with zero initial conditions. Note that ‖uxx‖H−1(R) ≤ C‖u‖H1(R).
The solution constructed in this way is the weak variational solution [W2],
defined on page 43). By the fundamental theorem of calculus in the normal
triple (H1(R), L2(R), H−1(R)) (see Problem 3.1.3(b) on page 90), we also get
u ∈ C((0, T );L2(R)).

This concludes Example 4.1.11.

Exercise 4.1.12 (C). (a) Construct the solution operator for (4.1.16) when
ϕ 6= 0. Hint. Define V = u− ū, where u solves (4.1.16) and ū solves the usual heat

equation (4.1.12), both with the same initial condition ϕ. Then V satisfies (4.1.16)

with zero initial condition and slightly different f .

(b) Verify that the operator A : f 7→ ft − (afxx + bfx + cf) defines a
homeomorphism between the spaces IH and X , and explain why the space
L2

(
(0, T );H1(R)

)
will not work instead of IH .

Hint. The solution operator provides the inverse of A. The time derivative ft

is not defined for a generic function from L2

(
(0, T );H1(R)

)
. Remember that we

assume a, b, c to be smooth bounded functions and 1 ≤ a ≤ 2.
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Let us now discuss another method of constructing the solution operator,
the Galerkin approximation. The method can be traced to a 1915 paper by
the Russian civil and mechanical engineer Boris Grigorievich Galerkin
(1871–1945). The idea of the method is to approximate the original infinite-
dimensional equation by a sequence of finite-dimensional equations, extract
a limit using a compactness argument, and then identify the limit as the so-
lution of the original equation. The method usually produces a variational
solution, works for a large class of equations (linear or nonlinear, evolution
or stationary), and can be used to compute the solution numerically. The ap-
proximation is often carried out by projecting the equation on an orthonormal
basis.

Let us illustrate Galerkin approximation for equation (4.1.16). Take an
orthonormal basis {hk, k ≥ 1} in L2(R) such that the set {hk, k ≥ 1} is
dense in H1(R) and in H−1(R). A non-constructive argument for existence of
such a basis is that L2(R) is separable, contains H1(R) as a dense subset, and
is dense in H−1(R). For an explicit construction of such a basis, see Problem
4.1.3 on page 157.

Denote by ΠN the orthogonal projection in L2(R) on the linear subspace
generated by {h1, . . . , hN}, and denote by A the operator a∂2/∂x2+b∂/∂x+c.
Consider the family of equations

duN/dt = ΠNAuN , t > 0, uN (0) = ΠNϕ. (4.1.18)

With the notations uN(t) =
∑N
k=1 u

N
k (t)hk, AN =

(
[Ahj , hi], i, j =

1, . . . , N
)
, (4.1.18) becomes a linear system of ordinary differential equations

for the vector ūN (t) = (uN1 (t), . . . , uNN(t)):

dūN (t)/dt = AN ūN (t).

Next, we look at the sequence {uN , N ≥ 1}. Let IH be the Hilbert space
defined in (4.1.17). The same arguments as in the proof of a priori bound
(4.1.13) show that supN ‖uN‖2

IH is bounded by the right-hand side of (4.1.13).
The weak sequential compactness of IH (see page 80) implies that there is a
subsequence {uN ′

, N ′ ≥ 1} converging weakly to some u ∈ IH . This weak
convergence also implies that u is a weak variational solution of (4.1.16).
Note also that, by the fundamental theorem of calculus in the normal triple
(H1(R), L2(R), H−1(R)), we also get u ∈ C((0, T );L2(R)).

For a more detailed example of the Galerkin method, see Evans [45, The-
orem 7.1.3].

Here are several comments about the Galerkin approximation in a normal
triple (V,H, V ′) (above, we saw a particular case with V = H1(R), H =
L2(R), V ′ = H−1(R)):

1. In general, there is no need to have the functions hk orthonormal in H ,
but they do have to form a dense set in V , H , and V ′. [Later on, we will
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see that, in our analysis of the stochastic equations, it is necessary to have
hk orthonormal in H .]

2. Sometimes, but not always, it is possible to choose the functions hk to be
orthogonal not only in H but also in V and V ′. While the construction
of the solution does not rely on the property of the orthogonal projection
‖ΠN · ‖ ≤ ‖ · ‖, this property can simplify some of the arguments.

3. As a finite-dimension object, the Galerkin approximation satisfies all the
additional regularity assumptions necessary to derive the a priori esti-
mate, but strictly speaking some work is required to show that the projec-
tions of the operators (e.g. ΠNA) have the required properties uniformly
in N .

4. For linear equations, the weak convergence of the approximation in the
suitably constructed solution space IH automatically implies that the limit
is a variational solution of the equation.

Yet another method of constructing the solution operator is the semigroup

method. For simplicity, we will only discuss one-parameter semigroups, corre-
sponding to time-homogeneous equations, where operators/coefficients do not
depend on time.

Recall that a strongly continuous semigroup, also known as a C0-
semigroup, is a family {Φ(t), t ≥ 0} of bounded linear operators on a Banach
space X such that Φ(0) is the identity operator I (Φ(0)x = x), Φ(t)Φ(s) =
Φ(t+ s), t, s ≥ 0 (the semigroup property), and limt→s ‖Φ(t)x−Φ(s)x‖X = 0
for all s ≥ 0 and x ∈ X (continuity). The generator of the semigroup Φ
is the operator A defined by

Ax = lim
t→0+

Φ(t)x − x

t

for those x for which the limit exists in the norm of X . It can be shown that
the set of all such x is dense in X and that A is a closed operator, as an
operator from X to X (Evans [45, Theorem 7.4.2]). Intuitively, Φ(t) = etA; in
many cases this equality can be made rigorous, and, in fact, etA is sometimes
used to denote the semigroup generated by A.

The idea of the semigroup method is that, given an evolution equation u̇ =
Au+ f , if the operator A happens to be a generator of a strongly continuous
semigroup Φ(t) on a Banach space X , then, for u0 ∈ X and f ∈ L1

(
(0, T );X

)
,

we get the mild solution of the equation

u(t) = Φ(t)u0 +

∫ t

0

Φ(t− s)f(s)ds (4.1.19)

simply by definition of the mild solution. The mild solution is unique because
the semigroup is unique. The following exercise presents some other properties
of the mild solution.
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Exercise 4.1.13 (B). Verify that, if u0 ∈ X and f ∈ L1((0, T );X), then

u ∈ C((0, T );X) and sup0<t<T ‖u(t)‖X ≤ C(T )(‖u0‖X +
∫ T
0
‖f(t)‖Xdt).

Hint. The definition of Φ implies that there exists a bounded on [0, T ] function

C = C(t) such that ‖Φ(t)x‖X ≤ C(t)‖x‖X for 0 ≤ t ≤ T .

The next results show that, the mild solution (4.1.19) is also a variational
solution.

Proposition 4.1.14. Let (V,H, V ′) be a normal triple of Hilbert spaces and
let A : V → V ′ be a bounded linear operator. Assume that A is a generator of
a strongly continuous semigroup Φ on H.

If u is a mild solution of equation u̇ = Au + f then u is also a w(V, V ′)
variational solution as defined on page 45.

Proof. This is left as an exercise for the reader.

The main tool in the semigroup method is the theorem providing necessary
and sufficient conditions for an operator to generate a strongly continuous
semigroup. The result is known as the Hille-Yosida theorem, after the
American mathematician Einar Hille (1894–1980) and the Japanese math-
ematician Kôsaku Yosida (1909–1990).

Theorem 4.1.15 (Hille-Yosida theorem). Let A be a linear operator de-
fined on a dense subset of a Banach space X and such that A is closed as
an operator from X to X. Then the operator A is a generator of a strongly
continuous semigroup on X if and only if there exist a real number λ0 and
a positive number M such that, for every λ > λ0, the inverse (λI − A)−1 of
λI−A is defined and is a bounded linear operator on X, and, for every positive
integer n,

sup
x∈X:‖x‖X≤1

‖(λI − A)−nx‖X ≤ M

(λ− λ0)n
. (4.1.20)

Moreover, condition (4.1.20) for the generator is equivalent to the condition

sup
x∈X:‖x‖X≤1

‖Φ(t)x‖X ≤Meλ0t (4.1.21)

for the corresponding semigroup.

Proof. See Dunford and Schwartz [39, Theorem VIII.1.13]. A particular case
λ0 = 0 is in Evans [45, Theorem 7.4.4]. Inequality (4.1.21) suggests that λ0 < 0
is of special significance: if λ0 < 0, then the semigroup and all the solutions
of the corresponding evolution equation decay exponentially in time.

This concludes the proof of Theorem 4.1.15.

To construct a mild solution (4.1.19) of the evolution equation u̇ = Au + f ,
u(0) = 0, we need to verify that the operator A satisfies conditions of Theorem
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4.1.15. The technical part is proving that the operator is closed as an operator
from X to X (here, Theorem 3.1.18 on page 77 can be useful), and verifying
(4.1.20). To verify (4.1.20), note that if M = 1, then the simple inequality for
the operator norms,

‖(λI − A)−n‖ ≤ ‖(λI − A)−1‖n

will work if we can show that

‖(λI − A)−1‖ ≤ 1/(λ− λ0). (4.1.22)

In turn, both the existence of the inverse operator and the bound (4.1.22) will
follow from

‖(λI − A)x‖X ≥ (λ− λ0)‖x‖X , λ > λ0. (4.1.23)

Indeed, if a linear operator B on X satisfies ‖Bx‖X ≥ b‖x‖X , then B is one-
to-one and, replacing x with B−1x, we find ‖B−1x‖X ≤ (1/b)‖x‖X . In other
words, to establish (4.1.20) it is enough to verify (4.1.23) on a dense subset
of X .

Below, we verify conditions of Theorem 4.1.15 for the time-homogeneous
version of (4.1.16).

Proposition 4.1.16. Let a = a(x), b = b(x), c = c(x) be smooth bounded
functions on R, with all derivatives also bounded, and 1 ≤ a(x) ≤ 2 for all
x ∈ R. Define the operator A : H2(R) → L2(R) by Af = af ′′ + bf ′ + cf ;
as always, f ′ means the (generalized) derivative of f . Then A generates a
strongly continuous semigroup on X = L2(R).

Proof. The domain of A is the space H2(R) and is a dense subset of L2(R), for
example, because the set of smooth functions with compact support is dense
in both H2(R) and L2(R).

Next, we will verify that the operator A is closed as an unbounded operator
from L2(R) to L2(R). [Note that A : H2(R) → L2(R) is obviously closed, but
this is not what we need.] We will use Theorem 3.1.18 on page 77, with
X = L2(R) and H = H2(R). Thus, we need to show that

‖f‖2 ≤ C
(
‖Af‖0 + ‖f‖0

)
, C > 0. (4.1.24)

For brevity, we will use the notations ‖ · ‖ and (·, ·) for the norm and inner
product in L2(R). First, we recall that an equivalent norm in H2(R) is ‖f‖+
‖f ′′‖, see Exercise 3.1.10 on page 74. Moreover, from (3.1.7) with α = 0,
β = 1, γ = 2, followed by epsilon inequality (1.1.19), we conclude that ‖f‖1 ≤
ε‖f ′′‖ + C(ε)‖f‖ and therefore (4.1.24) will follow if we can show that

‖Af‖2 ≥ C1‖f ′′‖2 + C2‖f ′‖2 + C3‖f‖2 (4.1.25)

with C1 > 0. Indeed, in (4.1.25) we only want the coefficient of ‖f ′′‖ to be
positive: a negative coefficient of ‖f‖ in (4.1.25) can be compensated by a
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sufficiently large positive C in (4.1.24); the terms ‖f ′‖ and ‖f‖ make ‖f‖1

and therefore can be compensated by ‖f ′′‖ with arbitrarily small coefficient.
To establish (4.1.25), we write

‖Af‖2 = ‖af ′′‖2 + 2(af ′′, bf ′) + ‖bf ′‖2 + 2(cf, af ′′ + bf ′) + ‖cf‖2. (4.1.26)

Since a ≥ 1, we get ‖af ′′‖2 ≥ ‖f ′′‖2. Next, we integrate by parts to conclude
that

2(af ′′, bf ′) = −
∫

R

(
a(x)b(x)

)′ (
f ′(x)

)2
dx ≥ C3‖f ′‖2

with C3 = − supx
∣∣(a(x)b(x)

)′∣∣. Similarly,

2(cf, af ′′ + bf ′) = −2

∫

R

(
a(x)c(x)

)′ (
f ′(x)

)2
dx− 2

∫

R

(
b(x)c(x)

)′
f2(x)dx

≥ C4‖f ′‖2 + C5‖f‖2

with C4 = −2 supx
∣∣(a(x)c(x)

)′∣∣, C5 = −2 supx
∣∣(b(x)c(x))′

∣∣, and (4.1.25)
follows.

To verify (4.1.23), we need to show that there exists a λ0 ∈ R such that,
for all λ > λ0 and all smooth compactly supported f ,

‖λf − (af ′′ + bf ′ + cf)‖2 ≥ (λ− λ0)
2‖f‖2. (4.1.27)

To simplify notation, we continue to write ‖ · ‖ for the norm in L2(R) and
(·, ·) for the inner product in L2(R). The left-hand side of (4.1.27) becomes

‖af ′′ + bf ′‖2 + ‖(λ− c)f‖2 − 2
(
(λ− c)f, af ′′)− 2

(
(λ− c)f, bf ′). (4.1.28)

We will look at each term in (4.1.28) individually, assuming that λ > 0 is
sufficiently large.

The first term in (4.1.28) is non-negative and can be ignored: we are looking
for a bound from below. For the second term, define

c0 = sup
x

|c(x)|

to get

‖(λ− c)f‖2 =

∫

R

(
λ− c(x)

)2
f2(x)dx ≥ (λ− c0)

2‖f‖2. (4.1.29)

After integration by parts, the third term in (4.1.28) becomes

2

∫

R

(
λ− c(x)

)
a(x)(f ′(x))2dx+ 2

∫

R

(
a(x)(λ − c(x))

)′
f(x)f ′(x)dx (4.1.30)

The first term in (4.1.30) is non-negative if λ > c0 because of the assumption
a(x) ≥ 1. For the second term (4.1.30), integrate by parts:
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2

∫

R

(
a(x)(λ−c(x))

)′
f(x)f ′(x)dx = −

∫

R

(
a(x)(λ−c(x))

)′′
f2(x)dx. (4.1.31)

If
a1 = sup

x
|a′′(x)|, c1 = sup

x

∣∣(a(x)c(x)
)′′∣∣,

then
−2
(
(λ− c)f, af ′′) ≥ −(λa1 + c2)‖f‖2. (4.1.32)

Similarly, for the last term in (4.1.28),

−2
(
(λ− c)f, bf ′) =

∫

R

(
b(x)(λ − c(x)

)′
f2(x)dx. (4.1.33)

If
b1 = sup

x
|b′(x)|, c2 = sup

x

∣∣(b(x)c(x)
)′′∣∣,

then
−2
(
(λ− c)f, bf ′) ≥ −(λb1 + c3)‖f‖2. (4.1.34)

We now combine (4.1.29), (4.1.32), and (4.1.34), and introduce new constants

A = c0 + (a1 + b1)/2, B
2 = max(A2 + c1 + c2 − c20, 0).

The result is

‖λf − (af ′′ + bf ′ + cf)‖2 ≥
(
λ2 − (2c0 + a1 + b1)λ+ c20 − c1 − c1

)
‖f‖2

≥
(
(λ−A)2 −B2

)
‖f‖2 ≥

(
λ− (A+B)

)2‖f‖2,

if λ > A+B. Then (4.1.27) follows with λ0 = A+B.

This concludes the proof of Proposition 4.1.16.

Exercise 4.1.17 (A). In the setting of Proposition 4.1.16 find
(a) the minimal smoothness conditions on a, b, c for the operator to satisfy
conditions of Theorem 4.1.15;
(b) a condition on a, b, c that would ensure λ0 < 0 in (4.1.20).
Hint. (a) Two continuous bounded derivatives for a and c and one continuous

bounded derivative on b will work. (b) For example, a = 1, b = 0, c = −1 will give

λ0 = −1.

For two more examples of verifying (4.1.23) for certain classes of partial dif-
ferential operators see Evans [45, Section 7.4.3]. Keep in mind that sometimes
construction of the semigroup follows the construction and analysis of a varia-
tional solution, and the properties of the solution are used to verify conditions
of Theorem 4.1.15.

To finish the section, let us summarize the four methods to construct the so-
lution operator for equation ut = auxx + bux + c :
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The explicit formula: available when a, b, c do not depend on x.
The method of continuity: requires a priori bound (4.1.13) and a separate
analysis of the case a = 1, b = c = 0, gives variational solution in the Hilbert
space IH from (4.1.17).
The Galerkin approximation: requires a priori bound (4.1.13), gives vari-
ational solution in the Hilbert space IH from (4.1.17), suggests a way to com-
pute the solution numerically. There is no need to consider special cases, but
there is a fair amount of work while passing to the limit.
The semigroup method: works best for time-independent coefficients, re-
quires (4.1.27) instead of (4.1.13), gives a mild solution in C

(
(0, T );L2(R)

)

provided f ∈ L1

(
(0, T );L2(R)

)
.

4.1.4 Well-Posedness of Abstract Equations

The objective of this section is to present the theorems about existence,
uniqueness, and continuous dependence on the input for variational solutions
of linear elliptic, hyperbolic, and parabolic equations in Hilbert spaces. We
will work in the normal triple (V,H, V ′) of Hilbert space and denote by [·, ·]
the duality between V and V ′ relative to the inner product in H .

Theorem 4.1.18 (Solvability of elliptic equations). Let (V,H, V ′) be
a normal triple of Hilbert spaces and let A : V → V ′ be a bounded linear
operator with the following property: there exists a positive number cA such
that, for all v ∈ V , [Av, v] ≥ cA‖v‖2

V . Then, for every f ∈ V ′, there exists a
unique u ∈ V such that the equality Au = f holds in V ′. In addition,

‖u‖V ≤ 1

cA
‖f‖V ′ . (4.1.35)

Proof. Recall that [·, ·] is the duality between V ′ and V relative to the in-
ner product in H . By assumption, the mapping B : V × V → R defined by
B(u, v) = [Au, v] satisfies the conditions of the Lax-Milgram theorem (Theo-
rem 3.1.23 on page 79). Since Au = f is equivalent to [Au, v] = [f, v] = B(u, v)
for all v ∈ V , and, in the setting of the normal triple, the spaces V and V ′

are duals of each other, existence and uniqueness of u follow. Next, if Au = f ,
then ‖f‖V ′ ‖u‖V ≥ [f, u] = [Au, u] ≥ cA‖u‖2

V , and (4.1.35) follows.

This concludes the proof of Theorem 4.1.18.

To discuss hyperbolic and parabolic equations, we start with a technical def-
inition related to time-dependent operators.

Definition 4.1.19. Let X,Y be separable Banach spaces and let

A={A(t), 0≤ t ≤ T }

be a family of mappings from X to Y . The family is called
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• (X,Y )-measurable if, for every x ∈ X and ℓ ∈ Y ′, the real-valued func-
tion t 7→ ℓ(A(t)x) is measurable

• (X,Y )-uniformly bounded if there exists a positive number C such that,
for all x ∈ X and all t ∈ [0, T ], ‖A(t)x‖Y ≤ C‖x‖X.

• differentiable with derivative Ȧ if there exists a family of operators Ȧ
such that, for every x ∈ X,

lim
r→0

‖
(
A(t+ r) − A(t) − rȦ(t)

)
x‖Y

r
= 0.

For more information about measurability of Banach space-valued mappings,
see Yosida [215, Section V.4].

Let (V,H, V ′) be a normal triple of Hilbert spaces, and let A = {A(t), 0 ≤
t ≤ T }, A1 = {A1(t), 0 ≤ t ≤ T }, B = {B(t), 0 ≤ t ≤ T } be families
of linear operators such that A is (V, V ′)-measurable and (V, V ′)-uniformly
bounded, A1 is (V,H)-measurable and (V,H)-uniformly bounded, and B is
(H,H)-measurable and (H,H)-uniformly bounded.

Consider the equation

ü = Au+ A1u+ Bu̇+ f, 0 < t ≤ T ; u(0) = u0, u̇(0) = v0. (4.1.36)

Definition 4.1.20 (Solution of hyperbolic equations). The variational
solution of (4.1.36) is two functions u = u(t), v = v(t) such that u ∈
L1((0, T );V ), v ∈ L1((0, T );H),

u(t) = u0 +

∫ t

0

v(s)ds in L1((0, T );H),

and

v(t) = v0 +

∫ t

0

Au(s)ds+

∫ t

0

A1u(s)ds+

∫ t

0

Bv(s)ds+

∫ t

0

f(s)ds

in L1((0, T );V ′).

Given a Banach space X , denote by H1
(
(0, T );X

)
the collection of func-

tions f ∈ L2

(
(0, T );X

)
such that f(t) = f0 +

∫ t
0 g(s)ds for some f0 ∈ X, g ∈

L2

(
(0, T );X

)
. It is a Hilbert space with norm

‖f‖2
H1((0,T );X) = ‖f0‖2

X + ‖g‖2
L2((0,T );X). (4.1.37)

Theorem 4.1.21 (Solvability of hyperbolic equations). Assume that
(i) [Au, v] = [u,Av] for all u, v ∈ V , (ii) there exist a positive number cA and
a real number M such that, for all u ∈ V and all t ∈ [0, T ],

[Au, u] + cA‖u‖2
V ≤M‖u‖2

H,
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and (iii) the family of operators A is differentiable and the derivative Ȧ is
(V, V ′)-measurable and (V, V ′)-uniformly bounded.

Then, for every u(0) = u0 ∈ V , u̇(0) = v0 ∈ H, and f = f1 + f2 with f1 ∈
L1

(
(0, T );H

)
, f2 ∈ H1

(
(0, T );V ′), equation (4.1.36) has a unique variational

solution. Moreover, u ∈ C
(
(0, T );V

)
, v ∈ C

(
(0, T );H

)
, and

sup
0<t<T

‖u(t)‖2
V + sup

0<t<T
‖v(t)‖2

H ≤ C(T )
(
‖u0‖2

V + ‖v0‖2
H

+ ‖f1‖2
L1((0,T );H) + ‖f2‖2

H1((0,T );V ′)

)
.

(4.1.38)

Proof. This is left to the reader as Problems 4.1.4 and 4.1.5.

Finally, we present the result for parabolic equations. Let (V,H, V ′) be a nor-
mal triple of Hilbert spaces and let A = {A(t), 0 ≤ t ≤ T } be a family of
(V, V ′)-measurable and (V, V ′)-uniformly bounded linear operators (see Defi-
nition 4.1.19). Consider the equation

u̇ = Au+ f, 0 < t ≤ T, u(0) = u0. (4.1.39)

Definition 4.1.22 (Solution of parabolic equations). The variational so-
lution of (4.1.39) is the function u = u(t) such that u ∈ L1((0, T );V ) and

u(t) = u0 +

∫ t

0

Au(s)ds+

∫ t

0

f(s)ds in L1((0, T );V ′).

Theorem 4.1.23 (Solvability of parabolic equations). Assume that
there exist a positive number cA and a real number M such that, for all u ∈ V
and all t ∈ [0, T ],

[Au, u] + cA‖u‖2
V ≤M‖u‖2

H.

Then, for every u(0) = u0 ∈ H and f ∈ L2

(
(0, T );V ′) equation (4.1.39)

has a unique variational solution. Moreover, u ∈ L2

(
(0, T );V

)⋂ C
(
(0, T );H

)

and

∫ T

0

‖u(t)‖2
V dt+ sup

0<t<T
‖u(t)‖2

H ≤ C(T )
(
‖u0‖2

H + ‖f‖2
L2((0,T );V ′)

)
. (4.1.40)

Proof. This is left to the reader as Problem 4.1.7.

4.1.5 Problems

Problem 4.1.1 provides some general conditions for global existence and
uniqueness of strong solutions for SODEs. Problem 4.1.2 builds on the ideas
from Example 4.1.4 on page 140. In particular, the problem introduces the
Poincaré inequality and explains why the operator −∆ in a smooth bounded
domain with zero boundary conditions is an elliptic operator in the sense
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of Definition 4.1.2 on page 140. Problems 4.1.4, 4.1.5, and 4.1.6 outline the
proof of Theorem 4.1.21. Problem 4.1.7 outlines the proof of Theorem 4.1.23.
Problems 4.1.8 and 4.1.9 invite the reader to take a critical look at Theorems
4.1.21 and 4.1.23. Problem 4.1.10 presents three concrete partial differential
operators that often appear in elliptic, hyperbolic, and parabolic equations.

Problem 4.1.1. Consider stochastic ordinary differential equation

dX(t) = b(t,X(t))dt+σ(t,X(t))dw(t), 0 < t ≤ T, X(0) = x0 ∈ R
d, (4.1.41)

where b : [0,+∞) × R
d → R

d, σ : [0,+∞) × R
d → R

d×m are non-random
measurable functions and w is a standard m-dimensional Brownian motion.
Define the d × d matrix a = a(t, x) by aij(t, x) =

∑m
k=1 σik(t, x)σjk(t, x).

Recall that the generator associated with equation (4.1.41) is the partial
differential operator

LX =
1

2

d∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑

i=1

bi(t, x)
∂

∂xi
. (4.1.42)

We say that equation (4.1.41) is globally well posed if, for every non-
random initial condition x0 ∈ R

d and every T > 0, equation (4.1.41) has a
unique probabilistically strong solution.

Below are two sufficient conditions for the equation to be globally well
posed.

(a) Assume that the functions b and σ do not depend on t and are locally
Lipschitz continuous in x, that is, for every compact subset K of R

d, there
exists a number C > 0 such that, for all x, y ∈ K, i, j = 1, . . . ,d,

|bi(x) − bi(y)| + |σij(x) − σij(y)| ≤ C|x − y|.

Show that if there exist a twice continuously differentiable real-valued function
F = F (x) and a real number c such that lim|x|→∞ F (x) = +∞ and, for

all x ∈ R
d, LXF (x) ≤ cF (x), then equation (4.1.41) is globally well posed.

Moreover, for every real-valued function f = f(x) satisfying |f(x)| ≤ F (x)+A
for some A ∈ R, we have Ef(X(t)) < ∞ for all t ≥ 0 and all non-random
initial conditions x0. In addition, if f is continuous and if

sup
x∈Rd

|f(x)|p
F (x) +A

<∞

for some p > 1, then the function v(t, x) = E
(
f(X(t))|X(0) = x

)
is continuous

in x for every t ≥ 0.

(b) Assume that

1. For each t ∈ [0, T ] and all i, j, the functions bi(t, x) and σij(t, x) are
continuous in x;
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2. ∫ T

0

|b(t, x)|dt <∞ for all x ∈ R
d; (4.1.43)

3. For every R > 0 there exists a measurable in t function K = K(t, R) such
that ∫ T

0

K(t, R)dt <∞

and, for all |x| < R, |y| < R, we have

2
d∑

i=1

(xi − yi)(bi(t, x) − bi(t, y)) +
d∑

i=1

m∑

j=1

|σij(t, x) − σij(t, y)|2

≤ K(t, R)|x− y|2;
(4.1.44)

4. For all x ∈ R
d and almost all t ∈ [0, T ] we have

2

d∑

i=1

xibi(t, x) +

d∑

i=1

m∑

j=1

|σij(t, x)|2 ≤ K(t, 1)(1 + |x|2). (4.1.45)

Show that equation (4.1.41) is globally well posed.

Problem 4.1.2. Let G be a bounded domain in R
d with a smooth bound-

ary ∂G. Denote by C∞
0 (G) the collection of smooth functions with compact

support in G.
(a) Show that there exists a positive number Cπ depending only on the

domain G, such that, for all u ∈ C∞
0 (G),

‖u‖2
L2(G) ≤ Cπ‖∇u‖2

L2(G), (4.1.46)

where

‖∇u‖2
L2(G) =

d∑

i=1

∫

G

(
∂u

∂xi

)2

dx.

Show that one can take Cπ = 1/λ1, where λ1 > 0 is the first eigenvalue of the
operator −∆ in G with zero boundary conditions.

A comment. The French mathematician Jules Henri Poincaré (1854–
1912) first studied inequalities of the type (4.1.46) in his 1890 paper on the
eigenvalues of the Laplace operator. Later, in the 1930’s, the German (later,
American) mathematician Kurt Otto Friedrichs (1901–1982) fully in-
corporated such inequalities in the theory of partial differential equations.
Accordingly, inequality (4.1.46) is known as the Poincaré inequality (or
sometimes, as the Poicaré-Friedrichs inequality — see Zeidler [217, Section
18.9]). We call the constant Cπ in (4.1.46) the Poincaré constant for the
domain G (and, similar to the notation of the fundamental group, use the
subscript π in honor of Poincaré).
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(b) [Problem 4.1.2 continues.] Let H = L2(G) and let V = H1
0 (G) be the

closure of C∞
0 (G) with respect to the norm

‖u‖V =
(
‖u‖2

H + ‖∇u‖2
H

)1/2

Define V ′ = H−1(G) as the dual of V relative to the inner product in H .
Verify that A = −∆ with zero boundary conditions is an elliptic operator
acting in the normal triple (V,H, V ′) and find the corresponding constant cA
in (4.1.10).

(c) Repeat part (b) in the normal triple (H1, H0, H−1), where Hr =
Hr(G), r ∈ R, are the Sobolev spaces on G from Example 3.1.29 on page
81. What differences do you notice?

(d) For each of the following three operators, find sufficient conditions on
the functions aij , bi, b̃i, c to guarantee that the corresponding operator is
elliptic in the normal triple (H1

0 (G), L2(G), H−1(G)) from part (a):

A1u = −
d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

d∑

i=1

bi(x)
∂u

∂xi
+ c(x)u;

A2u = −
d∑

i=1

∂

∂xi




d∑

j=1

aij(x)
∂u

∂xj
+ b̃i(x)u


+

d∑

i=1

bi(x)
∂u

∂xi
+ c(x)u;

A3u = −
d∑

i,j=1

∂2

∂xi∂xj

(
aij(x)u

)
−

d∑

i=1

∂

∂xi

(
bi(x)u

)
+ c(x)u.

(4.1.47)

Problem 4.1.3. Hermite polynomials (2.3.37) on page 57 are constructed
using the standard normal distribution. A popular alternative construction is
as follows:

e2xt−t
2

=

∞∑

k=1

H̄n(x)

n!
tn, (4.1.48)

and H̄n, n ≥ 0, are also called Hermite polynomials.
(a) Comparing (4.1.48) and (2.3.37) on page 57, verify that

Hn(x) = 2−n/2 H̄n

(
x/

√
2
)
.

(b) Similar to Problem 2.3.10 on page 65, verify that

H̄n(x) = (−1)n ex
2 dn

dxn
e−x

2

and ∫ +∞

−∞
H̄n(x) H̄m(x)e−x

2

dx =

{
0, if m 6= n,

2nn!
√
π, if m = n.

(4.1.49)
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(c) Verify that the collection of Hermite functions {wn, n ≥ 1} defined by

wk+1(x) =
1√

2kk!
√
π

H̄k(x)e
−x2/2, k ≥ 0, (4.1.50)

is an orthonormal basis in L2(R) and is dense in every Sobolev space
Hr(R), r ∈ R.
(d) Verify that wn is an eigenfunction of the operator Λ = −d2/dx2 + x2 + 1:

−w′′
n(x) + (x2 + 1)wn(x) = 2nwn(x), n ≥ 1. (4.1.51)

(e) Verify that wn is an eigenfunction of the Fourier transform:

1√
2π

∫

R

wn(x)e
−i xydx = (−i)n−1wn(y). (4.1.52)

For n = 1, this is the same as (1.1.12) on page 6.
Two Comments.
(a) The corresponding orthonormal basis in L2(R

d) is wn, n = (n1, . . . , nd),
nk ≥ 1:

wn(x) =
d∏

k=1

wnk
(xk).

In place of (4.1.51) and (4.1.52) we get

−∆wn + (|x|2 + d)wn = 2|n|wn, |n| =

d∑

k=1

nk,

and
1

(2π)d/2

∫

Rd

wn(x)e−i xydx = (−i)|n|−d wn(y).

(b) Given σ > 0, one can define

Hn(x;σ) = (−1)n ex
2/(2σ2) d

n

dxn
e−x

2/(2σ2), n ≥ 0,

and the corresponding orthonormal basis in L2(R)

wk+1(x;σ) = C(k, σ)Hk(x;σ) e−x
2/(4σ2), k ≥ 0.

Two particular choices of σ are especially popular: (a) σ2 = 1/2, because of
the connection with the standard Gaussian random variables, and (b) σ2 = 1,
because of the elegant equalities (4.1.51) and (4.1.52) satisfied by the Hermite
functions.

Problem 4.1.4. Let (V,H, V ′) be a normal triple of Hilbert spaces. Consider
a bounded linear operator A : V → V ′ and assume that (i) [Au, v] = [u,Av]
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for all u, v ∈ V , (ii) there exist a positive number cA and a real number M
such that, for all u ∈ V , [Au, u] + cA‖u‖2

V ≤M‖u‖2
H.

Consider the equation ü(t) = Au(t) + f(t), 0 < t ≤ T , u(0) = u0, u̇(0) =
v0.
(a) Show that the equation is hyperbolic in the sense of Definition 4.1.3 on
page 140.
(b) Derive the following a priori estimate for the solution of the equation:

sup
0<t<T

‖u(t)‖2
V + sup

0<t<T
‖v(t)‖2

H

≤ C(T )

(
‖u0‖2

V +‖v0‖2
H+

(∫ T

0

‖f(t)‖Hdt
)2
)
.

(4.1.53)

(c) Use (4.1.53) and Galerkin approximation to construct a solution operator
for the equation.
(d) Under an additional assumption that M = 0 in (ii) (that is, [Au, u] +
cA‖u‖2

V ≤ 0), construct a mild solution for the equation using the semi-group
method by showing that the operator Ā : (u, v) 7→ (v,Au) generates a strongly
continuous semigroup on V ×H .
(e) Compare the properties of the solutions constructed in parts (c) and (d).

Problem 4.1.5. Let (V,H, V ′) be a normal triple of Hilbert space and let
A = {A(t), 0 ≤ t ≤ T }, A1 = {A1(t), 0 ≤ t ≤ T }, B = {B(t), 0 ≤ t ≤ T }
be families of linear operators such that A is (V, V ′)-measurable and (V, V ′)-
uniformly bounded, A1 is (V,H)-measurable and (V,H)-uniformly bounded,
and B is (H,H)-measurable and (H,H)-uniformly bounded (see Definition
4.1.19).

Assume that

1. [Au, v] = [u,Av] for all u, v ∈ V and all t ∈ [0, T ];
2. There exist a positive number cA and a real number M such that, for all
u ∈ V and all t ∈ [0, T ],

[Au, u] + cA‖u‖2
V ≤M‖u‖2

H;

3. As a function of t, A is differentiable and the derivative is (V, V ′)-
measurable and (V, V ′)-uniformly bounded.

Consider the hyperbolic equation

ü = Au+ A1u+ Bu̇+ f. (4.1.54)

(a) Show that the a priori estimate (4.1.53) holds.

(b) Verify that
( ∫ T

0
‖f(t)‖Hdt

)2
on the right-hand-side of (4.1.53) can be re-

placed with ‖f‖2
H1((0,T );V ′) (see (4.1.37)).

(c) Complete the proof of Theorem 4.1.21, at least the existence part of it.
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Problem 4.1.6. (a) Explain why a priori estimate (4.1.53) is not enough to
claim uniqueness of the solution of the hyperbolic equation.
(b) Prove uniqueness of solution for the equation in Problem 4.1.5.

Problem 4.1.7. Let (V,H, V ′) be a normal triple of Hilbert spaces and let
A = {A(t), 0 ≤ t ≤ T } be a family of (V, V ′)-measurable and (V, V ′)-uniformly
bounded linear operators (see Definition 4.1.19). Assume that there exist a
positive number cA and a real number M such that, for all u ∈ V and all
t ∈ [0, T ],

[Au, u] + cA‖u‖2
V ≤M‖u‖2

H.

Consider the parabolic equation

u̇ = Au+ f, 0 < t ≤ T, u(0) = u0.

(a) Prove Theorem 4.1.23 by deriving (4.1.40) as an a priori bound and then
constructing the solution using the Galerkin approximation.
(b) Assume that A does not depend on time. Show that A is a generator of a
strongly continuous semigroup in H .

Problem 4.1.8. Consider the heat equation ut = uxx, 0 < t ≤ 1, x ∈ R,
with initial condition

u0(x) =

{
1, if |x| ≤ 1,

0, if |x| > 1,

in the normal triple (H1(R), L2(R), H−1(R)). By Theorem 4.1.23, the solution
satisfies

u ∈ L2

(
(0, 1);H1(R)

)⋂
C
(
(0, 1);L2(R)

)
.

In particular, for almost all t, u(t, ·) ∈ H1(R). On the other hand, we know
from the explicit formula for the solution that, for all t > 0, u(t, ·) ∈ S(R).
Does it mean that, in exchange for generality in Theorem 4.1.23, we are getting
a very weak result?

Problem 4.1.9. Compare and contrast Theorems 4.1.21 and 4.1.23 in terms
of assumptions and conclusions. For example, apply the suitable theorem to
equations utt = a(t, x)uxx and ut = a(t, x)uxx.

Problem 4.1.10. Consider the operators (4.1.47) either in R
d or in a smooth

bounded domain with zero boundary conditions. In each of the six cases (three
operators, each in two different regions), find conditions on the coefficients so
that
(a) The corresponding equation ut + Au = 0 is parabolic.
(b) The the corresponding operator −A generates a strongly continuous semi-
group on L2(R

d) or L2(G).
(c) The solution of the equation ut + Au = 0 can be constructed using each
of the following three methods: continuity, Galerkin, semigroup.
(d) We get λ0 < 0 in (4.1.20).
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4.2 Stochastic Elliptic Equations

4.2.1 Existence and Uniqueness of Solution

Of the three main types of equations (elliptic, hyperbolic, parabolic), the
stochastic elliptic equations seem to be the least studied. In fact, to the best
of our knowledge, the book by Rozanov [185] provides the only systematic
treatment of stochastic elliptic equations.

In the abstract Hilbert space setting, existence of the solution of a stochas-
tic elliptic equation with additive noise is provided by Definition 3.2.19 on
page 101. Let us recall the setting: if B is a zero-mean generalized Gaussian
field over a Hilbert space H and A : X → Y is a bounded linear operator,
then X = AB is a zero-mean generalized Gaussian field over Y such that
X(y) = B(A∗y); recall that A∗ is the adjoint operator acting from Y to H in
such a way that (Ah, y)Y = (h,A∗y)H .

Definition 4.2.1. Let B is a zero-mean generalized Gaussian field over a
Hilbert space H and let B : Y → H be a bounded linear operator. Then a
zero-mean generalized Gaussian random field X over Y is a solution of the
equation

BX = B. (4.2.1)

if, for every h ∈ H, defined by

X(B∗h) = B(h).

Then we have the following result.

Theorem 4.2.2. Let B is a zero-mean generalized Gaussian field over a
Hilbert space H and let B : Y → H be a bounded linear bijection. Then a
zero-mean generalized Gaussian random field X over Y defined by

X(y) = B
(
(B−1)∗y

)

is the unique solution of the equation (4.2.1).

Proof. This follows from Definition 4.2.1 and the equality (B−1)∗ = (B∗)−1.

Example 4.2.3 (Euclidean free field). The solution of the equation

√
1 − ∆ u = Ẇ

in R
d is known as the Euclidean free field, or sometimes also as the

Markov free field. By Theorem 4.2.2, with B =
√

1 − ∆ := Λ, H =
H0(Rd) = L2(R

d), Y = H1(Rd) (see Example 3.1.9, page 73), we conclude
that

u(f) = Ẇ ((Λ−1)∗f); E
(
u(f)u(g)

)
=
(
(Λ−1)∗f, (Λ−1)∗g

)
0
.
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Note that (Λ−1)∗ is acting from H1(Rd) to H0(Rd) and, for f ∈ H1(Rd),
g ∈ H0(Rd),

((Λ−1)∗f, g)0 = (f, Λ−1g)1 = (Λf,ΛΛ−1g)0 = (Λf, g)0,

that is, (Λ−1)∗ = Λ (for more explanations see (3.1.12) on page 74, as well as
Exercise 3.1.35 on page 83). Therefore, for f, g ∈ H1(Rd),

E
(
u(f)u(g)

)
= (Λf,Λg)0 = (f, g)1,

that is, the Euclidean free field u can be interpreted as a Gaussian white noise
on H1(Rd).

This concludes Example 4.2.3.

A complete theory of stochastic elliptic regularity, similar to the determin-
istic equations, has not been developed even for Gaussian noise. The main
difficulties lie in

1. Description of the noise;
2. Description of the boundary values of the solution.

There are several ways to describe a Gaussian field X in G ⊆ R
d, for

example:

1. Using the homogenous field construction (see Problem 3.2.7, page 118).
This description works only in the whole space R

d.
2. Using a Fourier series

X(f) =
∑

k≥1

qkfkξk, (4.2.2)

where fk are the Fourier coefficients of f in some orthonormal basis in
L2(G), G ⊆ R

d.
3. Using a correlation kernel

E

(
X(f)X(g)

)
=

∫∫

G×G

f(x)g(y)q(x, y)dxdy, (4.2.3)

or even more generally, a correlation measure:

E

(
X(f)X(g)

)
=

∫∫

G×G

f(x)g(y)µ(dx, dy). (4.2.4)

For a regular field X(f) =
∫
G
X(x)f(x)dx, one can also use the correlation

function E
(
X(x)X(y)

)
.

While we discuss some of these representations and connections between
them in Section 3.2.1 (see also Blömker [11]), many of the questions remain
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open. For example, there is in general no known way to connect the numbers
qk in (4.2.2) and the function q in (4.2.3).

As far as boundary conditions, in this book we mostly restrict ourselves
to the zero Dirichlet conditions; the study of more general boundary value
problems is one of the main objectives of [185].

Accordingly, most of the information about square-integrable solutions of
stochastic elliptic equations is contained in specific examples. We will discuss
one example in the following section; more examples are among the problems.

4.2.2 An Example and further directions

In this section we look at the elliptic equation with Gaussian white noise as
the free term:

Au(x) = Ẇ (x), x ∈ G, (4.2.5)

where G ⊂ R
d is a bounded domain with sufficiently regular boundary or a

smooth closed manifold (without boundary), and A is a second-order partial
differential operator on G. To emphasize ideas over technicalities, we are not
making precise assumptions about the operator A and the set G beyond the
following:

1. The Sobolev spaces Hr(G) and the Hölder spaces Cn,α(G) are defined on
G;

2. The deterministic equation Av = f is well-posed in these spaces.

The norm ‖·‖r inHr(G) is defined using the Fourier series in the eigenfunction
of the Laplace operator on G; see Example 3.1.29 on page 81.

We show that, for the solution u of (4.2.5), the following holds:

1. E‖u‖2
γ <∞ if and only if γ < 2 − d/2.

2. If d = 1, 2 or 3, then u is a regular field on L2(G), that is, E‖u‖2
L2(G) <∞

and

u(f) =

∫

G

u(x)f(x)dx, f ∈ L2(G). (4.2.6)

3. If u is a regular field, then the function u = u(x) from (4.2.6) has, with
probability one, the following regularity:
• u is almost C3/2(G) if d = 1 (the derivative of u is almost C1/2(G));
• u is almost C1(G) if d = 2;
• u is almost C3/8(G) if d = 3.

The first step in the study of equation (4.2.5) is to establish the Sobolev
space regularity of the Gaussian white noise on L2(G).

Proposition 4.2.4. Let Ẇ be a Gaussian white noise on L2(G) and G ⊂ R
d

is a bounded domain with sufficiently regular boundary or a smooth closed
manifold. Then

Ẇ ∈ L2

(
Ω;H−γ(G)

)
if and only if γ >

d

2
. (4.2.7)
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Proof. If G is a bounded domain with sufficiently regular boundary or a
smooth compact manifold, then there is an orthonormal basis hk, k ≥ 1,
in L2(G) consisting of the eigenfunctions of the Laplace operator on G (with
zero boundary conditions if there is a boundary):

∆hk = −λ2
khk, k ≥ 1,

and λ2
k > 0. Then

Ẇ =
∑

k≥1

hk ξk,

ξk are iid standard Gaussian random variables, and

E‖Ẇ‖2
−γ =

∑

k≥1

λ−2γ
k ; (4.2.8)

see Example 3.1.29 on page 81. It is known that

0 < lim
k→∞

λk
k1/d

<∞, (4.2.9)

see, for example, Safarov and Vassiliev [188, Section 1.2]. Then, with (4.2.9)
and (4.2.9) in mind, the series in (4.2.8) converges if and only if 2γ/d > 1,
and (4.2.7) follows.

This completes the proof of Proposition 4.2.4.

Now we are ready to establish the Sobolev space regularity of the solution of
(4.2.5).

Theorem 4.2.5. Let A be a second-order partial differential operator on G ⊂
R

d. Suppose that, for some γ > d/2 and every f ∈ Hγ(G), the equation
Av = f has a unique solution v ∈ Hγ+2(G). Then equation Au = Ẇ has a
unique solution

u ∈ L2

(
Ω;H−γ+2(G)

)
.

In particular, E‖u‖2
L2(G) <∞ if and only if d = 1, 2, or 3.

Proof. The result follows directly from the assumptions and the Sobolev space
regularity of Ẇ , established in Proposition 4.2.4. Note that E‖u‖2

L2(G) < ∞
means −γ + 2 ≥ 0 or γ ≤ 2, which, given γ > d/2, is possible if and only if
d < 4.

This completes the proof of Theorem 4.2.5.

Finally, we establish the Hölder continuity of the solution in dimensions d =
1, 2 and 3. Recall that both Ẇ (f) and

∫
G
f(x)dW (x) can denote the action

of Ẇ on f ∈ L2(G), and we have

E|Ẇ (f)|2 =

∫

G

f2(x)dx. (4.2.10)
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Theorem 4.2.6. In addition to conditions of Theorem 4.2.5 assume that the
solution of the equation Au = Ẇ is a regular Gaussian field, that is, (4.2.6)
holds. Then, possibly with additional regularity assumptions of the coefficients
of A, the function u = u(x) in (4.2.6) has the following regularity with prob-
ability one:

d = 1 u is continuously differentiable and u′ is Hölder continuous of every
order less than 1/2;

d = 2 u is Hölder continuous of every order less than 1;
d = 3 u is Hölder continuous of every order less than 3/8;

Proof. Unlike the result on the Sobolev space regularity, this theorem cannot
be proved by citing a corresponding deterministic result because Ẇ has no
Hölder regularity. The Sobolev embedding theorems could have helped if we
had the results of Theorem 4.2.5 in Hr

p(G) for all p ≥ 2 and not just for p = 2.
We are not aware of a complete proof of the result as stated in the theorem.

Below, we follow Buckdahn and Pardoux [16, Lemma 2.1] and give the proof
when A = ∆ Problem 4.2.8 on page 172 provides the main ingredient for the
general proof.

Consider the equation

−∆u(x) = Ẇ (x)

in a bounded domain G with zero boundary conditions.
If d = 1, then, with G = (0, 1), the solution is

u(x) = x

∫ 1

0

w(t)dt−
∫ x

0

w(t)dt,

where w is a standard Brownian motion. This can be verified by direct com-
putation; see also (2.3.34) on page 56. Then the first derivative of the solution

u′(x) =
∫ 1

0 w(t)dt − w(x) has the same regularity as the standard Brownian
motion, that is, Hölder continuous of every order less than 1/2.

If d = 2, 3, then the solution is

u(x) = Ẇ
(
K(x, ·)

)
=

∫

G

K(x, z)dW (z), (4.2.11)

where K is Green’s function of the (negative) Laplacian −∆ in G with zero
boundary conditions.

For r > 0, define

Kd(r) =





1

2π
ln r, if d = 2,

1

4π r
, if d = 3,

(4.2.12)

and
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Ud(x) = Ẇ
(
Kd(|x − ·|)

)
=

∫

G

Kd(|x− z|)dW (z). (4.2.13)

It is known (see, for example John [93, Section 4.3]) that the function K
from (4.2.11) has a representation

K(x, y) = Kd(|x− y|) − K̄(x, y), (4.2.14)

where the function K̄(x, y) is smooth in G × G and, for each fixed y ∈ G,
satisfies

∆K̄(x, y) = 0, x ∈ G; K̄(x, y)|x∈∂G = Kd(|x− y|). (4.2.15)

Then, with (4.2.13) in mind, (4.2.11) becomes

u(x) = Ud(x) −
∫

G

K̄(x, z)dW (z). (4.2.16)

Since the function K̄ has no singularities in G, the regularity of u is determined
by the regularity of Ud.

Note that Ud is a Gaussian field. By Corollary 2.1.8 on page 26, the proof
of the theorem will be complete once we verify that, for every sufficiently small
positive δ, for example, δ ∈ (0, 1/8), there exists a number Cd, depending only
on δ and the domain G, such that, for all x, y ∈ G,

E|Ud(x) − Ud(y)|2 ≤
{
C2|x− y|2−δ, if d = 2,

C3|x− y|3/4−δ, if d = 3.
(4.2.17)

The proof of (4.2.17) is by direct computation. First, we note that, by (4.2.10)
and (4.2.13),

E|Ud(x) − Ud(y)|2 = E

∣∣∣Ẇ
(
Kd(|x− ·|) −Kd(|y − ·|)

)∣∣∣
2

=

∫

G

∣∣∣Kd(|x− z|) −Kd(|y − z|)
∣∣∣
2

dz;
(4.2.18)

then we use the explicit expression for Kd to estimate the right-hand side of
(4.2.18).

Here is the general approach to estimating expressions of this type. We
start with a little calculus exercise. Let f = f(t), t > 0, be a continuously
differentiable function. Then

d

dθ
f
(
tθ + s(1 − θ)

)
= (t− s)f ′(tθ + s(1 − θ)

)
,

or, after integrating both sides with respect to θ from 0 to 1,

f(t) − f(s) = (t− s)

∫ t

0

f ′(tθ + s(1 − θ)
)
dθ.
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Next, assume that the function |f ′(t)| is convex:

|f ′(tθ + s(1 − θ)
)
| ≤ θ|f ′(t)| + (1 − θ)|f ′(s)|;

a sufficient condition for this convexity is d2|f ′(t)|/dt2 > 0. Then, since∫ 1

0
θdθ =

∫ 1

0
(1 − θ)dθ = 1/2,

|f(t) − f(s)| ≤ |t− s|
(
|f ′(t)| + |f ′(s)|

)
.

Therefore, for every γ ∈ (0, 1),

|f(t) − f(s)| = |f(t) − f(s)|γ |f(t) − f(s)|1−γ

≤ |t− s|γ |f(t) − f(s)|1−γ
(
|f ′(t)| + |f ′(s)|

)γ
.

(4.2.19)

We now use (4.2.19) with

• f(t) = Kd(t); note that |K ′
d(t)| is convex for both d = 2 and d = 3;

• t = |x− z|, s = |y − z|; note that |t− s| =
∣∣|x− z| − |y − z|

∣∣ ≤ |x− y|.
If d = 2, then |K ′

d(r)| = 1/(2πr). We take

γ = 1 − δ

2

to find from (4.2.18) and (4.2.19) that (4.2.17) holds:

(2π)2 E|Ud(x) − Ud(y)|2

≤ |x− y|2−δ
∫

G

∣∣ ln |x− z| − ln |y − z|
∣∣δ
(

1

|x− z| +
1

|y − z|

)2−δ
dz

≤ C̄2

(∫

G

∣∣ ln |x− z| − ln |y − z|
∣∣qδ dz

)1/q

(4.2.20)

×
(∫

G

dz

|x− z|(2−δ)p +

∫

G

dz

|y − z|(2−δ)p
)1/p

≤ C2|x− y|2−δ, (4.2.21)

where we get (4.2.20) by applying the Hölder inequality with 1 < p < 2/(2−δ)
and q = (p − 1)/p, followed by the inequality (a + b)(2−δ)p ≤ C̄2(a

(2−δ)p +
b(2−δ)p); then (4.2.21) is a consequence of integrability at zero of the functions
ln |x| and |x|−α for α < 2 and x ∈ R

2.
If d = 3, then |K ′

d(r)| = 1/(4πr2). We take

γ =
3

8
− δ

2

to find from (4.2.18) and (4.2.19) that (4.2.17) holds:
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(4π)2 E|Ud(x) − Ud(y)|2

≤ |x− y|(3/4)−δ
∫

G

∣∣∣∣
1

|x− z| −
1

|y − z|

∣∣∣∣
(5/4)+δ (

1

|x− z|2 +
1

|y − z|2
)(3/4)−δ

dz

≤ C̄3

(∫

G

dz

|x− z|(5/2)+2δ
+

∫

G

dz

|y − z|(5/2)+2δ

)1/2

(4.2.22)

×
(∫

G

dz

|x− z|3−4δ
+

∫

G

dz

|y − z|3−4δ

)1/2

≤ C3|x− y|(3/4)−δ, (4.2.23)

where we get (4.2.22) by applying the Cauchy-Schwartz inequality to the
integral, followed by two instances of (a + b)n ≤ c(n)(an + bn), n > 1; then
(4.2.23) is a consequence of integrability at zero of the function |x|−α for α < 3
and x ∈ R

3.

This concludes the proof of Theorem 4.2.6.

Corollary 4.2.7. The solution of the equation

−∆u = Ẇ in G ⊂ R
d, d = 2, 3,

with zero boundary conditions, has the following probabilistic represen-

tation:

u(x) = Ud(x) − E

(
Ud

(
wx(τx)

)∣∣FW
)
, (4.2.24)

where

• Ud is the function defined by (4.2.13);
• wx = wx(t), t ≥ 0, x ∈ G, is a family of standard d-dimensional Brownian

motions independent of Ẇ and satisfying wx(0) = x;
• τx = inf{t > 0 : wx(t) /∈ G} is the first exit time of wx from G;
• FW is the sigma-algebra generated by Ẇ .

Proof. This follows from (4.2.16) and the probabilistic representation of the
solution of (4.2.15)

K̄(x, y) = EKd

(
wx(τx), y

)
. (4.2.25)

Exercise 4.2.8 (B). Formulas (4.2.16) and (4.2.25) hold for all d ≥ 2, with
Kd(t) = cdt

2−d, where cd is a number depending only on d. What goes wrong
if one writes (4.2.24) for d > 3? Hint. The function Kd is square-integrable at 0

if and only if (2d − 4) − (d − 1) < 1 or d < 4.

Markov property of the solution. Recall that there are three types of the
Markov property for random fields: strong, germ, and global (see pages 103–
105). All these properties are a version of conditional independence of the
values of the field inside and outside of a set given the values of the field on
the boundary of the set. Here are a few results, without proofs, about various
Markov properties for elliptic equations.
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• Walsh [209, Proposition 9.6] shows that the solution of ∆u = ∇·Ẇ in R
d,

d ≥ 3, satisfies the sharp Markov property relative to bounded open sets.
• Rozanov [185, Section III.2.2] shows that the solution of Au = Ẇ with

suitable boundary conditions has the global Markov property.
• Donati-Martin and D. Nualart [37] (see also [36]) consider the equation

∆u+ f(u) = Ẇ (4.2.26)

with zero boundary conditions in a bounded domain with sufficiently
smooth boundary in R

d, d = 1, 2, 3. They show that the solution has
the germ Markov property relative to bounded open sets if and only if
the function f has the form f(u) = au + b, a, b ∈ R; further restrictions
on a are necessary to ensure existence and uniqueness of the solution. For
another proof of this result see Nualart [166, Theorem 4.2.4]. Note that if
d = 1, 2, 3, then the solution of (4.2.26) is a regular field, making the germ
Markov property relative to bounded open sets equivalent to the global
Markov property (Iwata [88, Remark 1.25]).

To conclude this section, let us mention some other questions that can be
studied in connection with stochastic elliptic equations.
Variational formulation of the solution. If the solution is a regular field,
then a more traditional definition of the solution is possible and is the subject
of Problem 4.2.1 below.
Non-Dirichlet deterministic boundary conditions. One example is the
work by D. Nualart and Tindel [167] on elliptic equations with reflection.
Random boundary conditions. This is the subject of the book [185].
Regular solutions in dimensions d ≥ 4. A typical linear equation consid-
ered in the literature (for example, Mart́ınez and Sanz-Solé [152]), is

∆u = ẆQ,

in a bounded domain with zero boundary conditions, where ẆQ is a colored
noise on L2(G), usually described using the correlation kernel (4.2.3). Under
suitable conditions on the kernel, the solution is a regular, Hölder-continuous
random field. Analysis is similar to the proof of Theorem 4.2.6.
Nonlinear equations. If the coefficients are deterministic and noise is ad-
ditive, then many results extend from linear equations to nonlinear. In fact,
most of the papers on the subject of stochastic elliptic equations consider
equations of the type

∆u+ f(x, u) = ẆQ (4.2.27)

with a suitable (non-random) function f . Of course, the solution has to be a
regular field for the equation to make sense.
Numerical methods. Finite-difference schemes for equations of the type
(4.2.27) were studied by Gyöngy and Mart́ınez [62] and Mart́ınez and Sanz-
Solé [152].
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Equations driven by fractional noise. Instead of the Gaussian white noise
Ẇ , corresponding to the zero mean Gaussian random field W = W (x) with

covariance E
(
W (x)W (y)

)
=
∏d
i=1 min(xi, yi), xi, yi ≥ 0, one can consider

fractional Gaussian noise ẆH , corresponding to the zero mean Gaussian field
WH = WH(x) with covariance

E
(
WH(x)WH(y)

)
=

d∏

i=1

(
|xi|2Hi + |yi|2Hi − |xi − yi|2Hi , Hi ∈ (0, 1),

xi, yi ≥ 0. Sanz-Solé and Torrecilla [192] study existence, uniqueness, regu-
larity, and numerical approximation of the solution for the equation ∆u =
f
(
u(x)

)
+ ẆH(x) in a smooth bounded domain in R

d with zero boundary

conditions, when Hi ≥ 1/2 and
∑d

i=1Hi > d − 2.

4.2.3 Problems

Problem 4.2.1 is about various definitions of the variational solution for a
stochastic elliptic equation. Problems 4.2.2 outlines an alternative approach to
the study of regularity of white noise. Problem 4.2.3 shows that the Gaussian
white noise on L2(R

d) is invariant under the Fourier transform and thus has no
global Sobolev space regularity. Problem 4.2.4 provides another example of an
equation with a closed-form solution and another representation of the Lévy
Brownian motion. Problems 4.2.5, 4.2.6, and 4.2.7 are about the Euclidean free
field. Problem 4.2.8 extends the probabilistic representation of the solution in
Corollary 4.2.7 to more general equations. Problem 4.2.9 invites the reader to
investigate another class (in fact, two classes) of stochastic elliptic equations
in R

d.

Problem 4.2.1. Consider the equation Au = Ẇ with zero boundary con-
ditions in G ⊆ R

d, where A is one of the operators Ai, i = 1, 2, 3, from
(4.1.47) on page 157. Assuming that the solution u is a regular field, define a
variational solution in each case.

Problem 4.2.2. For f ∈ C∞
0 (R) define

Λf(x) = −f ′′(x) + (1 + x2)f(x)

and let H̃r be the closure of C∞
0 (R) with respect to the norm

‖f‖2
r = ‖Λr/2f‖2

L2(R).

(a) Show that

‖f‖2
r =

∑

k≥1

(2k)rf2
k

where fk =
∫

R
fk(x)wk(x)dx and wk is the Hermite function (4.1.50) on page

158, and that S(R) =
⋂
r>0 H̃

r (at the very least establish equality of sets; as
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an extra challenge, you can compare the topologies as well).
(b) Show that Ẇ , the Gaussian white noise on L2(R), is an element of

L2(Ω; H̃−r) if and only if r > 1.
(c) Extend the results to R

d, d ≥ 2.

(d) Compare and contrast the spaces H̃r with the usual Sobolev spaces
Hr(Rd).

Problem 4.2.3. Let Ẇ be a Gaussian white noise on L2(R
d).

(a) Show that the Fourier transform of Ẇ is defined as a generalized
function and is also a Gaussian white noise on L2(R

d). Conclude that Ẇ does
not belong to any Sobolev space Hγ(Rd).

(b) Show that Ẇ is locally in Hγ(Rd) for every γ < −d/2. More precisely,
let ϕ be a smooth function with compact support in R

d, and define ϕẆ as a
generalized random field over L2(R

d) such that

(ϕẆ )(f) = Ẇ (ϕf).

The objective is to show that ϕẆ ∈ Hγ(Rd) for every γ < −d/2.

Problem 4.2.4. Investigate the equation

∆u = Ẇ (4.2.28)

in G =
{
x ∈ R

d : x 6= 0
}
, with the boundary condition u(0) = 0. In

particular,
(a) Show that the solution is a regular field if d = 1, 2, 3.
(b) Show that if d = 3, the solution can be written as u(x) = σL(x), where

σ > 0 and L = L(x) is the Lévy Brownian motion on R
3 (see Exercise 2.1.10

on page 27.)
(c) Investigate the properties of the solution when d > 3.

Problem 4.2.5. For each of the following equations on R
d, d ≥ 1,

(a) Interpret the solution u as a generalized Gaussian field on a suitable
Hilbert space and compute E

(
u(f)u(g)

)
;

(b) Determine whether the solution is a regular field.

√
m2 − ∆u = Ẇ , m ≥ 0; (4.2.29)

∆u = ∇ · Ẇ , (4.2.30)

(1 − ∆)u = B, (4.2.31)

where Ẇ is a Gaussian white noise on L2(R
d), Ẇ = (Ẇ1, . . . , Ẇd), with Ẇi

independent Gaussian white noises on L2(R
d), and B is a Gaussian white

noise on H1(Rd).
A comment. The Euclidean free field can be defined as the solution

of (4.2.29) with m > 0 and d ≥ 1 (Nelson [163]), or the solution of (4.2.30)
for d ≥ 3 (Walsh [209, Proposition 9.4]. It also turns out that (4.2.30) is
essentially the same as (4.2.29) with m = 0.
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Problem 4.2.6. Show that the solution u of the equation
√

1 − ∆u = Ẇ in
R

d is a Gaussian white noise on H−1(Rd).
A comment. In Example 4.2.3 on page 161 we interpreted u as a Gaussian

white noise on H1(Rd). The reader is encouraged to think about these two
different interpretations of the same object. To some extend, something similar
happens in a normal triple (V,H, V ′) of Hilbert spaces: an element of the dual
space of V can be an element of V (when the duality is relative to the inner
product in V ), or an element of V ′ (when the duality is relative to the inner
product in H).

Problem 4.2.7. Find as many different constructions of the Euclidean free
field as possible (in this text and other references), and investigate applications
of this object in physics.

Problem 4.2.8. For d = 2, 3, let A be a partial differential operator that
is the generator of the family of diffusion processes Xy = Xy(t), y ∈ R

d,
Xy(0) = y, and let c = c(x) be a continuous non-negative function. Denote
by KA = KA(x, y) the fundamental solution of the operator −A + c in R

d,
that is, for every smooth compactly supported f , the function

U(x) = −
∫

Rd

K(x, y)f(y)dy

is a classical solution of

AU(x) − c(x)U(x) = f(x), x ∈ R
d.

Let G be a smooth bounded domain in R
d, and, for x ∈ G,

τx = inf{t > 0 : Xx(t) /∈ G}.

Let Ẇ be a Gaussian white noise on L2(G), and assume that Ẇ is independent
of all the processes Xy. Define

UA(x) =

∫

G

KA(x, y)dW (y)

and let u be the solution of

Au− cu = Ẇ in G

with zero boundary conditions. Verify the following probabilistic repre-

sentation of u:

u(x) = UA(x) − E


UA

(
Xx(τx)

)
e
−
∫ τx

0

c(Xx(t))dt
∣∣∣∣∣ F

W


 ,

where FW is the sigma-algebra generated by Ẇ .
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Problem 4.2.9. Let Ẇ be a Gaussian white noise on L2(R
d) and ∆, the

Laplace operator. Consider the equation

(m2 − ∆)γ/2u = Ẇ

for m ≥ 0 and γ ∈ R. Is the solution u ever a regular field? Can it have any
Hölder space regularity? Then answer the same questions for the solution of
the equation

(m2 + c2|x|2 − ∆)γ/2u = Ẇ , c ≥ 0.

4.3 Stochastic Hyperbolic Equations

4.3.1 Existence and Uniqueness of Solution

Given two Banach spaces X,Y , recall the following notions for the time-
dependent operators and functions:

1. (X,Y )-measurable, (X,Y )-uniformly bounded, and differentiable families
of operators: Definition 4.1.19, page 152.

2. The space H1
(
(0, T );X

)
: page 153.

Now that we consider stochastic equations, we need to modify the correspond-
ing definitions to include possible dependence on the elementary outcome. We
fix the stochastic basis (Ω,F , {Ft}t≥0,P) with the usual assumptions.

Definition 4.3.1. Let X,Y be separable Banach spaces and let

A = {A(ω, t), ω ∈ Ω, 0 ≤ t ≤ T }

be a family of mappings from X to Y . The family is called

• (X,Y )-adapted if, for every x ∈ X and ℓ ∈ Y ′, the real-valued process
t 7→ ℓ(A(t)x) is Ft-adapted;

• L∞(X,Y )-uniformly bounded if there exists a positive (non-random)
number C such that, for all x ∈ X, all t ∈ [0, T ], and all ω ∈ Ω,
‖A(t)x‖Y ≤ C‖x‖X .

Take a collection {wk, k ≥ 1} of independent standard Brownian motions
and consider the following stochastic equation:

ü = A(t)u + A1(t)u+ B(t)u̇ + f(t)

+
∑

k≥1

(
Mk(t)u+ Nk(t)u̇ + gk(t)

)
ẇk(t), 0 < t ≤ T ;

u(0) = u0, u̇(0) = v0,

(4.3.1)

in the normal triple (V,H, V ′) of Hilbert spaces. This equation is constructed
by taking the deterministic version (4.1.36) on page 153 and adding the cor-
responding stochastic term. Similar to the deterministic case, the reason for
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considering both A and A1 becomes clear during the derivation of the a priori
bound. To keep formulas from getting too congested, we will often omit the
time dependence in all operators. Recall that [v, u], v ∈ V ′, u ∈ V , denotes
the duality between V and V ′ relative to the inner product in H .

To define a square-integrable variational solution of equation (4.3.1), we
make the following assumptions:

[HP1] The families of operators A = {A(t), 0 ≤ t ≤ T }, A1 = {A1(t), 0 ≤ t ≤
T }, and Mk = {Mk(t), 0 ≤ t ≤ T } are (V, V ′)-adapted and L∞(V, V ′)-
uniformly bounded.

[HP2] The families of operators B = {B(t), 0 ≤ t ≤ T } and Nk = {Nk(t), 0 ≤
t ≤ T } are (H,V ′)-adapted and L∞(H,V ′)-uniformly bounded.

[HP3] The initial conditions are F0-measurable (equivalently, independent of
all wk), u0 ∈ L2(Ω, V ), v0 ∈ L2(Ω;H); the process f and each of the
processes gk are Ft-adapted and are elements of L2

(
Ω × (0, T );V ′).

[HP4]
∑

k≥1 E
∫ T
0 ‖gk(t)‖2

V ′dt <∞.

[HP5] There exists a positive number Co such that, for every v ∈ L2

(
Ω ×

(0, T );V
)

and h ∈ L2

(
Ω × (0, T );H

)
,

∑

k≥1

E

∫ T

0

‖Mk(t)v‖2
V ′dt <∞,

∑

k≥1

E

∫ T

0

‖Nk(t)h‖2
V ′dt <∞.

(4.3.2)

Definition 4.3.2 (Solution of stochastic hyperbolic equations). The
variational solution of (4.3.1) is two Ft-adapted processes u = u(t), v = v(t)
such that u ∈ L2(Ω × (0, T );V ), v ∈ L2(Ω × (0, T );H),

u(t) = u0 +

∫ t

0

v(s)ds in L2(Ω × (0, T );H),

and

v(t) =v0 +

∫ t

0

Au(s)ds+

∫ t

0

A1u(s)ds+

∫ t

0

Bv(s)ds+

∫ t

0

f(s)ds

+
∑

k≥1

∫ t

0

(
Mku(s) + Nkv(s) + gk(s)

)
dwk(s)

(4.3.3)

in L2(Ω × (0, T );V ′).

To construct a solution of (4.3.1), we have to modify the assumptions
as follows (the precise conditions on the input are in the statement of the
theorem below):

[HP1′] The family of operators A = {A(t), 0 ≤ t ≤ T } is (V, V ′)-adapted and
L∞(V, V ′)-uniformly bounded.
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[HP2′] The families of operators A1 = {A1(t), 0 ≤ t ≤ T } and Mk =
{Mk(t), 0 ≤ t ≤ T } are (V,H)-adapted and L∞(V,H)-uniformly
bounded.

[HP3′] The families of operators B = {B(t), 0 ≤ t ≤ T } and Nk = {Nk(t), 0 ≤
t ≤ T } are (H,H)-adapted and L∞(H,H)-uniformly bounded.

[HP4′] There exists a positive number Co such that, for every v ∈ L2

(
Ω ×

(0, T );V
)

and h ∈ L2

(
Ω × (0, T );H

)
,

∑

k≥1

E

∫ T

0

‖Mk(t)v‖2
Hdt ≤ CoE

∫ T

0

‖v(s)‖2
V ds,

∑

k≥1

E

∫ T

0

‖Nk(t)h‖2
Hdt ≤ CoE

∫ T

0

‖h(s)‖2
Hds.

Before proceeding, the reader is encouraged to think about the differences
between the two sets of conditions. After that, the reader can try to state and
even prove the following theorem about existence and uniqueness of solution,
because all the necessary technical tools have been already presented. On the
other hand, the reader who ignored Problems 4.1.4 and 4.1.5 might find the
following a bit overwhelming.

Theorem 4.3.3 (Solvability of hyperbolic equations). In addition to
[HP1′]–[HP5′] assume that
(i) [Au, v] = [u,Av] for all u, v ∈ V , all t ∈ [0, T ], and all ω ∈ Ω,
(ii) there exist a positive number cA and a real number M such that, for all
u ∈ V , all t ∈ [0, T ], and all ω ∈ Ω,

[Au, u] + cA‖u‖2
V ≤M‖u‖2

H, (4.3.4)

and
(iii) the family of operators A is differentiable for all ω ∈ Ω and the derivative
of A is (V, V ′)-adapted and L∞(V, V ′)-uniformly bounded.

Then, for every F0-measurable initial conditions u(0) = u0 ∈ L2(Ω;V ),
u̇(0) = v0 ∈ L2(Ω;H), and Ft-adapted free terms f ∈ L2

(
Ω × (0, T );H

)
and

gk satisfying
∑

k ‖gk‖2
L2(Ω×(0,T );H) <∞, equation (4.3.1) has a solution. The

solution is unique in L2

(
Ω; C

(
(0, T );V

))
× L2

(
Ω; C

(
(0, T );H

))
and

‖u(t)‖2
L2(Ω;C((0,T );V )) + ‖v(t)‖2

L2(Ω;C((0,T );H)) ≤ C(T )
(
‖u0‖2

L2(Ω;V )

+ ‖v0‖2
L2(Ω;H) + ‖f‖2

L2(Ω×(0,T );H) +
∑

k≥1

‖gk‖2
L2(Ω×(0,T );H)

)
.

(4.3.5)

Proof. Below, we present three steps: (1) derivation of the a priori bound
(4.3.5); (2) construction of the solution using the Galerkin approximation; (3)
proof of continuity of the solution. The proof of uniqueness is similar to the
deterministic case (see Problem 4.1.6 on page 160) and is left to the reader.
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Step 1: the a priori estimate (pages 176–177). Inequality (4.3.5) is
equivalent to

E sup
0<t<T

‖u(t)‖2
V + E sup

0<t<T
‖v(t)‖2

H ≤ C(T )
(

E‖u0‖2
V + E‖v0‖2

H

+ E

∫ T

0

‖f(t)‖2
Hdt+

∑

k≥1

E

∫ T

0

‖gk(t)‖2
Hdt

)
.

(4.3.6)

To derive (4.3.6), we pretend that v ∈ V and apply the energy equality
(Theorem 3.3.15, page 130) to the process v. The result is

‖v(t)‖2
H = ‖v0‖2

H + 2

∫ t

0

(
Au(s), v(s)

)
H
ds+ 2

∫ t

0

(
A1u(s), v(s)

)
H
ds

+ 2

∫ t

0

(
Bv(s), v(s)

)
H
ds+

∫ t

0

(
f(s), v(s)

)
H
ds

+2
∑

k

∫ t

0

((
Mku(s), v(s)

)
H

+
(
Nkv(s), v(s)

)
H

+
(
gk(s), v(s)

)
H

)
dwk(s)

+
∑

k

∫ t

0

‖Nku(s) + Mkv(s) + gk(s)‖2
Hds.

Next, we need to take E sup0<t<T on both sides, term by term and analyze the
individual terms on the right-hand side. Because of the supremum preceding
the expectation, we cannot disregard the stochastic integral.

Below is an outline of the main calculations; the value of the number C is
changing from line to line.

By the product rule and the symmetry of the operator A,

d

dt
[Au, u] = 2[Au, v] + [Ȧu, u]. (4.3.7)

Therefore,

2

∫ t

0

(
Au(s), v(s)

)
H
ds = [Au(t), u(t)] − [Au(0), u(0)] −

∫ t

0

[Ȧu(s), u(s)]ds.

By assumption (4.3.4),

[Au(t), u(t)] ≤ −cA‖u(t)‖2
V +M‖u(t)‖2

H .

The term −cA‖u(t)‖2
V goes to the left, while u(t) = u0 +

∫ t
0
v(s)ds implies

‖u(t)‖2
H ≤ ‖u0‖2

H +

∫ t

0

‖v(s)‖2
Hds

and the last integral is removed by the Gronwall inequality.
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Similarly,

∫ t

0

|[Ȧu(s), u(s)]|ds ≤ C

∫ t

0

‖u(s)‖2
V ds,

∫ t

0

|
(
A1u(s), v(s)

)
|ds ≤ C

∫ t

0

‖u(s)‖2
V ds+ C

∫ t

0

‖v(s)‖2
Hds,

∫ t

0

|
(
Bv(s), v(s)

)
H
|ds ≤ C

∫ t

0

‖v(s)‖2
Hds,

and again the Gronwall inequality removes the integrals.

If f ∈ L2

(
Ω × (0, T );H

)
, then

∫ t

0

|
(
f(s), v(s)

)
H
|ds ≤

∫ t

0

‖f(s)‖2
Hds+

∫ t

0

‖v(s)‖2
Hds.

For each of the three stochastic integrals, we first apply the BDG inequality
with p = 1, then we take supt ‖v(t)‖H out of the integral and finally apply
the epsilon inequality. Condition [HP4′] ensures convergence of the sums, and
the Gronwall inequality removes the integrals of u and v. For example,

E sup
t

∣∣∣∣∣

∫ t

0

∑

k

(
Mku(s), v(s)

)
H
dwk(s)

∣∣∣∣∣ ≤ CE

(∫ T

0

∑

k

(
Mku(s), v(s)

)2
H
ds

)1/2

≤ CE

(∫ T

0

∑

k

‖Mku(s)‖2
H ‖v(s)‖2

Hds

)1/2

≤ CE

(
sup
t

‖v(t)‖2
H

∑

k

∫ T

0

‖Mku(s)‖2
Hds

)1/2

≤ εE sup
t

‖v(t)‖2
H + CE

∑

k

∫ T

0

‖Mku(s)‖2
Hds

≤ εE sup
t

‖v(t)‖2
H + CE

∫ T

0

‖u(s)‖2
V ds.

For the Itô correction term,

∑

k

∫ t

0

‖Nku(s) + Mkv(s) + gk(s)‖2
Hds

≤ 3
∑

k

∫ t

0

(
‖Nku(s)‖2

H + ‖Mkv(s)‖2
H + ‖gk(s)‖2

H

)
ds,

and condition [HP5′], together with the Gronwall inequality, provides the
necessary bounds. This completes the proof of the a priori bound.
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Step 2: The Galerkin approximation (pages 177–179). Let {hk, k ≥ 1}
be an orthonormal basis in H that is also a dense set in V and V ′; ΠN is
the orthogonal in H projection onto the the linear span of {h1, . . . , hN}. For
y ∈ V ′,

ΠNy =
N∑

k=1

[y, hk]hk.

The sequence (uN , vN ), N ≥ 1, approximating the solution satisfies

duN = vNdt,

dvN =
(
ΠNAuN +ΠNA1u

N +ΠNBvN +ΠNf
)
dt

+

N∑

k=1

(
ΠNMku

N +ΠNNkv
N +ΠNgk

)
dwk, 0 < t ≤ T,

(4.3.8)

uN (0) = ΠNu0, v
N (0) = ΠNv0. Writing uN (t) =

∑N
k=1 ū

N (t)hk, v
N (t) =∑N

k=1 v̄
N (t)hk we interpret (4.3.8) as a 2N -dimensional linear SODE for the

functions ūNk , v̄
N
k and conclude existence and uniqueness of (uN , vN ) for every

N . Also, every h ∈ ΠNH satisfies h = ΠNh and therefore

[ΠNAh, h1)] = (Ah, h1)H = [ΠNAh1, h], ‖ΠNA1h‖H ≤ ‖A1h‖H ,
‖ΠNBh‖H ≤ ‖Bh‖H , ‖ΠNMkh‖H ≤ ‖Mkh‖H , ‖ΠNNkh‖H ≤ ‖Nkh‖H .

Consequently, the pair (uN , vN ) satisfies (4.3.6) with C(T ) independent of N
(to be absolutely sure, the reader should take a closer look at ‖ΠNu0‖V :
it is not necessarily true that ‖ΠNu0‖V ≤ ‖u0‖V , but the convergence
limN→∞ ‖u0 −ΠNu0‖V = 0 is good enough).

Define the Hilbert space

IH = L2

(
Ω × (0, T );V

)
× L2

(
Ω × (0, T );H

)
.

The a priori estimate means that the sequence {(uN , vN , N ≥ 1)} is weakly
compact in IH and therefore has a weakly converging sub-sequence. The limit
(u, v) of this subsequence is, by definition, a solution we want. (Again, to be
completely sure, the reader should write out explicitly what weak convergence
in IH means and why the limit is indeed a solution of (4.3.1) in the sense of
Definition 4.3.2.) Note also that

u ∈ L2

(
Ω;L∞

(
(0, T );V

))⋂
L2

(
Ω; C

(
(0, T );H

))
,

v ∈ L2

(
Ω;L∞

(
(0, T );H

))⋂
L2

(
Ω; C

(
(0, T );V ′)).

Indeed, the a priori estimate ensures boundedness of u in V , while the equality
u(t) = u0 +

∫ t
0 v(s)ds ensures continuity in H . Similarly, the a priori estimate

ensures boundedness of v in H and (4.3.3) implies continuity of v in V ′.
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Step 3: continuity of the solution (pages 179–180). To prove continuity
of u in V and of v in H , we follow the argument of Lions and Magenes [126,
End of Section 3.8.4]. We need to show that, for each t, the sample trajectories
of u and v satisfy

lim
r→0

(
‖u(t+ h) − u(t)‖V + ‖v(t+ h) − v(t)‖H

)
= 0. (4.3.9)

To begin, we apply the energy equality (Theorem 3.3.15, page 130) to v
on the interval (t, t+ r) for fixed t > 0 and r in a small neighborhood of zero.
The result is

−
(
[A(t+ r)u(t+ r), u(t+ r)] − [A(t)u(t), u(t)]

)
+ ‖v(t+ r)‖2

H − ‖v(t)‖2
H

=

∫ t+r

t

(. . .)ds+
∑

k

∫ t+r

t

(. . .)k dwk(s).

(4.3.10)

Now we have to keep track of time dependence in the operator A to consider
expressions of the type [A(t1)u(t2), v(t3)]. Accordingly, for x, y ∈ V , we take
the number M from (4.3.4) and define

a(t, x, y) = −[A(t)x, y] +M(x, y)H .

Then (4.3.10) and continuity of u in H imply that the (real-valued) function
F = F (t) defined by

F (t) = a
(
t, u(t), u(t)

)
+ ‖v(t)‖2

H

is continuous in t.
Next, for a fixed t > 0 and for r in a small neighborhood of zero, define

the function

Φ(r) = a
(
t+ r, u(t+ r) − u(t), u(t+ r) − u(t)

)
+ ‖v(t+ r) − v(t)‖2

H .

Note that (4.3.4) implies

0 ≤ cA‖u(t+ r) − u(t)‖2
V + ‖v(t+ r) − v(t)‖2

H ≤ Φ(r).

Therefore, we will have (4.3.9) if we show that

lim
r→0

Φ(r) = 0. (4.3.11)

To prove (4.3.11), we expand all the inner products, rearrange some terms,
and get

Φ(r) = F (t+ r) + F (r) − 2
(
v(tr), v(t)

)
H

− 2
(
a
(
t+ r, u(t+ r), u(t)

)
− a
(
t, u(t+ r), u(t)

))

+
(
a
(
t+ r, u(t), u(t)

)
− a
(
t, u(t), u(t)

))

− 2a
(
t, u(t+ r), u(t)

)
.

(4.3.12)
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By continuity of F , limr→0 F (t+ r) = F (t). By the definition of a,

|a
(
t+ r, u(t+ r), u(t)

)
− a
(
t, u(t+ r), u(t)

)
|

≤ ‖
(
A(t+ r) − A(t)

)
u(t+ r)‖V ′‖u(t)‖V ,

|a
(
t+ r, u(t), u(t)

)
− a
(
t, u(t), u(t)

)
| ≤ ‖

(
A(t+ r) − A(t)

)
u(t)‖V ′‖u(t)‖V

By the mean-value theorem,

‖
(
A(t+ r) − A(t)

)
u(t+ r)‖V ′ = r‖Ȧ(t+ r̃)u(t)‖V ′ ≤ Cr‖u(t+ r)‖V .

As a result,

|a
(
t+ r, u(t+ r), u(t)

)
− a
(
t, u(t+ r), u(t)

)
|

+ |a
(
t+ r, u(t), u(t)

)
− a
(
t, u(t), u(t)

)
| ≤ Cr sup

t
‖u(t)‖2

V → 0, r → 0.

It remains to pass to the limit r → 0 in the expressions 2
(
v(t+ r), v(t)

)
H

and

2a
(
t, u(t+ r), u(t)

)
= 2[A(t)u(t), u(t+ r)]. If indeed

lim
r→0

(
v(tr), v(t)

)
H

= ‖v(t)‖2
H ,

lim
r→0

[A(t)u(t), u(t + r)] = [A(t)u(t), u(t)] = a
(
t, u(t), u(t)

)
,

(4.3.13)

then, passing to the limit r → 0 in (4.3.12) yields

lim
r→0

Ψ(r) = 2F (t) − 2
(
‖v(t)‖2

H + a
(
t, u(t), u(t)

))
= 0,

completing the proof.
With t fixed, the convergence in (4.3.13) would follow from the weak con-

tinuity of v in H (when the dual of H is H) and weak continuity of u in V
(when the dual of V is V ′). It turns out that both the weak continuity of u
in V and of v in H follow from a general result somewhat similar to Problem
3.1.3(b): if a Hilbert space X is continuously embedded into a Hilbert space
Y , then weak continuity in Y and boundedness in X imply weak continuity
in X ; see Lions and Magenes [126, Lemma 3.8.1]. Retracing our steps, from
(4.3.13) we get (4.3.11), and from (4.3.11), (4.3.9). Note that our disregard for
different modifications of the same process was a major simplification; a com-
pletely rigorous proof of continuity should follow the same lines as in Krylov
and Rozovskii [119, Section 2.3]. We leave it to the reader as a challenge: to
the best of our knowledge, nobody has ever done it.

This concludes the proof of Theorem 4.3.3.

Exercise 4.3.4 (B). Verify that one can always take M = 0 in (4.3.4).
Hint. Replace A with A + MI and A1, with A1 − MI.

There are several advantages of considering the abstract evolution equation
(4.3.1) rather than a concrete equation such as utt = (a(t, x)ux)x + uẆ (t, x):
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1. The ability to write a very general equation in a relatively compact form;
2. The possibility to apply the result to the same equation in different normal

triples (V,H, V ′);
3. The ability to circumvent various issues related to hard analysis, such as

verification of ellipticity for specific partial differential operators, and to
concentrate on the general features of the equation.

There are also some obvious disadvantages:

1. The conclusions of the theorem are usually not sharp for concrete equa-
tions;

2. Verification of the conditions can be rather difficult;
3. Essentially only one type of the representation of the noise is allowed by

the theorem. For example, it is not at all clear how to apply the theorem
to the equation utt = uxx + ẆQ(t, x) if all we know about ẆQ(t, x) is
that

EẆQ(t, x)ẆQ(s, y) = δ(t− s)ϕ(|x − y|),
where the function ϕ has compact support and ϕ(r) ∼ r−1/2 as r → 0.

We illustrate some of these points below. The main concrete example covered
by Theorem 4.3.3 is equation

utt(t, x) =

d∑

i,j=1

(
aij(t, x)uxi(t, x)

)
xj

+

d∑

i=1

(
bi(t, x)uxi(t, x) + b̃i(t, x)utxi(t, x)

)

+ c(t, x)u(t, x) + c̃(t, x)ut(t, x) + f(t, x)

+
∑

k≥1

(
σik(t, x)uxi(t, x)

+ νk(t, x)u(t, x) + ν̃(t, x)ut(t, x) + gk(t, x)
)
ẇk(t)

(4.3.14)

when x ∈ G and G = R
d or G is a smooth bounded domain with zero

boundary conditions. Other concrete examples can be more exotic equations

such as utt =
√

∆2 − ∆ u+
√

1 − ∆utẆ .
To apply the theorem to equation (4.3.14) in the normal triple of Sobolev

spaces (Hr+1(G), Hr(G), Hr−1(G)), r ∈ R, it is enough to assume that all
the coefficients are uniformly bounded, measurable, and adapted, and

• aij(t, ·), ∂aij(t, ·)/∂t, bi(t·), b̃i(t, ·), c(t, ·), c̃(t, ·), νk(t, ·), ν̃k(t, ·),
σik(t, ·) ∈ C|r|+1(G),

• ∑d
i,j=1 aij(t, x)yiyj ≥ cA|y|2.

• ∑
k

(
sup
ω,t,x

|Dm
x σik(t, x)|+ sup

ω,t,x
|Dm

x νk(t, x)|+ sup
ω,t,x

|Dm
x ν̃k(t, x)|

)
<∞, m =

0, . . . , |r| + 1
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We also assume that initial conditions u0 and v0 are F0-measurable and satisfy
u0 ∈ L2(Ω;Hr+1(G)), v0 ∈ L2(Ω;Hr(G)). In particular, if the coefficients and
the input are as regular as we want, then we can take r as large as we want,
and, together with the Sobolev embedding theorem, Theorem 4.3.3 almost
immediately implies that the function u = u(t) is continuously differentiable
in time and infinitely differentiable in space. Proving existence, uniqueness
and regularity of the solution of (4.3.14) from scratch would require at least
as much work as the proof of Theorem 4.3.3.

To illustrate some difficulties related to applying Theorem 4.3.3 to a con-
crete equation, let us consider the wave equation driven by a Q-cylindrical
Wiener process:

utt = ∆u+ utẆ
Q. (4.3.15)

One can think of (4.3.15) as the wave equation with random damping.

Exercise 4.3.5 (C). Integrating by parts, verify that if utt = uxx − aut,
x ∈ R, then

d

dt

∫

R

(u2
t + u2

x)dx = −a
∫

R

u2
tdx.

Let us further assume that

ẆQ(t, x) =
∑

k≥1

√
qkmk(x)ẇk(t),

where {mk, k ≥ 1} is an orthonormal basis in L2(G). Without this assumption
we will be unable to apply Theorem 4.3.3. On the other hand, as long as the
operator Q is nuclear, the assumption leads to no loss of generality, although
it might be hard to find the numbers qk explicitly.

In other words, we make equation (4.3.15) a particular case of (4.3.1) with
f = gk = 0, A = ∆, A1 = B = Mk = 0, and Nku =

√
qk mk. To satisfy

condition [HP4′], that is

∑

k

‖Nkh‖2
r ≤ Co‖h‖2

r, (4.3.16)

we need mk to be a point-wise multiplier in Hr. With the notation

‖mk‖r→r = sup
h∈Hr(G):‖h‖r≤1

‖mkh‖r,

inequality (4.3.16) becomes

∑

k

qk‖mk‖2
r→r <∞.

While this convergence can certainly be achieved by making qk tend to zero
fast enough, more precise bounds on qk are connected with the theory of
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point-wise multipliers in Sobolev spaces and with the asymptotic behavior of
the sup-norms of the functions mk.

Let us consider the easiest case r = 0. Then ‖mk‖0→0 = supx∈G |mk(x)|.
First we consider (4.3.15) in a smooth bounded domain G ⊂ R

d with zero
boundary conditions. As a further simplification, we assume that mk, k ≥ 1
are normalized (‖mk‖L2(G) = 1) eigenfunctions of the Laplacian ∆: ∆mk =
−λkmk. Then it is known that

• supx∈G |mk(x)| ≤ Cλ
(d−1)/4
k : Grieser [59];

• λk ∼ k2/d: Safarov and Vassiliev [188, Section 1.2].

Therefore, ‖mk‖0→0 ≤ Ck(d−1)/(2d), and equation (4.3.15) in a smooth
bounded domain with zero boundary conditions and initial conditions u0 ∈
H1(G), v0 ∈ L2(G) will have a solution u ∈ L2

(
Ω; C((0, T );H1(G))

)
as long

as
∑
k≥1 qkk

(d−1)/d < ∞, for example, if qk = 1/k2. Note that the rate of
decay of qk is essentially independent of d.

Now let us consider equation (4.3.15) in R. This time, we take mk(x) = wk(x),
the Hermite functions (4.1.50) on page 158. It is known that supx |wn| ≤
Cn−1/12: the standard reference is Hille and Phillips [72, Section 21.3]. As a
result, equation (4.3.15) in R with initial conditions u0 ∈ H1(R), v0 ∈ L2(R)
will have a solution u ∈ L2

(
Ω; C((0, T );H1(R))

)
as long as

∑
k≥1 qkk

−1/6 <
∞, for example, if qk = 1/k. By the Sobolev embedding theorem, the function
u will have sample trajectories that are continuous in time and 1/2-Hölder
continuous in space.

Note that Theorem 4.3.3 does not satisfactorily cover equations driven by
space-time white noise: even for the equation

utt = uxx + Ẇ (t, x), x ∈ [0, π],

with zero boundary conditions, we find gk =
√

2/π sin(kx), which means that
condition ∑

k

‖g‖2
L2((Ω×[0,T ];H)) <∞

holds for H = Hr((0, π)) and r < −1/2. Therefore, Theorem 4.3.3 ensures
only u(t, ·) ∈ Hr+1((0, π)), which, with r + 1 < 1/2, does not even imply
continuity of u, much less Hölder continuity as derived from the closed-form
solution in Section 2.3.2.

4.3.2 Further Directions

Each of the following equations is hyperbolic:

ut = ux, t > 0, x ∈ G ⊆ R; (4.3.17)

utx = 0, t > 0, x ∈ G ⊆ R; (4.3.18)

utt = uxx, t > 0, x ∈ G ⊆ R. (4.3.19)
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Accordingly, each of the equations has a stochastic counterpart and a gener-
alization to more than two independent variables.

Recall that (4.3.18) and (4.3.19) are essentially the same, as one turns
into another after a rotation of the (t, x) plane by π/4: see our study of the
stochastic wave equation on page 53. The transport equation (4.3.17) can
be thought of as “one-half” of the wave equation (4.3.19) by factoring the
operator

∂2

∂t2
− ∂2

∂x2
=

(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)
.

In other words, if we agree that the wave equation (4.3.19) is hyperbolic, then
we should agree that equations (4.3.17) and (4.3.18) are natural to call hy-
perbolic as well. The interesting developments start once we try to go beyond
two independent variables, as the corresponding extensions in the three cases
are very different.

Our discussion has been focused on the (abstract version of) wave equation
(4.3.19): if x ∈ R

d, then, instead of uxx we consider ∆u or more generally,
Au, where −A is an elliptic operator. In other words, we still have an equation
that is second-order in time.

In contrast, the natural extension of (4.3.18) to d ≥ 3 independent vari-
ables is

∂du

∂t1∂t2 . . . ∂td
= 0, (4.3.20)

and this equation has order d. The reason for denoting the independent vari-
ables by tk will become clear in a moment. This extension is especially con-
venient in connection with equations driven by multi-parameter white noise.
As we saw in (3.2.19), page 101, given a Gaussian field W = W (t1, . . . , td),

Ẇ =
∂dW

∂t1∂t2 . . . ∂td

in the sense of distributions, and therefore the solution of

∂du

∂t1∂t2 . . . ∂td
= Ẇ (4.3.21)

is u(t1, . . . , td) = W (t1, . . . , td). We can now take the idea further. To simplify
the notations, write

t = (t1, . . . , td),

∫ t

0

f(s)ds =

∫ td

0

. . .

∫ t1

0

f(s1, . . . , sd)ds1, . . . dsd.

In other words, we think of t as a d-dimensional time parameter, with all the
components tk having the same significance (unlike the d-dimensional wave
equation, where, out of d + 1 variables, scalar time t plays a special role).
Then, we generalize (4.3.21) to
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u(t) = u(0) +

∫ t

0

b
(
s, u(s)

)
ds +

∫ t

0

σ
(
s, u(s)

)
dW (s). (4.3.22)

Equation (4.3.22) describes a multi-parameter process, but, except for the
bold symbols, looks exactly like a stochastic ordinary differential equation and
can be studied in exactly the same way, once the questions of measurability
and adaptedness are worked out. For details see Khosnevisan [102, Section
7.4]. In particular, global Lischitz continuity and boundedness of b(s, ·) and
σ(s, ·) imply existence and uniqueness of solution of (4.3.22) ([102, Theorem
7.4.3.1]).

There is no need to stop with existence and uniqueness of solution, and
indeed many other problems that have been studied for stochastic ordinary
differential equations have also been studied for equation (4.3.22):

• Large deviations (in the spirit of Freidlin and Wentzell [51]): Boufoussi
et al. [15], Eddahbi [41];

• Martingale problems: Ondreját [171];
• Potential theory (study of probability that the solution hits a certain

set): Dalang and E. Nualart [33];
• Regularity of the probabilistic law of the solution (Malliavin cal-

culus): Millet Sanz-Solé [160], Rovira and Sanz-Solé [184], Sanz-Solé and
Torrecilla-Tarantino [193];

• Support theorem (in the spirit of Stroock and Varadhan [198]):
Boufoussi [14], Millet and Sanz-Solé [159], Rovira and Sanz-Solé [183].

Now let us discuss the transport equation (4.3.17). The stochastic version of
this equation,

ut = ux + a(t, x) + σ(t, x)Ẇ (t, x),

where Ẇ is space-time white noise, is a popular model in the study of
term structure of interest rates (Carmona and Tehranchi [21, Section 7.2.1],
Tehranchi [201]). Making noise multiplicative, such as ut = uxẆ or even
ut = ux + uẆ is impossible in the framework of square-integrable solutions:
u is not regular enough to act as a point-wise multiplier for Ẇ . As a result,
further generalizations of the equation are carried out in the Stratonovich for-
mulation. In our study of the stochastic heat equation ut = auxx + uxẇ(t),
we saw that, when a = 1/2, the equation is equivalent to ut = ux ◦ ẇ(t); see
(2.3.12) on page 50. For more, see Chow [23, Chapter 2] and Kunita [120,
Section 6.1].

There is another direction in which equation (4.3.17) can be generalized,
and that is hyperbolic systems (Evans [45, Section 11.1]). An example is

ut = ux + vx, vt = ux − vx, t > 0, x ∈ G ⊆ R,

although most of the physically relevant examples are non-linear. Stochastic
counterparts of these hyperbolic systems have been studied, for example, by
Chow [24] and Markus and Mizel [151].



186 4 Linear Equations: Square-Integrable Solutions

As a final comment, we mention that the stochastic version of the wave
equation (4.3.19) can be extended beyond the setting of our Theorem 4.3.3, for
example by introducing dependence on the past (Kim [104]), or by considering
a different random perturbation, such as Lévy noise (Khoshnevisan and E.
Nualart [103], Peszat and Zabczyk [173, Chapter 13]).

4.3.3 Problems

Problem 4.3.1 gives alternative conditions on the function f and the operator
B in Theorem 4.3.3. Problem 4.3.2 connects stochastic parabolic equations
with an infinite system of independent second-order SODEs. Problem 4.3.3
lists several specific hyperbolic equations in one space variable.

Problem 4.3.1. Prove Theorem 4.3.3 under the following modifications of
the conditions:
(a) f ∈ L2

(
Ω;H1((0, T );V ′)

)
instead of f ∈ L2(Ω × (0, T );H). The space

L2

(
Ω;H1((0, T );V ′)

)
) is the collection of V ′-valued processes f such that

f(t) = f(0)+
∫ t
0 g(s)ds, f0 ∈ L2(Ω;V ′), g ∈ L2(Ω× (0, T );V ′); it is a Hilbert

space with norm

‖f‖2
H1(Ω×(0,T );V ′) = E‖f0‖2

V ′ + E‖g‖2
L2((0,T );V ′).

(b) (Bv, v)H ≤ C‖v‖2
H instead of |(Bv, v)H | ≤ C‖v‖2

H . In particular, equation

utt = uxx + utxx + Ẇ (t, x)

becomes admissible.

Problem 4.3.2. Let wk, k ≥ 1, be independent standard Brownian motions
and let ak, bk, ckσk, k ≥ 1, be real numbers. Consider a collection of processes
uk, k ≥ 1, defined by

akük(t) + bku̇k(t) + ckuk(t) = σkẇk(t), 0 < t ≤ T. (4.3.23)

Find conditions on the numbers ak, bk, σk and the initial data uk(0), u̇k(0) to
have

(a) E sup
0<t<T

∑

k≥1

|uk(t)|2 <∞, (b) E sup
0<t<T

∑

k≥1

|u̇k(t)|2 <∞. (4.3.24)

Problem 4.3.3. Investigate the following equations, both in R and on (0, π):

utt = uxx + aux + bu+ (cu+ σux + νut + g)ẆQ(t, x), (4.3.25)

utt = uxx + utxx + (au+ bux + νut + g)ẆQ(t, x), (4.3.26)

utt = −uxxxx + auxx + (bu+ cux + σuxx + νut + g)ẆQ(t, x), (4.3.27)

utt = uxx + utxxx + (au+ bux + νut + g)ẆQ(t, x), (4.3.28)

utt − auttxx = buxx + (cu + σux + νut + g)ẆQ(t, x). (4.3.29)
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4.4 Stochastic Parabolic Equations

4.4.1 Existence and Uniqueness of Solution

We fix the stochastic basis (Ω,F , {Ft}t≥0,P) with the usual assumptions, and
a collection {wk, k ≥ 1} of independent standard Brownian motions on this
basis. Our objective in this section is to study stochastic evolution equation

u̇(t) = A(t)u(t) + f(t) +
∑

k≥1

(
Mk(t)u(t) + gk(t)

)
ẇk(t) (4.4.1)

0 < t ≤ T, u(0) = u0, in the normal triple (V,H, V ′) of Hilbert spaces.

To begin, recall Definition 4.3.1:

Let X,Y be separable Banach spaces and let A = {A(ω, t), ω ∈ Ω, 0 ≤ t ≤ T }
be a family of mappings from X to Y . The family is called (X,Y )-adapted
if, for every x ∈ X and ℓ ∈ Y ′, the real-valued process t 7→ ℓ(A(t)x) is Ft-
adapted. The family is called L∞(X,Y )-uniformly bounded if there exists a
positive non-random number C such that, for all x ∈ X, all t ∈ [0, T ], and all
ω ∈ Ω, ‖A(t, ω)x‖Y ≤ C‖x‖X.

Also, recall that [u, v], u ∈ V , v ∈ V ′, denotes the duality between V and V ′

relative to the inner product in H .

To define a square-integrable variational solution of equation (4.4.1), we make
the following assumptions:

[PR1] The families of operators A = {A(t), 0 ≤ t ≤ T } and Mk = {Mk(t), 0 ≤
t ≤ T } are (V, V ′)-adapted and L∞(V, V ′)-uniformly bounded.

[PR2] The initial condition u0 is F0-measurable (equivalently, independent of
all wk), u0 ∈ L2(Ω,H), the process f and each of the processes gk are
Ft-adapted and are elements of L2

(
Ω × (0, T );V ′).

[PR3]
∑

k≥1 E
∫ T
0 ‖gk(t)‖2

V ′dt <∞.

[PR4] There exists a positive number Co such that, for every v ∈ L2

(
Ω ×

(0, T );V
)

∑

k≥1

E

∫ T

0

‖Mk(t)v(t)‖2
V ′dt <∞. (4.4.2)

Definition 4.4.1 (Solution of stochastic parabolic equations). The
variational solution of (4.4.1) is an Ft-adapted process u = u(t), such that
u ∈ L2

(
Ω × (0, T );V

)
and

u(t) = u0 +

∫ t

0

Au(s)ds+

∫ t

0

f(s)ds+
∑

k≥1

∫ t

0

(
Mku(s)+gk(s)

)
dwk(s) (4.4.3)

in L2

(
Ω × (0, T );V ′).
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To construct a solution of (4.4.1), we have to modify the assumptions
about the operators A and Mk as follows:

[PR1′] The family of operators A = {A(t), 0 ≤ t ≤ T } is (V, V ′)-adapted and
L∞(V, V ′)-uniformly bounded.

[PR2′] For each k, the family of operators Mk = {Mk(t), 0 ≤ t ≤ T } is (V,H)-
adapted and L∞(V,H)-uniformly bounded.

[PR3′] (stochastic parabolicity condition) There exist a positive number
cA and a real number M such that, for all ω ∈ Ω, t ∈ [0, T ], and v ∈ V ,

2[A(t)v, v] +
∑

k≥1

‖Mk(t)v‖2
H + cA‖v‖2

V ≤M‖v‖2
H. (4.4.4)

The conditions on u0, f, gk are in the statement of Theorem 4.4.3 below.

Exercise 4.4.2 (C). Verify that inequalities ‖Av‖V ′ ≤ C‖v‖V and (4.4.4)
together imply existence of CM > 0 such that, for all ω, t, v,

∑

k≥1

‖Mkv‖2
H ≤ CM‖v‖2

V . (4.4.5)

Hint. Remember that | [A(t)v, v]| ≤ ‖Av‖V ′‖v‖V and ‖v‖H ≤ C‖v‖V .

Theorem 4.4.3 (Solvability of stochastic parabolic equations). As-
sume that [PR1′]–[PR3′] hold.

Then, for every F0-measurable initial condition u(0) = u0 ∈ L2(Ω;H),
and Ft-adapted free terms f , gk with f ∈ L2

(
Ω× (0, T );V ′) and gk satisfying∑

k ‖gk‖2
L2(Ω×(0,T );H) <∞, equation (4.4.1) has a unique variational solution.

The solution is an element of L2

(
Ω; C

(
(0, T );H

))
and

‖u‖2
L2(Ω;C((0,T );H)) + ‖u‖2

L2(Ω×(0,T );V ) ≤ C(T )
(
‖u0‖2

L2(Ω;H)

+ ‖f‖2
L2(Ω×(0,T );V ′) +

∑

k≥1

‖gk‖2
L2(Ω×(0,T );H)

)
.

(4.4.6)

Proof. There are two steps: (1) derivation of the a priori bound (4.4.6); (2)
construction of the solution using the Galerkin approximation. Uniqueness of
the solution and continuity of the solution in H follow from Theorem 3.3.15
on page 130.
Step 1: the a priori estimate (pages 188–191). An equivalent form of
(4.4.6) is

E sup
0<t<T

‖u(t)‖2
H + E

∫ T

0

‖u(t)‖2
V dt ≤ C(T )

(
E‖u0‖2

H

+ E

∫ T

0

‖f(t)‖2
V ′dt+

∑

k≥1

E

∫ T

0

‖gk(t)‖2
Hdt

)
.

(4.4.7)
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To derive (4.4.7), we apply the energy equality (Theorem 3.3.15) to the process
u:

‖u(t)‖2
H = ‖u0‖2

H + 2

∫ t

0

[Au(s), u(s)]ds+ 2

∫ t

0

[f(s), u(s)]ds

+ 2
∑

k

∫ t

0

((
Mku(s), u(s)

)
H

+
(
gk(s), u(s)

)
H

)
dwk(s)

+
∑

k

∫ t

0

‖Mku(s) + gk(s)‖2
Hds.

(4.4.8)

Note that, under assumptions [PR1′]–[PR3′], the solution u, if exists, satisfies
the conditions of Theorem 3.3.15.

Let us look at the individual terms on the right-hand side of (4.4.8), start-
ing with the Itô correction term:

∑

k

∫ t

0

‖Mku(s) + gk(s)‖2
Hds =

∑

k

∫ t

0

‖Mku(s)‖2
Hds

+
∑

k

∫ t

0

‖gk(s)‖2
Hds+ 2

∑

k

∫ t

0

(
(Mku(s), gk(s)

)
H
ds.

(4.4.9)

The term
∑

k

∫ t
0 ‖Mku(s)‖2

Hds combines with 2
∫ t
0 [Au(s), u(s)]ds in (4.4.8),

and then condition (4.4.4) results in

2

∫ t

0

[Au(s), u(s)]ds+
∑

k

∫ t

0

‖Mku(s)‖2
Hds

≤ −cA
∫ t

0

‖u(s)‖2
V ds+M

∫ t

0

‖u(s)‖2
Hds.

Then the term −cA
∫ t
0
‖u(s)‖2

V ds goes to the left so that (4.4.8) becomes

‖u(t)‖2
H + cA

∫ t

0

‖u(s)‖2
V ds ≤ · · · .

Thus, (4.4.6) will follow from (4.4.8) once we can manipulate the remaining
terms containing u on the right-hand side of (4.4.8) to one of the following:

• C
∫ t
0
‖u(s)‖2

Hds; this integral is then removed by the Gronwall inequality
because of the term ‖u(t)‖2

H on the left-hand side of (4.4.8);

• ε
∫ t
0
‖u(t)‖2

V dt or ε sups ‖u(s)‖2
H with sufficiently small ε.

As always, we allow the constant C to change from line to lime. The last term
on the right-hand side of (4.4.9) is OK:
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∑

k

∫ t

0

∣∣((Mku(s), gk(s)
)
H

∣∣ds ≤
∑

k

∫ t

0

‖Mku(s)‖H ‖gk(s)‖Hds

≤
∑

k

(∫ t

0

‖Mku(s)‖2
Hds

)1/2(∫ t

0

‖gk(s)‖2
Hds

)1/2

≤ ε
∑

k

∫ t

0

‖Mku(s)‖2
Hds+ C

∑

k

∫ t

0

‖gk(s)‖2
Hds

≤ CMε

∫ t

0

‖u(s)‖2
V ds+ C

∑

k

∫ t

0

‖gk(s)‖2
Hds;

(4.4.10)

the last inequality follows from (4.4.5). Similarly, the term
∫ t
0
[f(s), u(s)]ds is

OK:

∫ t

0

[f, u]ds ≤
∫ t

0

‖f‖V ′ ‖u‖V ds ≤ ε

∫ t

0

‖u‖2
V ds+ C

∫ t

0

‖f‖2
V ′ds. (4.4.11)

The remaining term is the stochastic integral. To estimate E supt, we use the
BDG inequality with p = 1:

E sup
t

∣∣∣∣∣
∑

k

∫ t

0

((
Mku(s), u(s)

)
H

+
(
gk(s), u(s)

)
H

)
dwk(s)

∣∣∣∣∣

≤ CE

(∫ T

0

∑

k

((
Mku(s), u(s)

)
H

+
(
gk(s), u(s)

)
H

)2

ds

)1/2

≤ CE

(∫ T

0

∑

k

((
Mku(s), u(s)

)2
H

+
(
gk(s), u(s)

)2
H

)
ds

)1/2

≤ CE

(∫ T

0

∑

k

‖Mku‖2
H‖u‖2

Hds

)1/2

+ CE

(∫ T

0

∑

k

‖gk‖2
H‖u‖2

Hds

)1/2

;

beside the BDG and the Cauchy-Schwarz, we use (a + b)2 ≤ 2a2 + 2b2 and√
a+ b ≤ √

a+
√
b, a, b ≥ 0.

To process expressions of the type

E

(∫ T

0

∑

k

Bk(t)‖u(t)‖2
Hdt

)1/2

,

take supt ‖u(t)‖H outside the integral and use the epsilon inequality:

E

(∫ T

0

∑

k

Bk(t)‖u(t)‖2
Hdt

)1/2

≤ εE sup
t

‖u(t)‖2
H + C

∑

k

E

∫ T

0

Bk(t)dt.
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This works well if Bk = ‖gk‖2
H , but if Bk = ‖Mku‖2

H , then, after applying

(4.4.5), we get C
∫ T
0 ‖u‖2

V dt with a constant C that we cannot make arbitrarily
small. In other words, we get

E sup
t

∣∣∣∣∣
∑

k

∫ t

0

((
Mku(s), u(s)

)
H

+
(
gk(s), u(s)

)
H

)
dwk(s)

∣∣∣∣∣

≤ εE sup
t

‖u(t)‖2
H + CE

∫ T

0

‖u(t)‖2
V dt+ C

∑

k

E

∫ T

0

‖gk(t)‖2
Hdt,

(4.4.12)

and there is no clear way to proceed.
Since the problem appears to be with the stochastic integral, let us go back

to (4.4.8) and simply take E on both sides. This will eliminate the stochastic
integral. Looking over (4.4.9)–(4.4.11) and choosing a suitable ε, we get the
following inequality:

E‖u(T )‖2
H +

cA
2

E

∫ T

0

‖u(t)‖2
V dt ≤ E‖u0‖2

H + CE

∫ T

0

‖u(t)‖2
V dt

+ CE

∫ T

0

‖f(t)‖2
V ′dt+ C

∑

k≥1

E

∫ T

0

‖gk(t)‖2
Hdt.

(4.4.13)

If we ignore the second term on the left-hand side of (4.4.13), then, by the
Gronwall inequality,

E‖u(T )‖2
H ≤ C(T )

(
E‖u0‖2

H + E

∫ T

0

‖f(t)‖2
V ′dt+

∑

k≥1

E

∫ T

0

‖gk(t)‖2
Hdt

)
.

Putting this back into (4.4.13), we get the key estimate for the second term
on the left-hand side of (4.4.13):

E

∫ T

0

‖u(t)‖2
V dt ≤ C(T )

(
E‖u0‖2

H + E

∫ T

0

‖f(t)‖2
V ′dt

+
∑

k≥1

E

∫ T

0

‖gk(t)‖2
Hdt

)
.

(4.4.14)

Now we go back to (4.4.8) and this time take E supt on both sides. With

(4.4.14) taking care of the term CE
∫ T
0 ‖u(t)‖2

V dt in (4.4.12), we complete the
proof of a priori estimate (4.4.7).

Step 2: the Galerkin approximation (pages 192–193). We define the
Hilbert space IH by



192 4 Linear Equations: Square-Integrable Solutions

IH =
{
u ∈ L2

(
Ω × (0, T );V

)
: u(t) = u0 +

∫ t

0

F (s)ds+
∑

k≥1

∫ t

0

Gk(s)dwk(s),

u0 ∈ L2(Ω;H), F ∈ L2

(
Ω × (0, T );V ′), Gk ∈ L2

(
Ω × (0, T );H

)
,

∑

k

‖Gk‖2
L2(Ω×(0,T );H) <∞, u, F,Gk are Ft-adapted

}
;

‖u‖2
IH = ‖u0‖2

L2(Ω;H) + ‖u‖2
L2(Ω×(0,T );V )

+ ‖F‖2
L2(Ω×(0,T );V ′) +

∑

k

‖Gk‖2
L2(Ω×(0,T );H).

(4.4.15)

According to a priori estimate (4.4.6), IH is the natural solution space for the
equation

du = (Au + f)dt+
∑

k

(
Mku+ gk

)
dwk.

Exercise 4.4.4 (C). Convince yourself that IH is indeed a Hilbert space and
that F and Gk are uniquely determined by u. Write an expression for the
inner product in IH .

Let {hk, k ≥ 1} be an orthonormal basis in H that is also a dense set in
V and V ′; ΠN is the orthogonal in H projection onto the the linear span of
{h1, . . . , hN}. For v ∈ V ′,

ΠNv =
N∑

k=1

[v, hk]hk.

The sequence uN , N ≥ 1, approximating the solution satisfies

duN =
(
ΠNAuN +ΠNf

)
dt

+
N∑

k=1

(
ΠNMku

N +ΠNgk
)
dwk, 0 < t ≤ T,

(4.4.16)

uN (0) = ΠNu0. Writing uN (t) =
∑N

k=1 ū
N (t)hk, we interpret (4.4.16) as an

N -dimensional linear SODE for the functions ūNk and conclude existence and
uniqueness of uN for every N . Also, if v ∈ ΠNH , the v = ΠNv and therefore

[ΠNAv, v] = (Av, v)H = [Av, v], ‖ΠNMkv‖H ≤ ‖Mkv‖H .
As a result, the operators ΠNA and ΠNMk satisfy (4.4.4) and (4.4.5) uni-
formly in N :

2[ΠNAv, v]+

N∑

k=1

‖ΠNMkv‖2
H ≤ 2[Av, v]+

∑

k

‖Mkv‖2
H ≤ −cA‖v‖2

V +M‖v‖2
H ,

N∑

k=1

‖ΠNMkv‖2
H ≤ CM‖v‖2

V .
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Consequently, uN satisfies (4.4.7) with C(T ) independent of N [While it
is not necessarily true that ‖ΠNf‖V ′ ≤ ‖f‖V ′ , convergence limN→∞ ‖f −
ΠNf‖V ′ = 0 is enough to have a uniform bound]. In other words, the se-
quence {uN , N ≥ 1} is weakly compact in IH and therefore has a weakly
converging sub-sequence. The limit u of this subsequence is, by definition, the
variational solution we want.

Theorem 3.3.15 on page 130 (the energy equality in a normal triple of
Hilbert spaces) implies both uniqueness of the solution and existence of a
continuous in H modification of u.

This completes the proof of Theorem 4.4.3.

The stochastic parabolicity condition (4.4.4) is the abstract version of the
condition 2a > σ2 for the equation du = auxxdt+σuxdw(t) we derived earlier
using the Fourier transform (page 50).

Exercise 4.4.5 (C). Consider equation

du =

d∑

i,j=1

aij(ω, t, x)uxiuxjdt+
∑

k≥1

d∑

i=1

σik(ω, t, x)uxidwk,

0 < t ≤ T , x ∈ G ⊆ R
d, and assume that there exists a c > 0 such that, for

all t ∈ [0, T ], x ∈ G, ω ∈ Ω, and y ∈ R
d,

d∑

i,j=1

(
aij −

1

2

∑

k≥1

σikσjk

)
yiyj ≥ c

d∑

i=1

y2
i . (4.4.17)

Show that condition (4.4.4) holds in each of the following normal triples of
Hilbert space:

• (Hγ+1(G), Hγ(G), Hγ−1(G)),
• (Wn+2,r,d,Wn+1,r,d,Wn,r,d) (see Exercise 3.1.6 on page 72),

Assume all the necessary smoothness and boundedness of the coefficients.
Hint. First, consider the normal triple (H1(Rd), L2(R

d), H−1(Rd)) and use that

‖v‖2
1 = ‖v‖2

0 + ‖vx1‖2
0 + . . . + ‖vxd‖2

0.

In our study of equations with a closed form solution we saw that the right-
hand side of (4.4.17) can be zero: for example, equation du = uxxdt +√

2uxdw(t), u(0, x) = e−x
2

is perfectly fine and has solution u(t, x) =
exp(−(x +

√
2w(t))2) (see (2.3.11) on page 50). In the language of abstract

equations, this observation suggests that we should be able to allow (4.4.4)
to hold with cA = 0. We thus arrive at the notion of degenerate stochastic
parabolic equations, which we will discuss next.

Fix the stochastic basis (Ω,F , {Ft}t≥0,P) with the usual assumptions
and a collection {wk, k ≥ 1} of independent standard Brownian motions on
this basis, and consider the following equation
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u̇(t) = A(t)u(t) + f(t) +
∑

k≥1

(
Mk(t)u(t) + gk(t)

)
ẇk(t) (4.4.18)

0 < t ≤ T, u(0) = u0, in the normal triple (V,H, V ′) of Hilbert spaces.

Definition 4.4.6. Equation (4.4.18) is called degenerate parabolic in the
normal triple (V,H, V ′) if

1. The family of operators A = {A(t), 0 ≤ t ≤ T } is (V, V ′)-adapted and
L∞(V, V ′)-uniformly bounded (see page 187 for the definition).

2. For each k, the family of operators Mk = {Mk(t), 0 ≤ t ≤ T } is (V,H)-
adapted and L∞(V,H)-uniformly bounded.

3. There exists a real number M such that, for all ω ∈ Ω, t ∈ [0, T ], and
v ∈ V ,

2[A(t)v, v] +
∑

k≥1

‖Mk(t)v‖2
Hdt ≤M‖v‖2

H . (4.4.19)

Note that the definition covers deterministic equations such as ut =
(
1 +

sin(x)
)
uxx.

Remark 4.4.7. If the stochastic parabolicity condition (4.4.4) holds, then equa-
tion (4.4.18) is sometimes called non-degenerate parabolic or super-parabolic.

Exercise 4.4.8 (C). Let a = a(t, x) be a bounded measurable non-negative
function. Consider ut = (aux)x in the normal triple (H1(R), L2(R), H−1(R)).
Show that the equation is degenerate parabolic in the sense of Definition 4.4.6.

While Definition 4.4.1 on page 187 defines a solution for a wide class of
equations, including degenerate parabolic, constructing a solution is a different
story. To get a better idea of what to expect, let us go back to equation

du = uxxdt+
√

2uxdw(t), 0 < t ≤ T, x ∈ R, (4.4.20)

with non-random initial condition u(0, x) = u0(x). Simple integration by parts
shows that

E

∫

R

u2(t, x)dx ≤
∫

R

u2
0(x)dx. (4.4.21)

This is not bad, but certainly not enough to get an H1(R)-valued solution.
On the other hand, assuming that u0 and the solution u are as regular as
we want, we can take ∂/∂x on both sides of the equation and conclude that
v(t, x) = ux(t, x) also satisfies dv = vxxdt+

√
2vxdw(t) and therefore

E

∫

R

u2
x(t, x)dx ≤

∫

R

(
u′0(x)

)2
dx (4.4.22)

(as usual, u′0 is the derivative of u0). This is better, as now we have an a priori
bound on the H1(R) norm of u:

E‖u(t, ·)‖2
1 ≤ ‖u0‖2

1, 0 ≤ t ≤ T, (4.4.23)

and can use it to construct a solution.
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Exercise 4.4.9 (C). (a) Verify (4.4.21) and (4.4.22).
(b) Derive an analogue of (4.4.23) for equation ut = (1 + sinx)uxx.
Hint. In (b), for v = ux, you will get vt = (1 + sin x)vxx + (cos x)vx, which will

require additional integrations by parts and Gronwall’s inequality and will produce

a C(T ) on the right-hand side of (4.4.23).

We will construct a solution of (4.4.20) by elliptic regularization. Take
ε > 0 and consider the equation

duε = (1 + ε)uεxxdt+
√

2uεxdw(t), uε(0, x) = u0(x), (4.4.24)

in the normal triple (H2(R), H1(R), L2(R)). Assume that u0 ∈ H1(R). For
ε > 0 the equation is not degenerate and has a unique solution. A priori
bound (4.4.23) allows us to extract a converging subsequence of uε, ε → 0,
and to identify the limit as a solution of (4.4.20). Uniqueness follow from
(4.4.23). The details are left to the reader.

Exercise 4.4.10. Show that, for equation (4.4.24),
(a) condition (4.4.17) holds with cA = ε, and therefore
(b) there is a unique solution

uε ∈ L2

(
Ω × (0, T );H2(R)

)⋂
L2

(
Ω; C((0, T );H1(R))

)
;

(c) If ε > 0, then
E‖uε(t, ·)‖2

1 ≤ ‖u0‖2
1, (4.4.25)

and, after integrating in time,

‖uε‖2
L2(Ω×(0,T );H1(R)) ≤ T ‖u0‖2

1. (4.4.26)

(d) Using weak sequential compactness of L2(Ω × (0, T );H1(R)) and passing
to the limit ε → 0 (if necessary, along a subsequence), argue existence of the
solution of (4.4.20) for every u0 ∈ H1(R).
(e) Use (4.4.23) to claim uniqueness.

Let us summarize what we learned about equation (4.4.20).

Proposition 4.4.11. Consider the equation

du = uxxdt+ σuxdw(t), 0 < t ≤ T, x ∈ R, u(0, x) = u0(x). (4.4.27)

(a) If |σ| <
√

2 (non-degenerate case), then, for every u0 ∈ L2(R) the
equation has a unique solution such that u ∈ L2

(
Ω; C((0, T );L2(R)

)
) and

E sup
0<t<T

‖u(t, ·)‖2
L2(R) + E

∫ T

0

‖u(t, ·)‖2
H1(R) ≤ C(T )‖u0‖2

L2(R).

(b) If |σ| =
√

2 (degenerate case), then, for every u0 ∈ H1(R) the equation
has a unique solution such that, for all 0 ≤ t ≤ T ,

E‖u(t, ·)‖2
H1(R) ≤ ‖u0‖2

H1(R).
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Proposition 4.4.11 shows that there are two main differences between the
non-degenerate and degenerate equation (4.4.27):

• At the level of the results, the solution in the non-degenerate case is,
in some sense better than the initial condition, whereas there is no im-
provement for degenerate equations: we start in H1(R), we stay in H1(R)
for all t > 0;

• At the level of the proof, to establish existence of solution in the degen-
erate case, we need to go beyond the original normal triple (H1, L2, H

−1).

To prove an analogue of Proposition 4.4.11(b) for the abstract equation
(4.4.18), we have to apply the elliptic regularization in abstract setting. For
that, we need something to go in place of the space H2(R) and something to
replace the operator ε∂2/∂x2. Turns out, a Hilbert scale provides all the
necessary ingredients.

Given a normal triple (V,H, V ′) of Hilbert spaces, let {Hr, r ∈ R} be the
Hilbert scale such that H1 = V , H0 = H , H−1 = V ′ and let Λ be a positive-
definite self-adjoint operator generating the scale (see Theorems 3.1.11 and
3.1.12 on page 74). We will use ‖ · ‖r to denote the norm in Hr and [·, ·]r to
denote the duality between Hr+1 and Hr−1. Note that ‖ · ‖0 = ‖ · ‖H and
‖ · ‖1 = ‖ · ‖V .

The following is the general result about existence and uniqueness of the
solution for degenerate parabolic equation (4.4.18).

Theorem 4.4.12. Assume that

1. For γ = 0 and for γ = 1, the operator A is (Hγ+1, Hγ−1)-adapted and
L∞((Hγ+1, Hγ−1)-uniformly bounded, each operator Mk is (Hγ+1, Hγ)-
adapted and L∞((Hγ+1, Hγ)-uniformly bounded, and there exists a posi-
tive number CM such that, for all t ∈ [0, T ], ω ∈ Ω, and v ∈ Hγ ,

∑

k≥1

‖Mk(t)v‖2
γ ≤ CM‖v‖2

γ .

2. Condition (4.4.19) is satisfied in the normal triple (H2, H1, H0): there
exists a real number M such that, for all t ∈ [0, T ], ω ∈ Ω and v ∈ H2,

2[A(t)v, v]1 +
∑

k≥1

‖Mk(t)v‖2
1dt ≤M‖v‖2

1. (4.4.28)

3. u0 ∈ L2(Ω;H1), f ∈ L2

(
Ω × (0, T );H1

)
,

∑

k≥1

‖gk‖2
L2(Ω×(0,T );H2) <∞,

u0 is F0-measurable, f and each gk are Ft-adapted.
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Then equation (4.4.18) has a unique solution u = u(t) and

sup
0<t<T

E‖u(t)‖2
1 ≤ C(T )

(
E‖u0‖2

1 + E

∫ T

0

‖f(t)‖2
1dt+

∑

k≥1

E

∫ T

0

‖gk(t)‖2
2dt
)
.

(4.4.29)

Proof. For ε > 0, consider the elliptic regularization of (4.4.18),

duε =
(
(A − εΛ2)u+ f

)
dt+

∑

k

(
Mku+ gk

)
dwk, (4.4.30)

0 < t ≤ T , uε(0) = u0. We consider equation (4.4.30) in the normal triple
(H2, H1, H0). By Theorem 4.4.3, the equation has a unique solution for every
ε > 0.

Exercise 4.4.13 (C). (a) Verify conditions of Theorem 4.4.3 for equation
(4.4.30).
(b) Verify that (4.4.28) implies

E‖uε(t)‖2
1 ≤ C(T )

(
E‖u0‖2

1 + E

∫ T

0

‖f(t)‖2
1dt

+
∑

k≥1

E

∫ T

0

‖gk(t)‖2
2dt
)
.

(4.4.31)

The key is that C(T ) does not depend on ε.
Hint. For (b), repeat the derivation of the a priori bound in the proof of Theorem

4.4.3. Not all of derivations are necessary because you are not taking supt before

the expectation and therefore there is no need to deal with the stochastic integral.

Use |(f, u)1| ≤ ‖f‖1‖u‖1, |(Mku, gk)1| = [gk, Mku]1.

Then we take a subsequence uεn converging weakly in L2

(
Ω × [0, T ];H1

)

and identify the limit with the solution of (4.4.18). Inequality (4.4.31) is pre-
served in the limit, leading to (4.4.29) and uniqueness of the solution.

This concludes the proof of Theorem 4.4.12.

Exercise 4.4.14 (C). Consider the equation

du =
d∑

i,j=1

aij(ω, t, x)uxiuxjdt+
∑

k≥1

d∑

i=1

σik(ω, t, x)uxidwk, (4.4.32)

0 < t ≤ T , x ∈ G ⊆ R
d. Assume that, for all t ∈ [0, T ], x ∈ G, ω ∈ Ω, and

y ∈ R
d,

d∑

i,j=1

(
aij −

1

2

∑

k≥1

σikσjk

)
yiyj ≥ 0. (4.4.33)

Show that condition (4.4.28) holds in the each of the normal triples of Hilbert
space
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• (Hγ+1(G), Hγ(G), Hγ−1(G)),
• (Wn+2,r,d,Wn+1,r,d,Wn,r,d) (see Exercise 3.1.6 on page 72).

Assume all the necessary smoothness and boundedness of the coefficients.
This concludes Exercise 4.4.14.

The conclusion is that solvability of a degenerate parabolic equation re-
quires much higher regularity of the input than comparable solvability of a
non-degenerate equation. In fact, Theorem 4.4.12 effectively says that, to be
solvable in the normal triple (H1, H0, H−1), the operators in the equation
must be acing in the triple (H2, H1, H0). For equations of the type (4.4.32),
this requirement means higher regularity of the coefficients. We illustrate this
point on the following simple example. Consider the equation

du = (uxx + f(x))dt + (σ(x)ux + g(x))dw(t), 0 < t ≤ T, x ∈ R,

in the normal triple (H1(R), L2(R), H−1(R)). For simplicity assume that
u(0, ·), f, g, σ are non-random. Below is a comparison of the conditions for
the non-degenerate and degenerate situations.

Input Non-degenerate: σ2(x) ≤ c < 2 Degenerate: σ2(x) ≤ 2

u(0, ·) L2(R) H1(R)
f H−1(R) H1(R)
σ bounded and measurable Multiplier in H1(R)
g L2(R) H2(R)

We conclude the section by observing that Exercise 4.4.14 and the Sobolev
embedding theorem imply the following result.

Theorem 4.4.15. Assume that

1. the functions aij , bi, c, σij , νk are predictable, bounded, measurable, in-
finitely differentiable in x, with all the derivatives also bounded;

2. the functions f, gk are predictable, grow polynomially in x, infinitely dif-
ferentiable in x, with all the derivatives also of polynomial growth in x;

3.
∑

k≥1 supω,t,x |Dnνk(ω, t, x)| <∞ for all n ≥ 0, where Dn is n-th partial

derivative, D0νk = νk;
4.
∑

k≥1 supω,t,x |Dnσik(ω, t, x)| <∞ for all n ≥ 0 and i = 1, . . . ,d;
5. for every n ≥ 0 there exists an r ∈ R such that

∑

k≥1

sup
ω,t

‖gk(ω, t, ·)‖2
Wn,r,d <∞;

6. the initial condition u0 is F0-measurable, grows polynomially in x, in-
finitely differentiable in x, with all the derivatives also of polynomial
growth in x;

7. condition (4.4.33) is satisfied.
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Then equation (4.4.32) has a unique classical solution that grows polynomially
in x.

Proof. The idea is to apply Theorem 4.4.12 in the normal triple

(Wn+2,r,d,Wn+1,r,d,Wn,r,d)

with n > (d + 4)/2 and suitable r, and then use the Sobolev embedding
theorem to conclude that the solution is twice continuously differentiable in
x. The details are left to the reader.

This concludes the proof of Theorem 4.4.15.

4.4.2 A Change of Variables Formula

In the course of our study of closed-form solutions, we discovered that

1. change of the unknown function

v(t, x) = u(t, x) exp

(
−
∫ t

0

h(s)dw(s) +
1

2

∫ t

0

h2(s)ds

)
(4.4.34)

transforms equation du = uxxdt+ h(t)u dw(t) to vt = vxx;
2. change of the unknown function

v(t, x) = u
(
t, x− σw(t)

)
(4.4.35)

transforms equation du = uxxdt+ σuxdw(t) to vt = (1 − (σ2/2))vxx.

The following exercise shows that something similar is possible for equations
with variable coefficients.

Exercise 4.4.16 (C). Let u be a classical solution of the equation du =
uxxdt+ ν(x)udw(t) and let

v(t, x) = u(t, x)H(t, x), H(t, x) = exp

(
−ν(x)w(t) +

t

2
ν2(x)

)
(4.4.36)

Using Itô formula, show that v satisfies

vt = vxx − 2(Hx/H)vx +H(1/H)xxv. (4.4.37)

Our objective in this section is to find a change of variables that transforms
a stochastic bi-linear equation

ut(t, x) =

d∑

i,j=1

aij(ω, t, x)uxixj +

d∑

i=1

bi(ω, t, x)uxi + c(ω, t, x)u

+
∑

k≥1

((
d∑

i=1

σik(ω, t, x)uxi

)
+ νk(ω, t, x)u

)
ẇk(t), x ∈ R

d,

(4.4.38)
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with sufficiently regular in (t, x) coefficients, to a linear PDE with random
coefficients

vt =

d∑

i,j=1

Aij(ω, t, x)vxixj +

d∑

i=1

Bi(ω, t, x)vxi + C(ω, t, x)v. (4.4.39)

Here is the result.

Theorem 4.4.17. Assume that

1. the functions aij , bi, c, σik, νk are Ft-adapted, bounded, continuous in t,
and infinitely differentiable in x, with all the derivatives also bounded;

2. equation (4.4.38) is degenerate parabolic, that is, condition (4.4.33) on
page 197 holds);

3.
∑

k≥1 supω,t,x |Dnνk(ω, t, x)| <∞ for all n ≥ 0, where Dn is n-th partial

derivative, D0νk = νk.
4.
∑

k≥1 supω,t,x |Dnσik(ω, t, x)| <∞ for all n ≥ 0 and i = 1, . . . ,d.

Define the functions Ψ = (Ψ1(t, x), . . . , Ψd(t, x)) and H = H(t, x) by

Ψi(t, x) = xi −
∑

k≥1

∫ t

0

σik(s, Ψ(s, x))dwk(s), i = 1, . . . ,d;

H(t, x) = exp

(
−
∑

k≥1

∫ t

0

νk(s, Ψ(s, x))dwk(s)

+
1

2

∑

k≥1

∫ t

0

|νk(s, Ψ(s, x))|2ds
)
,

(4.4.40)

and the functions G = G(t, x) and Φ = (Φ1(t, x), . . . , Φd(t, x)) by

G(t, x) = exp


∑

k≥1

∫ t

0

νk(s, x)dwk(s) −
1

2

∑

k≥1

∫ t

0

|νk(s, x)|2ds


 ,

Φm(t, x) = xm

+

∫ t

0

(
d∑

i,j=1

∑

k≥1

σik
∂

∂xi

(
σjk

∂Φm
∂xj

)
− 1

2

d∑

i,j=1

∑

k≥1

σikσjk
∂2Φm
∂xi∂xj

)
ds

+

∫ t

0

∑

k≥1

d∑

i=1

σik
∂Φm
∂xi

dwk(s), m = 1, . . . ,d.

(4.4.41)

Let u = u(t, x) be a classical solution of (4.4.38) and define

v(t, x) = u(t, Ψ(t, x))H(t, x). (4.4.42)
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Then

(a) The functions Ψ and Φ are infinitely differentiable in x and

Ψ(t, Φ(t, x)) = x, Φ(t, Ψ(t, x)) = x (4.4.43)

for all t ≥ 0, x ∈ R
d, and ω ∈ Ω.

(b) The function v is a classical solution of (4.4.39) with suitable functions
Aij , Bi, C.

(c) u(t, x) = v(t, Φ(t, x))G(t, x).

Proof. Direct computations using the Itô-Wentzell formula (Theorem 2.1.16
on page 31). The computations also lead to explicit expressions for the func-
tions Aij , Bi, C; see Rozovskii [186, Section 5.2.2].

This concludes the proof of Theorem 4.4.17.

A more detailed proof of Theorem 4.4.17 involves analysis of the functions
|Ψ and Φ. Both Ψ and Φ are solutions of stochastic differential equations.
For Ψ , the equation is ordinary, and the existence and uniqueness of solution
are well-known (Problem 4.1.1 on page 155). For Φ, the equation is with
partial derivatives, and is a degenerate parabolic equation (in fact, it is fully
degenerate: we have an equality in (4.4.33)). Moreover, the initial condition
is not a square-integrable function. As a result, existence and uniqueness of
Ψ are not at all obvious, and follow from Theorem 4.4.12 in the normal triple
(Wn+2,r,d,Wn+1,r,d,Wn,r,d) with r < −(d + 2)/2 and n ≥ 2 (see Exercise
3.1.6 on page 72 for the definition of the spaces Wn,r,d). By the Sobolev
embedding theorem, taking n > N + (d/2) ensures that Φ has N continuous
partial derivatives in x. To show that Ψ is smooth actually requires some
effort as well: differentiating (4.4.41) according to the chain rule, it is natural
to expect that

∂Ψi(t, x)

∂xm
= δim −

∫ t

0

d∑

ℓ=1

∂σik
∂xℓ

(s, Ψ(s, x))
∂Ψℓ
∂xm

(s, x)dwk(s), (4.4.44)

which is a linear equation (and similarly for higher-order derivatives), but
justification is required.

The change of variables (4.4.42) is better understood as a composition of two
transformations. First, we replace u with

ũ(t, x) = u(t, x)/G(t, x).

According to Exercise 4.4.16, the function ũ satisfies an equation of the form:
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dũ = (. . .)dt+
∑

k

d∑

i=1

σ̃ikũxidwk.

In other words, by going from u to ũ, we remove the νk u dwk terms. The
second change of variables,

v(t, x) = ũ(t, Ψ(t, x)),

finishes the job by removing the σ̃ik ũxi dwk terms.
Finally, note that the classical solution of (4.4.38) is a variational solution

with two continuous derivative in x. Given the conditions of the theorem,
existence of such a solution will follow from Theorem 4.4.12 if the initial con-
dition u(0, x) belongs to Hn(Rd) for sufficiently large n; u(0, ·) ∈ C∞

0 (Rd) or
u(0, ·) ∈ S(Rd) will certainly work. The change of variables does not affect
the initial condition.

To conclude our discussion of the change of variables, let us have a closer
look at Part (a) of Theorem 4.4.17. The solution Ψ of the stochastic ordinary
differential equation in (4.4.40), when considered as a function of both t and
x, is called a stochastic flow. Its inverse flow Φ satisfies a fully degen-
erate stochastic parabolic equation. While the stochastic flow in (4.4.40) is
somewhat special (it contains no drift), the connection between Ψ and Φ is
remarkable enough to justify an extension to more general flows.

Theorem 4.4.18 (Direct and inverse stochastic flows). Assume that the
functions b =

(
bi(ω, t, x), i = 1 . . . , d

)
and σ =

(
σik(ω, t, x), i = 1, . . . ,d, k ≥

1
)

have the following properties:

1. The components of b and σ are Ft-adapted, bounded, continuous in t, and
infinitely differentiable in x, with all the derivatives also bounded;

2.
∑

k≥1 supω,t,x |Dnσik(ω, t, x)| <∞ for all n ≥ 0 and i = 1, . . . ,d.

Define the functions Ψ=(Ψ1(t, x), . . . , Ψd(t, x)) and Φ=(Φ1(t, x), . . . , Φd(t, x))
by

Ψi(t, x) = xi +

∫ t

0

bi(s, Ψ(s, x))ds +
∑

k≥1

∫ t

0

σik(s, Ψ(s, x))dwk(s), i = 1, . . . ,d;

Φm(t, x) = xm +

∫ t

0

(
d∑

i,j=1

∑

k≥1

σik
∂

∂xi

(
σjk

∂Φm
∂xj

)

− 1

2

d∑

i,j=1

∑

k≥1

σikσjk
∂2Φm
∂xi∂xj

−
d∑

i=1

bi
∂Φm
∂xi

)
ds

−
∫ t

0

∑

k≥1

d∑

i=1

σik
∂Φm
∂xi

dwk(s), m = 1, . . . ,d.

(4.4.45)
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Then the functions Ψ and Φ are infinitely differentiable in x and

Ψ(t, Φ(t, x)) = x, Φ(t, Ψ(t, x)) = x (4.4.46)

for all t ≥ 0, x ∈ R
d, and ω ∈ Ω.

Proof. The mechanical part is to verify (4.4.46) using the Itô-Wentzell formula
(Theorem 2.1.16 on page 31). The easy technical part is to realize that the
fully degenerate parabolic equation for Φm must be solved in the normal
triple (Wn+2,r,d,Wn+2,r,d,Wn+2,r,d) of weighted Sobolev spaces with integer
n arbitrarily large and with r < −(d + 2)/2; the Sobolev embedding theorem
then implies that Φ is infinitely differentiable. The medium-hard technical
part is justifying an analogue of (4.4.44) to ensure that Ψ is smooth. The
hard technical part is making sure that every sample trajectory of Ψ and Φ
is infinitely differentiable in x. We leave the details to the reader. The details
are left to the reader.

This concludes the proof of Theorem 4.4.18.

4.4.3 Probabilistic Representation of the Solution, Part I: Method
of Characteristics

In our study of closed-form solutions we derived the following representation
of the solution of the equation

ut = auxx + σuxẇ, x ∈ R, t > 0, u(0, x) = u0(x), 2a ≥ σ2 : (4.4.47)

u(t, x) = E

(
u0

(
x+

√
2a− σ2w̃(t) + σw(t)

)∣∣Fw
t

)
, (4.4.48)

where w̃ is a standard Brownian motion independent of w and Fw
t is the sigma-

algebra generated by w(s), s ≤ t (see (2.3.11) on page 50). One can inter-
pret (4.4.48) as a probabilistic representation of the solution of (4.4.48)
by averaging the initial condition along the stochastic characteristic

X(t, x) = x+
√

2a− σ2 w̃(t) + σw(t).
The objective of this section is to derive a similar representation for the

solution of a more general equation

ut(t, x) =
d∑

i,j=1

aij(t, x)uxixj (t, x) +
d∑

i=1

bi(t, x)uxi(t, x) + c(t, x)u(t, x)

+ f(t, x) +
∑

k≥1

( d∑

i=1

σik(t, x)uxi(t, x)

+ νk(t, x)u(t, x) + gk(t, x)
)
ẇk(t),

0 < t ≤ T, x ∈ R
d; u(0, x) = u0(x).

(4.4.49)
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It will be essential for our analysis to have randomness in the equation coming
only from the Brownian motions wk; all other objects (coefficients a, b, c, σ, ν,
free terms f, g, and the initial condition u0) are assumed to be non-random.

To get an idea of what to expect, we have to review the original method
of characteristics for deterministic first-order PDEs: the special structure of
equation (4.4.47) (more precisely, the fact that the coefficients a and σ do not
depend on time) make (4.4.48) somewhat misleading.

Recall that, for the first-order partial differential equation a(x, y)ux +
b(x, y)uy = 0, a characteristic curve, or simply a characteristic, is a so-
lution of the system of two ordinary differential equations ẋ(t) = a

(
x(t), y(t)

)
,

ẏ(t) = b
(
x(t), y(t)

)
. If

(
x(t), y(t)

)
is a characteristic curve and u is a solution

of the PDE, then, by the chain rule, (d/dt)u
(
x(t), y(t)

)
= 0. If the values of

u are known on some curve h(x, y) = 0 that is not a characteristic curve,
then the value of u can be determined at every point (x0, y0) by finding the
intersection (x∗, y∗) of the characteristic curve through the point (x0, y0) with
the curve h(x, y) = 0; then u(x0, y0) = u(x∗, y∗).

As an illustration, consider the initial value problem for the transport
equation ut+cux = 0, u(0, x) = ϕ(x). The characteristic equation is dt/ds = 1,
dx/ds = c (with t already in use, we parameterize the characteristics with s).
To find u(t0, x0) for t0 > 0, we find the characteristic curve through the point
(t0, x0): t(s) = t0 + s, x(s) = x0 + cs. The curve intersects the line t = 0 when
s = −t0, and then x∗ = x0 − ct0. This means

u(t0, x0) = ϕ(x∗) = ϕ(x0 − ct0). (4.4.50)

The result is the familiar formula for the solution: u(t, x) = u(0, x− ct). The
important feature of this derivation is that, to find the solution of the initial-
value problem, we run the characteristic curve backward in time: from the
current time t = t0 to the initial time t = 0. This time-reversal, that is,
running the characteristic curve backward in time to solve an initial-value
problem, will be essential for our analysis of equation (4.4.49).

As a further illustration of time reversal in the method of characteris-
tics, let us review the probabilistic representation of solution for deterministic
parabolic equations. We start with the time homogeneous case:

vt =
1

2

d∑

i,j=1

aij(x)vxixj +

d∑

i=1

bi(x)vxi + c(x)v + f(t, x), (4.4.51)

t > 0, x ∈ R
d, v(0, x) = v0(x).

Theorem 4.4.19. Assume that

• the functions aij , bi, c are non-random, bounded, and uniformly Lipschitz
continuous in x;

• the functions f, v0 are non-random, continuous, and of polynomial growth
in x;
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• the function v is a classical solution of (4.4.51) and is of polynomial growth
in x.

Then
(a) there exists a square matrix σ = (σik(x), i, k = 1, . . . ,d with Lipschitz

continuous entries such that
∑d

k=1 σikσjk = aij ;
(b) For every x ∈ R

d, the system of stochastic ordinary differential equations

Xi(t, x) = xi +

∫ t

0

bi
(
X(s, x)

)
ds+

d∑

k=1

∫ t

0

σik
(
X(s, x)

)
dwk(s) (4.4.52)

has a unique strong solution [as usual, (w1, . . . , wd) are independent standard
Brownian motions], and can serve as a stochastic characteristic for equation
(4.4.51):

v(t, x) = E

(
v0
(
X(t, x)

)
e
∫ t
0
c(X(s,x))ds

+

∫ t

0

e
∫

s
0
c(X(r,x))drf

(
t− s,X(s, x)

)
ds
)
.

(4.4.53)

Proof. Part (a) is a multi-dimensional analogue of Lipschitz continuity of
f(t) =

√
t on every interval away from zero; for details, see, for example,

Stroock and Varadhan [199, Theorem 5.2.2].
In Part (b), solvability of (4.4.52) follows from global Lipschitz continuity

of the coefficients. To establish (4.4.53), fix T > 0, use t to denote the time
variable, apply Itô formula to the function

F (t, x) = v(T − t,X(t, x))e
∫

t
0
c(X(s,x))ds, 0 ≤ t ≤ T,

take the expectation on both sides, and notice that F (0, x) = v(T, x),

F (T, x) = v0(X(T, x))e
∫ T
0
c(X(s,x))ds. The result is equality (4.4.53). We need

polynomial growth assumption to be sure that all expectations are finite, and
we need continuity of f and v0 to make sense out of expressions such as
f
(
t− s,X(s, x)

)
.

This concludes the proof of Theorem 4.4.19.

Note that
(i) Representation (4.4.53) is not canonical in the sense that representation
of the solution is in terms of f(t− s, x) rather than f(s, x);
(ii) The proof cannot be carried out if the functions aij , bi depend on time;
(iii) The same characteristic equation represents the solution v at the point x
for all t ≥ 0: if we got v(t1, x) from (4.4.53) and now want v(t1, x) for some
t2 > t1, we only need to solve (4.4.52) on [t1, t2].

Items (i) and (ii) can be corrected by reversing the time and considering
a backward equation for the characteristic:
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Yi(s, x; t) = xi+

∫ t

s

bi
(
Y (r, x; t)

)
dr+

d∑

k=1

∫ t

s

σik
(
Y (r, x; t)

)
∗dwk(r), (4.4.54)

s ≤ t, where, for fixed t > 0 and 0 ≤ s ≤ t,

∫ t

s

F (r) ∗ dw(r) =

∫ t−s

0

F (t− r)d
(
w(t) − w(t − r)

)
. (4.4.55)

Equation (4.4.54) is a backward-in-time stochastic equation, which is reduced
to the usual forward-in-time equation via a time change. [This is very different
from backward stochastic differential equations, which are forward in time and
seek an adapted solution given a terminal condition.]

Note that, for fixed t > 0 and r ∈ [0, t], the process w̄(r) = w(t)−w(t− r)
is a standard Brownian motion. Then

v(t, x) = E

(
v0
(
Y (0, x; t)

)
e
∫ t
0
c
(
Y (s,x;t)

)
ds

+

∫ t

0

e
∫

t
s
c
(
Y (r,x;t)

)
drf
(
s, Y (s, x; t)

)
ds
)
.

(4.4.56)

The resulting representation is canonical and easily extends to time-dependent
coefficients a, b, c, but there is a price to pay: now, a new equation (4.4.54)
must be solved for every new t at which the solution of (4.4.53) is represented.
Indeed, changing t to t1 changes the terminal condition in (4.4.54), meaning
that the equation must be solved from scratch.

Exercise 4.4.20 (C). (a) Verify (4.4.56) by reversing time in (4.4.53).
(b) Write an analogue of (4.4.56) when the coefficients a, b, c in (4.4.51) depend
on t.

If f = 0 and c = 0, then there is a complete analogy between (4.4.56) and
(4.4.50): to find the solution of the initial value problem at point (t0, x0), t0 >
0, we run the corresponding characteristic backward in time from the point
(t0, x0) and evaluate the initial condition at the point where the characteristic
hits the hyper-plane t = 0 in the (t, x) space.

If we insist on keeping (4.4.52) as a characteristic, then define

U(t, x) = E

(
v0(X(T − t))e

∫
T
t
c(X(s))ds +

∫ T

t

e
∫

s
t
c(X(r))drf(s,X(s))ds

)
.

(4.4.57)
The function U satisfies

−Ut =
1

2

d∑

i,j=1

aij(x)Uxixj +

d∑

i=1

bi(x)Uxi + c(x)v + f(t, x), (4.4.58)

0 ≤ t < T , x ∈ R
d, U(T, x) = v0(x) (a backward parabolic equation): see

Karatzas and Shreve [98, Theorem 5.7.6].
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Exercise 4.4.21 (B). Find a backward in time deterministic PDE whose
solution can be represented using (4.4.54), and write the corresponding rep-
resentation.

Some of the problems that can be addressed using probabilistic represen-
tations are

1. Maximum principle for the PDE. For example, if the initial condition
v0 and the free term f are non-negative, then (4.4.53) implies that the
solution of (4.4.51) remains non-negative for all t > 0;

2. Relaxing conditions on the coefficients in the equations. For example, the
right-hand side of (4.4.53) makes sense even if the stochastic equation
(4.4.52) has a unique weak, rather than strong, solution.

3. Numerical solution of the PDE by the Monte-Carlo simulations.

Let us summarize what we discussed so far:
(a) The canonical representation by the method of characteristics is of the
forward-backward or backward-forward type: it requires one of the equations
(either the PDE or the ODE) to be backward in time;
(b) In this canonical representation, a different characteristic is necessary for
every point at which the solution is represented.
(c) Forward-forward and backward-backward representations are not canoni-
cal, but can have a computational advantage because one characteristic equa-
tion works for all t.

Now we are ready to represent the solution of (4.4.49) using the method
of characteristics.

Theorem 4.4.22. Assume that

• the functions aij , bi, c, σik, νk are non-random, bounded, continuous, and
uniformly Lipschitz continuous in x;

• the functions f, v0, gk are non-random, continuous, and of polynomial
growth in x;

• the function u is a classical solution of (4.4.49) and is of polynomial growth
in x;

• the following technical conditions hold:
∑

k≥1

sup
t,x

|νk(t, x)| <∞, (4.4.59)

∑

k≥1

sup
t,x

|gk(t, x)| <∞, (4.4.60)

2aij(t, x) =
∑

k≥1

σik(t, x)σjk(t, x) +

d∑

ℓ=1

σ̃iℓ(t, x)σ̃jℓ(t, x), (4.4.61)

and the functions σ̃iℓ(t, x) are non-random, bounded, continuous, and uni-
formly Lischitz continuous in x.
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For fixed t > 0 and x ∈ R
d, consider the following stochastic ordinary differ-

ential equation in R
d:

Xi(s, x; t) = xi +

∫ t

s

Bi
(
r,X(r, x; t)

)
dr +

∫ t

s

∑

k≥1

σik
(
r,X(r, x; t)

)
∗ dwk(r)

+

d∑

ℓ=1

∫ t

s

σ̃iℓ
(
r,X(r, x; t)

)
∗ dw̃ℓ(r); 0 < s ≤ t, i = 1, . . . ,d

(4.4.62)

where Bi = bi −
∑

k≥1 σikνk, w̃k, k ≥ 1, are independent standard Wiener
processes independent of wk, k ≥ 1, and ∗dw is defined in (4.4.55).

Then (4.4.62) has a unique strong solution and

u(t, x) = E

(∫ t

0

f
(
s,X(s, x; t)

)
γ(s, x; t)ds

+
∑

k≥1

∫ t

0

gk
(
s,X(s, x; t)

)
γ(s, x; t) ∗ dwk(s)

+ u0

(
X(0, x; t)

)
γ(0, x; t) |Fw

t

)
,

(4.4.63)

where Fw
t is the σ-algebra generated by wk(s), k ≥ 1, 0 < s < t, and

γ(s, x; t) = exp

(∫ t

s

c
(
r,X(r, x; t)

)
dr

+
∑

k≥1

∫ t

s

νk
(
r,X(r, x; t)

)
∗ dwk(r) −

1

2

∫ t

s

∑

k≥1

ν2
k

(
r,X(r, x; t)

)
dr

)
.

Proof. We begin with some general comments. The result is of the forward-
backward type: we have a representation of the solution of a forward in time
SPDE using a backward in time SODE. Representation (4.4.63) holds for all
t ≥ 0 and x ∈ R

d, but to get it, we have to fix t and x and then solve
(4.4.62) from s = t to s = 0. Having the matrix 2aij −

∑
k σikσjk uniformly

positive definite is sufficient for (4.4.61) to hold: see Stroock and Varadhan
[199, Theorem 5.2.2]. Conditions (4.4.59) and (4.4.60) ensure convergence of
all infinite sums. Existence and uniqueness of the strong solution of (4.4.62)
follows from boundedness and uniform Lipschitz continuity of the coefficients.
Since a weak solution will also work, conditions on the coefficients can be
relaxed. Polynomial growth of u0, u, f, gk is necessary to take expectations
after applying the Itô formula.

The proof of (4.4.63) is carried out by reducing the SPDE to a determin-
istic equation and applying (4.4.56). Here is an outline:
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• Since t is fixed in (4.4.63), it will be convenient to set t = T in (4.4.63), and
use t as a the time variable.
• Define

Y (T, x) =

∫ T

0

f
(
s,X(s, x;T )

)
γ(s, x;T )ds

+
∑

k≥1

∫ T

0

gk
(
s,X(s, x;T )

)
γ(s, x;T ) ∗ dwk(s)

+ u0

(
X(0, x;T )

)
γ(0, x;T ).

(4.4.64)

• Let h = (h1(s), . . . , hN (s)), 0 < s < T, be a collection of smooth functions;
N is arbitrary but finite if there are infinitely many Wiener processes in the
SPDE (4.4.49); otherwise, N is the number of those Wiener processes.
• Define

Eh(t) = exp

(
N∑

k=1

(∫ t

0

hk(s)dwk(s) −
1

2

∫ t

0

h2
k(s)ds

))

and write Eh(T ) = Eh. Note that Eh(t) = E(Eh|Fw
t ) and dEh(t) =

Eh(t)hk(t)dwk(t).
• The following result will be necessary: If ξ ∈ L2(Ω), ξ is Fw

T -measurable
and E(ξEh) = 0 for every h as above, then Eξ2 = 0 (Øksendal [169, Lemma
4.3.2]). In other words, any Fw

T -measurable square-integrable random variable
ξ is completely characterized by the collection of numbers ξh = E

(
ξEh
)
:

E
(
ξEh
)

= E
(
ξEh
)

for all h ⇐⇒ ξ = η with probability one. (4.4.65)

We refer to this result as completeness of the system Eh. To some extend,
this is an analogue of saying that equality of the Fourier transforms implies
equality of functions.
• By (4.4.65), equality (4.4.63) is equivalent to

E
(
u(T, x)Eh

)
= E

(
EhE(Y (T, x)|Fw

T )
)
. (4.4.66)

So, all we need is to establish (4.4.66).
• To prove (4.4.66), define Uh(s, x) = E

(
u(s, x)Eh

)
. Since u is Fw

t -adapted,
we have

Uh(t, x) = E
(
u(t, x)Eh

)
= E

(
u(t, x)E(Eh|Fw

t )
)

= E
(
u(t, x)Eh(t)

)
.

By the Itô formula

∂Uh
∂t

=

d∑

i,j=1

aij
∂2Uh
∂xixj

+

d∑

i=1

bi
∂Uh
∂xi

+ c Uh + f

+

N∑

k=1

(
d∑

i=1

σik
∂Uh
∂xi

+ νkUh + gkhk

)
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with initial condition Uh|t=0 = u0.
• Introduce a new probability measure dP′

T = EhdPT , where PT is the restric-
tion of P to Fw

T . Then, with E
′ denoting the corresponding expectation,

Uh(T, x) = E
′Y (T, x), (4.4.67)

where Y (t, x) is defined in (4.4.64) and where we use the Girsanov theorem [98,
Theorem 3.5.1] and the probabilistic representation (4.4.56) for deterministic
PDEs. In particular, it is the Girsanov theorem that produces the modified
drift in (4.4.49).
• To complete the proof, we note that

E
′Y (T, x) = E

(
EhY (T, x)

)
= E

(
E
(
EhY (T, x)

∣∣Fw
T

))
,

recall that Uh(T, x) = E
(
u(T, x)Eh

)
, and get (4.4.66) from (4.4.67).

The concludes the proof of Theorem 4.4.22.

Exercise 4.4.23 (C). (a) In (4.4.49), assume that f ≥ 0, u0 ≥ 0, and gk = 0.
Show that u ≥ 0 (this is a version of the maximum principle for (4.4.49)).
(b) Verify that setting σ, ν, and g to zero results in (4.4.56).

4.4.4 Probabilistic Representation of the Solution, Part II:
Measure-Valued Solutions and The Filtering Problem

Measure-valued solutions were first introduced on page 44. These solutions
are considered for a special type of linear parabolic equations involving formal
adjoint operators and lead to a new type of the existence/uniqueness result
(because the collection of measures is not a Hilbert space). In this section,
we construct measure-valued solutions for stochastic parabolic equations and
apply the result to the problem of optimal nonlinear filtering of diffusion
processes.

If A is a partial differential operator in R
d, then its formal adjoint A⊤ is

defined by the equality

(Af, g)L2(Rd) = (f,A⊤g)L2(Rd)

for all smooth compactly supported functions f, g. For example, if, in R,
Af(x) = a(x)f ′′(x), then A⊤g(x) = (a(x)g(x))′′.

Exercise 4.4.24 (C). Verify that if

Af =
1

2

d∑

i,j=1

aij(ω, t, x)
∂2f

∂xi∂xj
+

d∑

i=1

bi(ω, t, x)
∂f

∂xi
+ c(ω, t, x)f, (4.4.68)

then

A⊤g =
1

2

d∑

i,j=1

∂2
(
aij(ω, t, x)f

)

∂xi∂xj
−

d∑

i=1

∂
(
bi(ω, t, x)f

)

∂xi
+ c(ω, t, x)f. (4.4.69)



4.4 Stochastic Parabolic Equations 211

Our objective is to study measure-valued solutions for stochastic partial
differential equations of the form

ut = A⊤u+
∑

k≥1

M⊤
k u ẇk(t), 0 < t ≤ T, (4.4.70)

where A is from (4.4.68) and

Mku =

d∑

i=1

σik(ω, t, x)
∂u

∂xi
+ νk(ω, t, x)u,

M⊤
k = −

d∑

i=1

∂
(
σik(ω, t, x)u)

∂xi
+ νk(ω, t, x)u.

(4.4.71)

To define the measure-valued solution of (4.4.70) we assume that

• all coefficients are measurable and Ft-adapted;
• the initial condition u(0, ·) = µ0 is a finite positive measure on R

d;
• sup

ω,t,x

∑
k σ

2
ik(ω, t, x) <∞ for all i = 1, . . . ,d, and sup

ω,t,x

∑
k ν

2
k(ω, t, x) <∞

Definition 4.4.25. A collection of random measures µt = µt(ω, dx) on
R

d with the Borel sigma-algebra is called a measure-valued solution of
(4.4.70) if

1. µt is a positive measure for every (ω, t) ∈ Ω × [0, T ]: µt[A] ≥ 0 for all
Borel subsets A of R;

2. µt is a finite measure on R
d for every (ω, t) ∈ Ω × [0, T ]:

µt[R
d] :=

∫

Rd

µt(dx) <∞;

3. For every T > 0,
∫ T
0

E|µt[Rd]|2dt <∞;

4. For every bounded measurable function f , µt[f ] =
∫

Rd f(x)µt(dx) is an
Ft-adapted continuous process;

5. For every smooth compactly supported function f = f(x),

µt[f ] = µ0[f ] +

∫ t

0

µs[(Af)(s, ·)]ds

+
∑

k≥1

∫ t

0

µs[(Mkf)(s, ·)]dwk(s).
(4.4.72)

The following theorem is the main result about existence, uniqueness, and
representation of the measure-valued solution for equation (4.4.70).

Theorem 4.4.26. Assume that
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• the functions aij , bi, σik, νk are adapted, bounded, continuous in (t, x), and
uniformly Lipschitz continuous in x;

• the initial condition u0 is a probability measure µ0 on R
d;

• the following technical conditions hold:

∑

k≥1

sup
ω,t,x

|νk(ω, t, x)| <∞, (4.4.73)

aij(ω, t, x) =
∑

k≥1

σik(ω, t, x)σjk(ω, t, x) +
d∑

ℓ=1

σ̃iℓ(ω, t, x)σ̃jℓ(ω, t, x)

(4.4.74)

and the functions σ̃iℓ(ω, t, x) are adapted, bounded, continuous, and uni-
formly Lischitz continuous in x.

Define the process X = X(t) ∈ R
d by

Xi(t) = Xi(0) +

∫ t

0

Bi (s,X(s)) ds+

∫ t

0

σik (s,X (s)) dwk (s)

+

∫ t

0

σ̃ik (s,X (s)) dw̃k (s)

(4.4.75)

where Bi = bi−
∑

k≥1 σikνk and w̃k, k ≥ 1, are independent standard Wiener
processes, independent of {Ft}0<t≤T , the initial condition X(0) is independent
of w, w̃ and has distribution µ0. Also define

φ(t) = exp

(∫ t

0

c(s,X(s))ds+

∫ t

0

νk(s,X(s))dWk(s)

− 1

2

∫ t

0

∑

k≥1

ν2
k(s,X(s))ds

)
.

Then there exists a unique measure-valued solution of (4.4.70) and, for every
bounded measurable function f = f(x),

µt[f ] = E

(
f
(
X(t)

)
φ(t)|Ft

)
. (4.4.76)

Proof. We begin with some general comments. Having the matrix aij −∑
k σikσjk uniformly positive definite is sufficient for (4.4.74) to hold: see

Stroock and Varadhan [199, Theorem 5.2.2]. Condition (4.4.73) ensures con-
vergence of the corresponding infinite sums. Boundedness and uniform Lip-
schitz continuity of the coefficients ensure existence and uniqueness of the
strong solution of (4.4.75). Since a weak solution will also work, conditions on
the coefficients can be relaxed.

The proof is based on the following computation. Using Itô formula,
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dφ(t) = φ(t)
(
cdt+

∑

k

νkdwk

)
,

df(X(t)) =
∑

i

((
bi −

∑

k

σikνk
)
fxi dt+

∑

k

fxiσikdwk

+
∑

ℓ

fxiσ̃iℓ dw̃ℓ +
1

2

∑

j

aijfxixj

)
,

d
(
φ(t)f(X(t))

)
= fdφ+ φdf +

∑

i,k

φfxiσikνk

= φ (Af) dt+ φ
∑

k

(Mkf) dwk + φ
∑

i,ℓ

fxiσ̃iℓdw̃ℓ, (4.4.77)

or

φ(t)f(X(t)) = f(X(0)) +

∫ t

0

φ(s)Af(X(s))ds

+
∑

k

∫ t

0

φ(s)Mkf(X(s)) dwk(s) +
∑

i,ℓ

∫ t

0

φ(s)fxi(X(s))σ̃iℓdw̃ℓ(s)

(4.4.78)

Next, we take conditional expectation E(·|Ft) on both sides of (4.4.78). The
result is

E

(
φ(t)f(X(t))

∣∣Ft
)

= µ0[f ] +

∫ t

0

E

(
φ(s)Af(X(s))

∣∣Fs
)
ds

+
∑

k

∫ t

0

E

(
φ(s)Mkf(X(s))

∣∣Fs
)
dwk(s).

(4.4.79)

To get from (4.4.78) to (4.4.79), we use the following results:

1. because w̃ℓ is independent of Ft,

E

( ∫ t

0

φ(s)fxi(X(s))σ̃iℓdw̃ℓ(s)
∣∣∣Ft
)

= 0

(see Liptser and Shiryaev [131, Corollary 2 to Theorem 5.13]);
2. by a version of the Fubini theorem [131, Lemma 8.3],

E

(∫ t

0

φ(s)Af(X(s))ds
∣∣Ft
)

=

∫ t

0

E

(
φ(s)Af(X(s))

∣∣Fs
)
ds

3. by a different version of the Fubini theorem [131, Theorem 5.14],

E

(∫ t

0

φ(s)Mkf(X(s))dwk(s)
∣∣Ft
)

=

∫ t

0

E

(
φ(s)Mkf(X(s))

∣∣Fs
)
dwk(s).
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Now let us compare (4.4.79) and (4.4.72). The left-hand sides are the same.
If µt is a measure-valued solution of (4.4.70), then (4.4.72) holds, and, by
matching the terms on the right-hand side in (4.4.79) and (4.4.72), we conclude
that µt satisfies (4.4.76). In other words, every measure-valued solution of
(4.4.70) must satisfy (4.4.76), and, since the right-hand side of (4.4.76) does
not depend on µ, the uniqueness of the measure-valued solution follows.

To prove existence, there are two options:
(i) Assume µ0 has a smooth density and that all the coefficients are smooth,
and reduce the problem to the Hilbert space setting. Then argue that the
Hilbert space solution is the same as the density of the measure-valued solu-
tion. In general, use a limiting procedure, approximating the coefficients and
initial condition with smooth objects.
(ii) Argue that there exists a measure µt such that, for every smooth function
f , relation (4.4.76) holds. The construction of µt is similar to the construction
of the regular conditional distribution.

For details and further discussions, see Rozovskii [186, Section 5.3].

This concludes the proof of Theorem 4.4.26.

Let us now discuss a connection between formula (4.4.76) and nonlinear fil-
tering of diffusion processes. Consider two diffusion processes (X,Y ) defined
by

dXi(t) = bi(t,X(t))dt+
m∑

ℓ=1

σiℓ(t,X(t))dw̃ℓ(t) +
n∑

k=1

ρik(t,X(t))dwk(t),

dYk(t) = h(t,X(t))dt+ dwk(t),

(4.4.80)

where 0 < t ≤ T , i = 1, . . . ,d, k = 1, . . . , n, wk, w̃ℓ are independent standard
Brownian motions, X(0) ∈ R

d is a random variable independent of wk, w̃ℓ,
Y (0) = 0. Thinking of X as an unobservable process and Y as observations,
the filtering problem is to find the conditional distribution of X(t) given
the observations Y (s), s ≤ t. The problem is called nonlinear because equa-
tions (4.4.80) are nonlinear.

We assume that the coefficients b, σ, ρ, h are bounded, continuous in (t, x),
and uniformly Lipschitz continuous in x. The coefficients can also be random,
but the randomness at time t can only come through the dependence on Y (s),
s ≤ t; for more details, see Rozovskii [186, Section 6.1]. We define the following
operators:

A =
1

2

d∑

i,j=1

(
n∑

ℓ=1

σiℓσjℓ +

m∑

k=1

ρikρjk

)
∂2

∂xi∂xj
+

d∑

i=1

bi
∂

∂xi
,

Mk = hk +

d∑

i=1

ρik
∂

∂xi
.

(4.4.81)
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Here is the main result about the filtering problem, describing the con-
ditional distribution of X as a measure-valued solution of a linear stochastic
parabolic equations.

Theorem 4.4.27. If the processes X and Y are defined by (4.4.80), then
(a) for every 0 < t ≤ T , the conditional distribution of X(t) given

Y (s), 0 ≤ s ≤ t has the following representation:

P
(
X(t) ∈ G|Y (s), 0 ≤ s ≤ t

)
=

µt[G]

µt[Rd]
, (4.4.82)

where G is a Borel subset of R
d;

(b) the family of measures µt, 0 ≤ t ≤ T, is the measure-valued solution
of the equation

du = A⊤u dt+

m∑

k=1

M⊤
k u dYk, (4.4.83)

with initial condition µ0 equal to the probability distribution of X(0).

Proof. Define the function

Z(t) = exp

(
m∑

k=1

∫ t

0

hk(s,X(s))dY (s) − 1

2

m∑

k=1

∫ t

0

h2
k(s,X(s))ds

)
(4.4.84)

and a new probability measure P̄ by

Z(T ) dP̄ = dP. (4.4.85)

Under the new measure P̄,

• The process Y is an m-dimensional standard Brownian motion, indepen-
dent of w̃ℓ (this is Girsanov’s theorem);

• The process X satisfies

dXi =
(
bi −

n∑

k=1

ρikhk

)
dt+

n∑

k=1

ρikdYk +

m∑

ℓ=1

σiℓdw̃ℓ (4.4.86)

(in the original equation for X , replace dwk with dYk − hkdt);
• The distribution of X(0) does not change.

If Ē denotes the expectation with respect to P̄, then direct computations show
that, for every bounded measurable function f = f(x), x ∈ R

d,

E
(
f(X(t))|Y (s), 0 ≤ s ≤ t

)
=

Ē
(
Z(t)f(X(t))|Y (s), 0 ≤ s ≤ t

)

Ē
(
Z(t)|Y (s), 0 ≤ s ≤ t

) . (4.4.87)

Indeed, the martingale property of Z under P̄ allows us to replace Z(t) with
Z(T ) on the right-hand side of (4.4.87) [details are in Exercise 4.4.29 below].
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Writing Z = Z(T ), f = f
(
X(t)

)
, and Y for the sigma-algebra generated by

Y (s), 0 ≤ s ≤ t, we now need to show that

Ē(Z|Y) E(f |Y) = Ē(fZ|Y). (4.4.88)

Note that
Ē(Z|Y) E(f |Y) = Ē

(
ZE(f |Y)

∣∣Y
)
.

Then, for every Y-measurable random variable ξ,

Ē
(
ξZE(f |Y)

)
= E(ξE(f |Y)) = E(ξf)

and
Ē
(
ξĒ(fZ|Y)

)
= Ē(ξZf |Y) = E(ξf),

which implies (4.4.88).
Applying (4.4.76) with Ē instead of E, with the sigma-algebra generated

by Y (s), 0 ≤ s ≤ t in place of Ft, and with w = Y , σ = ρ, ν = h, and φ = Z,
we conclude that

Ē
(
Z(t)f(X(t))|Y (s), 0 ≤ s ≤ t

)
= µt[f ],

where µt is the measure-valued solution of (4.4.83).

This concludes the proof of Theorem 4.4.27.

Exercise 4.4.28 (B). (a) Verify that, in general, µt[R
d] 6= 1 for t > 0.

(b) Verify that µt[R
d] = 1 for all t ≥ 0 if hk = 0.

Hint. In both cases, integrate (4.4.83) over R
d and note that A1 = 0 [A1 is the

operator A applied to the constant function f(x) = 1], and Mk1 = 0 if hk = 0.

Exercise 4.4.29 (B). Verify that

Ē
(
f(X(t))Z(t)|Y (s), 0 ≤ s ≤ t

)
= Ē

(
f(X(t))Z(T )|Y (s), 0 ≤ s ≤ t

)
.

Hint. Condition on the sigma-algebra FX,Y
t generated by both Y (s) and X(s),

0 ≤ s ≤ t and argue that Z(t) is a martingale with respect to P̄ and FX,Y
t .

4.4.5 Further Directions

Of the three types (elliptic, hyperbolic, parabolic), parabolic equations have
been studied the most. This could be because of the applications of such
equations to nonlinear filtering of diffusion processes and to the study par-
ticle systems. This could also be because the heat semigroup is analytically
much better than the wave semigroup, and, unlike their elliptic counterparts,
parabolic equations can use the full power of the Itô calculus. Given the vast
literature on the subject of stochastic parabolic equations, we will only men-
tion a few selected topics.
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Our Theorems 4.4.3 and 4.4.12 give more-or-less complete description of
the Hilbert space theory for linear stochastic parabolic equations. The main
drawback of this theory is inability to provide optimal regularity of the solu-
tion. For example, consider the equation driven by space-time white noise

ut = uxxdt+ Ẇ (t, x), x ∈ (0, π)

with zero initial and boundary conditions. Our study of the closed-form solu-
tions showed that u is almost 1/2 Hölder continuous in space and almost 1/4
Hölder continuous in time; see (2.3.19), page 52. On the other hand, applying
Theorem 4.4.3 in the normal triple

(
Hγ+1((0, π)), Hγ((0, π)), Hγ−1((0, π))

)

with γ < −1/2 does not even yield continuity of u; with gk(x) =
√

2/π sin(kx),
we cannot take γ ≥ 1/2. It would be nice if we could extend Theorem 4.4.3
to Sobolev spaces Hγ

p ((0, π)) for p > 2: then the Sobolev embedding theorem
will give the expected continuity in x. This extension is possible, but requires
a lot of additional analytical developments: see Krylov [117]. It is also pos-
sible to study stochastic parabolic equations directly in the Hölder spaces
(Mikulevicius [157]). For the semigroup approach see Da Prato and Zabzcyk
[30].

Beside the usual Gaussian white noise, popular random perturbations for
parabolic equations are fractional Brownian motion and Lévy-type noise. In
this connection, we mention several papers dealing with fractional Brownian
motion (Duncan et al. [38], Maslowskii and D. Nualart [153], E. Nualart and
Viens [168], Tindel et al. [203]) and the book by Peszat and Zabczyk [173]
dealing with the Lévy-type noise.

There are several books dedicated exclusively to nonlinear filtering of dif-
fusion processes: Bain and Crisan [4], Kallianpur [96], and Xiong [214]. The
basic SPDE aspects of the problem are also discussed in Krylov [117, Section
8.1] and Rozovskii [186, Chapter 6]. With all these references in mind, our
discussion of the filtering problem does not go beyond the very basic result of
Theorem 4.4.27.

4.4.6 Problems

Problem 4.4.1 investigates one particular aspect of Theorem 4.4.3: a possibil-
ity to relax the regularity condition for the stochastic part of the equation.
Problem 4.4.2 suggests an alternative conclusion for Theorem 4.4.3. Problem
4.4.3 investigates possible modifications of the stochastic parabolicity condi-
tion. Problem 4.4.4 is about a specific degenerate parabolic equation. Prob-
lem 4.4.5 connects stochastic parabolic equations with an infinite system of
independent Ornstein-Uhlenbeck processes. Problem 4.4.5 lists several specific
parabolic equations in one space variable.

Problem 4.4.1. Consider the equation
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du = uxxdt+ g(x)dw(t), 0 < t ≤ T, x ∈ R.

Show that if g ∈ H−1(R), then we cannot guarantee that the solution u will
be an element of L2

(
Ω × (0, T );H1(R)

)
.

Problem 4.4.2. Recall the space IH ((4.4.15), page 192). Show that, for equa-
tion (4.4.1), the solution operator (u0, f, {gk}) 7→ u is a homeomorphism from
L2(Ω;H)×L2

(
Ω×(0, T );V ′)×L2

(
Ω×(0, T ); ℓ2(H)

)
to IH . With ℓ2 denoting

the space of square-integrable sequences,

‖{gk}‖2
L2(Ω×(0,T );ℓ2(H)) =

∑

k≥1

E

∫ T

0

‖gk(t)‖2
Hdt.

Problem 4.4.3. Investigate the possibility of replacing condition (4.4.4) with
one of the following:

2

∫ t

0

[A(s)v(s), v(s)]ds +
∑

k≥1

∫ t

0

‖Mkv(s)‖2
Hds

≤ −cA
∫ t

0

‖v(s)‖2
V ds+M

∫ t

0

‖v(s)‖2
Hds;

2

∫ t

0

E[A(s)v(s), v(s)]ds +
∑

k≥1

∫ t

0

E‖Mk(s)v(s)‖2
Hds

≤ −cA
∫ t

0

E‖v(s)‖2
V ds+M

∫ t

0

E‖v(s)‖2
Hds.

Of course, the continuity conditions on A and Mk should also be modified
accordingly.

Problem 4.4.4. Create an analogue of the table on page 198 for the equation

ut =
(
a(t, x)ux

)
x

+ b(t, x)ux + c(t, x)u + f(t, x)

+
(
σ(t, x)ux + ν(t, x)u + g(t, x)

)
ẆQ(t, x), 0 < t ≤ T, x ∈ R,

in the normal triple (Hr+1(R), Hr(R), Hr−1(R)), r ∈ R, where WQ is the
Q-cylindrical Brownian motion, written in the basis of Hermite functions wk

(see (4.1.50) on page page 158) as follows:

WQ(t, x) =
∑

k≥1

√
qk wk(t)wk(x).

Problem 4.4.5. Let wk, k ≥ 1, be independent standard Brownian motions
and let ak, bk, σk, k ≥ 1, be real numbers. Consider a collection of processes
uk, k ≥ 1, defined by

aku̇k(t) = bkuk(t) + σkẇk(t), 0 < t ≤ T. (4.4.89)



4.4 Stochastic Parabolic Equations 219

Find conditions on the numbers ak, bk, σk and the initial data uk(0) to have

E sup
0<t<T

∑

k≥1

|uk(t)|2 <∞. (4.4.90)

Problem 4.4.6. Investigate the following equations, both in R and on (0, π):

ut = uxx + aux + bu+ (cu+ σux + g)ẆQ(t, x), (4.4.91)

ut = −uxxxx + auxx + (bu+ cux + σuxx + g)ẆQ(t, x), (4.4.92)

ut = auxxx + buxx + cux + (σux + νu+ g)ẆQ(t, x), (4.4.93)

ut − autxx = buxx + (cu + σux + g)ẆQ(t, x), (4.4.94)

ut − autxx = uxxx + (bu+ σux + g)ẆQ(t, x). (4.4.95)





5

Linear Equations: Chaos Solutions

Wiener chaos solution first appears in Section 2.2.3 as a generalized solution
of a stochastic equation using random variables as test functions. The addi-
tional modifier Wiener simply emphasizes that the equation is driven by the
Wiener process, or other type of Gaussian white noise, and those are the only
equations we consider in this book. The examples in Section 2.2.3 (e.g. on
page 46) suggest that a chaos solution could be a sweeping generalization of
a traditional square-integrable solution.

Many constructions in this chapter relay on divergent series. Divergent
series of functions are a legitimate subject of mathematical research, both
at an abstract level of functional analysis [110, 111, 112], and with concrete
applications in mind [7, 6]. We will carry out the necessary constructions from
scratch, as the need arises.

5.1 Motivating Examples

5.1.1 Setting the Stage

Let us recall the idea behind the chaos solution, as originally discussed on
page 46 for equation

ut = auxx + σuxẇ, 0 < t ≤ T, x ∈ R, (5.1.1)

with a non-random initial condition u(0, x) = ̟(x). To avoid technical com-
plications, we will assume that the initial condition u(0, x) is a continuous
function of x.

On the one hand, the equation is well-posed in L2(Ω × R) if and only if
σ2 ≤ 2a (see Exercise 2.2.2 on page 37).

On the other hand, we can make some sense out of the equation for all σ
by considering the function ŭ = ŭ(t, x;h), 0 ≤ t ≤ T, x ∈ R, h ∈ C∞

0 ((0, T )),
defined by
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∂ŭ(t, x;h)

∂t
= a

∂2ŭ(t, x;h)

∂x2
+ σh(t)

∂ŭ(t, x;h)

∂x
, (5.1.2)

with initial condition
ŭ(0, x;h) = ϕ(x).

The function ŭ is called the S-transform of u. Given a continuous initial
condition ϕ ∈ L2(R), equation (5.1.2) has a unique square-integrable solution
ŭ ∈ C([0, T ] × R) for every σ ∈ R; there is even a closed-form expression for
ŭ: cf. (2.3.13) on page 51. We also know that, if σ2 ≤ 2a, then ŭ uniquely
characterizes the solution of (5.1.1): by the Itô formula,

ŭ(t, x;h) = E
(
u(t, x)Eh

)
,

and the collection of random variables

Eh = exp

(∫ T

0

h(t)dw(t) − 1

2

∫ T

0

h2(t)dt

)
, h ∈ C∞

0 ((0, T )), (5.1.3)

is dense in the set L2(w[0,T ]) of square-integrable functionals of w(t), 0 ≤ t ≤
T : if η1, η2 ∈ L2(w[0,T ]) and E

(
η1Eh

)
= E

(
η2Eh

)
for all h ∈ C∞

0 ((0, T )), then
E(η1 − η2)

2 = 0 [recall Exercise 2.2.5 on page 46, and a similar construction
on page 209 during the proof of the probabilistic representation of solution
for stochastic parabolic equations].

By definition, the Wiener chaos solution, or simply chaos solution,
of (5.1.1) with σ2 > 2a is the stochastic object that corresponds to the so-
lution ŭ of (5.1.2); however, at this point, we do not know whether such an
object exists. Accordingly, the following questions will guide the presentation
throughout the rest of this chapter:

1. What kind of stochastic object corresponds to ŭ from (5.1.2) when σ2 >
2a, and more generally, how can one define and invert an S-transform.

2. What other types of linear stochastic equations without square-integrable
solutions have chaos solutions, and how to construct those solutions?

The next exercise illustrates how to construct the S-transform for other types
of evolution equations.

Exercise 5.1.1 (C). (a) Consider the equation

ut = auxx + σuẇ, 0 < t ≤ T, x ∈ R, (5.1.4)

Confirm that corresponding equation for ŭ is

∂ŭ(t, x;h)

∂t
= a

∂2ŭ(t, x;h)

∂x2
+ σh(t)ŭ(t, x;h), ŭ(0, x;h) = u(0, x), (5.1.5)

and that both (5.1.4) and (5.1.5) are well-posed for all σ ∈ R.
(b) Consider the equation
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ut = auxx + σuxxẇ, 0 < t ≤ T, x ∈ R, (5.1.6)

which is not well-posed in L2(Ω × R) for any σ 6= 0. Convince yourself (by a
formal application of the Itô formula) that the corresponding equation for ŭ
must be

∂ŭ(t, x;h)

∂t
=
(
a+ σh(t)

)∂2ŭ(t, x;h)

∂x2
, ŭ(0, x;h) = u(0, x). (5.1.7)

Confirm that equation (5.1.7) is well-posed in L2(R) as long as |h| is small
enough: a− |σ|max0<t<T |h(t)| > 0. In fact, if

X(t, x;h) = x+

∫ t

0

√
2
(
a+ σh(s)

)
dw(s),

then
ŭ(t, x;h) = Eu

(
0, X(t, x;h)

)
.

Hint. Assume that u is square-integrable and Fw
t -adapted, and use the Itô

formula. Here are some equalities that can help:

ŭ(t, x; h) = E
(
u(t, x)Eh

)
= E

(
u(t, x)E

(
Eh|Fw

t

))
, E
(
Eh|Fw

t

)
= Eh(t),

dEh(t) = h(t)Eh(t)dw(t).

This concludes Exercise 5.1.1.

The rest of the section is organized as follows:

• In Section 5.1.2 we develop the general theory of the S-transform in the
one-dimensional setting, when the source of randomness is a single stan-
dard normal random variable ξ.

• In Section 5.1.3 we develop the general theory of the S-transform in the
infinite-dimensional setting, when the source of randomness is a standard
Brownian motion w(t), 0 ≤ t ≤ T .

• In Section 5.1.4 we investigate the chaos solution of equation (5.1.1) for
all σ ∈ R.

5.1.2 One-dimensional case

We need a systematic procedure for establishing a one-to-one correspondence
between a random function u = u(t, x, ω) and its S-transform ŭ = ŭ(t, x;h).
To begin, let us simplify the problem as much as possible by considering the
one-dimensional version.

Below are three equivalent ways [F1]–[F3] to state the one-dimensional
problem. Let f = f(y), y ∈ R, be a real-valued measurable function such
that ∫ +∞

−∞
f2(y)e−y

2/2dy <∞.
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[F1] Given a standard normal random variable ξ, a square integrable random
variable η such that η = f(ξ), and the function

η̆(x) = E
(
ηexξ−(x2/2)

)
, x ∈ R, (5.1.8)

recover the random variable η from ξ and the function η̆.
[F2] Recover the function f = f(y) from the function

f̆(x) =
1

2π

∫ +∞

−∞
f(y)exy−(x2/2)−(y2/2)dy. (5.1.9)

[F3] Recover the initial condition v(0, x) = f(x) in the heat equation vt =
(1/2)vxx from the solution v(1, x) at time t = 1.

Exercise 5.1.2 (C). Confirm that formulations [F1]–[F3] are equivalent.
Hint. Note that

E
(
f(ξ)exξ−(x2/2)

)
=

1√
2π

∫ +∞

−∞

f(y)e−(x−y)2/2dy.

The first formulation [F1] is indeed the one-dimensional version of the
original setting, with η corresponding to u, ξ corresponding to the Brownian
motion w, x corresponding to the function h, and exξ−(x2/2) corresponding to
Eh. The second formulation demonstrates that the operation of going from η
to η̆, or from f to f̆ , is indeed an integral transformation, putting some logic
behind the name S-transform. The third formulation, via the heat equation,
suggests an immediate generalization to non-square integrable functions f :
the solution of the heat equation at time t > 0 is much better than the initial
condition; in particular, the initial condition can be a generalized function
from

⋃
γ H

γ(R), but the solution at time t > 0 will be a very smooth function
from

⋂
γ H

γ(R) [given potential non-uniqueness of solution, we always restrict
ourselves to a class of (possibly generalized) functions where the solution of
the heat equation is unique].

Using formulation [F1], let us recover the random variable η from the
function η̆(x). Recall the generating function of the Hermite polynomials Hk

(cf. page 57):

exξ−(x2/2) =

∞∑

k=0

Hk(ξ)

k!
xk. (5.1.10)

Keeping in mind that {Hk(ξ)/
√
k!, k ≥ 0} is an orthonormal basis in the space

L2(ξ) of square integrable functions of ξ, consider the expansion of η ∈ L2(ξ)
in this basis:

η =

∞∑

k=0

η̄k
k!

Hk(ξ), with (5.1.11)

η̄k = E
(
ηHk(ξ)

)
. (5.1.12)
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Theorem 5.1.3. If η is a square-integrable function of a standard normal
random variable ξ, then the S-transform η̆ = η̆(x) of η, as defined in (5.1.8),
is a real analytic function for all x ∈ R and

η =

∞∑

k=0

η̆(k)(0)

k!
Hk(ξ), (5.1.13)

where η̆(k)(0) is k-th derivative of η̆ at zero, with convention η̆(0)(0) = η̆(0).
In addition,

|η̆(x)| ≤
(
Eη2

)1/2
ex

2/2. (5.1.14)

Proof. Combining (5.1.8) and (5.1.10) gives

η̆(x) =

∞∑

k=0

η̄k
k!
xk. (5.1.15)

To be absolutely certain that switching summation and integration is allowed
in (5.1.15), notice that

∞∑

k=0

E
∣∣ηHk(ξ)

∣∣
k!

|x|k ≤
∞∑

k=0

(
Eη2

)1/2(
EH2

k(ξ)
)1/2

k!
|x|k =

(
Eη2

)1/2 ∞∑

k=0

|x|k√
k!
<∞

for all x ∈ R [recall that EH2
k(ξ) = k!.

Using (5.1.11) and the Cauchy-Schwartz inequality, we get an alternative
bound for the series on the right hand side of (5.1.15):

∞∑

k=0

∣∣∣ η̄k
k!
xk
∣∣∣ ≤

( ∞∑

k=0

η̄2
k

k!

)1/2( ∞∑

k=0

x2k

k!

)1/2

=
(
Eη2)1/2ex

2/2,

from which both analyticity of η̆ and (5.1.14) follow. Then (5.1.15) implies

η̄k = η̆(k)(0), (5.1.16)

and (5.1.13) follows from (5.1.11).

This completes the proof of Theorem 5.1.3.

Coming back to the three equivalent formulations [F1]–[F3], we can re-
state (5.1.13) in terms of functions as

f(y) =

∞∑

k=0

f̆ (k)(0)

k!
Hk(y). (5.1.17)

Then we can use the heat equation formulation [F3] to see how the result
works when f is a generalized function. For example, if the solution of the
heat equation at time t = 1 is f̆(x) = (2π)−1/2e−(x−a)2/2 for some a ∈ R,
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then, by uniqueness of (reasonable) solution, the corresponding (reasonable)
initial condition is the point mass at a:

f(y) = δ(y − a).

Since

e−(x−a)2/2 = e−a
2/2eax−(x2/2) = e−a

2/2
∞∑

k=0

Hk(a)

k!
xk,

equality (5.1.17) suggests that

δ(y − a) =
1√
2π
e−a

2/2
∞∑

k=0

Hk(a)Hk(y)

k!
. (5.1.18)

The following exercise confirms that (5.1.18) makes sense.

Exercise 5.1.4 (C). Let hk = hk(x), k ≥ 0, be a complete orthonormal
systems in L2((a, b)), with −∞ ≤ a < b ≤ +∞. Verify that, for x, y ∈ (a, b),

∞∑

k=0

hk(x)hk(y) = δ(x− y)

in the sense of distributions: if ϕ = ϕ(x) is a smooth compactly supported
function on (a, b), then

∞∑

k=1

hk(x)

∫ b

a

hk(y)ϕ(y)dy = ϕ(x).

After that, verify (5.1.18) by taking a = −∞, b = +∞, and

hk(x) =
e−x

2/4

(2π)1/4
Hk(x)√
k!

.

This concludes Exercise 5.1.4.

While (5.1.18) is reasonable in the sense of generalized functions, the ran-
dom variable analogue looks rather strange: indeed, what kind of random
object would δ(ξ − a) be? The right-hand side of (5.1.18) and Theorem 5.1.3
provide an answer: given a standard normal random variable ξ, η = δ(ξ−a) is
a generalized random variable that acts on test random variables of the form
eaξ−(x2)/2 and produces the real number (2π)−1/2e−(x−a)2/2. Moreover, this
generalized random variable η can be represented by the series

η =
1√
2π
e−a

2/2
∞∑

k=0

Hk(a)Hk(ξ)

k!
. (5.1.19)

A formal computation shows that
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Eη2 =
e−a

2

2π

∞∑

k=0

H2
k(a)

k!
. (5.1.20)

It is not at all clear whether the series (5.1.20) converges or diverges; in
particular, we cannot simply put y = a in (5.1.18) to gen information about
(5.1.20). There is a precise asymptotic formula for Hn(a), n → ∞, as found,
for example, in [200, Equation 8.22.8]:

Hn(a) = 2−n/2ea
2/4 Γ (n+ 1)

Γ ((n/2) + 1)

(
cos

(
a

√
n+

1

2
− πn

2

)

+O(n−1/2)

)
.

(5.1.21)

Estimating the ratio of the Gamma functions with the help of the Stirling
formula (1.1.28) on page 11 shows that

(
2−n/2

Γ (n+ 1)

Γ ((n/2) + 1)

)2

≤ 16

π3/2
√

2

k!√
k
≤ 3k!√

k
,

but the cosine term on the right-hand side of (5.1.21) further complicates the
analysis: there is no easy lower bond. The upper bound

H2
k(a)

k!
≤ 4ea

2/2

√
k
, (5.1.22)

true for all sufficiently large k, while useful, cannot be used to claim divergence
of (5.1.20). Still

• (5.1.21) does imply divergence of (5.1.20) when a = 0;
• (5.1.22) implies that the (generalized) random variable η from (5.1.18)

belongs to the space that is (slightly) bigger than the space L2(ξ) of square-
integrable functions of ξ.

More precisely, for γ < 0, denote by Lγ2 (ξ) the closure of L2(ξ) with respect
to the norm ‖ · ‖γ , defined by

‖ζ‖2
γ =

∞∑

k=0

kγ
|E(ζHk(ξ))|2

k!
. (5.1.23)

Then η ∈ Lγ2(ξ) for every γ < −1/2. The space Lγ2(ξ) is the Gaussian analogue
of the Sobolev spaces Hγ(R). If γ < 0 and η ∈ Lγ2(ξ), then we identify η with
a (possibly divergent) series

η =

∞∑

k=0

η̄k
k!

Hk(ξ) (5.1.24)
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and define the S-transform

η̆(x) =

∞∑

k=0

η̄k
k!
xk. (5.1.25)

By assumption,
∞∑

k=0

k−|γ| |η̄k|2
k!

<∞,

and then the Cauchy-Schwartz inequality implies that the function η̆ is (still)
real analytic for all x. For more details on Gaussian Sobolev spaces Lγ2(ξ) see
[150, Section V.2.2].

We now have a one-to-one correspondence between a possible divergent
series (5.1.24) and the power series (the S-transform) (5.1.25). As an imme-
diate application of this correspondence, let us extend the definition of the
Wick product, first introduced on page 57 via the equality

Hn(ξ) ⋄ Hk(ξ) = Hn+k(ξ), n, k ≥ 0.

Observing that if η = Hn(ξ), then η̆(x) = xn, we can now define η1 ⋄ η2 as the
generalized random variable with S-transform equal to η̆1(x)η̆2(x):

(η1 ⋄ η2)̆ (x) = η̆1(x)η̆2(x). (5.1.26)

Formulas (5.1.13) and (5.1.26) work as long as the corresponding S-
transforms are real analytic at the origin. The next natural question is this:
what is the largest possible class of the numbers η̄k that ensures analyticity
at zero of η̆, defined by (5.1.25)? The answer is clear: η̄k must satisfy

|η̄k| ≤ Crkk!. (5.1.27)

for some numbers C, r > 0 and all k = 0, 1, 2, . . . , which is the well-known
growth condition for the derivatives of an analytic function. Equivalently,

|η̄k|2
k!

≤ C2r2kk!.

Then the Taylor series for η̆ at zero will have radius of convergence equal to
1/r.

Inequality (5.1.27) suggests the following construction. For ρ ∈ [0, 1], define
the space (S)−ρ,q(ξ), q ∈ (0, 1], as the closure of L2(ξ) with respect to the
norm

‖ζ‖2
−ρ,q =

∞∑

k=0

qn
|E(ζHk(ξ))|2

(k!)1+ρ
. (5.1.28)

Similarly, (S)ρ,q(ξ), q ≥ 1, ρ ∈ [0, 1], is the collection of those elements in
L2(ξ) for which the expression
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‖ζ‖2
ρ,q =

∞∑

k=0

qn
|E(ζHk(ξ))|2

(k!)1−ρ
(5.1.29)

is finite. In particular, (S)0,1(ξ) = L2(ξ).

Exercise 5.1.5 (C). (a) Confirm that if η ∈ (S)ρ,q(ξ) and ρ > −1, then
η̆ = η̆(x) is analytic for all values of x. For extra credit, get an upper bound
on |η̆(x)|.

(b) Verify that each (S)ρ,q(ξ), ρ ∈ [−1, 1], q > 0, is a Hilbert space with
norm ‖ · ‖ρ,q.

(c) Show that if q > 1, then (S)0,q(ξ) ⊂
⋂
γ>0L

γ
2 (ξ).

(d) Verify that, for q > 1 and ρ ∈ [0, 1], the space (S)−ρ,q(ξ) is the dual of
(S)ρ,1/q(ξ) relative to the inner product in L2(ξ), and if η ∈ L2(ξ), then

〈〈η, ζ〉〉 =

∞∑

k=0

η̄k ζ̄k
k!

= E
(
ηζ
)
, ζ ∈ (S)ρ,q(ξ). (5.1.30)

This concludes Exercise 5.1.5.

The space

(S)−1(ξ) =
⋃

q>0

(S)−1,q(ξ) (5.1.31)

is the collection of all generalized random variables, and the space

(S)1(ξ) =
⋂

q>0

(S)1,q(ξ) (5.1.32)

is the collection of all test random variables. The space (S)1(ξ) is not empty:
for example, every Hn(ξ) is in there. In some sense, (S)1,q(ξ) is the smallest
“natural” space containing all random variables of the form Ex = exp(xξ −
(x2/2)) with |x| < 1/q, and then (S)−1(ξ) becomes the largest possible space
of generalized random variables. The duality operation 〈〈η, ζ〉〉 from (5.1.30)
extends to η ∈ (S)−1(ξ) and ζ ∈ (S)1(ξ); in particular, if η ∈ (S)−1(ξ), then
η ∈ (S)−1,q(ξ) for some q,

η̄k = 〈〈η,Hk(ξ)〉〉, (5.1.33)

η̆(x) = 〈〈η, Ex〉〉, for |x| < 1/q, (5.1.34)

and equalities (5.1.25), (5.1.13), and (5.1.30) continue to hold.
The reason for using S in the notations is that the spaces (S)1(ξ) and

(S)−1(ξ) are stochastic analogues of S(Rd) and S′(Rd).
Let us summarize our discussion of the one-dimensional case:

• A generalized random variable is an element of the space (S)−1(ξ).
There is a duality 〈〈·, ·〉〉 between (S)−1(ξ) and the space (S)1(ξ) of test
random variables, relative to the inner product in L2(ξ).
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• The S-transform of a generalized random variable η is the function

η̆(x) = 〈〈η, Ex〉〉, Ex = exξ−(x2/2),

which is analytic in some neighborhood of x = 0, with a power series
representation

η̆(x) =

∞∑

k=1

η̄k
k!
xk, η̄k = 〈〈η,Hk(ξ)〉〉. (5.1.35)

• There is a one-to-one correspondence between the elements of (S)−1(ξ)
and the collection of functions that are real analytic at zero:

〈〈η,Hk(ξ)〉〉 = η̆(k)(0).

• The Wick product η1 ⋄ η2 of two generalized random variables η1, η2 is
the generalized random variable with S-transform equal to η̆1(x)η̆2(x): see
(5.1.26).

Example 5.1.6. Consider the equation

−u′′(y) = sin y + ξ ⋄ u(y), y ∈ (0, π), u(0) = u(π) = 0, (5.1.36)

first discussed on page 57. The S-transform ŭ = ŭ(y;x) satisfies

−∂
2ŭ(y;x)

∂y2
= sin y + xŭ(y;x), ŭ(0;x) = ŭ(π;x) = 0;

the solution is possible to guess:

ŭ(y;x) =
sin y

1 − x
= sin y

∞∑

k=0

xk.

Then the solution of (5.1.36) is

u(y) = sin y
∞∑

k=0

Hk(ξ),

which, with ūk(y) = k! sin y, is an element of (S)−1,q(ξ) for every q ∈ (0, 1).
Also, u is not an element of any (S)ρ,q(ξ) if ρ > −1.

5.1.3 From one to infinitely many

A rather basic technical complication related to transition from one to several
dimensions is the need to work with multi-indices. As an illustration in infinite
number of dimensions, consider a sequence x1, x2, . . . of real numbers such that∑∞

k=1 |xk| < ∞, and consider the expression exp (
∑∞
k=1 xk). By the Taylor

formula,
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exp

( ∞∑

k=1

xk

)
=

∞∏

k=1

∞∑

n=0

xnk
n!
. (5.1.37)

If we exchange the product and summation operations on the right-hand side
of (5.1.37), then we will be considering the products of the type

xn1
1 xn2

2 · · ·xnk

k · · · (5.1.38)

with potentially infinitely many terms. On the other hand, the convergence
of the series

∑
xk implies limk→∞ |xk| = 0, and, in particular, |xk| < 1 for

all but finitely many k. As a result, if (5.1.38) indeed contains infinitely
many terms, that is, nj > 0 for infinitely many j, then the product
is zero. Thus,

exp

( ∞∑

k=1

xk

)
=

∞∑

n1,n2,...

∏

j

x
nj

j

nj !
, (5.1.39)

and summation is over (the countable set of) all ordered collections of non-
negative integers (n1, n2, . . .) with finitely many non-zero elements. The
notion of a multi-index, defined next, leads to a more compact form of
(5.1.39): see (5.1.40) below.

Definition 5.1.7. A multi-index α = (α1, α2, . . .) is an ordered collection of
non-negative integers αj , j ≥ 1, such that all but finitely many of αj are equal
to zero. Equivalently,

∑
j≥1 αj <∞.

Exercise 5.1.8 (C). Confirm that the set of all multi-indices is countable.

We will use the following notations.

• J : the collection of all multi-indices;
• α + β = (α1 + β1, α2 + β2, . . .);
• α − β =

(
max(α1 − β1, 0),max(α2 − β2, 0), . . .

)
;

• β ≤ α, meaning βj ≤ αj for all j ≥ 1;

• |α| =
∑

j≥1
αj = α1 + α2 + · · · , α! =

∏
j≥1

αj !;

• xα =
∏

j≥1
x
αj

j , where x = (x1, x2, . . .) is a sequence of real numbers;

• (0) = (0, 0, 0 . . .) (the zero multi-index), ǫ(k) = (0, . . . , 0, 1, 0, . . .): the only
one 1 at position k (a unit multi-index).

• α−(k) = α − ǫ(k).

Then (5.1.39) becomes

exp




∞∑

j=1

xj


 =

∑

α∈J

xα

α!
. (5.1.40)

The following exercise provides more examples of infinite-dimensional ana-
logues of one-dimensional identities using multi-indices.
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Exercise 5.1.9 (C). (a) Let x = (x1, x2, . . .) be a sequence of positive num-
bers such that ∞∑

j=1

xj <∞.

Verify that, for n = 1, 2, 3, . . . ,




∞∑

j=1

xj



n

=
∑

|α|=n

n!

α!
xα. (5.1.41)

Then take xj = 1/qj such that
∑
j(1/qj) ≤ 1 and deduce a very useful

inequality:
α! ≤ |α|! ≤ qαα!. (5.1.42)

[Clearly, |α|! ≥ α! because |α|!/α! ≥ 1 is a multinomial coefficient].
(b) Let x = (x1, x2, . . .) be a sequence of positive numbers such that

∞∑

j=1

xj = c < 1.

Using the equality

cn =
∑

|α|=n

n!

α!
xα,

verify that ∑

α∈J
xα <

1

1 − c
. (5.1.43)

(c) For α,β ∈ J , define the multi-index binomial coefficient by

(
α

β

)
=





α!

(α − β)!β!
, if β ≤ α,

0, otherwise.

Let x = (x1, x2, . . .) be a sequence of real numbers such that 0 < xj < 1 for
all j and

∑
j xj converges. Verify that, for every β ∈ J ,

∑

α∈J

(
α + β

α

)
xα =


∏

j≥1

1

1 − xj


 (1 − x)−β, (5.1.44)

∑

α∈J

(
β

α

)
xα = (1 + x)β , (5.1.45)

where 1 ± x is the sequence {1 ± xj , j ≥ 1}.
Hints. (1)

∑
α =

∑
n

∑
|α|=n . (2)

∑
j xj < ∞, 0 < xj < 1 ⇒ 0 <∏

j(1 − xj)
−1 < ∞. (3) The one-dimensional version of (5.1.44) is

∑
j≥0

(
n+j

k

)
xj =
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(1 − x)−n−1, |x| < 1, which follows after differentiating n times the equality
∑

j xj =

(1−x)−1. (4) The one-dimensional version of (5.1.45) is the usual binomial formula.

This concludes Exercise 5.1.9.

We will now repeat the constructions of the spaces Lγ2 and (S) from the
previous section, but now using stochastic exponential

Eh = exp

(∫ T

0

h(t)dw(t) − 1

2

∫ T

0

h2(t)dt

)
, h ∈ U0, (5.1.46)

where U0 is a dense sub-set of L2((0, T )), as the test random variable. Denote
by L2(w[0,T ]) the space of square-integrable random variables that are mea-
surable with respect to the sigma-algebra generated by w(t), 0 < t ≤ T . For
a random variable η ∈ L2(w[0,T ]), define its S-transform η̆ = η̆(h) by

η̆(h) = E
(
ηEh
)
. (5.1.47)

Let mk = mk(t), t ∈ (0, T ), k ≥ 1, be an orthonormal basis in L2((0, T )).
Introduce the notations

hk =

∫ T

0

h(t)mk(t)dt, h = (h1, h2, . . .), ξk =

∫ T

0

mk(t)dw(t).

Then

h(t) =
∞∑

k=1

hkmk(t),

∫ T

0

h2(t)dt =
∞∑

k=1

h2
k,

Similar to (5.1.40)

Eh = exp

( ∞∑

k=1

(
hkξk − (h2

k/2)
)
)

=
∑

α∈J

hα

α!
Hα(ξ), (5.1.48)

where
Hα(ξ) =

∏

j

Hαj (ξj), so that E|Hα(ξ)|2 = α!. (5.1.49)

For example, if α = (0, 4, 0, 1, 3, 0, 0, . . .), then

Hα(ξ) = H4(ξ2) · ξ4 · H3(ξ5).

Then, similar to (5.1.11) and (5.1.15) (see page 225), for η ∈ L2(w[0,T ]),

η =
∑

α∈J

η̄α

α!
Hα(ξ), η̄α = E

(
ηHα(ξ)); (5.1.50)

Eη2 =
∑

α∈J

η̄2

α!
; (5.1.51)

η̆(h) =
∑

α∈J

η̄α

α!
hα. (5.1.52)



234 5 Linear Equations: Chaos Solutions

Whether to put bold h or regular h as the argument of η̆ is a matter of taste.
To minimize the amount of bold symbols, we will use regular h.

The function η̆ is represented by an everywhere convergent power series
in h. In other words, η̆ is an analytic function of infinitely many variables.
Similar to (5.1.13) on page 225, we have

η̄α = Dα
h η̆(h)

∣∣∣
h=0

, (5.1.53)

with

Dα
h =

∂|α|

∂hα1

1 ∂hα2

2 · · · .

Exercise 5.1.10 (A). Verify (5.1.50)–(5.1.52). Two of the technical issues to
address: (a) exchanging summation and expectation to get from (5.1.47) to
(5.1.52) (the argument is identical to one-dimensional case); (b) verifying that
{Hα(ξ), α ∈ J } is an orthogonal basis in L2(w[0,T ]) (this is easy once we
know completeness of Eh).

Completeness of the family {Eh, h ∈ U0} is equivalent to completeness of
{Hα(ξ), α ∈ J }. In our presentation, we take the first for granted and get
the second for free. Historically, completeness of {Hα(ξ), α ∈ J } is known as
(yet another) Cameron-Martin theorem, first proved by the American math-
ematicians Robert H. Cameron (1908 – 1989) and William T. Mar-
tin (1911–2004) using a lot of hard analysis [19]. For an easier probabilistic
proof, see (the solution to) Problem 5.1.2 below. Accordingly, the collection
{Hα(ξ), α ∈ J } is often called the Cameron-Martin basis.

Let us now define the Sobolev spaces Lγ2(w[0,T ]) by analogy with Lγ2(ξ).
Given ζ ∈ L2(w[0,T ]) and γ ∈ R, define the quantity (finite or infinite)

‖ζ‖2
γ =

∑

α∈J
|α|γ ζ̄

2
α

α!
;

cf. [150, Section V.2.3]. If γ > 0, then Lγ2(w[0,T ]) is the collection of those
elements ζ ∈ L2(w[0,T ]) for which ‖ζ‖γ is finite. If γ < 0, then Lγ2 (w[0,T ]) is
the closure of L2(w[0,T ]) with respect to the norm ‖ · ‖γ .

To extend the definition of the spaces (S)ρ,q(ξ) for one random variable ξ
(on page 229) to the spaces (S)ρ,q(w[0,T ]) for infinitely many random variables
ξ1, ξ2, . . ., let us replace, in the definitions of the norms of (S)ρ,q(ξ), the usual
factorial k! with α! and the number q with a sequence q. Accordingly, for
ζ ∈ L2(w[0,T ]), ρ > 0, and a sequence of positive numbers q, define the
expressions ‖ζ‖ρ,q and ‖ζ‖ρ,1/q by

‖ζ‖2
ρ,q =

∑

α∈J
qα ζ̄2

α

(α!)1−ρ
, ‖ζ‖2

−ρ,1/q =
∑

α∈J

1

qα

ζ̄2
α

(α!)1+ρ
; (5.1.54)

these expressions do not have to be finite.
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Definition 5.1.11. Denote by Q the collection of sequences q = (q1, q2, . . .)
with qk > 1.

For ρ ∈ [0, 1] and q ∈ Q,

• The space (S)ρ,q(w[0,T ]) is the collection of those elements ζ ∈ L2(w[0,T ])
for which ‖ζ‖ρ,q <∞;

• The space (S)−ρ,1/q(w[0,T ]) is the closure of L2(w[0,T ]) with respect to the
norm ‖ · ‖−ρ,1/q.

Inequality (5.1.42) implies that replacing α! with |α|! in (5.1.54) is equiv-
alent to changing (re-scaling) the sequence q. Assumption qk > 1 ensures that
(S)0,q(w[0,T ]) is a proper sub-set of L2(w[0,T ]).

One could also consider (S)−ρ,q(w[0,T ]) and (S)ρ,1/q(w[0,T ]), ρ ∈ [0, 1],
q ∈ Q, as well as (S)±ρ,q(w[0,T ]) for general q with qk > 0, but we will not
need those spaces.

Now everything is almost a verbatim repetition from one-dimensional case.
The space (S)1,q(w[0,T ]) is the smallest “natural space” containing random
variables Eh for sufficiently small functions h = h(t), and then

(S)−1(w[0,T ]) =
⋃

q∈Q

(S)−1,1/q(w[0,T ])

becomes the largest possible space of generalized random variables.

Exercise 5.1.12 (C). Verify that if h2
k < 1/(2kqk), then Eh ∈ (S)1,q(w[0,T ]).

Hint. Use (5.1.43) on page 232.

There is a natural duality 〈〈·, ·〉〉 between (S)−1,1/q(w[0,T ]) and
(S)1,q(w[0,T ]), which extends to duality between (S)−1(w[0,T ]) and the space
of test random variables

(S)1(w[0,T ]) =
⋂

q∈Q

(S)1,q(w[0,T ]).

Given η ∈ (S)−1(w[0,T ]), h(t) =
∑∞

k=1 hkmk(t), and h = (h1, h2, . . .),

〈〈η, ζ〉〉 =
∑

α∈J

η̄αζ̄α
α!

, ζ ∈ (S)1(w[0,T ]),

η̄α = 〈〈η,Hα(ξ)〉〉, η̆(h) = 〈〈η, Eh〉〉 =
∑

α∈J

η̄α

α!
hα.

Even though, for every given h, the random variable Eh is not in
(S)1(w[0,T ]), Exercise 5.1.12 shows that, for every η ∈ (S)−1(w[0,T ]), the S-
transform η̆(h) = 〈〈η, Eh〉〉 is defined for sufficiently many h in a dense sub-set
of L2((0, T )). The function η̆(h) is real analytic at zero and (5.1.53) holds. In
the particular case η ∈ L2(w[0,T ]),
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〈〈η, ζ〉〉 = E
(
ηζ
)
, η̆(h) = E

(
ηEh
)
.

To summarize our discussion so far: if we have an analytic function η̆(h)
and want to understand what generalized random element η has this function
as its S-transform, we compute

η̄α = Dαη̆(h)
∣∣∣
h=0

(5.1.55)

and look for ρ ∈ [0, 1] and q ∈ Q such that

∑

α∈J

1

qα

|η̄α|2
(α!)1+ρ

<∞;

then η ∈ (S)−ρ,1/q(w[0,T ]).

5.1.4 Back To The Original Question

Our next goal is to find suitable ρ ∈ [0, 1] and q ∈ Q so that, for each
t > 0 and x ∈ R, the chaos solution of equation (5.1.1) on page 221, with
σ2 > 2a, belongs to (S)−ρ,1/q(w[0,T ]). To determine the coefficients ūα(t, x),
we will, similar to the one-dimensional example on page 230, find the closed-
form solution ŭ(t, x;h) of (5.1.2), expanding h in a Fourier series in mk, and
compute the Taylor expansion of ŭ(t, x;h) in hk.

We solve (5.1.2) using the Fourier transform. To avoid multi-level accents,
denote by Ŭ = Ŭ(t, y;h) the Fourier transform of ŭ. Then (5.1.2) implies

∂Ŭ(t, y;h)

∂t
= −ay2Ŭ(t, y;h) + i σyh(t)Ŭ (t, y;h), i =

√
−1; (5.1.56)

to simplify the subsequent computations, let us also assume that

u(0, x) = e−x
2/2, (5.1.57)

so that Ŭ(0, y;h) = e−y
2/2. Then

Ŭ(t, y;h) = exp

(
− (1 + 2at)y2

2
+ iσy

∫ t

0

h(s)ds

)
; (5.1.58)

recall that

h(t) =

∞∑

k=1

hkmk(t).

With notations

Mk(t) =

∫ t

0

mk(s)ds, M
α(t) =

∏

j

M
αj

j (t), α ∈ J ,
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and using (5.1.40), equation (5.1.58) becomes

Ŭ(t, y;h) = exp

(
− (1 + 2at)y2

2

)
exp

(
iσy

∞∑

k=1

hkMk(t)

)

= exp

(
− (1 + 2at)y2

2

) ∑

α∈J
(iσy)|α|Mα(t)

hα

α!
.

To invert the Fourier transform and find ŭ we could use standard formulas,
but we will present a more-or-less complete derivation.

Consider the function

F (x) =
1√
2π

∫ ∞

−∞
e−y

2/2eixydy = e−x
2/2.

Then, for n = 1, 2, . . .,

1√
2π

∫ ∞

−∞
(iy)ne−y

2/2eixydy = F (n)(x) = (−1)ne−x
2/2Hn(x).

After a change of variables, we conclude that, for c > 0, the inverse Fourier
transform of exp

(
−cy2/2

)
is c−1/2F

(
x/

√
c
)
, and the inverse Fourier transform

of (iy)n exp
(
− cy2/2

)
is

c−1/2 d
nF
(
x/

√
c
)

dxn
=

(−1)n

c(n+1)/2
e−x

2/(2c)Hn

(
x√
c

)
.

With c = (1 + 2at), the inverse Fourier transform of Ŭ becomes

ŭ(t, x;h) = C(t, x)
∑

α∈J
(−1)|α|

(
σ√

1 + 2at

)|α|
H|α|

(
x√

1 + 2at

)
Mα(t)

hα

α!
,

where

C(t, x) =
exp

(
− x2

2+4at

)

√
1 + 2at

.

The result is a closed-form expression for ūα(t, x):

ūα(t, x) = C(t, x)(−1)|α|
(

σ√
1 + 2at

)|α|
H|α|

(
x√

1 + 2at

)
Mα(t). (5.1.59)

Then u(t, x) ∈ (S)−ρ,1/q(w[0,T ]) if and only if the series

∑

α∈J

(
σ2

1 + 2at

)|α|
H2

|α|

(
x√

1 + 2at

)
M2α(t)

qα(α!)1+ρ
(5.1.60)

converges. To study (5.1.60), note that
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∑

α∈J
(· · · )α =

∞∑

n=0

∑

|α|=n
(· · · )α.

Also (cf. (5.1.41) on page 232 and (1.1.13) on page 6)

∑

|α|=n

M2α(t)

α!
=

1

n!

∑

|α|=n

n!

α!
M2α(t) =

1

n!

( ∞∑

k=1

M2
k (t)

)n
=
tn

n!
.

Since H2
n(x)/n! ≤ c(x)/

√
n (see (5.1.22) on page 227), a visual inspection of

(5.1.60) suggests that we can take ρ = 0 and qk = q for all k so that

‖u(t, x)‖2
0,1/q = C2(t, x)

∞∑

n=0

(
σ2t

q(1 + 2at)

)n
H2
n(x/

√
1 + 2at)

n!
.

Again, keeping in mind H2
n(x)/n! ≤ c(x)/

√
n, we see that the behavior of the

series is determined by the geometric term
(
σ2t/(q(1 + 2at))

)n
: condition

q >
σ2t

1 + 2at

is necessary and sufficient to have u(t, x) ∈ (S)0,1/q(w[0,T ]), with q =
(q, q, . . .).

The following is a complete description of the chaos solution of the equation

ut = auxx + σuxẇ, 0 < t ≤ T, x ∈ R, (5.1.61)

with u(0, x) = e−x
2/2, a > 0 and σ ∈ R:

1. If σ2 < 2a, then we can take q = σ2/(2a) < 1. In other words, when equa-
tion (5.1.61) is (non-degenerate) parabolic, then the solution u = u(t, x),
as a random variable, is much better than square integrable, because
u(t, x) ∈ (S)0,1/q(w[0,T ]) with q < 1, uniformly in T .

2. If σ2 = 2a, then again u(t, x) ∈ (S)0,1/q(w[0,T ]) for some q < 1, but this
time q depends on T ; since the function f(x) = x/(1+x) is increasing for
x > 0, we can take, for example, q = 4aT/(1 + 4aT ).

3. If σ2 > 2a and T is sufficiently large, namely, T > 1/(σ2 − 2a), then a
phase transition takes place at time t∗ = 1/(σ2 − 2a):
• if t < t∗, then u(t, x) ∈ (S)0,1/q(w[0,T ]) with a suitable q < 1 depending

on t;
• if t = t∗, then u(t∗, x) ∈ Lγ2(w[0,T ]) for every γ < −1/2;
• if t > t∗, then u(t, x) is a bona fide generalized random variable:

u(t, x) ∈ (S)0,1/q(w[0,T ]) with qk = σ2/(2a) > 1.

Note that integrability properties of the solution when σ2 = 2a and the
value of the critical time t∗ when σ2 > 2a depend on the initial condition.
Specifically, if σ2 = 2a, then u(t, x) = u(0, x+σw(t)) (see (2.3.11) on page 50),
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and if σ2 > 2a then we can have t∗ anywhere between t∗ = 0 (for example, for
u(0, x) = 1/(1 + x2)) and t∗ = +∞ (for example, u(0, x) = (sinx)/x: check
it out!) Moreover, existence of t∗ (but not other properties of the solution!)
can be studied directly by taking the Fourier transform of (5.1.1). The value
of q seems to be (mostly) independent of the initial condition, but the precise
results about well-posedness of the equation in (S)-spaces require a more
sophisticated analysis.

Similarly, a more sophisticated analysis is necessary to study hyperbolic
equations: a hyperbolic equation with multiplicative noise does not have a
closed-form solution (cf. Remark 2.3.9 on page 54), and neither does the cor-
responding equation for the S-transform. The following exercise illustrates the
point.

Exercise 5.1.13. Verify that if u = u(t, x) is a (square-integrable) solution
of

utt = uxx + uẇ(t), t > 0, x ∈ R,

then the S-transform ŭ = ŭ(t, x;h) = E
(
u(t, x)Eh

)
satisfies

ŭtt = ŭxx + ŭ h(t),

with the same initial conditions as u, and convince yourself that there is no
closed-form expression for ŭ.

To summarize our discussion so far, we have three essentially equivalent
ways to understand the chaos solution:

[C1] As the generalized random element with S-transform ŭ = ŭ(h) sat-
isfying the corresponding deterministic equation; ŭ is a function of in-
finitely many variables, the variables being the Fourier coefficients of the
function h, and ŭ must be analytic at zero;

[C2] As a collection of the chaos coefficients ūα, that is, the derivatives
of ŭ(h) at zero;

[C3] As a possibly divergent chaos expansion
∑

α ūαHα(ξ)/α!.

Each interpretation has its advantages:

[C1] ensures that the definition of the chaos solution does not depend on
arbitrary choices, such as the choice of the bases in L2((0, T )) and in
L2(w[0,T ]);

[C2] makes it possible to study regularity properties of the solution, such as
membership in a suitable (S) space,

[C3] provides a representation of the chaos solution in the particular basis
in L2(w[0,T ]), and gives an efficient way to compute the solution numer-
ically for several realizations of the Brownian motion: all we need is to
re-compute the basis elements Hα(ξ), which is certainly much faster than
solving the whole equation from scratch — something most other numer-
ical procedures will require.
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In the following section we develop the general theory of chaos solutions.
To this end,

• We need a version of the stochastic integral to allow the integrands to be
generalized random elements; this is the subject of Section 5.2.1.

• We need a systematic way of deriving the equation for the S-transform
from the stochastic equation. Since the equation for the S-transform usu-
ally does not have a closed-form solution, we also need a way to derive a
system of equations for the chaos coefficients directly from the stochastic
equation. This system of equations is known as the propagator and is
especially important for numerical computation of the chaos solution. The
S-transform and the propagator are the subject of Section 5.2.2.

5.1.5 Problems

Problem 5.1.1 is a simple exercise on Gaussian Sobolev spaces in one di-
mension. Problem 5.1.2 invites the reader to fill the potential gap in our
presentation by establishing completeness of the family {Hα(ξ)α, α ∈ J }.
Problem 5.1.3 introduces an alternative way to describe a multi-index (via
the characteristic set) and the resulting alternative way to construct the
random variables Hα(ξ) (using the Wick product). Problem 5.1.4 introduces
the generalized expectation, a concept that we will encounter again in
a more abstract setting. Problem 5.1.5 invites the reader to investigate the
chaos solution for the remaining two of the three equations that are introduced
at the very beginning of this chapter. Problem 5.1.6 establishes a connection
between the Wick product and the Itô integral.

Problem 5.1.1. Let ξ be a standard Gaussian random variable. Show that
the random variable 1/(1− ξ) belongs to the Sobolev space L−1

2 (ξ). [This, in
particular, means that the solution of u = 1 + uξ is much more regular, as a
random variable, than the solution of u = 1 + u ⋄ ξ.]

Problem 5.1.2. Prove that the collection Hα(ξ), α ∈ J , is an orthogonal
basis in the space L2(w[0,T ]) of square-integrable functionals of w. Deduce the
completeness of the system Eh, h ∈ U0 for every dense sub-set U0 of L2((0, T )).

Problem 5.1.3. For a multi-index α ∈ J with |α| = n > 0, define the
characteristic set Kα of α as an ordered n-tuple (k1, . . . , kn), where k1 ≤
k2 ≤ . . . ≤ kn are the locations the non-zero elements of α, and ki = ki+1 =
· · · = ki+m = ℓ if αℓ = m. In other words, k1 is the index of the first non-
zero element of α. If αk1 > 1, then k1 is followed by max (0, αk1 − 1) entries
with the same value. The next entry after that is the index of the second
non-zero element of α, followed by max (0, αk2 − 1) of entries with the same
value, and so on. For example, if n = 7 and α = (1, 0, 2, 0, 0, 1, 0, 3, 0, . . .),
then the non-zero elements of a are α1 = 1, α3 = 2, α6 = 1, α8 = 3, so that
k1 = 1, k2 = k3 = 3, k4 = 6, k5 = k6 = k7 = 8, and Kα = (1, 3, 3, 6, 8, 8, 8),
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Show that, if α is a multi-index with the characteristic set Kα =
(k1, . . . , kn), then

Hα(ξ) = ξk1 ⋄ ξk2 ⋄ · · · ⋄ ξkn . (5.1.62)

Problem 5.1.4. For a generalized random variable η define the generalized
expectation Ĕη by

Ĕη = η̆(0).

Verify that

1. Ĕη = η̄(0);

2. if η is a square-integrable random variable, then Ĕη = Eη is the usual
expectation;

3. for two generalized random variables η1, η2,

Ĕ(η1 ⋄ η2) = (Ĕη1)(Ĕη2).

Problem 5.1.5. Investigate the chaos solution for equations (5.1.5) and

(5.1.6) on page 222, taking u(0, x) = e−x
2/2. Note that, in both cases, there

is an explicit formula for ŭ(t, x;h).

Problem 5.1.6. Recall that the stochastic Itô integral
∫ T
0 f(s)dw(s) is the

mean-square limit of the sums

∑

j

f(tj)
(
w(tj+1) − w(tj)

)
.

Verify that, with f = w, if the usual product is replaced with the Wick
product, then the function f can be evaluated at any point t∗j in the interval
[tj , tj+1]:

w2(T ) − T = 2 lim
∑

j

w(t∗j ) ⋄
(
w(tj+1) − w(tj)

)
.

Then try to extend the result to other adapted functions f .

5.2 General Theory

5.2.1 Wick-Itô-Skorohod Integral

Let B be a Gaussian white noise over a separable Hilbert space U . If f ∈
L2(U), then B(f) is a Gaussian random variable with mean zero and variance
‖f‖2

U . Our objective in this section is to define the action of B on a much larger
class of f , including random f ; the result is called the Wick-Itô-Skorohod
integral, and the reason for this somewhat long name will become clear after
we go through the construction. Before we can construct the integral, though,
we have to define [one more time] the spaces Lγ2 and (S), this time in a
completely abstract setting.
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Fix an orthonormal basis {uk, k ≥ 1} in U . Then

ξk = B(uk), k ≥ 1,

is a collection of iid standard Gaussian random variables. Similar to (5.1.49)
on page 233, for a multi-index α ∈ J , define

Hα(ξ) =
∏

j

Hαj (ξj). (5.2.1)

For a separable Hilbert space H , denote by L2(B;H) the collection of
square-integrableH-valued random elements that are measurable with respect
to the σ-algebra generated by ξk, k ≥ 1; L2(B) denotes the corresponding
collection of (real-valued) random variables: L2(B) = L2(B; R). We will follow
this convention (omitting the range H when H = R) in other notations of the
spaces.

The collection of random variables {Hα(ξ), α ∈ J } is an orthogonal
basis in L2(B;H) in the following sense: If ζ ∈ L2(B;H), then, with ζ̄α =
E
(
ζHα(ξ)

)
∈ H , we have

ζ =
∑

α∈J

ζ̄α
α!

Hα(ξ), E‖ζ‖2
H =

∑

α∈J

‖ζ̄α‖2
H

α!
;

cf. Problem 5.1.2 on page 240. Similar to the case of standard Brownian
motion, we will sometimes refer to {Hα(ξ), α ∈ J } as the Cameron-Martin

basis in L2(B;H).
Before we proceed, let us address a question that is on the one hand

important but on the other hand not very relevant for our discussion, namely,
whether the constructions related to the chaos solution can be carried out
without reference to any particular basis.

Recall that, even though all the standard operations of multi-variable cal-
culus in R

d (gradient, divergence, curl, etc.) have intrinsic definitions (that is,
definitions that do not involve a particular basis in R

d), the study of multi-
variable calculus usually starts with definitions and computations in the stan-
dard Euclidean basis. Similarly, all the constructions related to the chaos
solutions can be carried out in an intrinsic way, but the computations are car-
ried out in the Cameron-Martin basis {Hα(ξ), α ∈ J }, which is the canonical
basis in L2(B;H) and, to an extend, is the analogue of the Euclidean basis
in R

d. With this in mind, we will concentrate our efforts on computations,
leaving more technical issues to the interested reader in the form of problems
and suggestions for further reading.

Now we are ready to define the spaces Lγ2 and (S). For ζ ∈ L2(B;H), a
number ρ > 0, and a sequence of positive numbers q, define the (not neces-
sarily finite) expressions ‖ζ‖ρ,q and ‖ζ‖ρ,1/q by

‖ζ‖2
ρ,q =

∑

α∈J
qα ‖ζ̄α‖2

H

(α!)1−ρ
, ‖ζ‖2

−ρ,1/q =
∑

α∈J

1

qα

‖ζ̄α‖2

(α!)1+ρ
; (5.2.2)
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recall that qα = qα1
1 qα2

2 · · · and, since there only finitely main non-zero αk,
this product always terminates.

Definition 5.2.1. Denote by Q the collection of sequences q = (q1, q2, . . .)
with qk > 1.

For ρ ∈ [0, 1] and q ∈ Q,

• The space (S)ρ,q(B;H) is the collection of those elements ζ ∈ L2(B;H)
for which ‖ζ‖ρ,q <∞;

• The space (S)−ρ,1/q(B;H) is the closure of L2(B;H) with respect to the
norm ‖ · ‖−ρ,1/q.

The Sobolev spaces Lγ2(B;H) are defined similarly, using the norms

‖ζ‖2
γ =

∑

α∈J
|α|γ ‖ζ̄α‖

2
H

α!
, γ ∈ R.

We always omit H as part of the subscript in the notations for the norms in
(S)ρ,q(B;H) and Lγ2(B;H); when H = R, then H is also omitted from the
notations of the spaces: (S)ρ,q(B) = (S)ρ,q(B; R), Lγ2 (B) = Lγ2(B; R).

Exercise 5.2.2 (C). Verify that, if ζ ∈ (S)0,q(B;H) and, for all k ≥ 1,
qk ≥ c > 1, then ζ ∈ ⋂γ>0L

γ
2 (B;H). Hint. cn > nγ for all sufficiently large n.

To continue, define the space of generalize H-valued random elements

(S)−1(B;H) =
⋃

q∈Q

(S)−1,1/q(B;H)

and the space of test random variables

(S)1(B;H) =
⋂

q∈Q

(S)1,q(B;H).

In the particular case qk = (2k)ℓ, ℓ > 0, (S)±0 are known as the Hida

spaces, after one of the authors of [69] (see also [71, 70]), whereas (S)±1 are
known as the Kondratiev spaces, after one of the authors of [105] and [106].
We will not be addressing (S)ρ,1/q by any particular name.

The following definition is a consequence of the construction of the space
(S)−1(B;H).

Definition 5.2.3. Every η ∈ (S)−1(B;H) is identified with a (possibly diver-
gent) series ∑

α∈J

η̄α

α!
Hα(ξ),

called the chaos expansion of the generalized random element η; {η̄α, α ∈
J }, with η̄α ∈ H, are called the chaos coefficients of η.
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Exercise 5.2.4 (C). Verify that every finite linear combination of Hα(ξ) with
coefficients fromH is in (S)1(B;H), and this includes everything non-random,
that is, all of H , whose elements have only one non-zero chaos coefficient,
namely, the one corresponding to α = (0).

If η ∈ L2(B;H) and ζ ∈ L2(B), then

Eηζ =
∑

α∈J

η̄αζ̄α
α!

∈ H, (5.2.3)

and if η and ζ are in L2(B;H) then

E(η, ζ)H =
∑

α∈J

(η̄α, ζ̄α)H
α!

∈ R. (5.2.4)

Then we get

• the duality relation 〈〈·, ·〉〉 between (S)−1(B;H) and (S)1,q(B), defined by
an extension of (5.2.4);

• the duality relation 〈〈·, ·〉〉 between (S)−1(B;H) and (S)1,q(B;H), defined
by an extension of (5.2.3);

given the clearly different nature of the objects, there is little danger of con-
fusion by the same notation 〈〈·, ·〉〉.

For example, if η ∈ (S)−1(B;H), then

η̄α = 〈〈η,Hα(ξ)〉〉 ∈ H. (5.2.5)

Next, we introduce the abstract version of the stochastic exponential
(5.1.3) on page 222. Let U0 be a dense subset of U . For h ∈ U0, define

Eh = exp

(
B(h) − 1

2
‖h‖2

U

)
. (5.2.6)

Since B(h) ∼ N (0, ‖h‖2
U), we have Eh ∈ L2(B) and EEh = 1.

Let hk = (h, uk)U , k ≥ 1, be the Fourier coefficients of h in the basis {uk}.
Then

Eh = exp

( ∞∑

k=1

hkξk −
1

2

∞∑

k=1

h2
k

)
.

Exercise 5.2.5 (C). Verify the following properties of Eh:

Eh =
∑

α∈J

hα

α!
Hα(ξ), h = (h1, h2, . . .); (5.2.7)

h2
k < xk/qk,

∑

k

xk < 1 ⇒ Eh ∈ (S)ρ,q(B); (5.2.8)

Hα(ξ) =
∂|α|Eh

∂hα1
1 ∂hα2

2 · · ·
∣∣∣
h=0

; (5.2.9)

〈〈η, Eh〉〉 = 0, h ∈ U0 ⇔ η̄α = 0, α ∈ J
⇔ η = 0 in (S)−1(B;H). (5.2.10)
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Definition 5.2.6. The S-transform of η ∈ (S)−1(B;H) is the H-valued
function

η̆(h) = 〈〈η, Eh〉〉. (5.2.11)

Exercise 5.2.7 (C). Verify that, with definition B =
∑∞

k=1 ukξk (cf. (3.2.16)
on page 100), we have B ∈ (S)0,1/q(B;U) for every q ∈ Q with

∑∞
k≥ 1/qk <

∞, and

B̆(h) =

∞∑

k=1

hkuk = h. (5.2.12)

Hint. The only multi-indices that matter are ǫ(k).

Given a q ∈ Q, define the set U(0, q) ⊂ U as the collection of h such that

∞∑

k=1

h2
kqk <

1

2
. (5.2.13)

Proposition 5.2.8. If η ∈ (S)−1,1/q(B;H), then η̆ is well-defined and ana-
lytic in U(0, q), and

η̄α =
∂|α|η̆(h)

∂hα1
1 ∂hα2

2 · · ·
∣∣∣
h=0

. (5.2.14)

Proof. By the Cauchy-Schwartz inequality,

(
∑

α

‖η̄α‖Hhα

α!

)2

≤
(
∑

α

h2αqα

)(
∑

α

‖η̄α‖2
H

(α!)2qα

)
≤ 2‖η‖2

−1,1/q,

where the second inequality follows from (5.2.13) and from (5.1.43) on page
232.

Definition 5.2.9. The generalized expectation of η ∈ (S)−1,1/q(B;H),

denoted by Ĕη, is
Ĕη = η̆(0) ∈ H.

Exercise 5.2.10 (C). Verify that b̆Eη = η̄(0), and if η ∈ L2(B;H), then

Ĕη = Eη.

If we know that η̆ is analytic in some U(0, r), a natural question to ask is,
what sequence q will ensure that η ∈ (S)−1,1/q(B;H)? The answer is more
complicated than Proposition 5.2.8 (after all, the Cauchy-Schwartz inequality
only goes in one direction) and requires a deeper excursion into the theory of
analytic functions of infinitely many variables. We will not pursue this subject
and, in the future, will investigate η by analyzing the coefficients η̄α directly.
A starting point for the reader interested in an alternative approach could be
[148, Theorem 5.7], followed by [69, Section 4.D], [105], and [73].
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Definition 5.2.11. The Wick product of η1 ∈ (S)−1(B;H) and η2 ∈
(S)−1(B) is the generalized random element η1 ⋄ η2 ∈ (S)−1(B;H) such that

(η1 ⋄ η2 )̆ (h) = η̆1(h)η̆2(h). (5.2.15)

The inevitable asymmetry of the definition is not a problem: we just keep in
mind that at least one of the terms in the product must be real-valued.

Exercise 5.2.12 (C). Verify that
(a) If at least one of η1, η2 is non-random, then η1 ⋄ η2 = η1η2 [since at

least one of η1, η2 is real-valued, the usual product is well-defined.]
(b) The generalized expectation of the Wick product is the usual product

of generalized expectations:

Ĕ(η1 ⋄ η2) =
(
Ĕη1

)(
Ĕη2

)
. (5.2.16)

We are now ready to introduce the generalized stochastic integral by defin-
ing the action of B on elements from (S)−1(B;H). The deterministic inte-
grands suggest that the space H must have a special form: If f ∈ U is non-
random, then, of course,

B(f) =

∞∑

k=1

ξk (f, uk)U ∈ L2(B) (5.2.17)

is a zero-mean Gaussian random variable with variance ‖f‖2
U ; if we want

B(f) to be an element of a Hilbert space Y , then f must be an element of
the tensor product Hilbert space Y ⊗ U (see page 76): if f =

∑∞
k=1 fk ⊗ uk,

with fk = (f, uk)U ∈ Y , then

B(f) =

∞∑

k=1

fkξk ∈ Y.

Extension of B(f) to random elements, as introduced in Definition 5.2.14
below, is less obvious. With the help of the following exercise, the reader will
have a better appreciation of the definition.

Exercise 5.2.13 (B). Let U = L2((0, T )), B(f) =
∫ T
0
f(t)dw(t), f ∈ U ,

where w is a standard Brownian motion. As usual, mk is an orthonormal

basis in L2((0, T )), Mk(t) =
∫ t
0

mk(s)ds and ξk =
∫ T
0

mk(t)dw(t).

For f ∈ L2(w[0,T ]) with fk =
∫ T
0
f(t)mk(t)dt, define two possibly divergent

series:

B(f) =

∞∑

k=1

fkξk, (5.2.18)

B⋄(f) =
∞∑

k=1

fk ⋄ ξk. (5.2.19)
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Verify that

B(w) =
w2(T )

2
, B⋄(w) =

w2(T ) − T

2
. (5.2.20)

Hint. With Mk(t) =
∫ t

0
mk(s)ds and w =

∑
k Mkξk, w2 =

∑
n,k ξkξnMkMn,

whereas
∫ T

0
mn(t)w(t)dt =

∑
k ξk

∫ T

0
Mk(t)mn(t)dt and Mkmn+Mnmk = (MkMn)′.

This concludes Exercise 5.2.20.

Exercise 5.2.20 suggests that equality (5.2.18), which is the straightforward
extension of (5.2.17) to random integrands f , does not preserve the zero-mean
property of the integral and, in some sense, corresponds to the Stratonovich
integral. On the other hand, replacing usual product with Wick product, as
in (5.2.19), seems to correspond to the Itô integral.

Now we are ready to define the generalized stochastic integral with respect
to B.

Definition 5.2.14. For

f =

∞∑

k=1

fk ⊗ uk ∈ (S)−1(B;Y ⊗ U),

the Wick-Itô-Skorokhod integral of f with respect to B is

B⋄(f) =

∞∑

k=1

fk ⋄ ξk. (5.2.21)

Exercise 5.2.15 (C). Taking Y = R, verify that

B⋄(Hα(ξ) uk
)

= Hα+ǫ(k)(ξ). (5.2.22)

Example 5.2.16. Let us examine (5.2.21) in the traditional setting of integra-
tion with respect to the standard Brownian motion w = w(t), t ∈ [0, T ], when
U = L2((0, T )), Y = R, and f = f(t) is a square-integrable process. Fix an
orthonormal basis m = {mk = mk(t), k ≥ 1, t ∈ [0, T ]} in L2((0, T )) and write

f(t) =

∞∑

k=1

fkmk(t), fk =

∫ T

0

f(t)mk(t)dt;

ẇ(t) =

∞∑

k=1

ξkmk(t), ξk =

∫ T

0

mk(t)dw(t).

If we take for granted the possibility to manipulate with divergent sums and
the Wick product, then equality (5.2.21) and orthonormality of the basis m

imply
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B⋄(f) =
∞∑

k=1

fk ⋄ ξk =
∞∑

k,n=1

fk ⋄ ξn
∫ T

0

mk(t)mn(t)dt

=

∫ T

0

( ∞∑

k=1

fkmk(t)

)
⋄
( ∞∑

k=1

ξkmk(t)

)
dt,

that is,

B⋄(f) =

∫ T

0

f(t) ⋄ ẇ(t)dt. (5.2.23)

For a large class of random functions f , equality (5.2.23) can be rigourously
derived, which, together with (5.2.20), provides a very strong, if not an over-
whelming, indication that definition (5.2.21) is reasonable:

1. If the process f is adapted (something we certainly do not assume in our

computations), then (5.2.23) is indeed the Itô integral
∫ T
0 f(t)dw(t);

2. For certain non-adapted f , (5.2.23) defines the Skorohod integral of f ,
which is a standard extension of the Itô integral to non-adapted (antici-
pating) integrands.

Accordingly, the object defined by (5.2.21) is reasonable to call the
Wick-Itô-Skorokhod integral. The details of the correspondence between
(5.2.21) and the more traditional constructions of stochastic analysis are out-
side the scope of our discussion; beside Problem 5.1.6 on page 241, a possible
reference for an interested reader is [73, Proposition 2.5.4 and Theorem 2.5.9].

This concludes Example 5.2.16.

Next, we verify that (5.2.21) indeed defines a generalized random element
by computing the chaos coefficients and the the S-transform of B⋄(f).

Theorem 5.2.17. (a) If

f ∈ (S)−1,1/q(B;Y ⊗ U),

then B⋄(f) ∈ (S)−1,1/(cq)(B;Y ) for every c > 1, and

(B⋄(f))α = 〈〈B⋄(f),Hα(ξ)〉〉 =
∑

k≥1

αk〈〈(f, uk)U ,Hα−ǫ(k)(ξ)〉〉, (5.2.24)

〈〈B⋄(f), Eh〉〉 = (f̆(h), h)U . (5.2.25)

(b) If f ∈ L1
2(B;Y ⊗ U), then B⋄(f) ∈ L2(B;Y ).

Proof. To make sense out of formulas (5.2.24) and (5.2.25), let yn, n ≥ 1,
be an orthonormal basis in Y . Then we note that, as an generalized random
element with values in Y ⊗ U , f has representations
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f =
∞∑

k=1

fk ⊗ uk [fk = (f, uk)U ∈ (S)−1,1/q(B;Y )]

=

∞∑

k,n=1

fn,k
(
yn ⊗ uk

)
[fn,k = (f, yn ⊗ uk)Y⊗U ∈ (S)−1,1/q(B)]

=
∑

k,α

(
f̄k;α ⊗ u

) Hα(ξ)

α!
[f̄k,α = 〈〈fk,Hα(ξ)〉〉 ∈ Y ]

=
∑

n,k;α

f̄n,k;α
(
yn ⊗ uk

) Hα(ξ)

α!
[f̄n,k;α = 〈〈fn,k,Hα(ξ)〉〉 ∈ R];

the coefficients fk, fn,k, f̄k;α, and f̄n,k;α are the Fourier coefficients of f taken
with respect to the corresponding orthogonal basis in one, two, or all three
spaces where f belongs. Also, recall that η̄α = 〈〈η,Hα(ξ)〉〉 denotes the chaos
coefficient of η, and η can have a rather complicated form, including additional
subscripts.

To derive (5.2.24) and (5.2.25), we manipulate with a suitable representa-
tion of f , without worrying about technicalities [for a more rigorous argument,
the reader can start with an f having only finitely many terms in every ex-
pansion, and then pass to the limit in the suitable norms...]

(a) To establish (5.2.24), note that

Hα(ξ) ⋄ ξk
α!

= (αk + 1)
Hα+ǫ(k)(ξ)

(α + ǫ(k))!

and shift the summation index in the sum over α so that the expansion is
again in terms of Hα(ξ). After comparing the similar terms, we conclude that

〈〈B⋄(f),Hα(ξ)〉〉 =
∑

k

αkf̄k;α−(k),

which is the same as (5.2.24); recall that α−(k) = α − ǫ(k).
To derive the bound on the norm of B⋄(f), note that, for every c > 1,

there is a C > 1 such that, for all n = 1, 2, . . ., n ≤ Ccn. Then, after some
manipulations with multiple sums and application of the Cauchy-Schwartz
inequality, we can show that

‖B⋄(f)‖2
−1,1/(cq) ≤ C‖f‖2

−1,1/q. (5.2.26)

Indeed, keeping in mind (5.2.24) and the relations

α−(k) = α − ǫ(k), α! = αk(α
−(k))!, qα = qkq

α−(k),
∑

k

1αk>0(k) ≤ |α|,

derivation of (5.2.26) is rather straightforward:
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‖B⋄(f)‖2
−1,1/(cq) =

∑

α

‖(B⋄(f))α‖2
Y

(α!)2c|α|qα
=
∑

α

1

(α!)2c|α|qα

∥∥∥∥∥
∑

k

αkf̄k;α−(k)

∥∥∥∥∥

2

Y

≤
∑

α

(
1

(α!)2c|α|qα

(
∑

k

1αk>0(k)

)
∑

k

α2
k‖f̄k;α−(k)‖2

Y

)

≤
∑

α

|α|
c|α|

∑

k

‖f̄k;α−(k)‖2
Y

((α−(k))!)2qα−(k)qk

=
∑

k

∑

α

|α|
c|α|

‖f̄k;α−(k)‖2
Y

((α−(k))!)2qα−(k)qk

≤ C
∑

k

∑

α:|α|>0

‖f̄k;α‖2
Y

qk(α!)2qα
= C

∑

α:|α|>0

1

qα

∑

k

‖f̄k;α‖2
Y

qk

≤ C
∑

α

‖f̄α‖2
Y⊗U1/q

qα
= C‖f‖2

−1,1/q.

To establish (5.2.25) note that f̆ ∈ Y ⊗ U , and, by (5.2.15),

〈〈fk ⋄ ξk, Eh〉〉 = 〈〈fk, Eh〉〉 · 〈〈ξk, Eh〉〉 = f̆k(h)hk,

whereas
∑

k f̆k(h)hk = (f̆(h), h)U .
(b) Similar to (5.2.26), this follows from (5.2.24) and (a slightly different

application of) the Cauchy-Schwartz inequality:

∑

α

‖(B⋄(f))α‖2
Y

α!
=
∑

α

1

α!

∥∥∥∥∥
∑

k

αkf̄k;α−(k)

∥∥∥∥∥

2

Y

≤
∑

α

(
1

α!

(
∑

k

αk

)
∑

k

αk‖f̄k;α−(k)‖2
Y

)

=
∑

α

(
|α|
∑

k

αk‖f̄k;α−(k)‖2
Y

α!

)

=
∑

α

∑

k

|α| ‖f̄k;α−(k)‖2
Y

(α − ǫ(k))!
=

∑

α:|α|>0

|α| ‖f̄α‖2
Y⊗U

α!
;

in the transition to the last equality, several steps are missing, but they are
present at a similar stage of the proof of (5.2.26).

This completes the proof of Theorem 5.2.17.

Exercise 5.2.18 (B). (a) Verify that if f ∈ (S)−ρ,1/q(B;Y ⊗ U) with ρ ∈
[0, 1) and q ∈ Q, then B⋄(f) ∈ (S)−ρ,1/(cq)(B;Y ) for every c > 1 and

‖B⋄(f)‖2
−ρ,1/(cq) ≤ C‖f‖2

−ρ,1/q.
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(b) Extend the result to (S)ρ,q -spaces, when ρ ∈ [0, 1] and q ∈ Q, that is,
investigate the action of B⋄ on regular random variables.

(c) Verify that (5.2.16) on page 246 implies the zero-mean property of
the Wick-Itô-Skorokhod integral:

ĔB⋄(f) = 0 (5.2.27)

for every f ∈ (S)−1(B;Y ⊗ U).

The extension of B(f) and B⋄(f) we will discuss next, when even a de-
terministic f can belong to a weighted space, might at first appear an over-
the-top generalization, but turns out both useful and natural. This extension
is useful because, in many examples of SPDEs, the integrand is such that the
resulting sum

∑
k ‖fk‖2

Y diverges in the “natural” space Y .
The extension is natural because, with rather lax convergence requirements

on the integral B⋄(f), it makes sense to relax the convergence requirements
on the integrand f as well: as formula (5.2.24) suggests, for each α ∈ J ,
(B⋄(f))α is a finite linear combination of fk. The following exercise is a further
illustration.

Exercise 5.2.19 (C). (a) For f =
∑∞
k=1 uk, verify that (5.2.24) results in

B(f) = B⋄(f) =
∑∞
k=1 ξk ∈ Lγ2(B) for every γ < 1.

(b) For f = B =
∑∞

k=1 ξkuk, verify that (5.2.24) results in B⋄(f) =∑∞
k=1 H2(ξk) ∈ Lγ2(B) for every γ < 1.
(c) What f will produce B⋄(f) =

∑∞
k=1 Hn(ξk), n ≥ 3?

Hints. (a) 1 ⋄ ξk = ξk; (b) ξk ⋄ ξk = H2(ξk).

Accordingly, just as we introduced the stochastic spaces (S)−ρ,1/q to han-
dle series that diverge in L2(B), let us introduce the spaces U1/q to handle
series that diverge in U : for g ∈ U , and q ∈ Q (that is, qk > 1), set

‖g‖2
U ,1/q =

∞∑

k=1

∣∣(g, uk)
∣∣2

qk
,

and then define U1/q as the closure of U in the norm ‖ · ‖U ,1/q. Note that

1. The structure of the norm in U is such that, unlike the stochastic case,
there is no need for the extra factorial factor;

2. The space Uq ⊂ U can be defined similarly, but will not be necessary for
our discussion.

As a results,

• If f ∈ U1/q, then f =
∑∞
k=1 fkmk, fk ∈ R,

∑
k≥1 f

2
k/qk <∞, and

B(f) =
∞∑

k=1

fkξk ∈ (S)0,1/q(B);
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• If f ∈ Y ⊗ U1/q, then f =
∑∞

k=1 fk ⊗ mk, fk ∈ Y,
∑
k≥1 ‖fk‖2

Y /qk < ∞,
and

B(f) =
∞∑

k=1

fkξk ∈ (S)0,1/q(B;Y );

• If f ∈ S−1,1/q(B;Y ⊗U1/q), then f =
∑∞

k=1

∑
α∈J f̄k;αmk

Hα(ξ)
α! , f̄k;α ∈ Y ,

∑
k≥1

∑
α

‖f̄k;α‖2
Y

qkqα(α!)2 <∞, and

B(f) =
∞∑

k=1

fk ⋄ ξk ∈ (S)−1,1/(cq)(B;Y ), c > 1. (5.2.28)

Below, we verify (5.2.28); the reader is encouraged to verify the two easier ones.
Since we are not in pursuit of the sharpest results, there is no loss of generality
in assuming that the “deterministic” and “stochastic” weight sequences are
the same: if f ∈ S−1,1/r(B;Y ⊗U1/w), then certainly f ∈ S−1,1/q(B;Y ⊗U1/q)
with qk = max(rk, wk).

Theorem 5.2.20. If f ∈ S−1,1/q(B;Y ⊗ U1/q), then (5.2.28) holds.

Proof. The argument is identical to the proof of (5.2.26), but this time we
will keep the qk at the bottom of the fraction in the concluding inequality:

‖B⋄(f)‖2
−1,1/(cq) =

∑

α

‖(B⋄(f))α‖2
Y

(α!)2c|α|qα
=
∑

α

1

(α!)2c|α|qα

∥∥∥∥∥
∑

k

αkf̄k;α−(k)

∥∥∥∥∥

2

Y

≤
∑

α

(
1

(α!)2c|α|qα

(
∑

k

1αk>0(k)

)
∑

k

α2
k‖f̄k;α−(k)‖2

Y

)

≤
∑

α

|α|
c|α|

∑

k

‖f̄k;α−(k)‖2
Y

((α−(k))!)2qα−(k)qk

=
∑

k

∑

α

|α|
c|α|

‖f̄k;α−(k)‖2
Y

((α−(k))!)2qα−(k)qk

≤ C
∑

k

∑

α:|α|>0

‖f̄k;α‖2
Y

qk(α!)2qα
= C

∑

α:|α|>0

1

qα

∑

k

‖f̄k;α‖2
Y

qk

= C
∑

α

‖f̄α‖2
Y⊗U1/q

qα
.

The following table summarizes our construction of B⋄(f): the left column
gives the set of values for f , and the right column gives the corresponding set
of values for B⋄(f). Recall that B⋄(f) = B(f) for non-random f , and note
that the last two entries on the right are the same.
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f B⋄(f)
U L2(B)
U1/q (S)0,1/q(B)
Y ⊗ U L2(B;Y )
Y ⊗ U1/q (S)0,1/q(B;Y )
(S)−1;1/q(Y ⊗ U) (S)−1,1/(cq)(B;Y ), c > 1
(S)−1;1/q(Y ⊗ U1/q) (S)−1,1/(cq)(B;Y ), c > 1

Exercise 5.2.21 (C). Verify that zero-mean property (5.2.29) of B⋄(f) con-
tinues to hold for f ∈ (S)−1;1/q(Y ⊗ U1/q) :

ĔB⋄(f) = 0. (5.2.29)

5.2.2 The Propagator

Up to now, our analysis of stochastic equations relied, whenever possible, on
the theory of Itô integration. Now we will work with the Wick-Itô-Skorokhod
integral B⋄. To motivate the constructions that follow, let us see how a simple
Itô equation,

u̇(t) = au(t) + u(t)ẇ(t), 0 < t ≤ T, (5.2.30)

looks when written in terms of B⋄. Let {mk(t), k ≥ 1, t ∈ [0, T ]} be an
orthonormal basis in L2((0, T )); for the sake of concreteness, take it the
Fourier cosine basis. Then (cf. (5.2.23) on page 248) ẇ(t) =

∑
k ξkmk(t),

ξk =
∫ T
0 mk(t)dw(t), and (5.2.30) becomes

u̇(t) = au+
∞∑

k=1

mk(t)u ⋄ ξk. (5.2.31)

Note that
∑

k mk(t)u diverges in the underlying Hilbert space U = L2((0, T )),
but converges in U1/q, for example, with qk = 2k, because our choice of mk

ensures |mk(t)| ≤ C0 for all k and t.
Accordingly, our objective in this section is to study the equation

Au = f +

∞∑

k=1

(Mku) ⋄ ξk. (5.2.32)

We will see later (page 255) how (5.2.32) includes various familiar equations
as particular cases. From the applications point of view, equation (5.2.32) pro-
vides a very wide class of unbiased random perturbations of the deterministic
equation

Av = Ĕf (5.2.33)

because the zero-mean property of the Wick-Itô-Skorohod integral [cf. (5.2.29)

on page 253] implies that the generalized expectation Ĕu, if exists, satisfies
the deterministic equation (5.2.33).

Here is a list of objects necessary to consider (5.2.32), together with some
basic assumptions.
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• B: Gaussian white noise over a separable Hilbert space U ;
• {uk, k ≥ 1}: an orthonormal basis in U ;
• ξk = B(uk);
• X and Y : separable Hilbert spaces;
• A: a linear homeomorphism between X and Y ;
• Mk, k ≥ 1 : bounded linear operator from X to Y
• f ∈ (S)−1(B;Y ).

Assumptions about the operator A imply that for every g ∈ Y , the deter-
ministic equation Av = g has a unique solution v ∈ X and

‖v‖X ≤ CA‖g‖Y , that is, ‖A−1g‖X ≤ CA‖g‖Y . (5.2.34)

In other words, the space X and the operator A determine the space Y in an
essentially unique way; equivalently, Y is the “natural” space for the input of
the deterministic equation, and then X becomes the corresponding solution
space.

By assumption about the operators Mk,

‖Mkv‖Y ≤ cM,k‖v‖X , k ≥ 1, v ∈ X. (5.2.35)

Therefore, taking, for example, rk = (1 + c2M,k)2
k,

∞∑

k=1

‖Mkv‖2
Y

rk
≤ ‖v‖2

X . (5.2.36)

In other words, (5.2.32) is an expanded version of

Au = f + B⋄(Mu), (5.2.37)

with a bounded linear operator M : X → Y ⊗ U1/r.
Next, let us relate (5.2.32) to the three standard types of stochastic equa-

tions; one particular representative is chosen for each type:

−∆u = f + u ⋄ Ẇ (x), x ∈ G ⊂ R
d (elliptic); (5.2.38)

utt = ∆u+ f + ut ⋄ ẇ(t), x ∈ R
d (hyperbolic); (5.2.39)

ut = uxx + f + u ⋄ Ẇ (t, x), x ∈ R (parabolic). (5.2.40)

The domain G is assumed to be sufficiently regular. Evolution equations are
considered on a finite time interval [0, T ]. In each case, the diamond notation
for the product between the function and the white noise emphasizes the use
of definition (5.2.21) on page 247.

The results are summarized in the table below. As usual, mk are the el-
ement of an orthonormal basis in L2((0, T )), and hk are the elements of an
orthonormal basis in L2(A), with A = G or R. With no loss of generality, we
assume that all the functions mk and hk are bounded.
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Eq. (5.2.38) Eq. (5.2.39) Eq. (5.2.40)
U L2(G) L2((0, T )) L2((0, T ) × R)
Av −∆v vtt − ∆v vt − ∆v
Mkv hk(x)v mk(t)vt mk1(t)hk2 (x)v
X H1(G) X ⊂ L2

(
(0, T );H1(R)

)
X ⊂ L2

(
(0, T );H1(R)

)

Y H−1(G) L2

(
(0, T ) × R

d
)

L2

(
(0, T );H−1(R)

)

The choices of U and A are immediate consequences of the corresponding
equation. The choice of the operators Mk becomes clear after rewriting the
noise terms as

Ẇ (x) =

∞∑

k=1

ξkhk(x),

ẇ(t) =

∞∑

k=1

ξkmk(t),

Ẇ (t, x) =
∞∑

k1,k2=1

ξk1,k2mk1(t)hk2 (x),

and then using (5.2.32) to identify Mk. The choice of the spaces Y comes
directly from the corresponding theorems (Theorem 4.1.18 on page 152, The-
orem 4.1.21 on page 153, and Theorem 4.1.23 on page 154). Identification of
the space X for the evolution equations requires some extra work. Roughly
speaking, X is the collection of those functions from the domain of A that
can be solutions of the corresponding equation.

For the hyperbolic equation, we can take

X =
{
u ∈ L2

(
(0, T );H1(Rd)

)
:

u(t) = u0 +

∫ t

0

ut(s)ds, ut(t) = v0 +

∫ t

0

utt(s)ds,

u0 ∈ H1(Rd), v0 ∈ L2(R
d), ut∈L2

(
(0, T ) × R

d
)
, utt∈L2

(
(0, T );H−1(Rd)

)}
,

and for the parabolic equation,

X =
{
u ∈ L2

(
(0, T );H1(R)

)
: u(t) = u0 +

∫ t

0

ut(s)ds,

u(0) ∈ H, ut ∈ L2

(
(0, T );H−1(R)

)}
.

Exercise 5.2.22 (C). Verify that, in all three cases, the numbers cM,k that
ensure (5.2.35), can be taken as cM,k = ‖mk‖∞, where ‖ · ‖∞ denotes the
sup-norm of the corresponding basis element in U .

To define the chaos solution of (5.2.32), recall that, for q ∈ Q, the set
U(0, q) ⊂ U is the collection of h such that
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∞∑

k=1

h2
kqk <

1

2
.

Exercise 5.2.23 (A). Verify that the set {Eh, h ∈ U(0, q)} is complete in
L2(B).

Definition 5.2.24. A generalized random element u ∈ (S)−1(B;X) is called
a chaos solution of (5.2.32) if there exists a sequence q ∈ Q such that, for
all h ∈ U(0, q), the S-transform ŭ = ŭ(h) of u is defined as an element of X
and satisfies the following equation in the space Y :

Aŭ(h) = f̆(h) +
∑

k≥1

hkMkŭ. (5.2.41)

Exercise 5.2.25 (C). Verify that, for equations (5.2.38)–(5.2.40) the corre-
sponding equations for the S-transform are

−∆ŭ = f̆ + h(x)ŭ, x ∈ G ⊂ R
d, (elliptic); (5.2.42)

ŭtt = ∆ŭ+ f̆ + h(t)ŭt, x ∈ R
d, (hyperbolic); (5.2.43)

ŭt = ŭxx + f̆ + h(t, x)ŭ, x ∈ R, (parabolic). (5.2.44)

Hint.
∑

k hkmk(t) = h(t).

Implicitly implied in the definition is that f̆ is defined in U(0, q), and,
since f ∈ (S)−1,1/p1

(B;Y ) for some p ∈ Q, this can always be ensured by
choosing qk large enough. Note that equation (5.2.41) is indeed the result of
applying the S-transform [or, equivalently, the duality 〈〈·, Eh〉〉] to both sides
of (5.2.32). With h ∈ U(0, q), the collection of Eh is a rich enough set of test
random variables, confirming that the chaos solution is a probabilistic version
of the traditional variational solution.

The following theorem establishes existence and uniqueness of the solution
of (5.2.41).

Theorem 5.2.26. Assume that h ∈ U(0, q), with qk = C2
A(1 + c2M,k)2

k [cf.
(5.2.34) and (5.2.35)]. Then, for every ϕ ∈ Y , equation

Av = ϕ+
∑

k≥1

hkMkv (5.2.45)

has a unique solution v ∈ X.

Proof. Define the linear operator B : X → X by

Bv = A−1f̆ +
∑

k≥1

A−1hkMkv.
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Then, by (5.2.35),

‖Bv1 − Bv2‖X ≤ CA‖v1 − v2‖X
∑

k≥1

|hk|cM,k

≤ CA‖v1 − v2‖X


∑

k≥1

h2
kqk




1/2
∑

k≥1

c2M,k

qk




1/2

.

If qk = C2
A(1 + c2M,k)2

k and h ∈ U(0, q), then

CA


∑

k≥1

h2
kqk




1/2
∑

k≥1

c2M,k

qk




1/2

≤ 1√
2
< 1,

meaning that B is a contraction. The definition of B implies that the unique
fixed point of B is the solution of (5.2.45).

At this point, we could pursue what can be considered a classical pure
mathematics approach to the study of (5.2.32), by verifying that (5.2.41) has
a solution that is analytic in U(0, q) for some q, and then establishing the
properties of the solution that are necessary to relate ŭ to an element in
(S)−1,1/r(B;X) for some r ∈ Q. This approach, while certainly elegant and
with the potential to provide the optimal solvability results, will take us too
far away from the subject of the discussion (SPDEs) and into a completely
different subject of analytic functions of infinitely many variables — something
we promised to avoid.

Accordingly, we will pursue an applied mathematics approach, by develop-
ing a procedure for computing the solution via the chaos coefficients ūα and
deriving the corresponding estimates; the estimates, although not necessarily
optimal, will be good enough for many practical purposes.

With this approach, our immediate goal is to get a direct access to the
chaos coefficients ūα of the solution of (5.2.32), without first computing the S-
transform ŭ, and we achieve the goal by deriving a system of equations satisfied
by the coefficients. This system is called the propagator corresponding to
equation (5.2.32).

Theorem 5.2.27. A generalized random element u is a chaos solution of
(5.2.32) if and only if the chaos coefficients ūα of u satisfy the propagator

Aūα = f̄α +
∑

k

αkMkūα−(k), α ∈ J . (5.2.46)

Proof. We need to demonstrate that (5.2.46) and (5.2.41) are equivalent.
Accordingly, let us assume that u is a generalized random element with

chaos coefficients satisfying (5.2.46). Then multiplying both sides of (5.2.46)
by hα/α! and summing over α produces (5.2.41).
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Conversely, assume that ŭ(h) satisfies (5.2.41) and is an analytic function
in some neighborhood of zero. Then applying the operator Dα

h (· · · )|h=0,

Dα
h =

∂|α|

∂hα1
1 ∂hα2

2 · · · ,

to both sides of (5.2.41) produces (5.2.46). The reader is encouraged to carry
out the actual computation keeping in mind the following:

1. A product rule must be used when evaluating Dα
h

(
hkMkŭ(h)

)∣∣∣
h=0

;

2. Dα
h hk = 0 if α 6= ǫ(k),

3. By the product rule,

Dα
h

(
hkMkŭ(h)

)
= hkD

α
h Mkŭ(h) + αkD

ǫ(k)
h hk D

α−ǫ(k)
h Mkŭ(h)

[compare with (fg)(n) = gf (n)+ng′f (n−1)+· · · , a result known in calculus
as the Leibnitz formula].

4. D
α−ǫ(k)
h Mkŭ(h)

∣∣∣
h=0

= Mkūα−(k).

5. We are at a somewhat advanced stage in our investigation to worry about
technicalities such as exchanging the order of different operations...but
the reader is welcome to justify those steps as well.

This concludes the proof of Theorem 5.2.27.

The propagator for (5.2.39) is

(ūα)tt = ∆ūα + f̄α +
∑

k

αkmk(t)(ūα−(k))t.

Exercise 5.2.28 (C). (a) Write the propagators for equations (5.2.38) and
(5.2.40).

(b) Let u ∈ (S)−1(B;X) be a chaos solution of equation Au = f +∑
k Mku ⋄ ξk and let r = (r1, r2, . . .) ∈ Q. Define v ∈ (S)−1(B;X) by setting

v̄α = rαūα, α ∈ J . Verify that v is a chaos solution of

Au = f +
∑

k

rkMku ⋄ ξk,

and the corresponding propagator is

Av̄α = rαf̄α +
∑

k

αkrkMkv̄α−(k).

This concludes Exercise 5.2.28.

We now have an alternative definition of the chaos solution.
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Definition 5.2.29. A generalized random element u ∈ (S)−1(B;X) is called
the chaos solution of equation

Au = f +
∑

k

Mku ⋄ ξk (5.2.47)

if the chaos coefficients ūα, α ∈ J , of u satisfy the propagator

Aūα = f̄α +
∑

k

αkMkūα−(k). (5.2.48)

Let us now use this definition to establish a basic existence and uniqueness
result for the chaos solution of (5.2.32). Recall the numbers CA from (5.2.34)
and cM,k from (5.2.35).

Theorem 5.2.30. Assume that f ∈ (S)−1,1/q(B;Y ) and the sequence q =
(q1, q2, . . .) with qk > 1 has the following properties:

∞∑

k=1

c2M,k√
qk

≤ 1

2C2
A

, (5.2.49)

∞∑

k=1

1√
qk

≤ 1. (5.2.50)

Then the chaos solution u of (5.2.47) belongs to (S)−1,1/q(B;X) and

‖u‖2
−1,1/q ≤ 12C2

A‖f‖2
−1,1/q. (5.2.51)

Proof. An immediate comment is that there is nothing especially important
about the number 12 in (5.2.51): it is just the consequence of the particu-
lar computation we will carry out, combined with assumptions (5.2.49) and
(5.2.50).

It follows from (5.2.34) and (5.2.48) that

ūα = A−1f̄α +
∑

k

αkA
−1Mkūα−(k). (5.2.52)

In other words, the propagator has a lower-triangular structure and is solvable
by induction on |α|:

α = (0) ⇒ ū(0) = A−1f̄(0);

α = ǫ(k) ⇒ ūǫ(k) = A−1f̄ǫ(k) + A−1Mkū(0);

etc.

To get a bound on ‖u‖2
−1,1/q, introduce auxiliary notations

ũα =
ūα

α!
√

qα
, f̃α =

f̄α

α!
√

qα
,



260 5 Linear Equations: Chaos Solutions

so that

‖u‖2
−1,1/q =

∑

α

‖ũα‖2
X , ‖f‖2

−1,1/q =
∑

α

‖f̃α‖2
Y . (5.2.53)

Then (5.2.52) implies

ũα = A−1f̃α +
∑

k:αk>0

A−1Mkũα−(k)√
qk

,

and, after combining the triangle inequality with (5.2.34) and (5.2.35),

‖ũα‖X ≤ CA‖f̃α‖Y +
∑

k:αk>0

CAcM,k‖ũα−(k)‖X√
qk

.

Next, we square both sides of the inequality, and use the epsilon inequality
on the right, with ε = 1/2, so that (a+ b)2 ≤ 3a2 + (3/2)b2 [this is one of the
choices that will eventually lead to 12 in (5.2.51)]:

‖ũα‖2
X ≤ 3C2

A‖f̃α‖2
Y +

3

2

(
∑

k:αk>0

CAcM,k‖ũα−(k)‖X√
qk

)2

.

Then we apply the Cauchy-Schwartz inequality to the sum over k, splitting
1/

√
qk equally between the two terms:

‖ũα‖2
X ≤ 3C2

A‖f̃α‖2
Y +

3

2

( ∞∑

k=1

C2
Ac

2
M,k√
qk

) (
∑

k:αk>0

‖ũα−(k)‖2
X√

qk

)
,

use (5.2.49):

‖ũα‖2
X ≤ 3C2

A‖f̃α‖2
Y +

3

4

(
∑

k:αk>0

‖ũα−(k)‖2
X√

qk

)
,

sum both sides over all α ∈ J , with (5.2.53) in mind:

‖u‖2
−1,1/q ≤ 3C2

A‖f‖2
−1,1/q +

3

4

∑

k

1√
qk

∑

|α|>0

‖ũα−(k)‖2
X ,

use (5.2.50):

‖u‖2
−1,1/q ≤ 3C2

A‖f‖2
−1,1/q +

3

4
‖u‖2

−1,1/q,

and then solve for ‖u‖2
−1,1/q to get (5.2.51).

This completes the proof of Theorem 5.2.30.
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Exercise 5.2.31 (A). By choosing a different ε in the epsilon inequality and
by choosing different numbers on the right-hand sides of (5.2.49) and (5.2.50),
one can get numbers other than 12 on the right-hand-side of (5.2.51). How
small can you make this number? Can you take it arbitrarily close to 1?

Let us emphasize several points from the proof of Theorem 5.2.30, which
illustrate the power of the propagator approach:

• The propagator has lower-triangular structure and is solvable by induction
on |α| — very desirable features for numerical computations in applica-
tions. In fact, one of the original motivations to consider chaos solutions
[141] was an algorithm to solve the Zakai filtering equation in a way that
separates the observations and the deterministic parameters of the model.

• Two simple conditions ensure easy solvability of the propagator (a) The
deterministic equation Av = g, v ∈ X, g ∈ Y is well-posed; (b) The op-
erators Mk in the stochastic part do not ruin regularity in the sense
that each operator A−1Mk : X → X is bounded. As a result, although the
chaos solution exists only for stochastic equations, analysis of the chaos
solution is a purely deterministic problem.

Among the obvious drawbacks of the propagator approach are

• The necessity to have all operators in the equation non-random: the only
source of randomness must be the driving noise B;

• Lack of an easy extension beyond Hilbert-space theory, e.g. to Lp spaces,
p > 2.

The (somewhat crude) estimates that lead to (5.2.51) suggest that bound-
ing the norm of the solution in a smaller space, such as an (S)−ρ,1/q with ρ < 1,
is not that easy. Equations ut = auxx+σuxẇ (page 238) and −u′′ = sin y+u⋄ξ
(page 230) provide two examples that are, in some sense, extreme: in the case
of stochastic parabolic equation, the solution with deterministic input [which
is in (S)1 rather then (S)−1,1/q ] can belong to the space (S)0,q of regular
random variables, but at this point we do not see how the analysis of the
corresponding propagator can lead to this result; in the case of stochastic el-
liptic equation, the solution cannot be better than an element of (S)−1,1/q

no matter how regular the input is. As we will see in the next section, while
the conclusion of Theorem 5.2.30 is essentially sharp for elliptic equations,
several types of evolution equations with regular input have chaos solutions
in (S)0,1/q and even (S)0,q .

While it is clear that the solution of (5.2.48) is available by induction,
it is also clear that the explicit formula will be long and messy. When f is
non-random, the formula turns out rather manageable.

To write the formula, we need the characteristic set Kα of a multi-
index α (cf. Problem 5.1.3 on page 240): for α ∈ J with |α| = n, Kα is
an ordered n-tuple (k1, . . . , kn), where k1 ≤ k2 ≤ . . . ≤ kn are the locations
the non-zero elements of α, and ki = ki+1 = · · · = ki+m = ℓ if αℓ = m. In
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other words, k1 is the index of the first non-zero element of α. If αk1 > 1,
then k1 is followed by max (0, αk1 − 1) entries with the same value. The next
entry after that is the index of the second non-zero element of α, followed
by max (0, αk2 − 1) of entries with the same value, and so on. For example, if
α = (0, 1, 2, 1, 0, 1, 3, 0, 0, . . .), then |α| = 1 + 2 + 1 + 1 + 3 = 8, the non-zero
elements of a are α2 = 1, α3 = 2, α4 = 1, α6 = 1, α7 = 3, so that k1 = 2, k2 =
k3 = 3, k4 = 4, k5 = 6, k6 = k7 = k8 = 7, and Kα = (2, 3, 3, 4, 6, 7, 7, 7).

Exercise 5.2.32 (C). Verify that an equivalent form of (5.2.48) is

Aūα = f̄α +
∑

k∈Kα

Mkūα−(k). (5.2.54)

Theorem 5.2.33. Assume that f̄α = 0 for |α| > 0. Let α ∈ J with |α| = n
and the characteristic set Kα = (k1, . . . , kn). Denote by Pn the permutation
group of the set (1, 2, . . . , n). Then

ūα =
∑

σ∈Pn

(A−1Mkσ(n)
)(A−1Mkσ(n−1)

) · · · (A−1Mkσ(1)
)A−1f. (5.2.55)

Proof. Remember that we assume f = f(0), which greatly simplifies (5.2.52):

ū(0) = A−1f, ūα =
∑

k≥1

αk(A
−1Mk)ūα−(k), |α| > 0.

Definition of Kα implies

∑

k≥1

αk(A
−1Mk)ūα−(k) =

∑

k∈Kα

(A−1Mk)ūα−(k),

and verification of (5.2.55) is immediate by induction on n.

Exercise 5.2.34 (A). Use (5.2.55) to provide an alternative proof of Theo-
rem 5.2.30 (in the case of non-random f). You might need to modify (5.2.49)
and (5.2.50), and might get a different constant in (5.2.51). For extra credit,
compare your results with [147, Theorem 4.5].

To conclude the section, let us address the following question. If u ∈
(S)−1,1/q(B;X), then the series

∑

α∈J

ūα√
qα α!

Hα(ξ)

α!
(5.2.56)

converges in L2(B;X). Can we find something like an explicit expression for
this sum if u is a chaos solution of (5.2.47)?

It turns out that, if f is non-random, then a (somewhat) good-looking and
explicit expression exists for the sum
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∑

α∈J

ūα√
qα |α|!

Hα(ξ)

α!
, (5.2.57)

which certainly converges because |α|! ≥ α!.

Theorem 5.2.35. Let f be non-random and let u ∈ (S)−1,1/q(B;X) be a
chaos solution of (5.2.47). Then

∑

α∈J

ūα√
qα |α|!

Hα(ξ)

α!
= A−1f +

∞∑

n=1

1√
n!

B⋄,n
q (A−1f), (5.2.58)

where
B⋄,0

q (η) = η, B⋄,n
q (η) = B⋄

(
MqB⋄,n−1

q (η)
)
,

and

Mq(η) =
∑

k≥1

1√
qk

(
A−1Mkη

)
⊗ uk.

Proof. First, let us make sense of (5.2.58). Recall that B⋄ takes an element
of (S)−1,1/q(B;X ⊗ U) and produces an element of (S)−1,1/q(B;X). The
operator, Mq, on the other hand, takes an element of (S)−1,1/q(B;X) and
produces an element of (S)−1,1/q(B;X ⊗U). Thus, the recursive definition of
B⋄,n

q makes sense, and then verification of (5.2.58) is a matter of a routine
inductive argument, which we now carry out.

Note that ū(0) = A−1f , taking care of the first term on the right hand
side of (5.2.58). For n ≥ 1, define

Un =
∑

|α|=n

ūα√
qα

Hα(ξ)

α!
,

so that
∑

α∈J

ūα√
qα |α|!

Hα(ξ)

α!
= A−1f +

∞∑

n=1

1√
n!
Un.

It remains to verify that
Un = B⋄,n

q (A−1f),

or
Un = B⋄

(
MqUn−1

)
. (5.2.59)

If n = 1 and α = ǫ(k), then, by (5.2.48),

ūǫ(k) = A−1MkA
−1f,

and, by the definition of B⋄(·) [which, with non-random A−1MkA
−1f , is the

same as B(·), because each is non-random],
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∞∑

k=1

ūǫ(k)√
qk

ξk = B⋄
(
A−1MqA−1f

)
= B⋄,1

q (A−1f).

For n > 1, the definition of Un implies

(
Ūn
)
α

=

{
ūα/

√
qα, if |α| = n,

0, otherwise.

On the other hand, by (5.2.48) [with f̄α = 0],

ūα√
qα

=
∑

k

αk
1√
qk

A−1Mk

(
ūα−(k)√
qα−(k)

)
,

that is,
(
Ūn
)
α

=
∑

k

αk
1√
q
k

A−1Mk

(
Ūn−1

)
α−(k)

,

which, by (5.2.24) on page 248, implies (5.2.59).

This completes the proof of Theorem 5.2.35.

5.2.3 Adapted Chaos Solutions

An abstract form of a stochastic evolution equation is

u̇(t) = Au(t) + f(t) +
∑

i≥1

(
Miu(t) + gi(t)

)
ẇi(t), 0 < t ≤ T, (5.2.60)

with an initial condition u(0) = u0. Allowing u to be a vector covers hyperbolic
equations.

To study chaos solutions, the operators A and Mk must be non-random;
for simplicity, there is no time dependence either.

Denote by FW
t the sigma-algebra generated by wi(s), i ≥ 1, 0 ≤ s ≤ t. We

know from Chapter 4 that if u0 is FW
0 -measurable and f, gi are Fw

t -adapted,
or simply adapted [that is, f(t), gi(t) areFW

t -measurable for each t ≥ 0], then
a square-integrable solution of (5.2.60), if exists, is also FW

t -adapted.
The goal of this section is to see how, and to what extend, the notion of

FW
t -measurability can be extended to chaos solutions. The main result of this

section, Theorem 5.2.37, achieves this goal by providing a representation of
certain chaos solutions of (5.2.60) as a (weighted) sum of iterated Itô integrals

To begin, we need to connect (5.2.60) and the abstract equation (5.2.47),
and the first technical issue to address is the presence of several (potentially,
infinitely many) Brownian motions: fitting (5.2.60) into the general framework
of the previous section requires a (slight) modification in the construction of
the multi-index. We will indeed assume that (5.2.60) contains infinitely many
Brownian motions, but, to emphasize that the number can also be finite, we
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will be writing sums over i as
∑
i≥1, as opposed to

∑∞
i=1. Also, in the notations

of the corresponding Lγ2 - and (S)-spaces, we will write W[0,T ] instead of B,
for example, (S)ρ,1/q(W[0,T ], H).

Recall that the original motivation behind the multi-index for the equation
with one Brownian motion was to work with a countable collection of random
variables

ξk =

∫ T

0

mk(t)dw)(t),

where {mk(t), k ≥ 1, t ∈ [0, T ]} is an orthonormal bassi in L2((0, T )); when-
ever necessary, we assume it to be the Fourier cosine basis.

With countably many Brownian motions, we now have a (still countable)
collection

ξi,k =

∫ T

0

mk(t)dwi(t); (5.2.61)

note that, in the notation ξi,k, the first index corresponds to the
Brownian motion and the second index corresponds to the basis
element. Instead of trying to arrange this collection as a single string, it
is much easier to keep it as a two-dimensional array. Then each multi-index
α ∈ J also becomes a two-dimensional array α = (αi,k) of non-negative
integers, still with only finitely many non-zero entries:

|α| =
∑

i,k

αi,k <∞.

Row number i in this multi-index corresponds to Brownian motion number i.
Then all notations from page 231 stay, with obvious modifications. In

particular, the unit multi-index ǫ(i, k) is the multi-index with |ǫ(i, k)| = 1
and the only non-zero entry in position (i, k); α−(i, k) = α − ǫ(i, k). The
weight sequence q ∈ Q in (S)-spaces becomes a two-dimensional array (qi,k)
as well, with qi,k > 1, and

qα =
∏

i,k

q
αi,k

i,k .

Also,

Hα(ξ) =
∏

i,k

Hαi,k
(ξi,k).

For example, if

α =




0 1 0 3 0 0 · · ·
2 0 0 0 4 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

... · · ·




with four non-zero entries α1,2 = 1; α1,4 = 3; α2,1 = 2; α2,5 = 4, then

Hα(ξ) = ξ1,2 ·H3(ξ1,4) ·H2(ξ2,1) ·H4(ξ2,5).
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Similarly, the characteristic set Kα of α becomes a lexicographically
ordered collection of ordered pairs, recording the position of the non-zero
entries of α: if |α| = n, then

Kα = {(i1, k1), . . . , (in, kn)},

with i1 ≤ i2 ≤ . . . ≤ in, and if ij = ij+1, then kj ≤ kj+1. The first pair (i1, k1)
in Kα is the position numbers of the first nonzero element of α. The second
pair is the same as the first if the first nonzero element of α is greater than
one; otherwise, the second pair is the position numbers of the second nonzero
element of α and so on. As a result, if αi,k > 0, then exactly αi,k pairs in Kα

are equal to (i, k). For example, if

α =




0 1 0 2 3 0 0 · · ·
1 2 0 0 0 1 0 · · ·
0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
... · · ·




with nonzero elements

α1,2 = α2,1 = α2,6 = 1, α2,2 = α1,4 = 2, α1,5 = 3,

then the characteristic set is

Kα ={(1, 2), (1, 4), (1, 4), (1, 5), (1, 5), (1, 5), (2, 1), (2, 2), (2, 2), (2, 6)}.

Exercise 5.2.36 (A). Verify that

Hα(ξ) = ξi1,k1 ⋄ ξi2,k2 ⋄ · · · ⋄ ξin,kn .

Hint. See Problem 5.1.3.

To study the chaos solution of (5.2.60), we write

ẇi(t) =

∞∑

k=1

ξi,kmk(t),

and use the Wick product ⋄ instead of the Itô integral interpretation of ẇi,
so that (5.2.60) becomes

u̇ = Au+ f(t) +
∑

i,k

mk(t)
(
Miu+ gi(t)

)
⋄ ξi,k,

with the propagator

˙̄uα(t) = Aαū(t)+f̄α(t)+
∑

i,k

αi,kmk(t)(Miūα−(i,k)(t)+
(
ḡi(t)

)
α−(i,k)

, (5.2.62)

0 < t ≤ T , and ūα(0) =
(
ū0

)
α
. It follows from (5.2.62) that,
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• for some types of questions, it is convenient to combine f and all of the gi
terms into one:

Fα = fα +
∑

i,k

αi,kmk(t)
(
ḡi(t)

)
α−(i,k)

;

• the presence of functions mk can improve some of the bounds originally
derived during the proof of Theorem 5.2.30: instead of using the triangle
inequality, the orthonormal functions mk might allow us to use Parseval’s
equality.

Assume that the linear operator A is defined on a Hilbert space X and
generate a strongly continuous semi-group Φ = Φt on another Hilbert space
Y such that X ⊂ Y , and each Mk is a bounded linear operator from X to Y .

Then we have the following modification of Theorem 5.2.33 on page 262.

Theorem 5.2.37. Assume that gi = 0, and f, u0 are non-random such that

ū(0) ∈ L2

(
(0, T );Y

)
. (5.2.63)

Let H be a Hilbert space [it can be Y , but can also be some other space
where the solution might belong].

If |α| = 1, then

ūα(t) =

∫ t

0

Φt−sMiū(0)(s) mk(s)ds, (5.2.64)

∑

|α|=1

ūα(t)Hα(ξ) =
∑

i≥1

∫ t

0

Φt−sMiū(0)(s) dwi(s), and (5.2.65)

∑

|α|=1

‖ūα(t)‖2
H =

∑

i≥1

∫ t

0

‖Φt−sMiū(0)(s)‖2
Hds; (5.2.66)

both sides of (5.2.66) can be infinite.
If |α| = n > 1, with characteristic set

Kα = {(i1, k1), . . . , (in, kn)},

and if Pn is the permutation group of {1, . . . , n}, then

ūα(t) =
∑

σ∈Pn

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φt−snMiσ(n)
· · ·Φs2−s1Miσ(1)

ū(0)(s1)mkσ(n)
(sn) · · ·mkσ(1)

(s1)ds1 . . . dsn,

(5.2.67)

∑

|α|=n
ūα(t)

Hα(ξ)

α!
=

∑

i1,...,in≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φt−snMin · · ·Φs2−s1
(
Mi1 ū(0)(s1)

)
dwi1 (s1) · · ·dwin(sn),

(5.2.68)
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and

∑

|α|=n

‖ūα(t)‖2
X

α!
=

∑

i1,...,in≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Φt−snMin · · ·Φs2−s1Mi1 ū(0)(s1)‖2
Xds1 . . . dsn;

(5.2.69)

both sides in (5.2.69) can be infinite.

Proof. Condition (5.2.63) means that the deterministic equation

v̇ = Av + f, v(0) = u0,

which is the equation satisfied by ū(0), has a certain property that allows us
to keep solving the propagator. Note that the solution can be written as

v(t) = Φtu0 +

∫ t

0

Φt−sf(s)ds.

Then (5.2.64)– (5.2.66) follow immediately:

1. (5.2.64) is the solution formula for the second equation in the system
(5.2.62), corresponding to α = ǫ(i, k);

2. (5.2.65) follows from (5.2.64) because Hǫ(i,k)(ξ) = ξi,k and
∑

k ξi,kmk(t) =
ẇi(t);

3. (5.2.66) can then be derived either from (5.2.64) by Parseval’s identity or
from (5.2.65) by the Itô isometry.

Equalities (5.2.67)–(5.2.69) are multi-dimensional versions of (5.2.64)–
(5.2.66). The proof of (5.2.67) is easy: (5.2.67) is just a particular case of
(5.2.55).

The proofs of (5.2.68) and (5.2.69) are more sophisticated and involve
some additional constructions, but the ideas remain the same as in the proofs
of (5.2.65) and (5.2.66).

Denote by J1 the collection of one-dimensional multi-indices β =
(β1, β2, . . .) [each βi is a non-negative integer and |β| =

∑
i≥1 βi < ∞]. A

β ∈ J1 corresponds to one row of α ∈ J . Given a β ∈ J1 with |β| = n, we
define Kβ = {k1, . . . , kn}, the characteristic set of β, and the function

Eβ(s1, . . . , sn) =
1√

β! n!

∑

σ∈Pn

mk1(sσ(1)) · · ·mkn(sσ(n)). (5.2.70)

By construction, the collection {Eβ,β ∈ J1, |β| = n} is an orthonormal ba-
sis in the sub-space of symmetric functions in L2

(
(0, T )n

)
, and therefore in

L2

(
(0, T )n;H

)
for every Hilbert space H . [The reader is welcome to take this

technical construction for granted and continue with the argument].
Next, we re-write (5.2.67) in a symmetrized form. To make the notations

shorter, denote by s(n) the ordered set (s1, . . . , sn) and write dsn = ds1 · · ·dsn.
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Fix t ∈ (0, T ] and the set i(n) = {i1, . . . , in} of the first components of the
characteristic set Kα. Define the symmetric function

G(t, i(n); s(n))

=
1√
n!

∑

σ∈Pn

Φt−sσ(n)
Min · · ·Φsσ(2)−sσ(1)

Mi1 ū(0)(sσ(1))1sσ(1)<···<sσ(n)<t(s
(n)).

(5.2.71)

Then (5.2.67) becomes

ūα(t)√
α!

=

∫

[0,T ]n
G(t, i(n); s(n))Eβ(α)(s

(n))dsn, (5.2.72)

where the multi-indices α and β(α) are related via their characteristic sets: if

Kα = {(i1, k1), . . . , (in, kn)},

then
Kβ(α) = {k1, . . . , kn}.

Equality (5.2.72) means that, for fixed i(n), the function ūα/
√

α! is a
Fourier coefficient of the symmetric function G(t, i(n); s(n)) in the space
L2

(
(0, T )n;X

)
, with respect to the basis {Eβ}. Parcevall’s identity and sum-

mation over all possible i(n) yield

∑

|α|=n

‖uα(t)‖2
X

α!
=

1

n!

∑

i1,...,in≥1

∫

[0,T ]n
‖G(t, i(n); s(n))‖2

Xds
n,

which, due to (5.2.71), is the same as (5.2.69).
To prove equality (5.2.68), relating the chaos (or Cameron-Martin) expan-

sion and the multiple Itô integral expansion, we use the following result [86,
Theorem 3.1]:

Hα(ξ) =

∫ T

0

∫ sn

0

· · ·
∫ s2

0

Eβ(α)(s
(n))dwi1 (s1) · · · dwin(sn); (5.2.73)

see also [166, pp. 12–13]. Equality (5.2.68) then follows from (5.2.72) after
summation over all i1, . . . , in. Note that, similar to the case |α| = 1, (5.2.68)
and the Itô isometry imply (5.2.69).

This concludes the proof of Theorem 5.2.37.

Exercise 5.2.38 (A). Verify that the functions Eβ from (5.2.70) are or-
thonormal:

∫

[0,T ]n
Eβ(s(n))Eγ(s(n))ds(n) =

{
1, ifβ = γ,

0, ifβ 6= γ.
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We know from basic analysis that a mapping is measurable if it can be
represented as a (reasonable) limit of measurable mappings. If finite, the right-
hand side of (5.2.68) is FW

t -measurable for every t ≥ 0, and in that case it is
natural to say that, if u0 and f are non-random and gi = 0, then the chaos
solution of (5.2.60) is adapted. The following definition formalizes the idea.

Definition 5.2.39. A random element

u ∈ (S)−ρ,1/q
(
W[0,T ];L2

(
(0, T );H

))

is called adapted, if the (square-integrable) random process

∑

α∈J

ūα

(α!)1+(ρ/2)
√

qα
Hα(ξ) ∈ L2

(
W[0,T ];L2

(
(0, T );H

))

is adapted.

Exercise 5.2.40 (B). Let rα be sequence of numbers such that
rα

√
qα(α!)ρ/2 ≤ 1 for all α ∈ J . Verify that

u ∈ (S)−ρ,1/q
(
W[0,T ];L2

(
(0, T );H

))

is adapted if and only

∑

α∈J

rα ūα

α!
Hα(ξ) ∈ L2

(
W[0,T ];L2

(
(0, T );H

))

is adapted.
Hint. Consider the (bounded linear) operator

η : η̄α 7→ rα

√
qα(α!)ρ/2η̄α .

There is a technical (and often hard to verify) criterion for FW
t -

measurability of a generalized random element η in terms of the chaos coeffi-
cients η̄α: [73, Lemma 2.5.3]. For our purposes, representation (5.2.68), which
only works for deterministic input, will be sufficient to handle the examples
in the subsequent sections.

5.2.4 Problems

Problem 5.2.1 investigates regularity of Gaussian random variables in the
space Lγ2 and (S)ρ,q . Problem 5.2.2 discusses chaos decomposition of the space
L2(B), an important idea related to chaos expansion of the elements of L2(B).
Problem 5.2.3 is an invitation for a further investigation of connections be-
tween the Sobolev spaces Lγ2 and the (S)-spaces of regular random variables.
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Problem 5.2.4 suggests further directions in the study of the stochastic inte-
gral, beyond the content of Table 5.2.1 on page 252. Problem 5.2.5 introduces
a time-dependent version of the basis elements Hα(ξ)α, leading to an alter-
native way of deriving the propagator for evolution equations. Problem 5.2.6
suggests another direction of generalization for stochastic equations by consid-
ering driving noise of “higher stochastic order”. Problem 5.2.7 is an invitation
to investigate the Wick product as a bi-linear operator on L2(B). Problem
5.2.8 invites the reader to provide the missing companion of Theorem 5.2.37.
Problem 5.2.9 introduces basic operators of differential calculus on an ab-
stract Gaussian space [this calculus is also known as stochastic calculus of
variations or Malliavin calculus — after French mathematician Paul Malli-
avin (1925–2010)] and demonstrates that the Wick-Itô-Skorohod integral B⋄

is (a suitable extension of) Malliavin divergence operator δ. Problem 5.2.10
is an invitation to think creatively about a rather basic question.

Problem 5.2.1. Let B be a Gaussian white noise over a separable Hilbert
space U . (a) Determine conditions on f ∈ U so that the Gaussian random
variable B(f) is an element of (i) Lγ2(B), γ > 0; (ii) (S)ρ,q(B), ρ ∈ [0, 1],
qk > 1. (b) Assume now that U = L2(G), G ⊆ R

d. Are there any connections
between the Sobolev spaces Hγ(G) and Lγ2(B)?

Problem 5.2.2. Let B be a Gaussian white noise over a separable Hilbert
space U with an orthonormal basis {uk, k ≥ 1}. Completeness and orthogo-
nality of the random variables {Hα(ξ), α ∈ J } imply that we have an orthog-
onal decomposition (also known as the chaos decomposition) of L2(B) into

a countable family of spaces L
[n]
2 (B), where L

[n]
2 (B) is the closure in L2(B)

of the linear span, with real coefficients, of the random variables Hα(ξ) with
|α| = n:

L2(B) = L
[0]
2 (B) ⊕ L

[1]
2 (B) ⊕ L

[2]
2 (B) ⊕ · · · .

In particular, L
[0]
2 (B) = R, L

[1]
2 (B) = {B(f), f ∈ U}, and if η ∈ L

[m]
2 (B),

ζ ∈ L
[n]
2 (B), with m 6= n, then E(ηζ) = 0.

This construction suggests that the chaos decomposition depends on the
choice of the random variables ξk = B(uk). On the other hand, we already

noticed that both L
[0]
2 (B) and L

[1]
2 (B) do not depend on any arbitrary choices.

Prove that each L
[n]
2 (B), n ≥ 0, is uniquely determined by B and U .

Problem 5.2.3. For q ∈ Q and ρ ∈ [0, 1], investigate the possibility of inclu-
sion of (S)ρ,q(B;H) into Lγ2 (B;H) without assuming that qk ≥ c > 1.

Problem 5.2.4. For q ∈ Q, investigate B⋄(f) when f ∈ (S)−ρ,1/q(B;Y ⊗
U1/q), 0 ≤ ρ < 1, and when f ∈ (S)ρ,q(B;Y ⊗ Uq), 0 ≤ ρ ≤ 1. If this is not
enough, how about f ∈ (S)ρ,q(B;Y ⊗ U1/q)?

Problem 5.2.5. In the setting of the evolution equation (5.2.60) on page 264,
define
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ξα(t) = E
(
Hα(ξ)|FW

t

)
,

where FW
t is the sigma-algebra generated by the Brownian motions wi(s), 0 <

s ≤ t, i ≥ 1. Show that

dξα(t) =
∑

i,k

αi,kmk(t)ξα−(i,k)(t)dwi(t);

ξ(0)(0) = 1, ξα(0) = 0, |α| > 0. Then use the result to derive the propagator
(5.2.62) for an adapted square-integrable solution of the evolution equation.

Problem 5.2.6. While our main story line is restricted to Gaussian noise, the
constructions of the chaos solution allow immediate extensions to higher-order
noise, that is, (non-Gaussian) elements of the higher chaos space L[n](B),
n ≥ 2 (see Problem 5.2.2).

As an example, consider the algebraic equation

u = 1 + u ⋄ ξ + u ⋄H2(ξ).

Writing u =
∑

k ūkHk(ξ), verify that ūk is the (one-step shifted) Fibonacci
sequence:

ū0 = ū1 = 1, ūn = ūn−1 + ūn−2.

Problem 5.2.7. Starting with one-dimensional case B = ξ ∼ N (0, 1), and
then proceeding to infinite dimensions, (a) Give an example showing that the
Wick product ⋄ is not a bounded operator from L2(B) × L2(B) to L2(B)

(b) Derive a sufficient condition on η and ζ so that η ⋄ ζ ∈ L2(B).
(c) Is there a sufficient condition on η so that η ⋄ ζ ∈ L2(B) for all ζ ∈

L2(B)?

Problem 5.2.8. State and prove the version of Theorem 5.2.37 when f =
u0 = 0 and gi 6= 0 for all i.

Problem 5.2.9. Let B be Gaussian white noise on a separable Hilbert space
U with orthonormal basis {uk, k ≥ 1}.

(a) Given a polynomial F (x1, . . . , xn) and h1, . . . , hn ∈ U , define the
Malliavin derivative D by

DF
(
B(h1), . . . ,B(hn)

)
=

n∑

k=1

Fxk

(
B(h1), . . . ,B(hn)

)
hk,

which is an element of L2(B;U). [Then, by a density argument, D extends to
a linear bounded operator from L1

2(B) to L2(B;U).] Show that

D
(
Hα(ξ)

)
=
∑

k

αkukHα−(k)(ξ).

(b) Define the operator δ (Malliavin divergence operator) by the equality
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E
(
Fδ(u)

)
= E

(
DF, u

)
U ,

which should hold for all F ∈ L1
2(B). [In particular, δ is defined on L1

2(B;U).]
Verify that

δ
(
Hα(ξ) uk

)
= (αk + 1)Hα+ǫ(k)(ξ).

(c) Confirm that, for η ∈ L1
2(B;U),

δ(η) = B⋄(η).

(d) Define the Ornstein-Uhlenbeck operator L = δD. Verify that

L
(
Hα(ξ)

)
= |α|Hα(ξ).

All computations in this problem are straightforward. For a more thorough
introduction into the subject, see [166, Chapter 1]. For extensions beyond the
scope of our discussion, see [148].

Problem 5.2.10. Recall that, in the case of a single Gaussian random vari-
able, we had three equivalent ways to represent the S-transform: see [F1]–[F3]
on page 224. What would analogues of [F2] and [F3] be in the general (abstract
infinite-dimensional) case?

5.3 Examples

Let us start by summarizing what we now know about the chaos solution and
the propagator:

1. The propagator is a systems of deterministic equations for the chaos co-
efficients of the chaos solution.

2. The propagator has a lower-triangular structure because of the definition
of the Wick-Itô-Skorohod integral.

3. The propagator is solvable by induction if the deterministic part of the
equation is well-posed.

4. The solution of the propagator corresponds to a generalized random ele-
ment in (S)−1 if the operators in the stochastic part of the equation do
not ruin regularity.

5. A typical analysis of the solution of the propagator is using the triangle
inequality; for certainly evolution equations, Parseval’s identity can be
used instead.

In the examples below, we start with an equation studied in Chapter 4
and consider several possible scenarios when the chaos solution is a natural
object to investigate. There are situations when the chaos solution is the most
natural kind of solution to consider, for example, when the (multiplicative)
noise does not depend on time or otherwise is not a semi-martingale, or when
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the input functions are not adapted to the filtration of the noise: in these sit-
uations, other types of solution might not be available. There are also reasons
to consider chaos solutions for equations that can potentially be solved by
other means:

1. Analysis of stochastic regularity of the solution, e.g. in stochastic Sobolev
spaces;

2. Violation of some solvability conditions that are stochastic in nature, the
stochastic parabolicity condition being the prime example.

The equations studied in this section illustrate these ideas.

5.3.1 Equations With Space-Only Noise

Space-only, or stationary, white noise Ẇ = Ẇ (x), x ∈ G ⊆ R
d, is a natural

model for random medium. Here are some examples:

1. Poisson equations in random medium:

∇ (Aε (x) ⋄ ∇u (x)) = f(x), u|∂G = 0, (5.3.1)

where
Aε(x) =

(
a(x) + εẆ (x)

)
, (5.3.2)

a(x) is a deterministic positive-definite matrix, and ε is a positive number.
Recall that

a(x) ⋄ ∇u(x) = a(x)∇u(x), ∇(a∇u) = div(a gradu).

2. Heat equation in random medium:

ut (t, x) = ∇ (Aε (x) ⋄ ∇v (t, x)) + f(t, x), x ∈ R
d (5.3.3)

with Aε as in (5.3.2).
3. Heat equation with white noise potential:

u̇(t, x) = ∆u(t, x) + u (t, x) ⋄ Ẇ (x) . (5.3.4)

4. Wave equation in random medium

utt =
(
c2 + εẆ (x)

)
⋄ ∆u. (5.3.5)

The first three of the above equations fall in the general framework of SPDEs
with purely spatial noise, as developed in [147]. Additionally, (5.3.1) is studied
in [202, 205], and (5.3.4) in [75], where it was shown that the spatial regularity
of the solution is better than in the case of multiplicative space-time white
noise. The expected value a(x) of the matrix Aε is positive definite, and, if
ε is small, then Aε itself positive definite with high probability. Since the
underlying physical models leading to (5.3.2) and (5.3.3) might require the
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matrix Aε to be positive definite for all realizations of the noise, there are
other types of random perturbations to consider. For example, the book [73]
investigates (5.3.2), (5.3.3) and similar equations with positive, or lognormal,
noise.

The last equation in the list, (5.3.5), remains an open problem.
In what follows, we will discuss how equations (5.3.1)–(5.3.4) and their

generalizations fit in the general framework established in the previous sec-
tions. Then we will show how stochastic elliptic equations can be long-time
limits of suitable stochastic parabolic equations. At the end, we discuss some
of the difficulties related to equation (5.3.5).

We will use the chaos expansion of Ẇ ,

Ẇ (x) =
∑

k≥1

ξkhk(x), (5.3.6)

where ξk, k ≥ 1 are iid standard normal random variables, {hk(x), k ≥ 1, x ∈
G} is an orthonormal basis in L2(G), and, with little loss of generality,

sup
x∈G

|hk(x)| ≤ c0,k, (5.3.7)

In the notations of the space (S), W (or sometimes ξ — for very simple noise)
will now go in place of B, e.g. (S)−1,1/q

(
W ;L2(G)

)
.

We start with equation (5.3.1).

Theorem 5.3.1. Assume that the matrix a = a(x) is bounded and uniformly
positive definite in G:

δ|y|2 ≤
d∑

i,j=1

aij(x)yiyj ≤ A0|y|2. (5.3.8)

Denote by Cπ the Poincaré constant for G (see Problem 4.1.2 on page 156),
define

CA =
1 + Cπ
δ

, cM,k = εc0,k, k ≥ 1,

and consider the sequence q = (q1, q2, . . .) with qk > 1 such that

∞∑

k=1

c2M,k√
qk

≤ 1

2C2
A

; (5.3.9)

∞∑

k=1

1√
qk

≤ 1. (5.3.10)

Then, for every f ∈ (S)−1,1/q(W ;H−1), equation (5.3.1) has a unique chaos
solution u ∈ (S)−1,1/q(W ;H1

0 ) and

‖u‖2
−1,1/q ≤ 12C2

A‖f‖2
−1,1/q. (5.3.11)
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Proof. With
Au = ∇(a∇u), Mku = ε∇(hk∇u),

equation (5.3.1) becomes

Au = f +
∑

k≥1

Mku ⋄ ξk,

Choosing the spaces X = H1
0 (G) [closure of C∞

0 (G) in the norm of H1(G)]
and Y = H−1(G), we get a perfect fit with the setting of Theorem 5.2.30; it
only remains to verify the values of CA and cM,k.

For CA [the norm of A−1], recall the notations ‖ · ‖γ for the norm in the
Sobolev space Hγ(G); H0(G) = L2(G). By (5.3.8),

[Av, v] =
(
a(x)∇u,∇u

)
0
≥ δ‖∇u‖2

0

and by the Poincaré inequality (4.1.46) on page 156,

‖v‖2
1 = ‖v‖2

0 + ‖∇v‖2
0 ≤ (Cπ + 1)‖∇v‖2

0.

Then

[Av, v] ≥ δ

1 + Cπ
‖u‖2

1,

and the value of CA follows from Theorem 4.1.18 on page 152.
For cM,k [the norm of Mk], assumption (5.3.7) and the simple inequality

‖∇(hk∇u)‖−1 ≤ ‖∇(hk∇u)‖0 ≤ c0,k‖u‖1,

imply
‖Mkv‖−1 ≤ εc0,k.

This concludes the proof of Theorem 5.3.1.

Together with example on page 230, the following exercise shows that
Theorem 5.2.30 provides an essentially optimal solvability result for equations
of the type

Au = f + Mu ⋄ Ẇ (x),

where A is an elliptic operator and M is a differential operator of order not
exceeding the order of A.

Exercise 5.3.2 (C). Verify that the solution of

uxx = − sinx+ uxx ⋄ ξ, x ∈ (0, π), ξ ∼ N (0, 1),

is u(x) = sinx
∑

k≥1 Hk(x), which is an element of (S)−1,1/q(ξ) for every
q > 1.
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Analysis of equation (5.3.3) is similar. All assumptions from Theorem 5.3.1
remain, except that G becomes R

d and the number C2
A is replaced with the

number C(T ) from (4.1.40) on page 154.

Theorem 5.3.3. If f ∈ (S)−1,1/q

(
W ;L2

(
(0, T );H−1(Rd)

))
and u|t=0 = ϕ ∈

(S)−1,1/q

(
W ;L2(R

d)
)
, then equation (5.3.3) has a unique chaos solution u ∈

(S)−1,1/q

(
W ;L2

(
(0, T );H1(Rd)

))
and

‖u‖2
−1,1/q ≤ 120C(T )

(
‖ϕ‖2

−1,1/q + ‖f‖2
−1,1/q

)
.

Similar to elliptic case, the result follows from Theorem 5.2.30, and the
details of the argument are left to an interested reader. Note that the constant
in front of C(T ) must indeed be bigger than the constant in front of C2

A in
(5.3.11) [this is about an additional epsilon inequality required to handle both
f and the initial condition].

Unlike the elliptic case, the conclusion of Theorem 5.2.30 is not optimal
for equations of the type

u̇ = Au+
∑

k≥1

Mku ⋄ ξk, (5.3.12)

where A is an elliptic operator and Mk are differential operators, each having
order strictly less than the order of A: see, for example, [75] in connection
with equation (5.3.4) [where Mku = hku] or Exercise 2.3.16(c) on page 58,
which discusses a simplified version of (5.3.4).

In an abstract setting, given a normal triple (V,H, V ′) and an elliptic
operator A that is bounded from V to V ′, we have two main possibilities for
the operators Mk to have order lower than the order of A:

‖Mkv‖H ≤ ck‖v‖V , (5.3.13)

‖Mkv‖H ≤ ck‖v‖H . (5.3.14)

Below, we discuss option (5.3.14), and leave (5.3.13) as a problem for an
interested reader.

Theorem 5.3.4. Assume that the operator A satisfies

[Av, v] + δ‖v‖2
V ≤ CA‖v‖2

H , v ∈ V, (5.3.15)

with δ > 0, CA ∈ R, and assume that each Mk satisfies (5.3.14) and

CM =
∑

k≥1

c2k <∞. (5.3.16)

If f ∈ L2

(
(0, T );V ′) and u0 ∈ H are nonrandom, then there exists a unique

chaos solution u of (5.3.12), u(t) ∈ L2(W ;H) for every t and
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E‖u(t)‖2
H ≤ CeCAt+CM t2

(∫ t

0

‖f(s)‖2
V ′ds+ ‖u0‖2

H

)
, (5.3.17)

and the constant C depends only on δ.

Proof. Existence and uniqueness of the solution follow from Theorem 5.2.30,
and it remains to establish (5.3.17).

The propagator for (5.3.12) is

˙̄uα = Aūα +
∑

k≥1

αkMkūα−(k).

or [cf. (5.2.54) on page 262]

˙̄uα = Aūα +
∑

k∈Kα

Mkūα−(k); (5.3.18)

Kα is the characteristic set of α.
By (5.3.15),

ū(0)(t) = Φtu0 +

∫ t

0

Φt−sf(s)ds,

where Φt is the semi-group generated by A,

‖Φtv‖H ≤ eCAt‖v‖H ,

and

‖ū(0)(t)‖2
H ≤ CeCAt

(∫ t

0

‖f(s)‖2
V ′ds+ ‖u0‖2

H

)
.

It follows from (5.3.18) that

ūα =
∑

k∈Kα

∫ t

0

Φt−sMkūα−(k)(s)ds. (5.3.19)

Then induction on |α| shows that

‖ūα(t)‖H ≤ eCAtt|α|cα‖u(0)‖H , (5.3.20)

where cα =
∏
k c

αk

k . Indeed,

ckc
α−(k) = cα,

∫ t

0

s|α|−1ds =
1

|α| , and
∑

k∈Kα

1 = |α|.

To establish (5.3.17), it remains to use (5.1.40) on page 231:

∑

α∈J

c2αt2|α|

α!
= eCM t2 .

This completes the proof of Theorem 5.3.4.
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Taking Mku = cku shows that, in general, bound (5.3.20), and therefore
(5.3.17), cannot be improved. On the other hand, an alternative analysis of
(5.3.12) [when Mkv = hk(x)v in R

d and (5.3.16) does not hold] is possible [75].
In particular, if |u0(x)| ≤ C for all x ∈ R

d and d = 1, 2 then E|u(t, x)|2 < ∞
for all t > 0, x ∈ R

d.

If the semigroup Φt generated by A is dissipative, that is, (5.3.15) holds
with CA < 0, then, as t → ∞, the solution of (5.3.12) can converge to the
solution v of the corresponding stationary (elliptic) equation

Av = f +
∑

k≥1

Mkv ⋄ ξk.

Theorem 5.3.5. Assume that u0 ∈ H is deterministic, f ∈ V ′ is determinis-
tic and does not depend on t, condition (5.3.16) holds, and condition (5.3.15)
holds with CA < 0. Let q = (q1, q2, . . .), qk > 1 be such that

∑

k≥1

ck√
qk

= Cq < |CA|. (5.3.21)

Then
lim
t→∞

u(t) = v

in (S)−1,1/q(W ;H).

Proof. Note that, as we discussed earlier in this section, the solution v of
the elliptic equation is an element of (S)−1,1/q, which explains why we get
convergence in the space of generalized random variables even though u(t) is
square-integrable for every t.

Define U(t) = u(t) − v. Then

U̇ = AU +
∑

k≥1

MkU ⋄ ξk, U(0) = u0,

and we need to show that

lim
t→∞

∑

α∈J

‖Ūα‖2
H

(α!)2qα
= 0; (5.3.22)

the bound (5.3.17) confirms that we are unlikely to have E‖U(t)‖2
H → 0,

t→ ∞, no matter how negative CA is.
By (5.3.20) [remembering that f = 0 in the equation for U ],

‖Ūα(t)‖H
α!

√
qk

≤ e−|CA|t t
|α|cα

α!
√

qα
‖Φtu0‖H .

Summing over α and using our assumption (5.3.21), together with equality
(5.1.40) on page 231,
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∑

α∈J

‖Ūα(t)‖H
α!

√
qα

≤ e−|CA|t+Cqt‖Φtu0‖H ≤ e−|CA|t‖u0‖H → 0, t→ ∞.

On the other hand,

∑

α∈J

‖Ūα‖2
H

(α!)2qα
≤
(
∑

α∈J

‖Ūα(t)‖H
α!

√
qk

)2

,

and (5.3.22) follows.

This concludes the proof of Theorem 5.3.5.

Now let us say a few words about the stochastic wave equation

utt =
(
c2 + ξ

)
⋄ uxx,

which is a simplified version of (5.3.5) on page 274 and whose analysis remains
an open problem. The propagator for this equation is

(ūk)tt = c2(ūk)xx + k(ūk−1)xx,

which is solvable by induction, but regularity of ūk keeps getting worse: given
a normal triple (Hγ+1, Hγ , Hγ−1), we know from Theorem 4.1.21 on page
153 that if ūk−1 ∈ Hγ+1, then ūk ∈ Hγ because (ūk−1)xx ∈ Hγ−1. In other
words, the operator in the stochastic part ruins regularity. As a result, our
basic result (Theorem 5.2.30) does not allow a construction of chaos solution.
Possible ways around this complication are discussed in the next section.

Moreover, one could argue that (5.3.5) is not a correct model for wave
propagation in random media: going back to the derivation of the wave equa-
tion, we see that the underlying equality, coming from the laws of Newton
(motion) and Hook (elasticity), is

ρ(t, x)utt = ∇
(
a(t, x)∇u(t, x)

)
,

where ρ is the density of the material and a is the matrix describing elasticity
properties of the medium. In the isotropic homogenous medium, both ρ and
a are constant numbers, leading to the familiar wave equation utt = c2∆u,
c2 = a/ρ. In a random medium, both ρ and a must be modeled by random
fields, leading to a much more complicated, and even less tractable, equation
than (5.3.5).

The standard model for wave propagation in random media is the random
Helmholtz equation

∆u(τ, x) + k2(τ, x)u(τ, x) = 0,

with a random field k = k(τ, x), τ ∈ R, x ∈ R
d, and the Laplacian acting on

the x variable only. For details, see [48].
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Exercise 5.3.6 (B). By exchanging differentiation and integration, verify
that if

v(t, x) =
1√
2π

∫ +∞

−∞
eτtu(τ, x)dτ

satisfies the wave equation vtt = c2∆v, then

u(τ, x) =
1√
2π

∫ +∞

−∞
e−τtv(t, x)dt

satisfies the Helmholtz equation

∆u+ k2u = 0,

with k = τ/c and ∆ acting only on x. [Note that u and v are connected via
the Fourier transform in time.]

5.3.2 Time-Dependent Noise: Hyperbolic Equations

Consider a (slightly) simplified version of equation (4.3.1) on page 173:

ü = Au+ Bu̇+ f(t) +
∑

i≥1

(
Miu+ Niu̇

)
ẇi(t), 0 < t ≤ T ;

u(0) = u0, u̇(0) = v0,

(5.3.23)

where the non-symmetric part of A is absent and all operators are non-
random, with no time dependence. The equation is considered in the normal
triple (V,H, V ′) so that the linear operators

A : V → V ′; Mk : V → H ; B, Nk : H → H

are bounded, A is symmetric (that is, [Au, v] = [u,Av]),

∑

i≥1

‖Miv‖2
H ≤ CM‖v‖2

V ,
∑

i≥1

‖Niv‖2
H

)
≤ CN‖v‖2

H , (5.3.24)

and
u0 ∈ V, v0 ∈ H, f ∈ L2

(
(0, T );H

)
(all deterministic).

Under these conditions, we know from Theorem 4.3.3 on page 175 that there
is a unique variational solution of (5.3.23) and

u ∈ L2

(
W[0,T ]; C

(
(0, T );V

))
, u̇ ∈ L2

(
W[0,T ]; C

(
(0, T );H

))
;

with wi being the only source of randomness, we can replace Ω in (4.3.5) with
W[0,T ].

By (5.2.62) on page 266, the propagator for (5.3.23) is
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¨̄u(0) = Aū(0) + B ˙̄u(0) + f(t), ū(0)(0) = u0, ˙̄u(0)(0) = v0,

and, for |α| > 0,

¨̄uα = Aūα + B ˙̄uα +
∑

i,k≥1

αi,k
(
Miūα−(i,k) + Nk ˙̄uα−(i,k)

)
mk(t) (5.3.25)

with zero initial conditions; {mk(t), k ≥ 1, t ∈ [0, T ]} is an orthonormal basis
in L2((0, T )).

Two natural questions to ask about equation (5.3.23) are

1. How regular is the solution, as a random element?
2. What if inequalities (5.3.24) fail?

The general theory of the chaos solutions allows us to answer both ques-
tions with one simple theorem. Recall that, for evolution equations driven
by Brownian motions, we write W[0,T ] instead of B in the notations of the
corresponding stochastic spaces, and the weight sequence q becomes a two-
dimensional array.

Theorem 5.3.7. Under (5.3.24),

u(t) ∈
⋂

γ>0

Lγ2(W[0,T ];V ), u̇(t) ∈
⋂

γ>0

Lγ2(W[0,T ];H), t ∈ [0, T ].

If (5.3.24) fails, but ‖Miv‖H ≤ cM,i‖v‖V and ‖Niv‖H ≤ cN,i‖v‖H, then

u(t) ∈ (S)0,1/q(W[0,T ];V ), u̇(t) ∈ (S)0,1/q(W[0,T ];H), t ∈ [0, T ],

with qi,k = 2i(1 + c2M,i + c2N,i).

Proof. If (5.3.24) holds, then we have something even better:

u(t) ∈
⋂

q>1

(S)0,qe(W[0,T ];V ), u̇(t) ∈
⋂

q>1

(S)0,qe(W[0,T ];H), t ∈ [0, T ].

where e is the sequence with ei,k = 1. Indeed, for q > 1, define U =∑
α ŪαHα(ξ)/α! by Ūα = q|α|ūα. By direct computations (or a reference

to Exercise 5.2.28(b) on page 258), Ū(0) satisfies the same equation as ū(0),
while, for |α| > 0, Ūα satisfies

¨̄Uα = AŪα + B ˙̄Uα + q
∑

i,k≥1

αi,k
(
MiŪα−(i,k) + Nk

˙̄Uα−(i,k)

)
mk(t),

with zero boundary conditions. In other words, U satisfies

Ü = Au + Bu̇+ f(t) +
∑

i≥1

(
qMiu+ qNiu̇

)
ẇi(t),

U(0) = u0, U̇(0) = v0, and, by Theorem 4.3.3,
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U(t) ∈ L2

(
W[0,T ];V

)
, U̇(t) ∈ L2

(
W[0,T ];H

)
.

Equivalently,

u(t) ∈ (S)0,qe(W[0,T ];V ), u̇(t) ∈ (S)0,qe(W[0,T ];H).

The same proof works without (5.3.24), but this time we set Ūα = qαūα.

This concludes the proof of Theorem 5.3.7.

Exercise 5.3.8 (C). Apply Theorem 5.3.7 to the equation

utt = ∆u+ auẆ (t, x) + bu̇V̇ (t, x),

where x ∈ R
d, d ≥ 1, a, b ∈ R, and Ẇ , V̇ are independent space-time white

noises.
Hint. Recall that Ẇ (t, x) =

∑
i≥1 hi(x)ẇi, where hi are elements of an orthonor-

mal basis in L2(R
d). The only real challenge is to come up with an effective indexing

system: to take care of the second independent system of Brownian motions in V̇ .

The next example is a first-order hyperbolic equation, also known as the
transport equation, where the velocity is Gaussian white noise in time, with
the Itô interpretation:

du(t, x) = ux(t, x)dw(t), t > 0, x ∈ R. (5.3.26)

The initial condition u(0, x) = ϕ(x) is assumed non-random. This equation is
studied in [56] and in [144, Section 14]

If ϕ = x, then, by direct computation, u(t, x) = x+w(t) satisfies (5.3.26).

Exercise 5.3.9 (B). Solve the propagator for (5.3.26) when ϕ(x) = x and
confirm that u(t, x) = x+ w(t) is the corresponding chaos solution.

One way to notice that (5.3.26) is not a typical equation, even from the
chaos solution point of view, is to look at the S-transform ŭ of u. Either by
analogy with (5.1.2) on page 222 or by computing E

(
u(t, x)Eh

)
directly using

the Itô formula, we conclude that ŭ satisfies the standard transport equation

ŭt = h(t)ŭx,

and therefore

ŭ(t, x;h) = ϕ

(
x+

∫ t

0

h(s)ds

)
.

We see that ŭ is an analytic function of h if and only if the initial condition
ϕ is an analytic function of x. To put it differently, if ϕ is not analytic in x,
then there is no generalized random element in (S)−1 that can be called the
chaos solution of (5.3.26).

Recall that, in the complex domain, if a function has one continuous deriva-
tive in a neighborhood of a point, then, for example, by the integral formula of
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Cauchy, the function is analytic at that point, and, in particular, the deriva-
tives of the function do not grow faster than Cnn!. In real analysis, the func-
tions can have only a finite number of continuous derivatives, or, if all the
derivatives exist, the rate of growth can be much faster than Cnn!. In other
words, there are many infinitely differentiable functions of the real variable
that are not real analytic.

Exercise 5.3.10 (C). Let g = g(x) be a smooth function such that

g(x) = g(−x), lim
x→+∞

g(x) = +∞,

∫ +∞

0

xne−g(x)dx <∞, n = 1, 2, . . . .

Define

ϕ(x) =

∫ +∞

0

cos(xy) e−g(y)dy.

(a) Verify that ϕ(x) is infinitely differentiable at x = 0 and, for n =
1, 2, . . . ,

ϕ(2n−1)(0) = 0, |ϕ(2n)(0)| =

∫ +∞

0

y2ne−g(y)dy.

(b) Find a function g such that ϕ is not analytic at 0, for example, by
ensuring that |ϕ(2n)(0)| ≥ (n!)2.

(c) Can you construct the function g to achieve a prescribed lower bound
on |ϕ(2n)(0)|?

This concludes Exercise 5.3.10.

With mk(t) representing an orthonormal basis in L2((0, T )), the propaga-
tor for (5.3.26) is

∂ū(0)

∂t
= 0, ū(0)(0, x) = ϕ(x) (|α| = 0),

∂ūα

∂t
=
∑

k

αkmk(t)
∂ūα−(k)

∂x
, ūα(0, x) = 0 (|α| > 0).

(5.3.27)

Although the derivative in space ruins regularity, we do not need ϕ to be
analytic to be able to determine ūα: infinite differentiability will suffice. More
precisely, we have the following result.

Proposition 5.3.11. Assume that the initial condition u(0, x) = ϕ(x) is an
element of S(R) and define

Cϕ(n) =

∫ +∞

−∞
|ϕ(n)(x)|2dx.

Then the solution ūα of the propagator (5.3.27) exists for all t > 0, x ∈ R,
α ∈ J , and satisfies

∑

|α|=n

1

α!

∫ ∞

−∞
|ūα(t, x)|2dx =

tnCϕ(n)

n!
. (5.3.28)



5.3 Examples 285

Proof. This is a direct consequence of Theorem 5.2.37 on page 267, where,
with only one Brownian motion, we take

A = 0, Mi = M =
∂

∂x
, Φt = 1, H = L2(R).

Exercise 5.3.12 (A). Verify that

∑

|α|=n

1

α!

∫ ∞

−∞
|ū(ℓ)
α (t, x)|2dx =

tnCϕ(n+ ℓ)

n!
.

The next question is, what kind of generalized random variable u does
the collection {ūα(t, x), α ∈ J } represent? Even though no results of Sec-
tion 5.2 apply, many ideas do. In particular, it is not difficult to put u
in a Hilbert space: for example, consider the closure L2,ϕ

(
w[0,T ];L2(R)

)
of

L2

(
w[0,T ];L2(R)

)
with respect to the norm

‖η‖2
ϕ =

∑

α∈J

‖η̄α‖2
L2(R)

α!(1 + Cϕ(|α|)) .

Next, define

ψN (x) =
1

π

sin(Nx)

x
.

Direct computations show that the Fourier transform of ψN is supported in
[−N,N ] and

∫
R
ψN (x)dx = 1. Consider equation (5.3.26) with initial condition

ϕN (x) =

∫

R

ϕ(x − y)ψN (y)dy.

If exists, the Fourier transform ûN = ûN(t, y) of the solution must satisfy

dû(t, y) =
√
−1yû(t, y)dw(t), or û(t, y) = ϕ̂(y)e

√
−1yw(t)+ 1

2y
2t. (5.3.29)

Since û(0, y) = ψ̂N (y)ϕ̂(y) is supported in [−N,N ], it follows that ûN (t, y) is
supported in [−N,N ] for all t ≥ 0 and therefore uN(t, ·) ∈ L2

(
w[0,T ];L2(R)

)
,

t ≥ 0. Relation (5.3.28) and the definition of uN imply

lim
N→∞

∑

|α|=n

1

n!
‖ūα − ūN,α‖2

L2(R)(t) = 0, t ≥ 0, k ≥ 0,

so that, by the Lebesgue dominated convergence theorem,

lim
N→∞

‖u− uN‖2
ϕ(t) = 0, t ≥ 0.

We conclude that the chaos solution of equation (5.3.26), with chaos coeffi-
cients satisfying the propagator (5.3.27), is a limit in L2,ϕ

(
w[0,T ];L2(R)

)
of the

sequence {uN , N ≥ 1} of Fw
t -adapted regular (i.e. not generalized) processes

— not bad for an equation that is in general not solvable by the S-transform.
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5.3.3 Time-Dependent Noise: Parabolic Equations

Unlike elliptic [when multiplicative while noise does not allow existence
of square-integrable solutions] and hyperbolic [when the difference between
square-integrable and chaos solutions is mostly quantitative], parabolic equa-
tions provide a full demonstration of the power of the chaos approach by
making it possible to consider a qualitatively different type of equations with
multiplicative noise. We start this section with a discussion of this qualita-
tive transition, followed by the general existence result for the chaos solution
and an example illustrating that the result is, in some sense, sharp. Next,
we illustrate how chaos approach can benefit analysis of square-integrable so-
lutions by presenting an improved existence result for degenerate parabolic
equations. Finally, we work out a specific example illustrating that, in the
case of non-adapted (anticipating) input, chaos solution corresponds to the
Skorohod integral interpretation of the equation.

Let us recall, in a slightly simplified form, the setting from Section 4.4.1.
There is a normal triple of Hilbert spaces (V,H, V ′), input functions u0 ∈
H [initial condition] and f ∈ L2

(
(0, T );V ′) [free term], and bounded linear

operators A : V → V ′, Mk : V → H . Under the stochastic parabolicity
condition

2[Av, v] +
∑

i≥1

‖Miv‖2
H + δ‖v‖2

V ≤ C0‖v‖2
H , (5.3.30)

the equation

u̇ = Au+ f +
∑

i≥1

Miu ẇi (5.3.31)

has a unique square-integrable solution and

E

∫ T

0

‖u(t)‖2
V dt ≤ C

(
‖u0‖2

H +

∫ T

0

‖f(t)‖2
V ′dt

)
.

As our earlier examples [e.g. equation (5.1.6) on page 223] demonstrate,
chaos solution not only allows us to eliminate condition (5.3.30), but makes it
possible to change the setting in a qualitative way, by allowing the operators
Mk to act from V to V ′ rather than from V to H .

To shorten the notations, we write

V = L2

(
(0, T );V

)
, V ′ = L2

(
(0, T );V ′).

Let us state and discuss Theorem 5.2.30 (page 259) for equation

u̇ = Au + f +
∑

k≥1

Mku ⋄ ξk, (5.3.32)

where A : V → V ′ and Mk : V → V ′ are bounded linear operators, ξk, k ≥ 1
are independent standard normal random variables corresponding to Gaus-
sian white noise B, u0 ∈ (S)−1,1/q(B;H), and f ∈ (S)−1,1/q(B;V ′). As was
pointed out in the beginning of Section 5.2.3,
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• the compact form of (5.3.32) includes the possibility of countably many
Brownian motions driving the equation while avoiding two-dimensional
multi-indices [the reader might have noticed the change in the index, from
i in (5.3.31) to k in (5.3.32); this change is not pure cosmetic: if we write
(5.3.31) as (5.3.32), then the operators Mi will change and, in particular,
will certainly depend on time, cf. Table 5.2.2 on page 255];

• the input gk in the stochastic part of the equation is incorporated into f .

Our main assumption is about solvability of the deterministic equation

v̇ = Av + Mky(t), v(0) ∈ H, y ∈ V :

there is a unique solution v ∈ V and

‖v‖V′ ≤ CA
(
‖v(0)‖H + cM,k‖y‖V

)
. (5.3.33)

This assumption combines (5.2.34) and (5.2.35) (see page 254); a standard
sufficient condition for (5.3.33) to hold is

[Au, u] + δ‖u‖2
V ≤ C0‖u‖2

H , u ∈ V, δ > 0, C0 ∈ R,

together with ‖Mky‖V′ ≤ cM,k‖y‖V [see Theorem 4.1.23 on page 154].
We now state, without a proof, Theorem 5.2.30 for equation (5.3.32).

Theorem 5.3.13. Assume that u0 ∈ (S)−1,1/q(B;H), f ∈ (S)−1,1/q(B;V ′),
and the sequence q = (q1, q2, . . .) with qk > 1 has the following properties:

∞∑

k=1

c2M,k√
qk

≤ 1

2C2
A

, (5.3.34)

∞∑

k=1

1√
qk

≤ 1. (5.3.35)

Then the chaos solution u of (5.3.32) belongs to (S)−1,1/q(B;V) and

‖u‖2
−1,1/q ≤ 120C2

A

(
‖f‖2

−1,1/q + ‖u0‖−1,1/q

)
. (5.3.36)

The only difference from Theorem 5.2.30 is that, instead of

Au = f ⇒ ‖u‖X ≤ CA‖f‖Y ,

we now have

u(t) = u0 +

∫ t

0

(
Au(s) + f(s)

)
ds ⇒ ‖u‖V ≤ CA

(
‖u0‖H + ‖f‖V′

)
.

The two terms (u0 and f) in the bound of the solution require additional
application of the epsilon inequality, which leads to a different multiple of CA
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in the final estimate (5.3.36): bigger than 12, but most probably smaller than
120.

Theorem 5.3.13 is a (slight) improvement over earlier, and much more
technical, results in this direction (cf. [144, Remark 9.9] or [146, Theorem
3.10]). On the other hand, equation

ut = uxx
(
1 + ẇ(t)

)
− u, u0(x) = e−x

2/2, (5.3.37)

demonstrates that the result is essentially sharp. The reader who tried to
investigate a very similar equation using the S-transform (cf. Problem 5.1.5),
will certainly appreciate the alternative approach using equality (5.2.69) on
page 268. The operator M = D2

x [second-order derivative in space] in (5.3.37)
commutes with the [heat] semi-group Φt, and both have easy expressions in
the Fourier domain. The extra term −u on the right-hand side of (5.3.37) will
simplify certain computations.

With X = V = H1(R), (5.2.69) becomes

∑

|α|=n

‖ūα‖2
V (t)

α!
=
tn

n!
‖D2n

x Φtu0‖2
V . (5.3.38)

In the Fourier domain, Φt is e−(y2+1)t [remember the extra term −u], so that

D2n
x Φtu0 becomes y2ne−(y2+1)t+(y2/2) [remember that u0(x) = e−x

2/2]. We
need the largest possible weights rα such that

∑

α∈J
‖ūα‖2

V
rα
α!

<∞. (5.3.39)

Accordingly, we re-write (5.3.38) in the Fourier domain and integrate in time:

∑

|α|=n

‖ūα‖2
V

α!
=

1

n!

∫ T

0

∫ ∞

−∞
(1 + y2)y4ne−2(y2+1)t+y2

dydt,

switch the order of integration and take T → ∞ [this keeps the bounds more-
or-less sharp but allows a closed-form answer, and this is where the term −u
in the equation helps]:

∑

|α|=n

‖ūα‖2
V

α
≤ 2−n−1

∫ ∞

−∞

y4n

(1 + y2)n
e−y

2

dy,

where we use
∫ +∞
0

tne−atdt = n!/an+1 with a = 2(1 + y2), and then argue
that

√
n

∫ ∞

−∞

y4n

(1 + y2)n
e−y

2

dy = n!
(
1 + o(1)

)
, n→ +∞.

The last equality looks plausible because, for y near n — where it matters
— the integrand is about the same as y2e−y

2

, but a complete proof requires
some hard-core estimates on the integrals. As a result,
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∑

|α|=n

‖ūα‖2
V

α!
≍ n!

2n
√
n

;

for finite T , it might be impossible to get ∼ instead of ≍. Thus, at the level
of factorials, the optimal weight rα in (5.3.39) must be rα = 1/|α|! and

∑

α∈J

‖ūα‖2
V

|α|! α!
<∞ (5.3.40)

is essentially the best we can get for the chaos solution of (5.3.37). Inequality
(5.1.42) on page 232 [that is, α! ≤ |α|! ≤ qαα! if

∑
k 1/qk ≤ 1] means

that (5.3.40) is more-or-less the same as u ∈ (S)−1,1/q(B;V), as promised by
Theorem 5.3.13.

To summarize, with initial condition from (S)1(B;H) and a special struc-
ture of the equation (5.3.37) that allowed us to use Parseval’s identity (5.2.69),
as apposed to a crude triangle inequality, we were still unable to get a sub-
stantial improvement over Theorem 5.3.13.

Next, let us look at degenerate parabolic equations: when δ = 0 in (5.3.30).
Theorem 4.4.12 on page 196 provides a general result, and the result is rather
complicated [in fact, too complicated for a quick reproduction].

Using chaos solutions, we can establish a much easier version.

Theorem 5.3.14. Consider the equation

u̇ = Au +
∑

i≥1

Miu ẇi (5.3.41)

with u(0) = u0 ∈ H, and assume that

[Av, v] + δ0‖v‖2
V ≤ C1‖v‖2

H , C1 ≥ 0, (5.3.42)

2[Av, v] +
∑

i≥1

‖Miv‖2
H ≤ C0‖v‖2

H . (5.3.43)

Then the chaos solution satisfies

E‖u(t)‖2
H ≤ ‖u0‖2

H(1 + C0te
C1t)(1 + C0te

C0t), t ≥ 0. (5.3.44)

Proof. We use equality (5.2.69) on page 268 [note that (5.3.42) ensures exis-
tence of the semigroup Φt].

Start by defining, for n ≥ 1,

Fn(t) =
∑

|α|=n

‖ūα(t)‖2
H

α!
.

By (5.2.69), and using dsn = ds1 · · · dsn,
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Fn(t) =
∑

i1,...,in≥1

∫ t

0

∫ sn

0

· · ·
∫ s2

0

‖Φt−snMin · · ·Φs2−s1Mi1Φs1u0‖2
Hds

n,

which we differentiate with respect to time, using the fundamental theorem
of calculus, equality dΦt/dt = AΦt, and that Φ0 is the identity operator:

dFn(t)

dt
=

∑

i1,...,in≥1

∫ t

0

∫ sn−1

0

· · ·
∫ s2

0

‖MinΦt−sn−1Min−1 · · ·Mi1Φs1u0‖2
Hds

n−1

+
∑

i1,...,in≥1

∫ t

0

∫ sn

0

· · ·
∫ s2

0

2
[
AΦt−snMin · · ·Mi1Φs1u0,

Φt,snMin · · ·Mi1Φs1u0

]
dsn.

[technically, this is how the formula looks for n > 1, and the reader is encour-
aged to write the corresponding equality for n = 1 using (5.2.66)].

Next, re-write (5.3.43) as

[Au, u] ≤ −
∑

i

‖Miu‖2
H + C0‖u‖2

H

to conclude that
∫ sn

0

· · ·
∫ s2

0

2
[
AΦt−snMin · · ·Mi1Φs1u0, Φt,snMin · · ·Mi1Φs1u0

]
dsn

≤ −
∑

in+1≥1

∫ t

0

∫ sn

0

· · ·
∫ s2

0

‖Min+1Φt−snMin · · ·Mi1Φs1u0‖2
Hds

n

+ C0

∫ t

0

∫ sn

0

· · ·
∫ s2

0

‖Φt−snMin · · ·Mi1Φs1u0‖2
Hds

n

As a result, for n ≥ 1,

dFn(t)

dt
≤ C0Fn(t)

∑

i1,...,in≥1

∫ t

0

∫ sn−1

0

· · ·
∫ s2

0

‖MinΦt−sn−1Min−1 · · ·Mi1Φs1u0‖2
Hds

n−1

−
∑

i1,...,in+1≥1

∫ t

0

∫ sn

0

· · ·
∫ s2

0

‖Min+1Φt−snMin · · ·Mi1Φs1u0‖2
Hds

n.

For n = 0, F0(t) = ‖Φtu0‖2
H ,

dF0(t)

dt
= 2[AΦtu0, Φtu0] ≤ −

∑

i≥1

‖MiΦtu0‖2
H + C0‖Φtu0‖2

H .

Summation over n from 0 to N , produces a telescoping sum on the right:
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N∑

k=0

dFn(t)

dt
≤ C0

N∑

n=0

Fn(t)

−
∑

i1,...,iN+1≥1

∫ t

0

∫ sN

0

· · ·
∫ s2

0

‖MiN+1Φt−sN MiN · · ·Mi1Φs1u0‖2
Hds

N ,

that is,

d

dt

N∑

n=0

∑

|α|=n

‖uα(t)‖2
H

α!
≤ C0

N∑

n=0

∑

|α|=n

‖uα(t)‖2
H

α!
,

or, with another auxiliary notation

F0↑N (t) =

N∑

n=0

∑

|α|=n

‖uα(t)‖2
H

α!
,

F0↑N (t) ≤ ‖u0‖2
H + C0

∫ t

0

F0↑N (s)ds+ C0

∫ t

0

‖Φsu0‖2
Hds.

By Gronwall’s inequality [(1.1.21) on page 8], keeping in mind that, by
(5.3.42),

‖Φsu0‖2
H ≤ eC1t‖u0‖2

H , s ≤ t,

we get

F0↑N (t) =

N∑

n=0

∑

|α|=n

‖uα(t)‖2
H

α!
≤ ‖u0‖2

H(1 + C0te
C1t)(1 + C0te

C0t).

Then (5.3.44) follows after passing to the limit N → ∞.

This completes the proof of Theorem 5.3.14.

If the equation is fully degenerate:

2[Au, u] +
∑

i≥1

‖Miu‖2
H = 0,

then the natural question is conservation of energy, that is, whether the equal-
ity

E‖u(t)‖2
H = ‖u0‖2

H

holds for all t > 0. An example is the stochastic transport equation in the
Stratonovich form

ut +
∑

i,k

uxk
σi,k(x) ◦ ẇi = 0,

when written in the Itô form [143]. For this equation conservation of energy
might not hold if the functions σi,k are not Lipschitz continuous in x, which
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is related to possible non-uniqueness of the solution of the corresponding flow
equation

dXk(t) =
∑

i

σi,k
(
X(t)

)
dwi(t).

The proof of Theorem 5.3.14 suggests a chaos expansion-based criterion for
conservation of energy:

lim
N→∞

∑

i1,...,iN+1≥1

∫ t

0

∫ sN

0

· · ·
∫ s2

0

‖MiN+1Φt−sN MiN · · ·Mi1Φs1u0‖2
Hds

N = 0;

for more details, see [144, Remark 9.1].
Theorem 5.3.14 can be extended to cover equations with deterministic free

terms f, gi, as in

u̇ = Au+ f +
∑

i≥1

(Miu+ gi) ẇi,

and stated in spaces (S)0,1/q(W[0,T ];H) or even (S)0,q(W[0,T ];H), qk > 1; see
[145, Theorem 4.1].

To conclude the section, we discuss an equation with anticipating initial
condition and a closed-form chaos solution. This example illustrates that,
for non-adapted equations driven by Brownian motion, the chaos solution
corresponds to the Skorokhod interpretation of the stochastic integral B⋄,
but the propagator is not necessarily the most efficient way to compute the
solution.

Consider the equation

du(t, x) =
1

2
uxx(t, x)dt + ux(t, x)dw(t), t ∈ (0, T ], x ∈ R, (5.3.45)

with initial condition u(0, x) = x2w(T ). If {mk, k ≥ 1} is an orthonormal basis

in L2((0, T )), such that m1(t) = 1/
√
T , t ∈ [0, T ], then w(T ) =

∫ T
0
dw(t) =√

Tξ1. The propagator for (5.3.45) becomes

(
ūα

)
t
=

1

2

(
ūα

)
xx

+
∑

k

αkmk(t)
(
ūα−(k)

)
x

(5.3.46)

with initial condition ūǫ(1)(0, x) = x2
√
T and ūα(0, x) = 0 for α 6= ǫ(1).

System (5.3.46) has a closed-for solution. Indeed, if |α| = 0, or |α| > 3,
or α1 = 0, then ūα(t, x) = 0 for all t, x, because the corresponding equation
in (5.3.46) satisfied by ūα is the homogeneous heat equation with zero initial
condition. [Remember that we only work in those space where the solution of
the heat equation is unique].

This leaves us with the following collection of multi-indices to consider:
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(1) = ǫ(1),

(2) = 2ǫ(1) = (2, 0, . . .), (1, k) = ǫ(1) + ǫ(k),

(3) = 3ǫ(1), (2, 1) = 2ǫ(1) + ǫ(k), (1, 2k) = ǫ(1) + 2ǫ(k),

(1, k, ℓ) = ǫ(1) + ǫ(k) + ǫ(ℓ), 1 < k < ℓ;

the left hand sides present the short-hand notations for the corresponding
multi-indices.

Writing Mk(t) =
∫ t
0 mk(s)ds and keeping in mind that m1(t) = 1/

√
T , we

guess the solutions of the remaining heat equations:

ū(1) : vt =
vxx
2
, v|t=0 = x2

√
T ⇒ ū(1) = (t+ x2)

√
T

[(t+ x2)t = (t+ x2)xx/2 = 1];

ū(2) : vt =
vxx
2

+ 4x, v|t=0 = 0 ⇒ ū(2) = 4 xt;

ū(1,k) : vt =
vxx
2

+ 2xmk

√
T , v|t=0 = 0 ⇒ ū(1,k) = 2xMk

√
T ;

ū(3) : vt =
vxx
2

+
12t√
T
, v|t=0 = 0 ⇒ ū(3) =

6t2√
T

;

ū(2,k) : vt =
vxx
2

+ 4(Mk + tmk), v|t=0 = 0 ⇒ ū(2,k) = 4tMk;

ū(1,2k) : vt =
vxx
2

+ 4Mkmk

√
T , v|t=0 = 0 ⇒ ū(1,2k) = 2M2

k

√
T ;

ū(1,k,ℓ) : vt =
vxx
2

+ 2(Mkmℓ +Mℓmk)
√
T , v|t=0 = 0

⇒ ū(1,k,ℓ) = 2MkMℓ

√
T .

Putting everything together requires some elementary but tedious algebra.
The result is surprisingly simple:

u(t, x) = w(T )w2(t) − 2tw(t) + 2x
(
w(T )w(t) − t

)
+ x2w(T ), (5.3.47)

and is consistent with the Skorohod integral interpretation of equation
(5.3.45).

Below is a more-or-less complete derivation of (5.3.47).
We keep in mind that

w(t) =
∑

k

Mk(t)ξk;

w2(t) =
∑

k,ℓ≥1

Mk(t)Mℓ(t)ξkξℓ =
∑

k≥1

M2
k (t)ξ

2
k + 2

∑

ℓ>k≥1

Mk(t)Mℓ(t)ξkξℓ;

w(T ) = ξ1
√
T , M1(t) =

t√
T
,
∑

k≥1

M2
k (t) = t;

H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x.
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During the computations, sometimes, it is more convenient to keep ξ1, and
sometimes it is more convenient to write ξ1 as w(T )/

√
T .

Then

u(t, x) =
∑

α∈J

1

α!
ūα(t, x)Hα(ξ) = ū(1)ξ1 +

1

2
ū(2)(ξ

2
1 − 1) +

1

6
ū(3)(ξ

3
1 − 3ξ1)

+
∑

k>1

ū(1,k)ξ1ξk +
∑

k>1

1

2
ū(2,k)(ξ

2
1 − 1)ξk +

∑

k>1

1

2
ū(1,2k)ξ1(ξ

2
k − 1)

+
∑

ℓ>k>1

ū(1,k,ℓ)ξ1ξkξℓ,

or, after plugging the values of the coefficients ūα and moving the terms
around a bit,

u(t, x) = (t+ x2)(ξ1
√
T ) + 2xt(ξ21 − 1) +

t2√
T
ξ1(ξ

2
1 − 3)

+ 2x(ξ1
√
T )
∑

k>1

Mkξk + 2t(ξ21 − 1)
∑

k>1

Mkξk

+ (ξ1
√
T )
∑

k>1

M2
k (ξ2k − 1) + 2(ξ1

√
T )

∑

ℓ>k>1

MkMℓξkξℓ.

To evaluate the sums, we need to start all the summations from 1, which
means adding and subtracting the corresponding term for k = 1, and which
eventually leads to several cancelations:

∑

k>1

Mkξk = w(t) −M1ξ1,
∑

k>1

M2
k (ξ

2
k − 1) =

∑

k≥1

M2
k (ξ

2
k − 1) −M2

1 (ξ21 − 1),

∑

ℓ>k>1

MkMℓξkξℓ =
∑

ℓ>k≥1

MkMℓξkξℓ −
∑

ℓ>1

M1Mℓξ1ξℓ

=
∑

ℓ>k≥1

MkMℓξkξℓ −
∑

ℓ≥1

M1Mℓξ1ξℓ +M2
1 ξ

2
1 .

Then

2x(ξ1
√
T )
∑

k>1

Mkξk = 2xw(T )w(t) − 2xtξ21 ,

2t(ξ21 − 1)
∑

k>1

Mkξk = 2t(ξ21 − 1)w(t) − 2t2√
T
ξ1(ξ

2
1 − 1),

(ξ1
√
T )

(
∑

k>1

M2
k (ξ2k − 1) + 2

∑

ℓ>k>1

MkMℓξkξℓ

)

= w(T )
(
w2(t) − t

)
− t2√

T
ξ1(ξ

2
1 − 1) − 2tξ21w(t) +

2t2ξ31√
T
.
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As a result,

u(t, x) = (t+ x2)w(T ) + 2xt(ξ21 − 1) +
t2√
T
ξ1(ξ

2
1 − 3)

+ 2xw(T )w(t) − 2xtξ21 + 2t(ξ21 − 1)w(t) − 2t2√
T
ξ1(ξ

2
1 − 1)

+ w(T )
(
w2(t) − t

)
− t2√

T
ξ1(ξ

2
1 − 1) − 2tξ21w(t) +

2t2ξ31√
T
,

and (5.3.47) follows.

Exercise 5.3.15 (A). While the detailed analysis of the Skorohod integral
is beyond the scope of our discussion, a curious reader can complete the ar-
gument and verify that the function u defined by (5.3.47) satisfies

u(t, x) = x2w(T ) +
1

2

∫ t

0

uxx(s, x)ds+

∫ t

0

ux(s, x)δw(s), (5.3.48)

where the notation δ indicates that the stochastic integral is in the sense of
Skorohod.

Hint. Here are some of the properties of the Skorohod integral: the expected
value is zero, which is consistent with (5.3.47); for adapted integrands it is the same
as Itô. The following two equalities are enough to carry out the computations related
to (5.3.48):

∫ t

0

w(T )δw(s) = w(T )
(
w(t) − t

)
,

2

∫ t

0

w(T )w(s)δw(s) = w(T )
(
w2(t) − t

)
− 2

∫ t

0

w(s)ds,

For more on the Skorohod integral, see, for example, [166, Section 1.3].

This concludes Exercise 5.3.15.

5.3.4 Problems

Problems 5.3.1 and 5.3.2 suggest further investigation of the transport equa-
tion ut = uxdw(t) and its higher-dimensional version. Problem 5.3.3 extends
the same ideas to parabolic equations. Problem 5.3.4 encourages the reader
to learn more about the Skorohod integral. Problem 5.3.5 presents an easy
example of getting additional regularity for parabolic equations using chaos
expansion.

Problem 5.3.1. A classical example of a infinitely differentiable non-analytic
function is

ϕ(x) =

{
e−1/x2

, if x 6= 0,

0, if x = 0.
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In this case, ϕ(n)(0) = 0 for all n, so ϕ(x) 6= ∑n≥0 ϕ
(n)(0)xn/n!, x 6= 0.

(a) What happens to the derivatives of ϕ near x = 0? [Apparently they
must grow pretty fast, to prevent the remainder in the Taylor formula from
going to zero].

(b) Investigate the chaos solution of ut = uxẇ(t) with initial conditions
u(0, x) = 1 − ϕ(x) and u(0, x) = ϕ(x).

Problem 5.3.2. (a) Construct a closed-form solution for the equation

du = uxdw(t), u(0, x) = xn, n > 1.

(b) Construct a chaos solution for the equation

du =
∑

i,k

σi,k(t, x)uxk
dwi(t), x ∈ R

d,

when u(0, x) is an element of S(Rd) and each σi,k(t, x) is infinitely differen-
tiable in x, supt,x |Dn

xσi,k(t, x)| = Ci,k(n).

Problem 5.3.3. By analogy with equation ut = uxẇ, construct the chaos
solution of

u̇ = uxx + u(n)(x)ẇ(t), t > 0, x ∈ R,

given a smooth, but not necessarily analytic, initial condition u(0, x) = ϕ(x).

Problem 5.3.4. Given real numbers a 6= 0, σ 6= 0 and a positive integer n,
construct a closed-form solution of the Skorohod integral equation

u(t, x) = xnw(T )+a

∫ t

0

auxx(s, x)ds+σ

∫ t

0

ux(s, x)δw(s), 0 < t < T, x ∈ R.

What conditions do you need to impose on a and σ (i) to be able to find the
solution; (ii) to make the computations easier?

Problem 5.3.5. Consider the stochastic parabolic equation

u̇ = Au+ Muẇ

with bounded linear operators A : V → V ′ and M : V → H , and a non-
random initial condition u0 ∈ H , and assume that the stochastic parabolicity
condition is satisfied:

2[Av, v] + ‖Mv‖2
H + δ‖v‖2

V ≤ C0‖v‖2
H .

Denote by e the sequence with ek = 1, k ≥ 1.

Show that u ∈ (S)0,qe

(
w[0,T ];L2

(
(0, T );V

))
for some q > 1.

[For example, you can take q = 1 + ε, if ε‖Mv‖2
H < δ‖v‖2

V ].
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Parameter Estimation for diagonal SPDEs

6.1 Examples and General Ideas

6.1.1 An Oceanographic Model and Its Simplifications

Let U = U(t, x) be the temperature of the top layer of a body of water such
as lake, sea, or ocean. Various historical data provide information about the
long-time average value Ū of U . The quantity of interest then becomes the
fluctuation u = U−Ū , and time evolution of u can be modeled by the following
heat balance equation (see Frankignoul [49] or Piterbarg and Rozovskii
[174]):

ut = κ∆u+ v · ∇u− λu+ ẆQ. (6.1.1)

Here, κ > 0 and λ > 0 are physical parameters and the v = v(t, x) is the
velocity of the water on the surface. In the most complete model, v is the
solution of the Navier-Stocks equations (see (1.2.18) on page 18). Note that
both x and v are two-dimensional.

Practical applications of (6.1.1) for modeling and prediction require knowl-
edge of the parameters κ and λ, and these parameters can only be estimated
using the measurements of the temperature. In other words, we have an inverse
problem: determine κ and λ given the solution of (6.1.1).

We will simplify the problem by making the following assumptions:

1. the parameters κ and λ are constant, that is, non-random and independent
of t and x;

2. the surface is not moving, that is, v = 0;
3. the shapeG of the body of water is a bounded domain in R

2 that is smooth
or otherwise nice, e.g. a rectangle, and u(t, x) = 0 on the boundary of G;

4. equation (6.1.1) with v = 0 is diagonal (or diagonalizable), that is,
the covariance operator Q of the noise has pure point spectrum and the
eigenfunctions of Q are the same as the eigenfunctions of the Laplace
operator ∆ in G with zero boundary conditions;

5. there is no initial fluctuation: u(0, x) = 0;



298 6 Parameter Estimation for diagonal SPDEs

6. the solution u = u(t, x) of (6.1.1) is a continuous function of (t, x) can
can be measured without errors for all t ∈ [0, T ] and x ∈ G.

Equation (6.1.1) becomes

ut = κAu− λu + ẆQ, 0 < t ≤ T, x ∈ G; u(t, 0) = 0, (6.1.2)

where A is the Laplace operator in G with zero boundary conditions.

Exercise 6.1.1 (B). Find sufficient conditions on the operator Q so that the
variational solution of (6.1.2) is a continuous function of (t, x).

Denote by hk = hk(x), k ≥ 1, the eigenfunctions of A. Then

Ahk = −νk hk, νk > 0, (6.1.3)

Qhk = qk hk, qk > 0, (6.1.4)

ẆQ(t, x) =
∑

k≥1

qkẇk(t)hk(x), (6.1.5)

and if a reasonable solution of (6.1.2) exists, it has a representation as a
Fourier series in space

u(t, x) =
∑

k≥1

uk(t)hk(x). (6.1.6)

Substituting (6.1.3)–(6.1.6) into (6.1.2) leads to the equation for the corre-
sponding Fourier coefficient uk:

duk(t) = −(κ νk + λ)uk(t)dt + qkdwk(t), uk(0) = 0. (6.1.7)

In (6.1.4), we assume that qk > 0 for all k. If qn = 0 for some n, then
(6.1.7) implies that un(t) = 0 for all t ≥ 0.

The corresponding inverse problem can now be stated as follows: estimate
the numbers κ and λ given the observations uk(t), k = 1, . . . , N, t ∈ [0, T ]. In
this setting, we can actually forget about the original SPDE (6.1.2) and work
directly with (6.1.7).

Estimation of the number qk from the continuous time observations of uk
is (mathematically) easy.

Exercise 6.1.2 (B). Take a positive integer M and consider a uniform par-
tition 0 = t0 < t1,M < . . . < tM,M = T of [0, T ] with step △tM = T/M :
tm,M = m△tM . Verify that

q2k =
1

T
lim
M→∞

M∑

m=1

(
uk
(
(m+ 1)△tM

)
− uk

(
m△tM

))2

. (6.1.8)

The result also shows that the sign of qk is not observable, that is, we cannot
distinguish between du = udt + dw(t) and du = udt − dw(t) based on the
observations u(t), t ≥ 0.

Hint. The martingale component of uk is qkwk.
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While it is still not immediately clear how to estimate the numbers κ and
λ, we did make some progress by reducing an SPDE setting to an SODE one:
from (6.1.2) to (6.1.7). To proceed, we simplify the problem even further and
consider an SPDE in one space variable with one unknown parameter θ and
with space-time white noise Ẇ (t, x) as the driving force:

ut(t, x) = θ uxx(t, x)dt+ qẆ (t, x), 0 < t ≤ T, x ∈ (0, π), (6.1.9)

with zero initial and boundary conditions. When θ = 1 and q = 1, we inves-
tigate this equation on page 51. In particular, we know that the solution of
(6.1.9) is a continuous function of t and x. The reason for introducing q will
become clear later, when we study asymptotic behavior of the estimators of
θ and use dimensional analysis to check some of the results.

Even though, by gradually moving from (6.1.2) to (6.1.9), we seemingly
lost all connections to the original application, we will eventually learn how
the ideas and methods we develop while working with the easy equation (6.1.9)
can be applied to more complicated equations, including (6.1.2).

Similar to (6.1.2), equation (6.1.9) is diagonal, and the solution of (6.1.9)
has the Fourier series representation

u(t, x) =
∑

k≥1

uk(t)hk(x),

where
duk(t) = −θk2 uk(t)dt+ qdwk(t), 0 < t ≤ T, (6.1.10)

with initial condition uk(0) = 0; see (2.3.16) on page 52.
By direct computation,

uk(t) = q

∫ t

0

e−θk
2(t−s)dwk(s), (6.1.11)

Eu2
k(t) = q2

∫ t

0

e−2θk2(t−s)ds =
q2(1 − e−2θk2t)

2θk2
,

∫ T

0

Eu2
k(t)dt =

q2

2θk2

∫ T

0

(1 − e−2θk2t)dt

=
q2

2θk2

(
T − 1 − e−2θk2T

2θk2

)
. (6.1.12)

Fix k ≥ 1 and consider the process uk = uk(t), 0 ≤ t ≤ T . Multiplying
both sides of (6.1.10) by uk(t) and integrating from 0 to T , we get

∫ T

0

uk(t)duk(t) = −θk2

∫ T

0

u2
k(t)dt+ q

∫ T

0

uk(t)dwk(t). (6.1.13)

Note that
∫ T
0
u2
k(t)dt > 0 with probability one. Indeed,

∫ T
0
u2
k(t)dt = 0 implies

u2
k(t) = 0 for almost all t, which, by (6.1.11) is a probability zero event. Then

equality (6.1.13) suggests the following estimator θ̂(k)(T ) of θ:
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θ̂(k)(T ) = −
∫ T
0
uk(t)duk(t)

k2
∫ T
0
u2
k(t)dt

, (6.1.14)

or, using the Itô formula,

θ̂(k)(T ) =
u2
k(T ) − q2T

2k2
∫ T
0 u2

k(t)dt
.

For now, we ignore that, while expression (6.1.14) can be both positive and
negative, the number θ must be positive if equation (6.1.9) is to be well posed
in L2((0, π)).

Substituting (6.1.10) into (6.1.14), we get the expression for the estimation
error:

θ̂(k)(T ) − θ = −q
∫ T
0 uk(t)dwk(t)

k2
∫ T
0 u2

k(t)dt
. (6.1.15)

6.1.2 Long Time vs Large Space

In what follows, we will look at the estimation error (6.1.15) in two asymptotic
regimes, T → +∞ for fixed k (long time) and k → +∞ for fixed T (large
space). We will use the following notations:

1. N (m,σ2), to denote a Gaussian random variable with mean m and vari-
ance σ2;

2. ζ
d
= η, to indicate that random variables ζ and η have the same distribu-

tion;

3. X
L
= Y, to indicate that random processes X and Y have the same distri-

bution in the space of continuous functions.

For example, if w = w(t) is a standard Brownian motion, c > 0, and wc(t) =
w(c2t), then

w(t)
d
= N (0, t)

d
=

√
tN (0, 1) for fixed t, (6.1.16)

w(c2t)
L
= cw(t), that is, wc(·) L

= cw(·) as processes. (6.1.17)

Is important to distinguish equality X(t)
d
= Y (t) for fixed t and equality

X(t)
L
= Y (t) as processes because X(t)

L
= Y (t) implies

∫ T

0

X(t)dt
d
=

∫ T

0

Y (t)dt (6.1.18)

and more generally, F (X)
d
= F (Y ) for a continuous functional F on the space

of continuous functions: as (6.1.16) suggests, having X(t)
d
= Y (t) for every t

is not enough to claim equalities like (6.1.18).
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Exercise 6.1.3 (C). Verify that

∫ 1

0

w(t)dt
d
= N (0, 1/3).

Let us pass to the limit T → +∞ in (6.1.15). It is well-known that uk(t)
is an ergodic process with stationary distribution N

(
0, q2/(2θk2)

)
, a time

average converges, to the corresponding population average with respect to
the stationary distribution:

lim
T→∞

1

T

∫ T

0

F
(
uk(t)

)
dt = EF (ζk), ζk

d
= N

(
0, q2/(2θk2)

)
,

and the convergence is with probability one. In particular,

lim
T→∞

1

T

∫ T

0

u2
k(t)dt = Eζ2

k =
q2

2θk2
(6.1.19)

with probability one. On the other hand, by (6.1.12),

E

(∫ T

0

uk(t)dwk(t)

)2

=

∫ T

0

Eu2
k(t)dt ≃

q2T

2θk2
, T → +∞;

recall that f(T ) ≃ g(T ) as T → +∞ means that limT→+∞ f(T )/g(T ) = 1.
Therefore, by the Chebychev inequality,

lim
T→∞

1

T

∫ T

0

uk(t)dwk(t) = 0 (6.1.20)

in probability, and, after combining (6.1.15), (6.1.19), and (6.1.20),

lim
T→∞

θ̂(k)(T ) = θ (6.1.21)

in probability1 for every k ≥ 1. In other words, estimator (6.1.14) is consistent
in the long-time asymptotic T → +∞.

The next question is the rate of convergence of θ̂(k)(T ): we want to find
an increasing non-random function v = v(T ) such that limT→+∞ v(T ) = +∞
and the limit limT→+∞ v(T )

(
θ̂(k)(T ) − θ

)
exists in distribution and is a non-

degenerate random variable.
To answer this question, we need some basic facts related to convergence

in distribution. The first is a version of the martingale central limit theorem.

Theorem 6.1.4. If, for t ≥ 0 and ε > 0, Xε = Xε(t) and X = X(t) are real-
valued, continuous square-integrable martingales such that X is a Gaussian
process, Xε(0) = X(0) = 0, and, for some t0 > 0,

1 With some extra work [135, Theorem 17.4], one can show that convergence in
(6.1.20) and (6.1.21) is with probability one.
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lim
ε→0

〈Xε〉(t0) = 〈X〉(t0) (6.1.22)

in probability, then limε→0Xε(t0)
d
= X(t0).

Proof. Here is an outline; for complete technical details, see Jacod and
Shiryaev [89, Theorem VIII.4.17] or Liptser and Shiryaev [133, Theorem
5.5.4(II)].

First of all, recall that if ζ
d
= N (0, σ2), then the characteristic function of ζ

is Eeiλζ = e−σ
2λ2/2. On the other hand, if M is a continuous square-integrable

martingale, then, by the Itô formula, the process

GλM (t) = exp

(
iλM(t) +

1

2
λ2〈M〉(t)

)

is a (local) martingale for every real λ. If X is a Gaussian martingale with

X(0) = 0, then X(t)
d
= N

(
0,E〈X〉(t)

)
, and the equalities

1 = EGλX(t), 1 = E exp

(
iλX(t) +

1

2
λ2

E〈X〉(t)
)
,

being true for all λ and t, suggest that 〈X〉 is non-random:

〈X〉(t) = E〈X〉(t).

This is indeed the case; see [89, Section II.4(d)] for details. To complete the
proof of the theorem, it remains to pass to the limit ε→ 0 in the equality

1 = E exp

(
iλXε(t) +

1

2
λ2〈Xε〉(t)

)

and to conclude that

lim
ε→0

E exp (iλXε(t)) = e−(λ2/2)〈X〉(t) = E exp (iλX(t)) .

Note that passing to the limit in the expectation is not a problem because,
for every λ ∈ R, the function f(x) = eiλx is uniformly bounded: |f(x)| ≤ 1.

This concludes the proof of Theorem 6.1.4.

The idea behind the proof of Theorem 6.1.4 is similar to the idea behind
the proof of the Lévy characterization of the Brownian motion.

Theorem 6.1.5 (Lévy’s characterization of the Brownian motion).
If X = X(t) is a continuous square integrable martingale, X(0) = 0, and
〈X〉(t) = t, then X is a standard Brownian motion.
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Exercise 6.1.6 (A). (a) Prove Theorem 6.1.5.
Hint. Use the Itô formula to show that

E

(
eiλ(X(t)−X(s))

∣∣∣Fs

)
= e−λ2(t−s)/2.

(b) Why is continuity of X a necessary assumption?
Hint. Let X be a Poisson process with unit intensity. What compensates

(
X(t)−

t
)2

to a martingale? At the very least confirm that E
(
X(t) − t

)2
= t.

Next, we recall the following classical fact.

Theorem 6.1.7. If ζε, ηε, ε > 0, are random variables such that

lim
ε→0

ζε
d
= ζ

and limε→0 ηε = c in probability, where ζ is a random variable and c is a
non-random number, then

lim
ε→0

(ζε + ηε)
d
= ζ + c, lim

ε→0
ζεηε

d
= ζ c.

Theorem 6.1.7 is known as the Slutsky theorem, after the Ukranian statistician
Evgeny “Eugen” Evgenievich Slutsky (1880–1948), who published it in
1925. The proof is by the usual ǫ–δ argument.

Now we will establish the rate of convergence of θ̂(k)(T ) to θ as T → +∞,
and also identify the limit distribution.

Proposition 6.1.8. For every k ≥ 1, the estimator θ̂(k)(T ) is asymptotically
normal with rate

√
T :

lim
T→+∞

√
T
(
θ̂(k)(T ) − θ

) d
= N

(
0, 2θ/k2

)
. (6.1.23)

Proof. To stay in line with the notations from Theorems 6.1.4 and 6.1.7, write
ε = 1/T and define

Xε(t) = − 1√
T

∫ Tt

0

uk(s)dwk(s), ηε =
1

qT

∫ T

0

u2
k(s)ds.

Then (6.1.15) implies

√
T
(
θ̂(k)(T ) − θ

)
= −T

−1/2
∫ T
0 uk(t)dwk(t)

k2(qT )−1
∫ T
0 u2

k(t)dt
=
Xε(1)

k2ηε
. (6.1.24)

Note that, for each ε > 0, Xε is a square-integrable martingale and

〈Xε〉(1) = ηε.



304 6 Parameter Estimation for diagonal SPDEs

Also take a standard Brownian motion w = w(t) and define the Gaussian
martingale X = X(t) by

X(t) = w(t)/
√

2θk2.

We know from (6.1.19) that, with probability one,

lim
ε→0

ηε =
1

2θk2
= 〈X〉(1).

Therefore, by Theorem 6.1.4,

lim
ε→0

Xε(1)
d
= X(1)

d
= N

(
0, 1/(2θk2)

)
.

Now (6.1.23) follows from (6.1.24) and Theorem 6.1.7:

lim
T→+∞

√
T
(
θ̂(k)(T ) − θ

)
= lim
ε→0

Xε(1)

k2ηε

d
=
w(1)/

√
2θk2

k2/(2θk2)

=
w(1)

√
2θ

k2

d
= N (0, 2θ/k2).

This completes the proof of Proposition 6.1.8.

Let us now comment about usefulness of q. In the course of the proof of
Proposition 6.1.8, there is a potential danger of manipulating various frac-
tions the wrong way and getting, for example, 1/(2θk2) as the limit variance
in (6.1.23). It is therefore convenient to have an independent way to check
whether a certain equality makes sense, and one such way is dimensional

analysis. Whenever there is time evolution present, it is natural to measure
the time variable t in the units of time [t], such as seconds, minutes, etc. This
forces the Brownian motion wk to have the units of [t]1/2 : [wk(t)] = [t]1/2.
If we want to have the process uk dimensionless, then, to ensure consistent
dimensions in (6.1.10), we need to measure θ in the units of inverse time:
[θ] = [t]−1, and we need to introduce q with [q] = [t]−1/2. Then

[θ̂(k)(T )] = [t]−1, [
√
T (θ̂(k)(T ) − θ] = [t]−1/2,

indicating that the limit variance in (6.1.23) should be measured in [t]−1,
which is indeed the case. Note that this limit variance does not depend on q.

Because the quantity 2θ/k2 in (6.1.23) is a decreasing function of k, it is
natural to try the following: instead of keeping k fixed and increasing T , keep
T fixed and let k go to infinity. The result is a different kind of asymptotic
normality.

Proposition 6.1.9. For every T > 0,

lim
k→+∞

k
(
θ̂(k)(T ) − θ

) d
= N (0, 2θ/T ). (6.1.25)



6.1 Examples and General Ideas 305

Proof. To begin, note that (6.1.25) makes sense as far as dimensional analysis:
the units of the limit variance should indeed be [t]−2.

Recall that, by (6.1.15),

k
(
θ̂(k)(T ) − θ

)
= −qk

∫ T
0
uk(t)dwk(t)

k2
∫ T
0 u2

k(t)dt

The main objective is to understand what happens to the process uk(·) as
k → ∞. By (6.1.17),

uk(t) = q

∫ t

0

e−θk
2t+θk2sdwk(s) = q

∫ k2t

0

e−θk
2t+θrdwk(r/k

2)

L
=
q

k

∫ k2t

0

e−θk
2t+θrdw1(r)

L
=

1

k
u1(k

2t),

(6.1.26)

that is

uk(t) =
1

k
u1(k

2t).

Then ∫ T

0

u2
k(t)dt

d
=

1

k2

∫ T

0

u2
1(k

2t)dt =
1

k4

∫ k2T

0

u2
1(s)ds,

and by (6.1.19),

lim
k→+∞

1

k2

∫ k2T

0

u2
1(s)ds =

Tq2

2θ

with probability one. Thus, for every T ≥ 0,

lim
k→+∞

k2

∫ T

0

u2
k(t)dt =

Tq2

2θ
(6.1.27)

in distribution, hence in probability, because the limit Tq2/(2θ) is non-
random. Next, define

Xk(t) = kq

∫ t

0

uk(s)dwk(s);

as in the previous proof, it is convenient to haveXk dimensionless. The process
Xk is a square-integrable martingale with

〈Xk〉(t) = q2k2

∫ t

0

u2
k(s)ds.

If w = w(t) is a standard Brownian motion and X(t) = q2w(t)/
√

2θ, then
(6.1.27) and Theorem 6.1.4 with ε = 1/k imply

lim
k→∞

kq

∫ T

0

uk(t)dwk(t)
d
= N

(
0, T q4/(2θ)

)
.
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Since

k
(
θ̂(k)(T ) − θ

)
=
kq
∫ T
0 uk(t)dwk(t)

k2
∫ T
0
u2
k(t)dt

,

equality (6.1.25) follows from Theorem 6.1.7.

This completes the proof of Proposition 6.1.9.

Exercise 6.1.10 (B). Show that (6.1.25) implies

lim
k→+∞

θ̂(k)(T ) = θ

in probability, for every T > 0.

Hint. Let ζ
d
= N (0, 2θ/T ). Given ǫ > 0, find Cǫ so that P(|ζ| > Cǫ) < ǫ. Then,

given δ > 0, take k so that kδ > Cǫ.

Propositions 6.1.8 and 6.1.9 quantify the intuitive idea: the more infor-
mation we have, the closer the estimator is to the true value. In Proposition
6.1.8 extra information comes from increasing time interval; in Proposition
6.1.9 extra information comes from additional Fourier coefficients. It is also
reasonable to expect that there are more efficient ways to incorporate the
information provided by the Fourier coefficients u1, . . . uk than simply using
the last one.

Accordingly, let us now assume that the trajectories of uk(t) are observed
for all 0 < t < T and all k = 1, . . . , N , and let us combine the estimators
(6.1.14) for different k as follows:

θ̂N = −
∑N

k=1

∫ T
0
k2uk(t)duk(t)

∑N
k=1

∫ T
0
k4u2

k(t)dt
. (6.1.28)

First suggested by Huebner, Khasminskii, and Rozovskii in [78], (6.1.28) is
consistent and asymptotically normal in the limit N → +∞, and is closely
related to the maximum likelihood estimator of θ based on the observations
uk(t), k = 1, . . . , N, 0 < t < T . The actual MLE θ̂N of θ takes into account

that θ must be positive, whereas θ̂N can be either positive or negative:

θ̂N =

{
θ̂N , if θ̂N > 0,

0, if θ̂N ≤ 0.
(6.1.29)

If θ̂N is consistent, then getting θ̂N ≤ 0 is rather unlikely for large N . We
postpone derivation of (6.1.28) and (6.1.29) until Section 6.2.2.

Let us try to see that θ̂N is indeed better than θ̂(N) (now that we fixed T ,
we will no longer write T as an argument in the estimators).

It follows from (6.1.10) and (6.1.28) that

θ̂N − θ = −
∑N
k=1

∫ T
0 k2uk(t)dwk(t)

∑N
k=1

∫ T
0
k4u2

k(t)dt
. (6.1.30)
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Note that both the top and the bottom of the fraction on the right-hand side
of (6.1.30) are sums of independent random variables, and the analysis of the

properties of the estimator θ̂N is reduced to the study of these sums.
By (6.1.12), as N → ∞,

N∑

k=1

∫ T

0

k4
Eu2

k(t)dt ≃
T

2

N∑

k=1

k2 ≃ N3T

6
, (6.1.31)

where notation aN ≃ bN means limN→∞(aN/bN) = 1. Since

E

∫ T

0

k2uk(t)dwk(t) = 0,

it is reasonable to conjecture that

• by the law of large numbers, limN→+∞(θ̂N − θ) = 0 with probability one;

• by the central limit theorem, the sequence of random variables {N3/2(θ̂N−
θ), N ≥ 1} converges in distribution to a zero-mean Gaussian random
variable.

In other words, we expect the rate of convergence for θ̂N to be N3/2, which
is indeed better than the rate N for θ̂(N), and the proof is indeed a straight-
forward application of the strong law of large numbers and the central limit
theorem for independent but not identically distributed random variables. We
carry out the proof in a more general setting in Section 6.2.3 below.

What is much less obvious is that there are no “reasonable” ways to im-
prove θ̂N beside replacing it with θ̂N according to (6.1.29); the proof of this
in a more general setting is in Section 6.2.4. There are certainly “unreason-
able” improvements, for example, defining an estimator to be a fixed number
θ0 > 0 : on the one hand, it is not a very useful estimator, but, on the other
hand, if indeed θ = θ0, then nothing can beat it.

Now that we have some understanding of the estimation problem for
(6.1.9), let us try to imagine what to expect from the estimation problem
for (6.1.2). First of all, analysis of (6.1.9) suggests that a similar analysis of
(6.1.2) will require the asymptotic formula for νk. This turns out to be a
classical result, cf. 164:

νk ∼ k; (6.1.32)

recall that ak ∼ bk means that a finite positive limit of the ratio ak/bk exists
as k → ∞.

Exercise 6.1.11 (A). Verify (6.1.32) (or an easier version νk ≍ k) when G
is the square [0, π] × [0, π].

Hint. The eigenvalues are of the form k2 + m2, k, m ≥ 1. Start by enumerating

them.
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Next, there are two parameters to estimate rather than one. To get some
idea about the resulting estimators, we pretend that estimating two param-
eters at once and estimating each parameter individually while treating the
other one as known leads to similar asymptotic results (which turns out to
be true in this case). Then estimating κ in (6.1.2) should be very similar to
estimating θ in (6.1.9). The only difference is that, instead of νk = k2, we now
have νk ∼ k, and (assuming for simplicity that qk = 1), this should change
(6.1.12) to ∫ T

0

Eu2
k(t)dt ∼

T

k
(6.1.33)

and (6.1.31), to
N∑

k=1

∫ T

0

k2
Eu2

k(t)dt ∼ N.

Even without looking at the estimator κ̂N , we can conjecture that {N(κ̂N −
κ), N ≥ 1} converges in distribution to a zero-mean normal random variable.

Similarly, estimation of λ in (6.1.2) will lead to

N∑

k=1

∫ T

0

Eu2
k(t)dt ∼ lnN, (6.1.34)

and the corresponding rate of convergence
√

lnN .

Exercise 6.1.12 (C). Verify (6.1.33) if we have qk = 1 in (6.1.7).

Exercise 6.1.13 (B). Convince yourself that no consistent estimator of θ is
possible in the model

ut = uxx + θu + Ẇ , x ∈ (0, π)

with zero boundary conditions, if t ∈ [0, T ] and T is fixed.
Hint. By analogy with (6.1.34), the rate of convergence should be

(
N∑

k=1

∫ T

0

Eu2
k(t)dt

)1/2

,

which, with
∫ T

0
Eu2

k(t)dt ∼ 1/k2, is a convergent series. In other words, θ̂N − θ stays

a non-degenerate random variable in the limit N → +∞.

6.1.3 Problems

All problems below are related to the estimator θ̂(k)(T ) defined in (6.1.14)
on page 300. Problem 6.1.1 offers one way to incorporate several processes
uk into a single estimator. Problem 6.1.2 suggests yet another asymptotic
regime: small noise. Problem 6.1.3 investigates the influence of the initial con-
dition uk(0) in the large space asymptotic. Problems 6.1.4 and 6.1.5 investigate

θ̂(k)(T ) in the large time asymptotic when the process uk is not ergodic.
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Problem 6.1.1. Investigate the weighted average of the estimators θ̂(k)(T ).
That is, consider expressions of the form

N∑

k=1

αk,N (T )θ̂(k)(T ), (6.1.35)

with non-random numbers (weights) αk,N (T ) satisfying

αk,N (T ) ≥ 0,
N∑

k=1

αk,N (T ) = 1.

The weights can depend on the observation time interval T and on the total
number N of the available Fourier coefficients. Is it possible to select the
weights so that the convergence rate as T → +∞ is better than

√
T? Is it

possible to select the weights so that the convergence rate as N → +∞ is
better than N?

Problem 6.1.2. Consider (6.1.10) on page 299 with initial condition uk(0)
d
=

N (m,σ2) where m ∈ R and σ ≥ 0 are known. With k and T fixed, investigate

the corresponding estimator θ̂(k)(T ) from (6.1.14) on page 300 in the small

noise asymptotic, that is, in the limit q → 0.

Problem 6.1.3. Consider equation (6.1.10) on page 299 with initial condition

uk(0)
d
= N (mk, σ

2
k) where mk ∈ R and σk ≥ 0 are known. Assume that the

collection {uk(0), k ≥ 1} is independent of {wk, k ≥ 1}. Investigate the

estimator θ̂(k)(T ) from (6.1.14) in the limit k → +∞, T fixed. Is it possible

to choose mk and/or σk so that the rate of convergence of θ̂(k)(T ) is better
than k?

Problem 6.1.4. Consider the collection of random variables

θ̂(T ) =

∫ T
0
X(t)dX(t)

∫ T
0
X2(t)dt

, T > 0,

where
dX = Xdt+ σdw,

and the initial condition X(0) is a Gaussian random variable independent
of the standard Brownian motion w. Determine the limit in distribution of
eT
(
θ̂(T ) − 1

)
.

Problem 6.1.5. Consider the collection of random variables

θ̂(T ) =

∫ T
0
X(t)dX(t)

∫ T
0
X2(t)dt

, T > 0,

where



310 6 Parameter Estimation for diagonal SPDEs

X(t) = X0 + σdw,

and the initial condition X0 is a Gaussian random variable independent of
the standard Brownian motion w. Find a positive increasing function v =
v(T ) such that, as T → +∞, a non-degenerate limit of v(T )θ̂(T ) exists in
distribution, and determine the limit.

6.2 Maximum Likelihood Estimator (MLE): One
Unknown Parameter

6.2.1 The Forward Problem

Introduce the following objects:

1. G, a sufficiently regular bounded domain in R
d or a smooth compact

d-dimensional manifold;
2. H = L2(G), a separable Hilbert space with an orthonormal basis {hk, k ≥

1};
3. WQ = WQ(t), a Q-cylindrical Brownian motion on H ;
4. A0, A1, linear differential or pseudo-differential operators on H .

For θ ∈ R, consider the equation

u̇(t) + (A0 + θA1)u(t) = ẆQ(t) (6.2.1)

with initial condition u(0). Even though the solution u = uθ(t, x) depends not
only on t but also on the parameter θ and the spacial variable x ∈ G, not to
mention the elementary outcome ω, most of the time we will not indicate the
dependence on θ, x, and ω explicitly.

Definition 6.2.1. Equation (6.2.1) is called diagonal, or diagonalizable,
if the operators A0, A1, and Q have pure point spectrum and a common system
of eigenfunctions {hk, k ≥ 1}, and

u(0) =
∑

k≥1

uk(0)hk, (6.2.2)

where uk(0) are independent Gaussian random variables with mean mk and
variance σ2

k, and the collection {uk(0), k ≥ 1} is independent of WQ.

We will introduce conditions on the convergence of (6.2.2) when we discuss
existence and uniqueness of solution of (6.2.1).

Equation (6.2.1) is an attempt to strike a reasonable balance between the
concrete examples from Section 6.1 and a completely abstract framework that
has little or no connection with SPDEs. Although abstract, equation(6.2.1) is
a stochastic evolution equation (in fact, an SPDE if the operators A0,A1 are
differential). There are sufficient conditions for a (pseudo)-differential operator
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to have pure point spectrum and for the corresponding eigenfunctions to form
an orthonormal basis in L2(G). It is even more important for our purposes
that the eigenvalues of the operators in this setting have a particular growth
rate in k:

k−th eigenvalue ∼ korder of the operator/d; (6.2.3)

see, for example, [188, Theorem 1.2.1]. In particular, for the Laplacian ∆, a
second-order operator, we get

k−th eigenvalue of ∆ ∼ k2/d;

in fact, we already used this result before with d = 2: see pages 164 and 307.
We will not discuss various technical questions, such as: how regular should

G be, what is the meaning of L2(G) when G is a manifold, what is the order
of a pseudo-differential operator (and what is a pseudo-differential opera-
tor to begin with), etc. Nonetheless, these questions can arise naturally even
when not originally present. For example, an equation with periodic boundary
conditions leads to a manifold (circle if d = 1, torus if d = 2, etc.) Pseudo-
differential operators can appear if, for example, in equation (6.2.1) we decide
to switch from WQ to W . After making this change, only two operator rather
than three will have to have a common system of eigenfunctions, but in the
resulting equation for v = Q−1/2u,

dv(t) + (Ā0 + θĀ1)v(t)dt = dW (t),

the operators Āi = Q−1/2AiQ
1/2, i = 0, 1, will be pseudo-differential rather

than differential. In the end, though, all we need is to know that all these
technical questions have been worked out in special books such as [188] or
[195].

Denote by κk, νk, qk, and µk(θ) the eigenvalues of the operators A0, A1,
Q, and A0 + θA1:

A0hk = κkhk, A1hk = νkhk, Qhk = q2khk, µk(θ) = κk + θνk.

The reason to write the operators on the left-hand side of (6.2.1) is that it is
more convenient to have µk(θ) > 0.

Our objective is an inverse problem for equation (6.2.1), that is, estimation
of θ from the observations of u. Rigorous analysis of an inverse problem is im-
possible without first addressing the forward problem: existence, uniqueness,
and regularity of the solution of (6.2.1). While we have a general result (The-
orem 4.4.3 on page 188), there is some work to be done: we need to specify
the corresponding normal triple and then state the corresponding conditions
in the same terms as in Definition 6.2.1.

There is a more philosophical question in the background: what kinds
of functions can be observed? Since we are working with Fourier series in
L2(G), we will assume that every function from L2

(
Ω; C

(
(0, T );L2(G)

))
is

observable. In the normal triple, (V,H, V ′), we therefore take H = L2(G) and
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then make sure that Theorem 4.4.3 applies to equation (6.2.1). To define V ,
denote by 2m the order of the operator A0 + θA1 (which naturally leads to
the assumption that the order of A0 + θA1 is the same for all θ ∈ Θ). Then
we can take V = Hm(G), where Hγ(G), γ ∈ R, are the Sobolev spaces in G,
as constructed in Example 3.1.29 on page 81 with λk = k1/d:

‖f‖2
γ =

∑

k≥1

k2γ/df2
k . (6.2.4)

Note that, by (6.2.3), the eigenvalues of the operator
√
−∆ on L2(G) have

the same asymptotic as λk.

Definition 6.2.2. A diagonal equation (6.2.1) is called parabolic of order
2m if there exist numbers c1 > 0, c2 ≥ 0, c3 > 0, possibly depending on θ, such
that, for all k ≥ 1,

c1k
2m/d ≤ µk(θ) + c2 ≤ c3k

2m/d. (6.2.5)

If condition (6.2.5) holds for some θ ∈ R, then, by continuity, it holds in some
neighborhood of θ. Accordingly, we define the set Θ0 ⊆ R as the largest open
set such that (6.2.5) holds for every θ ∈ Θ0 (recall that any union, countable
or uncountable, of open sets is open).

Example 6.2.3. Let G be a smooth bounded domain in R
d or a smooth com-

pact d-dimensional manifold with a smooth measure, H = L2(G), and let
∆ be the Laplace operator on G (with zero boundary conditions if G is a
domain). It is known (see, for example, Safarov and Vassiliev [188] or Shubin
[195]) that

1. ∆ has a complete orthonormal system of eigenfunctions in H ;
2. the corresponding eigenvalues νk are negative, can be arranged in decreas-

ing order, and there is a positive number c◦ such that

|νk| ≃ c◦k
2/d;

see (6.2.10) below for more details, including an explicit formula for c◦.

Then each of the following equations is diagonalizable and parabolic:

ut − θ∆u = Ẇ , Θ0 = (0,+∞);

ut − ∆u+ θu = Ẇ , Θ0 = R;

ut + ∆2u+ θ∆u = Ẇ , Θ0 = R.

(6.2.6)

We can now address the forward problem for equation (6.2.1).

Theorem 6.2.4. Assume that equation (6.2.1) is diagonal and parabolic of
order 2m,
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∑

k≥1

q2k <∞, (6.2.7)

and the initial condition satisfies

∑

k≥1

(m2
k + σ2

k) <∞. (6.2.8)

Then, for every θ ∈ Θ0, equation (6.2.1) has a unique variational solution in
the sense of Definition 4.4.1 on page 187, and, with H = L2(G) and V =
Hm(G),

E sup
0<t<T

‖u(t)‖2
H + E

∫ T

0

‖u(t)‖2
V dt ≤ C

∑

k≥1

(m2
k + σ2

k + q2k),

with C depending only on T and the numbers c1, c2, c3 from (6.2.5).

Proof. Equation (6.2.1) is a particular case of equation (4.4.1) on page 187
with A = −A0 − θA1, f(t) = 0, Mk = 0, gk = qkhk, u0 =

∑
k uk(0)hk.

Accordingly, the result follows from Theorem 4.4.3. Indeed,

∑

k≥1

‖gk‖2
H =

∑

k≥1

q2k <∞, E‖u(0)‖2
H =

∑

k≥1

Eu2
k(0) =

∑

k≥1

(m2
k + σ2

k) <∞.

Next, by definition of Hγ(G) and assumption (6.2.5),

‖Av‖2
V ′ =

∑

k≥1

v2
kµ

2
k(θ)k

−2m/d ≤ c3
∑

k≥1

v2
kk

2m/d = c3‖v‖2
V ,

[Av, v] = −
∑

k≥1

µk(θ)v
2
k ≤ −c2‖v‖2

H − c1‖v‖2
V .

This completes the proof of Theorem 6.2.4.

To conclude the section, here are more details about (6.2.3). Introduce the
notations

α = (α1, . . . , αd), αi ∈ {0, 1, 2, . . .}, |α| =
d∑

i=1

αi, D
α =

∂|α|

∂xα1
1 · · ·∂xαd

d

.

Let G be a smooth bounded domain in R
d or, more generally, smooth d-

dimensional manifold, with or without a boundary. A partial differential op-
erator B of order m on G is written (in local coordinates, if G is a manifold)
as

B =
∑

|α|≤m

bα(x)Dα,
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where the functions bα are usually assumed to be infinitely differentiable.
Boundary conditions, if any, can also be expressed in terms of partial differ-
ential operators of order strictly smaller than m.

For x ∈ G and y ∈ R
d (or more precisely, (x, y) ∈ T ∗(G), the cotangent

bundle of G), define

Bm(x, y) = (−i)m
∑

|α|=m

bα(x)yα,

where yα =
∏d
i=1 y

αi

i . The standard assumptions on the operator B are as
follows:

1. Ellipticity: Bm(x, y) 6= 0 if y 6= 0;
2. Positivity: (Bf, f)L2(G) > 0, f 6≡ 0;
3. Symmetry: (Bf, g)L2(G) = (f,Bg)L2(G).

Positivity implies Bm(x, y) > 0, y 6= 0, which in turn implies that the order
m of the operator is even.

Finally, define

CB,G =
1

(2π)d

∫

{(x,y):Bm(x,y)<1}
dx dy,

and let ν1 ≤ ν2 ≤ . . . be the eigenvalues of B, with = for multiple eigenvalues.
The main result (see [188, Theorem 1.2.1]) is that

lim
k→+∞

νk
km/d

=
(
CB,G

)−m/d
. (6.2.9)

Moreover, ∣∣∣νk − km/d
(
CB,G

)−m/d∣∣∣ ≤ Ck(m−1)/d.

For example, if B = −∆ and G ∈ R
d is a bounded domain, then

C−∆,G =
ωd|G|
(2π)d

, (6.2.10)

where

ωd =
πd/2

Γ ((d/2) + 1)

is the volume of the unit ball in R
d and |G| is the Lebesgue measure of

G in R
d. When d = 1, 2, 3, we get

νk ≃
(
π

|G|

)2

k2, νk ≃ 4π

|G| k, νk ≃
(

6π2

|G|

)2/3

k2/3, (6.2.11)

respectively.
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6.2.2 Simplified MLE (sMLE) and MLE

Under conditions of Theorem 6.2.4, the solution u of (6.2.1) has the Fourier
series expansion

u(t) =
∑

k≥1

uk(t)hk, (6.2.12)

and

duk(t) = −µk(θ)uk(t)dt+ qkdwk(t), uk(0)
d
= N (mk, σ

2
k), (6.2.13)

that is,

uk(t) = uk(0) e−µk(θ)t + qk

∫ t

0

e−µk(θ)(t−s)dwk(s).

One can justify (6.2.13) with full rigor by using hk as a test function in the
definition of the variational solution of (6.2.1).

Exercise 6.2.5 (B). Note that all the equations in (6.2.6) have qk = 1, so
none satisfies (6.2.7). On the other hand, it is clear that the right-hand side
of (6.2.12) can be an element of L2(G) without (6.2.7). Find a more general
condition, involving both qk and µk(θ) to ensure that the right-hand side of
(6.2.12) is an element of L2(G), and verify that the result can be considered
a mild solution of (6.2.1).

Hint. For example,
∑

k q2
k/µk(θ) < ∞ works.

The only unknown object in equation (6.2.1) is the number θ; the numbers
κk, νk, and qk are assumed to be know. As far as qk, note that (6.1.8) still
holds.

The inverse problem for equation (6.2.1) now becomes as follows: estimate
θ given the observations

UN,θ = {uk(t), t ∈ [0, T ], k = 1, . . . , N}.

At this point, it becomes important to indicate the dependence of the obser-
vations on the parameter θ.

Given the problem, it is natural to assume from now on that, for all k ≥ 1,

νk 6= 0, qk > 0. (6.2.14)

If, in fact, νk = 0 for some k, then the corresponding process uk carries no
information about θ and can be dropped from the observations. The sign of qk
does not matter (see (6.1.8)), and if qk = 0, then there are two options. Option
one is zero initial condition uk(0) = 0 (that is, mk = σk = 0). Then uk(t) = 0
for all t > 0 and is dropped from observations. Option two is non-zero initial
condition uk(0) 6= 0. Then

uk(t) = uk(0)e−µk(θ)t
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and θ can be determined exactly from the observations of uk at two distinct
time moments. For example,

uk(1) = uk(0)e−κk−θνk , uk(2) = uk(0)e−2κk−2θνk , ln
uk(1)

uk(2)
= κk + θνk,

and so

θ =
1

νk

(
ln
uk(1)

uk(2)
− κk

)
. (6.2.15)

The natural choice of the estimator for θ is the maximum likelihood es-
timator (MLE) θ̂N , which, intuitively, is the value θ in Θ0 for which model
(6.2.13) is most likely to produce the observed realization of the vector UN,θ.
The question is then to find the likelihood function for UN,θ.

If we observed each function uk at discrete time moments t1, . . . , tK , then
the corresponding observation would be a K×N -dimensional Gaussian vector
with a very explicit, but very complicated, probability density function. When
evaluated at the corresponding observations, this probability density function
becomes the likelihood function.

With observations in continuous time, the process UN,θ takes values in
the space C([0, T ]; RN) of R

N -valued continuous functions and generates the
measure P θT in that space according to the rule

PN,θT (A) = P(UN,θ ∈ A)

for every Borel subset A of C([0, T ]; RN). With no Lebesque measure in infinite
dimensions, there is no clear analogue of the probability density function for
UN,θ. In particular, trying to pass to the limit of shrinking time step in the
pdf corresponding to the discrete observations is not a promising idea.

It turns out that the measures PN,θT are equivalent for different values of
θ ∈ Θ0 (in fact, for all θ ∈ R), and thus any one of them can serve as a
reference measure. Now, the fact that UN,θ is a Gaussian process is not as
important as the fact that UN,θ is a diffusion process. Moreover, since the
processes uk are independent for different k, P θT,N is the product measure
corresponding to individual uk:

PN,θT (A1 × · · · ×AN ) =

N∏

k=1

P(uk ∈ Ak), (6.2.16)

where Ak is a Borel subset of C((0, T ); R).
Let us start with the general result for scalar diffusion processes. Con-

sider the processes X = X(t) and Y = Y (t) defined by stochastic ordinary
differential equations

dX(t) = A
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dw(t),

dY (t) = a
(
t, Y (t)

)
dt+ σ

(
t, Y (t)

)
dw(t),

(6.2.17)
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where w is a standard Brownian motion, the functions a,A, σ satisfy the con-
ditions to ensure existence of a unique strong solution of the corresponding
equation (for example, uniformly Lipschits continuous in the second argu-
ment), the initial conditions are independent of w, and, for simplicity, the
function σ is uniformly bounded away from zero: σ(t, x) ≥ σ0 > 0. The im-
portant assumptions are

1. The initial condition is the same in both equations: X(0) = Y (0);
2. The diffusion coefficient σ is the same in both equations;
3. The functions a,A, σ are non-random.

The claim is as follows: if PXT and PYT are the measures generates by X and
Y in C((0, T ); R), then

dPXT
dP YT

(Y ) = exp

(∫ T

0

A
(
t, Y (t)

)
− a
(
t, Y (t)

)

σ2
(
t, Y (t)

) dY (t)

− 1

2

∫ T

0

A2
(
t, Y (t)

)
− a2

(
t, Y (t)

)

σ2
(
t, Y (t)

) dt

)
.

(6.2.18)

For the detailed statement and proof, see Liptser and Shiryaev [134, Theomre
7.19] (although a complete understanding of the proof might require a thor-
ough review of the previous 18 theorems in Chapter 7 of [134]). Below, we will
try to get some general ideas why something like (6.2.18) should be true.

We start by commenting on two visual features of (6.2.18). First, the
structure of the formula: measure of the top process over the measure of the
bottom process, evaluated at the bottom process, is an expression involving
the drift of the top process minus the drift of the bottom process, divided by
the common diffusion squared, all evaluated at the bottom process. Note also
the difference of the squares rather than square of the difference. Of course,
using the equation for Y , we can re-write (6.2.18) as

dPXT
dP YT

(Y ) = exp

(∫ T

0

A
(
t, Y (t)

)
− a
(
t, Y (t)

)

σ
(
t, Y (t)

) dw(t)

− 1

2

∫ T

0

(
A
(
t, Y (t)

)
− a
(
t, Y (t)

))2

σ2
(
t, Y (t)

) dt


 ,

(6.2.19)

which is correct even though the right-hand side does not seem to be
the function of Y . This leads to the second observation: while the density
Φ = dPXT /dP

Y
T is a functional on C((0, T ); R), there is no nice closed-form

expression for Φ(x) if x = x(t) is an arbitrary element from C((0, T ); R).
Formula (6.2.18) gives the expression for Φ(Y ), and this is about as much
as we can get. Of course, there is an equivalent formula (6.2.19), and, using
dP YT /dP

X
T = 1/Φ, we can also get Φ(X).
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Exercise 6.2.6 (C). (a) Verify (6.2.19). (b) Verify that

dPXT
dP YT

(X) = exp

(∫ T

0

A
(
t,X(t)

)
− a
(
t,X(t))

σ2
(
t,X(t)

) dX(t)

− 1

2

∫ T

0

A2
(
t,X(t)

)
− a2

(
t,X(t)

)

σ2
(
t,X(t)

) dt

)
,

(6.2.20)

(c) What happens if we replace dX in (6.2.20) according to (6.2.17), and how
does the result compare with (6.2.19)?

To understand (6.2.18) better, we need the result known as the Girsanov

theorem, after the Russian mathematician Igor Vladimirovich Girsanov
(1934–1967) who established it in 1960.

Theorem 6.2.7 (Girsanov’s Theorem). Let w = w(t) be a standard Brow-

nian motion, and let h = h(t) be a random process such that E
∫ T
0
h2(t)dt <∞

and

E exp

(∫ T

0

h(s)dw(s) − 1

2

∫ T

0

h2(t)dt

)
= 1. (6.2.21)

On the original stochastic basis (Ω,F , {Ft}t≥0,P), define a new probability

measure P̃ by

P̃(A) = E

(
1A(ω) exp

(∫ T

0

h2(s)dw(s) − 1

2

∫ T

0

h2(t)dt

))
, (6.2.22)

A ∈ F . Then the process X = X(t) defined by

X(t) = −
∫ t

0

h(s)ds+ w(t), 0 ≤ t ≤ T,

is a standard Brownian motion on (Ω,F , {Ft}≤t≤T , P̃).

Proof. Define the process

Z(t) = exp

(∫ T

0

h(s)dw(s) − 1

2

∫ T

0

h2(t)dt

)
.

By the Itô formula,
dZ = hZdw,

and by (6.2.21), Z is a martingale. Fix λ ∈ R, s ∈ (0, T ), and, for t > s, define

g(t) = eiλ(X(t)−X(s)), G(t) = g(t)Z(t), F (t) = Ẽ
(
g(t)

∣∣Fs
)
,

where Ẽ is the expectation with respect to the measure P̃. Note that, similar
to (4.4.87) on page 215,
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F (t) =
E
(
G(t)

∣∣Fs
)

Z(s)
, (6.2.23)

which allows us to switch between E and Ẽ in our computations. To complete
the proof, we need to show that

F (t) = e−λ
2(t−s)/2. (6.2.24)

By the Itô formula,

dg = iλgdX − λ2

2
gdt = −iλghdt+ iλgdw − λ2

2
gdt,

dG = gdZ + Zdg + iλgZhdt = (h+ iλ)gZdw − λ2

2
gZdt.

or, since G(r) = g(r)Z(r), r ≥ s, and G(s) = Z(s),

G(t) = Z(s) +

∫ t

s

(h(r) + iλ)G(r)dw(r) − λ2

2

∫ t

s

G(r)dr. (6.2.25)

Taking E
(
·
∣∣Fs
)

on both sides of (6.2.25) eliminates the stochastic integral,
and then (6.2.23) results in

F (t)Z(s) = Z(s) − λ2

2

∫ t

s

F (r)Z(s)dr, or F (t) = 1 − λ2

2

∫ t

s

F (r)dr,

which is the same as (6.2.24).

This completes the proof of Theorem 6.2.7.

Exercise 6.2.8 (B). (a) Verify that (6.2.24) is equivalent to the statement
of the theorem. Hint. Lévy’s characterization of the Brownian motion. (b) Verify
(6.2.23).

There are two places in the Girsanov theorem where the function h ap-
pears: in the processX and in the change of measure Z. In one of those places,
h should have the minus sign (in our formulation, this happens in X). The
Itô formula shows that the negative sign is indeed necessary to achieve the
proper cancelation of terms.

Condition (6.2.21) is essential: otherwise, it will be impossible to change

the measure according to (6.2.22). In general, E
∫ T
0 h2(t)dt <∞ implies

E exp

(∫ T

0

h(s)dw(s) − 1

2

∫ T

0

h2(t)dt

)
≤ 1, (6.2.26)

and equality in (6.2.26) is usually guaranteed by the Novikov condition

E exp

(
1

2

∫ T

0

h2(t)dt

)
<∞; (6.2.27)
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without additional information about h, one cannot do much better than
(6.2.27); see [134, Section 6.2.4].

Let us now see how the Girsanov theorem leads to the density formula
(6.2.18). Denote by L(Y ) the right-hand side of (6.2.18), define the function

B(t, x) =
A(t, x) − a(t, x)

σ(t, x)

and then the process

w̃(t) = w(t) −
∫ t

0

B
(
t, Y (s)

)
ds.

Forgetting for the moment about (6.2.21), we conclude from Theorem 6.2.7

that w̃ is a standard Brownian motion under the measure P̃ with

dP̃

dP
= L(Y );

at this point, an alternative formula (6.2.19) for L(Y ) could be more conve-
nient. After some simple algebraic manipulations,

Y (t) = X(0) +

∫ t

0

a
(
s, Y (s)

)
ds+

∫ t

0

σ(s, Y (s)
)
dw(s)

= X(0) +

∫ t

0

A(s, Y (s)
)
ds+

∫ t

0

σ
(
s, Y (s)

)
dw̃(s),

that is, the equation satisfied by Y under P̃ is the same as the equation satisfied
by X under P. In other words, for every Boreal set A in C((0, T )),

PXT (A) = P(X ∈ A) = P̃(Y ∈ A).

It follows that PXT is absolutely continuous with respect to PYT , that is, if
PYT (A) = 0 for some Borel sub-set of C((0, T )), then PXT (A) = 0. Indeed,

since P̃ is absolutely continuous with respect to P, we have

PYT (A) = 0 ⇔ P(Y ∈ A) = 0 ⇒ P̃(Y ∈ A) ⇔ P(X ∈ A) = 0 ⇔ PXT (A) = 0.

Then

PXT (A) =

∫

A

Φ(x)dP YT (x) =

∫

{ω:Y ∈A}
, Φ(Y )dP,

where the first equality follows by the Radon-Nykodim theorem, and the sec-
ond, after the change of variables. On the other hand,

PXT (A) = P(X ∈ A) = P̃(Y ∈ A) =

∫

{ω:Y ∈A}
L(Y )dP,

showing that Φ(Y ) = L(Y ).
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As far as satisfying (6.2.21), since we are not dealing with an arbitrary
process h but a rather specific process B

(
t, Y (t)

)
, we can get (6.2.21) without

(6.2.27), via a localization argument using special stopping times. For details,
see [134, Theorem 7.19].

Let us now use (6.2.18) to write the likelihood function LT,N(θ) for UN,θ.
To this end, denote by θ0 the true value of the parameter, whatever it might
be, and let the reference measure be the measure PN,θ0T on C((0, T ); RN)
generated by the N -dimensional process UN,θ0. A particular realization of
UN,θ0 is the observations.

Also, denote by P θk,T the measure on C((0, T ); R), generated by the process
uk = uk,θ from (6.2.13); through the end of this section we will indicate the
dependence of uk on the parameter θ, cumbersome notations notwithstanding.
Then

LN,T (θ) =
dPN,θT

dPN,θ0T

(
UN,θ0

)
, (6.2.28)

and, because, for every θ ∈ Θ0, the processes uk,θ are independent for different
k, we have

dPN,θT

dPN,θ0T

(
UN,θ0

)
=

N∏

k=1

dP θk,T

dP θ0k,T

(
uk,θ0

)
(6.2.29)

Recall that
duk,θ = −µk(θ)uk,θ(t)dt+ qkdwk(t). (6.2.30)

By (6.2.18), withX = uk,θ, Y = uk,θ0 , A(t, x) = −µk(θ)x, a(t, x) = −µk(θ0)x,
σ(t, x) = qk,

dP θk,T

dP θ0k,T

(
uk,θ0

)
= exp

(
−µk(θ) − µk(θ0)

q2k

∫ T

0

uk,θ0(t)duk,θ0(t)

− µ2
k(θ) − µ2

k(θ0)

2q2k

∫ T

0

u2
k,θ0(t)dt

)
.

(6.2.31)

Combining (6.2.28)–(6.2.31), we get

LN,T (θ) = exp

(
−

N∑

k=1

µk(θ) − µk(θ0)

q2k

∫ T

0

uk,θ0(t)duk,θ0(t)

−
N∑

k=1

µ2
k(θ) − µ2

k(θ0)

2q2k

∫ T

0

u2
k,θ0(t)dt

)
.

By definition, the maximum likelihood estimator θ̂N of θ is

θ̂N = argmax
θ∈Θ̄0

LN,T (θ); (6.2.32)
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Θ̄0 is the closure of Θ0.
Recall that µk(θ) = κk+θνk, and νk 6= 0, qk > 0, k ≥ 1 (see the discussion

on page 315). Therefore, as a function of θ, lnLN,T (θ) is a quadratic facing
down, and

∂ lnLN,T (θ)

∂θ
= −

N∑

k=1

νk
q2k

∫ T

0

uk,θ0(t)duk,θ0(t)

−
N∑

k=1

νk(κk + θνk)

q2k

∫ T

0

u2
k,θ0(t)dt.

(6.2.33)

As (6.2.33) shows, there is a unique point θ̂N where ∂ lnLN,T (θ)/∂θ = 0 and

θ̂N = −
∑N
k=1

∫ T
0

νk

qk
uk,θ0(t)

(
duk,θ0(t) − κkuk,θ0(t)dt

)

∑N
k=1

∫ T
0

ν2
k

q2k
u2
k,θ0

(t)dt
; (6.2.34)

It follows from (6.2.30) that

θ̂N − θ0 = −
∑N
k=1

∫ T
0

νk

qk
uk,θ0(t)dwk(t)

∑N
k=1

∫ T
0

ν2
k

q2k
u2
k,θ0

(t)dt
. (6.2.35)

Thus, the maximum likelihood estimator θ̂N of θ always exists and is
unique. The formula for θ̂N depends on the underlying parameter set Θ0. For
example,

• if Θ0 = R, then θ̂N = θ̂N ;
• if Θ0 = (a, b), then

θ̂N =





θ̂N , if θ̂N ∈ (a, b),

b, if θ̂N ≥ b,

a, if θ̂N ≤ a.

Accordingly, we will refer to θ̂N as the simplified MLE, or sMLE.
In some problems, there are no a priory restrictions on θ. For example, in

the equation
ut = ∆u+ θu+ ẆQ,

θ can be any real number, and then we will have θ̂N = θ̂N . On the other
hand, in the equation

ut = ∆u+ θu+ ẆQ,

θ has to be positive and so Θ0 = (0,+∞). In this case,

θ̂N =

{
θ̂N , if θ̂N > 0

0, if θ̂N ≤ 0.
(6.2.36)
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Because a closed-form expression for the MLE θ̂N might not be as conve-
nient as the one for θ̂N , we will first establish conditions for consistency and
asymptotic normality of θ̂N as N → +∞ using the closed-form expression
(6.2.34). Then we will combine these results with a general theorem from [80]

to investigate θ̂N ; this investigation will not require a closed-form expression
for θ̂N .

To conclude this section, let us briefly discuss some of the changes and
challenges in the non-diagonal case. An alternative way to write (6.2.34) is
with the help of the operator ΠN , the orthogonal projection in H on the
linear subspace generated by {h1, . . . , hN}:

θ̂N = −
∫ T
0

(
ΠNQ−1A1uθ0(t), duθ0(t) − A0uθ0(t)dt

)
H∫ T

0 ‖ΠNA1Q−1/2uθ0(t)‖2
Hdt

, (6.2.37)

where uθ0 is the solution of (6.2.1) corresponding to θ = θ0. This form allows
generalizations to non-diagonal equations: given an orthonormal basis, the
right-hand side of (6.2.37) is defined and can be studied both for linear non-
diagonal equations (e.g. [142]) and the never diagonal non-linear equations
(e.g. [26]).

The main technical difference from the diagonal case is that there is no
longer a closed-form expression for the likelihood ratio, and as a result the
connections between (6.2.37) and the corresponding MLE in the non-diagonal
case are so far unknown.

To write the likelihood ratio in the non-diagonal case, note that if the pro-
jection operatorΠN does not commute with A0 and A1, there is no immediate
equation for ΠNu, only an equality

dΠNu = ΠN
(
A0 + θA1u

)
dt+ dΠNWQ(t). (6.2.38)

We can use [134, Theorem 7.12] and reduce (6.2.38) to a system of stochastic
differential equations. Indeed, with the notations

ΠNu(t) =

N∑

k=1

vk,N (t)hk, ΠNAiu(t) =

N∑

k=1

zi,k,N (t)hk, i = 0, 1,

the process v = (v1,N , . . . , vN,N) satisfies

dvk,N =
(
F0,k,N (t, v) + θF1,k,N (t, v)

)
dt+

N∑

j=1

Gk,j,N dW̄
N
j ,

where

Fi,k,N (t, v) = E

(
zi,k,N

∣∣vk,N (s), k = 1, . . . , N, 0 ≤ s ≤ t
)
, i = 0, 1,

the matrixGN = (Gk,j,N , k, j = 1, . . . , N) is invertible, and W̄N
k , k = 1, . . .N,

are independent standard Brownian motions. After that, a version of formula
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(6.2.18) applies (although it is a much less explicit version, see [134, Theorem
7.2 or 7.17]). Note that in this construction it does not matter whether the
operators Ai are linear or not, but, unless the equation is diagonal, there is
usually no way to compute the functionals Fi,k,N . Accordingly, we will not
discuss non-diagonal equations any further.

6.2.3 Consistency and Asymptotic Normality of sMLE

Consider the diagonal parabolic equation

u̇(t) + (A0 + θA1)u(t) = ẆQ(t). (6.2.39)

Under conditions of Theorem 6.2.4 on page 312,

u ∈ L2

(
Ω; C

(
[0, T ];L2(G)

))

and
u(t) =

∑

k≥1

uk(t)hk,

where

uk(t) = uk(0) e−µk(θ)t + qk

∫ t

0

e−µk(θ)(t−s)dwk(s); (6.2.40)

for now we do not indicate the dependence of uk and u on θ. Also recall that
we are assuming qk > 0 and νk 6= 0 for all k (see page 315).

In this section we investigate the simplified MLE θ̂N from (6.2.34), or,
more precisely, the estimation error (6.2.35), for one fixed value of θ such that
the corresponding equation (6.2.39) is well-posed in L2(Ω × [0, T ]×G).

Accordingly, (6.2.35) becomes

θ̂N − θ = −
∑N
k=1

∫ T
0

νk

qk
uk(t)dwk(t)

∑N
k=1

∫ T
0

ν2
k

q2k
u2
k(t)dt

, (6.2.41)

with uk given by (6.2.40).
Denote by m1 the order of the operator A1; recall that 2m is order of the

operator A0 + θA1 and d is the dimension of the spacial region G. The key
number turns out to be

̟ =
2 order of A1 − order of (A0 + θA1)

d
,

that is,

̟ =
2(m1 − m)

d
, (6.2.42)

As (6.2.3) on page page 311 suggests, it is reasonable to assume that the
following limits exist:



6.2 Maximum Likelihood Estimator (MLE): One Unknown Parameter 325

µ̄(θ) = lim
k→∞

µk(θ)

k2m/d
> 0, (6.2.43)

ν̄ = lim
k→∞

νk
km1/d

6= 0. (6.2.44)

As we discussed earlier, this is a typical behavior of the eigenvalues of differen-
tial operators, and, for our purposes, it is more convenient to assume (6.2.43)
and (6.2.44) rather than to write out the specific conditions on the operators
A0 and A1. The parameter set Θ0 is the largest open sub-set of R such that
(6.2.43) and (6.2.44) hold for every θ ∈ Θ0.

Define the number σ = σ(θ) > 0 by

σ2(θ) =





2(̟ + 1)µ̄(θ)

ν̄2
, if ̟ > −1,

2µ̄(θ)

ν̄2
, if ̟ = −1.

(6.2.45)

Note that, similar to θ, µ̄(θ) is measured in [t]−1, and therefore so is σ2(θ).
The objective of the section is to prove the following result.

Theorem 6.2.9. Assume that equation

u̇+ (A0 + θA1)u = ẆQ

is diagonal and parabolic of order 2m for every θ ∈ Θ0, and assume that the

initial conditions uk(0)
d
= N (mk, σ

2
k), k ≥ 1, are such that

lim
k→∞

m2
k + σ2

k

q2k
= 0, and (6.2.46)

lim
k→∞

k2m/dσ2
k(σ

2
k +m2

k)

q4k
= 0. (6.2.47)

If
̟ ≥ −1, (6.2.48)

then the estimator θ̂N of θ is strongly consistent and asymptotically normal
as N → +∞. More precisely,

lim
N→+∞

θ̂N = θ (6.2.49)

with probability one, and

lim
N→+∞

√
I(N)

(
θ̂N − θ)

d
= N

(
0,σ2(θ)/T

)
, (6.2.50)

where

I(N) =

{
N̟+1, if ̟ > −1

lnN, if ̟ = −1.
(6.2.51)
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Both (6.2.46) and (6.2.47) are technical assumptions which come up nat-
urally in the course of the proof to ensure that the initial conditions do not
influence the asymptotic properties of the estimator. Without (6.2.46) and
(6.2.47), the estimator can have different properties than those stated in the
theorem.

Under (6.2.7), condition (6.2.46) is stronger than (6.2.8) and involves the
covariance operator on the noise. On the other hand, condition (6.2.48) does
not involve qk.

Here are two situations when (6.2.46) and (6.2.47) hold:

1.
∑

k≥1(mk/qk)
2 <∞ and σk = 0 (non-random initial conditions). In fact,

(6.2.47) always holds if σk = 0.

2. mk = 0 and σ2
k = q2k/(2µk(θ)) (stationary initial conditions: if uk(0)

d
=

N (0, q2k/(2µk(θ))), then uk(t)
d
= N (0, q2k/(2µk(θ))) for all t > 0).

Conditions (6.2.46) and (6.2.47) are typically applied in the following set-
ting, which is a version of the Toeplitz lemma: if

lim
n
xn = a, and bn > 0,

∑

n

bn = +∞, (6.2.52)

then

lim
n

∑n
k=1 xkbk∑n
k=1 bk

= a. (6.2.53)

To verify (6.2.53), fix an ǫ > 0, choose ℓ so that |xk − a| < ǫ for all k > ℓ and

then, after breaking the sum on top into
∑ℓ

k=1 +
∑n
k=ℓ+1, pass to the limit

n→ ∞.

Exercise 6.2.10 (C). Fill in the details in the proof of (6.2.53).

To prove (6.2.49), we need a version of the strong law of large numbers for
independent but not necessarily identically distributed random variables.

Theorem 6.2.11 (The strong law of large numbers). Let ζn, n ≥ 1,
be a sequence of independent random variables and bn, n ≥ 1, a sequence of
positive numbers such that bn+1 ≥ bn, limn→∞ bn = +∞, and

∑

n≥1

Var ζn
b2n

<∞. (6.2.54)

Then

lim
n→∞

∑n
k=1(ζn − Eζn)

bn
= 0

with probability one.

Proof. See, for example, Shiryaev [194, Theorem IV.3.2]. An interested reader
can recover the proof from (6.2.53).
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We now use Theorem 6.2.11 to show strong consistency of θ̂N , that is, that
the right-hand side of (6.2.41) converges to zero with probability one.

With no loss of generality, we will assume that µk(θ) > 0 for all k ≥ 1.
Indeed, (6.2.43) implies that µk(θ) > 0 for all sufficiently large k, so, if neces-

sary, we can work with sums
∑N
k=k0

for a sufficiently large k0: the very idea
of taking the limit N → +∞ suggests that any finite number of observations
uk should not matter.

Proof of (6.2.49), Step 1. Using (6.2.40) and independence of uk(0) and
wk,

Eu2
k(t) = Eu2

k(0) e−2µk(θ)t + q2k

∫ t

0

e−2µk(θ)(t−s)ds

= (m2
k + σ2

k)e
−2µk(θ)t +

q2k
2µk(θ)

(1 − e−2µk(θ)t).

(6.2.55)

Proof of (6.2.49), Step 2. For fixed T > 0, using (6.2.55) and condition
(6.2.46), together with (6.2.53),

N∑

k=1

ν2
k

q2k

∫ T

0

Eu2
k(t)dt ≃

N∑

k=1

(
m2
k + σ2

k

q2kT
+ 1

)
ν2
kT

2µk(θ)
≃

N∑

k=1

ν2
kT

2µk(θ)

≃ ν̄T

2µ̄(θ)

N∑

k=1

k2m1/d

k2m/d
=

ν̄T

2µ̄(θ)

N∑

k=1

k̟ ≃ I(N)T

σ2(θ)
, N → +∞.

(6.2.56)

Proof of (6.2.49), Step 3. We have

lim
N→∞

∑N
k=1

νk

qk

∫ T
0 uk(t)dwk(t)

∑N
k=1

νk

qk

∫ T
0

Eu2
k(t)dt

= 0 with probability one. (6.2.57)

Indeed, apply Theorem 6.2.11 with

ζn =

∫ T

0

νk
qk
uk(t)dwk(t) and bn =

N∑

k=1

ν2
k

q2k

∫ T

0

Eu2
k(t)dt

so that, as we saw in (6.2.56),

Var ζn ∼ n̟, bn ∼ I(n),

and thus
Var ζn
b2(n)

∼ Var ζn
I2(n)

∼
{
n−2, if ̟ > −1,

1/(n(lnn)2), if ̟ = −1,

meaning that the series
∑
n n

̟/I2(n) converges for all ̟ ≥ −1.

Exercise 6.2.12 (C). Verify that, in fact, the series
∑

n Var ζn/I
2(n) con-

verges for all ̟, but if ̟ < −1, then we do not get convergence to zero in
(6.2.57) because I(n) stays bounded.
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Proof of (6.2.49), Step 4. By Theorem 6.2.11,

lim
N→∞

∑N
k=1

ν2
k

q2
k

∫ T
0
u2
k(t)dt

∑N
k=1

ν2
k

q2
k

∫ T
0

Eu2
k(t)dt

= 1 with probability one. (6.2.58)

Indeed, take ζn =
ν2

k

q2k

∫ T
0 u2

k(t)dt and bn =
∑N
k=1 Eζk. Since bn ∼ I(n) (see

(6.2.56)), condition (6.2.54) becomes

∑

n

Var ζn
I2(n)

<∞.

To get a bound on Var ζn, note that

Var

∫ T

0

u2
k(t)dt = E

(∫ T

0

u2
k(t)

)2

−
(

E

∫ T

0

u2
k(t)dt

)2

= E

(∫ T

0

(
u2
k(t) − Eu2

k(t)
)
dt

)2

.

By the Cauchy-Schwarz inequality,

Var

∫ T

0

u2
k(t)dt ≤ T

∫ T

0

E
(
u2
k(t) − Eu2

k(t)
)2
dt = T

∫ T

0

Var u2
k(t) dt. (6.2.59)

Using (6.2.40),

uk(t) = A+B, A = uk(0)e−µk(θ)(t−s), B = qk

∫ t

0

e−µk(θ)(t−s)dwk(s).

Note that A and B are independent Gaussian and EB = EB3 = 0. Then

u2
k(t) = A2 +B2 + 2AB

is a sum of three uncorrelated random variables and

Varu2
k(t) = VarA2 + VarB2 + 4EA2

EB2. (6.2.60)

Recall that if ζ
d
= N (0, σ2), then Eζ4 = 3σ4. Then

VarB2 = 3
q4k
4µ2

k

(1 − e−2µk(θ)t)2.

Since uk(0) −mk = N (0, σ2
k), we similarly find

EA4 = E((uk(0) −mk) +mk)
4 e−4µk(θ)t =

(
3σ4

k +m4
k + 6σ2

km
2
k

)
e−4µk(θ)t
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and
VarA2 = 2σ2

k(σ
2
k + 2m2

k)e
−4µk(θ)t.

Putting everything back into (6.2.60),

Varu2
k(t) = 2σ2

k(σ
2
k + 2m2

k)e
−4µk(θ)t + 3

q4k
4µ2

k

(1 − e−2µk(θ)t)2

+
4q2k(m

2
k + σ2

k)

2µk
(1 − e−2µk(θ)t)e−2µk(θ)t.

Now integrate in time and re-arrange the terms to find

ν4
k

q4k

∫ T

0

Varu2
k(t)dt ∼

ν4
k

µ2
k(θ)

(
1 +

4(m2
k + σ2

k)

q2k
+

2µk(θ)σ
2
k(σ

2
k + 2m2

k)

q4k

)

as k → +∞, or

ν4
k

q4k

∫ T

0

Varu2
k(t)dt ∼

ν4
k

µ2
k(θ)

∼ k2̟, k → +∞, (6.2.61)

where the first relation follows from (6.2.46) and (6.2.47), and the second
relation follows from (6.2.43) and (6.2.44). As a result,

∑

n

Var ζn
I2(n)

≤ C
∑

n

n2̟

I2(n)
,

and, with I(n) defined in (6.2.51), the series on the right-hand side converges:
for every ̟ ≥ −1, we have

n2̟

I2(n)
≤ c

n2
.

This completes the proof of (6.2.49).

Exercise 6.2.13 (C). Compute the rate I(N) for each of the equations in
(6.2.6).

Let us now establish asymptotic normality (6.2.50) using a version of the
martingale central limit theorem (Theorem 6.1.4 on page page 301).

Thinking of 1/N as ε (to connect with the notations of Theorem 6.1.4),
define

XN (t) =

∑N
k=1

νk

qk

∫ t
0
uk(s)dwk(s)√
I(N)

.

Then XN is a continuous square-integrable martingale,

〈XN 〉(t) =

∑N
k=1

ν2
k

q2k

∫ t
0 u

2
k(t)dt

I(N)
,
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and √
I(N)

(
θ̂N − θ) =

I(N)
∑N

k=1
ν2

k

q2
k

∫ T
0
u2
k(t)dt

XN (T )

By (6.2.56) and (6.2.58),

lim
N→∞

〈XN 〉(t) =
t

σ2(θ)
,

with σ2(θ) from (6.2.45). Since t/σ2(θ) = 〈X〉(t), where X(t) = w(t)/σ(θ)
and w is a standard Brownian motion, the result follows:

lim
N→+∞

XN(T ) = lim
N→+∞

∑N
k=1

νk

qk

∫ T
0
uk(s)dwk(s)√

I(N)

d
= N (0, T/σ2(θ)),

(6.2.62)
and

lim
N→+∞

I(N)
∑N

k=1
ν2

k

q2k

∫ T
0 u2

k(t)dt
= σ2(θ)/T

with probability one.

This completes the proof of Theorem 6.2.9.
If condition (6.2.48) does not hold, that is, if the series

∑
k ν

2
k/µk(θ) con-

verges, then, by (6.2.56), so do

∑

k

∫ T

0

νk
qk
uk(t)dwk(t) and

∑

k

∫ T

0

ν2
k

q2k
u2
k(t)dt.

Therefore

lim
N→+∞

θ̂N = θ −
∑∞
k=1

∫ T
0

νk

qk
uk(t)dwk(t)

∑∞
k=1

∫ T
0

ν2
k

q2k
u2
k(t)dt

,

and a consistent estimator of θ is only possible in either long time (T → +∞)
or small noise supk qk → 0 asymptotic. We are not considering these regimes,
but here are some references: [108, 139] (long time), [77, 81, 82, 83, 84, 177]
(small noise).

6.2.4 Asymptotic Efficiency of the MLE

In this section, the dependence of various objects on θ will be of central interest
and will therefore be shown explicitly everywhere. With the observation time
interval [0, T ] fixed, dependence on T will often be omitted.

Let us recall the setting. There is a stochastic partial differential equation

u̇θ(t) + (A0 + θA1)uθ(t) = ẆQ(t) (6.2.63)

such that its solution is written as a Fourier series
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u(t) =
∑

k≥1

uk,θ(t)hk,

where
duk,θ = −µk(θ)uk,θdt+ qkdwk, (6.2.64)

that is,

uk,θ(t) = uk(0) e−µk(θ)t + qk

∫ t

0

e−µk(θ)(t−s)dwk(s),

uk(0)
d
= N (mk, σ

2
k).

The differential operators A1 and A0 + θA1 have orders m1 and 2m0, respec-
tively, and the corresponding eigenvalues νk, µk(θ) have the asymptotic

νk ≃ ν̄km1/d, |ν̄| > 0, (6.2.65)

µk(θ) ≃ µ̄(θ)k2m/d, µ̄k(θ) > 0, (6.2.66)

where d is the dimension of the (missing) spacial variable in equation (6.2.63).
The objective is to estimate the parameter θ ∈ R from the observations

UN,θ = {uk,θ(t), k = 1, . . . , N, t ∈ [0, T ]}. The observations generate the

measure PN,θT on the space of continuous on [0, T ] functions with values in
R
N . The likelihood ratio is

LN,T (θ) =
dPN,θT

dPN,θ0T

(
U (N,θ0)

)

= exp

(
−

N∑

k=1

µk(θ) − µk(θ0)

q2k

∫ T

0

uk,θ0(t)duk,θ0(t)

−
N∑

k=1

µ2
k(θ) − µ2

k(θ0)

2q2k

∫ T

0

u2
k,θ0(t)dt

)
.

(6.2.67)

While (6.2.67) does not suggest any restrictions on the possible values of θ,
such restrictions can come from the underlying SPDE (6.2.63). To solve equa-
tion (6.2.63), it was convenient to introduce condition (6.2.5), while analysis
of the estimators is more convenient under the equivalent condition (6.2.66).
Recall that Θ0 denotes the largest open set in R such that (6.2.66) (equiva-
lently, (6.2.5)) holds for every θ ∈ Θ0. For example, if A0 = 0 and A1 = −∆,
then Θ0 = (0,+∞).

Recall the notations
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̟ =
2(m1 − m)

d
, with the standing assumption ̟ ≥ −1,

σ2(θ) =





2(̟ + 1)µ̄(θ)

ν̄2
, if ̟ > −1,

2µ̄(θ)

ν̄2
, if ̟ = −1,

I(N) =

{
N̟+1, if ̟ > −1

lnN, if ̟ = −1.
(6.2.68)

The key technical result of Section 6.2.3 is that, with probability one,

N∑

k=1

ν2
k

q2k

∫ T

0

u2
k,θ(t)dt ≃

N∑

k=1

ν2
k

q2k

∫ T

0

Eu2
k,θ(t)dt ≃

I(N)T

σ2(θ)
; (6.2.69)

assumptions (6.2.46) and (6.2.47) in Theorem 6.2.9 ensure that the initial
conditions uk(0) do not affect the asymptotic relations in (6.2.69).

Theorem 6.2.9 establishes strong consistency and asymptotic normality of
the simplified maximum likelihood estimator θ̂N , the un-restricted maximizer
of LN,T (θ). The true MLE θ̂N is the maximizer of LN,T (θ) over the closure of

Θ0, and, while strong consistency of θ̂N immediately follows from that of θ̂N ,
the asymptotic normality does not. We will eventually establish this asymp-
totic normality using rather sophisticated and general results in asymptotic
statistics; Problem 6.2.2 invites the reader to investigate a direct proof for a
specific equation.

The question of asymptotic normality of θ̂N aside, there are deeper rea-
sons why the result of Theorem 6.2.9 should not be taken as the end of the
investigation of the estimation problem. The main reason is that the question
about optimality of the estimator, either θ̂N or θ̂N remains unanswered, and
the objective of the current section is to answer this question.

It is natural to suspect that optimality of a particular estimator, once we
have a suitable definition of optimality, is a property not only of the estima-
tor but of the underlying model: there should be some intrinsic features of
the model ensuring particular kind of behavior for a large class of possible
estimators. Since a statistical model is usually characterized by the likelihood
ratio, we can expect that suitable properties of the likelihood ratio will imply
necessary properties of the model, including, with some luck, optimality of
the MLE.

Given the asymptotic nature of the problem, it is natural to study asymp-
totic properties of the likelihood ratio. An immediate observation is that,
according to (6.2.69), nothing interesting happens to the function LN,T (θ) as
N → +∞ for fixed θ and T . It turns out that non-trivial asymptotic behavior
of LN,T (θ) in the limit N → +∞ happens if, as N → +∞, θ approaches the
reference value θ0, and does so at a certain rate. These considerations lead to
the local likelihood ratio
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ZN,θ(x) =
dP

N,θ+xφN,θ

T

dPN,θ
T

(
U (N,θ)

)

= exp

(
N∑

k=1

(
− µk(θ + xφN,θ) − µk(θ)

q2k

∫ T

0

uk,θ(t)duk,θ(t)

− µ2
k(θ + xφN,θ) − µ2

k(θ))

2q2k

∫ T

0

u2
k,θ(t)dt

))
,

(6.2.70)

where x ∈ R and

φN,θ =

√
σ2(θ)

I(N)T
. (6.2.71)

Comparing (6.2.70) and (6.2.67), we see that the parameter θ0 corresponding
to the reference measure is no longer fixed but becomes another variable; we
will put major effort later to establish various properties of ZN,θ(x) uniformly
in θ over compact sets. For the measure on top, the parameter is θ + xφN,θ.
By (6.2.68), φN,θ ց 0, N → +∞, and this turns out to be the correct rate at
which the top and bottom parameters approach each other. The additional
(dimensionless) variable x controls the relative distance between the param-
eters. Relation (6.2.50) on page 325 makes the choice of φN,θ very natural;
even the appearance of σ2(θ) and T in (6.2.71) makes sense, both by looking
at (6.2.50) and doing dimensional analysis.

Exercise 6.2.14 (C). Confirm that φN,θ and θ have the same units [t]−1.

Substituting (6.2.64) into (6.2.70) and using that µk(θ) = κk+θνk, we get
a more convenient formula for ZN,θ:

ZN,θ(x) = exp

(
N∑

k=1

(
−xφN,θ

qk

∫ T

0

νkuk,θ(t)dwk(t)

−
x2φ2

N,θ

2q2k

∫ T

0

ν2
ku

2
k,θ(t)dt

))
.

(6.2.72)

We will now summarize the main results from [80, Sections II.12 and III.1]
reformulated for our setting.

To begin, here are some of the desirable properties of ZN,θ(x).

[LAN] (Local asymptotic normality) The local likelihood ratio ZN,θ is
called locally asymptotically normal (LAN), as N → +∞, at a point
θ0 ∈ Θ0 if there exist random variables ζN , N ≥ 1, and εN(x), N ≥ 1, x ∈
R, such that
a) the sequence ζN converges in distribution to a standard normal ran-

dom variable: limN→+∞ ζN
d
= N (0, 1).

b) for every x ∈ R, the sequence εN (x) converges to zero in probability.
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c) for every x ∈ R,

ZN,θ0(x) = exp
(
xζN − x2

2
+ εN (x)

)
.

[UAN] (Uniform asymptotic normality) The local likelihood ratio ZN,θ is
called uniformly asymptotically normal, as N → +∞, in a set Θ ⊆ Θ0

if there exist random variables ζN (θ) and εN(x, θ) such that, for every
sequence {θN , N ≥ 1} ⊂ Θ and every converging sequence {xN , N ≥
1} ⊂ R, with limN→∞ xN = x and θN + xNφN,θN ∈ Θ,
a) The sequence ζN (θN ) converges in distribution to a standard normal

random variable: for every y ∈ R,

lim
N→+∞

P
(
ζN (θN ) ≤ y

)
= P(ζ ≤ y), ζ

d
= N (0, 1),

even though the sequence θN does not need to converge;
b) The sequence εN (xN , θN ) converges to zero in probability, that is, for

every δ > 0,
lim

N→+∞
P(|εN (xN , θN )| > δ) = 0;

again, note that the sequence θN does not need to converge;
c) The following equality holds:

ZN,θN (xn) = exp
(
xζN (θN ) − x2

2
+ εN (xN , θN )

)
. (6.2.73)

[HC] (Local Hölder continuity) Local Hölder continuity of ZN,θ in an
open set Θ ⊆ Θ0 means that, for every compact set K ⊂ Θ, there ex-
ist positive numbers a and B such that, for every R > 0 and N ≥ 1,

sup
θ∈K

sup
|x|≤R,|y|≤R

|x− y|−2
E

∣∣∣
√
ZN,θ(x) −

√
ZN,θ(y)

∣∣∣
2

≤ B(1 +Ra).

[UPI] (Uniform polynomial integrability) Uniform polynomial integra-
bility of ZN,θ in an open set Θ ⊆ Θ0 means that, for every compact set
K ⊂ Θ and every p > 0, there exists an N0 = N0(K, p) such that

sup
θ∈K

sup
N>N0

sup
x∈R

|x|p E

√
ZN,θ(x) <∞. (6.2.74)

Under conditions of Theorem 6.2.9, (6.2.62) and (6.2.69) immediately im-
ply that ZN,θ is locally asymptotically normal at every point θ ∈ Θ0; recall
that Θ0 is the largest open set on which the underlying SPDE is well-posed
(equivalently, (6.2.66) holds). Indeed, since φN,θ =

√
σ2(θ)/(I(N)T ), (6.2.62)

implies that
N∑

k=1

(
−φN,θ

qk

∫ T

0

νkuk,θ(t)dwk(t)

)
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converges in distribution to a standard normal random variable, and (6.2.69)
implies that

x2

2

N∑

k=1

φ2
N,θ

q2k

∫ T

0

ν2
ku

2
k,θ(t)dt

converges with probability one to x2/2.

Exercise 6.2.15 (C). Confirm local asymptotic normality of ZN,θ.

It turns out that local asymptotic normality of ZN,θ at a point θ = θ0
implies certain property of every sequence of estimators θ̃N , N ≥ 1, in a
neighborhood of θ0.

Definition 6.2.16. An estimator θ̃N is a random variable of the form θ̃N =
FN (UN,θ), where FN : C((0, T ); RN) → R is a measurable mapping.

To characterize the behavior of an estimator, we need the notion of a loss
function.

Definition 6.2.17. A function w = w(x), x ∈ R is called a loss function

if w(0) = 0, w(x) is continuous, w(x) = w(−x), w(x) is non-decreasing for
x > 0, and w(x0) > 0 for at least one x0 ∈ R. A loss functions w is said to
have polynomial growth if there exists a p > 0 such that w(x)/(1 + |x|p) is
bounded for all x ∈ R.

A typical loss function is w(x) = |x|p, p > 0, or w(x) = min(|x|p, 1).
Given a loss function w = w(x) and an estimator θ̃N , the number

Ew(θ̃N − θ)

characterizes the quality of the estimator at the point θ. Local asymptotic
normality at a point implies a lower bound on Ew(θ̃N − θ) in a neighborhood
of θ.

Theorem 6.2.18. If ZN,θ is LAN at a point θ = θ0 and if w = w(x) is a loss

function such that lim|x|→∞w(x)e−a|x|
2

= 0 for every a > 0, then, for every

δ > 0 and every sequence of estimators θ̃N , N ≥ 1,

lim inf
N→+∞

sup
|θ0−θ|<δ

Ew
(
(θ̃N − θ)/φN,θ0

)
≥ Ew(ζ), ζ

d
= N (0, 1); (6.2.75)

Proof. See [80, Theorem II.12.1].

The following definition is then natural.

Definition 6.2.19. A sequence of estimators θ̄N , N ≥ 1, is called asymp-

totically efficient at a point θ0 with respect to a collection W of loss
functions if, for every w ∈W ,

lim
δ→0

lim inf
N→+∞

sup
|θ0−θ|<δ

Ew
(
(θ̄N − θ)/φN,θ

)
= Ew(ζ), ζ

d
= N (0, 1).



336 6 Parameter Estimation for diagonal SPDEs

Since we know that ZN,θ is locally asymptotically normal at every point θ
of the open set Θ0, we conclude that every sequence of estimators θ̄N that is
asymptotically normal with rate

√
I(N) (for example, sMLE θ̂N from (6.2.34)

on page 322) is asymptotically efficient at every point θ ∈ Θ0 with respect to
bounded loss functions. This is almost obvious by the dominated convergence
theorem, but a rigorous proof also relies on continuity of σ(θ) as a function
of θ.

Exercise 6.2.20 (B). Confirm that θ̂N is asymptotically efficient with re-
spect to bounded loss functions.

While the LAN property of ZN,θ gives us some optimality of the simplified
MLE, there are at least two reasons to proceed further: we have yet to get any
information about MLE beyond consistency, and it is often desirable to have
asymptotic efficiency with respect to loss functions that are not bounded. This
is where we use the other three properties of ZN,θ. The underlying result is
as follows.

Theorem 6.2.21. If the local likelihood ratio has properties [UAN], [HC], and
[UPI] in an open set Θ, then, for every θ ∈ Θ the maximum likelihood estima-
tor is consistent, asymptotically normal with rate 1/ϕN,θ, and asymptotically
efficient with respect to rate functions of polynomial growth.

Proof. See [80, Theorem III.1.1 and Corollary II.1.1].

Accordingly, here is the main result of this section. As a brief reminder,
we are estimating the number θ in

u̇+ (A0 + θA1)u = ẆQ

where the partial differential operator A1 and A0+θA1 have orders m1 and 2m,
respectively. The MLE is based on the first N Fourier coefficient u1, . . . , uN
of the solution and is defined in (6.2.32) on page 321. We already know con-
sistency of the MLE from consistency of sMLE.

Theorem 6.2.22. Assume that equation (6.2.39) is diagonal and parabolic of

order 2m for every θ ∈ Θ0, and assume that the initial conditions uk(0)
d
=

N (mk, σ
2
k), k ≥ 1, are such that

lim
k→∞

m2
k + σ2

k

q2k
= 0 and (6.2.76)

lim
k→∞

k2m/dσ2
k(σ

2
k +m2

k)

q4k
= 0. (6.2.77)

If
2m1 − 2m

d
≥ −1, (6.2.78)
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then, as N → +∞, the maximum likelihood estimator θ̂N is asymptotically
normal with rate

√
I(N) and is asymptotically efficient with respect to the

loss functions of polynomial growth, for every θ ∈ Θ0.

To prove Theorem 6.2.22, we need to verify conditions [UAN], [HC], and
[UPI] for the local likelihood ratio (6.2.72). Verification of conditions [UAN]
and [HC] is relatively straightforward; verification of [UPI] is more demanding.

Uniform asymptotic normality. The objective is to show that, for every
compact K ⊂ Θ0, every y ∈ R, and every δ > 0, the following two equalities
hold uniformly in θ ∈ K:

lim
N→+∞

P

( N∑

k=1

φN,θ
qk

∫ T

0

νkuk,θ(t)dwk(t) ≤ y
)

= P(ζ ≤ y), ζ
d
= N (0, 1)

(6.2.79)
and

lim
N→+∞

P

(∣∣∣∣∣
φ2
N,θ

q2k

∫ T

0

ν2
ku

2
k,θ(t)dt − 1

∣∣∣∣∣ > δ

)
= 0. (6.2.80)

Compared to local asymptotic normality [LAN], the difference is proving that
the convergence is uniform in θ, which requires deriving explicit bounds on
the rate of convergence that do not depend on θ.

Exercise 6.2.23 (C). Recall that condition [UAN] also involves a converg-
ing sequence xN . Accordingly, identify the random variables ζN (θN ) and
εN (xN , θN ) in (6.2.73) and confirm that (6.2.79) and (6.2.80) indeed imply
uniform asymptotic normality of ZN,θ.

Fix a compact set K ⊂ Θ0. The plan is as follows:

1. First, we use (6.2.56) on page 327 to show that

lim
N→∞

N∑

k=1

φ2
N,θ

q2k

∫ T

0

ν2
kEu2

k,θ(t)dt = 1 (6.2.81)

uniformly in θ ∈ K.
2. Second, we use the Chebychev inequality to show (6.2.80). Here, the key

relation is (6.2.61) on page 329.
3. Finally, we use (6.2.81) and a Berry-Esseen-type result to verify (6.2.79).

Many arguments in the proofs of (6.2.81) and (6.2.80) consist in going over
various computations from the proof of Theorem 6.2.9 and verifying that the
corresponding asymptotic relations hold uniformly in θ ∈ K. A key technical
component in the proof is the uniform version of the Toeplitz lemma (6.2.53):
if xn = xn(θ) and bn = bn(θ) are such that conditions (6.2.52) hold uniformly
in θ ∈ K, then (6.2.53) also holds uniformly in θ ∈ K.

Exercise 6.2.24 (C). State and prove a uniform version of (6.2.53).
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To proceed, note that, by Definition 6.2.2 on page page 312, inequalities
(6.2.5) hold uniformly in θ ∈ K. As before, with no loss of generality, we
assume that c2 = 0, that is, there exist positive numbers c1, c3 such that, for
all k ≥ 1 and all θ ∈ K,

c1k
2m/d ≤ µk(θ) ≤ c3k

2m/d. (6.2.82)

Then (6.2.81) follows by visual inspection of (6.2.56).
Next, using notations

AN,θ =

N∑

k=1

ν2
k

q2k

∫ T

0

u2
k,θ(t)dt, BN,θ = EAN,θ,

note that

N∑

k=1

φ2
N,θ

q2k

∫ T

0

ν2
ku

2
k,θ(t)dt− 1 = φ2

N,θAN − 1

= φ2
N,θ

(
AN,θ −BN,θ

)
+ (φ2

N,θBN,θ − 1);

uniform convergence of the second (non-random) term is equivalent to
(6.2.81). For the first term, we use the Chebychev inequality and relation
(6.2.61) on page 329 to compute

P

(∣∣∣φ2
N,θ

(
AN,θ −BN,θ

)∣∣∣ > δ
)
≤
Cφ2

N,θ

∑N
k=1

ν4
k

µ2
k(θ)

δ

≤ C1

∑N
k=1 k

2̟

I2(N)δ
→ 0, N → +∞.

After some visual inspection of the calculations leading to (6.2.61), with
(6.2.82) in mind, we conclude that the number C1 does not depend on θ ∈ K.

This completes the proof of (6.2.80).

Let us summarize some of our findings in a single chain of equivalence
relations, all holding uniformly in θ over compact sub-sets of Θ0 under the
assumptions (6.2.65), (6.2.66), (6.2.78), (6.2.76), and (6.2.77):

I(N) ∼ 1

φ2
N,θ

≃
N∑

k=1

ν2
k

q2k

∫ T

0

Eu2
k,θ(t)dt ≃

N∑

k=1

ν2
kT

2µk(θ)
∼

N∑

k=1

k2̟. (6.2.83)

To establish (6.2.79), we use a Berry-Esseen bound on the rate of con-
vergence in the central limit theorem:

Theorem 6.2.25. Let ζ1, . . . , ζN be independent random variables with zero

mean and
∑N

k=1 Eζ2
k = 1, and let ζ

d
= N (0, 1). Then
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sup
y∈R

∣∣∣∣∣ P

(
N∑

k=1

ζk ≤ y

)
− P(ζ ≤ y)

∣∣∣∣∣ ≤ 9.4

N∑

k=1

E|ζk|3. (6.2.84)

Proof. See [22, Theorem 3.6]. The number 9.4 on the right-hand side of
(6.2.84) is certainly interesting, but not important for our purposes.

Define

ζk,θ =

νk

qk

∫ T
0
uk,θ(t)dwk(t)

∑N
k=1

ν2
k

q2k

∫ T
0 Eu2

k,θ(t)dt
.

By the BDG inequality and (6.2.81),

E|ζk,θ|3 ≤
C1

|νk|3
q3k

E

(∫ T
0
u2
k,θ(t)dt

)3/2

I3/2(N)
,

where the number C1 does not depend on θ ∈ K. Writing

uk,θ(t) = uk(0)e−µk(θ)t + ūk(t), ūk,θ(t) = qk

∫ t

0

e−µk(θ)(t−s)dwk(s),

we find ∫ T

0

u2
k,θ(t)dt ≤

u2
k(0)

µk(θ)
+ 2

∫ T

0

ū2
k,θ(t)dt,

and then

E

(∫ T

0

u2
k,θ(t)dt

)3/2

≤ C2

(
E|uk(0)|3

µ
3/2
k (θ)

+

∫ T

0

E|ūk,θ(t)|3dt
)
.

Recall that if η
d
= N (m,σ2), then, for p > 0,

E|η|p = E|(η −m) +m|p ≤ c(p)(E|η −m|p + |m|p)
≤ c1(p)(σ

p + |m|p).

Also recall that

uk(0)
d
= N (mk, σ

2
k), ūk,θ(t)

d
= N

(
0,

q2k
2µk(θ)

(1 − e−2µk(θ)t)

)
.

Therefore,

∫ T

0

E|uk,θ(t)|3dt ≤ C3

(
|mk|3 + σ3

k + q3kT
3/2

µ
3/2
k (θ)

)
,

and
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E|ζk,θ |3 ≤ C4

I3/2(N)

|νk|3

µ
3/2
k (θ)

(
T 3/2 +

|mk|3 + σ2
k

q3k

)
≤ C5T

3/2

I3/2(N)
k3̟/2, (6.2.85)

where the last inequality follows from (6.2.76).
Next, using the notation

BN,θ =

N∑

k=1

ν2
k

q2k

∫ T

0

Eu2
k,θ(t)dt,

we get
N∑

k=1

φN,θ
qk

∫ T

0

νkuk,θ(t)dwk(t) = φN,θBN,θ

N∑

k=1

ζk,θ.

With (6.2.81) in mind, take an ǫ ∈ (0, 1) and then find N0 such that, for all
N > N0 and θ ∈ K,

|φN,θBN,θ − 1| ≤ ǫ.

To simplify notations even further, write

F (y) = P(ζ ≤ y), ζ
d
= N (0, 1).

If y ≥ 0, then, by (6.2.83), (6.2.84), and (6.2.85),

∣∣∣∣∣ P

( N∑

k=1

φN,θ
qk

∫ T

0

νkuk,θ(t)dwk(t) ≤ y
)
− F (y)

∣∣∣∣∣

≤
∣∣∣∣∣ P

( N∑

k=1

ζk,θ ≤
y

1 − ǫ

)
− F (y/(1 − ǫ))

∣∣∣∣∣+
∣∣F (y) − F (y/(1 − ǫ))

∣∣

≤ 9.4
C5T

3/2

I3/2(N)

N∑

k=1

k3̟/2 +
∣∣F (y) − F (y/(1 − ǫ))

∣∣

≤ 9.4
C5T

3/2

N1/2
+
∣∣F (y) − F (y/(1 − ǫ))

∣∣,
(6.2.86)

and (6.2.79) follows because ǫ is arbitrary and the normal distribution function
F is continuous.

This concludes the proof of uniform asymptotic normality of ZN,θ.

Exercise 6.2.26 (C). One result not mentioned in the derivation of (6.2.86)
is that, if X,Y are random variables and a > 0, b > 0, 0 < δ < b, then

P(XY ≤ a) = P(XY ≤ a, |Y − b| ≤ δ) + P(XY ≤ x, |Y − b| > δ)

≤ P(X ≤ a/(b− δ)) + P(|Y − b| > δ).

Use the result to confirm (6.2.86), and then derive an analogue of (6.2.86)
when y ≤ 0.
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Local Hölder continuity. The objective is to show that, for every compact
set K ⊂ Θ0, there exist positive numbers a and B such that, for every R > 0
and N ≥ 1,

sup
θ∈K

sup
|x|≤R,|y|≤R

|x− y|−2
E

∣∣∣
√
ZN,θ(x) −

√
ZN,θ(y)

∣∣∣
2

≤ B(1 +Ra). (6.2.87)

We start with the equality

f(x) − f(y) = (x− y)

∫ 1

0

f ′(τx + (1 − τ)y
)
dτ,

true for every continuously differentiable function f = f(x), x ∈ R, and apply
the equality to the function

f(x) =
√
ZN,θ(x) = Z

1/2
N,θ(x),

with fixed N and θ. By (6.2.72) on page 333,

Z
1/2
N,θ(x) = exp

(
x

2
AN,θ −

x2

4
VN,θ

)
,

where

AN,θ = −
N∑

k=1

φN,θ
qk

∫ T

0

νkuk,θ(t)dwk(t), VN,θ =

N∑

k=1

φ2
N,θ

q2k

∫ T

0

ν2
ku

2
k,θ(t)dt.

Then, with
FN,θ(x) = AN,θ − xVN,θ,

we have
∂Z

1/2
N,θ(x)

∂x
=

1

2
FN,θ(x)Z

1/2
N,θ(x).

Therefore,

E

∣∣∣Z1/2
N,θ(x) − Z

1/2
N,θ(y)

∣∣∣
2

=
1

4
|x− y|2 E

(∫ 1

0

FN,θ
(
τx + (1 − τ)y

)
Z

1/2
N,θ(τy + (1 − τ)x

)
dτ

)2

≤ 1

4
|x− y|2

∫ 1

0

E

(
F 2
N,θ(τx+ (1 − τ)y

)
ZN,θ(τy + (1 − τ)x

))
dτ.

To proceed, let us recall the original definition of ZN,θ(x) as a density; see
(6.2.70) on page 333. Then, for every functional g : C((0, T ); RN) → R,

E

(
g(UN,θ)ZN,θ(x)

)
= Eg(UN,θ+xφN,θ).
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As a result, setting

θ(τ) = θ + (τx + (1 − τ)y)φN,θ

and using the definition of FN,θ, we find:

E

∣∣∣Z1/2
N,θ(x) − Z

1/2
N,θ(y)

∣∣∣
2

=
1

4
|x− y|2

∫ 1

0

EF 2
N,θ(τ)

(
τx+ (1 − τ)y

)
dτ

≤ 1

2
|x− y|2

( ∫ 1

0

EA2
N,θ(τ)dτ +

∫ 1

0

(
τx+ (1 − τ)y

)2
EV 2

N,θ(τ)dτ
)
.

If x and y are in a compact set in R and θ is in an compact sub-set of Θ0, then,
for all sufficiently large N , θ(τ) will also be in a compact set of Θ0, because
limN→+∞ φN,θ = 0 uniformly over θ in a compact set. Finally, according to
(6.2.56) and (6.2.61), for every compact set K ⊂ Θ0, there exists a number
C such that, for all N ≥ 1 and θ ∈ K,

EA2
N,θ = EVN,θ ≤ C and EV 2

N,θ ≤ C.

Exercise 6.2.27 (C). Confirm that it is enough to establish (6.2.87) for all
sufficiently large N .

This completes the proof of local Hölder continuity of ZN,θ.

Uniform polynomial integrability. The objective is to show (6.2.74) on page
334, that is,

sup
x∈R

|x|p EZ
1/2
N,θ(x) <∞ (6.2.88)

for all sufficiently large N , uniformly in θ over compact subsets of Θ0. With

AN,θ = −
N∑

k=1

φN,θ
qk

∫ T

0

νkuk,θ(t)dwk(t), VN,θ =
N∑

k=1

φ2
N,θ

q2k

∫ T

0

ν2
ku

2
k,θ(t)dt,

we have

Z
1/2
N,θ(x) = exp

(
x

2
AN,θ −

x2

4
VN,θ

)
.

Note that, for every y ∈ R, the Itô formula implies

E exp

(
yAN,θ −

y2

2
VN,θ

)
= 1.

Also note that
1

2

(x
2

)2

=
x2

8
<
x2

4
,
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suggesting that we can use the Hölder inequality to reduce EZ
1/2
N,θ(x) to

E exp(−εx2VN ) with ε > 0. For example, if p = 3/2 and q = 3, then

E exp
(x

2
AN,θ −

x2

4
VN,θ

)

= E

(
exp

(x
2
AN,θ −

3x2

16
VN,θ

)
exp

(
− x2

16
VN,θ

))

≤
(

E exp
(3x

4
AN,θ −

9x2

32
VN,θ

))2/3(
E exp

(
− 3x2

16
VN,θ

))1/3

=

(
E exp

(
− 3x2

16
VN,θ

))1/3

.

Exercise 6.2.28 (C). The idea behind above computations is to write

−x
2

4
= −αx

2

4
− (1 − α)x2

4

and then, given α ∈ (1/2, 1), to find p > 1 so that

p2

8
=
pα

4
,

that is, p = 2α. In particular, if α = 3/4, then p = 3/2 and q = p/(p− 1) = 3.
Choose a different α, find the corresponding p and q, and then write the
resulting inequality.

To complete the proof of (6.2.88), it is enough to show that, for every
compact K ⊂ Θ0, there exist c > 0 and N0 ≥ 1 such that, for every z > 0,
θ ∈ K, and N ≥ N0,

E exp
(
− zVN,θ

)
≤ e−cmin(z,

√
z). (6.2.89)

Inequality (6.2.89) is not easy to guess, and its derivation requires significant
computational effort. On the bright side, the computations present indepen-
dent interest and can potentially be helpful in other problems, such as Problem
6.2.5 below (proving asymptotic efficiency of sMLE).

For an alternative proof of (6.2.88) without relying on (6.2.89), see [79,
Lemma 3.1].

To begin, we notice that VN,θ is a sum of independent random variables,
and therefore

E exp
(
− zVN,θ

)
=

N∏

k=1

E exp

(
−zφ2

N,θ

ν2
k

q2k

∫ T

0

u2
k,θ(t)dt

)
.

Each uk,θ is an Ornstein-Uhlebeck process

duk,θ = −µk(θ)uk,θ(t) + qkdwk(t),

suggesting the following result as a starting point.
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Proposition 6.2.29. Let X = X(t; a, σ) be the solution of

dX = −aXdt+ σdw, 0 < t < T, (6.2.90)

with parameters a ≥ 0, σ > 0, a standard Brownian motion w, and initial

condition X(0; a, σ)
d
= N (x0, σ

2
0) independent of w.

For y ≥ 0, define the functions

ψ(y; a, σ) = E exp

(
−y
∫ T

0

X2(t; a, σ)dt

)
,

̺(y; a, σ) = (a2 + 2σ2y)1/2,

ψ0(y; a, σ) =

(
eaT

cosh(̺T ) + (a/̺) sinh(̺T )

)1/2

,

Ψ(y; a, σ) =
̺− a

2σ2

(
1 − e−̺T

cosh(̺T ) + (a/̺) sinh(̺T )

)
.

Then

ψ(y; a, σ) =
ψ0(y; a, σ)√

1 + 2σ2
0Ψ(y; a, σ)

exp

(
− Ψ(y; a, σ)x2

0

1 + 2σ2
0Ψ(y; a, σ)

)
, (6.2.91)

Exercise 6.2.30 (C). Use (6.2.91) to verify the following particular case of
the Cameron-Martin formula:

E exp

(
−1

2

∫ T

0

w2(t)dt

)
=

1√
coshT

.

The general Cameron-Martin formula in this context deals with a quadratic
form of the multi-dimensional Brownian motion: see [134, Theorem 7.21].

It is the proof of Proposition 6.2.29 that takes the most effort. Accordingly,
let us postpone the proof for now and instead derive (6.2.89) from (6.2.91).

First, note that a ≤ ̺, and therefore ψ ≤ ψ0 for all a ≥ 0 and y ≥ 0. In
other words, it is enough to establish (6.2.89) when uk,θ(0) = 0. Then

E exp

(
−zφ2

N,θ

ν2
k

q2k

∫ T

0

u2
k,θ(t)dt

)
= ψ0

(
zν2
kφ

2
N,θ

q2k
;µk(θ), qk

)
,

and we need a suitable upper bound on the function ψ0.
According to (6.2.91) with

y =
zφ2

N,θν
2
k

q2k
, a = µk(θ), σ = qk, ̺ =

√
µ2
k(θ) + 2zφ2

N,θν
2
k,
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we have

ψ2(y; a, σ) =
eaT

cosh ̺T + (a/̺) sinh ̺T

≤ eaT

(a/̺)(cosh ̺T + sinh̺T )
=
̺

a
e−(̺−a)T .

(6.2.92)

Because of (6.2.66), there is no loss of generality by assuming that

a = µk(θ) > 2/T

for all k ≥ 1, uniformly in θ ∈ K. By the mean value theorem applied to the
function f(x) = lnx, we conclude that, with q ∈ [0, 1],

ln ̺− ln a =
̺− a

qa+ (1 − q)̺
≤ ̺− a

a
≤ (̺− a)T

2
,

that is,
̺

a
≤ e(̺−a)T/2.

Then (6.2.92) becomes

ψ0(y; a, σ) ≤ e−(̺−a)T/4. (6.2.93)

Next, we need a lower bound on

̺− a =
√
µ2
k(θ) + 2zφ2

N,θν
2
k − µk(θ).

To shorten the formulas, introduce one more notation

τ = zφ2
N,θ.

Because 2m ≥ m1, conditions (6.2.65) and (6.2.66) imply that, with no loss
of generality, we can assume existence of a positive number β such that

0 ≤ ν2
k/µ

2
k(θ) ≤ β

for all k ≥ 1, uniformly in θ ∈ K. Therefore

√
µ2
k(θ) + 2τν2

k − µk(θ) =
2τν2

k√
µ2
k(θ) + 2τν2

k + µk(θ)

=
2τ(ν2

k/µk(θ))√
1 + 2τ(νk/µk(θ))2 + 1

≥ ν2
k

µk(θ)

min(τ,
√
τ)√

1 + 2β
.

(6.2.94)

Indeed, if 0 ≤ τ ≤ 1, then

2τ√
1 + 2τ(νk/µk(θ))2 + 1

≥ 2τ√
1 + 2β + 1

≥ τ√
1 + 2β

,
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and if τ ≥ 1, then

2τ√
1 + 2τ(νk/µk(θ))2 + 1

≥ 2
√
τ√

τ−1 + 2β + τ−1/2
≥ 2

√
τ√

1 + 2β + 1
.

Combining (6.2.93) and (6.2.94),

ψ0(τν
2
k/q

2
k;µk(θ), qk) ≤ exp

(
− ν2

k

µk(θ)

T

4
√

1 + 2β
min(τ,

√
τ )

)
,

or, recalling that τ = zφ2
N,θ,

E exp
(
− zVN,θ

)
≤

N∏

k=1

ψ0

(
zν2
kφ

2
N,θ

q2k
;µk(θ), qk

)

≤ exp

(
− T

4
√

1 + 2β
min

(
zφ2

N,θ,
√
zφ2

N,θ

) N∑

k=1

ν2
k

µk(θ)

)

≤ exp

(
− T

4
√

1 + 2β

(
φ2
N,θ

N∑

k=1

ν2
k

µk(θ)

)
min

(
z,
√
z/φ2

N,θ

))
.

We now look at (6.2.83) on page page 338 and make two observations: (a)
there exists a positive number γ such that

φ2
N,θ

N∑

k=1

ν2
k

µk(θ)
≥ γ

for all N ≥ 1 and θ ∈ K; (b) there exists N0 ≥ 1 such that 1/φ2
N,θ > 1 for all

N ≥ N0 and θ ∈ K. Then, for N ≥ N0,

min
(
z,
√
z/φ2

N,θ

)
≥ min(z,

√
z),

and we get (6.2.89) with

c =
γT

4
√

1 + 2β
.

Now that we see how Proposition 6.2.29 leads to (6.2.88), let us prove
Proposition 6.2.29.

We start with a general, and well-known, property of a Gaussian random
variable.

Proposition 6.2.31. Let ζ be a Gaussian random variable with mean µ and
variance κ2 and let λ be a real number such that 2λκ2 < 1. Then

Eeλζ
2

=
1√

1 − 2λκ2
exp

(
λµ2

1 − 2λκ2

)
. (6.2.95)
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Proof. The proof of (6.2.95) is by direct computation using the equality

1√
2π

∫ +∞

−∞
e−a(x−µ)2/2dx =

1√
a
, a > 0, µ ∈ R.

Then

Eeλζ2

=
1√

2πκ2

∫ +∞

−∞

exp

(
λx2 − (x − µ)2

2κ2

)
dx

=
1√

2πκ2

∫ +∞

−∞

exp

(
λx2 +

2µx − x2 − µ2

2κ2

)
dx

=
1√

2πκ2

∫ +∞

−∞

exp

(
− 1 − 2λκ2

2κ2

(
x − µ

1 − 2λκ2

)2

−µ2

(
1

2κ2
− 1

2κ2(1 − 2λκ2)

))
dx

= exp

(
λµ2

1 − 2λκ2

)
1√

2πκ2

∫ +∞

−∞

exp

(
−1 − 2λκ2

2κ2

(
x − µ

1 − 2λκ2

)2
)

dx

=
1√

1 − 2λκ2
exp

(
λµ2

1 − 2λκ2

)
.

This completes the proof of Proposition 6.2.31.

To establish (6.2.91), take b ∈ R and consider the processX(t; b, σ), defined
by (6.2.90) with initial condition X(0; b, σ) = X0 and with b instead of a in
the drift term. By the density formula (6.2.18) on page page 317,

ψ(y; a, σ) = E exp

(
−y
∫ T

0

X2(t; a, σ)dt

)

=E exp

(
−y
∫ T

0

X2(t; b, σ)dt− a− b

σ2

∫ T

0

X(t; b, σ)dX(t; b, σ)

− a2 − b2

2σ2

∫ T

0

X2(t; b, σ)dt

)
.

(6.2.96)

If we choose b > 0 so that

−y − a2 − b2

2σ2
= 0 or b2 = 2σ2y + a2,

then
b = ̺(y; a, σ)

and

ψ(y; a, σ) = E exp

(
−a− b

σ2

∫ T

0

X(t; b, σ)dX(t; b, σ)

)

= E exp

(
(b− a)

(
X2(T ; b, σ) −X2

0 − σ2T
)

2σ2

)
,

(6.2.97)
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with the last equality following from the Itô formula, as the quadratic variation
of X(t; b, σ) is σ2t.

To proceed, define

X̄(T ) = σ

∫ T

0

e−b(t−s)dw(s), (6.2.98)

so that
X(T ; b, σ) = X̄(T ) +X0e

−bT .

Then X̄(T ) is a Gaussian random variable independent of X0, with

EX̄(T ) = 0, Var X̄(T ) = σ2(1 − e−bT )/(2b).

To evaluate the right-hand side of (6.2.97), we use the following result: if
χ and η are independent random variables and f = f(s, t) is a measurable
function, then, as long as the corresponding expectations are defined,

Ef(χ, η) = Eg(η), where g(x) = Ef(χ, x).

We take χ = X̄(T ), η = X0,

f(χ, η) = exp

(
(b− a)

(
(χ+ η e−bT )2 − η2 − σ2T

)

2σ2

)
.

Then

g(x) = E exp

(
(b − a)

(
(X̄(T ) + xe−bT )2 − x2 − σ2T

)

2σ2

)

= e−(b−a)T/2 e−(b−a)x2/(2σ2)
E exp

(
(b− a)(X̄(T ) + xe−bT )2

2σ2

)
.

Using (6.2.95) with

ζ = X̄(T ) + µ, µ = xe−bt, λ = (b− a)/(2σ2) κ2 = σ2(1 − e−bT )/(2b),

and noticing that

2λκ2 =
(b− a)(1 − e−bT )

2b
≤ 1/2,

we find:

g(x) =

(
e−(b−a)T

1 − (b − a)(1− e−2bT )/(2b)

)1/2

exp

( (
(b − a)/(2σ2)

)
x2e−2bT

1 − (b − a)(1− e−2bT )/(2b)

)

× exp

(−(b − a)x2

2σ2

)
=

(
e−(b−a)T

1 − (b − a)(1 − e−2bT )/(2b)

)1/2

× exp

(
− b − a

2σ2

(
1 − e−2bT

1 − (b − a)(1 − e−2bT )/(2b)

)
x2

)
.
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Using the definitions of the hyperbolic functions,

e−(b−a)T

1 − (b− a)(1 − e−2bT )/(2b)
=

eaT

cosh(bT ) + (a/b) sinh(bT )

and
e−2bT

1 − (b − a)(1 − e−2bT )/(2b)
=

e−bT

cosh(bT ) + (a/b) sinh(bT )
.

Therefore, keeping in mind that b = ̺(y; a),

g(x) = ψ0(y; a, σ)e−Ψ(y;a,σ)x2

.

We now use (6.2.95) once again, this time with ζ = X0, µ = x0, λ =
−Ψ(y; a, σ), κ2 = σ2

0 to find

ψ(y; a, σ) = Eg(X0) =
ψ0(y; a, σ)√

1 + 2σ2
0Ψ(y; a, σ)

exp

(
− Ψ(y; a, σ)x2

0

1 + 2σ2
0Ψ(y; a, σ)

)
,

which establishes (6.2.91).

This concludes the proof of Theorem 6.2.22.

6.2.5 Problems

The main part of Section 6.2 is analyzing the MLE using the local likelihood
ratio. While the computations are rather long, it turns out that a straight-
forward analysis of the MLE, without using the local likelihood ratio, leads
to essentially the same computations, and problems 6.2.1–6.2.4 illustrate this
in various settings. Problem 6.2.5 is a potentially interesting connection be-
tween SPDEs and geometry. Problem 6.2.6 is of different kind and invites the
reader to compare Girsanov’s theorem with a related result due to Cameron
and Martin.

Problem 6.2.1. Recall the estimator θ̂(k)(T ) from (6.1.14) on page 300. As
we now know, it is not an MLE but rather an sMLE. A possible choice of the
corresponding MLE is

θ̂
(k)

(T ) =

{
θ̂(k)(T ), if θ̂(k)(T ) > 0,

0, if θ̂(k)(T ) ≤ 0.
(6.2.99)

Investigate θ̂
(k)

(T ) in the limits (a) T → +∞, k fixed; (b) k → +∞, T fixed.

Problem 6.2.2. Prove directly (that is, without using results like Theorem
6.2.22) that the MLE (6.2.36) of θ > 0 in

ut = θuxx + ẆQ, 0 < t < T, 0 < x < π,

with zero initial and boundary conditions, using the firstN Fourier coefficients
u1, . . . , uN of the solution, is asymptotically normal with rate N3/2.
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Problem 6.2.3. Consider the problem of estimating θ ∈ R in the equation

ut = uxx + θ u+ ẆQ, 0 < t < T, 0 < x < π,

with zero initial and boundary conditions.
(a) Verify that the first N Fourier coefficients u1, . . . , uN of the solution

do not lead to a consistent estimator of θ in the limit N → +∞.
(b) To construct a consistent estimator in the limit T → +∞, one can use

the MLE based on the first Fourier coefficient or on all Fourier coefficients. Is
there any difference in the asymptotic properties of the estimators?

Problem 6.2.4. (a) Verify that, for every integer p ≥ 1,

E

(
N∑

k=1

ν2
k

q2k

∫ T

0

u2
k,θ(t)dt

)p
≤ C(p)Ip(N)

uniformly over θ in a compact set K ⊂ Θ0.

(b) Verify that the simplified MLE θ̂N is asymptotically efficient with
respect to loss functions of polynomial growth.

Problem 6.2.5. Suppose you observe the solution of the equation

ut = ∆u+ ẆQ, 0 ≤ t ≤ T, x ∈ G ⊂ R
2,

with zero initial and boundary conditions. Is it possible to estimate the area
of G?

Problem 6.2.6. Let PwT be the Wiener measure on C((0, T ); R). There is
a result, due to Cameron and Martin and known as the Cameron-Martin

theorem, saying that, given a function y ∈ C((0, T ); R), the shifted mea-
sure Pw+y

T is absolutely continuous with respect to PwT if and only if y(t) =∫ t
0
h(s)ds and h ∈ L2((0, T )). The Cameron-Martin formula gives the for-

mula for the corresponding density:

dPw+y
T

dPwT
(x) = exp

(
Iy(x) −

1

2

∫ T

0

h2(t)dt

)

where Iy is N (0, (1/2)
∫ T
0 h2(t)dt) under PwT but in general there is no closed-

form expression for Iy(x), just a limiting procedure for computing it.
Compare and contrast this result with Girsanov’s theorem.

6.3 Several Parameters and Further Directions

6.3.1 The Heat Balance Equation

Recall equation (6.1.1) on page 297 that was eventually simplified to



6.3 Several Parameters and Further Directions 351

ut = κAu− λu + ẆQ, 0 < t ≤ T, x ∈ G; u(t, 0) = 0, (6.3.1)

where A is the Laplace operator in a smooth bounded domain G ⊂ R
2 with

zero boundary conditions. The objective is to estimate the numbers κ and λ
from the observations UN = (u1, . . . , uN ), where

duk(t) = −(κ νk + λ)uk(t)dt + qkdwk(t), uk(0) = 0, (6.3.2)

and −νk, k ≥ 1, are the eigenvalues of A. Recall that, by (6.2.3) on page 311,
νk ∼ k. Also, we will choose the corresponding eigenfunctions hk, k ≥ 1, of A
to form an orthonormal basis in L2(G).

Theorem 6.3.1. Assume that κ > 0 and
∑
k≥1 q

2
k/k <∞. Then

u(t) =
∑

k≥1

uk(t)hk

is a mild solution of (6.3.1).
The solution is unique in the class L2(Ω × [0, T ]×G).
If, in addition

∑
k≥1 q

2
k/k

δ <∞ for some δ < 1, then

u ∈ L2(Ω; C((0, T );L2(G))).

Exercise 6.3.2 (C). Prove Theorem 6.3.1.
Hint. For T > 0,

E

∫ T

0

u2
k(t)dt ∼ q2

kT

2k
. (6.3.3)

To verify continuity, note that

|1 − e−x| ≤ xε

for all x > 0 and 0 < ε ≤ 1, and use the Kolmogorov criterion, keeping in mind that

u is Gaussian.

Exercise 6.3.3 (B). Formulate and prove an analogue of Theorem 6.3.1 for
the variational solution.

Note that the physical restriction λ > 0 (cooling as opposed to heating) is
not necessary for equation (6.3.1) to be well posed.

We can now address the question of estimating the numbers κ and λ from
the observations UN,T = {uk(t), k = 1, . . . , N, t ∈ [0, T ]}. By (6.2.18) on
page 317, the likelihood function is

LT,N (κ, λ) = exp

(
N∑

k=1

(
− (κ− κ0)νk + (λ− λ0)

q2k

∫ T

0

uk(t)duk(t)

− (κ νk + λ)2 − (κ0 νk + λ0)
2

2q2k

∫ T

0

u2
k(t)dt

))
;
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the process uk on the right-hand side in this representation satisfies (6.3.2)
with κ = κ0 and λ = λ0. It is convenient to introduce notations

A0,N = −
N∑

k=1

1

q2k

∫ T

0

uk(t)duk(t), A1,N = −
N∑

k=1

νk
q2k

∫ T

0

uk(t)duk(t),

B0,N =

N∑

k=1

1

q2k

∫ T

0

u2
k(t)dt, B1,N =

N∑

k=1

νk
q2k

∫ T

0

u2
k(t)dt,

B2,N =

N∑

k=1

ν2
k

q2k

∫ T

0

u2
k(t)dt.

Then

lnLN,T (κ, λ) = (κ− κ0)A1,N + (λ− λ0)A0,N

+
κ2

0 − κ2

2
B2,N + (κ0λ0 − κλ)B1,N +

λ2
0 − λ2

2
B0,N .

The simplified MLEs κ̂N of κ and λ̂N of λ solve the system of equations

∂ lnLN,T (κ, λ)

∂κ
= 0,

∂ lnLN,T (κ, λ)

∂λ
= 0,

or {
κB2,N + λB1,N = A1,N

κB1,N + λB0,N = A0,N ,

that is,

κ̂N =
A1,NB0,N −A0,NB1,N

B2,NB0,N −B2
1,N

, λ̂N =
−A1,NB1,N +A0,NB2,N

B2,NB0,N −B2
1,N

,

or, in the matrix-vector form,
(
κ̂N
λ̂N

)
=

(
B2,N B1,N

B1,N B0,N

)−1(
A1,N

A0,N

)
(6.3.4)

The true MLEs are then

κ̂N =

{
κ̂N , if κ̂N > 0

0, if κ̂N ≤ 0,
λ̂N =

{
λ̂N , if λ̂N > 0

0, if λ̂N ≤ 0.

Theorem 6.3.4. For every κ0 > 0 and λ0 ∈ R,

lim
N→∞

(
κ̂N
λ̂N

)
=

(
κ0

λ0

)
(6.3.5)

with probability one, and

lim
N→∞

(
N
(
κ̂N − κ0)√

lnN
(
λ̂N − λ0

)
)

d
=

(
ζ1
ζ2

)
, (6.3.6)

where the zero-mean Gaussian random variables ζ1 and ζ2 independent.
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Proof. The arguments are almost identical to the single parameter case. Using
the notations

Ā0,N =

N∑

k=1

1

qk

∫ T

0

uk(t)dwk(t), Ā1,N =

N∑

k=1

νk
qk

∫ T

0

uk(t)dwk(t), (6.3.7)

we get

κ̂N − κ0 = − Ā1,NB0,N + Ā0,NB1,N

B2,NB0,N −B2
1,N

, λ̂N − λ0 = − Ā1,NB1,N + Ā0,NB2,N

B2,NB0,N −B2
1,N

.

(6.3.8)

Exercise 6.3.5 (B). Verify (6.3.8).
Hint. Use (6.3.4).

By(6.3.3) and the strong law of large numbers (Theorem 6.2.11 on page
326),

B0,N ∼ EB0,N ∼ lnN, B1,N ∼ EB1,N ∼ N, B2,N ∼ EB1,N ∼ N2. (6.3.9)

In particular,

lim
N→+∞

B2
1,N

B0,NB2,N
= 0 (6.3.10)

with probability one. Then the same strong law of large numbers implies
(6.3.5).

Exercise 6.3.6 (C). Verify the asymptotic of Bi,N , i = 0, 1, 2.

To establish (6.3.6), we need a multi-dimensional version of the martingale
central limit theorem.

Theorem 6.3.7. Let M = (M1(t), . . . ,Md(t)), 0 ≤ t ≤ T, be a d-
dimensional continuous Gaussian martingale with M(0) = 0, and let Mε =
(Mε,1(t), . . . ,Mε,d(t)), ε ≥ 0, 0 ≤ t ≤ T , be a family of continuous square-
integrable d-dimensional martingales such that Mε(0) = 0 for all ε and, for
some t0 ∈ [0, 1] and all i, j = 1, . . . ,d,

lim
ε→0

〈Mε,i,Mε,j〉(t) = 〈Mi,Mj〉(t)

in probability. Then limε→∞Mε(t0)
d
= M(t0).

Exercise 6.3.8 (C). Derive (6.3.6) from Theorem 6.3.7. Hint. The key to

independence of the two limits is (6.3.10).

Exercise 6.3.9 (A). Prove Theorem 6.3.7.

This concludes the proof of Theorem 6.3.4.
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Next, we look at the local likelihood ratio. First, we re-rewrite LN,T using
the notations (6.3.4) and the equality

duk(t) = −(κ0 νk + λ0)uk(t)dt+ qkdwk(t),

as

LN,T (κ, λ) = exp

(
(κ0 − κ)Ā1,N + (λ0 − λ)Ā0,N

− (κ− κ0)
2

2
B2,N − (κ− κ0)(λ− λ0)B1,N − (λ− λ0)

2

2
B0,N

)
.

Then

ZN ;κ,λ(x1, x2) = exp

(
x1φN,κĀ1,N + x2φN,λĀ0,N

−
x2

1φ
2
N,κ

2
B2,N − x1x2φN,κφN,λB1,N −

x2
2φ

2
N,λ

2
B0,N

)
,

where φN,κ ∼ N and φN,λ ∼
√

lnN , is the local likelihood ratio. It follows
from (6.3.9) and Theorem 6.3.7 that ZN ;κ,λ is LAN (locally asymptotically
normal) and has the form

ZN ;κ,λ(x1, x2) = exp

(
x1ζ̄1,N + x2ζ̄2,N − x2

1 + x2
2

2
+ εN(x1, x2)

)
,

where the sequence of vectors (ζ̄1,N , ζ̄2,N ) converges in distribution to a two-
dimensional standard Gaussian vector and limN→+∞ εN (x1, x2) = 0 in prob-
ability.

Exercise 6.3.10 (A). Verify the LAN property of ZN ;κ,λ.

At this point, we are not aware of an analogue of Theorem 6.2.22 for
equation (6.3.1).

6.3.2 One Parameter: Beyond an SPDE

Let us go back to equation (6.2.1) on page 310 and identify the key assump-
tions we used in the analysis:

1. The equation is diagonal, that is, can be reduced to an uncoupled systems
of stochastic ordinary differential equations

duk = µk(θ)uk(t)dt+ qkdwk(t). (6.3.11)
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2. The drift coefficient µk(θ) in (6.3.11) satisfies

µk(θ) ր +∞, k → +∞. (6.3.12)

3. The drift coefficient µk(θ) in (6.3.11) has a special structure:

µk(θ) = κk + θνk. (6.3.13)

Then condition ∑

k

ν2
k

µk(θ)
= +∞ (6.3.14)

is necessary and sufficient to get a consistent estimator of θ in the large space
asymptotic N → +∞.

While conditions µk(θ) ∼ k2m/d and ν2
k ∼ k2m1/d were very helpful, and

even natural for an SPDE, a closer look at the proofs shows that it is (6.3.14)
that makes everything work.

Accordingly, let us extend an SPDE (6.2.1) to an abstract evolution equa-
tion. More precisely, Introduce the following objects:

1. H , a separable Hilbert space with an orthonormal basis {hk, k ≥ 1};
2. WQ = WQ(t), a Q-cylindrical Brownian motion on H ;
3. A0, A1, linear operators on H .
4. A real number θ.

Consider the linear stochastic evolution equation

u̇+ (A0 + θA1)u = ẆQ(t), 0 < t < T, (6.3.15)

with initial condition u(0) ∈ L2(H) independent of WQ.

Definition 6.3.11. Equation (6.3.15) is called diagonal if the operators Ai,
i = 0, . . . , ℓ and Q have a common system of eigenfunctions:

A0hk = ρkhk, A1hk = νkhk, Qhk = qkhk (6.3.16)

and

u(0) =
∑

k≥1

uk(0) hk, uk(0)
d
= N (mk, σ

2
k),

∑

k≥1

(m2
k + σ2

k) <∞, (6.3.17)

where the random variables {uk(0), k ≥ 0} are independent.

Define the numbers
µk(θ) = ρk + θνk

and the random processes

duk = −µk(θ)ukdt+ qkdwk, 0 < t < T, k ≥ 1, (6.3.18)

with initial condition uk(0) from (6.3.30).
Let us address the forward problem for equation (6.3.15).
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Theorem 6.3.12. If µk(θ) > 0 for all but finitely many k ≥ 1 and

∑

k

q2k
µk(θ)

<∞,

then
u(t) =

∑

k≥1

uk(t)hk

is a mild solution of (6.3.28).
The solution is unique in the class L2(Ω × [0, T ];H).
If

∑

k

q2k
µδk(θ)

<∞,

for some 0 < δ < 1, then u ∈ L2(Ω; C((0, T );H)).

Proof. We have, for all sufficiently large k,

Eu2
k(t) ≤

q2k
µk(θ)

and

E|uk(t) − uk(s)|2 ≤ q2k
µ1−δ
k (θ)

|t− s|δ.

The conclusions of the theorem now follow.

Before we proceed, note that, when it comes to parameter estimation, the
story is not so much about equation (6.3.15) but the multi-channel system

(6.3.18): a system of independent but maybe not identically distributed pro-
cesses, with each process carrying information about the unknown number θ.
Indeed, if finitely many of the processes uk are observed, it is not really impor-
tant that these processes can be put together to make a solution of (6.3.28). If
we can somehow observe uk, k = 1, . . . , N , then, for estimation purposes, the
interesting conditions are those that insure a consistent estimation of θ in the
limit N → +∞ rather than existence of a mild solution of (6.3.15). In fact,
conditions of Theorem 6.3.12 are not necessary for consistent estimation of the
parameter: think of N iid observations of dX = θXdt+ dw(t). Moreover, the
operators Ai are defined in terms of eigenvalues and eigenfunctions, and can
have nothing to do with differential or even pseudo-differential operators: try
ρk = ln k and νk = ek. In other words, we are making a somewhat unexpected
conclusion that statistical inference for diagonal SPDEs is not so much about
SPDEs but about multi-channel systems. There are certainly multi-channel
systems that do not correspond to an SPDE, and there are plenty of SPDEs
that are not diagonal and therefore do not correspond to a multi-channel sys-
tem. Still, when it comes to statistical inference, it is the structure provided by
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the multi-channel system that makes the problem tractable. While not imme-
diately related to the subject of this book, statistical analysis of multi-channel
systems appears as an interesting research area.

Next, we look at the inverse problem for (6.3.15), or equivalently, for the
multi-channel system (6.3.18). To stay within the subject of the book, we will
assume that conditions of Theorem 6.3.12 hold, that is, (6.3.18) corresponds
to the mild solution of (6.3.15); moreover, these assumptions do simplify the
analysis. As before (see the discussion on page 315), we assume that, for all
k ≥ 1,

qk > 0, µk(θ) > 0, νk 6= 0. (6.3.19)

By (6.2.18) on page 317, the likelihood function for the observations UN,T =
{u1(t), . . . , uN (t), t ∈ [0, T ]} is

LN,T (θ) = exp

(
N∑

k=1

(
−µk(θ) − µk(θ0)

q2k

∫ T

0

uk(t)duk(t)

−µ
2
k(θ) − µ2

k(θ0)

2q2k

∫ T

0

u2
k(t)dt

))
.

The simplified (unrestricted) MLE θ̂N of θ maximizes lnLN,T (θ) over R:

θ̂N = −
∑N
k=1

νk

q2k

∫ T
0
uk(t)duk(t)

∑N
k=1

ν2
k

q2k

∫ T
0
u2
k(t)dt

. (6.3.20)

Define

IN,θ =

N∑

k=1

ν2
k

µk(θ)
. (6.3.21)

Theorem 6.3.13. Assume that uk(0) = 0 and that θ ∈ R is such that

µk(θ) ր +∞, k ր +∞; sup
k

|νk|
µk(θ)

<∞.

If limN→+∞ IN,θ + ∞, then

lim
N→+∞

θ̂N = θ (with probability one),

lim
N→+∞

I
1/2
N,θ

(
θ̂N − θ

) d
= N (0, 2/T ),

and θ̂N is asymptotically efficient at θ with respect to the loss functions of
polynomial growth.

If limN→+∞ IN,θ <∞, then

lim
N→+∞

θ̂N = −
∑∞
k=1

νk

q2k

∫ T
0
uk(t)duk(t)

∑∞
k=1

ν2
k

q2k

∫ T
0
u2
k(t)dt

. (6.3.22)
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Proof. While the arguments are very similar to the proofs of Theorem 6.2.9
(for consistency and asymptotic normality) and Theorem 6.2.22 (for asymp-
totic efficiency), there are also many differences. Some of the differences, such
as lack of explicit asymptotic for µk and νk, make the arguments harder.
Other differences, namely, the fact that we study the sMLE at a specific point
θ as opposed to MLE in a set Θ0, make the arguments easier. An insignificant
technical simplification is the assumption that the initial conditions are zero.

It follows from (6.3.18) that

θ̂N − θ = −
∑N
k=1

νk

qk

∫ T
0 uk(t)dwk(t)

∑N
k=1

ν2
k

q2k

∫ T
0 u2

k(t)dt

and
N∑

k=1

E

∫ T

0

ν2
k

q2k
u2
k(s)ds ≃

IN,θT

2
, (6.3.23)

To proceed, we need a more delicate bound on the variance of
∫ T
0
u2
k(t)dt than

(6.2.61). Note that

E

(∫ T

0

u2
k(t)dt

)2

= 2

∫ T

0

∫ t

0

Eu2
k(t)u

2
k(s)dsdt,

and since uk is a Gaussian process, the expression can be evaluated in closed
form. With details left to the reader in the form of Problem 6.3.4, here is the
result:

Var

∫ T

0

ν2
k

q2k
u2
k(t)dt ∼

ν4
k

µ3
k(θ)

, k → +∞.

Next, assume that the IN,θ ր +∞, that is, the series
∑

k≥1 ν
2
k/µk(θ)

diverges. Then
∑

n

ν2
nµ

−1
n (θ)

( n∑
k=1

ν2
kµ

−1
k (θ)

)2 <∞.

Indeed, setting an = ν2
nµ

−1
n (θ) and An =

∑n
k=1 ak, we notice that

∑

n≥1

an
A2
n

≤
∑

n≥2

(
1

An−1
− 1

An

)
=

1

A
1

.

Then the strong law of large numbers (Theorem 6.2.11 on page 326), together
with the equality

E

∫ T

0

uk(s)dwk(s) = 0, k ≥ 1,

implies
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lim
N→∞

∑N
k=1

∫ T
0

νk

qk
uk(s)dwk(s)

∑N
k=1 E

∫ T
0 ν2

ku
2
k(s)ds

= 0 with probability one.

Next,
∑

n≥1

ν4
nµ

−3
n (θ)

( n∑
k=1

ν2
kµ

−1
k (θ)

)2 <∞, (6.3.24)

because by assumption |νk/µk(θ)| stays bounded. Then another application
of the strong law of large numbers shows that

lim
N→∞

∑N
k=1

∫ T
0

ν2
k

q2k
u2
k(s)ds

∑N
k=1 E

∫ T
0

ν2
k

q2k
u2
k(s)ds

= 1 (6.3.25)

with probability one, completing the proof of consistency. Asymptotic nor-
mality follows from (6.3.23) and Theorem 6.1.4 in the same way as in the
proof of Theorem 6.2.9.

Next, define

ϕN,θ =

√
2

IN,θT

and the corresponding local likelihood ratio

ZN,θ(x) = exp

(
N∑

k=1

(
−xφN,θ

qk

∫ T

0

νkuk,θ(t)dwk(t)

−
x2φ2

N,θ

2q2k

∫ T

0

ν2
ku

2
k,θ(t)dt

))
.

Then LAN property of ZN,θ follows in the same way as asymptotic normality

of θ̂N . By Theorem 6.2.18 on page 335, asymptotic efficiency of θ̂N will follow
from

lim
N→+∞

Ew
(
(θ̂N − θ)/φN,θ

)
= Ew(ζ), ζ

d
= N (0, 1)

for every loss function of polynomial growth. Given asymptotic normality of
θ̂N , all we need is

sup
N≥1

IpN,θE
∣∣∣θ̂N − θ

∣∣∣
2p

<∞

for every integer p ≥ 1, which follows from the BDG inequality and (6.2.89);
see Problem 6.2.4 for details.

If the series
∑

k ν
2
k/µk(θ) converges, then, by (6.3.23), so does

∑

k≥1

ν2
k

q2k

∫ T

0

u2
k(t)dt,
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which, in turn implies convergence of

∑

k≥1

νk
qk

∫ T

0

uk(t)dwk(t)

(by the two series theorem). Passing to the limit in (6.3.20) results in (6.3.22).

This concludes the proof of Theorem 6.3.13.

We conclude this section with a brief discussion of a general statistical prin-
ciple, namely, that possibility to identify a model is connected with singularity
of the corresponding probability measure. We will see how this principle works
in our setting and how the idea can be used to understand and even predict
the behavior of estimators in some other models.

To begin, we recall some basic definitions and results. Let P and P̃ be
probability measures on (Ω,F).

1. P̃ ≪ P , that is, P̃ is absolutely continuous with respect to P , means
that, for every A ∈ F , P (A) = 0 implies P̃ (A) = 0;

2. P̃ ∼ P , that is, P̃ and P are equivalent, if P̃ ≪ P and P ≪ P̃ .
3. P̃ ⊥ P , that is, P̃ and P are singular, means that there exists a set
A ∈ F such that P̃ = 1 and P (A) = 0.

4. Radon-Nikodym theorem: if P̃ ≪ P , then there exists a random variable
ζ, denoted by dP̃ /dP , such that, for every A ∈ F ,

P̃ (A) =

∫

Ω

ζdP.

5. Hájek-Feldman theorem [46, 66, 67]: two Gaussian measures on a Banach
space are either equivalent or singular. The result holds even on a locally
convex space [13, Theorem 2.7.2]

6. Kakutani theorem (a particular case, see [13, Example 2.7.6].) If P is
a product measure of N (0, σ2

k) and P̃ is a product measure of N (0, κ2
k),

then P ∼ P̃ if and only if

∑

k

(
σk
κk

− 1

)2

<∞.

A statistical model (or experiment) generated by random elements
X(θ) is a collection P = {X ,X,Pθ, θ ∈ Θ}, where each Pθ is a probability
measures on a measurable space (X ,X) such that Pθ(A) = P(X(θ) ∈ A),
A ∈ X. In the parametric models, Θ is a subset of a finite-dimensional
Euclidean space. The conventional wisdom in statistical inference is that if
Pθ1 ⊥ Pθ2 for θ1 6= θ2, then it should be possible to determine the exact value
of θ from an observation of X(θ). Since singular measures are truly different,
this idea certainly makes sense. Below we illustrate how the idea works in the
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examples we studied so far and how the same idea can be used to predict, or
at least understand, the results for other models.

Let us start with the evolution equation (6.3.15). If
∑

k q
2
k < ∞, then,

by Theorem 6.3.12, the solution u = uθ generates a Gaussian measure P θT
on C((0, T );H). By [108, Proposition 1], if the series

∑
k ν

2
k/µk(θ0) converges,

then P θT ≪ P θ0 . Note that µk(θ) − µk(θ0) = (θ − θ0)νk, so θ does not appear
in the condition to have P θT ≪ P θ0 . In the case of SPDEs, the corresponding
order condition

2 order of A1 − order of (A0 + θA1)

d
< −1, (6.3.26)

which is the opposite of (6.2.48), is known to be necessary and sufficient to
have P θT ≪ P θ0 even for non-diagonal equations [113, Theorem 3].

By the Hájek-Feldman theorem, conditions of Theorem 6.3.13 ensure that
the measures P θT are singular for different values of θ. It is therefore not at
all surprising that, under conditions of Theorem 6.3.13 we can determine the
value of θ given the solution of (6.3.15):

θ = − lim
N→+∞

∑N
k=1

νk

q2k

∫ T
0 uk(t)duk(t)

∑N
k=1

ν2
k

q2k

∫ T
0 u2

k(t)dt
.

In Section 6.1 we encountered two similar formulas:

θ =

(
1

T
lim

M→∞

M∑

m=1

(
X
(
(m+ 1)△tM

)
−X

(
m△tM

))2
)1/2

,

if θ > 0 is the unknown parameter in

dX = θdw(t),

and

θ = lim
T→+∞

∫ T
0
X(t)dX(t)

∫ T
0 X2(t)dt

,

if θ ∈ R is the unknown parameter in

dX = θXdt+ dw(t).

In both cases, we are dealing with singular measures. Indeed, for every T > 0,
the measures on C((0, T ); R) generated by the solutions of dX = σdw(t) for
different values of σ are singular (for example, by looking at (1.1.1) on page
2 and using the Kakutani theorem). Similarly, the measures on C((0,+∞); R)
generated by the solutions of dX = θXdt+ dw(t) for different values of θ are
singular [218].

Let us now go back to equation (6.3.15) and try to predict what happens in
the estimation problem if the observations are in discrete time. As before, we
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assume that
∑

k q
2
k <∞. Then, for fixed t > 0, the solution of (6.3.15) gener-

ates a Gaussian measure on H . In fact, it is a product measure of N (0, σ2
k(θ))

and σ2
k(θ) ≃ q2k/µk(θ). Recall that µk(θ) = κk + θνk. Then, for fixed θ0 and

θ 6= θ0,

(
σk(θ0)

σk(θ)
− 1

)2

∼
(√

µk(θ) −
√
µk(θ0)√

µk(θ0)

)2

=

(
µk(θ) − µk(θ0)√

µk(θ0)(
√
µk(θ) +

√
µk(θ0))

)2

∼ ν2
k

µ2
k(θ0)

.

By Kakutani’s theorem, we expect that if

∑

k

ν2
k

µ2
k(θ0)

= +∞,

the measures will be singular for different values of θ in some neighborhood of

θ0. Thus, divergence of the series
∑

k
ν2

k

µ2
k(θ0)

should be the condition to have a

consistent estimator of θ0 from the discrete time observations of u1, . . . , uN in
the limit N → +∞. Our guess turns out to be correct: see [175]. For partial
differential operators, the divergence of the series is equivalent to the order
condition

order of A1 − order of (A0 + θA1)

d
≥ −1

2
;

this is indeed the opposite of the condition

order of A1 − order of (A0 + θA1)

d
< −1

2
(6.3.27)

from [113, Theorem 4] for absolute continuity of the measures. Comparing
(6.3.26) and (6.3.27), we come to a very reasonable conclusion that it is easier
for the measures to be equivalent at a fixed time than on the whole time
interval.

While the above discussion suggests that it is singularity of measures that
makes consistent estimation possible, an estimation problem requires abso-
lutely continuous measures to write the likelihood ratio. To reconcile these
two seemingly contradictory requirements, note that a typical estimator (in-
cluding all the above examples) gives the true value of the parameter as a
limit, and the setting before the limit corresponds to absolutely continuous
measures. For example,

1. Time discretizations of σw(t) produce finite-dimensional Gaussian vectors
with equivalent distributions;

2. For every finite T , the measures generated by the solution of dX = θXdt+
dw(t) on C((0, T ); R) are equivalent for different values of θ;
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3. For every finite N , the measures generated by the first N Fourier coeffi-
cients of the solution of (6.3.15) are always equivalent for different values
of θ, whether in discrete or continuous time.

In other words, the underlying singular model is approximated by a collection
of absolutely continuous models, making it possible to write the corresponding
likelihood ratio and the MLE; consistency of the MLE is ensured by singular-
ities of the measures in the limit.

Infinite-dimensional setting can lead to models so singular that an ex-
act value of the unknown parameter is computable without passing to the
limit, leading to a closed-form exact estimator. For example, consider
the stochastic heat equation

du = θuxxdt+ udw(t), θ > 0,

on the interval (0, π) with zero boundary conditions; the initial conditions
must be non-zero to have a non-trivial solution. In the equation, w = w(t) is
the standard Brownian motion: the only way to get a diagonal equation with
multiplicative noise is to have noise independent of space. Then u(t, x) =∑

k uk(t)hk(x), and

duk(t) = −θk2ukdt+ ukdw(t), uk(t) = uk(0)e−(θk2+(1/2))t+w(t).

If u1(0) 6= 0 and u2(0) 6= 0, then

u1(1)

u2(1)
=
u1(0)

u2(0)
e3θ,

that is,

θ =
1

3
ln
u1(1)u2(0)

u2(1)u1(0)
.

The key observation for this example is that the measures in C((0, T ); R2)
generated by the vector (u1, u2) are singular for different values of θ. Note
that even though the process uk is not Gaussian, lnuk is. For more on this
and related examples see [25, 27].

Exercise 6.3.14 (A+). Is there a closed-form exact estimator of θ in

du = θuxxdt+ dw(t)

on (0, π) with zero initial and boundary conditions? What if, instead of Dirich-
let zero boundary conditions, we consider Neumann zero boundary conditions?

6.3.3 Several Parameters

Let us start with the multi-parameter, and a more abstract, version of equation
(6.3.15) on page 355. Introduce the following objects:
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1. H , a separable Hilbert space with an orthonormal basis {hk, k ≥ 1};
2. WQ = WQ(t), a Q-cylindrical Brownian motion on H ;
3. A0, A1, . . . ,Aℓ, linear operators on H .
4. Real numbers θ1, . . . , θℓ.

Consider the linear stochastic evolution equation

u̇+ (A0 +

ℓ∑

i=1

θiAi)u = ẆQ(t), 0 < t < T, (6.3.28)

with initial condition u(0) ∈ L2(H) independent of WQ.

Definition 6.3.15. Equation (6.3.28) is called diagonal if the operators Ai,
i = 0, . . . , ℓ and Q have a common system of eigenfunctions:

A0hk = ρkhk, Aihk = νi,khk, Qhk = qkhk (6.3.29)

and

u(0) =
∑

k≥1

uk(0) hk, uk(0)
d
= N (mk, σ

2
k),

∑

k≥1

(m2
k + σ2

k) <∞, (6.3.30)

where the random variables {uk(0), k ≥ 0} are independent.

Define the vectors

θ =




θ1
θ2
...
θℓ


 , νk =




ν1,k
ν2,k
...
νℓ,k


 ,

the numbers

µk(θ) = ρk +

ℓ∑

i=1

θiνi,k = ρk + θ⊤νk,

and the random processes

duk = −µk(θ)ukdt+ qkdwk, 0 < t < T, k ≥ 1, (6.3.31)

with initial condition uk(0) from (6.3.30).
Let us address the forward problem for equation (6.3.28).

Theorem 6.3.16. If µk(θ) > 0 for all but finitely many k ≥ 1 and

∑

k

q2k
µk(θ)

<∞,

then
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u(t) =
∑

k≥1

uk(t)hk

is a mild solution of (6.3.28).
The solution is unique in the class L2(Ω × [0, T ];H).
If

∑

k

q2k
µδk(θ)

<∞,

for some 0 < δ < 1, then u ∈ L2(Ω; C((0, T );H)).

The proof is identical to that of Theorem 6.3.12 with one parameter.

Let us now discuss the problem of estimating θ from the observations
UN,T = {u1(t), . . . , uN(t), t ∈ [0, T ]}. Assume that qk > 0 for all k ≥ 1
and the observations correspond to the value θ0 of the parameter so that
µk(θ0) > 0 for all k ≥ 1. By (6.2.18) on page 317, the likelihood function is

LN,T (θ) = exp

(
N∑

k=1

(
−µk(θ) − µk(θ0)

q2k

∫ T

0

uk(t)duk(t)

−µ
2
k(θ) − µ2

k(θ0)

2q2k

∫ T

0

u2
k(t)dt

))
.

We will now compute the simplified (unrestricted) MLE of θ by maximizing
lnLN,T (θ) over R

ℓ.
Recall that

µk(θ) = ρk + θ⊤νk

Therefore the corresponding gradients are

∇θµk(θ) = νk, ∇θµ
2
k(θ) = 2ρkνk + (νkν

⊤
k )θ.

Similar to our analysis of the heat balance equation with two unknown pa-
rameters, it is convenient to introduce the matrix BN ∈ R

ℓ×ℓ and vectors
AN ∈ E

ℓ and ĀN ∈ R
ℓ with components

Bij,N =

N∑

k=1

νi,kνj,k
q2k

∫ T

0

u2
k(t)dt, Āi,N = −

N∑

k=1

νi,k
qk

∫ T

0

uk(t)dwk(t) (6.3.32)

Ai,N = −
N∑

k=1

νi,k
q2k

∫ T

0

uk(t)
(
duk(t) − ρkuk(t)dt

)
.

Then
∇θ lnLN,T (θ) = AN −BNθ, (6.3.33)

and to proceed, we need to invert the matrix BN .
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Proposition 6.3.17. The matrix BN is invertible with probability one if and
only if the vectors ν1, . . . , νN span R

ℓ.

Proof. The result is immediate from the equalities

BN =

N∑

k=1

νkν
⊤
k

q2k

∫ T

0

u2
k(t)dt

and

y⊤BNy =

N∑

k=1

(
y⊤νk

)2

q2k

∫ T

0

u2
k(t)dt, y ∈ R

ℓ.

Since we expect N to be much larger than ℓ, the condition that ν1, . . . , νN
span R

ℓ is equivalent to identifiability of the original model (6.3.28) in the
sense that the operators A1, . . . ,Aℓ are all different.

It is therefore natural to assume that the vectors ν1, . . . , νN form a basis
in R

ℓ for all sufficiently large N . Then (6.3.33) implies

θ̂N = B−1
N AN .

Exercise 6.3.18 (C). Verify that

θ̂N − θ0 = B−1
N ĀN . (6.3.34)

The matrix-vector stricture of the problem makes the analysis more com-
plicated compared to the one-parameter case. Accordingly, before stating and
proving the corresponding theorem we will try to come up with the suitable
assumptions. As much as possible, we will try to keep (6.3.28) an abstract
equation. For a more concrete SPDE setting, see [76].

Define the diagonal matrix SN = diag(S1,N , . . . , Sℓ,N ) with

Si,N =

(
N∑

k=1

ν2
i,k

µk(θ0)

)1/2

. (6.3.35)

By the Cauchy-Schwartz inequality,

∑N
k=1 |νi,kνj,k|/µk(θ0)

Si,NSj,N
≤ 1 (6.3.36)

for all i and j. Therefore, to simplify the analysis, assume that, for every
i, j = 1, . . . , ℓ, the limits

Gij = lim
N→+∞

∑N
k=1 νi,kνj,k/µk(θ0)

Si,NSj,N
(6.3.37)

exist, and define the matrix G = (Gij , i, j = 1, . . . , N).
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By (6.3.36), there is always a possibility to define G along a converging
subsequence; our simplifying assumption simply ensures uniqueness of G.

For example, the matrix G is well-defined if all the eigenvalues have the
algebraic asymptotic

ρk ≃ c0k
α0 , νi,k ≃ cik

αi . (6.3.38)

Exercise 6.3.19 (A). (a) Compute Gij under the assumption (6.3.38). (b)
Give an example when the limit in (6.3.37) does not exist.

Exercise 6.3.20 (C). Let Ā be the vector defined in (6.3.32). Using Theorem
6.3.7, verify that if

lim
N→+∞

Si,N = +∞, i = 1, . . . , ℓ, (6.3.39)

and supk |νi,k|/µk(θ0) <∞ for all i, then

lim
N→+∞

S−1
N BNS

−1
N = T G/2 with probability one (6.3.40)

and
lim

N→+∞
S−1
N Ā

d
= ζ, (6.3.41)

where ζ is a Gaussian vector with mean zero and covariance matrix T G/2.
Hint. See the proof of Theorem 6.3.13.

As (6.3.40) suggests BN ∼ SNGSN , the key question becomes non-
degeneracy of the matrix G. The question is non-trivial indeed, because G
can be singular even if every BN is not. As an example, consider ℓ = 2,
A0 = 0, ν1,k = k and ν2,k = k + 1, θ1 > 0, θ2 > 0. Then direct computations
show that any collection of the vectors νk, k ≥ 1, is linearly independent, but

G =
1

2(θ1 + θ2)

(
1 1
1 1

)
.

If operators Ai are (pseudo)-differential, then, assuming the power asymp-
totic (6.3.38) for the corresponding eigenvalues, one can show that G is non-
degenerate if no two of the operators Ai, Aj have the same order.

Exercise 6.3.21 (A). Assume that (6.3.38) holds and αi 6= αj for i 6= j.
Show that G is invertible.

Theorem 6.3.22. Assume that the vectors ν1, . . . , νN are linearly indepen-
dent in R

ℓ for all sufficiently large N , and assume that the vector θ0 ∈ R
ℓ is

such that

1. µk(θ0) > 0 for all k ≥ 1 and limk→+∞ µk(θ0) = +∞;
2. supk |νi,k|/µk(θ0) <∞, i = 1, . . . , ℓ;
3. the series

∑
k ν

2
i,k/µk(θ0) diverges for every i = 1, . . . , ℓ;

4. the matrix G is well-defined according to (6.3.37) and is invertible.
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Then
lim

N→+∞
|θ̂N − θ0| = 0 with probability one

and
lim

N→+∞
SN (θ̂N − θ0)

d
= ζ,

where the matrix SN is from (6.3.35) and ζ is a Gaussian random vector with
mean zero and covariance matrix (2/T )G−1.

Proof. Since
θ̂N − θ0 = B−1

N ĀN ,

we have, with a suitable matrix norm ‖ · ‖,

|θ̂N − θ0| ≤ ‖SNB−1
N SN )‖ |ĀN |

∑N
i=1

∑N
k=1 ν

2
i,k/µk(θ0)

.

By assumption and using the strong law of large numbers, the matrix norm
on the right-hand side stays bounded, and the rest converges to zero with
probability one.

Similarly,
SN (θ̂N − θ0) = SNB

−1
N SNS

−1
N ĀN

and the result follows from (6.3.41).

6.3.4 Problems

The objective of the problems below is to bring the presentation in this sec-
tion closer to a more detailed analysis of the SPDE with one parameter in
Section 6.2. Problem 6.3.1 is about extending Theorem 6.3.4 to non-zero ini-
tial conditions. Problem 6.3.2 is about alternative ways to define the solution
of the abstract evolution equation (6.3.15). Problem 6.3.3 is an easy example
of extending Theorem 6.3.13 beyond an evolution equation. Problem 6.3.4 is
a technical result about the asymptotic behavior of the integral of the square
of an Ornstein-Uhlenbeck process; this result is the key for the proof of con-
sistency and asymptotic normality in Theorem 6.3.13. Problem 6.3.5 is an
invitation to extend the results of Theorem 6.2.22 to some of the models in
this section.

Problem 6.3.1. Suppose that the initial condition in (6.3.2) is Gaussian with
mean mk and variance σ2

k. Find sufficient conditions on mk and σk for (6.3.9)
to hold.

Problem 6.3.2. (a) Discuss the possibility of defining the variational solution
for the abstract evolution equation (6.3.15).

(b) Discuss the possibility of defining a mild solution for the abstract
evolution equation (6.3.15) when qk = 1 for all k.
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Problem 6.3.3. State and prove an analogue of Theorem 6.3.13 when the
processes (6.3.18) are iid.

Problem 6.3.4. Let X = X(t; a, σ) be the solution of

dX = −aXdt+ σdw(t), t > 0, a > 0,

with initial condition X(0; a, σ)
d
= N (x0, σ

2
0) independent of the standard

Brownian motion w. Verify that

lim
a→+∞

aE

∫ T

0

X2(t; a, σ)dt =
σ2T + σ2

0 + x2
0

2
,

E

(∫ T

0

X2(t; a, σ)dt

)n
≤ C(n)

x2n
0 + σ2n

0 + T nσ2n

an
, n = 1, 2, . . . , a > 0,

Var

∫ T

0

X2(t; a, σ)dt =
VarX2

0

4a2
+
σ4T + 4(x2

0 + σ2
0)σ2

2a3
+ o(a−3), a→ +∞.

Problem 6.3.5. Discuss potential difficulties in extending Theorem 6.2.22 to
(a) two-parameter SPDE model (6.3.1); (b) one-parameter diagonal abstract
evolution equation (6.3.15) under condition of Theorem 6.3.13 (that is, with-
out assuming any particular asymptotic for µk and νk).





Problems: Answers, Hints, Further Discussions

Problems of Chapter 2

2.1.1 (page 32)
For every t > 0, the function BH(t, ·) is Hölder continuous of any order

less than 1/2; for every x ∈ (0, π), the function BH(·, x) is Hölder continuous
of any order less than H .

Indeed, BH is Gaussian;

E|BH(t, x) −BH(t, y)|2 = t2H
∑

k≥1

| cos(kx) − cos(ky)|2
k2

≤ t2H |x− y|1−δ
∑

k≥1

k−1−δ, δ ∈ (0, 1),

because, by direct computation, cos(a)−cos(b) = 2 sin((a+b)/2) sin((b−a)/2)
and | sinx| ≤ |x|ε for every ε ∈ (0, 1];

E|BH(t, x) −BH(s, x)|2 = |t− s|2H
∑

k≥1

(1 − cos(kx))2

k2
.

2.1.2 (page 32)
If infkHk = H0 > 0, then the analysis of the previous solution shows that

the upper bound on the order of the Hölder continuity in time will be H0.
The case H0 = 0 is left as a challenge to the reader.

2.1.3 (page 32)
The covariance function has to be a positive-definite kernel (see page 88).

An easy way to prove that a function is a positive-definite kernel is to interpret
the function as the covariance of some Gaussian field, but this is unlikely to
work in this problem. The details are left to the reader.

2.2.1 (page 46)
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(a) Direct computation. (b) Note that the Fourier transform v̂ = v̂(t, y) of
the homogeneous equation satisfies

v̂t = −a(t)y2v̂(t, y).

We need the solution for t ≥ s satisfying v̂(s, y) = 1. If A(t) =
∫ t
0 a(s)ds, then

we conclude that Φ(t, s) is the integral operator

(
Φ(t, s)h

)
(x) =

1√
4π
(
A(t) −A(s)

)
∫ ∞

−∞
exp

(
− (x − y)2

4
(
A(t) −A(s)

)
)
h(y)dy.

2.2.2 (page 47)
(a), (b) Direct computations.
(c) There is a difficulty interpreting the integral

∫ t

0

X(t)

X(s)
f(s)dw(s),

because X(t) is not Fw
s -measurable for s < t. Note that the integral is NOT

the same as

X(t)

∫ t

0

f(s)

X(s)
dw(s).

While the difficulty can be resolved using anticipating stochastic calculus (see
Nualart [166, Section 3.2]), it is much easier to study the equation without
using the closed-form solution.

(d) An Fw
t -adapted locally square-integrable a will work. In this case, Itô

formula shows that

Φ(t, s) = exp

(∫ t

s

a(r)dw(r) − 1

2

∫ t

s

a2(r)dr

)
.

2.2.3 (page 47)
(a) Here is one possible definition. Assume that A is a linear, and possibly

unbounded, operator on a Banach space V . Then u is a classical solution of
u(t) = u0 +

∫ t
0

Au(s)ds if u : [0, T ] → V is a continuous function for every
T > 0, u(t) is in the domain of A for all t ≥ 0, u(0) = u0, and u(t) =

u0 +
∫ t
0

Au(s)ds in V for all t ≥ 0. For the same equation in the differential
form, the mapping u : [0, T ] → V would have to be continuously differentiable
and Au : [0, T ] → V , continuous.

(b) The operator A should be acting on functions from L2(G), where
G ⊂ R

d, and the formal adjoint A∗ of A must be defined using integration by
parts so that

(Af, g)L2(G) = (f,A∗g)L2(G)

for all smooth compactly supported f, g. Then the equality in [W5] becomes
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µt[ϕ] = µ0[ϕ] +

∫ t

0

µs[A
∗ϕ]ds.

For A3, the function a can be just bounded and measurable; for A2 we would
need one bounded generalized derivative in x, and for A1, two. Note that
positivity of a is not necessary to define the solution, but is usually required
to find one.

2.2.4 (page 48)
Substitution of v̄ produces the term AN(t) and changes F (t, u) to F

(
t, u−

N(t)
)
. When the operator A is unbounded, the process NA typically has

better regularity properties than either N(t) or AN(t) (think of A = ∆ and
Φ(t), the heat semi-group), meaning that v(t) = u(t) − NA(t) is usually the
better choice. A trivial example when v̄ is easier is a linear equation such that
AN(t) = 0.

2.2.5 (page 48)
Note that, by the Kolmogorov criterion,W (t, x) as a function of x is Hölder

continuous of every order less than 1/2. Thus, the equation cannot have a
classical solution or solutions [W1], [W2]. The class of the test functions should
reflect the boundary conditions (for example, for [W3], the test functions can
be infinitely differentiable on [0, 1] with derivatives equal to zero at 0 and 1.)

Solutions [W3] and [W4] are equivalent for this equation and the resulting
function u is actually continuous in t and x (see Walsh [209, Theorem 3.2]). A
measure-valued solution also exists and has a density for t > 0 (Krylov [117,
Section 8.3]

2.2.6 (page 48)
This is an open-ended question. Note that, in the case of stochastic equa-

tions, one can take random test functions ϕ(x) or ϕ(t, x), and then take expec-
tation along with integration in space and/or time. To take the expectation,
one would have to impose a priori integrability conditions on the solution.

2.3.1 (page 63)
(a,b) Xi(t) =

∑∞
k=1 σikwk(t);

vt =

d∑

i,j=1

(
aij − (1/2)

∞∑

k=1

σikσjk

)
DiDjv;

the matrix
(
aij − (1/2)

∑∞
k=1 σikσjk

)
must be non-negative definite.

(c) Same equation for v, but the equation is now considered in the domain
{(t, x+X(t)) : t > 0, x ∈ G} with the boundary condition v(t, x+X(t)) = 0
for x on the boundary of G.

2.3.2 (page 63)
(a) Use (2.2.7) on page 40. The integral in space is, up to a constant, a

convolution of two normal densities and can be evaluated. The result is
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u(t, x) =

∫ t

0

(
f(s)

(t− s+ f(s))

)d/2

exp

(
− x2

2(t− s+ f(s))

)
dw(s).

Then

Eu2(t, x) =

∫ t

0

(
f(s)

(t− s+ f(s))

)d

exp

(
− x2

t− s+ f(s)

)
ds.

Limiting distribution can exist (for example, if f(t) = 1 and d > 1).
(b)

u(t, x) =
8

π

∞∑

k=0

sin((2k + 1)x)

(2k + 1)3
exp

(
−
(
k2 +

1

2

)
t+ w(t)

)
;

Eu2(t, x) = et

(
8

π

∞∑

k=0

sin((2k + 1)x)

(2k + 1)3
e−k

2t

)2

;

no limiting distribution.
(c)

u(t, x) =

√
2

π

∞∑

k=1

∫ t

0

yk(t− s)f(s)dwk(s) sin(kx),

where y′′k (t) + by′k(t) + k2yk(t) = 0, yk(0) = 0, y′k(0) = 1 (see (2.3.26) on page
54);

Eu2(t, x) =
2

π

∞∑

k=1

1

k2

∫ t

0

y2
k(t− s)f2(s)ds sin2(kx).

Limiting distribution exists, for example, if b > 0 and f = 1.

2.3.3 (page 64)

Note that, for each k ≥ 1, u(t, x) = k−2ek
2t+2i kw(t)+i kx is a solution.

2.3.4 (page 64)
Similar to (2.3.18) on page 52, we have

E‖u(t, ·)‖2
L2(G) =

∑

k≥1

e2λkt − 1

2λk
,

where {λk, k ≥ 1} are the eigenvalues of the Laplace operator in G with zero
boundary conditions. The key observation is that limk→∞

λk

k = −c for some
positive number c, which is true for every smooth bounded domain G ⊂ R

2,
with c depending only on the domain: see, for example, Safarov and Vassiliev
[188, Section 1.2].

2.3.5 (page 64)
Taking u to be the closed-form solution
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u(t, x) =

∫ t

0

∫

Rd

K(t− s, x− y)
)
dW (s, y), K(t, x) =

1

(4πt)d/2
e−|x|2/(4πt),

use (1.1.9) on page 4 to conclude that

Eu2(t, x) <∞ ⇔
∫ t

0

ds

(t− s)d/2
<∞ ⇔ d = 1.

2.3.6 (page 64)
(a)

u(x, y) =
2

π

∞∑

n,k=1

ξk
k2 + n2

sin(nx) sin(ky);

E

∫∫

G

u2(x, y) dxdy =

∞∑

n,k=1

1

(n2 + k2)2
<
π

4

∞∑

k=1

k−3 <
3π

8
.

(b) If d = 1, 2, 3.

2.3.7 (page 64)
We have

u(x) =
1

2

∫ +∞

−∞
e−|x−y|dW (y) =

1

2

∫ +∞

x

ex−yW (y)dy − 1

2

∫ x

−∞
ey−xW (y)dy,

where the first equality follows by the Fourier transform and the second,
after integration by parts. Uniqueness follows because the general solution of
u′′ − u = 0 is c1e

x + c2e
−x; it is unbounded unless c1 = c2 = 0. Next,

Eu2(x) =
1

4

∫ +∞

−∞
e−2|x−y|dy =

1

4
.

As a result, E‖u‖2
Hγ

2 (R) = +∞ for all γ ∈ R, just like the non-zero constant

function is not in any Sobolev space Hγ
R

d). If you need to be more rigorous,
see Problem 4.2.3 on page 171.

2.3.8 (page 65)
(a) The solution is

u(t, x) =
ξ0√
π

+

√
2

π

∑

k≥1

e−k
2tξk cos(kx),

where ξk are iid standard normal random variables. This function is infinitely
differentiable in the region {(t, x) : t > 0, x ∈ (0, π)}.

(b) The solution is

u(t, x) =

√
2

π

∑

k≥1

ξk
k

sin(kx) sin(kt).
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By the Kolmogorov criterion, this function is Hölder continuous of any order
less than 1/2 in the region {(t, x) : 0 ≤ t ≤ T, x ∈ [0, π]} for every T > 0.

(c) Let x = r cos θ, y = r sin θ. Note that the functions rk cos kθ, rk sinkθ,
k = 0, 1, 2, . . . are harmonic. Therefore

u(r, θ) =
ξ0√
2π

+

∞∑

k=1

(
ξk√
π

cos(kθ) +
ηk√
π

sin(kθ)

)
rk, (S.1)

where ξ0, ξ1, η1, ξ2, η2, . . . are iid standard Gaussian random variables; recall
that an orthonormal basis in L2((0, 2π)) is { 1√

2π
, cos kθ√

π
, sin kθ√

π
, k ≥ 1}. This

function is analytic in the region {(x, y) : x2 + y2 < 1}: the series in (S.1)
converges uniformly in (x, y, ω) in the region {(x, y) : x2 + y2 < R} for every
R < 1.

2.3.9 (page 65)
(a) Note that EB2(0) = EB2(T ) = 0.
(b) For the first three, verify (2.3.70). For the last, show that the limit

is that same as the third representation (see also page 13 and [65, Theorem
3.3]). As far as simulations, note that the first representation is not adapted
and the second has a (removable) singularity at the end point.

2.3.10 (page 65)
Everything follows from (2.3.37) on page 57.
(a) Note that

∂n

∂tn
ext−(t2/2)

∣∣∣
t=0

= ex
2/2 ∂

n

∂tn
e−(x−t)2/2

∣∣∣
t=0

.

(b) Compute

E

(
esξ−(s2/2)etη−(t2/2)

)

directly and using (2.3.37), and compare the results.

2.3.13 (page 67)
Since

lim
ε→0

∫

ε<|y|<c

dy

y
= 0

for every c > 0, we have

〈f, ϕ〉 = lim
c→∞

∫

|y|<c

ϕ(1 − y) − ϕ(1)

y
dy = lim

ε→0

∫

|y|>ε

ϕ(1 − y)

y
dy

=

∫

R

ϕ′(1 − y) ln |y| dy

which is finite for all ϕ ∈ S(R) and is not zero for ϕ(x) = e−x
2/2.

2.3.14 (page 67)
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Note that

Ex =
∑

k≥0

xk

k!
Hk(ξ). (S.2)

(a) By (2.3.39) on page 57, if u(x) =
∑
k≥0 uk(s)Hk(ξ) and ŭ(y;x) =

E
(
u(y)Ex

)
, then

ŭ(y;x) =
∑

k≥0

uk(y)x
k. (S.3)

[Keep in mind that, if u were square-integrable, then we would have uk =
(k!)−1

E
(
uHk(ξ)

)
]. Since ξ ⋄ Hk(ξ) = H1(ξ) ⋄ Hk(ξ) = Hk+1(ξ), we also have

u(y) ⋄ ξ =
∑

k≥1

uk−1(y)Hk(ξ),

and the result follows.
(b) Using (S.3), we can define ŭ(·;x) as long as the power series in x on

the right-hand side has a non-zero radius of convergence, and then (2.3.73)
holds. Since we know that uk(y) = sin y, it follows that, for every y ∈ (0, 1π),
the function ŭ(y;x) is defined and is an analytic function of x for x ∈ (−1, 1).

Note that equation (2.3.71) makes sense without any integrability assump-
tions on u. If the solution is analytic for h = 0, then we can use (2.3.73) to
define u. This is the underlying idea of the chaos solution. For more on the
subject, see Chapter 5, in particular, the example on page 230.

2.3.15 (page 67)
Use the Hopf-Cole transformation to reduce (2.3.74) to a bi-linear heat

equation.

2.3.16 (page 67)
The result is U = −2a∇ ln v, where vt = a∆v − 1

2avG.

Problems of Chapter 3

3.1.1 (page 89)
Let {hk, k ≥ 1} be an orthonormal basis in H and let ℓ2 be the space of

square-integrable real sequences. Show that x 7→ {(x, hk)H , k ≥ 1} defines an
isomorphism between H and ℓ2.

3.1.2 (page 90)
If hk, k ≥ 1, is an orthonormal basis in H , then h̃k = hk/qk is an orthonor-

mal basis in H̃. We have j(hk) = hk and

(
j(hk), h̃k

)
H̃

= qk =
(
hk, j

∗(h̃k)
)
H
,

and so j∗(h̃k) = qkhk. Then
(
jj∗(h̃k), h̃k

)
H̃

= ‖j∗(h̃k)‖2
H = q2k and the result

follows.
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Computing tr(j∗j) is easier. Indeed,

tr(j∗j) =
∑

k≥1

(
j∗j(hk), hk

)
H

=
∑

k≥1

‖j(hk)‖2
H̃

=
∑

k≥1

q2k.

3.1.3 (page 90)
(a) The “if” part is the one we really need to prove. If h is an element of

the dense subset of H , then write ‖h − hn‖2
H = ‖h‖2

H − 2(hn, h)H + ‖hn‖2
H

and pass to the limit n → ∞. If not, let ‖h − xm‖H → 0, m → ∞, write
‖h− hn‖2

H = ‖(h− xm) + (xm − hn)‖2
H , expand and pass to the limit, first in

n, then in m.
(b) The idea is as follows. Write u̇(t) = f(t) and conclude that ‖u(t)‖2

H =

‖u0‖2
H +

∫ t
0
[f(s), u(s)]ds. This gives continuity of the norm and the required

bound. Weak continuity on a dense subset of H is clear, because, for v ∈ V ,
(u(t), v)H = (u0, v) +

∫ t
0
[f(s), v]ds.

For a more detailed proof in a less abstract setting, see Evans [45, Theorem
5.9.3].

3.1.4 (page 90)
We only need to prove completeness, and this follows from L2((0, T );X)

being a Hilbert space if X is a Hilbert space.

3.1.5 (page 90)
These are all standard results and can be found, for example, in [55] or

[162].

3.1.6 (page 91)
(a) Note that

‖(A ⊗ B)(x ⊗ y)‖X⊗Y = ‖Ax‖X ‖By‖Y ,

and

(A ⊗ B)

(
N∑

k=1

ckxk ⊗ yk

)
=

N∑

k=1

ck(Axk) ⊗ (Byk).

For more details, see Murphy [162, Lemma 6.3.2].
(b) (i) A ⊗ B is compact: if A and B have finite-dimensional ranges, so

does A ⊗ B, then pass to the limit in the operator norm ‖ · ‖0. (ii) A ⊗ B is
Hilbert-Schmidt: given orthonormal bases in X and Y , use (3.1.14) on page
76 to conclude that

∑

k,n≥1

‖(A ⊗ B)(mk ⊗ hn)‖2
X⊗Y =


∑

k≥1

‖Amk‖2
X




∑

n≥1

‖Bhn‖2
Y


 .

(iii) The operator A ⊗ B is nuclear: use the same argument as in (ii) and
Theorem 3.1.41(b) on page 85.

3.1.7 (page 91)
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By definition, KH(g, h) = (g, h)H . There is no contradiction if H = L2(R),
because we consider different sets S: in Exercise 3.1.47(a), S = R, and in this
problem, S = H .

3.1.8 (page 92)
(a) Denote by j : H → V ′ the inclusion operator of H into V ′. Then the

reproducing kernel KV of V is KV (u, v) = (j∗u, j∗v)H , u, v ∈ V ′.
(b) There is no contradiction, as we use different representations of the

elements of L2(R): in Exercise 3.1.47(a), they are functions on R, while in
this problem, they are functionals on H−2(R). In other words, in Exercise
3.1.47(a), S = R, and in this problem, S = H−2(R).

3.1.9 (page 92)
Verify that, by definition, the reproducing kernel Hilbert space correspond-

ing to K is the closure of the range of the operator A under the norm corre-
sponding to the inner product (x, y)H = (Ax, y)X = (

√
Ax,

√
Ay)X for x, y in

the range of A.

3.1.10 (page 92)
Note that (i) K(t, s) = E

(
w(t)w(s)

)
, where w is a standard Brownian

motion; (ii) for fixed t, K(t, ·) is the anti-derivative of the indicator function
1[0,t] of the interval [0, t]; (iii) K(t, s) =

(
1[0,t],1[0,s]

)
L2((0,1))

. Conclude that

the corresponding reproducing kernel Hilbert space H is the Cameron-Martin
space of the Wiener measure:

H =

{
f = f(t) : f(t) =

∫ t

0

h(s)ds, ‖f‖2
H =

∫ 1

0

h2(t)dt

}
.

3.1.11 (page 92)
Fix an orthonormal basis {mi, i ≥ 1} in X and an orthonormal basis

{uj, j ≥ 1} in Y . Given an element

z =
∑

i,j

aijmi ⊗ uj ∈ X ⊗ Y, (S.4)

define the operator Az : X → Y by

Azx =
∑

i,j

aij(mi, x)Xuj

and note that

‖Az‖2
2 =

∑

k≥1

‖Azmk‖2
Y =

∑

k,j

a2
kj = ‖z‖2

X⊗Y .

Conversely, given an operator A ∈ L2(X,Y ), define aij = (Ami, uj)Y , and
then define the corresponding z by (S.4). Note the difference between this
result and Problem 3.1.1: all separable Hilbert spaces are isomorphic, but
some are isomorphic in a special way.
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3.2.1 (page 116)
(a) A quick solution is to switch the order of integration in

Ẇ[f ](g) =

∫

Rd

(∫

Rd

f(x− y)dW (y)

)
g(x)dx.

A more careful solution is to work with the sum

Ẇ[f ](g) =
∑

k≥1

(∫

Rd

fk(x)g(x)dx

)
ξk,

where {hk, k ≥ 1} is an orthonormal basis in L2(R
d) such that hk ∈ S(Rd)

for all k, and

fk(x) =

∫

Rd

f(x− y)hk(y)dy = (f ∗ hk)(x).

(b) This follows from part (a) because condition ϕ(x) = ϕ(−x) implies
(f • ϕε)(y) = (f ∗ ϕε)(y), the convolution, so that

E

(
Ẇ[ϕε](f) − Ẇ (f)

)2

= ‖f − f ∗ ϕε‖2
L2(Rd).

Other conditions on ϕ imply that ϕε is a smooth approximation of the delta-
function.

(c) A slight modification of the argument in part (b) is necessary because
Wr(x) = Ẇ[ψ](x) and ψ is a normalized indicator function of the ball with
radius r and center at the origin. That is, ψ is not smooth, but otherwise, it
is the same idea as in part (b).

(d) This part is left to the reader.

3.2.2 (page 117)
Let Ω be the set of real-valued functions on [0, 1]d, F , the cylindrical

sigma-algebra on Ω, and P, a probability measure on (Ω,F) such that all
finite-dimensional projections of P are centered Gaussian with covariance K.
Consider the canonical process X(f) = f on the probability space (Ω,F ,P)
and note that

E|f(x) − f(y)|2 = K(x, x) +K(y, y) − 2K(x, y).

Conclude that P(V ) = 1. The result follows.

3.2.3 If the vectorX is n-dimensional and has a density in R
n, thenHX = R

n.

3.2.4 (page 117)
(a) A minimal-effort solution would consist in verifying that the functions

mk(t) = sin((k−1/2)πt) are eigenfunctions of the integral operator K : f(t) 7→∫ 1

0 f(s)min(t, s) ds. A more elaborate solution would consist in computing the
eigenfunctions of this operator.
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Representations (3.2.49) and (3.2.24) are expansions of W = W (t) in dif-
ferent bases in L2((0, 1)); note that neither basis is orthonormal in L2((0, 1)).

(b) Note that the functions mk are eigenfunctions of the Laplace operator
on the interval (0, 1) with a Dirichlet boundary condition at the left end-point
and the Neumann boundary condition at the right end-point.

3.2.5 (page 118)
Let ν be a regular measure on [0, 1]. Define ϕν(x) = ν([0, 1]) − ν([0, x]).

Then

C(ν, σ) =

∫ 1

0

ϕν(t)ϕσ(t)dt.

Indeed, keeping in mind that the canonical process on V under µ is the stan-
dard Wiener process w, we find

C(ν, σ) =

∫

V

ν(f)σ(f)µ(df)

= E
(
ν(w)σ(w)

)
= E

(∫ 1

0

w(t)ν(dt)

∫ 1

0

w(t)σ(dt)

)

= E

(∫ 1

0

ϕν(t)dw(t)

∫ 1

0

ϕσ(t)dw(t)

)

=

∫ 1

0

ϕν(t)ϕσ(t)dt,

where the last equality is Itô isometry, and the previous equality follows after
integration by parts. Taking ν = δs and σ = δt, we recover (3.2.3) on page 94.

3.2.6 (page 118)
Just verify the corresponding definitions; there are several of them, in

different places.
Discussion. The result raises the following question. Let X = X(t),

t ∈ [0, 1] be a zero-mean Gaussian process. Its covariance function K(s, t) =
E
(
X(s)X(t)

)
is a positive-definite kernel on [0, 1]. Let HK be the correspond-

ing reproducing kernel Hilbert space.
On the other hand, the probability distribution of X is a Gaussian

measure µ on a suitable space of functions on [0, 1]. This measure has a
Cameron-Martin space Hµ, which is the collection of functions f such that
the measure µf , defined by µf (A) = µ(f + a, a ∈ A), is absolutely continuous
with respect to µ.

Under what additional conditions will we have HK = Hµ?

3.2.7 (page 118)
(a) See Gelfand and Vilenkin [55, Theorem 6, p. 169].
(b) Direct computations.
(c) If B is regular and q(x, y) = E

(
B(x)B(y)

)
, then q(x, y) = r(|x − y|)

for some function r = r(t), t ≥ 0, so that, up to a constant, µ(Rd) is r(0).
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In particular,
∫

Rd q(x, x)dx cannot be finite, and so B is not an element of

L2(Ω;L2(R
d)).

If the measure µ is finite, define B(x) as the limit of B(ϕxn), where ϕxn is a
smooth function approximating the delta-function at x; for more details, see
Preszat and Zabczyk [172, Page 190].

3.2.8 (page 119)
(a) For d = 1 only. The explicit expression for the regular representation

is left to the reader.
(b) Let Ẇ be a Gaussian white noise onH0 = L2(R

d) and let Λ =
√

1 − ∆.
Then X = Λ−1Ẇ , and it remains to repeat the arguments from Example
3.2.21 on page 101, with Fourier transform instead of Fourier series. In this
case, Definition 3.2.19 implies that X is a Gaussian white noise on H1(Rd).
For more detailed arguments, see Example 4.2.3.

3.2.9 (page 119)
The arguments are the same as in the finite-dimensional case.

3.2.10 (page 119)
Repeat, with obvious modifications, the arguments in the case of real-

valued martingales; see, for example, Karatzas and Shreve [98, Proposition
1.5.23] or Kunita [120, Theorem 2.1.2]. Note that, by the BDG inequality,

E sup
0<t<T

‖Mn(t) −Mm(t)‖2
H ≤ CE〈Mn −Mm〉(T ).

Keep in mind that the space C([0, T ];H) of deterministic continuous mappings
f : [0, T ] 7→ H with norm sup0<t<T ‖f(t)‖H is complete.

3.3.1 and 3.3.2 (page 132)
Even though WQ is not necessarily an H-valued martingale, all the steps

in the construction of the integral
∫ t
0
(f(s), dM(s))H can be repeated (see page

122). In particular, writing

f(t) =
∑

k≥1

fk(t)mk

for some orthonormal basis {mk, k ≥ 1} in H , we set

WQ
f (t) =

∑

k≥1

∫ t

0

fk(s)dMk(s),

where Mk(t) = WQ
mk

(t) is a standard Brownian motion and

〈Mk,Mℓ〉(t) = t
(
Qmk,mℓ

)
H
.

Then show that WQ
f (t) does not depend on the choice of the basis in H . Once

we have WQ
f (t) for f ∈ H , we define WQ

B (t) for an operator B (see Definition
3.3.7 on page 125).
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3.3.3 (page 133)
See Chow [23, Lemma 6.4.3].

3.3.4 (page 133)
This is an essay question.

Problems of Chapter 4

4.1.1 (page 155)
(a) Local Lipschitz continuity of the coefficients implies uniqueness and

local existence. The function F ensures non-explosion (global existence). The
case of linear growth is included, with F (x) = 1 + |x|2.

(b) This is a particular case of the result proved by Krylov and Rozovskii
[119, Theorem 3.14]. Roughly speaking, condition (4.1.44) ensures uniqueness
of the solution, and (4.1.45) ensures global existence (non-explosion).

4.1.2 (page 156)
(a) A straightforward approach is to enclose the domain in a box (hyper-

cube or parallelepiped) and apply repeatedly the arguments from (4.1.11)
(page 140) along each side of the box. Zeidler [217, Proposition 18.19] presents
all the details for d = 2.

An alternative approach is to write u =
∑

k ukϕk, where −∆ϕk = λkϕk,
‖ϕk‖L2(G) = 1, (ϕk, ϕm)L2(G) = 0 if k 6= m, and then note that

‖∇u‖2
L2(G) = −

∫

G

u∆u dx =
∑

k

λku
2
k ≥ λ1

∑

k

u2
k.

This also gives Cπ ≤ 1/λ1.
More refined proofs seek the best value of Cπ (both analytically and nu-

merically), as well as other conditions on the boundary behavior of u for the
inequality still to hold.

(b) Integrate by parts and use (4.1.46) to conclude that (4.1.10) holds with
cA = 1/(1+Cπ). Note that in Example 4.1.4 we have Cπ = 1/2 and cA = 2/3.

(c) Note that if Aϕ = λkϕ, then [Aϕ,ϕ] = λk‖ϕ‖2
H . Compared with part

(b), we have the same spaces, but with different, and equivalent, norms. As a
result, we get the same inequalities, possibly with different constants.

(d) The most straightforward way is to use integration by parts.
As an illustration, consider the operator A2. For brevity, we write a =(

aij , i, j = 1, . . . ,d
)
, b = (bi, i = 1, . . . ,d), b̃ = (b̃i, i = 1, . . . ,d), and use ·

to denote the inner product in R
d. Then, for u ∈ C∞

0 (G),

[A2u, u] = (A2u, u)H =

∫

G

(a∇u · ∇u)(x)dx +
(
(b − b̃) · ∇u, u

)
H

+ (cu, u)H .

By Green’f formula, for every smooth vector function h,
∫
G
∇·(hu2)(x)dx = 0

(because u|∂G = 0), and therefore, since ∇ · (hu2) = 2u(h · ∇u) + (∇ · h)u2,
we find (assuming both bi and b̃i are continuously differentiable)
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(
(b − b̃) · ∇u, u

)
H

=
1

2

(
u∇ · (b̃ − b), u

)
H
.

Define

c̄ = inf
x∈G

(
1

2
∇ · (b̃ − b)(x) + c(x)

)
, (S.5)

and assume that there exists a positive real number ca such that, for all x ∈ G
and all y ∈ R

d,
d∑

i,j=1

aij(x)yiyj ≥ ca

d∑

i=1

y2
i . (S.6)

If Cπ is the Poincaré constant for the domain G (from part (a) of the problem)
and

ca
2Cπ

+ min(c̃, 0) > 0, (S.7)

then the operator A2 satisfies (4.1.10) with cA given by the left-hand side
of (S.7). For the above computations to make sense, we need (a) bounded
aij , bi, b̃i, c; (b) continuously differentiable bi, b̃i; (c) conditions (S.6) and (S.7).

Requiring bi and/or b̃i to be differentiable can be avoided with the help of
the inequality

|(b · ∇u, u)H | ≤ sup
x∈G

|b(x)|
(
ε‖∇u‖2

H + ε−1‖u‖2
H

)
;

ca will dictate the choice of ε, and this ε will appear in an analogue of (S.7).
The overall conclusions are as follows:

1. For the operators to act in the normal triple (H1
0 (G), L2(G), H−1(G)), all

the coefficients must be bounded, and sometimes, existence of bounded
derivatives of some of the coefficients must be assumed as well;

2. To have (4.1.10), it is always necessary to assume (S.6);
3. With bounded coefficients and (S.6) in place, it is always possible to choose
c large enough so that (4.1.10) will hold.

4.1.3 (page 157)

(a) Let F (t, x) = etx−t
2/2 and F̄ (t, x) = e2tx−t

2

. Note that F (t, x) =
F̄ (t/

√
2, x/

√
2) and compare the coefficients in the corresponding power series

expansions.
(b) Using (a), reduce the question to the corresponding relation for Hn,

verified in Problem 2.3.10.
(c) Orthonormality is part (b). Completeness follows from the complete-

ness of the set of polynomials (Szegö [200, Theorem 5.7.1]). For Hr(R), r 6= 0,
the functions are clearly not orthogonal, but still form a dense subset. Indeed,
suppose that f ∈ Hr(R) and (f,wn)r = 0 for all n ≥ 1, that is,

∫

R

(1 + y2)r f̂(y)ŵn(y) dy = 0. (S.8)
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We need to conclude that f = 0. For that, we use part (e) and notation
hr(y) = (1 + y2)r to re-write (S.8) as

(hr f̂ ,wn)L2(R) = 0.

By completeness of the system in L2(R), hr f̂ = 0 or, since hr is never zero,

f̂ = 0, that is, f = 0.
(d) First verify that H̄′′

n − 2xH̄′
n + 2nH̄n = 0. For an efficient way to do

this, see [1, Section 6.1].
(e) Given (4.1.51), it is easy to see that Fwn = λnwn, with |λn| = 1,

because the operator Λ is unchanged in the Fourier domain and the Fourier
transform does not change the L2 norm. Unfortunately, this argument does
not provide the value of λn.

The complete solution comes from [1, Exercise 11 for Chapter 6] and is
the following chain of equalities:

∫
wn+1(x)e

−i xydx =

∫
e−x

2 dn

dxn
e−ixy+x2/2dx

= iney
2/2

∫
e−x

2 dn

dyn
e(x−iy)2/2dx

= (−i)ney
2/2 d

n

dyn

(
e−y

2/2

∫
e(−x

2/2)−i xydx

)

= (−i)n
√

2πwn+1(y),

where the first equality follows after n integration by parts, with (−1)n in
the definition of H̄n canceling the (−1)n incurred by the integration by parts
formula; the second equality is a two step process: first, complete the square
and take ey

2/2 out of the integral, then change the derivative from d/dx to
d/dy using the relation ∂f(x − ay)/∂x = ∂f(x − ay)/(−a∂y) = f ′(x − ay);
the third equality is expanding the square and rearranging the terms; the key
to the last equality is that the normal density is unchanged by the Fourier
transform (see (1.1.12)).

4.1.4 (page 158)
(a) Note that operator (N + 1)I − A is elliptic.
(b) These are the main steps.

[Step 1] Define v(t) = u̇(t) so that the equation becomes v̇ = Au+ f .
[Step 2] Take inner product with v in H on both sides:

1

2

d

dt
‖v‖2

H = [Au, v] + (f, v)H . (S.9)

[Step 3] Note that, since the operator A does not depend on time and [Au, v] =
[u,Av], we get

d

dt
[Au, u] = [Av, u] + [Au, v] = 2[Au, v]. (S.10)
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[Step 4] Integrate both sides of (S.9) with respect to time, and use (S.10):

‖v(t)‖2
H − ‖v0‖2

H = [Au(t), u(t)] − [Au0, u0] + 2

∫ t

0

(
f(s), v(s)

)
H
ds. (S.11)

[Step 5] Use the Cauchy-Schwarz and the epsilon inequalities to write

2
∣∣∣
∫ t

0

(
f(s), v(s)

)
H
ds
∣∣∣ ≤ sup

0<t<T
‖v(t)‖H

∫ T

0

‖f(s)‖Hds

≤ 1

2
sup

0<t<T
‖v(t)‖2

H + C

(∫ T

0

‖f(s)‖Hds
)2

.

(S.12)

[Step 6] Use (S.12) and assumption (ii) about the operator A, as well as
continuity of A from V to V ′, to deduce from (S.11) that, with some other
number C,

1

2
sup

0<t<T
‖v(t)‖2

H + cA sup
0<t<T

‖u(t)‖2
V ≤ C‖u0‖2

V + ‖v0‖2
H

+ C

(∫ T

0

‖f(t)‖Hdt
)2

+M sup
0≤t≤T

‖u(t)‖2
H .

(S.13)

[Step 7] Write

u(t) = u0 +

∫ t

0

v(s)ds

and take the ‖ · ‖H norm on both sides. Note that

∥∥∥∥
∫ t

0

v(s)ds

∥∥∥∥
2

H

≤
(∫ t

0

‖v(s)‖Hds
)2

≤ C(T )

∫ T

0

‖v(t)‖2
Hdt.

[Step 8] Go back to (S.13) and eliminate the term
∫ T
0
‖v(t)‖2

Hdt on the right
using Gronwall’s inequality. The result follows.

(c) The arguments are the same as in the parabolic case.
(d) We need to verify conditions of Theorem 4.1.15 on page 148. We start

by verifying (4.1.23), which will imply (4.1.20).
Note that the operator Ā reduces the second-order in time equation ü =

Au+ f to the system of two first-order equations

(u̇ v̇) = Ā(u v) + (0 f).

By assumption, [Au, v] = [u,Av] and [−Au, u] ≥ cA‖u‖2
V . Define the equiva-

lent norm on X = V ×H by

‖w‖2
X = [−Au, u] + ‖v‖2

H , w = (u v).

The corresponding inner product on X is
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(w,w1)X = [−Au, u1] + (v, v1)H

and so, for w in the domain of Ā,

(Āw,w)X = [−Av, u] + (Au, v)H = 0; (S.14)

note that, if w = (u v) is in the domain of Ā, then v ∈ V and Au ∈ H , so
that (Au, v)H = [Au, v]. As a result,

‖(λI − Ā)w‖2
X =

(
(λI − Ā)w, (λI − Ā)w

)
X

= λ2‖w‖2
X + ‖Āw‖2

X ≥ λ2‖w‖2
X

which is (4.1.23) with λ0 = 0.
Verification that Ā is densely defined and closed requires additional con-

structions: the normal triple (V,H, V ′) is not enough to describe the domain
of Ā. Accordingly, we use the elliptic operator M I−A and the material from
Krein et al. [114, Section IV.1.10] (see also Theorem 3.1.12 on page 74 and
the comments after it) to construct a Hilbert scale {Hr, r ∈ R} such that
V = H1, H = H0, V ′ = H−1. By this construction, the space Y = H2 ×H1

is the domain of Ā and is a dense subset of X . Direct computations then show
that conditions of Theorem 3.1.18 hold:

‖w‖2
Y ∼ ‖u‖2

2 + ‖v‖2
1 ∼ ‖(M I − A)u‖2

0 + ‖v‖2
1 ∼ ‖Āw‖2

X + ‖w‖2
X ,

where ∼ means equivalence of norms. By Proposition 4.1.14, the resulting
mild solution is also a variational solution in the sense of Definition 4.1.20.

(e) While the semigroup method works under more restrictive conditions,
the strong continuity of the semigroup implies that u ∈ C

(
(0, T );V

)
, u̇ ∈

C
(
(0, T ), H

)
. For the solution constructed using the Galerkin approximation,

we only get u ∈ L∞
(
(0, T );V

)
, u̇ ∈ L∞

(
(0, T );H

)
. Extra work is required

to prove that the solution is in fact continuous. For details, see Lions and
Magenes [126, Section 3.8.4]).

4.1.5 (page 159)
(a) The arguments are the same as for the equation ü = Au + f with

time-independent A. Now (S.10) becomes

d

dt
[Au, u] = 2[Au, v] + [Ȧu, u];

the addition term
∫ t
0
‖u(t)‖2

V ds is eliminated using Gronwall’s inequality. The

terms
∫ t
0
(A1u, v)

2
Hds and

∫ t
0
(Bv, v)2Hds are also processed using the Cauchy-

Schwarz and Growall inequalities.
(b) Writing f(t) = f0 +

∫ t
0 ḟ(s)ds, and assuming at first that f0, ḟ ∈ V ,

we integrate by parts to find

∫ t

0

(f, v)Hds = (f(t), u(t))H − [f0, u0] −
∫ t

0

(ḟ , u)Hds.
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Then

|(f(t), u(t))H | ≤ ε‖u(t)‖2
V + C(ε)‖f(t)‖2

V ′)

≤ ε‖u(t)‖2
V + C(ε, T )‖f‖2

H1((0,T );V ′)

∣∣∣
∫ t

0

(ḟ , u)Hds
∣∣∣ ≤ ‖f‖2

H1((0,T );V ′) +

∫ t

0

‖u‖2
V ds;

Gronwall’s inequality takes care of
∫ t
0
‖u‖2

V ds.
(c) Note that the time-dependent setting is pretty hard to handle by

the semigroup method, but when it works, the semigroup method gives the
statement of the Theorem 4.1.21 right away. The Galerkin approximation
works in the most general setting, but, for the resulting solution, we only get
u ∈ L∞((0, T );V ), u̇ = v ∈ L∞((0, T );H), and, unlike the parabolic case,
we do not have general result (like the fundamental theorem of calculus) to
claim continuity. Thus, some extra work is required to prove that the solution
constructed by the Galerkin method is indeed continuous. For details, see Li-
ons and Magenes [126, Section 3.8.4]. We repeat the arguments of Lions and
Magenes for the stochastic version of the equation in the proof of Theorem
4.3.3. (see page 179).

4.1.6 (page 160)
(a) To derive the estimate, we have to assume that v = u̇ ∈ V , which is not

the case in general. The estimate does hold for the solution constructed from
the Galerkin approximation (because it holds for the approximate solutions
and is preserved in the limit), but a priori it does not have to hold for other
possible solutions.

(b) The idea is to repeat the derivation of the a priori bound (with u0 =

v0 = f = 0) using ψ(t) =
∫ t
s
u(r)dr (for fixed t) instead of u̇:

[v̇, ψ] = [Au, ψ] + . . . .

For details, see Evans [45, Theorem 7.2.4] or Lions and Magenes [126, Section
3.8.2].

4.1.7 (page 160)
(a) Taking the inner product with u in H ,

‖u(t)‖2
H = ‖u0‖2

H + 2

∫ t

0

[Au, u]ds+ 2

∫ t

0

[f(s), u(s)]ds

≤ −2cA‖u‖2
L2((0,T );V ) + 2M

∫ t

0

‖u(s)‖2
Hds+ 2

∣∣∣∣
∫ t

0

[f(s), u(s)]ds

∣∣∣∣ .

The term 2M
∫ t
0 ‖u(s)‖2

Hds is eliminated by the Gronwall inequality. To pro-

cess
∫ t
0 [f(s), u(s)]ds, recall that [u, v] ≤ ‖u‖V ′‖v‖V . Then, by the epsilon

inequality,
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∣∣∣∣
∫ t

0

[f(s), u(s)]ds

∣∣∣∣ ≤
cA
2
‖u‖2

L2((0,T );V ) + C‖f‖2
L2((0,T );V ′).

This establishes the a priori bound. Galerkin approximation then leads to the
solution in the usual way. For alternative ideas, see Lions and Magenes [126,
Section 3.4].

(b) To get a semigroup on H , we cannot take V as the domain of A. The
domain D(A) must be such that the mapping A : D(A) → H is bounded.
Accordingly, we use the (elliptic) operator M I − A and the material from
Krein et al. [114, Section IV.1.10] (see also Theorem 3.1.12 on page 74 and
the comments after it) to construct a Hilbert scale {Hr, r ∈ R} such that
V = H1, H = H0, V ′ = H−1. As usual, ‖ · ‖r is the norm in Hr. By
this construction, the space H2 is the domain of A and is a dense subset of
H . Conditions of Theorem 3.1.18 then hold automatically: the norm ‖u‖2

2 is
equivalent to ‖(M I − A)u‖2

0. Finally,

‖(λI − A)u‖2
H = λ2‖u‖2

H − 2λ[Au, u] + ‖Au‖2
H

≥ (λ2 − 2Mλ)‖u‖2
H = λ(λ− 2M)‖u‖2

H.

which is (4.1.23) with λ0 = max(2M, 0).

4.1.8 (page 160)
Theorem 4.1.23 establishes integrability of the solution in space and time,

which is different from properties of the solution in space for fixed time. For
the equation in question, û0(y) looks like sin(y)/y, and, with u0 ∈ Hr(R) for
r < 1/2, u ∈ L2

(
(0, 1);Hr+1(R)

)
if r < 1/2, just as promised by the theorem.

Moreover, ∫ 1

0

‖u(t, ·)‖2
3/2 dt = +∞,

that is, the conclusions of Theorem 4.1.23 are sharp. A repeated application
of Theorem 4.1.23 for t > 0 shows that the solution belongs to every Hr(R).

4.1.9 (page 160)
Let us start with equations ut =

(
a(t, x)ux

)
x

(parabolic) and utt =(
a(t, x)ux

)
x

(hyperbolic), both for x ∈ R. To simplify comparison, we assume
zero initial speed for the hyperbolic equation: ut(0, x) = 0.

For the parabolic equation, we get u ∈ C((0, T );L2(R)) if u(0, ·) ∈ L2(R),
and a is bounded measurable and a(t, x) ≥ a0 > 0 for all t, x. For the hyper-
bolic equation, we get a better solution u ∈ C((0, T );H1(R)) under stronger
assumption about the initial condition: u(0, ·) ∈ H1(R), and an additional
assumption about the coefficient a: ∂a(t, x)/∂t exists and is bounded and
measurable. The reader can also compare the properties of ut in both cases.

To get the same regularity of the solution for equations ut = a(t, x)uxx and
utt = a(t, x)uxx, beside the usual a(t, x) ≥ a0 > 0, we need extra regularity
of a in x to multiply objects from H−1(R); for example, a(t, ·) ∈ C1(R) is
enough. In the hyperbolic case, we also have to write
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a(t, x)uxx =
(
a(t, x)ux

)
x
− ax(t, x)ux,

because the leading operator has to be symmetric. In particular, A1u =
−axux. As before, we also need at(t, x) to exist. Note that the symmetry
of the leading operator in the hyperbolic equation is not a very restrictive
condition as long as the coefficients are sufficiently smooth.

An interesting question is how the condition for a function f = f(x)
to be a point-wise multiplier in H−1(R) (that is, for the operator u 7→ fu
to be bounded on H−1(R)) compares with the condition for the operator
u 7→ f(x)uxx −

(
f(x)ux

)
x

to be bounded from H1(R) to L2(R).
The solution of a parabolic equation has better regularity than the initial

condition: if u(0) ∈ H , then u(t) ∈ V for almost all t. For the heat equa-
tion (and more generally, for equations with smooth coefficients), a repeated
application of the theorem in suitable spaces will show that the solution is
smooth for t > 0. The solution of a hyperbolic equation has exactly the same
regularity as the initial conditions: u(0) ∈ V implies u(t) ∈ V ; u̇(0) ∈ H
implies u̇(t) ∈ H . No gain in spacial regularity is consistent with the explicit
formulas for the wave equation.

4.1.10 (page 160)
In (a), (b) the main conditions are always boundedness of all the coeffi-

cients and (S.6). Assuming all the coefficients are infinitely differentiable, with
all the derivatives bounded, is always sufficient. Minimal smoothness depends
on the on the particular problem and is still subject of research.

4.2.1 (page 170)
Since we can only guarantee that u ∈ L2(G), the definition should go along

the lines of the weak variational solution [W3]; see (2.2.13) on page 43. The
technical issue is to impose the right conditions on the coefficients so that, in
each case, the formal adjoint A⊤ is defined. The details are left to the reader.

4.2.2 (page 170)
Problem 4.1.3 on page 157 provides all the necessary background. In par-

ticular,
(a) follows from f =

∑
k fkwk and Λwk = 2k;

(b) follows from E‖Ẇ‖2
r =

∑
k(2k)

r.

(c) In R
d, Ẇ ∈ L2(Ω; H̃−r) for r > d, because

∑

n1+...+nd=k

1

(n1 + . . .+ nd)r
≍ 1

kr+1−d
.

(d) Spaces H̃r constructed using the operator Λ control both the number
of the derivatives of the function and the the rate of decay of the function
at infinity; the Sobolev spaces only control the number of derivatives through
the rate of decay of the Fourier transform. Also note that Λ and ∆ do not
commute and the the function |x|2 is unbounded, making the spaces H̃r not
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especially convenient for the study of the heat and similar equations. On
the other hand, for the usual Sobolev spaces,

⋂
rH

r(Rd) 6= S(Rd) (consider
f(x) = 1/(1 + x2) which is in every Hr(Rd) but whose Fourier transform is

f̂(y) ≍ e−|y| and is not in S(Rd)), while for the spaces H̃r constructed using

the operator Λ, we have
⋂
r H̃

r = S(Rd).

4.2.3 (page 171)
(a) Denote by X the Fourier transform of Ẇ . Since Ẇ can be considered

an element of the space S′(Rd), the Fourier transform of Ẇ exists. Linearity
of the Fourier transform implies that, just as Ẇ , X is a zero-mean Gaussian
field.

Let f̂ denote the Fourier transform of f ∈ S(Rd). By definition,

X(f) = Ẇ (f̂),

and therefore, for f, g ∈ S(Rd),

E

(
X(f)X(g)

)
= E

(
Ẇ (f̂)Ẇ (ĝ)

)
= (f̂ , ĝ)L2(Rd) = (f, g)L2(Rd),

where the last equality is the well-known L2-isometry of the Fourier transform.

In other words, E

(
X(f)X(g)

)
= (f, g)L2(Rd), that is, X is indeed white noise

over L2(R
d).

(b) First show that the Fourier transform of ϕẆ is a regular field

V (y) =
1

(2π)d/2

∫

Rd

eixyϕ(x)dW (y).

Then, keeping in mind that the Fourier transform of a function from L1(R
d)

is a bounded continuous function, show that

∫

Rd

(1 + |y|2)γ E|V (y)|2dy =

∫

Rd

(1 + |y|2)γ |ϕ̂(y)|2dy

≤
(

max
y∈Rd

|ϕ̂(y)|2
) ∫

Rd

(1 + |y|2)γdy, if γ < −d/2,

which completes the proof. For details, see Walsh [209, Chapter 9].

4.2.4 (page 171)
(b) See Rozanov [185, pp. 96–98]. The idea is to use the Fourier transform

and get a closed-form solution:

u(x) =
1

(2π)3/2

∫

R3

eixy − 1

|y|2 dW (y);

the zero boundary condition u(0) = 0 leads to the term eixy − 1 instead of
just eixy.
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(a), (c) One can try the same approach as in (b).

4.2.5 (page 171)
The easiest way to get an expression for E

(
u(f)u(g)

)
is via the Fourier

transform (see Problem 4.2.3).
For equation

√
m2 − ∆ u = Ẇ , we get

E
(
u(f)u(g)

)
=

∫

Rd

f̂(y)ĝ(y)

m2 + y2
dy,

where ĝ(y) is the complex conjugation. Note that if d ≥ 3, the integral con-
verges for all f, g ∈ L2(R

d) even if m = 0; more details are in Nelson [163].
For equation ∆u = ∇ · Ẇ ,

E
(
u(f)u(g)

)
=

∫

Rd

f̂(y)ĝ(y)

y2
dy,

which is the same as for the previous equation with m = 0, suggesting that
the equation is natural to consider for d ≥ 3. More details for the case d ≥ 3
are in Walsh [209, Chapter IX].

For equation (1 − ∆)u = B, with B a Gaussian white noise on H1(Rd),
we write B =

√
1 − ∆ Ẇ and reduce the problem to the one we just solved.

For an alternative approach, see Rozanov [185, page 102].
In each case

• the solution is known as the Euclidean free field.
• the solution can be interpreted as a field either on H−1(Rd) (using the

Fourier transform) or on H1(Rd) (using Theorem 4.2.2 on page 161).

4.2.6 (page 172)
Solve the equation

√
1 − ∆u = Ẇ using the Fourier transform and the

result of Problem 4.2.3 to conclude that

û(y) =
Ẇ (y)√
1 + |y|2

Using the properties of the Fourier transform and the notation f̌(y) = f̂(−y),

E
(
u(f)u(g)

)
= E

(
û(f̌)û(ǧ)

)
=

∫

Rd

f̂(y)ĝ(y)

1 + |y|2 dy = (f, g)−1;

this is also consistent with the interpretation of u as a homogeneous field (see
Problem 3.2.8 on page 119).

4.2.7 (page 172)
This is an essay question.

4.2.8 (page 172)
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The basic argument is identical to the proof of Corollary 4.2.7 (page 168).
Indeed, Green’s function of the equation

Av − c v = f, in G

with zero boundary conditions can be written as

K(x, y) = KA(x, y) − K̄A(x, y),

where, for every y ∈ G,

AK̄A(x, y) − c(x)K̄A(x, y) = 0, x ∈ G, K̄A(x, y)|x∈∂G = KA(x, y).

It is also known that

K̄A(x, y) = E


KA

(
Xx(τx), y

)
e
−
∫ τx

0

c(Xx(t))dt


 ;

see, for example, Freidlin [50, Theorem 2.2.1]. The technical details, such as
the precise conditions on the operator A, function c and the domain G, are
left to the reader.

A comment. Under suitable conditions on the operator A, the function
c, and the domain G, one can show that K̄A is a smooth function and the
singularity of KA for x = y will be the same as the singularity at zero of the
function Kd from (4.2.12) on page 165. The reader can use this observation
to produce a proof of Theorem 4.2.6 when A 6= ∆.

4.2.9 (page 173)
Here are some general ideas. The solution of (1 − ∆)γ/2u = Ẇ is never

an element of any Sobolev space Hr(Rd), because otherwise Ẇ would be an
element of some Sobolev space, which it is not. The Hölder regularity of the
solution can still be studied if one can show that there is a locally integrable
function u = u(x) such that, for all f ∈ S(Rd), u(f) =

∫
Rd u(x)f(x)dx. On

the other hand, in the notations of Problem 4.2.2, the solution of Λγu = Ẇ
is an element of suitable H̃r and can be a regular field over L2(R

d).

4.3.1 (page 186)

(a) If f ∈ L2

(
Ω;H1((0, T );V ′)

)
, then f(t) = f0 +

∫ t
0
ḟ(s)ds, with f0, ḟ ∈

V ′. Integrating by parts,

∫ t

0

(f, v)Hds = [f(t), u(t)] − [f0, u0] −
∫ t

0

[ḟ , u]ds,

and then, using epsilon inequality, |[f(t), u(t)]| ≤ ε‖u(t)‖2
V +C‖f(t)‖2

V ′ . Note

that ‖f(t)‖2
V ′ ≤ ‖f0‖2

V ′ + C(T )‖ḟ‖2
L2((0,T );V ′) ≤ C(T )‖f‖2

H1((0,T );V ′).

(b) Derivation of the a priori bound goes through without changes.
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4.3.2 (page 186)
Direct computations using formula (2.3.27) on page 55. For simplicity,

assume ak = 1.

4.3.3 (page 186)
The idea is to re-write each equation in the abstract form and to verify the

conditions of Theorem 4.3.3. The most convenient boundary conditions, when
necessary, should be derived using integration by parts. When coefficients are
constant and noise is additive, one can look for closed-form solutions.

4.4.1 (page 217)
Let G(x) be the indicator function of (−1, 1) and let g(x) = G′(x) as a

generalized derivative. The Fourier transform of g satisfies ĝ(y) ≍ sin(cy) for
some c. Compute the Fourier transform of u.

4.4.2 (page 218)
Theorem 4.4.3 provides most of the results. The definition of IH ensures

that the solution operator is onto, that is, every element of IH is a solution of
some equation. Indeed, if u ∈ IH , then u ∈ L2

(
Ω × (0, T );V

)
and

u(t) = u0 +

∫ t

0

F (s)ds+
∑

k

∫ t

0

Gk(s)dw(s),

which means that u̇ = Au + f +
∑

k(Mku + gk)dwk, where f = F − Au and
gk = Gk − Mku.

4.4.3 (page 218)
To get an idea, derive a priori bounds and find a solution for the following

equations:
ut = uxx/

√
t, ut = ξ uxx, 0 < t ≤ 1, x ∈ R,

where ξ is a normal random variable with mean and variance both equal to
one.

4.4.4 (page 218)
This is left to the reader.

4.4.5 (page 218)
Direct computations using the closed-form expression for uk. In fact, one

can allow b and σ to be functions of t. For simplicity, assume ak = 1.

4.4.6 (page 219)
The idea is to re-write each equation in the abstract form and to verify the

conditions of Theorem 4.4.3. The most convenient boundary conditions, when
necessary, should be derived using integration by parts. When coefficients are
constant and noise is additive, one can look for closed-form solutions.
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Problems of Chapter 5

5.1.1 (page 240) Note that

− 1

1 − ξ
=

d

dξ
ln |1 − ξ|,

and the random variable ln |1 − ξ| is in L2(ξ).

5.1.2 (page 240) Assume that E
(
ηHα(ξ)

)
= 0 for all α ∈ J . Consider the

N -dimensional space ΞN of square-integrable functionals of ξ1, . . . , ξN ; we
know that the collection

∏N
k=1 Hαk

(ξk), α ∈ J is dense in the space, and,
by assumption, the orthogonal projection of η onto ΞN is zero. Argue that
E
(
η|ξ1, . . . , ξN

)
, the conditional expectation of η given the sigma-algebra Fξ

N

generated by ξ1, . . . , ξN , is also zero: every Fξ
N -measurable bounded random

variable ζ is a square-integrable function of ξ1, . . . , ξN , and by assumption,
E(ηζ) = 0. Then use a theorem of P. Lévy [194, Theorem Vii.4.3] to pass to
the limit, as N → ∞ in the equality

E
(
η|ξ1, . . . , ξN

)
= 0

and note that
E
(
η|ξ1, ξ2, . . .

)
= η.

For alternative formulations and proofs, beside the original paper [19], see [69,
Theorem 1.9], [73, Theorem 2.2.3], and [149, Theorem 2.1].

One way to get completeness of Eh, h in a dense sub-set of L2((0, T )), from
completeness of Hα(ξ), α ∈ J , is as follows. First, argue that E(ηEh) = 0 for
all h ∈ U0 implies E(ηEh) = 0 for all h ∈ L2((0, T )). Then use analyticity of
η̆(h) for η ∈ L2(w[0,T ]).

5.1.3 (page 240) All we need is that, for m, k ≥ 0 and i, j ≥ 1,

Hm(ξi) ⋄ Hk(ξj) =

{
Hm+n(ξi), if i = j;

Hm(ξi)Hk(ξj), if i 6= j.

5.1.5 (page 241) Straightforward computation, although the reader might
not yet know some of the tools to simplify those computations: those tools
are developed later in the chapter. For equation (5.1.5), the solution belongs
to
⋂
q>1(S)0,qe(w[0,T ]), where e is the sequence consisting of all ones: ek =

1, k ≥ 1. As far as equation (5.1.6), see [146] or page 288 below.

5.1.6 (page 241) The case f(t) = w(t) is direct computation using the stan-
dard chaos expansion of w. For more general f the claim, while plausible,
might still be waiting for a complete proof.

A relevant, although not necessarily helpful, fact is that, for adapted f ,

f(tj)
(
w(tj + 1) − w(tj)

)
= f(tj) ⋄

(
w(tj + 1) − w(tj)

)
;
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see [73, Example 2.4.3].

5.2.2 (page 271) Consider the space

L
[≤n]
2 (B) =

n⊕

m=0

L
[m]
2 (B)

and argue that this space is generated by polynomials of degree at most n,
evaluated at random variables of the type B(f), f ∈ U . Each such polyno-
mial has arbitrary but fixed number of variables. For example, to construct

L
[≤n]
2 (B) if n = 3, you would consider expressions of the type B(f1) + 1,

2B(f2) + 3(B(f3))
2, 5B(f1)(B(f4))

2, etc. for various f1, f2, f3, f4, . . . ∈ U .

Then argue that L
[n]
2 (B) is determined uniquely by the relation

L
[≤n]
2 (B) = L

[≤n−1]
2 (B) ⊕ L

[n]
2 (B).

For more details, see [149, p. 9].

5.2.5 (page 271) Direct computations as follows:

Hα(ξ) = Dα
h Eh

∣∣
h=0

, ξα(t) = Dα
h

(
E
(
Eh|FW

t

))∣∣∣
h=0

,

Eh(t) = exp


∑

i≥1

hi(s)dwi(s) −
1

2

∑

i≥1

∫ t

0

h2
i (s)ds


 , Eh = Eh(T ),

Eh(t) = 1 +
∑

i≥1

∫ t

0

hi(s)Eh(s)dwi(s), Eh(t) = E
(
Eh|FW

t

)
,

hi(t) =
∑

k≥1

hi,kmk(t).

Apply Dα
h (·)|h=0 to both sides of Eh(t) = 1 +

∑
i≥1

∫ t
0
hi(s)Eh(s)dwi(s), use

product rule. Keep in mind that, with several Brownian motions,

Dα
h =

∂|α|

∂h
α1,1

1,1 ∂h
α1,2

1,2 · · ·∂hα2,1

2,1 ∂h
α2,2

2,2 · · · .

If u(t) is FW
t -measurable, then

E
(
u(t)Hα(ξ)

)
= E

(
E
(
u(t)Hα(ξ)|FW

t

))
= E

(
u(t)E

(
Hα(ξ)|FW

t

))

= E
(
u(t)ξα(t)

)
,

and (5.2.62) follows by the Itô formula.

5.2.7 (page 272)

(a) In one dimension, η = ξ and ζ =
∑

k
Hk(ξ)

k
√
k!

should work as a counterex-

ample: η ⋄ ζ /∈ L2(ξ).
As far as the rest of the problem, you are on your own...
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Problems of Chapter 6

6.1.1 (page 309) For the estimator θ̂(N)(T ), the rate in time
√
T is known to

be optimal and therefore cannot be improved; the rate in N is known to be
not optimal and can be improved to N3/2 by considering weights αk,N (T ) ∼
k2/N3. Since our computations suggest that Var(θ̂(k)(T ) − θ) ∼ 1/k2, the

optimal weights can be determined by minimizing
∑N

k=1 k
−2x2

k under the

constraint
∑N

k=1 xk = 1, xk ≥ 0.

6.1.2 (page 309)
We have

uk(t, q) = uk(0)e−θk
2t + q

∫ t

0

e−θk
2(t−s)dwk(s),

so that
vk(t) = lim

q→0
uk(t, q) = uk(0)e−θk

2t;

the details about the convergence are up to the reader. Then

q−1(θ̂(k)(T ) − θ) =

∫ T
0 uk(t, q)dwk∫ T
0
u2
k(t, q)dt

and the limit in distribution, as q → 0, is

∫ T
0
vk(t)dwk(t)∫ T
0
v2
k(t)dt

=
2θk2

∫ T
0
e−θk

2tdwk(t)

uk(0)(1 − e−2θk2T )

6.1.3 (page 309)
Similar to (6.1.26) on page 305, we have

uk(t)
L
= uk(0)e−θk

2t +
1

k
ū(k2t),

and

ū(t) = q

∫ t

0

e−θ(t−s)dw1(t)

is ergodic. Taking uk(0) = k will result in

∫ T

0

Eu2
k(t)dt ∼ 1

and the rate of convergence k2 rather than k.

6.1.4 (page 309)

We have X(t) = X(0)et + σ
∫ T
0 et−sdw(s) and
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θ̂(T ) − 1 =
σ
∫ T
0
X(t)dw(t)

∫ T
0
X2(t)dt

.

Define

ζ = σ

∫ +∞

0

e−sdw(s), η
d
= lim

T→+∞
σ

∫ T

0

e−(T−s)dw(s)

and note that ζ and η are Gaussian and independent:

Eηζ = lim
T→+∞

σ2e−T
∫ T

0

dt = 0.

Writing
X(t) ≈ (X(0) + ζ)et,

we find

eT (θ̂(T ) − 1) ≈ (X(0) + ζ)η e2T

(X(0) + ζ)2
∫ T
0 e2tdt

;

suggesting that the limit in distribution is

2η

X(0) + ζ
;

if EX(0) = 0, then the limit distribution is Cauchy. Justifying the approxi-
mations ≈ is up to the reader.

6.1.5 (page 309) Using self-similarity of the Brownian motion (6.1.17) (with
c = T ), we find

lim
T→+∞

θ̂(T )
d
=

∫ 1

0 w̄(s)dw̄(s)
∫ 1

0
w̄2(s)ds

,

independent of the initial condition. If the initial condition is zero, then we
have equality for all T > 0; w̄(s) = T−1/2w(sT ) is a standard Bronwian
motion. Note that dimensional analysis implies that both w̄ and s are dimen-
sionless.

6.2.1 (page 349) If r̂ = θ̂(k)(T ) − θ, and r̂ = θ̂
(k)

(T ) − θ, then

r̂ =

{
r̂, θ̂(k)(T ) ≥ 0,

−θ, θ̂(k)(T ) < 0.

Then, with v =
√
T or v = k denoting the corresponding rate,

P(v r̂ < y) = P

(
v r̂ < y, θ̂(k)(T ) ≥ 0

)
+ vP(θ̂(k)(T ) < 0).

The first term on the right will converge to the normal cdf, and the goal is to
show that the second term goes to zero. Since
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P(θ̂(k)(T ) < 0) = P(θ̂(k)(T ) − θ < −θ) ≤ P(|r̂| > θ) ≤ E|r̂|p
θp

and we expect that
E|r̂|p ∼ v−p, (S.15)

we take p large enough and complete the proof. The problem is to show (S.15),
which, because of the need to investigate the denominator in the fraction
(6.1.15), is essentially equivalent to establishing uniform polynomial integra-
bility of the local likelihood ratio. In other words, to complete the proof, it
remains to use (6.2.91).

For the large-time asymptotic, see [135, Section 17.3].

6.2.2 (page 349) The arguments are the same as in the solution of Problem
6.2.1

6.2.3 (page 350) Since

du1 = −(1 − θ)u1dt+ q1dw1(t),

there are three cases to consider: θ < 1, θ = 1, θ > 1. For more ideas, see
Problems 6.1.4 and 6.1.5.

6.2.4 (page 350)
(a) Use the multinomial formula and the fact that uk(t) is Gaussian.
(b) Since we have asymptotic normality, all we need is convergence of

moment, which, by a version of a dominated convergence theorem, will follow
from uniform integrability of all the moment of

√
I(N)(θ̂N−θ), which, in turn,

follows after combining part (a) with (6.2.89). More precisely,
√
I(N)(θ̂N −θ)

is a fraction; part (a) takes care of the numerator (with the help of the BDG
inequality) and (6.2.89) takes care of the denominator using the equality

Eη−p = c(p)

∫ +∞

0

zp−1
Ee−η zdz, η > 0.

6.2.5 (page 350) Pretend that you observe

duk = θkukdt+ qkdwk,

where θ = limk→+∞ νk/k an d νk, k ≥ 1, are the eigenvalues of the Laplacian
in G with zero boundary conditions. Use (6.2.9) and (6.2.10).

6.2.6 (page 350) This is up to the reader. One clear difference is that Gir-
sanov’s theorem allows extra randomness beside the underlying Brownian
motion. One similarity is that, in Grasanov’s theorem,

X(t) = −
∫ T

0

h(s)ds+ w(t)

is shifted Brownian motion, and the shift is of the same type as the one in
the Cameron-Martin theorem.
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6.3.1 (page 368) The same arguments as in the case of one parameter lead
to

lim
k→+∞

m2
k + σ2

k

q2k
= 0, lim

k→+∞

kσ2
k(m

2
k + σ2

k)

q4k
= 0.

6.3.2 (page 368) (a) If indeed µk(θ) = ek, then there is no natural scale of
Hilbert spaces in which to construct the variational solution.

(b) Take a separable Hilbert space X such that the embedding H
to X is Hilbert-Schmidt. Then the mild solution will be an element of
L2(Ω;C((0, T );X)).

6.3.3 (page 369) If qk = 1 and µk(θ) = ρ+ θν = µ(θ), with known ρ ≥ 0 and
ν > 0 and unknown θ > 0, the conclusions of the theorem hold with

IN,θ = N

(
ν2

µ(θ)
− ν2(1 − e−µ(θ)T )

2µ2(θ)

)
,

because the LLN and CLT continue to hold. the iid case hold under more
general conditions. The case µ(θ) ≤ 0 is left to the reader.

6.3.4 (page 369) The proof is by direct computation using the following
results:

X(t; a, σ) = X(0; a, σ)e−at + X̄(t; a, σ), X̄(t; a, σ) = σ2

∫ t

0

e−a(t−s)dw(s),

and X̄ is a zero-mean Gaussian process independent of X(0; a, σ);
If (ξ, η) is a two-dimensional (bivariate) Gaussian vector such that Eξ = Eη =
0, Eξ2 = σ2

ξ , Eη2 = σ2
η, Eξη = σξη, then

Eξη2 = 0,

Eξ2η2 = σ2
ξσ

2
η + 2σ2

ξη;

If Y = Y (t), t ≥ 0, is a Gaussian process with EY (t) = 0, EY (t)Y (s) =
R(t, s), then

Var

∫ T

0

Y 2(t)dt = 4

∫ T

0

∫ t

0

R2(t, s)dsdt.

More familiar relations are also necessary, such as

(a+ b)n ≤ 2n(an + bn), E|N (0, σ2)|p = C(p)σp.

6.3.5 (page 369) In both cases, one difficulty is proving uniform asymptotic
normality of the local likelihood ratio. For (6.3.1), we need a multi-dimensional
analogue of the Berry-Esseen inequality (6.2.84) (see, for example, [57]). For
(6.3.15), the difficulty is that, without explicit asymptotic for µk and νk,
the classical Berry-Esseen inequality does not provide rate of convergence in
terms of IN,θ. This difficulty can handled as follows. Assuming zero initial
conditions, we have
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∫ T

0

u2
k(t)dt =

∫ T

0

∫ t

0

∫ s

0

e−µk(θ)|t−s|dwk(s)dwk(t),

which allows us to use a result about normal approximation in chaos spaces
(also known as the chaotic CLT, see, for example, [22, Theorem 14.6]), leading
to an explicit bound in terms of In,θ. Note that, in the SPDE case, the bound

is better than C/
√
N .

There is a multi-dimensional version of the chaotic CLT (see [164]) suggest-
ing that uniform asymptotic normality also holds for the abstract evolution
equation (6.3.28).





References

1. G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Math-
ematics and its Applications, vol. 71, Cambridge University Press, Cambridge,
1999.

2. D. G. Aronson, The porous medium equation, Nonlinear diffusion problems
(Montecatini Terme, 1985), Lecture Notes in Math., vol. 1224, Springer, Berlin,
1986, pp. 1–46.

3. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68
(1950), 337–404.

4. A. Bain and D. Crisan, Fundamentals of stochastic filtering, Stochastic Mod-
elling and Applied Probability, vol. 60, Springer, New York, 2009.

5. R. M. Balan and B. G. Ivanoff, A Markov property for set-indexed processes,
J. Theoret. Probab. 15 (2002), no. 3, 553–588.

6. W. Balser, From divergent power series to analytic functions: Theory and ap-
plication of multisummable power series, Lecture Notes in Mathematics, vol.
1582, Springer-Verlag, Berlin, 1994.

7. , Formal power series and linear systems of meromorphic ordinary dif-
ferential equations, Universitext, Springer-Verlag, New York, 2000.

8. G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous
medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 67–78.

9. R. Bellman, The stability of solutions of linear differential equations, Duke
Math. J. 10 (1943), 643–647.

10. L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from par-
ticle systems, Comm. Math. Phys. 183 (1997), no. 3, 571–607.

11. D. Blömker, Nonhomogeneous noise and Q-Wiener processes on bounded do-
mains, Stochastic Analysis and Applications 23 (2005), no. 2, 255–273.

12. D. Blömker, Amplitude equations for stochastic partial differential equations,
Interdisciplinary Mathematical Sciences, vol. 3, World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ, 2007.

13. V. I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs,
vol. 62, American Mathematical Society, Providence, RI, 1998.

14. B. Boufoussi, A support theorem for hyperbolic SPDEs in anisotropic Besov-
Orlicz space, Random Oper. Stochastic Equations 10 (2002), no. 1, 59–88.

15. B. Boufoussi, M. Eddahbi, and M. N’zi, Freidlin-Wentzell type estimates for so-
lutions of hyperbolic SPDEs in Besov-Orlicz spaces and applications, Stochastic
Anal. Appl. 18 (2000), no. 5, 697–722.



404 References
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driven by a symmetric Lévy noise, Bernoulli 14 (2008), no. 4, 899–925.

104. J. U. Kim, On a stochastic hyperbolic integro-differential equation, J. Differen-
tial Equations 201 (2004), no. 2, 201–233.

105. Yu. G. Kondratiev, P. Leukert, J. Potthoff, L. Streit, and W. Westerkamp,
Generalized functionals in Gaussian spaces: the characterization theorem re-
visited, J. Funct. Anal. 141 (1996), no. 2, 301–318.

106. Yu. G. Kondratiev and Yu. S. Samoylenko, The spaces of trial and generalized
functions of infinite number of variables, Rep. Math. Phys. 14 (1978), no. 3,
325–350.

107. T. W. Körner, Fourier analysis, second ed., Cambridge University Press, Cam-
bridge, 1989.

108. T. Koski and W. Loges, Asymptotic statistical inference for a stochastic heat
flow problem, Statist. Probab. Lett. 3 (1985), no. 4, 185–189.

109. P. Kotelenez, Stochastic ordinary and stochastic partial differential equations:
Transition from microscopic to macroscopic equations, Stochastic Modelling
and Applied Probability, vol. 58, Springer, 2007.
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193. M. Sanz-Solé and I. Torrecilla-Tarantino, Probability density for a hyperbolic
SPDE with time dependent coefficients, ESAIM Probab. Stat. 11 (2007), 365–
380 (electronic).

194. A. N. Shiryaev, Probability, 2nd ed., Graduate Texts in Mathematics, vol. 95,
Springer, 1996.

195. M. A. Shubin, Pseudo-differential operators and spectral theory, 2nd ed.,
Springer, 2001.

196. R. L. Stratonovich, A new representation for stochastic integrals and equations,
Vestn. Moskov. Univer., Ser. Mat. Mekhan. 1 (1964), 3–12.

197. W. A. Strauss, Partial differential equations: An introduction, second ed., John
Wiley & Sons Ltd., Chichester, 2008.



References 413

198. D. W. Stroock and S. R. S. Varadhan, On the support of diffusion processes
with applications to the strong maximum principle, Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability (Univ. Cal-
ifornia, Berkeley, Calif., 1970/1971), Vol. III: Probability theory (Berkeley,
Calif.), Univ. California Press, 1972, pp. 333–359.

199. D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes,
Springer Verlag, Berlin, 1979.
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