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Abstract 

 

Due to the infrequent and competitive nature of combat, several challenges present 

themselves when developing a predictive simulation. First, there is limited data with which to 

validate such analysis tools. Secondly, there are many aspects of combat modeling that are 

highly uncertain and not knowable. This research develops a comprehensive set of techniques 

for the treatment of uncertainty and error in combat modeling and simulation analysis.  

First, Evidence Theory is demonstrated as a framework for representing epistemic 

uncertainty in combat modeling output. Next, a novel method for sensitivity analysis of 

uncertainty in Evidence Theory is developed. This sensitivity analysis method generates 

marginal cumulative plausibility functions (CPFs) and cumulative belief functions (CBFs) and 

prioritizes the contribution of each factor by the Wasserstein distance (also known as the 

Kantorovich or Earth Mover’s distance) between the CBF and CPF. Using this method, a rank 

ordering of the simulation input factors can be produced with respect to uncertainty. Lastly, a 

procedure for prioritizing the impact of modeling choices on simulation output uncertainty in 

settings where multiple models are employed is developed. This analysis provides insight into 

the overall sensitivities of the system with respect to multiple modeling choices. The new 

method does not make weakly predictive models strongly predictive models, but ensures a 

plurality of perspectives can be reconciled during a modeling and simulation activity.  
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UNCERTAINTY AND ERROR IN COMBAT MODELING, 
SIMULATION, AND ANALYSIS 

 
I. Introduction 

 

The purpose of this research is to explore the mechanisms by which uncertainties in 

combat should be incorporated in a comprehensive analysis via modeling and simulation. 

Existing approaches within the defense community for incorporating uncertain elements into 

simulation studies are ad hoc with a significant number of tools that do not facilitate straight 

forward exploration of system uncertainty. This problem is further compounded by the fact 

that there are multiple overlapping simulation toolsets which, having been individually 

developed by domain experts (aeronautics, signatures/sensing, communications, etc.), each 

have slightly different representations of entities and environmental factors. This research 

addresses the treatment of uncertainty and modeling error by leveraging Evidence Theory as a 

framework to combine multiple, potentially conflicting sources for simulation factor settings 

and represent the uncertainty these inputs induce on simulation output.   

Modeling and simulation has been applied to a wide variety of challenging problems in 

research, commercial industry and government. While drawbacks include lengthy development 

time, software licensing fees and limited pools of qualified practitioners, it is particularly well 

suited to problems where 1) experimentation with the real system is prohibitively expensive 

(presumably more so than the modeling and simulation effort itself) and 2) there is no other 

way in which to reasonably conduct the desired experiments. In the Department of Defense 

(DoD), models of combat have been employed by systems and operations research analysts 
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since the 1960’s for exploring possible outcomes of hypothetical military conflict (Davis, 1995). 

The fidelity of these models has ranged from simple mathematical relationships describing 

attrition between two opposing forces (Lanchester, 1914) to high fidelity operator or hardware 

in the loop simulations for exploration of detailed system configuration changes (Haase, 2014). 

Over time the employment of combat simulations has expanded within the DoD including uses 

in operations planning, requirements analysis, operational test and training. 

Due to the infrequent and competitive nature of combat, several challenges present 

themselves when developing a predictive simulation. First, there is limited data with which to 

validate such analysis tools. While it is possible to validate individual pieces of a combat 

simulation, such as the radar performance of a platform, to assess the integration of all mission 

aspects against specific threats is a much more significant effort. Attempts have been made to 

validate combat models in aggregate with historical data (Schramm, 2012), but this is of little 

value as the models themselves require heavy modification to incorporate modern or future 

forces, requiring further validation. Secondly, there are many aspects of combat modeling that 

are highly uncertain and not knowable (an unresolvable uncertainty (Bankes, 1993)), such as 

the exact tactics, techniques and procedures of an adversary force in response to a blue force 

strike.  

Recognizing these issues, Dewar (1996) developed a topology of uses of distributed, real 

time simulations, shown in Figure 1, which delineated between strongly predictive and weakly 

predictive uses of these simulations. Strongly predictive models are described as having a 

demonstrated capacity to forecast outcomes with a high degree of accuracy. Examples of these 

types of models include engineering or physics based models to predict part life, strength, 
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fatigue characteristics, etc. Alternatively, weakly predictive models suffer from moderate to 

high levels of parametric, structural or other uncertainties. Yet, the model still captures enough 

of the critical elements of the system under study to be useful in exploratory analysis. Millar 

(2016) extended this idea, arguing that the taxonomy applied to combat models in general. Due 

to the uncertainties described above, models of combat, to include Live-Virtual-Constructive 

simulations (LVCs), are generally considered weakly predictive simulations and thought to be 

most appropriately used for exploratory purposes. 

 

 
Figure 1: Logical Uses of the Distributed Interactive Simulation (DIS) System (Dewar, 1996) 

 

An alternate philosophy with respect to use of weakly predictive models can be found in 

the weather and climate forecasting community. There are many models that predict the 

weather or climate activity in existence. The issue is that individually, these models are not 

accurate enough to be useful (Tebaldi, 2007). Each model includes different representations of 
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the underlying physics, different assumptions on initial conditions, and thus different strengths. 

Fortunately, when these individual models are used in aggregate (referred to as a multi-model 

ensemble) they become sufficiently accurate for use in predicting the weather on the local 

news broadcast. Ensemble aggregation techniques range from simple averages across the 

simulation responses, to more sophisticated techniques, like Bayesian model averaging (Ajami, 

2007). 

There are significant differences between models of climate phenomena and models of 

combat. Chief among these is a source of validation data with which to compare the ensemble 

and individual model performances. Lacking this data for combat, it still may be useful to 

further consider the idea of employing multiple models of a similar combat situation and 

leverage the various sources of responses for either evaluating internal consistency of the 

ensemble or obtaining explicit bounds that incorporate various modeling perspectives. In the 

same way that the inadequacy of individual weather models can be overcome through an 

ensemble approach, the uncertainties and errors within combat simulations could be mitigated 

through the use of a plurality of models.  

Since there is limited data for combat model validation, the techniques for aggregation 

in multi-model ensembles for weather forecasting are not appropriate. There would be no way 

to confirm that the aggregated ensemble provides any predictive improvement over any 

individual simulation response. But the point here is not to make weakly predictive models 

strongly predictive models, but to improve the insight gained through a modeling and 

simulation activity. The most appropriate use of data from an ensemble of similar mission level 

effectiveness assessments may be to check for the internal consistency among them. This 
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would yield insight into the overall sensitivities of the system with respect to multiple modeling 

choices. In a setting where multiple, similar mission level modeling and simulation studies are 

being executed, this approach would also provide some quantitative backing to the aggregation 

methods, which are typically the synthesis of reports by a trusted agent of the decision maker. 

One drawback of this approach might be the perceived additional cost of having to pay 

for multiple analyses of the same combat scenario. However, it is important to keep in mind the 

financial cost of choosing the wrong alternative due to unexplored uncertainties associated 

with modeling choices. Also, even in the current budget conscious environment, the DoD often 

pays for the same analysis multiple times without any thought for how the results might be 

cohesively integrated. At a recent review the schedule for a development planning effort was 

presented. Included in the schedule were three different mission level assessments of similar 

concepts against the same threat, with three different performing organizations, using three 

different modeling and simulation software packages. While it appears this was planned 

haphazardly, with program managers and engineers making use of available resources, it could 

point to the programmatic feasibility of implementing an approach where multiple similar 

assessments are commissioned and then quantitatively explored for discrepancies or 

identification of bounds in the face of uncertainty. 

There is a growing body of work in applying Evidence Theory as a framework for 

systematic exploration and quantification of uncertainty in modeling and simulation. 

Applications can be found in fields where there is near zero fault tolerance and uncertainty 

exists within the system, such as space launch and nuclear power plant design (Oberkampf, 

2002). Evidence Theory differs from probability theory in that likelihood is assigned to sets (i.e. 
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a range of parameter values) instead of being assigned to a probability density function. By 

explicitly defining ranges of uncertain input parameters and propagating them through a 

model, Evidence Theory bounds the true cumulative density function for a response by 

empirically developed cumulative plausibility functions (CPF, upper bound on probability) and 

cumulative belief functions (CBF, lower bound on probability) (Figure 2). Other methods within 

Evidence Theory allow for a quantification of the “conflict” among varying sources of 

information. 

 

 
Figure 2: Depiction of Evidence Theory Bounds on CDF (Oberkampf, 2002)  

 
1.1 Research Contributions 

This research develops a comprehensive set of techniques for the treatment of 

uncertainty and error in combat modeling and simulation analysis. This approach enables the 

analyst to reconcile multiple and potentially conflicting perspectives, quantitatively. The 

following are a summary of the primary research contributions described within: 
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1) Demonstration of Evidence Theory as a framework for representation of 
epistemic uncertainty in combat modeling; 
 

2) A novel procedure for sensitivity analysis of the uncertainty in modeling and 
simulation output with respect to several epistemically uncertain factors; and 

 
3) Development of a method to prioritize the impact of modeling choices (or error) 

on simulation output uncertainty in settings where multiple models are 
employed in a similar context. 

 

1.2 Outline of the Dissertation 

This dissertation was prepared in k-paper format. It begins with an overarching 

literature review of combat modeling and methods of uncertainty quantification. Examples 

from the weather modeling and nuclear system safety are explored and compared with 

proposals for analysis of uncertainty in combat modeling and simulation.  

The next three chapters were designed to be completely severable, documenting three 

distinct contributions to the field of combat modeling and analysis of uncertainty. Each of these 

articles includes an introduction, complete literature review, methodology, results and 

discussion, and conclusion section.  

The first article demonstrates Evidence Theory as a framework for representing 

epistemic uncertainty in combat modeling output. This approach unifies the analysis of 

uncertainty in combat modeling with modern approaches to uncertainty analysis and provides 

a direct mapping of input uncertainty to uncertainty in the distribution of simulation output. To 

provide context for the Evidence Theory analysis, a traditional approach was employed in 

assessment of uncertainty of Blue minus Red residual forces in a Lanchester model of conflict. 

The results of both analyses were compared and contrasted.    
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In the second article, a new method for sensitivity analysis of uncertainty in Evidence 

Theory was developed. This sensitivity analysis method generates marginal CPFs and CBFs and 

prioritizes the contribution of each factor by the Wasserstein distance (also known as the 

Kantorovich or Earth Mover’s distance) between the CBF and CPF. Using this method, a rank 

ordering of the simulation input factors can be produced. This method is less susceptible to ties 

when there are large uncertainties in outcomes with respect to the variables compared to 

existing approaches in the literature.  

The third article builds on the first two and uses Evidence Theory to prioritize the impact 

of error or modeling choices on simulation output uncertainty in settings where multiple 

models are employed. This analysis provides insight into the overall sensitivities of the system 

with respect to multiple modeling choices. The new method does not make weakly predictive 

models strongly predictive, but provides a mechanism for reconciling a plurality of modeling 

perspectives during a simulation activity.  
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II. Literature Review 
 

2.1 Development and Use of Combat Models 
 

Models of combat have been employed by systems and operations research analysts 

since the 1960’s for exploring possible outcomes of hypothetical military conflict (Davis, 1995). 

The fidelity of these models has ranged from simple mathematical relationships describing 

attrition between two opposing forces (Lanchester, 1914) to high fidelity operator or hardware 

in the loop simulations for exploration of detailed system configuration changes (Haase, 2014). 

Over time the employment of combat simulations has expanded within the DoD including, 

operations planning, requirements analysis, operational test and training. While each of these 

applications are important, of particular interest for this document, are the class of models 

used to support requirements analysis. 

 

2.1.1 The Hierarchy of Combat Models 
 

In the U. S. Department of Defense (DoD), combat models are frequently categorized into 

campaign, mission, engagement and engineering levels of fidelity (see Figure 3). Of primary 

concern in this paradigm, is the tradeoff between scope of the modeling effort and the fidelity 

with which entities and their interactions are represented. In general, as models move up the 

pyramid from engineering to campaign level analysis, the level of aggregation increases and the 

of combat processes are represented with less resolution (or fidelity). The key for the analyst is 

in appropriately choosing a model that best addresses the decision maker’s question.  
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Figure 3: Combat Modeling Hierarchy (Miller, 2016) 

 

Outside the military domain, model aggregation techniques have been widely applied 

for commercial purposes. Examples were found in transportation (Lee, 2004), ecology (Wu, 

2002), materials science (NRC, 2008) and the electronics industry (Zhao, 2002). The aggregation 

methods in these fields were often defined by simple relationships, such as aggregating 

roadways that run in similar directions into a single “road”, or defined by physics based 

relationships, such as in materials processing.  

Rodriguez (2008) provides an overview of statistical techniques for aggregation and 

disaggregation in combat modeling and simulation. Performance of each statistical technique 

was compared against the full model (no aggregation). Use of fitted distributions or artificial 

neural networks were not recommended and other statistical modeling methods produced 

statistically similar results as the full model. The authors also acknowledged that non statistical 

factors may be as important as statistical factors in choosing an appropriate aggregation 

method, such as comprehensibility and skill and comfort of the analyst with the technique. 
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2.1.2 Live-Virtual-Constructive Modeling and Simulation 
 

An alternate taxonomy of DoD combat simulations is the Live-Virtual-Constructive (LVC) 

paradigm. Live simulations are the class of simulations where real people operate real 

equipment. An example of this would be in test where a real pilot in a real aircraft flying against 

synthetic, computer generated targets. In a virtual simulation, real people operate simulated 

systems or simulated people operate real systems. This is the class of simulation most 

frequently associated with the LVC paradigm and crew familiarization and training are classic 

examples of these activities. In the case where simulated people operate simulated systems, 

these exercises are referred to as constructive simulations. The operations research community 

within the DoD considers these analytic simulations and many variants have been developed 

across the engagement, mission and campaign levels of fidelity. Some prominent examples 

include THUNDER, STORM, Brawler, and Suppressor. 

LVC exercises typically involve multiple geographically separated simulators connected 

via a network. Flexible communication protocols have been developed over time to ensure the 

vast array of assets intended for use in LVC simulations can adequately communicate. Popular 

communications protocols in the LVC community include; the Test and Training Enabling 

Architecture (TENA) (TENA, 2017), Distributed Interactive Simulation (DIS) (IEEE, 2012) and High 

Level Architecture (HLA) (IEEE, 2000). Each of these standards has a core set of definitions 

which specify the data to be transmitted across the network, the frequency with which to 

transmit, and standards for handling entity to entity interactions (e.g. kill removal). Choice of 

protocol is typically dependent on level of consistency required across the simulation network 

nodes, with HLA typically employed in situations requiring high levels of shared state 
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consistency and TENA applied in Live situations where no guarantees can be made about state 

consistency. Details on each of these protocols can be found in their respective specifications 

(TENA, 2017; IEEE, 2012; IEEE, 2000). 

As each of the independent nodes in an LVC exercise must process data across the 

network, discrepancies may occur from site to site regarding the true state of the simulation 

(Millar, 2016). To mitigate this outcome, software engineers can adjust the frequency with 

which updates are sent to other players. These actions result in increasing overall network 

traffic and processing burden on the simulators, potentially degrading the experience of the 

human operator as the simulation software begins to process data slower than real time. This 

phenomena is called the consistency-throughput tradeoff and has been studied extensively in 

the context of DoD LVC events (Sandeep, 1999; Hodson, 2009).  

 

2.2 Uncertainty in Combat Modeling and Simulation 
 

2.2.1 Categories of Uncertainty 
 

The distinction between uncertainty, variability and error in a modeling and simulation 

study has not been consistently employed within the vocabulary of the analytical community. A 

useful framework for discussing variability and error in a modeling and simulation study was 

proposed by Oberkampf (2002). This framework proposes two kinds of uncertainty and the 

notion of error within a modeling and simulation context that are akin to the colloquial use of 

the terms uncertainty, variability, and error. Using their definition, aleatory uncertainty 

“describes the inherent variation associated with a physical system or environment under 

consideration” (Oberkampf, 2002:334). This could be thought of as the defect rate in a 



 

 

13 
 

manufacturing process, where the same physical processes occur repeatedly, yet each part 

does not come off the production line exactly to specification. Similar terms for aleatory 

uncertainty include variability, stochastic variability, or irreducible uncertainty. A second 

category of uncertainty, epistemic uncertainty, was defined as “the potential deficiency in any 

phase or activity of the modeling process that is due to lack of knowledge” (Oberkampf, 

2002:334). This category is difficult to conceptualize in most process flow modeling and 

simulation contexts where any potential epistemic uncertainty could be resolved by simply 

inspecting the process as it occurs. Epistemic uncertainty does manifest in the materials science 

and engineering realm, where certain model parameters would require materials testing at high 

temperatures and current methods preclude collecting this data. 

These two types of uncertainty are related in that their impact manifests as either 

simulation output variation or unquantified decision risk. It’s easy to see how a simulation 

process that includes some representation of the aleatory uncertainties results in variation in 

simulation output through replication, either within run or run-to-run. Epistemic uncertainties 

can also induce variation in simulation output if assumptions regarding unknown aspects are 

enumerated and relevant inputs varied within the study. Of more concern is when epistemic 

uncertainties are not explicitly varied within a simulation, providing no insight into the 

sensitivity of simulation responses to assumptions for the analyst, resulting in unquantified 

decision risk. It is likely that the systematic varying of assumptions associated with epistemic 

uncertainties will not cover all unique possibilities, but at least relative impacts can be 

identified and presented to the study stakeholders to qualitatively include in their 

deliberations.  
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The popular terminology typically stops at this point with variability commonly referring 

specifically to aleatory uncertainty and uncertainty to epistemic uncertainty. There is a third 

useful distinction to make alongside the two types of uncertainty that classifies cases where 

choices in model abstraction and software implementation have an appreciable impact on the 

form of the simulation. In the manufacturing example, the modeler could choose to implement 

their simulation with either discrete event or agent based perspective. This decision, a choice 

made in the process of abstracting the physical system for simulation, can change decisions 

made based on modeling and simulation analysis in either a satisfactory or unsatisfactory 

fashion. In this case, the effect on simulation output due to the selected modeling paradigm is 

related to neither the natural variability of the process or elements that are unknowable 

regarding the system under study. To account for this scenario, Oberkampf (2002) proposes the 

concept of simulation error. They define simulation error as “a recognizable inaccuracy in any 

phase or activity of modeling and simulation that is not due to lack of knowledge” (Oberkampf, 

2002:334). Unfortunately this has the connotation that someone has done something “wrong”, 

which may not be the case. While unacknowledged errors are the term that describes errors 

made by the modeler, of more interest for this discussion are the acknowledged errors or 

errors resulting from an intentional effort in the system abstraction or simulation 

implementation process. The impact of error in a simulation study results in biased simulation 

output or explainable deviation from “truth”. In a similar fashion to both epistemic and aleatory 

uncertainty, certain forms of error could be systematically explored to identify sensitivities to 

choices by the analyst. 

 



 

 

15 
 

2.2.2 Traditional Methods for Analysis with Uncertainties 
 

Techniques have been developed to identify drivers of response variation and reduce 

the width of confidence intervals to improve mean estimates for comparing two systems and 

improve discriminatory capability such as; paired t-test, common random numbers, antithetic 

variates, control variates, etc. For detailed procedures on executing these techniques, see (Law, 

1999) or (Banks, 2010).  

More recent work has focused on assessment of the overall effect of input uncertainty 

on simulation output. Typically input distributions for simulation execution are “fit” based on 

empirical data, and reduced to a closed form distribution to make simulation implementation 

simple. Since these inputs are based on processes which are not guaranteed to specify the true 

distribution, there is uncertainty in selection of distribution family and input parameters. Since 

there are many such inputs in a typical simulation study, methods to identify the inputs with 

largest impact are desirable. In Ankenman (2012), a random-effects model was employed to 

estimate the ratio of input uncertainty relative to the standard error of the model. This idea is 

extended in Song (2013), by developing a direct model of the variance contributors based on 

variation in simulation response and an optimal run allocation for estimates of the marginal 

variances.  

 

2.2.3 Uncertainty in an LVC Context 
 

In the context of LVC, of particular interest to the DoD analytical community are the 

uncertainties and errors associated with distributed, real time simulation exercises. The primary 
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components of an LVC can be broken down into three categories; 1) the computerized 

simulation players, 2) the human and 3) the distributed simulation network (Figure 4).  

 

 
Figure 4: Architecture of an LVC Exercise (Adapted from (Hodson, 2014)) 

 

If a particular distributed, real time simulation exercise contained a live system or actual 

operational flight programs (OFP), they would be assumed to have the effect of reducing the 

uncertainty and error associated with the system representation. This assumes that the live and 

OFP systems are deterministic, the same input yields the same output. Humans are not 

deterministic, and this is the reason why they are called out as a separate domain of 

uncertainty and error.  

The computerized simulation players include any aircraft simulator, but not the human, 

and any constructive player, to include player behaviors and logic, in the simulation 

environment. The uncertainties and errors associated within this domain would be similar to 

those associated with a purely constructive simulation of combat. These could include 

uncertainties in opposing force capabilities, size, and deployed location. Any one of these could 

be categorized as parametric, structural, resolvable or unresolvable.  

If there was an explicit treatment (i.e. systematic exploration and changing of 

assumptions) of the identified uncertainties within this portion of the overall simulation, 

(1) (2) (3) 
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summary statistics (mean and variance) or confidence intervals of simulation responses could 

be captured and exploited for analysis. Techniques developed for constructive simulations to 

identify drivers of response variation (Ankenman, 2012; Song, 2013) or to improve mean 

estimates for comparing two systems (Banks, 2010; Law, 1999), are not practical for distributed 

simulation. These issues arise in an LVC as the software is either not centrally controlled or 

readily modifiable to accommodate these techniques, and there are small numbers of runs and 

highly correlated output (see Table 1). 

 

Table 1: Summary of Sources of Uncertainty and Error in Modeling and Simulation Exercises 

 
 

Additionally, in combat modeling there are significant uncertainties associated with lack 

of knowledge of the system, resulting in decision risk. There are no simple statistical techniques 

Resulting Manifestation Analysis Artifacts  Compensation Methods
Computerized Simulation Elements

- Lack of knowledge/data of 
underlying physical system

- Decision risk - Stochastic inputs - Assessment of input uncertainty 
(i.e. Song and Nelson)

- Stochastic variability - Variation in simulation responses - Confidence 
intervals, mean, variance

- Replications

- Configuration 
management/matched 
fidelity

- Choices in abstraction - Design of experiments

- Paired t test, antithetic variates, 
control variates, hypothesis 
testing

Human-in-the-Loop
- Learning effects - Non independent and identically 

distributed observations
- Correlated response data - Experimental planning

- Operator availability - Limited replications - Inputs map to multiple 
responses

- Design of experiments

- Lack of repeatability - Small sample sizes - Bootstrapping

Network Effects
- Uncontrolled processing of
data

- Unverified events (non plausible 
outcomes)

- Inconsistent 
entity state data

- Manual data review

- Finite capacity - "White cell" adjudication
- Qualitative apriori verification

Source
Summary of Sources of Uncertainty and Error in Modeling and Simulation
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to reduce the risk associated with “unknown unknowns” (or “known unknowns”), outside of 

conducting experiments across a wide range of threat scenarios or excursions. 

Two unique sources of uncertainty and error in distributed, real time simulations include 

the human operator in a virtual setting and the computer network that connects the players. 

The employment of a human operator as part of the simulation system injects aleatory 

uncertainty into the exercise due to the poor repeatability reported in LVC exercises. This 

requires the analyst to develop strategies to combat learning curve effects, low numbers of 

replications, and difficult to randomize experiments. The resulting data from these exercises 

cannot be assumed to be independent and identically distributed (iid), and is likely highly 

correlated. This leaves employment of common techniques that assume iid output suspect. The 

limited availability of representative operators in conjunction with learning curve effects limits 

the number of runs that can be practically or usefully run. There are many studies published in 

the literature that highlight these issues (Haase, 2014; Gray, 2007; Hodson, 2014). Most point 

to rigorous experimental planning as the best way to combat the effects of having a human 

operator as part of the simulation system, but there is limited guidance on the topic. 

 

2.2.4 Methodologies for Addressing Uncertainty in Combat Modeling 
 

One approach to addressing the weakly predictive nature of combat models is 

employment of multiresolution, multiperspective modeling. This, as described by Davis (2000), 

is a family of models that describe similar phenomena at varying levels of resolution. A key 

feature of the proposed modeling system would be that the family is consistent or mutually 

calibrated within itself. This is in contrast with the current family of Air Force modeling and 
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simulation tools which were not designed to be integrated from the outset and require 

significant effort to do so.   

An example of the implementation of multiresolution, multiperspective modeling was 

discussed in (Davis, 2000). The analysis task was assessing the effectiveness of long range fires 

in interdicting an invading land force. A multiresolution, multiperspective model called PGM 

Effectiveness Model (PEM) was developed to assess the operational scenario, but was 

calibrated based on results from legacy models JANUS and MADAM. Due to the differences in 

fidelity and scope across JANUS, MADAM and PEM, a large effort to reconcile the output across 

the three models was required. Because of this additional (and non-simulation) effort, 

significant insight was gained in the post simulation reconciliation which clarified insight for the 

decision maker.  

In a similar vein, a National Academy of Science study advocated for a “multi-resolution 

analysis” approach to support the Air Force intelligence, surveillance and reconnaissance (ISR) 

Capability Planning and Analysis process (NAS, 2012). This proposed framework is intended to 

integrate elements of network analysis, sensor physics, cost analysis, operational analysis tools, 

and mission effectiveness analysis (Figure 5).  
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Figure 5: Air Force ISR Multi Resolution Analysis Process (NAS, 2012) 

 

The intent of the multi-resolution analysis framework is to provide a rigorous 

foundation to early acquisition decisions for ISR. Current incarnations of the process include 

some procedures for identifying and exploring uncertainties and advanced experimental design, 

but commonly operate with a single constructive mission level modeling and simulation tool. 

 Wright (2004) presented a method for utilizing two radically different modeling 

paradigms for analysis of strategic airlift. The first model was a simulation of cargo flow from on 

load to offload point with explicit representation of the number of aircraft, routes, air based 

infrastructure, and other resources.  The second model was a large-scale linear program with 

side constraints, which was initially developed to assess fleet adequacy and for use in 

identifying system bottlenecks. While these models share common elements, the 

representation of the real system is different for each model. For example, the simulation 

models event durations as random variables while the optimization employs mean values for 
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these quantities. The proposed framework assessed the convergence of these model outputs 

based on iteratively modifying the individual models with the goal of reducing discrepancies 

between them. When the models were sufficiently close in output, they were considered 

covalid. 

 

2.3 Design, Development, and Analysis of Model Ensembles 
 

In the weather domain, seasonal forecasts have been shown to have better predictive 

capability when several independent models are combined, commonly referred to as a multi-

model ensemble (Tebaldi, 2007), than when the individual predictions of those models are 

taken alone. There are several domain specific phenomena that contribute to the difficulties 

with single model analyses and the success of multi-model approaches, some of which are 

(Palmer, 2004): 

o The physics of weather is well understood, but the phenomena are chaotic and 
models are sensitive to initial conditions 

 
o Solutions to the partial differential equations that describe weather phenomena 

must be reduced to analytically tractable forms, which introduces computation 
error in final solutions 

 
o There are numerous ways to implement approximations of the underlying 

physics and numerical approximations 
 

o There is no underlying framework from which a pdf of model uncertainty can be 
estimated. 

Developers of multi-model ensembles must consider both the number and composition of 

models within the ensemble as well as the method of data aggregation and assessment of 

ensemble predictive skill.  
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Multi-model superiority is not only due to error compensation, but primarily by its 

improved constancy and reliability across the entire predictive region (Hagedorn, 2005). A 

particular ensemble may not be the best model at each point within the predictive region, but 

generally outperforms any given individual model over the full range of cases. The success of 

multi-model methods in the weather community has led to the development of analogous 

approaches in prediction of disease outbreak (Morse, 2005) and rainfall runoff (Ajami, 2007).  

 

2.3.1 Ensemble Construction 
 

The analysis of multi-model ensembles rely on the principle that the component models 

are structurally independent from each other (Palmer, 2004). Otherwise, specific bias may be 

overrepresented (or underrepresented) in the ensemble and have an outsized impact on the 

aggregated results. This ensemble property is not necessarily knowable and ignored in practice 

(Hagedorn, 2005) with suitability of results a product of the validation process. Independence 

of a multi-model ensemble is often taken to be implied by the fact that various groups have 

independently developed their own models, and it follows that their construction methods 

were not influenced by others development efforts. These variations in model physics and 

numerical computation methods play a substantial role in generating the full spectrum of 

possible solutions. 

Along with independence of the component models, the aggregator must also manage 

the number of models within the ensemble. Larger ensemble sizes are generally considered 

better, with widely used climate models reporting between 7 (Palmer, 2004) and 11 members 
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(Kirtman, 2014). Research has shown that predictive skill scores grow faster with ensemble size 

when membership is less than 30, and saturates with large numbers of members. 

 

2.3.2 Statistics of Aggregation 
 

Data aggregation techniques for analysis of multi-model ensemble output range from 

simple averages to more advanced Bayesian techniques. Model output can vary from model to 

model in terms of variation (or range) and mean. The impact of modeling decisions can change 

either of these features, changing the variation of the output or inducing bias in the response. 

Using historical climate data, it is possible to correct for systematic spatial shifts of each model 

within the ensemble (Doblas‐Reyes, 2005). Canonical correlation analysis and variance inflation 

techniques have both been demonstrated to enhance the reliability of multi-model forecasts. 

The simplest implemented multi-model forecast is developed by combining individual 

contributors with equal weight (Hagedorn, 2005; Kirtman, 2014). Extensions of this procedure 

with optimal weights developed for each contributor based on historical prediction capability 

have been developed, but it has proved difficult to calculate robust weights with the available 

training datasets. Methods that only output the grand mean lose the information associated 

with the differences in variation across models, motivating probabilistic techniques for data 

aggregation (e.g. Bayesian model averaging, etc.). 

 

2.3.3 Assessment of Skill 
 

Verification and validation of multi-model ensembles face similar issues as any other 

modeling and simulation activity. An identified key to success lies in combining independent 
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and skillful models each with their own strengths and weaknesses (Hagedorn, 2005). Tebaldi 

(2007) outlines several key processes for verification and validation of model ensembles, to 

include a comparison of ensemble prediction to historical data, evaluation of theoretical 

correctness of individual model behavior, and perceived trust of the model. Generally, most 

climate models agree reasonably well with present day mean climate, but many diverge 

significantly in predictions of future climate. 

To aid in the validation process, Palmer (2004) developed a modular verification system, 

comprised of various indices of predictive skill with metrics for both deterministic and 

probabilistic (output is distribution of outcomes) simulations. Deterministic validation metrics 

included anomaly correlation coefficient, root mean square skill score, and mean square skill 

score (Hagedorn, 2005). Probabilistic simulation skill is assessed with reliability diagrams, ROC 

skill score, Brier score, and ranked probability skill score, among several others. Issues with 

validation of probabilistic forecasts beyond those associated with a deterministic simulation 

include; improper estimates of probabilities from small-sized ensembles, insufficient number of 

forecast cases, and imperfect reference values due to observation errors (Doblas‐Reyes, 2005). 

The choice of best ensemble is sensitive to choice of model output (metric) and skill 

assessment method (Hagedorn, 2005), with no single measure being sufficient for comparing 

forecast quality across all possible ensembles (Doblas‐Reyes, 2005). Skill scores have been 

demonstrated to grow faster with ensemble size when membership is less than 30, saturates 

with large numbers of members (Palmer, 2004),  and multi-model ensembles have been shown 

to be systematically more skillful especially, when scores are averaged over large regions or 

long periods of time. 
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2.3.4 Criticisms 
 

Tebaldi (2007) offers several criticisms of employment of multi-model ensembles. One 

was the notion that the performance of a forecast improves by averaging multiple models is 

based on the assumption the models are independent and that the errors cancel as the 

averages are taken. Since many models in the weather community are based on a similar 

understanding of the physics of weather, they are related at some level, thus not truly 

independent and biased.  

Second is that model ensembles are often assembled out of convenience (Tebaldi, 

2007), with no systemic approach to sampling models for the ensemble. This can lead to 

unexplainable changes in predicted performance by swapping out models in an ensemble. 

Stated another way, there is no practical guarantee that all model uncertainties are accounted 

for (and suitably independent) within a given multi-model ensemble (Kirtman, 2014) and 

additional models may change the aggregated results. 

 

2.3.5 Applications  
 

Both American (Kirtman, 2014) and European (Palmer, 2004) multi-model ensembles 

have been successfully developed to aid in developing accurate climate forecasts. Typical 

output of these systems includes sea surface temperature, two mile temperature and 

precipitation rates, with aggregation occurring via simple averaging techniques. The component 

models’ configuration, resolution, etc. are left to the forecast providers and not centrally 
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managed by the aggregator. Each of these ensembles have demonstrated smaller prediction 

errors than any of their individual contributors over the full range of experimental conditions. 

Bayesian methods have been demonstrated as a technique for analysis of multi-model 

ensembles of climate characteristics. Smith (2009) developed a Bayesian framework as an 

objective method of quantifying output uncertainty in a multi-model ensemble using 

uninformative priors. In a similar vein, Tebaldi (2005) developed a Bayesian approach with 

hyperprior distribution parameters to assess the inter-model agreement of regional 

temperature predictions. This approach was used to generate univariate regression models of 

temperature change for each individual region and a multivariate regression model where the 

response was the vector of all regions’ temperature change.  

Another use of multi-model ensembles was found in Ajami (2007), where Bayesian 

model averaging was used to create a multi-model ensemble for prediction of rainfall run-off. 

Bayesian model averaging is a technique that weights the individual models by the likelihood 

that the model matches a comparison metric. The comparison metric could be historical data or 

a baseline model that is used as a cross validation source. Ajami (2007) built a model ensemble 

comprised of three hydrologic models and performed a validation based on historical data. It 

was found that the model ensemble improved the number of empirical observations that were 

within a 95% confidence interval of the model estimate by over 300% (from a maximum 22% 

capture to 76.3% capture). 
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2.4 Evidence Theory  
 

There is a growing body of work in applying Evidence Theory, also known as Dempster-

Shafer Theory, as a framework for systematic exploration and quantification of uncertainty in 

modeling and simulation. The theory was first introduced by Dempster (1967) and later codified 

by Shafer (1976). Applications can be found in fields where there is near zero fault tolerance 

and uncertainty exists within the system, such as space launch and nuclear power plant design 

(Sentz, 2002). Evidence Theory differs from probability theory in that likelihood is assigned to 

sets (i.e. a range of parameter values) instead of being assigned to a probability density 

function. By explicitly defining ranges of uncertain input parameters and propagating them 

through a model, Evidence Theory bounds the true cumulative density function for a response. 

There are three key functions in Evidence Theory; the basic probability assignment function 

(bpa or m), the Belief function (Bel) and the Plausibility function (Pl).  

In general the basic probability assignment is not equivalent to probability as discussed 

in classical probability theory (although connections exist (Sentz, 2002)). Similarly to classical 

probability theory, the basic probability assignment is a mapping of all sets (X, the power set) to 

the interval [0, 1] and the sum of all assignments across subsets is 1. Formally, this is 

represented as: 

 

 𝑚𝑚:𝑃𝑃(𝑋𝑋) → [0, 1]   (1) 

 𝑚𝑚(∅) = 0 (2) 

  ∑ 𝑚𝑚(𝐴𝐴)𝐴𝐴 ∈𝑃𝑃(𝑋𝑋) = 1 (3) 
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Using this basic probability assignment, upper and lower bounds for an interval can be 

calculated. The lower bound (or Belief), for a set A (subset of X), is the sum of all basic 

probability assignments of the proper subsets (B) of the set of interest (A).  

 

 𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) =  ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵|𝐵𝐵 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐴𝐴    (4) 

 

The upper bound (or Plausibility) is the sum of all the basic probability assignments of the sets 

(B) that intersect the set of interest (A). 

 

 𝑃𝑃𝑃𝑃(𝐴𝐴) =  ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵|𝐵𝐵 ∩ 𝐴𝐴 ≠ ∅    (5) 

 

2.4.1 Types of Evidence 
 

There are many ways to combine evidence from multiple different sources in Evidence 

Theory, but the key to appropriately applying the right combination rules is determining the 

type of evidence being combined. Sentz (2002) identifies four types of evidence, with varying 

levels of conflict: consonant, consistent, arbitrary, and disjoint. 

 Consonant evidence is a collection of nested sets of data where the elements of the 

smallest set are included in the next larger set, which is included in the next largest set, etc. 

(Sentz, 2002) (see Figure 6).  
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Figure 6: Consonant Evidence 

 

Consistent evidence is the situation where at least one set is common to all other sets 

(Sentz, 2002). This is illustrated in Figure 7, where set A is a subset of each other set B, C, D and 

E. 

 

 
Figure 7: Consistent Evidence 

 

Arbitrary evidence is the situation where there is no set common to all subsets (Sentz, 

2002). This is illustrated in Figure 8, where there are clearly subsets that overlap but no set is 

common to all other sets. 
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Figure 8: Arbitrary Evidence 

 

Disjoint evidence corresponds to the situation where no two sets overlap (Sentz, 2002) 

(see Figure 9). 

 

 
Figure 9: Disjoint Evidence 

 

 As is apparent from inspection of Figures 6 through 9, each configuration of evidence 

results in a different level of conflict across the available evidence. In the condition where the 

evidence is disjoint, the level of conflict is relatively high. Where in the case of consonant 

evidence, all sets share a common set, indicating relatively lower conflict. Consistent and 

arbitrary set configurations would exhibit a varying level of conflict, depending on the situation. 

These would conceivably exhibit levels of conflict between disjoint and consonant evidence.  
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2.4.2 Rules of Combination 
 

The rules of combination in Evidence Theory allow data to be aggregated across 

multiple, potentially conflicting sources within a common frame of discernment. For the 

simulation context discussed in this research, these sources could be input for a common 

parameter from a variety of subject matter experts (SMEs), a set of epistemically uncertain 

inputs for an individual model, or the individual models in an ensemble.  This process assumes 

that the sources are independent (Shafer, 1976), however this requirement is not rigorously 

established in practice (Tebaldi, 2007). There are many rules for combining parameter 

estimates in Evidence Theory, the key to providing credible insight in a given analysis is to 

understand or choose how conflict between sources should be considered. A survey of relevant 

combination rules is provided below.    

 Dempster’s combination rule was the original combination operator that drove the 

conception of Evidence Theory (Dempster, 1967). Using Dempster’s combination rule, the basic 

probability assignments from two (or more) sources is combined with a purely conjunctive 

operation. The formal definition of this operation (𝑚𝑚12) is below: 

 

 𝑚𝑚12 =  ∑ 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶)𝐵𝐵∩𝐶𝐶=𝐴𝐴
1− 𝐾𝐾

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐴𝐴 = ∅   (6) 

 𝑚𝑚12(∅) = 0 (7) 

 where 𝐾𝐾 =  ∑ 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶)𝐵𝐵∩𝐶𝐶=∅  (8) 

 

It is important to note that this operation results in an aggregated mass only for intervals which 

overlap, giving zero mass to regions where evidence existed but did not overlap with another 
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method. The measure of non-overlapping probability mass (or conflict) is represented by the 

computation of K.  

The aggregated masses are normalized based on K to achieve a basic probability 

assignment function that resembles a probability density function from classical probability 

theory. Unfortunately, this choice can lead to counterintuitive results in situations involving 

high levels of conflict. These shortcomings are detailed in (Zadeh, 1984). Recognizing the 

potential pitfall, numerous other combination rules have been developed which account for 

level of conflict differently. 

Yager’s combination rule does not normalize the probability mass assignments by the 

degree of conflict (Yager, 1987) and distinguishes between the basic probability assignment and 

a new construct, the ground probability assignment (q). The ground probability assignment 

represents the evidence as provided, without being inflated based on conflict. As such, the sum 

of the ground probability assignments over all sets will not necessarily equal 1. The formal 

definition of the ground probability assignment is provided below: 

 

 𝑞𝑞(𝐴𝐴) =  � 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶)
𝐵𝐵∩𝐶𝐶=∅

 (9) 

 

Due to the associativity of Yager’s operator, multiple pieces of evidence can be combined 

simultaneously. This result is shown in equation (10). 

 

 𝑞𝑞(𝐴𝐴) =  � 𝑚𝑚1(𝐴𝐴1)𝑚𝑚2(𝐴𝐴2) … 𝑚𝑚𝑛𝑛(𝐴𝐴𝑛𝑛)
∩𝑖𝑖=1
𝑛𝑛 𝐴𝐴𝑖𝑖=𝐴𝐴

 (10) 
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In Yager’s construct for combining evidence, conflict is assigned to the universal set, with 𝑞𝑞(∅) 

(see equation (11)) having the interpretation of the degree of ignorance in the data. 

 

  𝑞𝑞(∅) =  � 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶)
𝐵𝐵∩𝐶𝐶=∅

 (11) 

 

Yager’s combination rule is equivalent to Dempster’s combination rule when the degree of 

conflict is zero. 

The Mixing Rule of combination is a popular mechanism for aggregation of disjunctive 

evidence (see equation (12)). This rule averages the masses (mi) associated with a particular 

interval across all i estimates (i from 1 to n). The individual estimates can be weighted based on 

reliability by the multiplier, w, where each wi is the reliability associated with the ith source. 

 
 

 

In contrast with Dempster’s Rule of combination, evidence in conflict is preserved in the 

resulting BPA. Said another way, the full range of possibilities expressed in the sources are 

represented in the final BPA. This feature is particularly beneficial where the application of 

evidence theory is not to identify the most likely distribution of a particular metric, but to 

express the full range the distribution could be. 

There are many additional rules for combining evidence, such as; Discount and Combine 

(Sentz, 2002), Convolutive x-Averaging (Sentz, 2002) (a generalization of the average for scalar 

 
𝑚𝑚1…𝑛𝑛(𝐴𝐴) =  

1
𝑛𝑛
�𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖(𝐴𝐴)
𝑛𝑛

𝑖𝑖=1

 
(12) 
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numbers), and the qualitative combination rule (Yao, 1994) (rank ordered process for 

aggregating data). 

 

2.5 Bayesian Analysis 
 

Bayesian analysis is a method of statistical inference that allows hypotheses regarding 

uncertain quantities to be updated based on observed or new information. In the frequentist 

paradigm, the uncertainty in many real word quantities are reduced to singular values, where 

they are represented as distributions with unknown parameters in a Bayesian paradigm. 

Gelman (2014) defines a three step process for any Bayesian data analysis effort: 

1. Setting up a full probability model. In this phase, a joint probability distribution is 
established for all quantities of interest in the analysis.  
 

2. Conditioning on observed data. This involves calculating the posterior distribution, 
which is the distribution of the unobserved quantity of interest conditioned on the 
observed data. 

 
3. Evaluating the fit of the model and implications of the resulting posterior distribution. 

This phase is where insight is extracted from the constructed model, reasonableness of 
conclusions are assessed, and sensitivity analysis is executed relative to assumptions 
made throughout previous steps. 

 

2.5.1 Bayes’ Rule (Gelman, 2014) 
 

The central theme of Bayesian analysis is to make probability statements about some 

quantity θ given some data y. This quantity can be expressed as the product of two different 

probability densities, known as the prior distribution (𝑝𝑝(𝜃𝜃)) and the data distribution (𝑝𝑝(𝑦𝑦|𝜃𝜃)), 

as shown below: 

 

 𝑝𝑝(𝜃𝜃,𝑦𝑦) =  𝑝𝑝(𝑦𝑦)𝑝𝑝(𝑦𝑦|𝜃𝜃) (13) 
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By conditioning on the obtained data y and applying Bayes’ rule, the expression for the 

posterior density is obtained:  

 

 
𝑝𝑝(𝜃𝜃|𝑦𝑦) =  

𝑝𝑝(𝜃𝜃,𝑦𝑦)
𝑝𝑝(𝑦𝑦)

=  
𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)

𝑝𝑝(𝑦𝑦)
 

(14) 

 

The term p(y) is a constant, as it does not depend on 𝜃𝜃 and is frequently written as:  

 

 𝑝𝑝(𝜃𝜃|𝑦𝑦) ∝ 𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃) (15) 

 

 Before the data y are collected, the probability density function of y is 

 

 𝑝𝑝(𝑦𝑦) =  �𝑝𝑝(𝑦𝑦,𝜃𝜃)𝑑𝑑𝑑𝑑

=  �𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑  

(16) 

 

This is also referred to as the prior predictive distribution as it is not conditional on the 

collected data. If inference about 𝑦𝑦� after y data have been collected is desired, the posterior 

predictive distribution is derived (see equation (17)).  
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 𝑝𝑝(𝑦𝑦|� 𝑦𝑦) =  �𝑝𝑝(𝑦𝑦�,𝜃𝜃|𝑦𝑦)𝑑𝑑𝑑𝑑

= �𝑝𝑝(𝑦𝑦�|𝜃𝜃, 𝑦𝑦)𝑝𝑝(𝜃𝜃|𝑦𝑦)𝑑𝑑𝑑𝑑

= �𝑝𝑝(𝑦𝑦�|𝜃𝜃)𝑝𝑝(𝜃𝜃|𝑦𝑦)𝑑𝑑𝑑𝑑  

(17) 

 

Using this distribution, inference about the unknown but observable quantities in an analysis 

can be made with updated quantity estimates based on observations of the process. 

 

2.5.2 Dirichlet Processes and Bayesian Histograms 
 
 

Practical application of Bayesian analysis requires the ability to compute the integrals in 

equation (16), which is not always easy or straight forward. Significant research efforts have 

been undertaken to approximate these integrals, employing Monte Carlo and/or markov chain 

methods (Gelman, 2014). Another line of research has identified convenient probability density 

functions for which simple conjugate prior distributions exist. Of specific interest to this paper is 

the analysis of simulation output, which has been turned into interval data for histogram 

comparison. This results in the simulation output being modeled as a multinomial distribution, 

where the possible outcomes are equivalent to the histogram bins. While other Bayesian 

approaches exist that may not require strict bins widths to be defined (Gelman, 2014), these 

are reserved for future research. 
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The multinomial distribution, a generalization of the binomial distribution is used to 

describe data for which each outcome is one of k discrete possibilities. Assigning y as the count 

of observations of each outcome k, then the posterior density is: 

 

 
𝑝𝑝(𝜃𝜃|𝑦𝑦) ∝   �𝜃𝜃𝑗𝑗

𝑦𝑦𝑗𝑗
𝑘𝑘

𝑗𝑗=1

 , 
(18) 

 

where the sum of probabilities, ∑ 𝜃𝜃𝑗𝑗𝑘𝑘
𝑗𝑗=1  , is 1 and is typically considered to implicitly condition 

on the number of observations, ∑ 𝑦𝑦𝑗𝑗 = 𝑛𝑛𝑘𝑘
𝑗𝑗=1 . The conjugate prior of the multinomial 

distribution is a generalization of the beta distribution, known as the Dirichlet. For which the 

probability density function is: 

 

 𝑝𝑝(𝜃𝜃|𝛼𝛼) ∝   ∏ 𝜃𝜃𝑗𝑗
𝛼𝛼𝑗𝑗−1𝑘𝑘

𝑗𝑗=1  , (19) 

 

where θj’s are greater than 0 and sum to 1. The resulting prior distribution for the θj’s is 

Dirichlet with parameters 𝛼𝛼𝑗𝑗 +  𝑦𝑦𝑗𝑗. 

 Bayesian analysis of interval data produced via simulation can be accomplished through 

the modeling as a Bayesian histogram.  Suppose a set of points ξ = (ξ0, ξ1, … , ξ𝑘𝑘) have been 

defined which identify the intervals for the histogram estimate, with ξ0 <  ξ1 <  … < ξ𝑘𝑘 and 

𝑦𝑦𝑖𝑖 ∈ [ξ0, ξ𝑘𝑘]. A probability model representation of the histogram is as follows: 
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𝑓𝑓(𝑦𝑦) =  � 1𝜀𝜀ℎ−1<𝑦𝑦≤𝜀𝜀ℎ

𝜋𝜋ℎ
(𝜀𝜀ℎ −  𝜀𝜀ℎ−1)

𝑘𝑘

ℎ=1
 

(20) 

 

with 𝜋𝜋 = ( 𝜋𝜋1, … ,𝜋𝜋𝑘𝑘) is an unknown probability vector. To complete the Bayes specification, a 

Dirichlet( 𝑎𝑎1, … , 𝑎𝑎𝑘𝑘) prior distribution for 𝜋𝜋 is assumed,  

 

 
𝑝𝑝(𝜋𝜋|𝑎𝑎) =  

∏ Γ(𝑎𝑎ℎ)𝑘𝑘
ℎ=1

Γ(∑ 𝑎𝑎ℎ𝑘𝑘
ℎ=1 )

�𝜋𝜋ℎ
𝑎𝑎ℎ−1

𝑘𝑘

ℎ=1

 
(21) 

 

The hyperparameters, π, can be expressed as a = απ0, where  

 

 𝐸𝐸(𝜋𝜋|𝑎𝑎) =  𝜋𝜋0 = �
𝑎𝑎1

∑ 𝑎𝑎ℎℎ
, … ,

𝑎𝑎𝑘𝑘
∑ 𝑎𝑎ℎℎ

� (22) 

 

a is the prior average and α is a scale parameter and interpreted as a prior sample size. 

 The posterior distribution is then calculated as: 

 

 𝑝𝑝(𝜋𝜋|𝑦𝑦)

∝  �𝜋𝜋ℎ
𝑎𝑎ℎ−1

𝑘𝑘

ℎ=1

�
𝜋𝜋ℎ

(𝜀𝜀ℎ −  𝜀𝜀ℎ−1)
𝑖𝑖:𝑦𝑦𝑖𝑖∈(𝜀𝜀ℎ−1,𝜀𝜀ℎ]

∝  �𝜋𝜋ℎ
𝑎𝑎ℎ+ 𝑛𝑛ℎ−1

𝑘𝑘

ℎ=1

  

(23) 
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Which by definition is Dirichlet(a1 + 𝑛𝑛1, … , a𝑘𝑘 + 𝑛𝑛𝑘𝑘), where 𝑛𝑛𝑘𝑘 is the number of observations 

within the hth histogram bin. This approach is an incremental step toward development of fully 

non parametric Bayesian density estimation, which is reserved as a topic for future research. 

 Starting with equation (17), the posterior predictive distribution can be derived for this 

process. 

 

 𝑝𝑝(𝑦𝑦 � = 𝑖𝑖|𝑦𝑦) =  �𝑝𝑝(𝑦𝑦�|𝜃𝜃)𝑝𝑝(𝜃𝜃|𝑦𝑦)𝑑𝑑𝑑𝑑  

                     =  �𝜃𝜃𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃|𝑁𝑁 + 𝑎𝑎)𝑑𝑑𝑑𝑑 

      =  
𝑁𝑁𝑖𝑖 + 𝑎𝑎𝑖𝑖

∑ 𝑁𝑁𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑘𝑘
𝑗𝑗=1

 

(24) 

 

2.5.3 Applications 
 

A survey of Bayesian methods in the context of discrete event modeling and simulation 

is provided in Chick (2006). These topics include uncertainty analysis, ranking and selection, 

input modeling and metamodeling. In the combat simulation domain, dynamic Bayesian 

networks were employed to analyze data created via an air combat simulation called X-Brawler 

(Poropudas, 2007). The data were input into a dynamic Bayesian network and used to study 

various courses of action within a combat situation. Kelleher (2014) developed a method using 

bootstrapping techniques to reduce the number of simulation runs required to train a dynamic 

Bayesian network as a simulation meta-model. This approach was applied to an analysis of a 

cruise missile defense scenario using the System Effectiveness Analysis Simulation (SEAS) 

simulation framework. 
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2.6 Summary 
 

Significant uncertainties prevent the development of predictive combat models. Several 

approaches have been published in the literature for proper use of combat models given these 

uncertainties. These approaches deemphasize quantitative use of simulation output and 

advocate for them as a tool for searching for regions of relative benefit. Other domains have 

employed more quantitative approaches to accounting for uncertainty. Specifically, the space 

and nuclear power communities have employed Evidence Theory as a tool for quantifying the 

impact of uncertain inputs on uncertainty in simulation output. These tools may provide a 

means for further understanding the relationships between the uncertainties in combat 

modeling inputs and the uncertainty in combat modeling outputs. 
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III. Analysis of Epistemic Uncertainty in Combat Modeling and Simulation 
 

 

 

3.1 Introduction 
 

Modeling and simulation has been applied to a wide variety of challenging problems in 

research, commercial industry and government. While drawbacks include lengthy development 

time, software licensing fees and limited pools of qualified practitioners, it is particularly well 

suited to problems where 1) experimentation with the real system is prohibitively expensive 

(presumably more so than the modeling and simulation effort itself) and 2) there is no other 

way in which to reasonably conduct the desired experiments. In the Department of Defense 

(DoD), models of combat have been employed by systems and operations research analysts 

since the 1960’s for exploring possible outcomes of hypothetical military conflict (Davis, 1995). 

The fidelity of these models has ranged from simple mathematical relationships describing 

attrition between two opposing forces (Lanchester, 1914) to high fidelity operator or hardware 

in the loop simulations for exploration of detailed system configuration changes (Haase, 2014). 

Over time the employment of combat simulations has expanded within the DoD including, 

operations planning, requirements analysis, operational test and training. 

Due to the infrequent and competitive nature of combat, several challenges present 

themselves when using simulation as a tool for analyzing combat. First, there is limited data 

with which to validate such analysis tools. While it may be possible to validate individual pieces 

of a combat simulation, such as the performance of a specific radar on a specific platform, to 

assess the integration of all mission aspects against current and future threats is a much more 
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significant effort. Attempts have been made to validate combat models in aggregate with 

historical data (Schramm, 2012), but this is of little value as the models themselves require 

heavy modification to incorporate modern or future forces, requiring their own distinct 

validation. Secondly, there are many aspects of combat modeling that are highly uncertain and 

not knowable (an unresolvable uncertainty (Bankes, 1993)), such as the exact tactics, 

techniques and procedures of an adversary force in response to a blue force strike. 

Within the combat modeling community there have been several suggestions for exploring 

uncertainties associated with the domain (Bankes, 1993; Davis, 2000; Dewar, 1996). However, 

the output of these approaches does not clearly communicate the uncertainties that are buried 

within the inputs. The purpose of this research is to improve representation of uncertainty in 

combat modeling and simulation through application of Evidence Theory. It is anticipated that 

employment of such techniques will enable rapid visualization of system uncertainties and aid 

in interpretation of simulation output.  

Applications of Evidence Theory can be found in fields where there is near zero fault 

tolerance and uncertainty exists within the system, such as space launch and nuclear power 

plant design (Oberkampf, 2002). In contrast with classical probability theory, likelihood is 

assigned to sets (i.e. a range of parameter values) instead of being assigned to a probability 

density function. By explicitly defining ranges of uncertain input parameters and propagating 

them through a model, Evidence Theory bounds the true cumulative density function for a 

response by empirically developed cumulative plausibility functions (CPF, upper bound on 

probability) and cumulative belief functions (CBF, lower bound on probability). 
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This chapter is organized into five major sections: Introduction, Background, Probabilistic 

Analysis of Epistemic Uncertainty, Analysis of Epistemic Uncertainty via Evidence Theory, and 

Conclusion. The Introduction provides a general overview of the context for the research in 

exploration and quantification of epistemic uncertainty in combat modeling. This section 

includes a brief introduction and analysis of issues in the literature and a synopsis of research 

contributions. The Background section provides a brief overview of Lanchester’s Equations and 

their history in Combat Modeling along with an introduction to Evidence Theory. Traditional 

and novel approaches to analyzing uncertainty in combat modeling are presented in the 

Probabilistic Analysis of Uncertainty and Analysis of Epistemic Uncertainty via Evidence Theory 

sections, respectively. For each, the general method, results, and discussion of efficacy are 

provided. In the Conclusions section, a summary of the research context, contributions, and 

future work are identified. 

 

3.2 Background 
 

3.2.1 Lanchester’s Equations 
 

Lanchester’s Square Law (equations (25) and (26)) were developed to model combat 

between two homogeneous forces where both forces use aimed fire, target acquisition time 

does not depend on the number of targets, target acquisition time is factored into the 

firepower coefficients, and the firepower coefficients are constant over time (MORS, 1994). 

 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −α ∗ y(t) where x(0) =  X0 (25) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −β ∗ x(t)  where y(0) = Y0 (26) 



 

 

44 
 

 

The equations model the change of a given force level (say x(t)) as a function of the opposing 

force level (y(t)) over time, given initial force sizes and estimates of the firepower coefficients. 

Using these equations, various quantities of interest can be explored, such as: who wins the 

conflict, residual forces, and duration of conflict (Figure 10).  

 

 

Figure 10: Example of Lanchester’s Model of Armed Conflict 

 

 Lanchester’s equations are appealing in part, due to their simplicity, transparency and 

ease of implementation. Combat analysts have employed them in assessments of several 

conflicts including; the Ardennes Campaign, the Battle of Kursk, and Iwo Jima (Bracken, 1995; 

Lucas, 2004; Schramm, 2012). However, there are numerous sources in the literature that 
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identify deficiencies of a Lanchester model of armed conflict (Tolk, 2012). Taylor (1983) 

consolidates these into a single list, several of which are provided below as reference: 

• No force movement 

• Not verified by history 

• No way to predict attrition rate coefficients 

• Tactical decision processes not considered 

• Battlefield intelligence not considered 

• Command, control, and communications not considered 

• Effects of terrain not considered 

• Target priority/fire allocation not explicitly considered 

• Noncombat losses are not considered  

Despite these criticisms, many variants of Lanchester’s equations have been developed. 

Extensions include incorporation of heterogeneous forces, stochastic attrition processes, 

reinforcements, logistics and maintenance and breakpoints (Tolk, 2012). In a more modern 

setting, the effects of network disruptions were represented as piecewise firepower 

coefficients (Schramm, 2012), enabling assessment of the impact of cyber effects on combat 

outcomes. Kelton (2010) describes a Lanchester model with stopping levels and stochastic 

reinforcements for both red and blue forces. This model was designed for implementation and 

analysis in the Arena modeling and simulation package.  
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3.2.2 Evidence Theory  
 

There is a growing body of work in applying Evidence Theory, and specifically Dempster-

Shafer (D-S) theory, as a framework for systematic exploration and quantification of uncertainty 

in modeling and simulation. The theory was first introduced by Dempster (1967) and later 

codified by Shafer (1976). Applications can be found in several scientific fields, such as space 

launch and nuclear power plant design (Sentz, 2002). Evidence theory differs from probability 

theory in that likelihood is assigned to sets (i.e. a range of parameter values) instead of being 

assigned to a probability density function. By explicitly defining ranges of uncertain input 

parameters and propagating them through a model, evidence theory bounds the true 

cumulative density function for a response. There are three key functions in Evidence Theory; 

the basic probability assignment function (BPA or m), the Belief function (Bel) and the 

Plausibility function (Pl).  

In general the basic probability assignment is not equivalent to probability as discussed 

in classical probability theory (although connections exist (Sentz, 2002)). Similarly to classical 

probability theory, the basic probability assignment is a mapping of all sets (X, the power set) to 

the interval [0, 1] and the sum of all assignments across subsets is 1. Formally, this is 

represented as: 

 

 𝑚𝑚:𝑃𝑃(𝑋𝑋) → [0, 1]   (27) 

 𝑚𝑚(∅) = 0 (28) 

  ∑ 𝑚𝑚(𝐴𝐴)𝐴𝐴 ∈𝑃𝑃(𝑋𝑋) = 1 (29) 
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Using these basic probability assignments, upper and lower bounds for an interval can be 

calculated. The lower bound (or Belief), for a set A (subset of X), is the sum of all basic 

probability assignments of the proper subsets (B) of the set of interest (A).  

 

 𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) =  ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵|𝐵𝐵 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐴𝐴    (30) 

 

The upper bound (or Plausibility) is the sum of all the basic probability assignments of the sets 

(B) that intersect the set of interest (A). 

 

 𝑃𝑃𝑃𝑃(𝐴𝐴) =  ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵|𝐵𝐵 ∩ 𝐴𝐴 ≠ ∅    (31) 

 

The rules of combination in Evidence Theory allow data to be aggregated across 

multiple, potentially conflicting sources within a common frame of discernment. This process 

assumes that the sources are independent (Shafer, 1976), however this requirement is not 

rigorously established in practice (Tebaldi, 2007). There are many rules for combining evidence; 

the key to identifying the most appropriate method is to determine how conflict between 

sources should be considered. A survey of relevant combination rules is provided below.    

 Dempster’s (1967) combination rule was the original combination operator that drove 

the conception of Evidence Theory. Using Dempster’s combination rule, the basic probability 

assignments from two (or more) sources is combined with a purely conjunctive operation. The 

formal definition of this operation (𝑚𝑚12) is: 
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 𝑚𝑚12 =  ∑ 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶)𝐵𝐵∩𝐶𝐶=𝐴𝐴
1− 𝐾𝐾

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐴𝐴 = ∅   (32) 

 𝑚𝑚12(∅) = 0 (33) 

 where 𝐾𝐾 =  ∑ 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶)𝐵𝐵∩𝐶𝐶=∅  (34) 

 

It is important to note that this operation results in an aggregated mass only for intervals which 

overlap, giving zero mass to regions where evidence existed but did not overlap with another 

method. The measure of non-overlapping probability mass (or conflict) is represented by the 

computation of K.  

The aggregated masses are normalized based on K to achieve a basic probability 

assignment function that resembles a probability density function from classical probability 

theory. Unfortunately, this choice can lead to counterintuitive results in situations involving 

high levels of conflict. These shortcomings are detailed in (Zadeh, 1984). Recognizing the 

potential pitfall, numerous other combination rules have been developed which account for 

level of conflict differently (see (Sentz, 2002) and (Yao, 1994) for many examples). 

The Mixing Rule of combination is a popular mechanism for aggregation of disjunctive 

evidence (see equation (35)). This rule averages the masses (mi) associated with a particular 

interval across all i estimates (i from 1 to n). The individual estimates can be weighted based on 

reliability by the multiplier, w, where each wi is the reliability associated with the ith source. 

 

 

 
𝑚𝑚1…𝑛𝑛(𝐴𝐴) =  

1
𝑛𝑛
�𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖(𝐴𝐴)
𝑛𝑛

𝑖𝑖=1

 
(35) 
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In contrast with Dempster’s rule of combination, evidence in conflict is preserved in the 

resulting BPA. Said another way, the full range of possibilities expressed in the sources are 

represented in the final BPA. This feature is particularly beneficial where the application of 

evidence theory is not to identify the most likely distribution of a particular metric, but to 

express the full range the distribution could be. 

 

3.3 Probabilistic Analysis of Epistemic Uncertainty 
 

3.3.1 Methodology 
 

In this section, we analyze a hypothetical military conflict modeled by Lanchester’s 

Square Law with a stopping level (a force level for both red and blue where the conflict ends). 

For this model there are 6 key inputs; initial force levels, attrition coefficients, and stopping 

level for both red and blue sides. These inputs are presumed to be epistemically uncertain and 

that the analyst has been given ranges for each input (see Table 2). In reality it is unlikely that 

all input quantities will be epistemically uncertain, but were made so in this instance to 

introduce sufficient complexity to establish viability of uncertainty quantification approaches. In 

this situation, it is assumed that blue minus red residual forces is the primary quantity of 

interest.  
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Table 2: Summary of Uncertain Inputs for Lanchester’s Model of Armed Conflict 

Inputs Uncertainty 

X1 Blue Initial Force Size (X0) [900, 1000] 

X2 Red Initial Force Size (Y0) [400, 500] 

X3 Blue Attrition Coefficient (α) [0.15, 0.25] 

X4 Red Attrition Coefficient (β) [0.3, 0.45] 

X5 Blue Stopping Level [0, 50] 

X6 Red Stopping Level [0, 25] 
 

 Bankes (1993) proposes two different modeling paradigms: exploratory vs. 

consolidative modeling. Consolidative modeling is the process of building a model by 

consolidating known facts into a single package and then using it as a surrogate for the actual 

system. In contrast with consolidative modeling, the exploratory modeling approach is the use 

of a series of experiments to explore the implications of assumptions when unresolvable 

uncertainties preclude building a surrogate for the system. The power of the consolidative 

approach lies in the assumption that the performance of the model has been compared to 

reality and the accuracy of the model is known to some precision. In situations where this is not 

feasible or where important facts about the system under study are uncertain, Bankes (1993) 

suggests that the exploratory modeling approach is preferable, and that treating such an 

endeavor as if it were a consolidative modeling effort is perilous.  

To explore the impact of the proposed uncertainties on blue minus red residual forces, 

we employ the exploratory modeling approach as suggested in the literature. A sampling of the 

uncertain input distributions are propagated through the Lanchester model using a Monte 

Carlo approach with 1,000 runs. However, no distribution for the uncertain inputs was 
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provided, so the problem becomes identifying the appropriate distribution to use. Significant 

literature references the principle of maximum entropy and that in the absence of another 

option, a uniform distribution should be chosen (Bankes, 1993). That convention is adopted 

here. Each uncertain input is assumed to be uniformly distributed with endpoints as specified in 

the uncertainty interval in Table 2.  

 

3.3.2 Results 
 

A histogram and cumulative distribution function of Blue minus Red residual forces is 

provided in Figure 11. 

 

 

Figure 11: Propagation of Uncertainty via Classical Probability Theory 
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The Blue minus Red residual forces ranged from 351 to 802 units, with an average value of 633 

units. Thus indicating that Blue overwhelmed Red and won the conflict across this sampling of 

the uncertain inputs. 

 

3.3.3 Discussion 

As an analysis of epistemic uncertainty, there are several ways the preceding analysis 

could have been embellished. While with the current uncertainty specification Blue always wins 

this conflict, the commander may have an objective value for the Blue minus Red residual 

forces that is tactically significant. If a commander was willing and able to specify a threshold 

for Blue minus Red for which the strategic objectives for the wider conflict are achieved, then 

those values could be reported. A sampling of some notional thresholds and resulting 

probability of successfully achieving that objective is provided below (Table 3). 

 

Table 3: Probability of Achieving Blue minus Red Objective 

Blue – Red Threshold Probability of 
Meeting Objective 

750 0.053 

650 0.450 

550 0.853 

450 0.978 
 

Additionally, there are various statistical intervals that may be of interest. Confidence 

intervals on the mean response are a popular way to describe simulation output. Confidence 

intervals for the mean Blue minus Red residual forces were computed for confidence levels of 

0.99, 0.95 and 0.90 as included in Table 4. While these measures are useful for describing the 
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central tendency of the simulation output, they do a poor job of characterizing the dispersion of 

the data (although the confidence intervals do capture some measure of variance).  

   

Table 4: Confidence Intervals on the Mean of Blue minus Red Residual Forces 

Confidence Level Confidence Interval 

0.99 [626.53, 639.44] 

0.95 [628.07, 637.89] 

0.90 [628.86, 637.10] 
 

 Additionally, the Blue minus Red residual forces could have been analyzed using ANOVA 

or regression techniques. This would have resulted in estimates of the uncertain factors impact 

on Blue minus Red residual forces. As this was a random sample, there would likely be 

correlation among input factors that may confound the analysis. This could be circumvented by 

employment of design of experiments techniques. There are many classes of experimental 

designs that would be suitable in aiding analysis of uncertainty, to include factorial and space 

filling designs. Employment of these designs would ensure that estimates of factor effects 

would not suffer from correlation among inputs.  

 Any analysis that is executed for this hypothetical combat situation should be completed 

in a manner that considers the difficulties in validating the model and the subsequent reliability 

in any predictive quantities. A simple presentation of the histogram as the representation of 

possible outcomes or confidence intervals on the mean blue minus red residual forces, in this 

case, is less than satisfactory. These methods emphasize the absolute quantitative information 

instead of the relative comparison, which is contrary to the weakly predictive nature of the 
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model. In this way, an ANOVA (or similar analysis) procedure is preferable as relative factor 

effects can be identified and prioritized. Such an approach emphasizes the absolute outcomes 

and concentrates on general themes that can be extracted from the data.  

 Each of the factors in this analysis represents an epistemically uncertain quantity, 

meaning that there exists a true value for a given factor but that it is unknown. Since there 

exists a true value for this unknown quantity, it is not epistemically correct to model the factors 

as random variables or stochastic processes that can be simply described with means and 

variances. A more appropriate model for epistemic uncertainty is the range in simulation 

output that its possible values can take on (Ferson, 2006).  

There are numerous difficulties and inconveniences that are encountered when 

analyzing epistemically uncertain quantities impact on simulation output considering both 

range and variance. It is this shortcoming that is remedied in the following section. 

 

3.4 Analysis of Epistemic Uncertainty via Evidence Theory 
 

3.4.1 Methodology  
 

Evidence Theory provides a statistical framework for aggregating multiple, potentially 

conflicting estimates for a simulation input factor. The uncertainty in the simulation inputs is 

then mapped to the simulation output by feeding the input intervals through the model (Figure 

12). This process generally requires the formation of basic probability assignments for uncertain 

factors, the development of a design matrix to collect data from the simulation, execution of 

the simulation runs, estimation of simulation output uncertainty intervals, and, finally, the 

computation of cumulative plausibility and belief functions. In this section, the Lanchester 
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formulation and uncertainty intervals from Section 3.3 are used as a mechanism to explore 

Evidence Theory representation of epistemic uncertainty in blue minus red residual forces.   

 

 

Figure 12: Method for Propagating Uncertain Inputs through Simulation 

 

Formally, the evidence space for an input is (x, X, mx). Where x is the set of all possible 

values for that input, X is the set of subsets of x (Ui’s) that represent the interval estimates for 

the input, and mx is the vector of masses associated with each element of X (Ui). The evidence 

space for the corresponding simulation output is (y, Y, my). Where y is the set of all possible 

values for that output, Y is the set of subsets of y (Ei’s) that represent the interval estimates for 

the output, and my is the vector of masses associated with each element of Y (Ei). In the case of 

uncertain model inputs, all that is known is X (Ui’s) and Y (Ei’s) is not. The Ei’s are thus properly 

considered estimates based on propagation of a corresponding Ui, and identifying the 

minimums and maximums produced by that input interval. The mass for a given Ei (my) is 
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assigned based on the corresponding Ui. If a given Ui produced an Ei, its mass (mx) becomes the 

new mass (my) associated with the new Ei.  

 In Evidence theory, uncertainty in the inputs is represented with basic probability 

assignment functions resulting from the aggregation of multiple inputs. For this demonstration 

we assume that three experts were asked “What is the firepower coefficient of the opposing 

force in 2055?”. The three plausible responses could be (Figure 13):  

• Expert 1: “It is certainly between 0 and 0.75.” 
 

• Expert 2: “Hard to say, but most likely between 0.25 and 0.85.” 
 

• Expert 3: “Based on detailed analysis, I believe it follows this distribution:  
   {[0.0.25]: 0.2, (0.25, 0.5]: 0.4, (0.5, 0.75]: 0.3, (0.75, 1]: 0.1}” 

The word expert implies that these are subjective inputs, but it is worth mentioning that 

the “experts” could be outputs of other simulations, estimates derived from distinct 

observations, etc. The only requirement is that the individual estimates be independent. In the 

author’s experience, this setting is not unrealistic, especially with respect to future operational 

scenarios with adversaries whose systems are not completely understood. 

 

Figure 13: Summary of Expert Input 

Expert 1: {[0, 0.75], 1} 0 0.25 0.5 0.75 0.85 1

Expert 2: {[0.25, 0.85], 1}

Expert 3: {[0, 0.25], 0.2}
{[0.25, 0.5], 0.4} 0.2 0.4 0.3
{[0.5, 0.75], 0.3}
{[0.75, 1.0], 0.1}

1

1

0.1
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 For this comparison of uncertainty representation with basic exploratory analysis 

procedures and Evidence Theory, all six uncertain factors in the Lanchester model are 

represented with the same scaled BPA represented in Figure 12. BPAs were constructed with 

both the Dempster and the Mixing rules of combination to illustrate differences between 

conjunctive and disjunctive combination rules. The final design matrix and estimation of Ei’s 

were generated using inputs from the BPA formed with the Mixing rule of combination. 

 There is a direct link between constructing the design matrix for the simulation effort 

and how the analyst intends to estimate yi’s and Ei’s. To estimate the Ei’s, the maximum and 

minimum simulation outputs must be estimated for each intersection of the Ui’s across each 

factor. For this six factor experiment with six Ui’s for each factor, the resulting experimental 

design contains 6^6 (or 46,656) interval intersections for which the maximum and minimum 

simulation response must be estimated. Two possible approaches to estimating the yi’s and Ei’s 

would be to use a meta-model or enumerating a large number of possibilities explicitly with the 

simulation. Neither approach guarantees that the global maximum or minimums have been 

found, which is why these quantities are frequently referred to as estimates for E. 

In either case, the analyst must choose a sampling procedure. The literature contains 

many examples of the sampling based approached, including random sampling, factorial 

experiments, and space filling designed experiments (Ankenman, 2012; Kleijnen, 2006). 

However, if a meta-model is to be used, care should be taken to ensure that the resulting 

model is statistically valid. To avoid this difficulty and to demonstrate the concept of Evidence 

Theory as a viable method for uncertainty representation in combat modeling, an enumeration 
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approach was selected. The Ei’s were estimated by taking the maximum and minimum from 

running the factorial combination of the endpoints of the Ui’s resulting in 6^6*2^6 (2,985,984) 

simulation runs. Finally, the cumulative plausibility and belief functions (CPF and CBF 

respectively) were computed using equations (30) and (31). 

 

3.4.2 Results 
 

The expert input provided in Figure 3 was aggregated per the Dempster’s Rule of 

Combination and the Mixing Rule of Combination as in equations (32) and (35). The resulting 

BPA, Cumulative Plausibility Function, and the Cumulative Belief Functions are shown in Figure 

14 and Figure 15. Figure 16 is the plot of the Cumulative Belief and Plausibility functions 

resulting from propagating the uncertain inputs through the Lanchester model of conflict 

supposed in section 3.4.1. 

 

 

Figure 14: BPA Constructed with Dempster’s Rule of Combination 
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Figure 15: BPA Constructed with Mixing Rule of Combination 

 

 

Figure 16: Evidence Theory Representation of Combat Model Uncertainty 
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3.4.3 Discussion 
 

Upon comparison of the outputs from the traditional probabilistic uncertainly analysis 

outlined in Section 3.3 and the analysis of epistemic uncertainty with Evidence Theory, there 

are several noteworthy differences. The first significant difference is the manner in which the 

inputs for the simulation were collected. In the probabilistic analysis, the inputs were 

aggregated in a way that resulted in a single range for each uncertain factor, which 

encompassed the widest possible set of values from subject matter experts. This approach 

discards information about where the expert’s opinions overlapped. This overlap in inputs is 

leveraged in Evidence Theory, by using a combination operator to create a probability 

assignment distribution for the factor. Using this process there is no need for the analyst to 

make judgments about the quality or validity of an individual estimate, and all relevant inputs 

can be aggregated in a transparent manner. For this demonstration, the hypothetical subject 

matter expert input was aggregated using both Dempster’s and the mixing rules of combination 

(see Figure 17).  
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Figure 17: Comparison of Dempster’s and the Mixing Rules of Combination 

 

Dempster’s rule of combination is a conjunctive operator and, as expected, truncated 

the range of the expert input to the space over which the factor estimates overlapped. In 

contrast, the mixing rule of combination is a disjunctive operator and preserved the full range 

of expert input. While one of the benefits of an Evidence Theory representation of uncertainty 

in combat modeling is the repeatable and transparent method for consolidating multiple, 

conflicting sources, the relative weight of each source could be adjusted. These adjustments 

result in different BPA’s for the factors. Figure 18 plots the CBF and CPF for three different 

combinations of weights (w from 3.2.2) for the three expert inputs used, where each wi is the 

reliability associated with the ith source (and wi’s sum to one).     
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Figure 18: BPAs for Various Relative Weights across Expert Inputs 

 

Another key difference between the probabilistic and Evidence Theory representations 

of uncertainty is the presentation and interpretation of summary statistics. The output of the 

Evidence Theory analysis is a set of two functions; the CBF and CPF, compared to the single 

output for the probabilistic analysis (see Figure 19). 
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Figure 19: Comparison of Probabilistic and Evidence Theory Representations of Uncertainty 

 

As described in the literature, the CPF and CBF are bounds on the CDF from the 

probabilistic analysis. In a similar manner to the analysis in Section 3.3, key summary statistics 

can be extracted from the probability plots except that the outputs are ranges instead of single 

values. For example, the mean (50th percentile) in the Evidence Theory representation is 

reported as the range [477, 874]. This corresponds to the 50th percentile value from the CPF 

and CBF respectively. Table 5 contains a report of various other percentiles of interest. 

Reporting of summary statistics as ranges provides a direct representation of uncertainties in 

model inputs to consumers of this analysis of the impact of uncertainties on simulation output, 

mitigating the propensity to interpret simulation output as absolute. 
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Table 5: Plausibility and Belief Percentiles 

Percentile Level Range 

95th [617, 944] 

75th [551, 908] 

50th [477, 874] 

25th [422, 838] 

5th [351, 765] 
 

Additionally, there is an Evidence Theory analog to the analysis in section 3.3.3. If a 

commander was willing and able to specify a threshold for Blue minus Red for which the 

strategic objectives for the wider conflict are achieved, then the range of probabilities 

associated with that threshold could be identified. A sampling of some notional thresholds and 

resulting probability of successfully achieving that objective is provided below for both the 

baseline and Evidence Theory based analysis of uncertainty (Table 6). The baseline and 

Evidence Theory representations of the probability of meeting the commander’s thresholds for 

success are very different. First, the resulting probabilities from the Evidence Theory analysis 

are ranges. In some cases these ranges are quite large, 0.95 and 0.97 for the 750 and 650 Blue 

minus Red thresholds respectively. In all cases the Evidence Theory ranges encompass the 

probabilities provided by the baseline analysis. 
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Table 6: Probability of Achieving Blue minus Red Objective 

Blue – Red Threshold 
Probability of 

Meeting Objective - 
Baseline 

Probability of Meeting 
Objective – Evidence 

Theory 

750 0.053 [0.01, 0.96] 

650 0.450 [0.02, 0.99] 

550 0.853 [0.25, 1] 

450 0.978 [0.64, 1] 

 

It is likely the commander’s reaction to each analysis would be entirely different, 

depending on which analysis they were presented. Suppose the commander believes that 

having a Blue minus Red residual force of 650 units is strategically significant and is presented 

with the baseline analysis which indicates that the probability of achieving success is 0.45. 

Seeing that this is roughly a coin flip (and that his troops are confident they can win), he may 

proceed with the planned battle.  

Now suppose the same commander is presented with the Evidence Theory analysis 

which indicates the probability of achieving success is between 0.02 and 0.99. One response 

could be that they take the average of the range and proceed as in the baseline analysis. 

Alternatively, the commander may pause and arrive at the conclusion that his analysts don’t 

have enough information to distinguish between near certainty (0.99) that they will achieve 

their objectives or near certainty that they will fail (0.02). At this point, the commander may 

either develop another plan that is not sensitive to a Blue minus Red threshold of 650 in this 

battle or gather more information that can be used to reduce the uncertainty in the ability of 

their forces to achieve the objective. 
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Using this framework does not address the complicating factors which prevent model 

validation in a combat analysis and the subsequent limits in quantified predictive capability. 

Representation of uncertainties inherent to combat modeling using Evidence Theory improves 

representation of uncertainty by providing ranges instead of point values for metric output. 

Using this framework should reduce the propensity to overlook these shortcomings when 

reviewing analysis output and inspire a more thoughtful dialog on the causes of the range in 

possible outcomes observed during the study. 

A direct analog for the ANOVA analysis discussed in Section 3.3 has been developed in 

Helton (2006) and Guo (2007). This work and an extension are detailed in Chapter IV. 

 

3.5 Conclusion  
 

In this chapter, Evidence Theory was demonstrated as a framework for representing 

epistemic uncertainty in combat modeling output. The steps for aggregating multiple, 

conflicting sources for simulation input data were demonstrated. A basic probability assignment 

was assumed for six uncertain factors; initial force size, attrition coefficient and stopping level 

for both Blue and Red forces in a Lanchester model of conflict. The analysis found that the 

proposed uncertainty configuration induced a large gap between the cumulative plausibility 

and belief functions for Blue minus Red residual forces, indicating large uncertainty in combat 

outcomes (although Blue always won!). To provide context for the Evidence Theory analysis, a 

traditional approach was employed in assessment of uncertainty of Blue minus Red residual 

forces in a Lanchester model of conflict. The results of both analyses were compared and 

contrasted.    
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The demonstration of Evidence Theory as a framework for representing outcomes in 

combat modeling and simulation addresses several key gaps in the literature and common 

practice. First, is the propensity to treat combat simulation output as predictive when, upon 

examining what is known and unknown regarding the model inputs, it clearly is not. This is 

addressed by supplementing the single output probability density functions with cumulative 

belief and plausibility functions from evidence theory. These functions represent bounds on 

probability densities given an input uncertainty specification (or basic probability assignment). 

Common summary statistics (i.e. mean, probability intervals, etc.) are in the form of ranges, 

which discourage the propensity to treat point estimates from a simulation as predictive.  

Second, is that the employment of the Evidence Theory rules of combination eliminates 

the need to make choices about how to use multiple, potentially conflicting sources for 

modeling and simulation inputs. In the presence of multiple inputs, traditional approaches 

typically follow one of two lines of thought: 1) condense the sources into a single point 

estimate or 2) employ the Laplace principle of maximum entropy and assume a uniform 

distribution over the range of possible values. The validity of these approaches is heavily 

influenced by the process by which the sources are condensed to either a point estimate or 

range. In practice, these methods are unstructured and not well documented. In contrast, 

Evidence Theory provides a structure for aggregating multiple, conflicting sources in a 

repeatable manner without making assumptions regarding the distribution of the true value of 

the input.  

Implementing these methods does not come without cost. Managing multiple sources 

and choosing the appropriate Evidence Theory rule of combination add additional complexity 
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to the overall analysis. The need to estimate the maximum and minimum response in each 

input’s basic probability assignment interval intersections can drive significant increases in the 

number of required simulation runs. Large run matrices can be mitigated through the 

employment of design of experiments and meta-modeling. These costs are offset by the clarity 

provided to the decision maker regarding how uncertainties in modeling and simulation inputs 

affect the analysis outcomes. 
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IV. Sensitivity Analysis of Uncertainty in Combat Modeling 
 

 

4.1 Introduction 
 

Due to the infrequent and competitive nature of combat, several challenges present 

themselves when using simulation as a tool for analyzing combat. First, there is limited data 

with which to validate such analysis tools. While it may be possible to validate individual pieces 

of a combat simulation, such as the performance of a specific radar on a specific platform, to 

assess the integration of all mission aspects against current and future threats is a much more 

significant effort. Attempts have been made to validate combat models, in aggregate, with 

historical data (Schramm, 2012), but this is of little value as the models themselves require 

heavy modification to incorporate modern or future forces, requiring their own distinct 

validation. Secondly, there are many aspects of combat modeling that are highly uncertain and 

not knowable (an unresolvable uncertainty (Bankes, 1993)), such as the exact tactics, 

techniques and procedures of an adversary force in response to a blue force strike. 

Within the combat modeling community there have been several suggestions for exploring 

uncertainties associated with the domain (Bankes, 1993; Davis, 2000; Dewar, 1996). However, 

the output of these approaches does not clearly communicate the uncertainties that are buried 

within the inputs. In Chapter III, Evidence Theory was demonstrated as a framework for 

representing epistemic uncertainty in combat modeling output. The steps for aggregating 

multiple, conflicting sources for simulation input data were demonstrated with a simple 

Lanchester model incorporating six uncertain factors. The analysis found that the proposed 
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uncertainty configuration induced a large gap between the cumulative plausibility and belief 

functions for Blue minus Red residual forces, indicating large uncertainty in combat outcomes.  

This framework addresses several key gaps in the combat modeling and simulation 

literature and common practice. First, is the propensity to treat combat simulation output as 

predictive when it is not. This is addressed by representing simulation output with cumulative 

belief and plausibility functions from evidence theory, instead of the classical single probability 

density function. These functions represent bounds on probability densities given an input 

uncertainty specification. Common summary statistics (i.e. mean, probability intervals, etc.) are 

in the form of ranges, which discourages the tendency to treat point estimates from a 

simulation as predictive.  

Second, is that the employment of Evidence Theory rules of combination eliminates the 

need to make choices about how to reconcile multiple, potentially conflicting sources for 

modeling and simulation inputs. In the presence of multiple inputs, traditional approaches 

typically follow one of two lines of thought: 1) condense the sources into a single point 

estimate or 2) employ the Laplace principle of maximum entropy and assume a uniform 

distribution over the range of possible values expressed by the experts. The validity of these 

approaches is heavily influenced by the process by which the sources are condensed to either a 

point estimate or range. In practice, these methods are unstructured and not well documented. 

In contrast, Evidence Theory provides a structure for aggregating multiple, conflicting sources in 

a repeatable manner without making assumptions regarding the distribution of the true value 

of the input.  
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Use of Evidence Theory as an analytical framework does not directly address the 

complicating factors which prevent model validation in a combat analysis and the subsequent 

limits in quantified predictive capability. Literature addressing this topic has suggested the 

adoption of exploratory approaches, where inputs are structured as a designed experiment or 

monte carlo sample. This sample is then internally analyzed to identify significant factors 

through statistical techniques like regression, ANOVA, etc. Exploratory activities produce 

prioritized contributors to simulation output, and deemphasize the magnitude of the simulation 

output variables. 

The objective of this research is to extend the recent work in representation of uncertainty 

in combat modeling and simulation, by developing a sensitivity analysis method for identifying 

the factors which contribute to the overall uncertainty in simulation output. Existing 

approaches to this problem implement a variance based metric for factor prioritization (Helton, 

2006), which requires a second analysis, or is susceptible to ties when large uncertainties are 

present (Guo, 2007). In a resource constrained environment, such methods would facilitate 

prioritization of resources with the goal of reducing uncertainty in system performance. 

This chapter is organized into five major sections: Introduction, Background, Methodology, 

Results and Discussion, and Conclusion. The Introduction provides a general overview of the 

context for the research in sensitivity analysis of belief functions in Evidence Theory. This 

section includes a brief introduction and analysis of issues in the literature and a synopsis of 

research contributions. The Background section provides a summary of sensitivity analysis in 

modeling and simulation, sensitivity analysis of belief functions in Evidence Theory, and 

measures of distance in Evidence Theory. A novel approach to identifying and quantifying the 
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impact of input uncertainty on total system output uncertainty is presented in the 

Methodology section. This method is demonstrated using a Lanchester model of conflict. The 

results of this analysis and a discussion of interesting features from this application is provided 

in the Results and Discussion section. In the Conclusions section, a summary of the research 

context, contributions, and future work are identified. 

 

4.2 Background 
 

4.2.1 Sensitivity Analysis of Belief and Plausibility 
 

There has been some suggestion that analysis using Evidence Theory is sensitivity 

analysis (Ferson, 2006). In the sense that analysis with Evidence Theory identifies bounds on 

true outcome probabilities, this is reasonable. However, often what is meant in the modeling 

and simulation community by sensitivity analysis is a process that produces the relative, 

absolute or rank ordered effects for a set of variables on a measurable parameter. This type of 

product is not the direct result of propagating basic probability assignments (BPAs) of uncertain 

factors through a simulation and producing the cumulative plausibility function (CPF) and 

cumulative belief function (CBF) of an important measure of system performance. A specific set 

of techniques are required to translate the ideas of sensitivity analysis in classical probability 

theory to the framework of Evidence Theory.  

In classical probability theory, important variables explain the largest portion of the 

variation in system output. In contrast, variables that are important in explaining uncertainty in 

Evidence Theory have the largest effect in reducing the area between the CBF and CPF. Several 

attempts to produce rank ordering of variables explaining uncertainty in Evidence Theory have 
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been documented in the literature with two specific approaches summarized in the subsequent 

paragraphs.  

Helton (2006) presented a first of its kind paper outlining three methodologies for 

sensitivity analysis in conjunction with Evidence Theory representations of uncertainty. The first 

method generically entailed using a stratified sampling procedure to generate data which could 

then be fit with a statistical modeling technique to identify the most critical factors x on 

outcome y. Latin Hypercube or random sampling were suggested as viable sampling 

procedures, while rank regression and squared rank differences were provided as suitable 

statistical modeling techniques. Where this method differs from most classic design of 

experiments and simulation efforts is that the sample is weighted by the respective factors’ 

BPAs. They called this procedure exploratory sensitivity analysis.  

Additionally, a stepwise procedure for construction of CBFs and CPFs was presented. 

The intent of this method was to enable epistemically uncertain variables to be added one-at-a-

time until the CPFs’ and CBFs’ rate of change slowed to within an acceptable range, saving 

computation time. The methodology is as follows (Helton, 2006): 

• Step 0: Perform Exploratory sensitivity analysis to determine the most 
important factors, 𝑥𝑥�1, …, 𝑥𝑥�n, on the uncertainty in output, y. Where 𝑥𝑥�1 is 
the most important variable, 𝑥𝑥�2 is the next most important variable, etc. 
and n is the number of variables or factors.  
 

• Step 1: Estimate a CPF and a CBF for y on the basis of the evidence space 
obtained from the original evidence space for the 𝑥𝑥�1 and degenerate 
evidence spaces for all other variables (in which the sample spaces are 
assigned BPAs of 1). 

 
• Step 2: Estimate a CPF and a CBF for y on the basis of the evidence space 

obtained from the original evidence space for the 𝑥𝑥�1 and the 𝑥𝑥�2 and 
degenerate evidence spaces for all other variables (in which the sample 
spaces are assigned BPAs of 1). 
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• Step s: Estimate a CPF and a CBF for y on the basis of the evidence space 

obtained from the original evidence space for 𝑥𝑥�1, …, 𝑥𝑥�s and degenerate 
evidence spaces for all other variables (in which the sample spaces are 
assigned BPAs of 1). 
 

• Termination: End when no significant difference between the CBFs-1 and 
CPFs-1 obtained at Step s-1 and CBFs and CPFs obtained at Step s. 

 

This method relies on the fact that as epistemically uncertain variables are added to the 

computation of the CBF and CPF, the bounds they represent can only stay the same or 

decrease.  

The final sensitivity analysis method proposed by Helton (2006) was called the summary 

sensitivity analysis procedure. This method decomposes the variance of outcome y into 

contributions by the individual xi’s variances. As there are many possible distributions for each 

xi that are consistent with its evidence space, a sampling of assumed distributions for each xi 

must be explored as part of this method. This results in not one prioritized list of sensitivities, 

but a set of prioritized lists. This method was demonstrated on failure probabilities of a set of 

actuators. For this analysis a number of different distribution assumptions were made, and the 

resulting decomposition was found to be invariant to choice of distributions. As this is an 

empirical result, there are no guarantees that this holds in general. 

Guo and Du (2007) developed a one-at-a-time approach to quantify the effect of each 

individual variable on the uncertainty in their system response. Their method produces a series 

of CBFs and CPFs, where each one is generated by fixing all but one variable to an average, 

weighted by the factors’ BPA and leaving the remaining as an epistemically uncertain variable 

with corresponding BPA. The distance between the CBF and CPF for a given variable, as 
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calculated by the Kolmogorov–Smirnov (K-S) statistic, is then used to prioritize the relative 

importance of individual variables. This method was demonstrated on two example problems 

from engineering mechanics; the crank-slider mechanism and a crowned cam roller/follower’s 

contact. 

The K-S distance is the maximum difference between two CDFs (Banks, 2010), or in the 

context of the sensitivity analysis procedure described by Guo (2007), the difference between 

the CPF and CBF. This is an admirable choice in that the prioritization metric does not rely on a 

variance based metric (where Evidence Theory is primarily concerned with ranges) as in Helton 

(2006). However, in situations where there is high uncertainty and subsequently large 

differences between CPFs and CBFs, discriminating among the important factors may prove 

difficult.  

Figure 20 represents a set of plausible CBFs and CBFs for six epistemically uncertain 

factors x on outcome y. In this configuration, significant uncertainty exists where there is a large 

range where the value of each CPF is 1 and the value of each CBF is 0, resulting in a K-S distance 

of 1 for all factors (highlighted by the red arrow in Figure 20).  Referring back to the original 

notion of sensitivity analysis in Evidence Theory being interested with factors that minimize the 

area between the CPF and CBF being the most important, it is clear that variables X5 and X6 are 

not in that category. Their CBFs and CPFs are outside the bounds of all other variables, yet the 

K-S distance does not identify that feature.  

It is not entirely clear how many runs are required to run the analysis proposed by Guo 

(2007). The authors reference 2n+1 as the number of iterations of uncertainty analysis 

required, but do not specify how many runs are required to execute each iteration. Per their 
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own admission, this approach is expected to be computationally intensive and potentially 

inefficient as each uncertain variable is varied one-at-a-time. In contrast, the stepwise 

construction of CBFs and CPFs proposed by Helton (2006) does not require any additional 

simulation runs when epistemically uncertain factors are varied together. 

 

 

Figure 20: Ties using K-S Distance when Large Uncertainties Exist 

 

4.2.2 Measures of Distance in Evidence Theory 
 

Measures of distance or similarity have been developed and employed in many areas of 

statistical analysis, including object classification, statistical comparison of distributions, etc. 

Their primary goal is to provide a measure for how different two points, vectors or bodies of 
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objects are “close” or “similar”, while large distances mean the two are “far apart” or 

“dissimilar”. 

  The formal definition of a distance metric is a measure that satisfies the four properties 

listed in Table 7; Non-negativity, Symmetry, Definiteness (grouped with Reflexivity and 

Separability) and the Triangle Inequality. The non-negativity property states that the distance 

between two points, in the space where the measure is defined, is always greater than or equal 

to zero. A distance metric must also produce the same value, regardless of the direction the 

distance is calculated. This is the symmetry property. The definiteness property states that the 

distance between two identical points is zero (reflexivity) and that when the distance is zero, 

the two points must have been identical (separability). Finally, the triangle inequality is the 

property that the distance between two points is less than or equal to the sum of the distances 

between each of these points and a third point.      

Not all measures used in Evidence Theory satisfy all four properties. As previously 

stated, a true distance metric satisfies all four properties listed in Table 7. Semi-metrics satisfy 

all properties except the triangle inequality. Quasi-metrics are not symmetric. Pseudo-metrics 

are not separable, and thus not definite. Quasi-pseudo metrics only satisfy the symmetric and 

reflexive properties, while pre-metrics only satisfy the reflexive property. A non-metric (not 

show in Table 7), is a measure which does not satisfy any of the four properties. 
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Table 7: Axioms for metrics (adapted from Jousselme, (2012)) 

  Metric Semi-
Metric 

Quasi-
Metric 

Pseudo
-Metric 

Quasi-Pseudo 
Metric 

Pre-
Metric 

(i) Non-negativity d(y, z) ≥ 0 X X X X X X 

(ii) Symmetry d(y, z) = d(z, y)  X X  X X  

(iii) Definiteness d(y, z) = 0 ↔ y = z X X X    

(iii)’   Reflexivity d(y, y) = 0  X X X X X X 

(iii)’’  Separability d(y, z) = 0 → y = z X X X    

(iv) Triangle Inequal. d(y, z) ≤ d(y, t) + d(t, z) X  X X   

 

Applications of distance metrics in Evidence Theory are largely centered on finding 

approximations to belief functions, quickly and automatically (Han, 2018). Large numbers of 

estimates for a parameter value can produce BPAs which contain many foci. Propagating these 

foci through a model can be time consuming, even with a small (6 or less) number of estimates. 

The goal of this body of work is to reduce the number of elements in a belief function while 

maintaining the general integrity of the true function. 

 There are a large number of distance metrics available for use in analysis with Evidence 

Theory. Jousselme (2012) provides a survey of many distance measures in Evidence Theory, 

their properties, and relative family from which they are derived. The Minkowski family is a 

series of distances which includes the evidence theory analogs to the Manhattan, Euclidean and 

Chebyshev distances. Another way to measure the difference between two belief functions is 

to estimate the difference in their information content. This family contains the Evidence 

Theory equivalent to the Kullback-Liebler divergence from classical probability theory. 
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Additional families of distance measures in Evidence Theory include inner products, cosine 

measures, and the fidelity family of metrics. 

 

4.3 Methodology 
 

4.3.1 Wasserstein Distance as a Metric for Sensitivity Analysis of Uncertainty 
 

There are two key features in a procedure for sensitivity analysis in Evidence Theory; the 

stepwise construction of CPFs and CBFs and the construction of a metric with which to compare 

the contributions of the variables in explaining the uncertainty in outcomes. The following 

section develops the second feature, with a comprehensive methodology produced in section 

4.3.2.  

The intuitive notion behind sensitivity analysis in Evidence Theory is to identify which 

variables reduce the area between the CPF and CBF and by how much (Ferson, 2006). This 

concept is more intuitive when compared against the concept of least information, or where all 

the BPAs are degenerate in Evidence Theory. When all BPAs are degenerate, the CPF and CBF 

will appear as the plot in Figure 21, where a is the minimum of the data and b is the maximum.  

 

 

Figure 21: Concept of “Maximum Uncertainty” 
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From the proof in Helton (2006), as more variables with non-degenerate BPAs are added to the 

estimate of the CPF and CBF, the area between the two functions will always decrease. 

 In classical probability theory, the area between two cumulative density functions is 

known as the Wasserstein metric (Rüschendorf, 2001),  

 

 
𝑊𝑊𝑝𝑝(𝜇𝜇, 𝑣𝑣) ≔

𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾𝛾𝛾𝛾𝛾(𝜇𝜇, 𝑣𝑣) �∫ 𝑑𝑑(𝑥𝑥, 𝑦𝑦)𝑝𝑝𝑑𝑑𝛾𝛾(𝑥𝑥,𝑦𝑦)𝑀𝑀𝑀𝑀𝑀𝑀 �

1/𝑃𝑃
  

(36) 

 

where (M, d) is a metric space and for p ≥ 1, Pp(M) is the collection of all measures µ, v on M 

with finite pth moment. This measure is also known as the Kantorovich or Earth Movers distance 

in the computer science community.  

In our setting, we can greatly simplify this expression for the 1 dimensional case, 

resulting in the following expression (Rüschendorf, 2001): 

 

 𝑊𝑊1(𝜇𝜇, 𝑣𝑣) =  ∫ �𝐹𝐹𝜇𝜇(𝑥𝑥) − 𝐺𝐺𝑣𝑣(𝑥𝑥)�𝑑𝑑𝑑𝑑∞
−∞ . (37) 

 

This measure satisfies the requirements for non-negativity, symmetry, definiteness, and 

triangle inequality, qualifying it as a true metric in the framework presented in 4.2.2. Also, 

assuming the body of evidence results in BPAs that meet the criteria for probability density 

functions, the Evidence Theory and classical probability theory representation of this metric are 
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equivalent. In Evidence Theory 𝐹𝐹𝜇𝜇  and 𝐺𝐺𝑣𝑣 represent the CBF and CPF, respectively, for a given 

variable.  

 

4.3.2 Method for Prioritizing Variables Impact on Uncertainty 
 

This method for sensitivity analysis in Evidence Theory is motivated by prior work 

developing a stepwise procedure to generate marginal CBF and CPFs and the use of statistical 

differences to develop a ranking of the variables impact on uncertainty. It is intended that this 

methodology follows an analysis executed according to the procedures discussed in Chapter III. 

These procedures detail the process to aggregating multiple inputs, propagating them through 

a model or simulation, and generating the CPF and CBF of the resulting measure of interest. 

Once the data is generated, the methodology is as follows: 

 
1. Let 𝛷𝛷 = {1, … , 𝑛𝑛} be the set of all variable indices under consideration for this 

analysis (where n is the number of variables) and 𝛺𝛺 = { }. 
 

2. Iteration k: for each variable 𝑥𝑥𝑖𝑖, 𝑖𝑖 ∈ 𝛷𝛷; 
 

a. Estimate a CPF and a CBF for y on the basis of the evidence space obtained from 
the original evidence space for the xi, the original evidence space(s) for any 
𝑥𝑥𝑗𝑗 ,∀𝑗𝑗 ∈  𝛺𝛺, and degenerate evidence spaces for all other variables (in which the 
sample spaces are assigned BPAs of 1). 
 

b. Calculate 𝑊𝑊1𝑖𝑖 between the marginal CPF and CBF for variable i. 

3. Select variable 𝑥𝑥𝑠𝑠, 𝑠𝑠 ∈ 𝛷𝛷, that minimizes 𝑊𝑊1.. Remove s from set 𝛷𝛷 and add to set 𝛺𝛺. 

Let 𝑥𝑥�𝑘𝑘 =  𝑥𝑥𝑠𝑠, where 𝑥𝑥� is an ordering of x and 𝑊𝑊�1𝑘𝑘 =  𝑊𝑊1𝑠𝑠. 

4. Increment k and repeat steps (2) and (3) until 𝛷𝛷 = { }. 
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This method is notable in several respects. First, it employs the stepwise construction of 

CBFs and CBFs as descried in Helton (2006) and a statistical measure of distance as in Guo 

(2007). Guo (2007) employs the K-S distance which has been demonstrated to be susceptible to 

ties when there are large uncertainties in outcomes with respect to the variables. The 

Wasserstein distance, however, is not likely to cause ties in the procedure except when the 

variables under analysis have very little relationship to the uncertainty in model outcomes, 

where they exhibit marginal CPFs and CBFs similar to Figure 21. 

A significant difference between the method proposed by Helton (2006) and the one 

presented here, is that no preliminary exploratory sensitivity analysis procedure is required. 

Such a procedure is good practice, but not integrally linked in the new method. A modification 

of this procedure could be produced where it is used (as in Helton (2006)) to incrementally 

construct estimates of CBFs and CPFs by adding variables until the functions stop changing 

enough to warrant further computation. 

 

4.3.3 Methodology Demonstration  
 

To demonstrate the methods from sections 4.3.1 and 4.3.2, a hypothetical military 

conflict modeled by Lanchester’s Square Law with stopping level (a force level for both red and 

blue where the conflict will end) for both red and blue forces is analyzed. For this model there 

are 6 key inputs; initial force levels (blue – X1, red – X2), attrition coefficients (blue – X3, red – 

X4), and stopping level for both blue (X5) and red (X6) sides. These inputs are presumed to be 

epistemically uncertain and that the analyst has been given ranges for each input. In this 

situation, it is assumed that blue minus red residual forces is the primary quantity of interest.  



 

 

83 
 

All six uncertain factors in the Lanchester model are represented with the same scaled BPA 

represented in Figure 22. The factor BPAs were formed using the Mixing Rule of combination. 

The final simulation run matrix was constructed to support an enumeration approach for 

calculating the interval estimates of the output. This overall experimental setup is exactly the 

same as described in Chapter III. As such; a more detailed explanation of the Lanchester model 

used can be found in sections 3.2.1 and 3.4.1 and more details regarding the construction of 

the BPAs and design matrix for this demonstration can be found in section 3.4.1. Once the 

simulation runs were complete, the marginal sensitivity of the model factors and overall 

contribution to the belief and plausibility functions were computed as described in sections 

4.3.1 and 4.3.2 

 

   

Figure 22: Notional BPA for Representing Uncertain Factors  
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4.4 Results and Discussion 
 

The methodology and application were performed as described in section 4.3. The first 

iteration of the method resulted in six distinct sets of cumulative plausibility and belief 

functions (CBFs and CPFs), one for each epistemically uncertain variable in the model (Figure 

23).  Upon inspection, it appears that variables five and six explain the least amount of 

uncertainty. It is difficult to explain (by inspection) which variables explain the most 

uncertainty, as there is no pair of CBFs and CPFs that dominate all other sets. To clarify which 

variable explains the most uncertainty, the Wasserstein distance between the marginal CBFs 

and CPFs were computed for each variable in Table 8. These scores ranged from 810.13 to 

672.53, with X5 (blue stopping level) explaining the least uncertainty and X4 (red attrition 

coefficient) explaining the most. To conclude step one, X4 was selected as the first variable to 

enter the basis for the estimates of the CBF and CPF. 
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Figure 23: Sensitivity Analysis of Blue minus Red Residual Forces – Step 1 

 

 Table 8: Sensitivity Analysis – Step 1 

Summary of Wasserstein Distance 
  Step 1 

Initial Blue Forces (X1) 714 
Initial Red Forces (X2) 683 

Blue Firepower Coefficient (X3) 685 
Red Firepower Coefficient (X4) 673 

Blue Stopping Level (X5) 810 
Red Stopping Level (X6) 793 

 

In step 2, five sets of CPFs and CBFs were produced. Each was a combination of X4 and 

the remaining variables non degenerate BPAs (Figure 24). Again, visual inspection reveals no 

obvious choice for explaining the most uncertainty, while combinations containing X5 and X6 

appear to explain the least, as in step 1. The Wasserstein distances between the marginal CBFs 
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and CPFs were computed for each variable (Table 9). These scores ranged from 672.53 to 

570.37, with X5 (blue stopping level) explaining the least uncertainty and X3 (blue attrition 

coefficient) explaining the most. To conclude step two, X3 was selected as the next variable to 

enter the basis for the estimates of the CBF and CPF. 

 

 

Figure 24: Sensitivity Analysis of Blue minus Red Residual Forces – Step 2 

 

Table 9: Sensitivity Analysis – Step 2 

Summary of Wasserstein Distance 
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Initial Blue Forces (X1) 597 
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 The same procedure produced equivalent plots and Wasserstein distances for steps 3 

through 6. At the conclusion of each step, the variable which had the smallest Wasserstein 

distance between their marginal CPFs and CBFs was added to the basis for the overall CPF and 

CBF. See Figure 25, Figure 26, Figure 27, and Figure 28 for plots of the marginal CPF and CBFs. 

Table 10 provides a summary of the Wasserstein distances at each step of the sensitivity 

analysis. The ordered importance of the variables on total uncertainty was red attrition 

coefficient (X4), blue attrition coefficient (X3), red initial force level (X2), blue initial force level 

(X1), red stopping level (X6) and blue stopping level (X5). 

 

Table 10: Sensitivity Analysis Summary 

Summary of Wasserstein Distance 
  Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

Initial Blue Forces (X1) 714 597 499 401 - - 
Initial Red Forces (X2) 683 574 476 - - - 

Blue Firepower Coefficient (X3) 685 570 - - - - 
Red Firepower Coefficient (X4) 673 - - - - - 

Blue Stopping Level (X5) 810 673 570 476 401 386 
Red Stopping Level (X6) 793 661 560 458 386 - 
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Figure 25: Sensitivity Analysis of Blue minus Red Residual Forces – Step 3 

 

Figure 26: Sensitivity Analysis of Blue minus Red Residual Forces – Step 4 
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Figure 27: Sensitivity Analysis of Blue minus Red Residual Forces – Step 5 

 

Figure 28: Sensitivity Analysis of Blue minus Red Residual Forces – Step 6 
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A number of model specific and method specific findings were identified as a result of 

this analysis. First, the Lanchester Model parameters were ordered in their explanation of total 

uncertainty. The Lanchester Model utilized in this demonstration had three key parameters to 

describe both the red and blue forces; initial force level, attrition coefficient and stopping level. 

In this analysis both attrition coefficients (red then blue) were the first variables added to the 

model, then initial force size, then stopping level. It is also interesting to note that the red 

variables were always first to enter the basis for the CPFs and CBFs. There is no particular 

explanation for this, except that it may be due to the specific uncertainty ranges used for this 

study. Other ranges may produce different results. 

Second, the variable X5 does not explain any uncertainty associated with the output of 

our model with respect to the range of inputs analyzed.  The resulting marginal CPF and CBF 

selected in step 5 is the same as the final, full CPF and CBF. This could have been evident at the 

first step when it was observed that the marginal CPF and CBF resulted in no change in 

explained uncertainty, i.e. maximum uncertainty (see Figure 21).  

The CPFs and CBFs at the end of each step are either equal to or contained within the 

bounds of prior steps’ CPFs and CBFs (see Figure 29). This is consistent with the result in Helton 

(2006), where the Wasserstein distance between two CPFs and CBFs and can only decrease or 

remain the same when adding variables. Also, the ordering of the Wasserstein distances among 

the variables at a given step is not necessarily preserved across steps. For example, in step 1 the 

marginal CPF and CBF with the second smallest Wasserstein distance was X2 (red initial force 

level). But the variable with the smallest Wasserstein distance in step 2 was variable X3 (blue 
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attrition coefficient), not X2. The number of foci increased with each step, resulting in smoother 

marginal CPFs and CBFs. Assigning degenerate BPAs for all factors but one in step 1, resulted in 

CPFs and CBFs with at most 6 foci (or steps), step 2 produced CPFs and CBFs with at most 62, 

step 3; 63, etc.  

 

 

Figure 29: Sensitivity Analysis of Blue minus Red Residual Forces – Summary 

 

4.5 Conclusion 
 

In this chapter, a new method for sensitivity analysis of uncertainty in Evidence Theory 

was developed. This sensitivity analysis method generates marginal CPFs and CBFs and 
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Kantorovich or Earth Mover’s distance) of the CBF and CPF. Using this method, a rank ordering 

of the simulation input factors can be produced. 

This method is notable in several respects. First, it combines positive elements from the 

Evidence Theory literature; the stepwise construction of CBFs and CBFs and a statistical 

measure of distance. The new method improves on existing work that employs the K-S 

distance, which has been demonstrated to be susceptible to ties when there are large 

uncertainties in outcomes with respect to the variables. The Wasserstein distance, however is 

not likely to cause ties in the procedure except when the variables under analysis have very 

little relationship to the uncertainty in model outcomes, where they exhibit a large difference 

between marginal CPFs and CBFs. 

A significant difference between the method proposed in Helton (2006) and the one 

presented here, is that no preliminary exploratory sensitivity analysis procedure is required. 

Such a procedure is good practice, but not integrally linked in the new method. A modification 

of this procedure could be produced where it is used to incrementally construct estimates of 

CBFs and CPFs by adding variables until the functions stop changing enough to warrant further 

computation. 

The method was demonstrated on a notional Lanchester model of conflict with six 

epistemically uncertain parameters. A relative prioritization of the factors was produced, where 

five of six factors had distinct contributions in explaining total uncertainty while a sixth did not. 

The ordered importance of the variables on total uncertainty was red attrition coefficient, blue 

attrition coefficient, red initial force level, blue initial force level, red stopping level and blue 

stopping level. While the specific results of this analysis are not extensible, they are a useful 
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example for how to apply sensitivity analysis with Evidence Theory in modeling, simulation and 

analysis activities.    

The costs of employing this method are similar to those of generally employing Evidence 

Theory in analysis. Additional complexity to the overall analysis is induced via management of 

multiple input sources and choosing the appropriate Evidence Theory rule of combination to 

summarize the body of evidence. The need to recalculate CBFs and CBFs adds computation 

time, which is not insignificant for large numbers of uncertain variables with complex BPAs. 

These costs are offset by the clarity provided to the decision maker regarding the sensitivity of 

analysis outcome uncertainties to uncertain inputs. 
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V. Error Estimation via Multi-Model Methods for Analysis of Combat 
 

 

5.1 Introduction 
 
Models of combat have been employed by systems and operations research analysts 

since the 1960’s for exploring possible outcomes of hypothetical military conflict (Davis, 1995). 

The fidelity of these models has ranged from simple mathematical relationships describing 

attrition between two opposing forces (Lanchester, 1914) to high fidelity operator or hardware 

in the loop simulations for exploration of detailed system configuration changes (Haase, 2014). 

Over time the employment of combat simulations has expanded within the DoD to support 

processes including, operations planning, requirements analysis, operational test, and training. 

Due to the infrequent and competitive nature of combat, several challenges present 

themselves when using simulation as a tool for analyzing combat. First, there are many aspects 

of combat modeling that are highly uncertain and not knowable (an unresolvable uncertainty 

(Bankes, 1993)). This drives the analyst to fill knowledge gaps with best guesses for critical 

parameters, processes, tactics, and future force mix, when representing red and blue forces. 

This in of itself does not doom the utility of analysis of combat with modeling and simulation, 

but coupled with the fact that there is limited data with which to validate such tools, there is no 

way to determine an absolute bound on the impact assumptions have on simulation output in 

an uncertain environment. It may be possible to validate individual pieces of a combat 

simulation, such as the performance of a specific radar on a specific platform. However, 

assessing the predictive capability of a simulation across even a modest subset of mission 

aspects against current and future threats is impossible. Attempts have been made to validate 
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combat models in aggregate with historical data (Schramm, 2012), but this is of little value as 

the models themselves require heavy modification to incorporate modern or future forces, 

requiring their own distinct validation, which is also impossible.  

The distinction between uncertainty, variability and error in a modeling and simulation 

study has not been consistently employed within the vocabulary of the analytical community 

(Oberkampf, 2002). The risk analysis literature delineates between uncertainty and error, with 

uncertainties being further refined into epistemic and aleatory categories. This framework is 

akin to the colloquial use of the terms uncertainty, variability, and error within a modeling and 

simulation context. Uncertainties can manifest as either simulation output variation (aleatory 

uncertainties) or unquantified decision risk (if epistemic uncertainties are not enumerated and 

relevant inputs varied within the study). 

Additionally, error is defined as “a recognizable inaccuracy in any phase or activity of 

modeling and simulation that is not due to lack of knowledge” (Oberkampf, 2002:334). 

Unfortunately this has the connotation that the modeler or analyst has done something 

“wrong”, which may not be the case. While unacknowledged errors are the term that describes 

inadvertent errors made by the modeler, of interest for this paper are the acknowledged errors 

or errors resulting from a choice in system abstraction or simulation implementation process. 

The impact of such errors in a simulation study results in biased simulation output or 

explainable deviation from “truth”. In a similar fashion to both epistemic and aleatory 

uncertainty, certain forms of error could be systematically explored to identify sensitivities to 

choices made by the analyst. 
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Within the combat modeling community there have been several suggestions for 

exploring uncertainties associated with the domain (Bankes, 1993; Davis, 2000; Dewar, 1996). 

However, the output of these approaches does not clearly communicate the uncertainties that 

are buried within the inputs. In Chapter III, Evidence Theory was demonstrated as a framework 

for representing epistemic uncertainty in combat modeling output. The steps for aggregating 

multiple, conflicting sources for simulation input data were demonstrated with a simple 

Lanchester model incorporating six uncertain factors. The analysis found that the proposed 

uncertainty configuration induced a large gap between the cumulative plausibility and belief 

functions for blue minus red residual forces, indicating large uncertainty in combat outcomes.  

This research was extended in Chapter IV by developing a sensitivity analysis method for 

identifying the factors which contribute to the overall uncertainty in simulation output. Prior 

approaches to this problem implemented a variance based metric for factor prioritization 

(Helton, 2006), which requires a second analysis, or is susceptible to ties when large 

uncertainties are present (Guo, 2007). In a resource constrained environment, sensitivity 

analysis methods would facilitate prioritization of resources with the goal of reducing 

uncertainty in system performance. 

In the weather domain, there are several errors and uncertainties that contribute to the 

difficulties with single model analyses, some of which are (Palmer, 2004): 

o The physics of weather is well understood, but the phenomena are chaotic and 
models are sensitive to initial conditions 

 
o Solutions to the partial differential equations that describe weather phenomena 

must be reduced to analytically tractable forms, which introduces computation 
error in final solutions 
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o There are numerous ways to implement approximations of the underlying 
physics and numerical approximations 

 
o There is no underlying framework from which a pdf of model uncertainty can be 

estimated. 

Despite these uncertainties and errors, seasonal forecasts have been shown to have better 

predictive capability when several independent models are analyzed together, commonly 

referred to as a multi-model ensemble (Tebaldi, 2007), than when the individual predictions of 

those models are taken alone. Developers of multi-model ensembles must consider both the 

number and composition of models within the ensemble as well as the method of data 

aggregation and assessment of ensemble predictive skill.  

Multi-model predictive superiority is not only due to error compensation, but primarily 

by its improved consistency and reliability across the entire predictive region (Hagedorn, 2005). 

A particular ensemble may not be the best forecast at each point within the predictive region, 

but generally outperforms any given individual model over the full range of cases. The success 

of multi-model methods in the weather community has led to the development of analogous 

approaches in prediction of disease outbreak (Morse, 2005) and rainfall runoff (Ajami, 2007).  

Since there is limited data for combat model validation, the techniques for aggregation 

in multi-model ensembles for weather forecasting are not appropriate. There would be no way 

to confirm that the aggregated ensemble provides any predictive improvement over any 

individual simulation response. This paper develops a method to quantify the impact of error or 

modeling choices on simulation output uncertainty in settings where multiple models are 

employed. This would yield insight into the overall sensitivities of the system with respect to 

multiple modeling choices. The objective is not to make weakly predictive models strongly 
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predictive models, but to improve the insight gained through a modeling and simulation 

activity. 

This chapter is organized into five major sections: Introduction, Background, 

Methodology, Results and Discussion, and Conclusion. The Introduction provides a general 

overview of the context for the research in quantifying the impact of error on simulation output 

uncertainty. The Background section provides a review of literature discussing sources of 

uncertainties and error in the modeling and simulation process and Evidence Theory as a 

representation of uncertainty in combat modeling and simulation. A novel approach to 

quantifying the impact of error on simulation output uncertainty is presented in the 

Methodology section. This method is demonstrated using three distinct Lanchester models of 

conflict. The results of this analysis and a discussion of interesting features from this application 

is provided in the Results and Discussion section. In the Conclusions section, a summary of the 

research context, contributions, and future work are identified. 

 

5.2 Background 
 

5.2.1 Sources of Uncertainties and Error in the Modeling and Simulation Process 
 

Oberkampf (2002) provides a framework for discussing variability and error in a 

modeling and simulation study. This framework proposes two kinds of uncertainty and the 

notion of error within a modeling and simulation context that are akin to the colloquial use of 

the terms uncertainty, variability, and error used in the operations research community. Using 

their definition, aleatory uncertainty “describes the inherent variation associated with a 

physical system or environment under consideration” (Oberkampf, 2002:334). This could be 
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thought of as the defect rate in a manufacturing process, where the same physical processes 

occur repeatedly, yet each part does not come off the production line exactly to specification. 

Similar terms for aleatory uncertainty include variability, stochastic variability, or irreducible 

uncertainty. A second category of uncertainty, epistemic uncertainty was defined as “the 

potential deficiency in any phase or activity of the modeling process that is due to lack of 

knowledge” (Oberkampf, 2002:334). This category is difficult to conceptualize in most process 

flow modeling and simulation contexts where any potential epistemic uncertainty could be 

resolved by simply inspecting the process as it occurs. Epistemic uncertainty does manifest in 

the materials science and engineering realm, where certain model parameters would require 

materials testing at high temperatures and current methods preclude collecting this data. 

These two types of uncertainty are related in that their impact manifests as either 

simulation output variation or unquantified decision risk. It’s easy to see how a simulation 

process that includes some representation of the aleatory uncertainties results in variation in 

simulation output through replication, either within run or run-to-run. Epistemic uncertainties 

can also induce variation in simulation output if assumptions regarding unknown aspects are 

enumerated and relevant inputs varied within the study. Of more concern is when epistemic 

uncertainties are not explicitly varied within a simulation, providing no insight into the 

sensitivity of simulation responses to assumptions for the analyst, resulting in unquantified 

decision risk. It is likely that the systematic varying of assumptions associated with epistemic 

uncertainties will not cover all unique possibilities, but at least relative impacts can be 

identified and presented to the study stakeholders to qualitatively include in their 

deliberations.  
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The popular terminology typically stops at this point with variability commonly referring 

specifically to aleatory uncertainty and uncertainty to epistemic uncertainty. There is a third 

useful distinction to make alongside the two types of uncertainty that classifies cases where 

choices in model abstraction and software implementation have an appreciable impact on the 

form of the simulation. In the manufacturing example, the modeler could choose to implement 

their simulation with either discrete event or agent based perspective. This choice impacts 

decisions that are made in the process of abstracting the physical system for simulation, 

changing system representation in either a satisfactory or unsatisfactory fashion. In this case, 

the effect on simulation output due to the selected modeling paradigm is related to neither the 

natural variability of the process or elements that are unknowable regarding the system under 

study. To account for this scenario, Oberkampf (2002) proposes the concept of simulation 

error. They define simulation error as “a recognizable inaccuracy in any phase or activity of 

modeling and simulation that is not due to lack of knowledge” (Oberkampf, 2002:334). 

Unfortunately this has the connotation that someone has done something “wrong”, which may 

not be the case. While unacknowledged errors are the term that describes errors made by the 

modeler, of more interest for this discussion are the acknowledged errors or errors resulting 

from a choice in abstraction or simulation implementation process. The impact of error in a 

simulation study results in biased simulation output or explainable deviation from “truth”. In a 

similar fashion to both epistemic and aleatory uncertainty, certain forms of error could be 

systematically explored to identify sensitivities to choices by the analyst. 

The Society for Modeling and Simulation (1979) provides a simple framework to 

understand how error and uncertainty arise throughout the modeling and simulation process 
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(Figure 30). This framework consists of three core elements; Reality, Conceptual Model, and 

Computerized Model. These elements are connected via the processes of Analysis, 

Programming, and Computer Simulation. Model Qualification, Verification, and Validation 

provide feedback from “upstream” elements to ensure the simulation processes generate a 

suitable product based on its preceding elements. 

 

 

Figure 30: Society for Modeling and Simulation Framework for Simulation (SCS, 1979) 

 

The types of uncertainty and error manifest themselves at different elements and steps 

throughout the modeling process. Aleatory uncertainties are manifest in reality. For all practical 

uses their induced stochastic behavior can be measured to suitable precision and have little 

impact on the remainder of the modeling process (although downstream processes may adjust 

how they are represented in computer code). Epistemic uncertainties manifest while 

developing a mental model of reality. Here the modeler aggregates what is known and what 

can be observed and, especially in combat modeling, makes educated assumptions when 

significant items are unknown or are known to exist, but are unobservable. Error manifests in 
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both the construction of a mental model and in implementing the model in code. Classic 

manifestations as part of the programming process are code errors or “bugs”, which are 

classified as unacknowledged errors. Examples of acknowledged errors would be recognizable 

simplifications/assumptions that are made throughout the abstraction process. The key here is 

that these features are recognizable when comparing the conceptual model with reality. In 

operations research parlance, these are referred to as uncertainties or structural uncertainties. 

However, these are really identifiable discrepancies between reality and the way the modeler 

has chosen to represent the system and thus, error. Sometimes software, processing hardware, 

etc. limit the implementation of reality in code. These are also errors by our definition. In this 

way, the modeling process can be thought of as representing the system while meeting a 

suitable error threshold, as measured during the model validation process. 

To address the treatment of uncertainty and error, Bankes (1993) proposes two 

modeling paradigms: exploratory vs. consolidative modeling. Consolidative modeling is the 

process of building a model by consolidating known facts into a single package and then using it 

as a surrogate for the actual system. In contrast with consolidative modeling, the exploratory 

modeling approach is the use of a series of experiments to explore the implications of 

assumptions when unresolvable uncertainties preclude building a surrogate for the system. The 

power of the consolidative approach lies in the assumption that the performance of the model 

has been compared to reality and the accuracy of the model is known to some precision (i.e. 

the model can be validated (Figure 31)). In situations where this is not feasible or where 

important facts about the system under study are uncertain, Bankes (1993) suggests that the 
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exploratory modeling approach is preferable, and that treating such an endeavor as if it were a 

consolidative modeling effort is perilous. 

 

 

Figure 31: Consolidative vs Exploratory Modeling 

 

Considering these issues, Dewar (1996) developed a topology of uses of distributed, real 

time simulations that, among other distinctions, delineated between strongly predictive and 

weakly predictive uses of these simulations. One factor this topology used to distinguish among 

possible uses of combat models was their ability to be validated. Strongly predictive models are 

described as having a demonstrated capacity to forecast outcomes with a high degree of 

accuracy (i.e. can be validated). Examples of these types of models include engineering or 

physics based models to predict part life, strength, fatigue characteristics, etc. Alternatively, 

weakly predictive models suffer from moderate to high levels of parametric, structural, or other 

uncertainties. Yet, the model still captures enough of the critical elements of the system under 

study to be useful in exploratory analysis. While these models may not be validated in the 

quantitative sense, they often rely on softer forms of validation (i.e. “face validation”). Millar 
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(2016) extended this idea, arguing the taxonomy applied to combat models in general. Due to 

the uncertainties inherent to combat, models of combat, to include Live-Virtual-Constructive 

simulations (LVCs), are generally considered weakly predictive simulations and thought to be 

most appropriately used for exploratory purposes. 

 

5.2.2 Analysis of Uncertainty with Evidence Theory 
 

There is a growing body of work in applying Evidence Theory, as a framework for 

systematic exploration and quantification of uncertainty in modeling and simulation. The theory 

was first introduced by Dempster (1967) and later codified by Shafer (1976). Applications can 

be found in several scientific fields, such as space launch and nuclear power plant design (Sentz, 

2002). Evidence theory differs from probability theory in that likelihood is assigned to sets (i.e. 

a range of parameter values) instead of being assigned to a probability density function. By 

explicitly defining ranges of uncertain input parameters and propagating them through a 

model, evidence theory bounds the true cumulative density function for a response. There are 

three key functions in Evidence Theory; the basic probability assignment function (BPA or m), 

the Belief function (Bel) and the Plausibility function (Pl).  

In general the basic probability assignment is not equivalent to probability as discussed 

in classical probability theory (although connections exist (Sentz, 2002)). Similarly to classical 

probability theory, the basic probability assignment is a mapping of all sets (X, the power set) to 

the interval [0, 1] and the sum of all assignments across subsets is 1. Formally, this is 

represented as: 
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 𝑚𝑚:𝑃𝑃(𝑋𝑋) → [0, 1]   (38) 

 𝑚𝑚(∅) = 0 (39) 

  ∑ 𝑚𝑚(𝐴𝐴)𝐴𝐴 ∈𝑃𝑃(𝑋𝑋) = 1 (40) 

 

Using these basic probability assignments, upper and lower bounds for an interval can be 

calculated. The lower bound (or Belief), for a set A (subset of X), is the sum of all basic 

probability assignments of the proper subsets (B) of the set of interest (A).  

 

 𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) =  ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵|𝐵𝐵 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐴𝐴    (41) 

 

The upper bound (or Plausibility) is the sum of all the basic probability assignments of the sets 

(B) that intersect the set of interest (A). 

 

 𝑃𝑃𝑃𝑃(𝐴𝐴) =  ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵|𝐵𝐵 ∩ 𝐴𝐴 ≠ ∅    (42) 

 

The rules of combination in Evidence Theory allow data to be aggregated across 

multiple, potentially conflicting sources within a common frame of discernment. For the 

simulation context discussed in this research, these sources could be a set of epistemically 

uncertain inputs for a single simulation model or the individual combat models in a multi-model 

ensemble. This process assumes that the sources are independent (Shafer, 1976), however this 

requirement is not rigorously established in practice (Tebaldi, 2007). There are many rules for 

combining evidence; the key to identifying the most appropriate method is to determine how 

conflict between sources should be considered. A survey of relevant combination rules is 

provided below.    
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 Dempster’s combination rule was the original combination operator that drove the 

conception of D-S theory. Using Dempster’s combination rule, the basic probability assignments 

from two (or more) sources is combined with a purely conjunctive operation. The formal 

definition of this operation (𝑚𝑚12) is below: 

 

 𝑚𝑚12 =  ∑ 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶)𝐵𝐵∩𝐶𝐶=𝐴𝐴
1− 𝐾𝐾

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐴𝐴 = ∅   (43) 

 𝑚𝑚12(∅) = 0 (44) 

 where 𝐾𝐾 =  ∑ 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶)𝐵𝐵∩𝐶𝐶=∅  (45) 

 

It is important to note that this operation results in an aggregated mass only for intervals which 

overlap, giving zero mass to regions where evidence existed but did not overlap with another 

method. The measure of non-overlapping probability mass (or conflict) is represented by the 

computation of K.  

The aggregated masses are normalized based on K to achieve a basic probability 

assignment function that resembles a probability density function from classical probability 

theory. Unfortunately, this choice can lead to counterintuitive results in situations involving 

high levels of conflict. These shortcomings are detailed in (Zadeh, 1984). Recognizing the 

potential pitfall, numerous other combination rules have been developed which account for 

level of conflict differently (see (Sentz, 2002) and (Yao, 1994) for many examples). 

The Mixing Rule of combination is a popular mechanism for aggregation of disjunctive 

evidence (see equation (46)). This rule averages the masses (mi) associated with a particular 
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interval across all i estimates (i from 1 to n). The individual estimates can be weighted based on 

reliability by the multiplier, w, where each wi is the reliability associated with the ith source. 

 

 

In contrast with Dempster’s Rule of combination, evidence in conflict is preserved in the 

resulting BPA. Said another way, the full range of possibilities expressed in the sources are 

represented in the final BPA. This feature is particularly beneficial where the application of 

evidence theory is not to identify the most likely distribution of a particular metric, but to 

express the full range the distribution could be. 

 

5.2.3 Lanchester’s Model of Armed Conflict 
 

Lanchester’s Square Law (equations (47) and (48)) were developed to model combat 

between two homogeneous forces where both forces use aimed fire, target acquisition time 

does not depend on the number of targets, target acquisition time is factored into the 

firepower coefficients, and the firepower coefficients are constant over time (MORS, 1994). 

 

 

The equations model the change of a given force level (x(t)) as a function of the opposing force 

level (y(t)) over time, given initial force sizes and estimates of the firepower coefficients. Using 

 
𝑚𝑚1…𝑛𝑛(𝐴𝐴) =  

1
𝑛𝑛
�𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖(𝐴𝐴)
𝑛𝑛

𝑖𝑖=1

 
(46) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −α ∗ y(t) where x(0) =  X0 (47) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −β ∗ x(t)  where y(0) = Y0 (48) 
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these equations, various quantities of interest can be explored, such as: who wins the conflict, 

residual forces, and duration of conflict (Figure 32).  

 

 

Figure 32: Example of Lanchester’s Model of Armed Conflict 

 

 Lanchester’s equations are appealing in part, due to their simplicity, transparency and 

ease of implementation. Combat analysts have employed them in assessments of several 

conflicts including; the Ardennes Campaign, the Battle of Kursk, and Iwo Jima (Bracken, 1995; 

Lucas, 2004; Schramm, 2012). However, there are numerous sources in the literature that 

identify deficiencies of a Lanchester model of armed conflict (Tolk, 2012). Taylor (1983) 

consolidates these into a single list, several of which are provided below as reference: 

• No force movement 

• Not verified by history 
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• No way to predict attrition rate coefficients 

• Tactical decision processes not considered 

• Battlefield intelligence not considered 

• Command, control, and communications not considered 

• Effects of terrain not considered 

• Target priority/fire allocation not explicitly considered 

• Noncombat losses are not considered  

Despite these criticisms, many variants of Lanchester’s equations have been developed. 

Extensions include incorporation of heterogeneous forces, stochastic attrition processes, 

reinforcements, logistics and maintenance and breakpoints (Tolk, 2012). In a more modern 

setting, the effects of network disruptions were represented as piecewise firepower 

coefficients (Schramm, 2012), enabling assessment of the impact of cyber effects on combat 

outcomes. Kelton (2010) describes a Lanchester model with stopping levels and stochastic 

reinforcements for both red and blue forces. This model was designed for implementation and 

analysis in the Arena discrete event simulation tool.  

 

5.2.4 Evidence Theory Representations of Uncertainty in Combat Modeling and 
Simulation 

 
In Chapter III, Evidence Theory was demonstrated as a framework for representing 

epistemic uncertainty in combat modeling output. There were 6 epistemically uncertain inputs; 

initial force levels, attrition coefficients, and stopping level for both red and blue sides.  For 

demonstration purposes, all six uncertain factors in the Lanchester model were represented 

with the same scaled BPA which was constructed using the Mixing Rule of combination. The 



 

 

110 
 

analysis found that the proposed uncertainty configuration induced a large gap between the 

cumulative plausibility (CPF) and belief (CBF) functions for blue minus red residual forces, 

indicating large uncertainty in combat outcomes. 

 

 

Figure 33: Evidence Theory Representation of Uncertainty 

 

The demonstration of Evidence Theory as a framework for representing outcomes in 

combat modeling and simulation addresses several key gaps in the literature and common 

practice. First, is the propensity to treat combat simulation output as predictive when, upon 

examining what is known and unknown regarding the model inputs, it clearly is not. This is 

addressed by supplementing the single output probability density functions with cumulative 

belief and plausibility functions from evidence theory. These functions represent bounds on 

probability densities given an input uncertainty specification (or basic probability assignment). 
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Common summary statistics (e.g. mean, probability intervals, etc.) are in the form of ranges, 

which discourage the propensity to treat point estimates from a simulation as predictive.  

Second, is that the employment of the Evidence Theory rules of combination eliminates 

the need to make choices about how to use multiple, potentially conflicting sources for 

modeling and simulation inputs. In the presence of multiple inputs, traditional approaches 

typically follow one of two lines of thought: 1) condense the sources into a single point 

estimate or 2) employ the Laplace principle of maximum entropy and assume a uniform 

distribution over the range of possible values. The validity of these approaches is heavily 

influenced by the process by which the sources are condensed to either a point estimate or 

range. In practice, these methods are unstructured and not well documented. In contrast, 

Evidence Theory provides a structure for aggregating multiple, conflicting sources in a 

repeatable manner without making assumptions regarding the distribution of the true value of 

the input.  

In Chapter IV, the work of Chapter III was extended by developing a new method for 

sensitivity analysis of uncertainty in Evidence Theory. This sensitivity analysis method generates 

marginal CPFs and CBFs and prioritizes the contribution of each factor in reducing the 

Wasserstein distance (also known as the Kantorovich or Earth mover’s distance) between the 

CBF and CPF. Using this method, a rank ordering of the model or simulation input factors was 

produced. 

This method is notable in several respects. First, it employs the stepwise construction of 

CBFs and CBFs as described in Helton (2006) and a statistical measure of distance as in Guo 

(2007). Guo (2007) employs the K-S distance which has been demonstrated to be susceptible to 
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ties when there are large uncertainties in outcomes with respect to the variables. The 

Wasserstein distance, however is not likely to cause ties in the procedure except when the 

variables under analysis have very little relationship to the uncertainty in model outcomes, 

where they exhibit marginal CPFs and CBFs similar to Figure 21. 

A significant difference between the method proposed by Helton (2006) and the one 

presented here, is that no preliminary exploratory sensitivity analysis procedure is required. 

Such a procedure is good practice, but not integrally linked in the new method. A modification 

of this procedure could be produced where it is used (as in Helton (2006)) to incrementally 

construct estimates of CBFs and CPFs by adding variables until the functions stop changing 

enough to warrant further computation. 

To demonstrate the stepwise sensitivity analysis procedure, a hypothetical military 

conflict modeled by Lanchester’s Square Law with stopping level (a force level for both red and 

blue where the conflict ends) for both red and blue forces was analyzed. This overall 

experimental setup is exactly the same as described in Chapter III, were each Ei was estimated 

with an enumeration approach. As such; a more detailed explanation of the Lanchester model 

used can be found in sections 3.2.1 and 3.4.1 and more details regarding the construction of 

the BPAs and design matrix for this demonstration can be found in section 3.4.1. Once the 

simulation runs were complete, the marginal sensitivity of the model factors and overall 

contribution to the belief and plausibility functions were computed for blue minus red residual 

forces. 
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Figure 34: Sensitivity Analysis Summary of Blue minus Red Residual Forces 

 

A relative prioritization of the factors was produced, where five of six factors had 

distinct contributions in explaining total uncertainty while a sixth did not. The ordered 

importance of the variables on total uncertainty was red attrition coefficient, blue attrition 

coefficient, red initial force level, blue initial force level, red stopping level and blue stopping 

level. While the specific results of this analysis are not extensible, they are a useful example for 

how to apply sensitivity analysis with Evidence Theory in modeling, simulation and analysis 

activities. 

Implementing these methods does not come without cost. Managing multiple sources 

and choosing the appropriate Evidence Theory rule of combination add additional complexity 

to the overall analysis. The need to estimate the maximum and minimum response in each 
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input’s basic probability assignment interval intersections can drive significant increases in the 

number of required simulation runs. Large run matrices can be mitigated through the 

employment of design of experiments and meta-modeling. These costs are offset by the clarity 

provided to the decision maker regarding how uncertainties in modeling and simulation inputs 

affect the analysis outcomes. 

 

5.3 Methodology 
 

This research demonstrates the quantification of model error, when multiple models are 

employed in the analysis of a similar context. This method treats the multiple models as an 

epistemically uncertain quantity with an assumed BPA. Evidence Theory can then be used as in 

Chapter III to compute a CBF and CPF which treats the error in model form as an uncertain 

factor as well as the epistemically uncertain factors. The model error and uncertain factors can 

then be prioritized using the stepwise procedure developed in Chapter IV. The relative 

importance of the model error relative to the real, uncertain physical factors may drive a 

different interpretation of the output of the individual models. If the model error explains little 

of the uncertainty in the data, then the decision maker might be more qualitatively confident in 

the broad conclusions taken from the ensemble of models. Conversely, if model error explains 

much of the uncertainty in the data, then the decision maker should consider an alternate way 

to rationalize their decision making. The subsequent sections detail the methods for generating 

the CBF and CPF for an ensemble of models, a procedure for prioritization of the uncertainties 

and modeling error, and describe a combat scenario used to demonstrate the method. 
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5.3.1 Propagating Uncertainty through Models and Computing CPFs and CBFs 
 

Evidence Theory provides a statistical framework for aggregating multiple, potentially 

conflicting estimates for a simulation factor. The uncertainty in the simulation inputs is then 

mapped to the simulation output by feeding the input intervals through the model. This process 

generally requires the formation of basic probability assignments for uncertain factors, the 

development of a design matrix to collect data from the simulation, execution of the simulation 

runs, estimation of simulation output uncertainty intervals, and, finally, the computation of 

cumulative plausibility and belief functions. 

Formally, the evidence space for a given simulation input is (x, X, mx). Where x is the set 

of all possible values for that input, X is the set of subsets of x (Ui’s) that represent the interval 

estimates for the input, and mx is the vector of masses associated with each element of X (Ui). 

The evidence space for the corresponding simulation output is (y, Y, my). Where y is the set of 

all possible values for that output, Y is the set of subsets of y (Ei’s) that represent the interval 

estimates for the output, and my is the vector of masses associated with each element of Y (Ei). 

In the case of uncertain model inputs, all that is known is X (Ui’s) and Y (Ei’s) is not. The Ei’s are 

thus properly considered estimates based on propagation of a corresponding Ui, and identifying 

the minimums and maximums produced by that input interval. The mass for a given Ei (my) is 

assigned based on the corresponding Ui. If a given Ui produced an Ei, its mass (mx) becomes the 

new mass (my) associated with the new Ei, Finally, the cumulative plausibility and belief 

functions were computed using equations (41) and (42). 
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5.3.2 Stepwise Procedure for Prioritization of Epistemic Uncertainties and Modeling 
Error  

 
The intuitive notion behind sensitivity analysis in Evidence Theory is to identify which 

variables reduce the area between the CPF and CBF and by how much (Ferson, 2006). In 

classical probability theory, the area between two cumulative density functions is known as the 

Wasserstein metric (Rüschendorf, 2001),  

 

 
𝑊𝑊𝑝𝑝(𝜇𝜇, 𝑣𝑣) ≔

𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾𝛾𝛾𝛾𝛾(𝜇𝜇, 𝑣𝑣) �∫ 𝑑𝑑(𝑥𝑥, 𝑦𝑦)𝑝𝑝𝑑𝑑𝛾𝛾(𝑥𝑥,𝑦𝑦)𝑀𝑀𝑥𝑥𝑥𝑥 �

1/𝑃𝑃
  

(49) 

 

where (M, d) is a metric space and for p ≥ 1, Pp(M) is the collection of all measures µ, v on M 

with finite pth moment. This measure is also known as the Kantorovich or Earth movers distance 

in the computer science community.  

In our setting, we can greatly simplify this expression for the 1 dimensional case, 

resulting in the following expression (Rüschendorf, 2001): 

 

 𝑊𝑊1(𝜇𝜇, 𝑣𝑣) =  ∫ �𝐹𝐹𝜇𝜇(𝑥𝑥) − 𝐺𝐺𝑣𝑣(𝑥𝑥)�𝑑𝑑𝑑𝑑∞
−∞ . (50) 

 

This measure satisfies the requirements for non-negativity, symmetry, definiteness, and 

triangle inequality, qualifying it as a true metric in the framework presented in 4.2.2. Also, 

assuming the body of evidence results in BPAs that meet the criteria for probability density 

functions, the Evidence Theory and classical probability theory representation of this metric are 

equivalent. 𝐹𝐹𝜇𝜇  and 𝐺𝐺𝑣𝑣 represent the CBF and CPF, respectively, for a given variable.  
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The Wasserstein metric, in combination with a stepwise procedure to generate marginal 

CBF and CPFs can be used to develop a ranking of the variables impact on uncertainty. Once the 

procedures for analyzing uncertainties using modeling and simulation are complete 

(aggregating multiple inputs to form BPAs for each factor, propagating them through a model 

or simulation, and generating the CPF and CBF of the resulting measure of interest), the 

methodology is as follows: 

 
5. Let 𝛷𝛷 = {1, … , 𝑛𝑛} be the set of all uncertain variable indices (including model error) 

under consideration for this analysis (where n is the number of variables) and 𝛺𝛺 =
{ }. 

 
6. Iteration k: for each variable 𝑥𝑥𝑖𝑖, 𝑖𝑖 ∈ 𝛷𝛷; 

 
a. Estimate a CPF and a CBF for y on the basis of the evidence space obtained from 

the original evidence space for the xi, the original evidence space(s) for any 
𝑥𝑥𝑗𝑗 ,∀𝑗𝑗 ∈  𝛺𝛺, and degenerate evidence spaces for all other variables (in which the 
sample spaces are assigned BPAs of 1). 
 

b. Calculate 𝑊𝑊1𝑖𝑖 between marginal CPF and CBF for variable i. 

7. Select variable 𝑥𝑥𝑠𝑠, 𝑠𝑠 ∈ 𝛷𝛷, that minimizes 𝑊𝑊1.. Remove s from set 𝛷𝛷 and add to set 𝛺𝛺. 

Let 𝑥𝑥�𝑘𝑘 =  𝑥𝑥𝑠𝑠, where 𝑥𝑥� is and ordering of x and 𝑊𝑊�1𝑘𝑘 =  𝑊𝑊1𝑠𝑠. 

8. Increment k and repeat steps (2) and (3) until 𝛷𝛷 = { }. 

 

At the conclusion of this procedure, 𝑥𝑥� will contain the prioritized list of factors where 𝑥𝑥�1 is the 

most important for explaining the uncertainty in simulation output and 𝑥𝑥�𝑛𝑛 is the least. 
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5.3.3 Error Prioritization Methodology Demonstration 
 

To demonstrate the methodology from sections 5.3.1 and 5.3.2, a hypothetical military 

conflict modeled by Lanchester’s Square Law with a stopping level (a force level for both red 

and blue where the conflict ends) and reinforcements is analyzed for three distinct models 

(Table 11). In Model 1, reinforcements are modeled as occurring at a constant time interval 

with a fixed number of reinforcements for each side. Model 2 considers stochastic 

reinforcements with poison inter-arrival times and exponential numbers of reinforcements. 

Model 3 does not implement reinforcement behavior, although it is explicitly stated as part of 

the problem statement. This represents the situation where an existing modeling framework 

does not account for all aspects of the mission under study and there are neither sufficient 

resources nor time to develop the appropriate capability.    

 

Table 11: Models for Reinforcements 

 Blue Red 
 Arrivals Number of 

Reinforcements Arrivals Number of 
Reinforcements 

Model 1 Every 6 time 
units 

20 units/time 
unit 

Every 3 time 
units 

25 units/time 
unit 

Model 2 Poisson(λ = 6 
time units) 

Exp(µ = 20 
units/time unit) 

Poisson(λ = 3 
time units) 

Exp(µ = 25 
units/time unit) 

Model 3 - - - - 

 

As in Chapter III, there are 6 key uncertain inputs; initial force levels, attrition 

coefficients, and stopping level for both red and blue sides. These inputs are presumed to be 

epistemically uncertain and that the analyst has been given ranges for each input (see Table 

12). In reality it is unlikely that all input quantities are epistemically uncertain, but were made 
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so in this instance to introduce sufficient complexity to establish viability of uncertainty 

quantification approaches. In this situation, it is assumed that blue minus red residual forces is 

the primary metric of interest.  

 

Table 12: Summary of Uncertain Inputs for Error Prioritization Demonstration 

Inputs Uncertainty 

X1 Blue Initial Force Size (X0) [900, 1000] 

X2 Red Initial Force Size (Y0) [400, 500] 

X3 Blue Attrition Coefficient (α) [0.15, 0.25] 

X4 Red Attrition Coefficient (β) [0.3, 0.45] 

X5 Blue Stopping Level [0, 50] 

X6 Red Stopping Level [0, 25] 

X7 Model 
[Model 1, 
Model 2, 
Model 3] 

 

 The BPA for X1 through X6, was constructed based on estimates from three experts for 

the uncertain parameter values. The BPA for Model, X7, in this analysis is constructed as if the 

organization was asked: “Which method is the most appropriate for estimating blue minus red 

residual forces in this setting?” It is presumed that each organization (or expert) would 

emphatically vote that their model would be the best. Using the mixing rule of combination 

(with equal weights across the expert estimates), an overall BPA that spreads the mass evenly 

across the three models was produced. The evidence configuration for X1 through X6 is 

assumed to be the same as in Chapter III (Figure 13) with the same resulting scaled BPA (Figure 

15) constructed using the mixing rule of combination.  
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 Two possible approaches to estimating the yi’s and Ei’s would be to use a meta-model or 

enumerating a large number of possibilities explicitly with the simulation. Neither approach 

guarantees that the global maximum or minimums have been found, which is why these 

quantities are frequently referred to as estimates for E. In either case, the analyst must choose 

a sampling procedure. The literature contains many examples of the sampling based 

approached, including random sampling, factorial experiments, and space filling designed 

experiments (Ankenman, 2012; Kleijnen, 2006). However, if a meta-model is to be used, care 

should be taken to ensure that the resulting model is statistically valid. To avoid this difficulty 

and to demonstrate the concept of Evidence Theory as a viable method for assessing modeling 

error in combat modeling, an enumeration approach was selected. The Ei’s were estimated by 

taking the maximum and minimum from running the factorial combination of the endpoints of 

the Ui’s resulting in 6^6*2^6 (2,985,984) runs for each simulation.  

 

5.4 Results and Discussion 
 

5.4.1 Uncertainty Analysis of Each Simulation Model 
 

The resulting CBF and CPF and a prioritization of the uncertain factors was constructed 

for each simulation model to provide context for the multi-model analysis and resulting error 

prioritization (Figures 35, 36, & 37; Tables 13, 14, 15, & 16). Each simulation model produced a 

slightly different priority order of the uncertain factor effects on uncertainty (Table 13). Red 

Initial Force Size (X2), Blue Firepower Coefficient (X3), and Red Firepower Coefficient (X4) were 

always the first three most important variables, but varied in specific order depending on the 
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method for modeling reinforcements. Blue Firepower Coefficient (X1), Red Stopping Level (X6), 

and Blue Stopping Level (X5) were always 4th, 5th, and 6th most important respectively.  

  

Table 13: Prioritization of Factor Effects on Uncertainty 

Prioritization of Factor Effects on Uncertainty 
 Model 1 Model 2 Model 3 

1 X4 X3 X4 
2 X2 X2 X3 
3 X3 X4 X2 
4 X1 X1 X1 
5 X6 X6 X6 
6 X5 X5 X5 

 

 

Figure 35: Summary of Uncertain Factor Prioritization for Model 1 
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Table 14: Summary of Wasserstein Distance for Model 1 

Summary of Wasserstein Distance – Model 1 
 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

Initial Blue Forces (X1) 812 611 708 397 - - 
Initial Red Forces (X2) 707 580 - - - - 

Blue Firepower Coefficient (X3) 782 586 470 - - - 
Red Firepower Coefficient (X4) 696 - - - - - 

Blue Stopping Level (X5) 1009 695 580 470 397 381 
Red Stopping Level (X6) 1011 688 568 457 381 - 

 

 

Figure 36: Summary of Uncertain Factor Prioritization for Model 2 
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Table 15: Summary of Wasserstein Distance for Model 2 

Summary of Wasserstein Distance – Model 2 
 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

Initial Blue Forces (X1) 1324 1076 882 720 - - 
Initial Red Forces (X2) 1270 996 - - - - 

Blue Firepower Coefficient (X3) 1204 - - - - - 
Red Firepower Coefficient (X4) 1283 1004 840 - - - 

Blue Stopping Level (X5) 1355 1143 938 784 663 591 
Red Stopping Level (X6) 1357 1154 939 780 660 - 

 

 

Figure 37: Summary of Uncertain Factor Prioritization for Model 3 
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Table 16: Summary of Wasserstein Distance for Model 3 

Summary of Wasserstein Distance – Model 3 
 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

Initial Blue Forces (X1) 714 597 499 401 - - 
Initial Red Forces (X2) 683 574 - - - - 

Blue Firepower Coefficient (X3) 685 570 476 - - - 
Red Firepower Coefficient (X4) 673 - - - - - 

Blue Stopping Level (X5) 810 673 570 476 401 386 
Red Stopping Level (X6) 793 661 560 458 386 - 

 

5.4.2 Error Quantification Using Evidence Theory 
 

The multi-model analysis (or ensemble) produced a grand CPF and CBF and a 

prioritization of error and epistemic uncertainties for blue minus red residual forces. In this 

analysis the most important factor in total uncertainty was the method by which 

reinforcements were modeled (X7). This factor was followed by Red Firepower Coefficient (X4), 

Blue Firepower Coefficient (X3), Red Initial Force Size (X2), Blue Firepower Coefficient (X1), Red 

Stopping Level (X6), and Blue Stopping Level (X5) in order from most important to least. 
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Figure 38: Summary of Uncertain Factor Prioritization for the Ensemble of Models 

 

Table 17: Summary of Wasserstein Distance for the Ensemble of Models 

Summary of Wasserstein Distance – Ensemble of Models 
 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 

Initial Blue Forces (X1) 1324 950 791 628 505 - - 
Initial Red Forces (X2) 1269 886 758 595 - - - 

Blue Firepower Coefficient (X3) 1204 890 720 - - - - 
Red Firepower Coefficient (X4) 1282 883 - - - - - 

Blue Stopping Level (X5) 1354 1058 868 701 576 486 452 
Red Stopping Level (X6) 1356 1053 859 693 565 475 - 

Model (X7) 1075 - - - - - - 
 

 This analysis highlights the commonly believed idea that choices in abstraction and 

software implementation can induce uncertainties that overwhelm natural factors of the 

system under study (Song, 2013). Despite this belief, systematic exploration of these choices is 
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not revisited beyond the decision point. Using Evidence Theory and a multi-model framework 

for analysis of combat can highlight the impact of these choices on simulation output and begin 

a thoughtful dialog on how to best use simulation analysis as a decision making aid. 

Seeing that the choice of how reinforcements are modeled is a significant driver of 

uncertainty, a commander may pause and consider how best to use these results. Further, if a 

commander was willing and able to specify a threshold for blue minus red for which the 

strategic objectives for the wider conflict are achieved, then the range of probabilities 

associated with that threshold could be identified. A sampling of some notional thresholds and 

resulting probability of successfully achieving that objective is provided below for both the 

baseline and Evidence Theory based analysis of uncertainty (Table 18). The individual method 

and multi-model Evidence Theory representations of the probability of meeting the 

commander’s thresholds for success are different, especially for lower threshold values. 

 

Table 18: Probability of Achieving Blue minus Red Objective with Evidence Theory 

Probability of Meeting Blue Minus Red Objective 
Blue – Red 
Threshold Model 1 Model 2 Model 3 Ensemble of 

Models 
750 [0.01, 0.97] [0.01, 0.99] [0.01, 0.96] [0.01, 0.98] 

650 [0.02, 1.0] [0.01, 1.0] [0.02, 1.0] [0.02, 1.0] 

550 [0.17, 1.0] [0.05, 1.0] [0.25, 1.0] [0.16, 1.0] 

450 [0.58, 1.0] [0.27, 1.0] [0.64, 1.0] [0.50, 1.0] 
 

Using this framework does not address the complicating factors which prevent model 

validation in a combat analysis and the subsequent limits in quantified predictive capability – 

the ensemble does not have any more provable predictive capability than any of its 
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constituents. Representation of errors and uncertainties inherent to combat modeling by 

employing multiple models and Evidence Theory improves conceptualization of uncertainty by 

providing ranges instead of point values for metric output. Using this framework should reduce 

the propensity to overlook these shortcomings when reviewing analysis output and inspire a 

more thoughtful dialog on the causes of the range in possible outcomes observed during the 

study. 

 

5.5 Conclusion 
 

This paper developed a method to prioritize the impact of error or modeling choices on 

simulation output uncertainty in settings where multiple models are employed. Prior work on 

representation of uncertainty in combat modeling and subsequent sensitivity analysis with 

respect to uncertainty with Evidence Theory was used as the basis for providing a quantitative 

understanding by treating model selection as an epistemically uncertain factor. This analysis 

provides insight into the overall sensitivities of the system with respect to multiple modeling 

choices. The ensemble is never the best or always the worst in terms of range in uncertainty, 

which is consistent with weather ensemble performance. However, the new method does not 

make weakly predictive models strongly predictive models, but it does ensure a plurality of 

perspectives are considered during a modeling and simulation activity. 

This method is demonstrated using three distinct Lanchester models of conflict. Each 

model represented the arrival and number of reinforcements slightly differently but based on 

the same scenario description. Upon analysis with Evidence Theory, each of these models 

produced a slightly different rank ordering of the top three significant factors, while the bottom 
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three factors were identically ranked. An analysis of the ensemble produced an aggregate 

ranking of the factors, which identified the method by which reinforcements were modeled as 

having the largest impact on uncertainty in blue minus red residual forces. 

Within the combat modeling community there have been several suggestions for 

exploring uncertainties (Bankes, 1993; Davis, 2000; Dewar, 1996). However, the output of these 

approaches does not clearly communicate the uncertainties that are buried within the inputs. 

The methods described in this chapter explicitly generate bounds, giving the decision maker the 

opportunity to consider their use of the simulation output as part of their decision making 

process.   

  



 

 

129 
 

VI. Conclusion 
 

This research develops a comprehensive set of techniques for the treatment of 

uncertainty and error in combat modeling and simulation analysis. Existing approaches within 

the defense community for incorporating uncertain elements into simulation studies are ad hoc 

with a significant number of tools that do not facilitate straight forward exploration of system 

uncertainty. This problem is further compounded by the fact that there are multiple 

overlapping simulation toolsets which, having been individually developed by domain experts 

(aeronautics, signatures/sensing, communications, etc.), each have slightly different 

representations of entities and environmental factors.  

In Chapter III, Evidence Theory was demonstrated as a framework for representing 

epistemic uncertainty in combat modeling output. The steps for aggregating multiple, 

conflicting sources for simulation input data were demonstrated. A basic probability assignment 

was assumed for six uncertain factors; initial force size, attrition coefficient and stopping level 

for both blue and red forces in a Lanchester model of conflict. The analysis found that the 

proposed uncertainty configuration induced a large gap between the cumulative plausibility 

and belief functions for blue minus red residual forces, indicating large uncertainty in combat 

outcomes. To provide context for the Evidence Theory analysis, a traditional approach was 

employed in assessment of uncertainty of blue minus red residual forces in a Lanchester model 

of conflict. The results of both analyses were compared and contrasted.    

In Chapter IV, a new method for sensitivity analysis of uncertainty in Evidence Theory 

was developed. This sensitivity analysis method generates marginal CPFs and CBFs and 

prioritizes the contribution of each factor by the Wasserstein distance (also known as the 
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Kantorovich or Earth Mover’s distance) of the CBF and CPF. Using this method, a rank ordering 

of the simulation input factors can be produced. This method combines positive elements from 

the Evidence Theory literature; the stepwise construction of CBFs and CBFs and a statistical 

measure of distance, the Wasserstein Distance. Published literature employs the K-S distance, 

which has been demonstrated to be susceptible to ties when there are large uncertainties in 

outcomes with respect to the variables. The Wasserstein distance, however is not likely to 

cause ties in the procedure except when the variables under analysis have very little 

relationship to the uncertainty in model outcomes, where they exhibit a large difference 

between marginal CPFs and CBFs. 

In Chapter V, a method to prioritize the impact of error or modeling choices on 

simulation output uncertainty in settings where multiple models are employed. Prior work on 

representation of uncertainty in combat modeling and subsequent sensitivity analysis with 

respect to uncertainty with Evidence Theory was used as the basis for providing a quantitative 

understanding by treating model selection as an epistemically uncertain factor. This analysis 

provides insight into the overall sensitivities of the system with respect to multiple modeling 

choices. The new method does not make weakly predictive models strongly predictive models, 

but ensures a plurality of perspectives can be reconciled during a modeling and simulation 

activity. This method is demonstrated using three distinct Lanchester models of conflict, each 

with distinct representation of the arrival and volume of reinforcements based on the same 

scenario description. Upon analysis, each of these models produced a slightly different rank 

ordering of the top three significant factors, while the bottom three factors were identically 

ranked. An analysis of the ensemble produced an aggregate ranking of the factors, which 
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identified the method by which reinforcements were modeled as having the largest impact on 

uncertainty in blue minus red residual forces. 

The demonstration of Evidence Theory as a framework for representing outcomes in 

combat modeling and simulation addresses several key gaps in the literature and common 

practice. First, is the propensity to treat combat simulation output as predictive when, upon 

examining what is known and unknown regarding the model inputs, it clearly is not. This is 

addressed by supplementing the single output probability density functions with cumulative 

belief and plausibility functions from evidence theory. These functions represent bounds on 

probability densities given an input uncertainty specification (or basic probability assignment). 

Common summary statistics (i.e. mean, probability intervals, etc.) are in the form of ranges, 

which discourage the propensity to treat point estimates from a simulation as predictive.  

Second, is that the employment of the Evidence Theory rules of combination eliminates 

the need to make choices about how to use multiple, potentially conflicting sources for 

modeling and simulation analysis and their required inputs. In the presence of multiple choices, 

traditional approaches typically follow one of two lines of thought: 1) condense the sources into 

a single point estimate or 2) employ the Laplace principle of maximum entropy and assume a 

uniform distribution over the range of possible values. The validity of these approaches is 

heavily influenced by the process by which the sources are condensed to either a point 

estimate or range. In practice, these methods are unstructured and not well documented. In 

contrast, Evidence Theory provides a structure for aggregating multiple, conflicting sources in a 

repeatable manner without making assumptions regarding the distribution of the true value of 

the input. While this discussion focuses on modeling and simulation inputs, the same logic 
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applies when choosing the appropriate modeling and simulation framework, as demonstrated 

in Chapter V. 

Implementing these methods does not come without cost. Managing multiple sources 

and choosing the appropriate Evidence Theory rule of combination add additional complexity 

to the overall analysis. The need to estimate the maximum and minimum response in each 

input’s basic probability assignment interval intersections can drive significant increases in the 

number of required simulation runs. Large run matrices can be mitigated through the 

employment of design of experiments and meta-modeling. These costs are offset by the clarity 

provided to the decision maker regarding how uncertainties in modeling and simulation inputs 

affect the analysis outcomes. 

 

6.1 Future Research 
 

There are several practical considerations for implementing these methods in a 

systematic way. The most significant challenge may be the generation and maintenance of the 

BPAs. Thinking in terms of uncertainty will be a challenge for some specialists, and it may 

require significant encouragement to move them from the single parameter estimate mindset 

to one that embraces multiple, potentially conflicting parameter estimates. A related challenge 

will be deciding which factors for which BPAs should be constructed and used in analysis. It will 

likely not be worth the effort to maintain BPAs for every factor, or even for every uncertain 

factor.  

This research developed a procedure to prioritize the sensitivities of a simulation 

outcome to its input factors, assuming the BPAs were constructed from multiple independent 
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estimators for each factor. An approach where the sensitivity of outcome uncertainty with 

respect to individual estimators may be desirable. Estimators could be omitted from a factor’s 

BPAs in a structured manner, propagated through the simulation, and the effect on outcome 

uncertainty analyzed with a modified version of the methods from Chapter IV (Figure 39). This 

level of insight could provide feedback to subject matter experts regarding which estimation 

methods drive uncertainty and help them make decisions about how to appropriately calibrate 

estimate weights. 

 

 

Figure 39: Sensitivity of Factor BPA to Removing an Expert Estimate   
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