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SUMMARY 

Partially ionized and bounded plasmas from microscale to macroscale find diverse applications of 

interest to Air Force and other communities. Modeling and simulation with particle-based approaches 

require the development of new computational methods that address the presence of complex geome-

tries, collisions, multiple scales, coupling between volume, surface, and transport non-equilibrium pro-

cesses, and presence of species populations with vastly different number densities. The goals and ob-

jectives of research performed under FA9550-14-1-0366 were to: 

 Develop a particle-based multiscale computational method for the simulation of partially ion-

ized bounded plasmas and include methods for multi-weight collisions, coupling with external

circuits, and parallelization.

 Validate the method and perform error analysis.

 Apply to the investigation of plasmas of interest to Air Force.

The mathematical and computational accomplishments under FA9550-14-1-0366 are:

 Developed an Electrostatic Unstructured Particle in Cell Collisional (EUPICC) method for

unstructured tetrahedral meshes and implemented onto a code EUPICC.

 Developed and implemented gather/scatter, particle motion and tracing algorithms.

 Developed and implemented a new potential solver and electric filed evaluation with a Finite

Volume Multi-point Flux Approximation (MFPA) of the integral form of Gauss’ Law.

 Developed and implemented a correction method for electric fields on boundaries.

 Developed and implemented a potential solver based on GMRES with ILU(0) preconditioner

using  the level-scheduling and data dependency directed acyclic graph coloring approach.

Implemented static number of operations analyzer to improve parallel efficiency.

 Developed and implemented a new approach for driven conductors by external circuits.

 Developed and implemented a multi weight collision approach for elastic collisions. It in-

cludes a new real-collision-counter method for collision sampling of particles and a particle

splitting-merge method that is combined with spread in velocity space.

 Parallelized EUPICC with OpenMP and implemented load balancing on most parts of the

EUPICC cycle.

 Performed validation-verification and error analysis: compared with analytic solutions; per-

formed grid sensitivity and order of convergence analysis; investigated momentum and energy

conservation of time inetrgators; performed two-stream instability simulations.

 Evaluated effects of times step, grid-size and particle/cell on heating, deflection, and slowing-

down times.

 Performed high fidelity simulations of current collection of collisionless cylindrical Langmuir

probes and compared with previous validated numerical results.

 Performed high-fidelity simulations of: plasma flows over realistic nanosats and plasma con-

ditions in low earth orbit; ion beam neutralization phenomena.

The research has significant scientific and technical merit in computational mathematics. It ad-

dresses a gap in the current ability to simulate partially ionized plasmas bounded by surfaces of arbitrary 

geometrical complexity. The research is relevant with the interests and mission of the Air Force and has 

broader impacts for the US Defense. The EUPICC computation method allows the simulation of par-

tially ionized plasmas found in areas of plasma/spacecraft interactions, plasma-aided materials pro-

cessing, plasma discharges, and plasma propulsion.   
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1 A MUTISCALE PARTICLE COMPUTATIONAL METHOD FOR PARTIALLY IONIZED 

PLASMAS 

Partially ionized plasmas appear in many applications of interest, such as plasma/spacecraft interac-

tions, plasma-aided materials processing, plasmas discharges, and plasma propulsion. Simulation meth-

ods for a partially ionized, electrostatic, magnetized flow can be categorized as the Particle-In-

cell/Monte Carlo Collisions (PIC-MCC) (Birdsall, 1991) and PIC-Direct Simulation Monte Carlo (PIC-

DSMC) methods (Serikov et al., 1999; Nanbu, 2000; Gatsonis and Yin, 2001; Taccogna et al, 2012; 

Chanrion and Neubert , 2008; Kolev . et al., 2009). The PIC component of the combined PIC-MCC or 

PIC-DSMC approaches has been the method of choice for fully ionized, collisionless, electrostatic, 

magnetized plasmas (Birdsall and Langdon, 1991; Hockney and Eastwood, 1988). The PIC approach 

has its mathematical equivalent in the Vlasov-Poisson system and has fundamental computational lim-

itations related to Debye lengths and electron time steps. The DSMC method was first derived by Bird 

(1994), is the method of choice for simulation of neutral gas flows with elastic and inelastic collisions 

as described by the Boltzmann equation. Both PIC and DSMC methods use computational particles, 

each representing a large number of real particles via the particle weight and use similar representations 

of the velocity distribution functions (Nanbu,2000). The neutrals in the majority of PIC-MCC applica-

tions are not modeled as particles. The PIC-MCC method is strictly applicable to low plasma densities 

(  m-3) due to Debye length limitations and to problems where neutral densities dominate the 

flow. Several variations of PIC-DSMC have emerged over the years and applied to partially ionized 

plasmas (Serikov et al, 1999; Nanbu, 2000; Taccogna et al, 2012)  The fundamental difference between 

these two approaches lies in the inclusion of neutral dynamics (Nanbu, 2000). In PIC-MCC the neutrals 

are considered to be background with known parameters. The collisions between charged species and 

neutrals are modeled by null-collision scheme (Birdsall, 1991) or its variation (Nanbu, 2000) and neutral 

interactions are disregarded. In contrast in PIC-DSMC the neutrals are included in the model and their 

collisions are executed at each time step. The electron-neutral collisions follow the same procedures as 

in PIC-MCC. Heavy particle collisions are executed by following DSMC procedures. An outstanding 

issue in the simulation of collisional plasmas in general, is the algorithmic implementation of charged-

particle collisions which are fundamentally different from ion-neutral and neutral-neutral collisions due 

to long-range interaction forces.  Nanbu (1997) presented a method that can be applied to Monte Carlo 

simulations with the introduction of a cumulative scattering angle that represents a succession of small-

angle binary collisions. Dimarco et al (2009) extended the DSMC approach to take into account charged 

particles collisions. 

In several applications of interest species in a partially ionized plasmas often have orders of magni-

tude differences in their number densities. In such cases a single-weight representation cannot describe 

accurately the collisional interactions (elastic and non-elastic) and the collision algorithms in PIC-

DSMC methods require new multi-weight approaches.  

We present in this report an unstructured collisional electrostatic Particle-In-Cell (EUPICC) method 

on arbitrary tetrahedral grids for simulation of partially ionized plasmas bounded by arbitrary geome-

tries.  Section 1.1 presents the algorithmic elements of the collisionless EUPICC method where each 

species is represented by its own weight: particle loading; charge assignment and electric field evalua-

tion; particle motion; evaluation of macroscopic variables.  In Section 1.2 we introduce a new multi-

weight collision approach based on a real-collision-counter method for collision sampling of particles 

and a particle splitting-merge approach that is combined with spread in velocity space. This multi-

1610en 
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weight approach is implemented for neutral-neutral collisions.  In Section 1.3 we present high-fidelity 

simulations enable by EUPICC. The work presented in this report was developed under FA9550-14-1-

0366 and appeared in Averkin and Gatsonis (2018), Averkin et al. (2018), Han et al.  (2018), Averkin 

et al (2017), and Han et al. (2017). 

 Mathematical and Computational Aspects of the Electrostatic Unstructured Particle in 

Cell Collisional (EUPICC) Methodology 

1.1.1 State-of-the art in Unstructured PIC/DSMC 

Particle-in-Cell (PIC) methods using unstructured grids and parallelization offer flexibility to per-

form large-scale computations of collisionless plasmas in domains with complex geometries. The algo-

rithmic and mathematical issues for parallelized unstructured PIC implementations involve all aspects 

of a PIC cycle: gather/scatter, particle search and motion, potential and electric field evaluation, bound-

ary conditions in bounded and unbounded plasmas, and quality of simulation due to artificial collisions 

and heating. There have been few implementations of electrostatic and electromagnetic PIC on unstruc-

tured grids and an even smaller number of parallelized ones. A three-dimensional parallel, electromag-

netic PIC method on non-uniform hexahedral grids was developed by Wang et al. (1995; 1999). The 

method is based on a finite-volume formulation with hexahedral cells that are connected with cubic 

cells, distorted to fit the complex geometries. Each hexahedral is mapped one to one to a unit cube in 

the logical Cartesian space. The gather/scatter procedures are performed in the Cartesian space using a 

charge conserving weighting scheme by Villasenor and Buneman (1992). The code has been applied to 

ion beam neutralization by Wang et al (2012). Wu et al. (2007)  developed a 3d finite-element, paral-

lelized, electrostatic code using unstructured tetrahedral grids with dynamic domain decomposition. 

Petillo et al. (2005) developed a finite-element electromagnetic PIC code on structured and unstructured 

grids and applied to electron guns. A 3D PIC code on unstructured tetrahedral grids coupled with a 

finite-element electrostatic solver and a frequency-domain electromagnetic solver was developed by 

Pavarin et al. (2011) and applied to the simulation of a cylindrical cusped-plasma accelerator by Fabris 

et al (2015). Alternative approaches addressing complex geometries without using unstructured meshes 

include conformal mapping (Meierbachtol et al. 2004) and adaptive mesh refinement (Vay, et al., 2004. 

Unstructured PIC simulations have the potential for increased artificial collisions and numerical heating 

due to the exerted self-force on particles  (Hockney and Eastwood, 1988). Bettencourt (2014) suggested 

an algorithm that allows controlling the amount of the self-force. Gatsonis and Spirkin (2009) presented 

the mathematical formulation and implementation of an electrostatic PIC method on unstructured 3d 

Delaunay-Voronoi tetrahedral grids (UPIC3dE). The duality of the Delaunay-Voronoi grid was used 

effectively in UPIC3dE cycle but imposed restrictions due to the required quality of the Delaunay dis-

cretization in 3D.  

To take advantage of available general-purpose tetrahedral grid generators and multi-platform 

shared-memory multiprocessing computers including GPUs, this work presents a new mathematical 

formulation of a parallelized electrostatic PIC method on unstructured tetrahedral grids (EUPICC). All 

algorithms of the EUPICC are parallelized and implemented using OpenMP methodology allowing 

large-scale plasma computations with complex geometrical domains on multiprocessors. The grid struc-

ture used in EUPICC involves the tetrahedral cells, which scale with the local Debye length and the 

indirect dual cells formed by connecting the centroids of each adjoining face to the midpoints of the 

edges shared and then connecting the centroids of the faces to the centroids of the tetrahedra to which 

these faces belong. Charge assignment to the vertices of the tetrahedra (or nodes) and electric-field 
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weighting to the particle follows Gatsonis and Spirkin (2009). The evaluation of the electric potential 

follows the finite-volume formulation of the integral Gauss law but is performed using the indirect dual 

cell as the Gaussian surface. The potential is assumed to vary linearly within a cell, which makes our 

formulation consistent with the Multi-Point Flux Approximation (MPFA) family of methods (Droniou, 

2014).  The potential on conductors driven by external circuits is evaluated by a finite-volume MPFA 

of the integral Gauss law, the charge conservation law and Kirchhoff’s lumped circuit law. Unlike pre-

vious approaches (Gatsonis and Spirkin, 2009; Verboncoeur et al., 1997) during an EUPICC iteration 

a single extended system of algebraic equations is solved providing the potential on all nodes of the 

domain, including externally driven, Dirichlet and Neumann nodes. The solution is obtained by the 

restarted generalized minimal residual method (GMRES) solver with an incomplete LU preconditioner 

with zero fill-ins (ILU(0)) following (Saad, 2003). GMRES is parallelized in EUPICC with OpenMP 

using a combination of node-coloring and level-scheduling approaches. The nodal electric field is eval-

uated by a finite volume MPFA of the integral definition for the electric field (Gatsonis and Spirkin, 

2009). For a Dirichlet or driven-circuit boundary node the electric field is corrected by use of the nodal 

surface charge, which is evaluated by a finite volume MPFA of Gauss’ Law. The particle integrator in 

EUPICC follows Buneman’s time-centered leapfrog formulation Buneman, 1967. The particle search-

locate algorithm is performed using an optimized version of an algorithm developed for Direct Simula-

tion Monte Carlo method on tetrahedral (Gatsonis et al., 2013). Particle injection from surfaces in 

EUPICC follows  (Gatsonis and Spirkin, 2009). Periodic boundary conditions are also implemented in 

EUPICC for a number of pairs of periodic surfaces by mirroring the grids and translating particles 

between two periodic surfaces. Nodal macroscopic properties are evaluated using a super-cell that con-

sist of all tetrahedral cells surrounding a node taking into account particles with different weight. The 

methods and algorithms in EUPICC are validated and verified with an extensive set of test cases. Grid 

sensitivity analysis is performed to identify the order of accuracy for the potential and electric field 

evaluation. The effects of particles/cell, grid scaling, and timestep on the numerical heating, the slow-

ing-down time, and the deflection time are investigated by performing simulations of fully ionized elec-

tron-positive ion plasmas in a grounded box with periodic boundary conditions. Laframboise’s (1966) 

results  on current collection by cylindrical Langmuir probes in collisionless plasmas are used for veri-

fication of EUPICC simulations in the orbital motion limited and thin-sheath regimes. Finally, EUPICC 

is used for a simulation of the plasma flow around a CubeSat in Low Earth Orbit. 

1.1.2 The Vlasov-Poisson System in EUPICC 

For collisionless plasmas, the EUPICC method solves the electrostatic Vlasov-Poisson system for a 

multi-species fully ionized plasma (Montgomery & Tidman, 1964; Ichimaru, 1973). The single-particle 

distribution function for species s  particles, gives the average number of particles in a volume 

3 3d rd v d dr v  of the phase-space centered at a point ( , )r v  as 3 3 6, , ( )
s s
f t d rd v d N tr v  and the local 

number density as 3( , ) , ,
s s
n r t f t d vr v . The equation for the distribution function is, 

 
ext

, , 0s s s s

s

f f q f
t t

t m
v E r v B r

r v
           (1) 

In the electrostatic formulation induced magnetic fields due to the particle motion are neglected, and 

Faraday’s Law implies that electric fields are irrotational given by the electrostatic potential ( , )tr   

 ( , ) ( , )t tE r r                    (2) 
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The self-consistent electric field (and potential) is due to the smoothed distribution (internal) int
( )t  

and external distribution of charges ext
( )t , and is given by Maxwell’s equations that reduce to the 

integral Gauss’s law, 

 
1

oA A V

d d dVE A A              (3) 

or to the differential Poisson’s equation 

 3

0 0 ext int
( , ) ( , ) ( , ) ( , , ) ( , )

s s ext
s

t t t q f t d v tE r E r E r r v r      (4) 

In the Vlasov-Poisson system the single-particle trajectories in the presence of an electrostatic and 

an external magnetic field are 

 

ext

( )
( ),

( )
( ), ( ), .

s
s

s s
s s s s

s

d t
t

dt
d t q

m t t t t
dt m

r
v

v
E r v B r

            (5) 

1.1.3 Grid Generation and Data Structure 

The EUPICC method uses an unstructured three-dimensional mesh with tetrahedral cells obtained 

through a grid generator such as GMSH (Geuzaine & Remacle, 2009). The EUPICC method requires 

local data structures for efficient implementation of particle motion, electric field evaluation and the 

sampling of macroscopic properties. Grid parameters are stored in data structures that maintain node 

position, node connectivity, face sharing and cell nearest-neighbor information similar to Gatsonis and 

Spirkin (2009). A tetrahedral cell is illustrated in Figure 1 and assigned to a global cell index 

1,..,
D

D G , where D
G  is the number of cells in the domain. The vertices of the cells are designated 

as the nodes of the domain, each assigned to a global node index 1,..,
d

d G  , where d
G  is the number 

of nodes in the domain. The triangular faces A  of the tetrahedral cells with area A are assigned to a 

global face index 1,..,G , where G  is the number of faces in the domain. The four nodes associ-

ated with a cell D  form a unique index set , , ,i j k l  through an association , , ,D i j k l , where the 

ordered set , , , 1,...,
d

i j k l G . The numbering of the nodes corresponds to the right orientation of 

the tetrahedron. A node { }i  has coordinates ( , , )
i i i i

x y zr  and the volume of the cell D  is  

 , , ,
( ) 6

D ijkl l i i j i k
r r r ,              (6) 

where 
,i j i j
r r r . 

 

Figure 1. The tetrahedron D  with global indexing in a domain . 
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Centroids used in various aspects of an EUPICC cycle are depicted in Figure 2. The centroid (or 

midpoint) of the edge connecting nodes i  and j , 
ij
r , the centroid of the face surrounded by nodes i , 

j , k , 
ijk
r , and the centroid of the tetrahedron 

ijkl
, 

ijkl
r , are defined respectively as  

 

1
,

2

1
,

3

1
.

4

ij i j

ijk i j k

ijkl i j k l

r r r

r r r r

r r r r r

                 (7) 

 

Figure 2. Notation used for the centroids in the tetrahedral mesh. 

A triangular face of the cell 
ijkl D

 with nodes i , j , k  opposite to the node l  is denoted by Dl
A

. The unit outward normal to this face with respect to the cell D  is Dl
n . 

 

Figure 3. Dual cells for a given primary cell D  in 2D and 3D. 

The indirect dual cell used in Poisson’s solver is shown in Figure 3(a) for a 2D configuration. For a 

node i  it is formed by connecting the centroids of each adjoining face to the midpoints of the edges 
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shared by i . The partial indirect dual cell for a 3D configuration around node i  is shown in Figure 3b. 

It is formed by connecting the centroids of each adjoining face to the midpoints of the edges shared by 

i , then connecting the centroids of the faces to the centroids of the tetrahedra to which these faces 

belong. This construction splits each tetrahedron D (
ijkl

) into four hexahedra. The hexahedron con-

taining a node i  is denoted by iD . The dual cell for a node i  containing all such hexahedra is denoted 

by i  and is given by 

 

D

i iD
D
i

.                     (8) 

The face of the dual cell iD  adjacent to the edge connecting the nodes i  and k  is denoted by DikA  

and can be written as 

 Dik iD kD
A .                    (9) 

The area of the face DikA  is denoted by DikA . The outward unit normal to this face for the cell iD  

is denoted by ˆ Dikn . The relation between unit outward normals for two adjacent cells is  

 ˆ ˆ
Dik Dki
n n ,                     (10) 

where ˆ Dkin  is the outward normal for the face Dki DikA A  of the cell kD . 

The data structure implemented in EUPICC allows evaluation of information on neighboring cells 

during particle motion without any additional operations as discussed in Sec.1.1.8.  

1.1.4 Charge Assignment, Nodal Number Density and Nodal Charge Density  

The particle loading and injection procedures in EUPICC follow those in Gatsonis and Spirkin 

(2009). The charge assignment functions used in EUPICC follow also Gatsonis and Spirkin (2009) and 

satisfy charge conservation and first-order constraint. With the Nearest Grid Point (NGP) scheme, the 

charge from the particle at position )(
D jkp i l

r  is assigned to the closest node from the cell D . 

Thus, the weight function )(
mD p

W r  assigned to the node D
m  for a particle at position )(

jp lD i k
r  

is 

 ( , ,
1,min

,)
0,min

D

D

n p mn

mD p

n

p

n p m p

W m i j k l
r r r r

r
r r r r

.           (11) 

With the Cloud In Cell (CIC) scheme, the weight functions are 

 ( , , ,) ;
mD p np Dm Dm D Dm

W A m i j k l Anr nr .          (12) 

Using weights given by Eq. (11) or (12) the species s  charge at a node i  is 

 
1 1

)(

s
pD

D p D

s

i s iD p W

N

p
p

i

N

D

FQ q W

r

r ,                (13) 

where 
Wp
F  is the particle weight of particle p , i.e. the number of real molecules represented by a single 

computational particle p , 
s

p
N  is the number of particles of species s  available in the computation 
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domain. With the nodal charges known the species s  charges density at a node i  is obtained using the 

volume of the indirect dual cell i  shown in Figure 3(a), as 

 ( , , )
s i i i i

i i

s s
x y z Q .                 (14) 

1.1.5 Electric Potential at Nodes  

The integral Gauss law given by Eq. (3) using as the Gaussian surface the dual cell i  surrounding 

a node 1, ,
d

i G  shown in Figure 3a for 2D configuration yields 

 

(

ˆ

)

1 0

D

Dik
D

G i

i

D k
i

A

k

Q
dA ,                (15) 

where ( )
D
G i  denotes the number of cells which share the same node i . Assuming furthermore a linear 

potential variation inside each tetrahedron D i , the electric field (or gradient ) in Eq. (15) is 

constant in every cell D  and can be found from the following system of linear equation 

 

,

,

,

,

,

,

i j i jD

i k i kD

i l i lD

r

r

r

                 (16) 

whose solution for the electric field for a positively oriented tetrahedron is written as 

 
1

.
3D i Di Di j Dj Dj k Dk Dk l Dl DlD

D

A A A An nE n n     (17) 

The discrete form of Eq. (15) can be written as  

 

( )

1 0

ˆ
D

D

G i

i
DikDikD

D k
ik

Q
An .              (18) 

The areas and corresponding normals in Eq. (18) as shown in Figure 4 are 

 ˆ ˆ ˆ ˆ ˆ
D

Di Dik Dij Dik DilDi Di

k

k Dij Dik Dil
k

i

A A A A An n n n n        (19) 

and can be simplified to 

 
1

ˆ
3

DiDi Di Di
AAn n .                 (20) 

 

Figure 4. iD  is the part Gaussian surface i  used in the evaluation of the electric potential. 
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Substituting Eq. (17) and Eq. (20) into Eq. (18), it becomes 

 

( )

1 0

1

9

D

D

G i

i
k Dk Dk Di Di

D kD

Q
A An n              (21) 

Applying Eq. (21) to all the interior nodes d
G  in the domain, a system of d d

G G linear equations 

for the unknown nodal potentials is obtained 

 

11 12 13 1
1 0

21 22 23 2 2 0

031 32 33 3

0
1 2 3

1

2

3 3

d

d

d

d d
d d d d d

G
G G G G G

G

G

G

G

Q

Q

R R R R

R R R R

R R R R

R R

Q

R R Q

,          (22) 

where 

2
( )

1

( )

1

, ,
9

, is adjacent to ,
9

0, otherwise.

D

D

G i
Di

D D

G i
Dk Di Dk Di

ij
D D

i j
A

A
R

A
i j

nn
 

It should be noted that the assumption of the linear variation of the potential inside each tetrahedron 

is consistent with the MPFA methods used in the numerical solution of the diffusion equations on arbi-

trary unstructured grids (Droniou, 2014). 

1.1.5.1 Plasma with Surfaces of Imposed Potential and/or Electric Field 

Consider next a plasma bounded by a surface with imposed potential (Dirichlet) as shown in Figure 

5(a). The potential at the Dirichlet node Di
i A  of a surface Di

A  is  

 0i .                     (23) 

In the case of Neumann conditions the normal field at node Ne
j A  of a surface Ne

A  is  

 
j o nn
E E .                     (24) 

Using the Gaussian surface corresponding to the dual cell 
j
 surrounding a node with index Ne

j A  

as shown in Figure 5(b), Gauss’s law given by Eq. (3) becomes 

 

Ne

( )

0
1 0

1

9 3

1D

D

G i
j

k Dk Dk Dj Dj
D k AD

A j

A
Q

A An En n ,        (25) 

where n  is the outward unit normal to the boundary triangular face A . Any arbitrary combination of 

Dirichlet and Neumann surfaces in contact with the plasma can be considered by replacing equations 

in the linear system (22) with corresponding equations given by Eqs. (23) or (25). The actual structure 

of the resulting system of equations is shown in the next section. 
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Figure 5. Dirichlet node (a), Neumann node (b), and conductor node driven by LRC circuit 

boundary conditions showing the corresponding Gaussian surfaces. 

1.1.5.2 Plasma with a Conductor Driven by an LRC Circuit 

Consider next a bounded plasma that includes a driven conductor as shown in Figure 5(c). The con-

ductor of surface co
A is driven by a voltage source ( )V t  connected in series with a resistance, R , in-

ductance, L , and capacitance, C , as shown in Figure 5(c). The evaluation of the potential generalizes 

the approach in Gatsonis and Spirkin (2009) following Verboncoeur et al. (1993) and Vahdeiand DiPeso 

(1997).  The integral Gauss’ law Eq. (3) applied to the dual cell associated with a node co
i A  shown 

in Figure 5(c) becomes 

 

co

( )

0
1

1

9

D

D

G i

k Dk Dk Di Di i i
D k A AD

A i

A A QAnn ,         (26) 

where ( )
i
t  is the surface charge density and i

Q  is the volume charge of node i . Assuming a perfect 

conductor with constant potential co , the total surface charge density co
( )t  on the driven conductor 

with total area 
co
A  is obtained by summing all surface charge densities as 

co co

co co co

co co

2
( ) ( )

0 co 0
1 1

1
,

9 9

D D

D

i
i A A A

A i

G i G i
Di

k Dk Dk Di Di i
i A D i A D k i AD D

ik

A
A

A A

A Qnn

   (27) 

where
co

ii A
Q  is the volume charge associated with the plasma in the dual cells of the conductor. 

In Eq. (27) co
( )t  and co

( )t  are unknown variables and are evaluated from the boundary conditions 

from circuit laws. The charge conservation law at the conductor (or Kirchhoff's current law) becomes 

 c c
o

i vo
c

c
d dQ d

A
Q

dt dt dt
,                 (28) 
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where, cv
( )Q t  is the convective charge collected by the conductor from the plasma and ci

( )Q t  is the 

charge on the conductor due to the circuit. Kirchhoff’s voltage law for the lumped circuit shown in 

Figure 5(c) is 

 
2

co
ci ci

ci2
( ) ( ) ( )

d Q dQ
L R CQ t V t t

dtdt
             (29) 

Substituting a second-order, backward Euler finite-difference approximation of Eq. (29) (Ver-

boncoeur et al., 1993) into a first-order, backward Euler finite-difference approximation of Eq. (28) it 

becomes  

ci co
co co co co

2

cv

( ) ( ) ( )
( ) ( ) ( )

9 3

4 2

Q t V t t
t t Q t

L R

t
A A t

t
C

t

,      (30) 

where 

 
ci ci

ci c

2

2 i2 2 ci

2

2

15
( ) ( )

4

11
( 2 ) 8 ( 3 ) ( 4 ),

4 42

L R
Q t C Q t

L R

t t

L L
Q t Q

tt

t t t
tt t t

t Q t

    (31) 

and cvcv cv
)( ) ( ) (Q t Q t Q t t  is the convective charge collected by the conductor from the 

time t t  to t  from the plasma. Substituting Eq. (27) into Eq. (30) it becomes 

co co

co

2 1( ) ( )

0 co 02
1 1

1

co o cv cc 2i

9 3
( )

4

9 3
( ) ( ) ( ) ( ) .

4

1

29 9

2

D D

D

G i G i
Di

k Dk Dk Di Di
i A D i A D kD D

i

i
i A

k

A L R
C t A

L R
t Q t Q t V t

A
tt

A t Q t
t
C

t

nn

(32) 

For completeness we also assume that node j  is at fixed potential 0  (it can be, for example, 

grounded) and the node k  is a part of the surface Ne
A  with an applied electric field 0

E  then Eq. (32) 

coupled with the system (22) for the interior nodes results in  

111 1 1

1

1

1

0

0 1 0 0 1

0 0 1 0 0

0

0

1

d

d

d d d d d

d

G

G G i G j G G

i j

i j G

k ki kj k

G

R R R R

R R R R

R R R R

R R R R

Ne

1
1

0 0

0

0 0

co

0

1

1

3

d

d

i

j

Ak
A k

k

G
G

Q

Q

Q

A

Q

nE

, (33) 
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where the i th row corresponds to the nodes of the driven conductor co
A , the row j  is for the con-

ductor at fixed potential 0 , the k th row is for the Neumann boundary Ne
A  with applied electric field 

0
E , 

ij
R  are defined by Eq. (22) and i

R  and Q  are given as 

co

1
2

1( ) ( )

0 0 co2
1 1

co

9 3 1
, ,

29 94

0,

D D

D

G j G i
Dj

Di Di Dj Dj
j A D Di D D

j
j i

A L R
C A A i A

R tt

i A

n n
, 

co

co

0 co co 0 cv 0 0

2

2 1( )

0
1

ci

2

( ) ( )
( ) ( ) ( )

9 3

4

9 3

4

2

29

D

i
i A

G i
Di

i A D D

Q t
A t Q

t V t
t Q t t

L R
C

A

ttQ

tt

L R
C

. 

The system of sparse linear equations given by Eq. (33) is solved using restarted GMRES solver 

with the ILU(0) preconditioner following Saad (2003). This derivation can be extended to a plasma 

with additional driven electrodes and, thus, allows the representation of a specific plasma device.  

In the case of a floating conductor the potential is determined by the surface charge collected by it. 

This case is equivalent to a driven conductor shown in Figure 5(c) connected to an open circuit with 

0C . Gauss’s law for the floating conductor is expressed as in Eq. (27) and charge conservation law 

Eq. (28) in discrete form becomes  

 
co co co co cv

( ) ( ) ( )A A Q ttt t ,             (34) 

where we took into account that there is no charge on the conductor due to the circuit. 

Substituting Eq. (34) into Eq. (27), it becomes 

 co co

co

2
( ) ( )

0 co 0
1 1

co co cv

(

( )

1
)

) (

9 9

D D

D

G i G i
Di

k Dk Dk Di Di
i A D i A D kD D

ik

i
i A

A
t A

t Q t

A

A t Q

nn

        (35) 

The coefficients i
R  and Q  from Eq. (33) are defined for floating conductor based on Eq. (35) as 

co

1
2

( ) ( )

co
1 1

co

1
, ,

9 9

0,

D D

D

G j G i
Dj

Di Di Dj Dj
j A D DD Di

j
j i

A
A A i A

R

i A

n n
, 

co co

1
2

( )

co co cv
1

( ) ( ) ( )
9

DG i
Di

i
i A D i AD

Q A
A

t Q tt Q t . 
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1.1.6 Particle Injection from Surfaces and Periodic Boundary Conditions on Unstructured 

Meshes 

Particle injection from surfaces follows Gatsonis and Spirkin (2009). Periodic boundary conditions 

are also implemented in EUPICC for a number of periodic surfaces pairs obtained by translation by a 

vector R , which, in general, is different for different pairs. The main difficulty in implementing peri-

odic boundary conditions on unstructured meshes is the necessity to find a corresponding periodic face 

from which particle is reinjected from the periodic surface once it left the domain from the other. In 

order to circumvent this computationally expensive procedure we use mirror meshes on the periodic 

surfaces pairs. The list of the periodic faces of the two periodic boundaries separated by R  is stored. 

When a particle crosses a periodic face, its position is shifted by R  and reinjected from the other peri-

odic face. This implementation is both computationally efficient and allows using arbitrary shaped pe-

riodic boundaries. For the periodic potential we use Dirichlet boundary conditions described in Sec. 

1.1.5.1. 

1.1.7 Nodal Electric Field and Force Interpolation 

The electric field at node i  can be found from  

 
0

1
lim
V

A
V

dAE                   (36) 

applied to the dual cell i  in Figure 3 

 

( )

1

1 D

Dik
D

G i

i
A

D ki

dE A                 (37) 

or after carrying out all integrations in fully discrete form 

 

\

1
( ) ( )

1 1
,

1

3

D

D

D

G i G i

i D Dl j
j A

i
l

D
A

A

AE n ,             (38) 

where ( )G i  is the number of faces surrounding the node i  including the boundary faces for each 

node i  is a part of the faces. Equation (38) can be used to evaluate electric field on both interior and 

boundary nodes. However, for a Neumann boundary node the field is evaluated directly from the im-

posed Eq. (24). For a Dirichlet node or driven-circuit node Di
i A  the electric field is given by 

 
0

i
i i
E n ,                     (39) 

where i  is the surface charge density at node i  and i
n  is the unit outward normal at node i . 

Equation (39) in discrete form becomes  

 

Di0

1

3
i

i
A

A j

AE n .              (40) 

The surface charge density, i , is calculated from a finite-volume MPFA of the Gauss’ law applied 

to the Gaussian surfaces shown in Figure 5(b,c) and is given by  
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Di

( )

0
1

/
1

9

D

D

G i

i k Dk Dk Di Di i
D k A AD

A i

A Q AAnn .        (41) 

When a node is shared between two or more surfaces with different boundary conditions (for exam-

ple, corners) an area-weighted average of the electric field is evaluated from each of these surfaces 

calculated following Eq. (24) and (40). 

The electric field at the position of a particle 
p D
r  is obtained through interpolation from the four 

nodes of the tetrahedral cell using the same weights as in Sec. 1.1.4 as 

 ( , ) ), (
D

m Dp p mp
m

p
x y z WE E r .                (42) 

1.1.8 Integration of Particle Motion and Particle Tracer 

The trajectory of a particle in the presence of an electrostatic field,E , and an external magnetic field, 

ext
B , is integrated as in Gatsonis and Spirkin (2009)  following Buneman’s time-centered leapfrog for-

mulation  (Buneman, 1967)  

 

/2 /2 /2 /2

ext

/2

( ) / / 2 ,
pt t t t t t t t t t

p p p p p p

p

t t t t t

p p p

q
t
m

t

v v E r v v B r

r v r

       (43) 

combined with Boris’s (1970) algorithm for the implementation of the ext
v B rotation in case of an 

applied external magnetic field. 

The particle search-locate algorithm in EUPICC is carried out using an improved version of the 

successive-neighbor algorithm developed in Gatsonis et al. (2013) for Direct Simulation Monte Carlo 

method on unstructured three-dimensional meshes. The current algorithm requires less number of float-

ing point operations. The steps for particles tracking in tetrahedra shown in Figure 6 are outlined below: 

 

Figure 6. Particle tracking algorithm. 
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(S.1) For each tetrahedral cell D  using the outward normal Dl
n  for each face in the cell for each 

particle p  calculate the projection of velocity 
p
v  onto Dl

n ,
Dl p Dl
v v n  that gives the velocity at 

which the particle is approaching the plane of the corresponding face Dl
A . 

(S.1.1) If 0
Dl
v  the particle is moving in the opposite direction of the face and intersection is not 

possible; set 1
Dl

tt   

1.1. If 0
Dl
v  the particle is moving parallel to the face and intersection with this face is not 

possible, set 1
Dl

tt . 

1.2. If 0
Dl
v  the particle can cross the plane of the face and intersection is possible. In this case 

calculate the distance from the face to the particle in the cell, as 
,Dl p k Dl
nr , where 

,
( )

p k p k
trr r , and k

r  is the position of a node which lies into the face as shown in Figure 

6. Using the particle-face distance Dl  and the normal velocity Dl
v  calculate the time needed 

for a particle to reach the face as, Dl Dl Dl
t v . 

2. Calculate 
min

min( )
D

Dll
t t . 

2.1. If min
t t  then the particle crosses the corresponding face. Once a face which the particle 

crosses is determined, the neighbor cell is also found. It is achieved by storing a list of the 

global faces indices, a list of the global nodes indices opposite to the faces and a list of the 

global indices of neighbor cells in the same order for every cell in the grid, allowing efficient 

next cell determination during particle crossing. According to the type of the crossed face the 

following cases are possible: 

2.1.1.  If the particle crosses a boundary face, the boundary conditions associated with this face 

are imposed. The new location of the particle in the next cell (or the same cell in case of 

a reflection) is 
min min

( ) ( )
p p p
t t t tr r v  and the new time step for this particle is 

*

min
t t t . The velocity of the particle in the next cell depends on the boundary 

condition. Then this process is repeated with new time step until the particle remains in a 

new cell or leaves the domain. 

2.1.2. If particle crosses a free boundary, it is deleted from the computational domain.  

2.2. If min
t t  the particle remains in the current cell and its final position is 

( ) ( )
p p p
t t t tr r v . 

1.1.9 Nodal Macroscopic Properties  

Evaluation of nodal macroscopic properties for multiple particle weights is based on output samples 

from EUPICC. The species s  number density at a node i  is obtained using the volume of the supercell 

i  shown in Figure 3, as 

 ( , , ) N ( , )
s i i i is

i

s
n x y z n i t ,               (44) 

where the number of real particles of species s  inside a supercell i  shown in Figure 3(a) is  
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1 1

N ( , ) N ( )

s
pD

D p D

N

s

i

N

s Wp
D p

i

i t t F

r

,                 (45) 

where 
s

p
N  is the number of computational particles of species s  in the domain. The species s  mean 

velocity at a node i  is 

 
1 1

1
( , ) ( , ), ( , ), ( , )

N ( , )

s
pD

D p D

NN

s sx sy sz sp
D ps

Wp

i

i t V i t V i t FV i t
i t

r

V v .        (46) 

The mass-average velocity ( , )i tV  at a node i  is 

 
1

( , ) ( , ), ( , ), ( ( , )
( ,

)
)

,
x y z s

s s

s
s

s

s
i t V i t V i t V i t n

n
i t m

i t m
V V         (47) 

The thermal (or random) velocity for the p -th particle of species s  at time t  is given with respect 

to the node species-average velocity  

 ( , )
sp sp s

i tC v V  (48) 

or with respect to the cell mass-average velocity as 

 
* ( , )

s spp spsp
i tC v V C W .                (49) 

The species s  translational temperature, scalar pressure, pressure tensor, heat flux vector, and cur-

rent density in the species-average system or the mass-average system (designated by *) are obtained 

as 

 

(*) (*)2

1 1

(*) (*)2 (*)

1 1

(*) (*

1 1

3 1 1
( , ) ,

2 N ( , ) 2

1 1
( , ) ( , ) ( , ) ( , ),

3 N ( , )

1
( , ) ( , )

N ( , )

s
pD

D p D
s
pD

D p D
s
pD

D p D

NN

s s sp
D ps

NN

s s s sp s
D ps

Wp

i

Wp s B

i

Wp

NN

s s s s
p

i

p
Ds

kT i t m C
i t

p i t n i t m C n i t k T i t
i t

i t n i t m
i t

F

F

F

r

r

r

P C ) (*)

(*) (*) (*)

1 1

1 1

,

1 1
( , ) ,

2 N ( , )

1
( .)

s
pD

D p D
s
pD

D p D

sp

NN

Wps s sp sp
D ps

NN

sp
D

i

s s iD p Wp

i
i
p

i t m
i t

q W

F

F

r

r

C

q C C

j r v

       (50) 

1.1.10 Parallelization Implementation 

The EUPICC is parallelized using OpenMP in order to take advantage of multi-platform shared-

memory multiprocessing computers including GPUs. The parallelization of the algorithms for charge 

assignment, force interpolation, and particle motion is achieved by distributing clusters of tetrahedral 

cells to distinct parallel threads that compute independently from each other. The dynamic load balanc-

ing based on the number of particle processed by each thread is used to achieve better parallel efficiency. 

It is achieved by counting the number of particles in all cells every 100 iterations and distributing cell 

clusters that contains a nearly equal amount of particles for parallel processing to all threads in 
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gather\scatter and motion algorithms. It allows to avoid using OpenMP’s intrinsic load balancing algo-

rithms that introduce additional overhead for every iteration. For the evaluation of macroscopic prop-

erties the corresponding moments are first calculated for cells in parallel. Then for each node the mo-

ments are summed for all cells surrounding a node in parallel and independently of other nodes. These 

sums are then used to calculate the macroscopic properties. 

Parallelization of the GMRES computational cycle involves the dot product calculations that are 

computationally expensive. These calculations are performed by splitting the vectors and matrices in 

stripes and offloading calculations to different threads. In case of matrix-vector products the matrix is 

split by rows taking into account the number of non-zero elements achieving better load balancing. In 

addition, during the ILU(0) preconditioning it is necessary to solve an LU sparse system. The main 

problem with such solutions is data dependencies between unknown values. In order to reduce such 

data dependencies we use a combination of nodes reordering based on the coloring of the data depend-

ency directed acyclic graph (Naumov et al., 2015) and calculation ordering based on the level-schedul-

ing scheme (Naumov et al., 2015b).  First, we create a directed acyclic graph of data dependencies of 

the L and U matrices and use a graph-coloring scheme to color this graph. The nodes are reordered in a 

way that those with the same color are sitting next to each other. Then the level-scheduling scheme is 

used to reordered system to extract independent calculation steps from the solution of the LU system. 

These reordering steps are performed only once in the beginning of the simulation and then used during 

the entire EUPICC simulation. For the main stopping criteria of the restarted GMRES method we use 

the relative residual 
GMRES

ne  at outer GMRES iteration n  defined as  

 
GMRES

0
max ,

nn
r

e
Q

.                 (51) 

In the above 
n n
r R Q  is the residual and 

n
 is the potential at the outer GMRES iteration n , 

 is the either 
2L  or L  norm, 

0
 is the constant that determines the minimum possible value of Q  

to avoid division by zero,  is the specified relative error. The calculation of the actual residual is 

computationally expensive, therefore, during the inner GMRES iterations the following estimate for the 

preconditioned relative residual is used 

 

1 1

0

GMRES 11
0 00

min ,
max ,max ,

m mm
M r M rr

e
M r QM Q

,          (52) 

where m  is the inner GMRES iteration, M  is ILU(0) preconditioner matrix, 
0
r  is the residual at the 

beginning of inner iterations, 
m
r  is the residual at the m  inner iteration. Since the satisfaction of the 

condition given by Eq. (52) doesn’t guarantee the satisfaction of Eq. (51), the condition in Eq. (51) is 

also evaluated a posteriori. In the simulations presented in this work the rather conservative values for 

stopping criteria of 
11 13

0
10 , 10  were used accompanied by a Krylov subspace dimension of 

100. The GMRES solver usually converged in less than 200 of iterations depending on the particular 

problem and the relative residual defined by Eq. (51) was usually less than 135 10 . 

The parallelization of the electric field algorithm is achieved by first rewriting Eq. (38) explicitly as 

a product between a sparse matrix and a vector as 
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1

d

i j

G

ij
j

E E ,                    (53) 

where 
ij
E  is the vector-valued coefficient showing the contribution to the electric field at node i  

from the potential at node j . The vector-valued matrix E  has the same fill-in structure as the matrix R  

in Eq. (22). Then parallelization follows the method outlined above for matrix-vector multiplication. 

The advantage of explicit matrix-vector product is the increased efficiency due to better CPU cache 

utilization. Once electric field at nodes is calculated it is corrected on the boundary nodes by Eq. (40). 

1.1.11 Parallelization Efficiency 

In this section the parallelization efficiency of the OpenMP implementation in EUPICC is discussed. 

For this purpose, simulations of current collection by a cylindrical Langmuir probe in the thin sheath 

regime were performed following the parameters listed in Table 2 for a case of / 25
p e

e kT . A total 

of 62.285 10  tetrahedral cells were used and initially 81.2 10  of computational particles were 

loaded. The simulations were performed on the dual socket node with two Intel Xeon E5-2690 CPUs 

with the total number of 16 physical cores and enabled hyper-threading, a technology that allows to 

execute two streams of operations on the same core. The EUPICC code was compiled using the Intel 

Fortran Compiler 17.0.1 on Red Hat Enterprise Linux Server 6.8. The simulations have shown that the 

performance strongly depends on how calculations are spread across different cores. The best perfor-

mance was achieved by using the following environment variables: OMP_PLACES=cores and 

OMP_PROC_BIND=close that were introduced in the OpenMP 4 standard. With these options the op-

erating system binds OpenMP threads to physical cores as close as possible to the parent thread and 

don’t allow their migration to other cores. Compared to the default options these settings give perfor-

mance boost around 30% on up to 8 threads while for more threads the performance boost is less than 

5%. Figure 7 presents the speedup and parallel efficiency (the ratio of the actual speedup to the theoret-

ical speedup) as a function of the number of OpenMP threads. It can be seen that up to 8 threads the 

parallel efficiency is quite high and monotonically decreases from 96% for two threads to 82% for 8 

threads as the number of threads increases. Up to 8 threads due to the choice of the environment varia-

bles the simulation was running on a single CPU of the dual socket configuration. Once the number of 

threads exceeds 8, as can be seen from Figure 7, the performance drops due to the non-uniform memory 

access (NUMA) architecture and particle data structure in the EUPICC code. The particle data in 

EUPICC are represented by global arrays and linked lists so that while a particle moves from one cell 

to another it still occupies the same position in the global array and only its pointer is updated. Since 

particle data are stored in the memory of one CPU, the access to this data from the other CPU is much 

slower due to the NUMA memory design architecture. With the choice of OpenMP environment vari-

ables in our simulations, if the number of threads exceeds 8 but below 16, then 8 threads are assigned 

to 8 physical cores of one CPU and the remaining threads are assigned to the physical cores of another 

CPU. In this case 8 threads have fast access to the data and finish their simulations earlier than remaining 

threads from another CPU. As a result this 8 threads are waiting for most of the simulation time for the 

remaining threads of another CPU to complete their part of the computations. For the case of up to 16 

threads, the parallel efficiency remains rather low because the simulation is limited by the memory 

access. At 16 threads all cores were loaded and each thread had much less work to do and, thus, much 

less data to transfer. Therefore, some speedup at 16 threads compared to 8 threads can be observed as 
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seen in Figure 7. Tests with more than 16 threads result in some of the cores executing two streams of 

operations due to the usage of hyper-threading and leads to the slowdown shown in Figure 7. When the 

node is loaded fully with 32 threads by using all physical and virtual cores, another speedup in perfor-

mance is realized as shown in Figure 7. In this case the full load on all cores mitigates effects of memory 

access due to the NUMA architecture by taking an advantage of the fact that if one thread of a core is 

waiting data to perform calculations the other thread can perform its own computations resulting in 

more uniform load of the cores. The speedup of 10.3753 for 32 threads corresponds to the effective 

parallel efficiency of 0.65 based on the number of physical cores. One way to reduce the negative per-

formance issues due to the NUMA architecture is to use message passing interfaces (MPI) for each 

CPU of the node. This strategy will also allow to run simulations on multiple nodes. 

Table 1. The average iteration time in the EUPICC simulation of the current collection by a cy-

lindrical Langmuir probe and the distribution of different 

Num-

ber of 

threads 

Aver-

age time 

per itera-

tion (sec) 

Percentage of the average time spent in each algorithm in PIC cycle 

Charge 

assignment 

Parti-

cle mo-

tion 

Potential 

solver 

Electric 

field interpo-

lation and 

particle ve-

locity update 

Other 

1 64.9434 19.0564 45.3219 12.1982 23.1375 0.2860 

2 33.7756 18.0534 45.3070 13.1228 23.1334 0.3835 

4 18.1497 17.4091 44.6110 14.4511 22.9895 0.5393 

6 12.9278 17.0111 43.8054 15.9242 22.5314 0.7279 

8 9.9075 16.8027 42.5648 17.8535 21.8960 0.8830 

10 10.3511 17.1590 38.5253 22.9041 20.5811 0.8306 

12 9.4986 16.6318 39.2598 23.1179 20.1226 0.8680 

16 7.9301 15.6215 37.5267 26.3841 19.4789 0.9888 

18 8.8555 14.5536 39.8162 25.0151 19.5062 1.1089 

32 6.2594 13.5222 37.3569 27.3490 20.2428 1.5291 

To better evaluate the impact of memory access on operations Table 1 presents the averaged timestep 

per iteration and the percentage of time spend in each step of the EUPIC cycle. It can be seen that the 

most time is spent in the particle motion algorithm. The remaining time is spent in charge assignment, 

potential solver using GMRES and electric field interpolation, and particle velocity update. As the num-

ber of threads increases the percentage of time spent in charge assignment, particle motion and electric 

field interpolation decreases while the percentage of time spent in the potential solver increases. This 

indicates worse parallel efficiency of the GMRES solver. This is partially due to the usage of the ILU(0) 

preconditioner which considerably reduces the number of operations but has inherit data dependencies 

that lead to low parallel efficiency as has been reported in the literature  (Naumov et al., 2015). Another 

reason is the aforementioned NUMA memory design effects since GMRES data correspond to one 

CPU. It should be noted that our choice of the relative tolerance in Eqs. (51) and (52) corresponds to 

the machine precision error at most of the nodes in the domain. Using lower tolerance will decrease the 

number of operations required to converge and speedup the simulations even more. 
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Figure 7. Speedup (a) and parallel efficiency (b) of the EUPICC simulation of the current collec-

tion by a cylindrical Langmuir probe in the thing sheath regime as a function of the number of 

OpenMP threads. The red line shows the number of threads after which NUMA effects start 

playing the role. The green line shows the number of threads after which the hyper-threading 

technology is used. 

1.1.12 Verification, Validation and Error Analysis  

The first test case provides verification of the electrostatic solver, nodal field evaluation, and a grid 

sensitivity analysis. It involves a grounded conducting sphere of radius R  in vacuum with a uniform 

applied electric field 0
E  along z -axis and Neumann boundary conditions ( , , 5 )

o
x y z RE E . The 

analytic solution (Jackson, 1999) is 

 

3

0 3

3 3

0 5 3

1( ,

( ,

,

1

,

) ,

)

, 3

x y z E z
R

r

R R
x y z

z

r r
EE r k

              (54) 

where 
2 2 2x yr z , k  is the unit vector along z . Figure 8 presents the effects of the cell size 

on the 
2L  norm of the relative error in ( , , )x y z  and ( , , )

x
E x y z  defined as 2 2 2

( ) /
h h e e

f fe f f  

and the L  norm of the relative error defined as ( ) /
h e e
f fe f f , where h

f  is a numerical 

solution obtained with the average cell size r , e
f  is an exact solution given by Eq. (54). The discrete 

2L  norm is 2

2 1

dG

i i
f f  and the discrete L  norm is max

ii
f f . Figure 8 shows also the 

order of convergence given by 2 2 2
(log ( ) log ( )) log 2

h h
e f e f  for different cell sizes. We use two def-

initions to access the impact of the cell size, r , an edge-averaged with 
1

dG

i di
r l G  and a vol-

ume-averaged with 
1/3(6 2 / )r and 

1

d

i d

G

i
G . Figure 8 shows that both definitions 

lead to similar results, with 2

2
( ) ( )e O r  and 2

( ) ( )
x

e E O r  that is consistent with theoretical 

estimations (Droniou, 2014).  
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Figure 8. Effects of edge-averaged and volume-averaged cell size on 
2L  and L  norms of the 

relative error in potential and x-component of electric field (Top) and corresponding orders of 

convergence (Bottom). 

The second test case expands with the verification of loading, gather and scatter procedures. It in-

volves a ground sphere of radius R  enclosing a cloud of stationary positive ions with the linearly var-

ying number density 
0

1 /n n r R  for r R , 0n  for r R  and Dirichlet boundary conditions 

( ) 0r R , where 
2 2 2x yr z . The potential and electric filed are spherically symmetric and 

are given by 

 

2 3

0

0

1 2

( ) 4

( )

3

r r

R R

r
r

R

r

R R

r
E

                (55) 

where 2

0 0 0
12en R  is a potential in the center with the maximum electric field max 0

4 / 3E R  at 

2 / 3r R . Spatial discretization is dictated by the need to resolve the maximum gradient max
E  

and / 1.5r R  where 0.1  is a grid sensitivity parameter. The simulations were performed with 

R=0.1 m, 13

0
10n m-3, 2 2 22 10 4 1; ;0 8 10  and with 300 computational particles per cell.  
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Figure 9. Effects of edge-averaged and volume-averaged cell size on 
2L  and L  norms of the 

relative error in charge density and potential (Top) and corresponding orders of convergence 

(Bottom). 

Figure 9 presents the effect of grid size on the 2L  norm and L  norm of the relative errors in charge 

density ( , , )x y z  and potential ( , , )x y z , and the order of convergence for different cell sizes. The 

results show that 2
( ) ( )e O r  and 2

2
( ) ( )e O r . 

The third test case examines the momentum and energy conservation properties of the electrostatic 

solver and leapfrog time integrator along with temporal sensitivity analysis. It involves an electron ini-

tially at rest placed inside the grounded sphere with the linearly-varying stationary ion density distribu-

tion as in the previous case. With immobile ions and initial conditions the electron is trapped in the 

potential well and its total energy must be conserved for all times. In addition, the translational energy 

and momentum variations must be periodic functions with constant amplitudes. The time step for inte-

gration of the electron trajectory is bounded for stability by 3 4 )(6
e e
vt r , where 

2

0 0
( ) ( )

e e
e n m . The simulations were performed with R=0.1 m, 14

0
10n m-3, α=3×10-2 and var-

iable timesteps 11 10 910 10 15 ;5 ;5 0t s  that satisfy stability criterion. The grid consists of 

about 1,500,000 cells and 200,000 nodes and is loaded with about 300,000,000 singly-charged massive 

ions. The 
2L  norm of the error in the electric field was found to be below 3% for the most part of the 

domain. The electron kinetic energy evolution in Figure 10(a) and x-component of momentum in Figure 

10(b) show that they vary harmonically with almost constant amplitudes for up to 2e-7 s that corre-

sponds to 113 1

e
 that confirms the conservation of energy and momentum. In addition, it can be seen 

that the effects of varying time-step are minimal for up to 2e-7 s that corresponds to 113 1

e
 or three 

periods of electron oscillation.  
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Figure 10. Effects of time step on translational energy (a) and x-component of momentum (b) of 

an electron in a potential well. 

The fourth test case provides analysis of heating, slowing down and deflection times of EUPICC 

following Hockney and Eastwood (1988) and Gatsonis and Spirkin (2009). The heating time Hs  is 

defined as the time for the average kinetic energy per particle of species s  to increase its energy by 

2
B s
k T , 

 ( ) (0) 2
Hs B s

E k T .                  (56) 

The numerical slowing-down time S  is the time for the average parallel velocity component of 

species s, ( )
s S
v to become  

 
1

1
( ) ( ) 0 exp(1)

N

sN

s S p S s
ps

Wp
v v vF ,           (57) 

where (0) (0)
p p
v v  is the initial velocity of the particle p , ( )

p
v t  is the projection of the particle 

p  velocity vector at time t  onto the vector (0) (0)
p p
v v . For simulation times less than S  the plasma 

can be assumed collisionless. The deflection time, d , is also related to numerical collisions (Hockney, 

1971) and is defined as the time for the root-mean-square average deflection angle to reach 90 degrees, 

 2 2

1

1
( ) 2

N

sN

s pd Wp
ps

d
F ,             (58) 

where the deflection angle for a particle p  at time t  is defined as 

 
1( ) cos (0) ( ) (0) ( )

p p p p p
t t tv v v v .            (59) 

The simulations are performed in a 3D cubic domain with periodic boundary conditions at all sides. 

The potential at the outer boundaries is fixed at 0 V to eliminate boundary effects. The plasma is loaded 

initially following a quasi-equilibrium Maxwellian distribution with 1610
e i
n n m-3, 2eV

e i
T T  

and zero drift velocity. Previous investigations (Hockney and  Eastwood,1988; Gatsonis and Spirkin, 

2009) have shown that the CIC scheme leads to much larger heating times compared to the NGP 
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scheme. From Eqs. (11) and (12) it can be seen that on unstructured tetrahedral meshes both schemes 

require calculation of 4 dot products and as such have comparable computational cost. Therefore, on 

unstructured meshes the NGP charge weighting scheme does not have any advantage even from com-

putational costs point of view. For this reason, all simulations in the paper are performed using the CIC 

charge weighting scheme. 

 

Figure 11. Heating time in EUPICC simulations showing the effects of grid size (a), time step (b) 

and the average number of computational particles per cell (c). 

 

Figure 12. Deflection (a) and slowing down (b) times in EUPICC simulations as a function of the 

average number of computational particles per cell with De
r  and 

10.1
pe

t . 

Figure 11a shows the variation of the heating time as the function of the grid spacing at 
10.1
pe

t  

and 20
p
N . As the grid spacing increases the heating time is decreasing. Doubling the grid spacing 

from 0.5
De

r  to De
r  results in an almost order of magnitude decrease in the heating time. 

Further increase in the grid spacing lowers the heating time to 
3 110

pe  at 3.17
De

r . The effect of 

the time step at fixed grid spacing De
r  and average number of computational particles per cell 

20
p
N  on the heating time is shown in Figure 11b. The general trend is that increasing time step 

leads to decreasing the heating time. At time steps below 
1

th,
0.1595( ) 0.1

e pe
t r v  the further 

decrease in time step by an order of magnitude from 
1

th,
0.1595( ) 0.1

e pe
t r v  to 

1

th,
0.01595( ) 0.01

e pe
t r v  only slightly increases the heating time from 

3 18.8 10
pe  to 

4 11.1 10
pe . Similar behaviour was found in the earlier simulations of unstructured PIC on Delaunay-
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Voronoi meshes (Gatsonis & Spirkin, 2009). The dependence of the heating time on the average number 

of particles per cell at constant grid spacing De
r  and time step 

10.1
pe

t  is depicted in Figure 

11c. The increase in the average number of particles per cell in the range from 20 to 80 results in the 

almost linear increase in the heating time from 
3 18.8 10

pe  to 
4 12.6 10

pe . The further increase in 

the avergae number of computational particles per cell from 80 to 160 particles per cell bumps the 

heating time to 
4 17.3 10

pe . The results from Figure 11 are used as a guide in the determining of the 

EUPICC simulation parameters in the subsequent simulations. Figure 12 shows deflection (a) and slow-

ing down times (b) as a function of the average number of computational particles per cell at constant 

grid spacing De
r  and time step 

10.1
pe

t . Both times increase almost linearly as the average 

number of computational particles increases. The deflection and slowing down times are increased from 

4 1103.6
d pe  and 

4 1102.4
S pe  respectively at 20

p
N  to 

5 1103.2
d pe  and 

5 1102.1
S pe  respectively at 160

p
N . It should be noted that deflection and slowing down 

times are at least three times larger than the corresponding heating time. 

Table 2. Input conditions for EUPICC simulations of cylindrical Langmuir probes. 

Case Thin sheath OML 

D
R  (m) 1.2x10-2 5x10-4 

p
r (m) 10-3 10-5 

p
l (m) 10-2 10-4 

e i
n n (m-3) 1016 1016 

 = ( )
ie

T T eV  2 2 

/
p D
r  10 0.1 

/
p e

e kT  -25; -2.5; 0; 2.5; 25 1; 3; 5; 7; 9 

The fifth test case involves the simulation of current collection by a cylindrical Langmuir probe of 

length 
p
L  and radius 

p
r  in a collisionless plasma. The input parameters are shown in Table 2 and cover 

the regime of operation from thin-sheath (
p D
r ) to orbital-motion limited (OML) (

p D
r ). Figure 

13a shows the simulation domain for the thin-sheath cases as an ellipsoidal region with distances from 

the probe in azimuthal and radial directions equal to 12
p
r . Due to the symmetry of the problem one-

eighth of the actual domain is used. The computational domain consists of about 61.7 10  tetrahedral 

cells. Boundary conditions include fixed potential at the probe 
p

 and zero potential at the outer ellip-

soid-like surface corresponding to the unperturbed plasma. On the sidewalls zero normal component of 

the electric field is imposed to represent the planes of symmetry. The particles are injected through the 

outer surface following Maxwellian distribution function with the parameters from Table 2. Computa-

tional particles reaching the probe and the outer surface are removed from the simulations. On the sym-

metry planes the particles are specularly reflected. The electron current to the probe (retarded current) 
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is considered as positive and the ion current (accelerated current) as negative. Figure 13b plots the 

electron and ion currents normalized by their respective thermal currents ( , 0 . , ,
2

e i e i p p B e i e i
I n lr k T m

) as a function of the probe potential normalized by the electron temperature. The results of the EUPICC 

simulations compare favorably to the experimentally validated numerical predictions by Laframboise 

(1966). 

 

Figure 13. EUPICC simulation of current collection by a cylindrical probe in thin sheath regime 

(
p D
r ) (a) Computational domain; (b) the normalized collected electron and ion currents. 

Figure 14a show the cut of the computational domain for the EUPICC simulation of current collec-

tion by a cylindrical probe in the OML regime (
p D
r ). The Langmuir probe is modeled as a cylinder 

surrounded by a cylindrical domain. Fixed probe potential 
p

 is set at the inner cylinder while zero 

potential is specified at the outer cylinder corresponding to the unperturbed plasma. On the sidewalls 

zero normal component of the electric field boundary condition is used to represent the planes of sym-

metry. The particles are injected through the surface of the outer cylinder following Maxwellian distri-

bution function with the parameters from Table 2 corresponding to the OML case. Figure 14a shows 

the comparison of the electron current normalized by the random electron current calculated by 

EUPICC method with the Laframboise simulations (1966) as a function of the probe potential normal-

ized by the electron temperature. The results of these simulations compare well.  

 

Figure 14. EUPICC simulation of current collection by a cylindrical probe in the OML regime

p D
r  (a) Computational domain; (b) the normalized collected electron current as a function 

of normalized probe potential. 
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 Mathematical and Computational Aspects Multi-Weight Collison Method in EUPICC 

1.2.1 State-of-the art in Multi-Weight Collision Methods 

For the simulation of an electrostatic partially ionized plasma the EUPICC method must be supple-

mented with collision algorithms.  In this case the system of equations solved becomes the Boltzmann-

Poisson system and the rhs of eq. (1) includes a collision operator. In the absence of electric field s 

EUPICC reduces to an unstructured DSMC code governed by the Boltzmann equation (Gatsonis et al, 

2013). As discussed in Section 1.1 for collisionless plasma simulations using EUPICC, all particle spe-

cies can have their own weights (Averkin and Gatsonis, 2018).  For simulations of collisional, partially-

ionized plasmas with large differences in species number densities, efficient multi-weight collision al-

gorithms are needed. We present the new multi-weight real-time-counter method for neutral collisions 

which can be extended to charged particle collisions.   

Bird proposed originally to use multiple species weights in neutral-neutral collisions. In this scheme 

during a collisions between two particles with different weights 
1
W  and 

2
W  (

1 2
W W ) velocity com-

ponents of a particle with smaller weights, 
2
W , are always replaced by postcollision velocities as if  a 

collision of two particles of the same weight, 
2

 W , would occur. For the particle with the larger weight, 

1
W , postcollision velocities are assigned with a probability 

2 1
W W . This scheme doesn’t conserve en-

ergy and momentum in each collision but rather conserves them in average. Similar scheme was also 

proposed in Serikov et al, (1999). Boyd (1996) introduced a collision scheme that strictly conserves a 

linear momentum during each collision with energy conservation per all collisions. In this scheme dur-

ing a collision of two particles with different weights 
1
W  and 

2
W  (

1 2
W W ) and velocities 

1
v  and 

2
v  

respectively, a particle with larger weight, 
1
W , is split into two particles with the weights 

2
W  and 

1 2
W W . Then the collision between particles with the same weight 

2
W  is modeled and postcollision 

velocities 
1
v  and 

2
v  are assigned to these particle. Then two parts of the split particle with weights

2
W  and 

1 2
W W  and velocities 

1
v  and 

1
v  respectively are merged. The velocity assigned to the 

merged particle is 
1 2 1 1 2 1 1

(1 ) ( )W W W Wv v v  to guarantee linear momentum conservation. How-

ever, the total energy of these two particle is not conserved. To force conservation the excess of energy 

is added to the center of mass energy of the next collision of particles with the largest weights. Thus, 

the scheme conserved energy for all collisions during a time step. Wu et al. (2003) extended this method 

to include volume and surface chemical reactions. In this extended version chemically reacting particles 

are split into reactive and non-reactive parts. The reactive parts have the same weight and the corre-

sponding chemical reaction follows standard total collision energy approach of Bird (1994). The non-

reactive parts are elastically collided following (Boyd, 1996). Rjasanow and Wagner (1996) proposed 

a more rigorous approach of dealing with collisions of particles with multiple weights. They introduced 

a stochastic weighted particle method (SWPM), a variant of the DSMC method, with all particle having 

their own weights. The collisions are simulated using random weight transfer approach, i.e. during each 

collision particles are split and only parts of them with the same weight actually collide and get post-

collision velocities similar to traditional DSMC. In contrast to Boyd’s scheme no merging of particles 

happen after collision. It leads to increasing number of particles during each collision. To control  the 

number of particles a separate particle merge step is used. During this step particles are divided into 
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groups and each group is replaced by a pair of particles by requiring conservation of mass, energy and 

momentum. It should be noted that Boyd’s collision algorithm is a particular version of the more general 

SWPM where the weight transfer function equals to the smallest weight of two colliding particles and 

merge step happens right after collision 

We present in this report a new multi-weight elastic collisions approach that conserves both energy 

and linear momentum for each collision. This algorithm is derived for a general case where each particle 

can have its own weight and is based on the real collision counter (RCC) method for collisions sampling 

and spread in velocity distribution (VSD) function approach. The RCC method is implemented in 

EUPICC and is verified by considering an equilibration of two Maxwellian distribution functions with 

different temperatures represented by species with different weights. 

1.2.2 Real Collision Counter (RCC) Approach with Velocity Spread (VS) 

The real collision counter (RCC) formulation is an extension of the no-time counter (NTC) algorithm 

of Bird (1994). In the original NTC method a maximum number of tentative collisions between com-

putational particles of species p  and q , 
maxpq

N , with the same particle weight W  in a cell with cell 

volume 
c
V  during time step t  is given as  

 
, , max

max (1 )

p q pq T pq r pq

pq
c pq

NW N G
N

V
t ,             (60) 

where 
,T pq

 is the total collision cross-section of collisions between species p  and q , 
,r pq

G  is the 

relative speed between particles of species p  and q , 
pq

 is the Kronecker delta. Expression (60) takes 

into account the modification of the number of collisions for the same species as in Bird (2007). 

Instead of using number of collisions between computational particles, our algorithm considers a 

maximum number of collisions between real particles, RCC

max
N
pq

, defined as 

 

2

RCC

, , maxma

1

x

1 1N
(1 )

p q p

i j pq i

pq T pq r pq
c pq

N N N

i j i
WW W

G
V

t          (61) 

If we set all weights equal to 1 then Eq. (61) represents maximum number of real collisions of real 

particles in the volume 
c
V  in time t . For the same-weight collisions Eq. (61) reduces to the standard 

NTC result given by Eq. (60).  

We propose the following algorithm for multi-weight collisions: 

1. For each pair of species p  and q  calculate the maximum number of tentative real collisions 

RCC

max
N
pq

 and nullify real collisions counter RCCN
pq

. 

2. Choose a pair of particles from species p  and q  with probabilities 

1

p

i
N

ii

W

W
 and 

1

q

j

N

jj

W

W

. Increase real collisions counter as RCC RCC min(N N , )
pq pq i j

W W . 

3. Calculate effective real speed between collision particles 
eff,pq
G  and accept collision with the 

probability 
, eff, eff, , , max

( )
T pq pq pq T pq r pq
G G G . 
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4. Assign post-collision parameters according to multi-weight collision algorithm described in the 

next section. 

5. Continue to step 2 and repeat calculations while 
RCC RCC

max
N N
pq pq

. 

As can be seen from the description of the presented multi-weight collision algorithm it shares some 

similarities between the standard DSMC and SPWM methods. For the same weight collisions we reduce 

to the standard NTC scheme as long as our assignment of post-collision parameters is consistent with 

the standard DSMC method. In the next section we present our split-merge algorithm that conserves 

energy and linear momentum and reduces to the standard NTC algorithm for the same weight collisions. 

1.2.3 Energy and Linear and Angular momentum conserving Split-merge Algorithm 

The assignment of post-collision parameters is the key algorithmic step in the new multi-weight 

collision scheme proposed in the present article. Consider a pair of particles of species p  and q . Let 

W , M  and v  be the weight, mass and velocity of the particle from species p  and w , m  and u  be 

the weight, mass and velocity of the particle of species q . In the following discussion we assume that 

W w . We also introduce two ratios /m M  (0 ) and /w W  (0 1

) that will be useful in the following discussion. In addition, we assign the orientation of collision plane 

by unit vector n . It is known from the simple collision theory (Vincenti and Kruger, 1967) that con-

servation of angular momentum requires that the collision plane should be normal to the total angular 

momentum vector in the relative reference frame. Thus, the unit vector n  is collinear with the total 

angular momentum vector. Conservation of total linear and angular momentum for the collision pair of 

two particles with different weights can be written as 

 2 2 2 2

,

,/ 2

WM wm WM wm

wWMv u WMv um wm

v u v u
             (62) 

where tilded are the post-collision velocities in the multi-weight collision and v v , u u . 

On the other hand, to properly describe transport properties in the traditional DSMC algorithm we 

require the following conservation laws 

 
2 2 2 2/ 2

,

2 / 2,/Mv

M m M

Mv u

m

mu m

v u v u
             (63) 

where prime variables correspond to post-collision parameters. 

Without additional modifications Eqs. (62) and Eqs. (63) cannot be satisfied simultaneously. In 

Boyd (1996) the particle splitting is introduced. It allows to satisfy momentum conservation in both 

equations (62) and (63) and energy conservation in Eq. (63) by splitting the particle with the larger 

weight. However, it introduces the excess energy that was redistributed among particles of the next 

collision pair of the same species. In our current algorithm we go further in splitting of colliding parti-

cles and introduce additional parameters for storing this excess of energy for each colliding particle. 

This energy can be attributed to a spread in the velocity distribution function in the velocity space for 

each computational particle. This interpretation resembles the ideas used in the construction of the dis-

tributional DSMC method (Shrock and Wood, 2012). In this case we assign to the particle with weight 

W  the additional energy WE  and to the particle with the weight w  the energy we . Thus, we have a 

modified energy and momentum conservation equation that can be written as 
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2 2 2 2

,

2 2 2 2
.

v u v u
W M E e W M E

WM wm WM wm

w m w m e

v u v u

      (64) 

The introduction of additional energy also requires modifications in sampling procedures. The sam-

pling of translational energy of species p  with mass 
p
m  in a cell with 

p
N  computational particles with 

weights 
i
W  and velocities 

i
v  and spreads 

i
E  is performed as follows 

 

1 1 2

2

tr,
1 1 1 1

( ) .
3

p p p pN N N N
p

p i i i i i i i
i i i iB

m
T W W v E W W

k
v       (65) 

 

Figure 15. Momentum and energy conserving split-merge algorithm (MWC-II). 

Two variations of the splitting scheme were considered using the RCC method for collision selec-

tion. The first splitting scheme follows Boyd (1996) where splitting occurs only for the larger-weight 

particle, then performing single-weight collisions and assigning the excess of the energy to the particle 

with larger weight. We refer to this algorithm as MWC-I (Averkin et al, 2017). The second splitting 

scheme is summarized in Figure 15 and is referred to as MWC-II  (Averkin et al, 2018).  In this algo-

rithm we split the particle with the larger weight W  into three particles that have weights / 2w  , 

/ 2w  and W w  and velocities 
1
v , 

2
v  and 

3
v  respectively. The particles with weights / 2w  have 
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zero spreads and the particle with weight W w  has the spread E . The smaller weight particle is 

split into two particles with zero spreads and weights / 2w  and / 2w  and velocities 
1
u  and 

2
u  

respectively. The actual collisions take place between particles with weights / 2w  and velocities 
1
v  

and 
1
u , 

2
v  and 

2
u . These are the same weight collisions that obey standard rules. We denote the post-

collision velocities of the same-weight collisions with primes as in the standard DSMC method. After 

collisions we merge corresponding particles back and calculate their post-collision parameters (veloci-

ties and spreads) based on the conservation of energy and momentum. Writing down conservation of 

energy and momentum for all particles at each split-merge step and during collisions the following 

system of equations is obtained 

 

1 2

1

1 2

2

2

2

2

1

2

1
2 (1 ) ,

1 2 1

8 8
(1 )

1 1

1 1
4 (1 ) ,

2 1 (1 1 )
1 1

2 ,
1 2 1

8

2
)(

1

1 1

E E

M M

e

m

v u
v f G G v

g h
G G

G G f

v u
u f G

g h
G

G

G

2

1
.G

       (66) 

The vectors g  and f  in the above equations control the splitting of the particle with weight W  

while a vector h  is responsible for splitting of the second particle with the weight w  as can be seen 

from the following expressions that are based on the conservation of energy and momentum for each 

split 

 

2

1

2

3

1

/ 2 ,

/ 2 ,

,
1

/ 2,

/ 2.

v v g f

v v g f

v v f

u u h

u u h

                  (67) 

11 1
G v u  and 

2 22
G v u  are relative velocity vectors before collision for single weight 

collision pairs. Introducing the relative velocity vector of the original particles pair G v u  we can 

write the following expressions for 
1
G  and 

2
G  

 

2

1

1
,

2
1

.
2

G g h f

G g hG f

G
                 (68) 

1
G  and 

2
G  in Eqs. (66) are post-collision relative velocities of each collision pair and are given 

following Vincenti and Kruger (1967) as 
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 11 1 1 1 1

2 2 222 2

cos sin ]

cos si

,

n [ ]

[

,

G G G n

G G G n
              (69) 

where 
1
n  and 

2
n  are normals to collision planes for each collision pair and 

1
 and 

1
 are the angle 

between relative velocity vectors of each pair.  The unit normal vector 
i
n ( 1,2i ) from Eqs. (69) is 

usually defined in terms of angle 
i

 as  

 cos sin ,i i i
i i i

ii i
G

G i G i G
n

G i G i
            (70) 

where 
i
 is an angle responsible for collision plane orientation. 

Based on the energy conservation we have the following relationships between vectors g , f , h  

and pre-collision spreads E  and e  

 

2 2

2

8 4
,

.

)1(
1

8

g f

e
h

m

E

M               (71) 

If we choose the same relative speed of each collision pair 
1 2
G G  then we get the same collision 

cross-sections for these collisions and the same angles between relative velocity vectors 
1 2

. It also implies that two particle pairs collide or not collide simultaneously. The condition 
1 2
G G  

can be rewritten as 

 ( .) ( ) 0f g hG                   (72) 

Thus, we have 10 unknown parameters , f , g  and h  and only 3 equations for their determination 

given by Eqs. (71) and (72). We choose the direction of f  to be parallel to the relative velocity vector 

G  while g  and h  are chosen to be parallel to each other and normal to f  as follows 

 

,

,

2
.

f
G

g
G

e

m G

u v

u v

u v

f

G

G
h

u

g

v

G

                 (73) 

We also introduce angle 0, 2  that is responsible for splitting of the larger weight particle 

given by Eq. (71) 

 

1
(1 ) ,

1
sin 2

2

.

cos

2

E
f

M

E

M
g

             (74) 
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Now we have only two free parameters  and . We used numerical multi-parametric investigation 

in order to determine these parameters at different particle weights (Averkin et al, 2018). A summary 

of  the MWC-II algorithm for a pair of particles is: 

1. If v u  then we calculate f , g , h  using Eqs. (73). Otherwise we pick a random unit vector 
r
e  

that is normal to v  and calculate f , g , h  as 

 

,

,

2
.

r

r

f
G
g

e

m

G
f

g e

h e

                    (75) 

2. Calculate 
eff
G  as 

 

2 2

21

1 1 2
1

2 2
cos n .) s( i

eff

e
G G G G

m

E E

M M
  (76) 

3. Accepting a collision with the probability 1 1

max

( )

( )
T

T

G G

G G
 

4. If a collision takes place then Calculate 
1
G  and 

2
G  from Eqs. (68) 

5. Calculate
1
G  and 

2
G  based on the same values of  and  from Eqs. (70) 

6. Calculate v , E , u , and e  from Eqs. (66). 

1.2.4 EUPICC Multi-Weight Simulations 

In this section, we present a numerical multi-parametric investigation of the MWC-II algorithm as 

implemented in the EUPICC code (Gatsonis and Spirkin 2009; Gatsonis et al, 2013; Averkin and Gat-

sonis, 2018). The goal is to determine the parameters  and  as a function of particles weight ratio 

 that lead to equilibration of two Maxwellian distribution functions with different initial temperatures. 

We consider two Maxwellian distributions of the same species particles (the same mass and cross-

section parameters) at two temperatures 1000 K and 9000 K. We use more than 10000 computational 

particles to reduce statistical fluctuations. The geometry used to represent a space-homogenous gas is a 

box with periodic boundary conditions, with the cell size chosen as a fraction of the smallest mean free 

path. For arbitrary parameters  and  at different weights the temperatures of both species equilibrate 

to steady state values that are not necessarily the same as it is expected as can be seen from Figure 16 

while the total energy and momentum can be conserved as can be seen from Figure 17. 
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Figure 16. Typical MWC-II simulation result of equilibration problem. 

 

Figure 17. Total linear momentum (left) and energy (right) of a typical MWC-II simulation. 

We performed 8,000 individual simulations in order to find the relationship between parameters 

,  and . A typical successful equilibration simulation is shown in Figure 18. 
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Figure 18. An example of successful equilibration of two Maxwellian distribution functions. 

We combined all of the successful results to obtain a 3D plot of parameters that lead to the equili-

bration as shown in  Figure 19. 

 

Figure 19. Surface in parametric space showing the relationship between ,  and  leading to 

successful equilibration. 

Figure 20 shows a X-Y plot of the parameters leading to the equilibration of two Maxwellian distri-

bution functions. 

 

Figure 20. Parameters ,  and  that lead to successful equilibration. 
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 High-fidelity Simulations Enabled by EUPICC  

1.3.1 Plasma Flow over Cubesat  

EUPICC is used next for the simulation of the plasma flow over a CubeSat shown in Figure 21 

(Gatsonis, et al., 2016). The CubeSat features an instrument for in-situ measurements in the front unit 

and an electric propulsion system in the last unit used for attitude and orbital control. In order to evaluate 

the operation of the instrument it is required to obtain preflight predictions of the incoming fluxes of 

O , H , and electrons as well as the distribution of the electric potential around the CubeSat. To 

accomplish this we simulate the CubeSat with surface mounted solar panel as shown in Figure 21. In 

this configuration the geometrical features of the CubeSat include closed surfaces formed by the solar 

arrays and the aft section which is open and houses the propulsion system. The EUPICC computational 

domain is a rectangular region of 1m 1m 3m shown in Figure 22 and is discretized with 61.25 10  

cells which scale with the local Debye length. The plasma flow corresponds to 800-km conditions with 

9 39.06 10 m
O
n , 9

H

32.44 10 mn , 10 31.23 10 m
e
n , 2243.1 K

e
T , 

O H
1238.5 KT T  [32]. The particles are injected with velocity 0, 0, 7455

x y z
V V V  m/s 

from the left as shown in Figure 22. These conditions result in a mesothermal ion flow where the thermal 

speed of electrons 
, ,th e z th i

V V V . The potential boundary conditions are Dirichlet with 0 V on 

the far field and floating at the CubeSat surface. The simulation was performed with 810t s  and 

a total of 81.5 10  computational particles. The simulation was run until steady state, established by 

the total masses of the plasma components in the domain. After reaching steady state 200 samples were 

collected to generate the sampled-averaged fields. 

 

Figure 21. CubeSat used in EUPICC simulation (a) and EUPICC surface grid (b). 

 

Figure 22. Computational domain used in the EUPICC simulation of the flow over a CubeSat. 
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Figure 23 shows the potential distribution with the formation of a sheath region surrounding the 

CubeSat. The conducting surfaces reach a floating potential of -0.39 V with respect to unperturbed 

plasma consistent with simulation results of a 1.5 Unit CubeSat performed with the PIC Spacecraft 

Plasma Interaction Software (SPIS) (Albaran et al, 2016). The total charge density in Figure 24a and 

Figure 25a is positive in the vicinity of the CubeSat and shows a negative region in its wake. The 

electron density in Figure 24b and Figure 25b shows a depletion region in the sheath region of the 

CubeSat and in its near-wake region. These features are qualitatively similar to those from SPIS simu-

lations. Figure 24c-d and Figure 25c-d show that both H  and O  ions show the formation of a wake 

region and an ion-focusing region which is more prominent for the heavier O  ions. These results are 

consistent with those from  2d and 3d PIC simulations  (ALbaran et al, 2016; Miloch et al., 2008). 

 

Figure 23. Potential (V) on the (X=0, Y, Z) plane from the EUPICC simulation of the plasma flow 

around a CubeSat in LEO (a) and near the CubeSat surface (b). 

 

Figure 24. Flowfield properties on the (X=0,Y,Z) plane from EUPICC simulation of the plasma 

flow around a CubeSat in LEO. Total charge density (a), electron number density (b), H  num-

ber density (c), O  number density (d).  
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Figure 25. Flowfield properties on the (X=0,Y,Z) plane near the CubeSat surface from EUPICC 

simulation of the plasma flow around a CubeSat in LEO. Total charge density (a), electron num-

ber density (b), H  number density (c), O  number density (d). 

1.3.2 Ion Beam Neutralization Simulations  

We perform next a series of EUPICC simulations to capture ion beam neutralization phenomena. 

Ion beam neutralization during operation of electric propulsion devices requires both current and charge 

density matching of the ion beam using emitted electrons. This current coupling is easily accomplished 

in practice, yet the exact process has not been adequately described. Proper modeling of current cou-

pling and neutralization will enable development of low-current neutralizers and optimization of neu-

tralizers for micro-propulsion devices and clusters of thrusters. Explanation of the beam coupling mech-

anism also has bearing on space instrument calibration, electrodynamic tethers, and ionospheric 

research. 

PIC codes have been used widely for beam neutralization simulations and require control of numer-

ical heating that is inherent in PIC codes. To develop a comprehensive background on 1D beam neu-

tralization by co-emitted electrons a series of simulations are performed. Ion beams of Xe with non-

dimensional kinetic energy (𝐾𝐸𝑖)/(𝑘𝑇𝑒 )~ 1 × 〖10〗^3  − 1 × 〖10〗^6 are considered, while the cor-

responding velocity ratio is 𝑣𝑑𝑖/𝑣𝑡𝑒 ~ 0.1 − 1.0, covering the range expected in electric propulsion 

devices as well as high-energy beams.  The simulation domain shown in Error! Reference source not 

found. is a long rectangular tube (10 × 10 × 2000 mm) where the ion beam drifts along x-direction.  

Beam ions are injected at 𝑋𝑚𝑖𝑛 boundary and thermal, stationary electrons are accelerated under the 

self-consistent electrical field generated by the beam front. Reflection particle boundary conditions are 

set at side walls. Particles reaching the 𝑋𝑚𝑎𝑥 boundary are removed from the simulation. The potential 

at 𝑋𝑚𝑖𝑛 boundary is fixed to be zero while zero-Neumann E field boundary conditions are applied to 

side walls as well as 𝑋𝑚𝑎𝑥 boundary.  EUPICC simulation results are presented for both fast ions and 

mesothermal ions 
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Figure 26. Domain used in EUPICC ion beam simulations. 

The ion beam drift velocity considered for “fast ions” case is set to be 1.212 × 106 m/s. The electron 

temperature is set to be 1 eV. Figure 27 shows the phase space and E field profiles of the fast ion beam 

neutralization process at different time steps. It is observed that, for a fast ion beam (𝑣𝑑𝑖 > 𝑣𝑡𝑒), the 

neutralization process obtained from the PIC simulation matches the idealized 1D neutralization model 

quite well with regard to the non-dimensional neutralization distance. As the ion beam propagates 

downstream, the electrons eventually gain a bulk drift velocity same as the ion drift velocity (𝑣𝑑𝑖) and 

thus current coupling is achieved. 

 

Figure 27. Phase space and electric field of 1D ion beam neutralization for fast ions 

The ion beam drift velocity considered for “mesothermal ions” case is set to be 0. 024 × 106 m/s. 

The electron temperature is set to be 1 eV, same as the “fast ions” case. Figure 28 shows the phase space 

and E field profiles of the mesothermal ion beam neutralization process. The kinetics of electrons are 

quite different from that of the “fast ions” case in a way that in a mesothermal ion beam, ion drift 

velocity is smaller than electron thermal velocity (𝑣𝑑𝑖 < 𝑣𝑡𝑒). The potential well caused by the ion beam 

front at the early stage does not trap enough electrons to neutralize the ion beam. Therefore,  idealized 

1D ion beam neutralization models, e.g. Humphries, 2012,  are not sufficient to resolve the neutraliza-

tion process of the mesothermal ion beams emitted by typical electric propulsion devices. 

 

a) Phase space and E field at an early stage of 

the fast ion beam neutralization. The vertical line 

in the x-axis indicates the non-dimensional 

neutralization distance predicted by the idealized 

1D model. At this stage, the PIC simulation results 

match the idealized 1D model well. 

b) Phase space and E field at a later stage of the 

fast ion beam neutralization. The vertical line in 

the x-axis indicates the non-dimensional 

neutralization distance predicted by the idealized 

1D model. At this stage, the ion beam has achieved 

current and density neutralization. 
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Figure 28 Phase space and electric field of 1D ion beam neutralization for mesothermal ions. The 

kinetics of electrons do not match the idealized 1D model because of the smaller ion drift velocity 

compared to the electron thermal velocity. 

a) Phase space and E field at an early stage of the fast ion beam neutralization. The vertical line in the x-axis indicates the non-

dimensional neutralization distance predicted by the idealized 1D model. At this stage, the PIC simulation results match the 

idealized 1D model well. 

b) Phase space and E field at a later stage of the fast ion beam neutralization. The vertical line in the x-axis indicates the non-

dimensional neutralization distance predicted by the idealized 1D model. At this stage, the ion beam has achieved current and 

density neutralization. 
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 Conclusions 

This report presents the mathematical formulation and a parallelized implementation of an electro-

static unstructured Particle-in-Cell Collisional method on arbitrary tetrahedral grids (EUPICC). This 

implementation provides the ability to simulate plasmas in arbitrary geometries using readily available 

grid generators.  

The electric potential in EUPICC is evaluated on cell vertices using a finite volume Multi Point Flux 

Approximation of Gauss’ law applied to the indirect dual cell. The Dirichlet, Neumann and external 

circuit boundary conditions are derived by applying Gauss’ law to the surface tetrahedra. The resulting 

non-symmetric system of the sparse linear equations for the nodal potential is solved with a restarted 

GMRES with ILU(0) preconditioner algorithm. This algorithm is parallelized using a combination of 

node coloring and level scheduling approaches. The electric field on vertices is obtained using the gra-

dient theorem applied to the indirect dual cell. Boundary conditions and the algorithms for injection, 

particle loading, particle motion, and particle tracking are implemented for unstructured tetrahedral 

grids.  

The verification and error analysis of EUPICC was performed using analytic solutions of Laplace’s 

equation for a grounded sphere in vacuum with an applied uniform electric field and of Poisson’s equa-

tion for a stationary ion cloud with linearly varying number density. Grid sensitivity analysis quantifies 

the  and  norms of the relative error in potential, field, and charge density as a function of edge-averaged 

and volume-averaged cell size. Analysis shows second order of convergence for the potential and first 

order of convergence for the electric field and charge density. The simulation of an electron motion in 

a stationary ion cloud with linearly varying charge density was used to investigate the energy and mo-

mentum conservation properties of the EUPICC and to perform temporal sensitivity analysis. Results 

show that the motion of an electron is harmonic with almost constant amplitudes of the translational 

energy and x-component of momentum with minimal dependence on the time step for times up to 113   

corresponding to three periods of oscillation. The effects of the average number of particles per cell, 

grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times 

were investigated by considering the evolution of a fully ionized two-component plasma in a cube with 

periodic conditions for particles at all sides and zero potential at the boundaries. The results show that 

heating, slowing down, and deflection times increase almost linearly with increasing average number 

of computational particles per cell. The cell size as observed by EUPIC simulations has a strong effect 

on the heating time. Halving a cell size from   to   leads to an order of magnitude increase in the heating 

time. It is also found that decreasing the time step increases the heating time in a non monotonic fashion. 

The results show that both slowing down and deflection times are at least three times lower than the 

heating time. EUPICC simulations of current collection by Langmuir probes are used for validation 

with Laframboise numerical results which have been validated experimentally [20]. The EUPIC cur-

rents are found to be in very good agreement for a wide range of probe to Debye length rations covering 

the thin-sheath to the OML regimes and normalized potential to temperature ratios in the range from -

25 to 25. Current collection by a cylindrical Langmuir probe in the thin sheath regime was used to study 

parallelization efficiency of the EUPICC code. It was found that the performance strongly depends on 

how threads are bound to CPU cores. For up to 8 cores the parallelization efficiency is more than 80% 

and it monotonically decreases as the number of threads increases due to NUMA memory design and 

hyper-threading technology effects. 
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We developed two multi-weight collision algorithms (MWC -I and MWC-II) that use the Real-

Counter-Collisional approach for particle selection and spread in velocity space for energy accommo-

dation in order to conserve energy and linear momentum. A number of different split-merge strategies 

have been also investigated. MWC-I used a splitting of the larger-weight particle into two particles .  

MWC-II splits two particles into five particles. The main difficulty associated with the splitting in the 

MWC-II algorithm is the choice of free parameters. In MWC-II there are 10 parameters and only 3 

constrains. Five parameters are chosen arbitrarily and a series of multi-parametric simulations is per-

formed in order to determine the remaining parameters in order to achieve equilibration To resolve the 

lack of angular momentum conservation and microscopic detailed balance in the MWC-I  and MWC –

II algorithms, an extension is under development (Averkin et al, 2019). 

Simulations were also performed to demonstrate the EUPICC to simulate complex geometrical bod-

ies embedded in flowing multi-species plasmas. The test case involves the EUPICC simulation of the 

plasma flow over a CubeSat under LEO conditions. EUPICC results show the structure of the ion and 

electron wakes, the formation of ion enhancement regions in the wake, and the potential structure. The 

EUPICC results are quantitatively and qualitatively consistent with previous 2D and 3D PIC investiga-

tions over simpler geometries. 

Finally, we used EUPICC in order to resolve the role of electrons in the beam neutralization process. 

A series of EUPICC simulations of ion beam neutralization is performed for both fast ions (𝑣𝑑𝑖 > 𝑣𝑡𝑒) 

and mesothermal ions (𝑣𝑑𝑖 < 𝑣𝑡𝑒) in an idealized 1D configuration. Results show the current coupling 

process of both fast and mesothermal ion beams. The numerical simulation successfully resolved the 

current and density neutralization process of 1D fast ion beams, which is in good agreement with the 

theoretical 1D beam neutralization model. For mesothermal ions, the numerical simulation does not 

yield a good agreement with the theoretical 1D model. Further investigations will study effects of back-

ground plasmas as well as 2-D and 3-D effects. 
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