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Final technical report

Large-scale neural circuits underlying skilled task performance
N00014-16-3154 \

Cristopher M. Niell
University of Oregon

Major goals

Performing a skilled task requires coordination of neural computation across brain-wide circuits.
Although research in cognitive neuroscience has revealed psychological principles of task learning
and has localized specific cognitive functions to particular brain regions, our understanding of
skilled task performance at the neural level lags far behind. Two primary reasons for this are the
challenge in studying direct neural activity in humans with non-invasive measures, and the
limitation of invasive animal studies to observing activity in relatively limited brain regions.
However, recently developed techniques for observing and manipulating neural activity in mice,
combined with training on specific visual tasks, can overcome these obstacles.

In particular, we have implemented a

combination of imaging methods that allow us Step 2:
to directly observe the flow of neural activity Saly el inagion

brain-wide networks, then zoom in to key
regions to measure dynamics of neural
activity across hundreds of individual neurons

simultaneously. Notably, both of these

1 1 i1 . 1 Step 1z ) Step 3

imaging modalities can be performed during ... 1. B it el
{videheld) (optagenetics)

learning and performance of different visual
tasks. Furthermore, novel computational
methods allow us to analyze the high-
dimensional activity patterns in large
populations of neurons as a subject learns and

performs a task. Finally, using optogenetic
techniques we can manipulate activity in
putative control circuits to test their role in
skill learning and task performance.

Together, these approaches allow us to

Visual task
performance

o

Figure 1. Schematic of technical approach. Widefield
imaging is used to identify brain areas that show
significant changes in activity, which can then be targeted
for cellular-level 2-photon imaging and modulated by

investigate neural function from the level of
brain-wide networks down to activity in
individual neurons, along with the ability to causally test the insight gained from neural recordings.
In this project, we will use this approach in two aims that address key aspects of skilled task
performance.

optogenetic stimulation.

Project 1: How is sensory information encoded and routed appropriately based on learning of
specific tasks?

Project 2: How is cortical information flow disrupted during lapses in performance?



Answering these basic research questions at the neural level will greatly expand our understanding
of how the brain functions to enable learning and performance of a wide range of tasks. Importantly,
these studies can also lead to direct impact on human task performance, by enabling the
development of training strategies or technological and pharmacological interventions to target the
neural circuit mechanisms that we identify. Finally, incorporating the high-dimensional dynamics
we observe in vivo into in machine learning systems may provide a means to increase robust
performance, particularly across multiple tasks.

Accomplishments under goals

We previously implemented novel methods to image neural dynamics across multiple length scales
— from the entire brain down to individual neurons. Furthermore, optogenetics allows precise
manipulation of activity in specific sets of neurons. In this project, our goal was to apply these
approaches in 3 stages, summarized in Figure 1.

In our previous results, we used widefield Naive
imaging to identify cortical areas that change
activity following learning of the location
discrimination task, with the most significant
being a decreased activation in primary
visual cortex, V1 (Figure 2). This led us to
target V1 for two-photon recordings during
performance of the task.

Two-photon imaging of large populations
during the location task revealed that
neuronal responses could be clustered into
three primary groups, which we termed  Figure 2. Widefield imaging of changes in cortical
“channels”, based on the temporal dynamics  activity over learning. Activation of visual cortical areas
of their response (Figure 3). We can thereby during perfonnance o.f a vi.sual task (100, 200, and 300sec
reduce the dimensionality of the population after stimulus onset) in trained vs naive animals, showing

response b fsbrie T cotited £ decreased activation in visual areas after learning,
poRse Dy analyzing the welghied. sim o accompanied by increased activation in sensorimotor areas.
response in these three clusters.

Furthermore, each of these channels has distinct tuning for
visual stimulus features and behavioral state. In particular, the
“sustained” neurons carry the most information about the visual
stimulus, the “suppressed” cells are modulated by alertness, and
we expect that the “transient” cells may be signaling salience or
novelty.
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Figure 3. Three channels of learning, we found that the decreased activation after learning
visual information in V1. Based  observed in widefield imaging appears to be due to reduced
on clustering of cellular responses,  activity in the population that responds transiently to stimulus
we identified three channels with t (Fi 4). We hypothesi h hi

different  temporal  response onse '( igure ). Ve hypothesize that t. s may reflect a
dynamics to the visual stimulus — reduction in nonspecific activation by the stimulus, preserving
transient (red), sustained (blue),  Vvisual coding and behavioral state control.

and suppressed (yellow),



We next trained mice on two additional tasks, an orientation discrimination and a non-
discrimination task where mice are randomly rewarded. The first task revealed similar changes to
previous location discrimination task, so we have restricted our subsequent analysis to the location
task. The randomly rewarded task, which we refer to as “experienced”, serves as a comparison for
mice that have experienced the same visual stimuli over the same timecourse (one hour per day
for several weeks) but do not learn an explicit rule. In this task we found that both transient and
sustained populations showed a decrease over learning, suggesting that in the absence of learning
a specific rule information about the stimulus itself is also reduced as a result of repeated visual
stimulation.

We also performed imaging and data analysis to measure
the response of trained mice during passive viewing of
visual stimuli, to determine how neural activity is 0.5 #x %
modulated by task engagement. This was a 0.4 !
straightforward extension of our learning experiments, )
that complements the plans to study lapse trials
explicitly. This revealed that all three channels had 0.2
greater activity during task performance. 0.1

fraction
=)
[¥5)

Together, these findings provide one of the first o LML i o |
demonstrations of how different aspects of sensory Toeereet 5“‘“‘"8&;%;??3““‘
information are encoded across the learning of a task,  pigure 4. Changes across training for
and how this information is modulated by repeated distinct cell types. Following learning of a
visual stimulation and by task engagement. These results  discrimination task, the fraction of transient
have now been published online at bioRxiv, and are cells decreases, representing a specific

- ) modulation of one channel of information.
under revision at Journal of Neuroscience. IpuTEHon.

Inactive

In the most recent period, we began to focus on novel analysis methods that will allow us to extract
information relevant to neural network and machine vision models. In particular, these networks
often do not include dynamics, so we seek to measure how activity and information encoding
evolve over time, both within a trial and
across learning. Furthermore, advanced
machine learning systems deployed in
complex environments may have to
switch dynamically between tasks.
Therefore, we are also examining how
dynamics are impacted by task
engagement to see how the biological
network switches on and off of a task.

top
V5.
bottom

In collaboration with Dr. Yashar
Ahmadian, a theoretical neuroscientist at
University of Oregon, we have now
implemented two different computational

Figure 5. Decoding information encoded across a trial. : il M :
‘Responses across the population at a specific timepoint (A) app roaches . information _deCOdmg’ and
are used to train a linear decoder fo classify stimulus Poisson Linear Dynamical Systems

properties (B). Following offset of the stimulus, information (PLDS). The decoding approach allows us

about the stimulus location is maintained (C), whereas to measure the information represented in

information about orientation rapidly declines (D). a large population of neurons, and how
>




this representation changes over time. To achieve this, we train a linear decoder to “read out” task
variables, such as stimulus location/orientation (Figure 5A,B) The accuracy that the decoder can
achieve provides a measure of the degree to which this task variable is explicitly represented in
the population, and the weights of the decoder describe how it is represented. Using this approach,
we have found that information about the visual stimulus location persists in the neural activity
oven after the end of the trial, when animal has made its response and the stimulus is no longer on
the screen (Figure 5C). However, information about stimulus orientation rapidly decays (Figure
5D).

We can also test whether the
population code for this stimulus A
information changes, by training a
decoder at one timepoint and
testing another (Figure 6A). This
has demonstrated that the coding
constant while stimulus is on the
screen, but that this representation
switches and becomes moOre  Figure 6. Dynamics of information encoding across time.
dynamic (Figure 6B). Thus, the A) The linear decoder is trained on population activity at one point

neural coding for a visible stimulus (blue) al?d then tested on activity. at anqther timepoint (green). B)

is different from the persistent Comparnjg performanc? across timepoints revgals tha.t the ‘
activity after the stimulus is no information representation is constant while stimulus is present, while

1 ¥ . ‘i but switch it shifts dramatically and becomes more dynamic after stimulus offset.
onger present. 15 up, but swilcC €s

and becomes more dynamics after.
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We have also implemented a PLDS approach, which provides a means to reduce the
dimensionality of the neural activity, but in a way that respects the dynamics of the system. This
method models the activity of a large population as a set of latent variables, which have interaction
dynamics and can be driven by the
visual input. Applying PLDS has shown
different trajectories in a low

top /

bottom dimensional space for different trial /
vertical | ., stimulus conditions (Figure 7). The
horizontal

advantage of this method over other

dimensionality reduction approaches is
Figure 7. Poisson Linear Dynamical Systems (PLDS). This  that we can now examine not only how

approach models the neural population activity as a set of "
latent dimensions representing weighted sums of neurons. The the composition of the components

activity in these populations evolves following dynamics change?. over learning, but also how the
described by a matrix A. Right) Visualization of three dynamics that describe how they interact
dimensions shows distinct trajectories for different trial types. and evolve over the course of a task trial.

During this most recent period, we also acquired additional data with pupil diameter in addition to
neural activity, during behavior. We will use this in the analysis above to define behavioral lapses,
as complement to error rate and reaction time measures, We also implemented a method
stimulating serotonergic axons, which we hope to apply in future projects.



Future Goals

Although this is the end of the 3-year funded period for the Young Investigator Award, there are
anumber of promising directions that could be pursued in future projects. In particular, the unique
signatures of different information channels could be implemented into computational approaches
for machine vision. In particular, we expect that this may make them more robust during learning,
particularly in complex visual scenes that real brains evolved for. Additionally, the approach we
developed here could be applied to understand other brain regions and circuitry that has
implications for improving intelligent sensing. In particular, mechanisms of predictive learning
that have been proposed to be mediated by the pulvinar would be amenable to direct observation
through our large-scale recording techniques.

Results dissemination
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This work has been published online and is currently in revision at Journal of Neuroscience.
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