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1.0 SUMMARY 

Over the course of the Transparent Computing program, the ADAPT team developed a 
system for Automated Detection of Advanced Persistent Threats (APTs). The core 
developments of the Quine distributed graph database together with a newly developed 
technique for categorical anomaly detection provided the capability to perform 
probabilistic analysis for all system activity at arbitrarily high speeds. Using policies 
defined once by a team of experts, the system is able to effectively find and describe 
considerable APT activity and produce meaningful summaries for a human analyst. 
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2.0 INTRODUCTION 

If an advanced attacker carefully exploits a system, there is no way to know. The ADAPT 
project has been researching new capabilities to change that situation. 

Modern computers are very fast and rely on an astounding level of carefully orchestrated 
complexity to perform correctly. Creating a system to perform the desired behavior 
correctly is often very difficult. Making that system perform only the desired behavior is 
nearly impossible. Skilled and well-funded adversaries often need to find (or buy) only a 
single exploit to gain entry into a computer system. Once in, the attacker can move about 
largely unnoticed. 

The most sophisticated attackers are careful in their exploration, exploitation, and 
exfiltration of a compromised computer system. Advanced attackers will work “low and 
slow” making small careful steps as they progress on their malicious mission. These 
careful steps leave no trace currently detectable by operating systems, anti-virus, or other 
security programs. And the stakes are large. 

The DARPA Transparent Computing program begins by admitting how dire the current 
situation is, and has directed the resources of many incredible researches to advancing the 
state of the art and creating means by which we might detect these Advanced Persistent 
Threats (APTs). Teams on this program have created tools to observe the behavior being 
done by a running computer system, and analyze that behavior to pinpoint the APT and 
explain what they have been doing. 

The ADAPT team has been working on the analysis side of this problem. The goal of 
ADAPT has been to create new methods for the Automated Detection of Advanced 
Persistent Threats. We have succeeded in this goal by creating a scalable, high-
throughput management system for the graph data representing system traces from any 
number of instrumented machines, and the development of a new class of anomaly 
detection algorithms: Categorical Anomaly Detection. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

As a practical strategy to unify the goals of both developing new research methods, and 
making practical progress in demonstrations of detection during engagements, we chose a 
portfolio approach where multiple techniques are pursued as possible solutions to the 
same problem. This allowed us to pursue risky new research with potentially high 
rewards simultaneously with more established methods that provide a higher level of 
certainty but perhaps less upside when successful. 

In section 3.1, we describe our characterization of the research problems and the various 
research methods pursued under each topic—whether or not the methods were successful 
and integrated into the ADAPT system. Section 3.2 describes the methods and procedures 
as integrated into the final system. Since there are a significant number of methods 
discussed, we group their evaluations together with the presentations of the methods in 
Section 3, and limit Section 4 to a discussion of the results of the system as a whole. 

3.1 Research Problem Characterization 

Given the problem space of APT detection in the context of a high-volume of data, we 
have been pursuing multiple methods to address the sub-problems of: Feature Extraction, 
Signal Detection, and Combination & Prioritization. In each category, our team pursued 
strategies that encode expert knowledge and/or automatically learn from the data.  

3.1.1 Feature Extraction 

The Feature Extraction problem is one of making the right observations on the data to 
feed into the next step. As those latter steps evolved, so did the methods for producing the 
appropriate observations. However, all of our approaches begin by building the incoming 
data into a single unified graph, and storing it in a graph database. 

Data was structured into a graph with each CDM record type constituting a node in the 
graph. Fields in a CDM record which semantically represented the identifier of another 
CDM record were structured as edges, with the edge label corresponding to the field 
name. Consequently, the nodes represented in the graph were all the Subjects, Events, 
and Objects (of all varieties) as defined in the CDM format, and the edges connecting 
them were derived from fields on Event nodes such predicateObject, predicateObject2, 
subject, and other fields pointing to other UUIDs. 

With the graph of all system activity built and being updated with new data streaming in, 
the process of extracting features for downstream components could be run. Depending 
on the downstream component, the features were represented either as numerical vectors, 
or as (subject, predicate, object) tuples, where subject is a process node in the graph, 
predicate is an Event node connected to the subject, and object is a file, network, or other 
object connected to the predicate. 

Feature vectors for the more traditional anomaly detection methods described below are 
produced by defining queries on the graph which traverse data according to an expert-
defined policy. The queries yield a set of nodes, which are reduced variously to produce 
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counts or other numeric measures, encoded positionally in the vector. Vectors produced 
in this manner are aggregated into a matrix and the matrix used for batch processing 
anomaly detection techniques. 

Semantic tuples of (subject, predicate, object) are produced for the newly developed 
categorical anomaly detection methods described below. Depending on the policy 
defined by the expert, these tuples are either used in their triple form, or else combined 
together into more complex quintuples of (subject, predicate, object, predicate, subject) 
when two triples share the same object, or (object, predicate, subject, predicate, object) 
when two triples share the same subject. There was also one special case of (subject, 
subject) tuple collection to examine anomalies related to the structure of the process tree. 

3.1.2 Signal Detection 

Given data structures as described in the preceding section, the second major problem is 
to detect meaningful signals in the volume of data under investigation. We explored 
many different methods for this problem from the extant literature as well as creating 
several new methods as described below. 

3.1.2.1. Sequential Feature Explanation 

Anomaly detectors typically produce a ranked list of statistical anomalies, which are then 
examined by human analysts in order to extract the actual anomalies of interest. 
Unfortunately, most anomaly detectors provide no explanations about why an instance 
was considered anomalous. To address this issue, we developed a feature-based 
explanation approach called sequential feature explanation (SFE) to help the analyst in 
their investigation [Siddiqui et al., 2015; Siddiqui et al., 2019]. We demonstrated on 
benchmark and real-world data that the explanations were often quite simple and 
provided insight. 

3.1.2.1.1. Method Description 

In order to reduce the analyst's effort for detecting anomalies, we propose to provide the 
analyst with sequential feature explanations (SFEs) that attempt to efficiently explain 
why a point was considered to be an outlier. A length k SFE for a point is an ordered list 

of feature indices E=(e_1,…,e_k), where e_i∈{1,…,n}. The intention is that features that 
appear earlier in the order are considered to be more important to the high outlier score of 
a point (e.g. x_(e_1 ) is the most important). We will use the notation E_i to denote the 
set of the first i feature indices of E. Also, for any set of feature indices S and a data point 
x, we let x_S denote the projection of x onto the subspace specified by S. 

Given an SFE E for a point x, the point is incrementally presented to the analyst by first 
presenting only feature x_(E_1 ). If the analyst is able to make a judgement that x is 
anomalous based on only that information then we are finished with the point. Otherwise, 
the next feature is added to the information given to the analyst, that is, the analyst now 
sees x_(E_2 ). The process of incrementally adding features to the set of presented 
information continues until the analyst is able to make a decision. The process may also 
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terminate early because of time constraints; however, we don't study that case in this 
work. 

For normal points, the incremental presentation of SFEs may not help the analyst more 
efficiently exonerate the points. In contrast, for anomalies, it is reasonable to expect that 
an analyst would be able to detect the anomalies more easily by considering a much 
smaller amount of information than they would have to without the SFE, which should 
reduce the chance of missed detections. To clarify further, we assume the analyst has the 
expertise to decide with certainty whether an instance is an anomaly from the entire set of 
features if given enough time. However, the effort required to determine the anomaly 
may be large if all the information is shown at the start. Further, it is assumed that if the 
minimal set of features responsible for the anomaly are shown, the effort may be reduced 
(they see the minimal number of feature interactions). Hence, we assume that the amount 
of analyst effort is a monotonically increasing function of the number of features 
considered. This motivates measuring the quality of an SFE for a target by the number of 
features that must be revealed to an analyst for correct detection. More formally, given an 
anomaly point x, an analyst a and an SFE E for x, the minimum feature prefix, denoted 
"MFP"(x,a,E), is the minimum number of features that must be revealed to a, in the order 
specified by E, for a to detect x as an anomaly. The analyst may very well consult other 
information during an investigation. The hope is that simple and good explanations will 
allow the analyst to efficiently direct their attention to the key external information. 

While MFP provides a quantitative measure of SFE quality, its definition requires access 
to an analyst. This complicates the comparison of SFE computation methods in terms of 
MFP. Our work, developed techniques that use surrogate models of an analyst in order to 
compute SFEs that aim to minimize the MFP. Complete details are in the full paper 
[Siddiqui et al., 2019]. In summary, developed a provably optimal approach based on the 
branch-and-bound algorithmic paradigm. However, the worst-case running time of that 
algorithm is exponential, though in practice it is often much faster. We also showed that, 
in the worst case, it is unlikely that there is a more efficient optimal algorithm, since the 
MFP optimization problem is NP-hard. In response to the hardness result, we also 
proposed three greedy algorithms: independent marginal, sequential marginal, and 
dropout. The first two, greedily add features to an SFE based on marginal distributions of 
the anomaly detector and the last greedily removes features. 

3.1.2.1.2. Method Evaluation and Discussion 

We run experiments on widely used anomaly detection benchmark datasets, where the 
ground truth anomalies are known. We consider modeling an analyst as a conditional 
distribution of the normal class given a subset of features from a data point. More 

formally we model the analyst as a function A(x,S)=P("normal " ┤| x_S), which returns 
the probability that point x is normal considering only the features specified by the set S. 
We obtain this function for our experiments by using supervised learning on the ground 
truth dataset to learn a probabilistic classifier for the normal class. The class probability 
of this classifier is then interpreted as the confidence of the simulated analyst. Given this 
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simulated analyst it is possible to empirically evaluate the MFP of an SFE for any data 
point.  

We evaluated seven methods for computing SFEs. These included SeqMarg, IndMarg, 
SeqDO (Sequential DropOut), IndDO (Independent Dropout) and BaB.100 (branch-and-
bound restricted to 100 nodes of exploration). In addition, we evaluated a random 
explanation method. In the random case, we report the average performance across 100 
randomly generated SFEs. Finally, in order to provide a lower bound on attainable 
performance (lower MFP is better) we consider an optimal-oracle method, OptOracle. 
This method is allowed access to the simulated analyst and for each number of features i 
computes the optimal feature subset of size i. Clearly, OptOracle represents an optimistic 
bound on the performance of any SFE method that is evaluated with respect to the 
simulated analyst. 

Figure 1 shows results for these methods on 7 benchmark data sets. We can see from 
these results that the explanation methods tend to produce results that are closer to the 
performance of the oracle than random (lower is better). These results along with 
significant additional results in the full paper resulted in the following key observations 
and recommendations.  

 All of the introduced SFE methods significantly outperformed randomly 
generated SFEs. 

 The marginal methods were generally no worse and sometimes significantly 
better than the dropout methods. 

 When using the real anomaly detector (Ensemble of Gaussian Mixture Models), 
we observed little to no difference between the performance of sequential versus 
independent methods. 

 When using the oracle anomaly detector, SeqMarg significantly outperformed 
IndMarg which suggests that, in general, sequential methods can outperform 
independent methods. 

 While the BaB methods were more effective at optimizing our surrogate objective 
in many cases, this did not translate to outperforming the best greedy method with 
respect to MFP. 

Overall, based on our results, SeqMarg is the recommended method for computing SFEs 
among the methods we studied. 
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Figure 1. Performance of Explanation Methods on Benchmarks  
Each group of bars shows the performance of the six methods on a standard benchmark  

dataset. The bars show the expected MFP averaged across anomalies in  
benchmarks. 95% confidence intervals are also shown. 

 

3.1.2.2. Incorporating Feedback into Anomaly Detection 

One of the issues limiting the utility of AD in practice is the large false positive rate. This 
is due to a mismatch between statistical and semantic anomalies. We addressed this issue 
by incorporating human feedback, that is, we develop a human-in-the-loop anomaly 
detection system which can improve its detection rate with a simple form of true/false 
positive feedback from the analyst [Das et al., 2016; Das et al., 2017; Siddiqui et al., 
2018a; Siddiqui et al., 2018b]. We showed empirically the efficacy of the approach on 
benchmark problems as well as significant cyber security applications including red team 
attack data from the TC program. 

3.1.2.2.1. Method Description 

The main contribution of our work on feedback-guided anomaly detection is to formulate 
the problem in the framework of online convex optimization and derive simple, efficient, 
and effective algorithms. This is done by associating a convex loss function to each 
feedback response, which rewards the anomaly score for aligning with the feedback. We 
consider two different methods, which differ in their choice of loss function. 

By leveraging the well-studied area of online convex optimization, our approaches inherit 
the simplicity and efficiency of the online algorithms as well as their solid theoretical 
grounding, where convergence is understood. Prior state-of-the-art approaches, such as 
AAD, are significantly more complex to implement, incur much higher computational 
complexity, and have less clear theoretical underpinnings. In addition, prior approaches 
incorporate a significant number of parameters, whereas, our approaches have a single 
learning rate parameter, for which we show that a single value works well across all of 
our experiments. 
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Our feedback approach can be applied quite generally, in particular, to any anomaly 
detector that can be represented as a “generalized linear anomaly detector”, which is 
formally defined in the full paper. Most existing state-of-the-art detectors can be 
formulated within that class. Our work focuses on a particular class of generalized linear 
models, tree-based anomaly detectors, which includes the state-of-the-art Isolation Forest 
detector [Liu et al., 2018], among others. At a high-level, detectors in this class are 
distinguished based on how they “assign weights” to edges in their trees. Our feedback 
approach is able to automatically span this space, covering existing and new tree-based 
detectors, by tuning the weights in response to feedback. 

The details of the online convex optimization (OCO) framework, which is the basis of 
our work, are beyond the scope of this report. Conceptually, however, the OCO 
framework allows us to view the feedback-guided anomaly detection problem as a game 
being played between our anomaly detection system and the analyst. In this game, our 
system makes a “move” by flagging a particular instance as an anomaly. In response, the 
analyst makes a “move” by indicating whether the instance is an anomaly or not. The 
goal of this sequential game is for our algorithm to achieve a small “regret” in 
performance compared to an optimal decision rule in hindsight. The power of this 
framework is that it makes no assumptions about the analyst and yet offers theoretical 
bounds on the regret. We developed several variants of the approach based on defining 
different types of convex “loss function” that are derived from the analyst feedback. For 
all of these loss functions, we derived an efficient online algorithm called Online Mirror 
Descent, which allows for certain constraints to be incorporated into the parameters of the 
tree-based anomaly detector (e.g. requiring that the weights remain non-negative). 

3.1.2.2.2. Method Evaluation 

We conduct experiments on individual benchmark problems from prior work and on six 
large anomaly detection benchmark sets. The results, in Figure 2, show that our online 
approaches (Linear and Log-Likelihood) are able to significantly accelerate the rate that 
an analyst can find anomalies compared to not using feedback. We also show significant 
improvements over the prior state-of-the-art method AAD. 
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Figure 1. Feedback Result Comparison with AAD on Some  
Standard Anomaly Detection Datasets 

Each graph shows the number of true anomalies discovered after each number of feedback 
iterations. 95% confidence interval are shown on each graph. Linear and Log-Likelihood are our 

newly proposed approaches, while AAD is the prior state-of-the-art. Baseline is the isolation 
forest anomaly detector that does not use feedback. This detector is equivalent to the performance 

of Linear or Log-Linear if they do not receive feedback. 

 

We also demonstrate our approach on real cybersecurity attack data collected from the 
Engagement 3 from the DARPA Transparent Computing program. This engagement 
contained multiple attacks on multiple operating systems, over multiple days. We focus 
on the problem of detecting anomalous system entities, with the goal of quickly 
identifying the malicious entities that are part of an attack. The malicious entities are 
extremely rare in the data, which yields a very difficult anomaly detection problem. Our 
results in Figure 3 show that our feedback-based approaches allow for malicious system 
entities to be discovered significantly earlier than when no feedback is used by the 
system. In particular, the number of anomalies found for a given amount of feedback is 
generally significantly larger than for the baseline that does not use feedback. 
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Figure 3. Feedback Iteration Results When Applied to Data From Different Host Systems 

 

As another measure of performance on the Engagement 3 data, we measured how long it 
took each method to discover the first anomalous instance. We see from Table 1 that our 
feedback methods (Linear and Log-Likelihood) significantly reduce the time required to 
identify the first anomaly. 

 

 

Table 1. Number of Feedback Rounds Required to Identify the First True Anomaly 

 

3.1.2.3. Theory of Rare Pattern Anomaly Detection 

From a theoretical perspective the empirical success of state-of-the-art anomaly detection 
algorithms is somewhat of a mystery. In particular, for high-dimensional data, all data 
points are anomalous in some way, suggesting that anomaly detection should not produce 
results better than random. Yet, state-of-the-art detectors achieve results that are far 
superior to random. This led us to search for a theoretical explanation for this observed 
performance. The result was a new theoretical framework, which captures most state-of-
the-art anomaly detectors. In particular, we introduced the framework of rare pattern 
anomaly detection, where different detectors are characterized by their underlying 
“pattern space” [Siddiqui et al., 2016]. Our main theoretical results characterized the 
finite sample complexity of detectors in terms of properties of the pattern space. Most 
state-of-the-art detectors were shown to have pattern spaces that yielded polynomial time 
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sample complexity according to our theory. In addition, controlled empirical 
investigations showed that the theory predicted observed performance. This work 
provided the first finite sample analysis for anomaly detection in the literature. 

3.1.2.3.1. Description 

For moderately high-dimensional data, all data points become far apart from each other, 
so they are all statistical outliers in a sense. This suggests that anomaly detection by 
identifying outliers or distant points should perform poorly and degrade to random 
selection as the dimensionality grows. Empirical results, however, have shown that state-
of-the-art anomaly detectors often perform quite well even for high-dimensional data. 
Further, these detectors tend to reach their peak performance with a relatively small 
amount of training data compared to what might be expected based on the 
dimensionality. The primary goal of this work under the Transparent Computing program 
was to move toward an understanding of these empirical observations by analyzing the 
sample complexity of a certain class of anomaly detectors. 

The sample complexity of supervised learning has been widely studied and is quite well 
understood via the framework of Probably Approximately Correct (PAC) learning. 
However, this is not the case for anomaly detection, where virtually all published work 
has focused on algorithms with good empirical performance (with additional attention to 
computational speed, especially on big data sets). A key step in the development of PAC 
learning theory was to formalize the notion of a hypothesis space and to quantify the 
relationship between the complexity of this space and the amount of training data 
required to identify a good hypothesis in the space. We chose to follow a similar 
approach. Our framework is motivated by the observation that many state-of-the-art 
anomaly detectors can be viewed as monitoring the probabilities of certain “patterns” in 
the data, where a “pattern” is a subset (typically closed and compact) of the feature space. 
Outliers are then identified based on measures of those probabilities, where points are 
ranked as more anomalous if they satisfy lower-probability patterns. For example, the 
highly-competitive anomaly detection algorithm, Isolation Forest [Liu et al., 2008], finds 
outliers by monitoring probabilities in the pattern space of axis-aligned hyper-rectangles. 
In our analysis, a “pattern” will play the same role as a “hypothesis” in PAC learning, and 
the pattern space complexity will determine the number of training examples required for 
high accuracy. 

A second key step in the development of “PAC theory was to relax the goal of finding the 
best possible hypothesis. Similarly, we will introduce an error parameter ϵ that 
determines how accurately the algorithm must estimate the probabilities of the patterns in 
the pattern space. Our main theoretical results show that the required sample size scales 
polynomially in 1/߳ (as well as in several other parameters). 

We call our formulation Rare Pattern Anomaly Detection (RPAD), and an algorithm that 
provides PAC guarantees will be referred to as a PAC-RPAD algorithm. We prove 
sample complexity results for any algorithm within the RPAD framework. The 
framework captures the qualitative essence of many anomaly detection algorithms. 
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3.1.2.3.2. Discussion 

We refer the reader to the full paper for technical definitions, details, and proofs. Here we 
give an informal presentation of the main results.  

Given a space of potential inputs ܺ a pattern is a subset of ܺ, where we think of the 
pattern as being satisfied for elements in the subset. A pattern space is a class or set of 
patterns. Depending on whether ܺ is finite or infinite (countable or uncountable), patterns 
and pattern spaces can be either finite or infinite. The complexity of a pattern space can 
be characterized in a number of ways, two of which are most relevant to our theory. First, 
for finite pattern spaces, the cardinality of the space is the key complexity parameter, 
noting that this cardinality is generally exponential in the dimension/size of elements in 
ܺ. For continuous spaces, the analog is VC-dimension, which characterizes the ability of 
the patterns to “cut up” the space. For the spaces underlying many continuous-data 
anomaly detectors, the VC-dimension is polynomial in the dimensionality of the data.    

Our basic results show that a very simple algorithm, called RarePatternDetect, has a 
sample complexity that is polynomial in the VC-dimension for continuous spaces. For 
finite spaces, this algorithm achieves a sample complexity that is polynomial in log  ܥ
where ܥ is the cardinality of the pattern space. The algorithm operates by first drawing a 
training set ܦ of a size specified by our theory. The training set is used to estimate the 
normalized pattern probabilities of patterns in the space. Given a new data element ݔ the 
algorithm flags it as anomalous if and only if it satisfies a pattern with estimated 
frequency less than or equal ߬  ఢ

ଶ
, where ߬ is the specified detection threshold and ߳ is 

the error tolerance parameter. This test is done with an assumed subroutine 
 which returns true if there exists such a pattern. For the purposes of ,݊ݎ݁ݐݐܽܲ݁ݎܴܽݏܽܪ
sample complexity analysis, we will assume an oracle for HasRarePattern. For 
sufficiently complex pattern spaces, the problem addressed by HasRarePattern will be 
computational hard. Thus, in practice, a heuristic approximation will be needed, for 
example, based on techniques developed in the rare pattern mining literature.  

3.1.2.4. Anomaly Detection for High-Throughput Discrete Data Streams 

Most state-of-the-art anomaly detectors either require data to be represented via numeric 
vectors or are batch algorithms with poor computational complexity. There are important 
applications, however, where the data is fundamentally discrete and highly efficient 
streaming algorithms are required. This is the case, for example, in transparent 
computing, where the raw event data corresponds to discrete operating system events that 
arrive in a high-rate stream. This led us to develop a new approach to AD for streaming 
discrete event data. The key idea was to draw on the classic approach of Prediction by 
Partial Matching (PPM) for data compression, adapting it for the purposes of AD. To the 
best of our knowledge this has not been considered previously in the literature. This 
approach has not yet been published, but has been fully implemented in the ADAPT 
system and used for both TC engagements 4 and 5. The high-scalability and very 
promising empirical results in the engagements give us confidence that the PPM 
approach is worth significant further attention. We are currently writing a paper to be 
submitted to an upcoming conference. 
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3.1.2.4.1. Method Description 

There is a body of research that uses anomaly detection for discrete sequences as 
intrusion detection systems [Chandola et al., 2010]. Many of these systems are insensitive 
to certain structural elements of the sequences such as the type of the symbols comprising 
the sequence or the potential presence of signature attack patterns. Further, they are often 
prohibitively computationally expensive in the domain of online threat detection using 
high-rate streams of event data. Our PPM tree anomaly detection method efficiently 
builds and maintains a model of streaming event data that exploits the data’s structure by 
treating events as sequences of typed symbols and exploits the existence of common 
attack signatures by formulating trees specifically for detecting these attack signatures. 

In our method, events are turned into specifically-ordered sequences of typed symbols by 
functions we call descriptors. The symbols are often the names or UUIDs of processes or 
files found in the input events. The symbol order and sequence length of a descriptor’s 
output determines the structure of a corresponding PPM tree which is used to keep track 
of the frequency of each symbol’s appearance and the conditional probabilities of a 
symbol’s appearance given the preceding symbols. PPM trees are useful in the anomaly 
detection context because they have a special escape node that indicates when their 
descriptor produces a never-before-seen sequence of symbols. We call these sequences 
novelties. The escape node further helps us assign a novelty score to each novelty. A 
novelty can be turned into an alarm by thresholding on the novelty’s score. We use a 
quantile threshold which allows for a flexibility in which novelties are considered 
anomalous that is responsive to changes in the distribution of novelty scores as the event 
data stream is read. Among other benefits, quantile thresholding allows us to control the 
rate at which novelties are flagged as anomalous. Results show that these novelty alarms 
are sufficient for capturing the attacks perpetrated during the transparent computing 
engagements. 

While sufficient for detecting attacks, even with quantile thresholding, the set of novelty 
alarms produced during the engagements can contain a large number of false positives. 
This motivates an approach that can harness the sensitivity of novelties to attack-related 
activity while reducing the false positive rate. We examined the effectiveness of 
techniques that aggregate novelties according to the type of system entities involved over 
a specified interval of time. For instance, during stream ingestion, one version of these 
aggregation techniques looks at all the novelties produced during the most recent fifteen-
minute interval, groups the novelties by the name of the process involved (if there was a 
process involved), and ranks the processes active in that interval by the number of 
novelties with scores below the threshold. This interval-scoped list is combined with an 
historical list of processes ranked in the same way. Another aggregation quantile 
threshold is used to raise alarms on processes that rank highly on this historical list. This 
and other aggregation techniques help us achieve three goals. They focus the anomaly 
detection on an entity type (i.e. processes) whose behavior constitutes the vast majority of 
attack-related behavior. They help restrict the alarms to those entities with only the most 
novel behavior (i.e. those processes with the most low-scoring novelties). Finally, they 
reduce the false positive rate compared to our non-aggregation techniques while 
maintaining good true positive rates. 
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3.1.2.4.2. Method Evaluation 

We have preliminary results pointing to how well the PPM tree anomaly detection 
method might be expected to perform on real-word data. Four separate analyses were 
conducted using six (three pairs of two) of the datasets from engagement four. These six 
datasets were chosen because out of all the datasets for engagement four, there is a 
reasonably accurate basis for establishing their ground truth using a keyword matching 
technique based on keywords pulled from TA5 reports. The first analysis looks at the 
effectiveness of novelty alarms by varying the novelty quantile threshold in order to 
produce a Receiver Operating Characteristic (ROC) curve plotting the true positive rate 
(y-axis; number of true positive alarms divided by the number of attack-related novelties) 
against the false positive rate (x-axis; number of false positive alarms divided by the 
number of benign novelties). See figure 4 below. The results indicate that for at least two 
of the datasets (Cadets-A and FiveDirections-B) there are novelty threshold values that 
produce good anomaly detectors (represented by the sharp bends near the origin of the x-
axis). The quality of the detectors for the other datasets, however, is too variable to 
consider novelty-alarm-based detection to be very reliable. 

 

Figure 4. ROC Curves Generated Using Novelty-Based Alarms 

The next three analyses look to improve upon the results of the first by plotting ROC 
curves based on aggregation alarms. Figure 5 shows the results of these analyses side by 
side. The leftmost plot shows the detectors produced by aggregating over process UUID 
and varying the aggregation quantile threshold. This version of aggregation produces 
detectors that may be considered reasonable if the goal is to keep the false positive rate 
down at the expense of capturing all the attack-related processes. More generally, we can 
see how this technique is more consistent across datasets which speaks well of the 
performance of aggregation techniques over purely novelty-based ones. The middle plot 
shows the results of the same analysis but for aggregating over process name rather than 
UUID. Detector performance for the Trace and FiveDirections datasets are improved but 
the performance for the Cadets dataset is worsened. Finally, the rightmost plot shows the 
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best curves possible for each pair of datasets. These curves are chosen from an 
assortment generated by varying the aggregation type and parameters to the anomaly 
detection methods not discussed here due to space constraints. The best detector appears 
on the Cadets-A curve where there is a point with a near-zero false alarm rate while 
accurately detecting almost 70% of the attack-related processes. The next best for Cadets-
B has a similarly low false positive rate with an almost 60% true positive rate. The best 
detectors for the Trace and FiveDirections datasets are able to achieve similar true 
positive rates but with higher false positive rates. 

 

Figure 5. ROC Curves Generated Using Aggregation Techniques 

Overall, we can see that the PPM tree anomaly detection method and the concept of 
novelty we have defined in this context can be useful as part of an intrusion detection 
system. The aggregation techniques take this usefulness one step further by pointing 
towards the possibility of developing detectors with reasonable true positive rates and 
very low false positive rates. 

3.1.2.5. Contextual Anomaly Detection 

In this section we summarize methods used and results obtained following our strategy of 
unsupervised anomaly detection based on Boolean contexts. (From now on, we will just 
use the term "contextual anomaly detection" to refer to this approach.) There are a 
number of algorithms already available for this problem, and we have experimented with 
new ways of combining existing anomaly detectors and new algorithms based on rule 
mining.  

By "context" we just mean a dataset relating objects (typically via object identifiers such 
as UUIDs) and true-false attributes. Tabe CNTXT gives an example of a transactional 
database that is represented as a context. Such a dataset can be represented in a number of 
different ways: as a bipartite graph, as a binary relation R relating objects and attributes, 
as a Boolean matrix, as an adjacency list, as a CSV file, etc. Typically, and exclusively in 
this report, the objects of a context are (UUIDs of) operating system process, that is, 
ADMSubject nodes, and the attributes are some true-false properties (usually definable 
via a simple graph query), such as "did the process ever perform an event of type T?", 
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"was the process's executable name 'nginx'?", or "did the process ever connect to IP 
address 128.2.1.2?".  

  

Table 2: An Example of a Formal Context Representing  
a Group of Objects and Their Attributes 

In this standard formal context representation, we consider an item as a property (feature) 
of an object and an itemset as a set of items. The image of an itemset corresponds to the 
set of objects including the itemset. For instance, from our previous toy example in Table 
2 the image of the itemset {a,b,c} is the set of objects {UUID3,UUID5} that has a length 
of 2. A support of an itemset is interpreted as the relative number of objects included in 
its image divided by the total number of objects in the context. The support of the 
previous itemset {a,b,c} is then 2/6 (or 33% as relative frequency). By setting up a 
support threshold, one can either extract frequent patterns, which are itemsets whose 
support is greater than this threshold, or rare patterns whose support is below this 
threshold. For instance with a support threshold that equals 20%, we can observe the rare 
itemset {b,c,e} since its support is ⅙=16% that is smaller than 20%.  

We considered in our work a number of contexts focusing on processes, and 
experimented also with contexts focusing on files, netflows, and other CDM objects. 
However, we have a much more complete picture of what is possible with anomaly 
detection using process-centric contexts and focus on these results exclusively in this 
report. The process-centric contexts we will discuss are: 

 ProcessEvent (PE): in which each process is associated with the CDM event types 
of all events it ever performed. 

 ProcessExec (PX): in which the process is associated with its executable name(s) 
if any - in CDM or ADM there can be more than one or zero. 

 ProcessParent (PP): similar to ProcessExec but associating a process with its 
parent's executable name(s) if any. 
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 ProcessNetflow (PN): in which the process is associated with the (remote) IP 
addresses and port numbers of all network flows it interacts with. 

 Finally we sometimes also considered a "combined" context, ProcessAll (PA) 
which just collects all of the above attributes into a single context, renaming to 
avoid confusion between e.g. ProcessExec and ProcessParent. 

Although our use of the term context derives from our initial focus on a data mining 
technique called Formal Context Analysis (FCA), which analyzes contexts in the form of 
binary relations, we prefer this term over more generic terms even in other settings 
because it also emphasizes that we are making choices (informed by domain knowledge) 
about what aspects of a process's recorded behavior are significant, and serves as a 
reminder that the information available in a context is an incomplete subset of the 
process's whole behavior.  

3.1.2.5.1. Baseline performance of existing algorithms 

To assess the potential of the contexts mentioned above as a basis for anomaly detection, 
we obtained implementations of several existing categorical anomaly detection 
algorithms and re-implemented a few others. Some of this work was done by Mookherjee 
as part of a Master's student project [Mookherjee 2018], and additional results are 
summarized in a technical report [Berrada et al. 2019]. In this section, we briefly review 
the algorithms considered and the headline results. 

We considered the following five algorithms from the literature: 

FPOutlier (FPOF) [He et al. 2005]: This algorithm starts by mining frequent itemsets 
according to a support parameter minsupp. Then each object is assigned a score 
corresponding roughly to the number of frequent itemsets it contains. Thus, larger scores 
correspond to more occurrences of frequent itemsets, meaning that anomalous objects 
should have low scores. This approach seems well-suited to detect anomalies 
corresponding to expected, but missing, activity. However, objects that have unusual 
activity but also display a large number of common patterns may have high scores and 
not be considered anomalous. In addition, the fact that this approach has a tunable 
parameter is problematic in an unsupervised setting, since it means that we need to guess 
an appropriate value for this parameter in advance. We reimplemented FPOutlier using 
standard itemset mining libraries. 

Outlier Degree (OD) [Narita and Kitagawa 2008]: This algorithm also starts by mining 
frequent itemsets as well as high-confidence rules, so there are two parameters, minsupp 
governing the minimum support of the itemsets and minconf governing the minimum 
confidence of the rules. Then each object is scored by applying the high-confidence rules 
to it, and assigning a score corresponding roughly to the difference between the object's 
actual behavior and expected behavior (according to the rules). For example, if X Y is a 
high-confidence rule and object O displays behavior X but not Y, this rule violation will 
contribute to the score. High scores correspond to larger differences between actual and 
expected behavior, so are more anomalous. Like FPOutlier, this approach seems more 
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likely to consider missing, but expected, behaviors to be anomalous, and could miss 
anomalies that consist of rare behaviors that do not occur frequently enough to participate 
in rules. Also, the presence of two tunable parameters is even more problematic from the 
point of view of unsupervised anomaly detection. We reimplemented OD using standard 
itemset and rule mining libraries. 

Attribute Value Frequency (AVF) [Koufakou et al. 2007] is based on frequency 
analysis of the individual attributes independently. For each attribute the maximum 
likelihood probability of the attribute value assuming value 0 or 1 is estimated (in one 
scan over the data). Then each object is scored by adding together the probabilities of its 
actual attribute values. Alternatively, this algorithm can be performed over streaming 
data, by maintaining the probability estimates incrementally, and scoring each new object 
based on the current estimates before updating them [Tan et al. 2013]. AVF, unlike the 
previous methods considered, does not have any parameter settings. Both batch and 
streaming AVF are easy to implement. 

One Class Classification by Compression (OC3) [Smets and Vreeken 2011] is based 
on a compression technique for identifying "interesting" itemsets, implemented using the 
Krimp algorithm [Vreeken et al. 2011]. Essentially, the idea is to first mine frequent 
itemsets from the data, and then identify a subset of the itemsets that help to compress the 
data well. Then, each object is assigned an anomaly score corresponding to its estimated 
compressed size. If the compression algorithm has done a good job, then objects 
exhibiting commonly occurring patterns will compress well, and anomalies will not. OC3 
can take a minsupp support parameter, but parameter tuning is typically not necessary 
because the compression algorithm will filter out any non-useful itemsets; therefore we 
used the smallest possible minsupp setting in our experiments. The implementation of 
Krimp is available and we modified it slightly to perform OC3-style anomaly scoring. 

CompreX [Akoglu et al. 2012] is one of the most sophisticated approaches to categorical 
anomaly detection studied to date. It is based on compression, like OC3, but uses a 
different compression strategy. CompreX searches for a partition of the attributes such 
that each set of attributes in the partition has high mutual information, so that 
compressing the attributes using Krimp is more effective than compressing the attributes 
independently. Since there are exponentially many partitions to consider, CompreX starts 
with the finest partition (all attributes are in their own class) and greedily searches for 
pairs of classes to merge. CompreX has no tuning parameters and was shown 
experimentally to be competitive or superior in anomaly detection performance to 
Krimp/OC3 on several datasets. However, CompreX's default search strategy is quadratic 
in the number of attributes; therefore, it was not usable on contexts with over 20-30 
attributes. 

3.1.2.5.2. Evaluation metrics 

To evaluate the effectiveness of different algorithms, we considered two metrics: 

 The Receiver Operator Characteristic (ROC) curve of a ranking is obtained by 
plotting the number of true positives against the number of false positives 
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observed so far. The area under the ROC curve (AUC) is a common measure of 
the effectiveness of ranking techniques, as well as classifiers that produce a 
numerical score rather than a Boolean result value. The AUC value is between 0 
and 1; 1 is best, indicating that all attacks are ranked highest above all other 
activity. AUC is widely used in previous work on categorical anomaly detection, 
but in our setting we found that it was not a reliable indicator of good attack 
detection performance: for example, if there are 100,000 objects and only 10 of 
them are attacks, then a ranking that includes them all at positions 991-1,000 will 
have AUC of around 0.99, whereas a ranking that includes nine attacks in the top 
10 but misses one attack entirely will have AUC score of at most 0.9.  

 To gain an alternative perspective, we also considered the normalized discounted 
cumulative gain score, or nDCG. Roughly speaking, each attack found contributes 
to the nDCG score, but attacks found near the top of the rank ordering count much 
more than attacks found far down the list. nDCG seems to be an appropriate 
measure to evaluate anomaly detection algorithms that produce a rank ordering, 
since it was originally introduced for evaluating information retrieval algorithms: 
the higher the nDCG score, the more "hits" are found in the first few pages of a 
search result. nDCG is also a score between 0 and 1, with 1 being ideal behavior, 
but nDCG places greater weight on finding at least some attacks near the top of 
the ranking and does not penalize missing a single attack as heavily as AUC.  

In this report, we consider nDCG scores in evaluation only. 

3.1.2.5.2.1. Batch evaluation 

Of the various engagements, we only have detailed, machine-readable ground truth 
annotations for Engagement 2 data. We have also manually constructed partial ground 
truth annotations for E3 data but these have not been validated or used in all of our 
experiments. 

The following table summarizes the nDCG scores obtained by the different batch 
algorithms for the ProcessEvent (PE) context (using E2/Pandex data): 

 

Table 3. nDCG Scores Obtained by the Different Batch Algorithms for 
 the ProcessEvent (PE) Context (using E2/Pandex data) 
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We have highlighted the best (highest) nDCG score in each row in bold. The best 
performance was obtained by AVF, CompreX or OC3 in each case. The FPOF and OD 
approaches were never competitive, and interestingly, often had similar nDCG scores 
even though their scoring approaches seem rather different. For these two approaches, we 
tried a range of support and confidence parameter values and took the highest nDCG 
score observed (thus, these results are best-case for these algorithms). 

Similarly, for the ProcessAll context (again E2/Pandex data), the results were as follows: 

 

Table 4. nDCG Scores Obtained by the Different Batch Algorithms for 
 the ProcessAll (PA) Context (using E2/Pandex data) 

 
Here DNF means that the approach did not finish within an hour. For most of the 
approaches, run time was a few minutes at most (running over datasets representing 
several days' activity). Interestingly, in this case CompreX could not finish for any 
context, and FPOF and OD did not finish on the Windows dataset, but again did not 
perform well even when they were able to run. The best performance was obtained by 
either OC3 or AVF; what is surprising about this is that AVF is much simpler than all the 
other techniques, including OC3, yet it is competitive in three out of four cases, whereas 
OC3 only has a definitive advantage for the TRACE data. 

3.1.2.5.2.2. Streaming evaluation 

As noted above, AVF is straightforward to modify to a streaming, or one-pass, algorithm. 
On the other hand, OC3 would require a considerable effort to run in a fully streaming 
setting. Because AVF exhibited competitive performance compared to OC3, it is 
interesting to compare the streaming and batch versions to see if streaming operation has 
a negative impact on anomaly detection performance. We would expect to see some 
differences, because in a streaming setting there is likely to be an initial "warm-up" 
period when all activity is new and anomalous. 

We compared batch AVF with streaming AVF modified to allow for different window 
sizes, e.g. updating/scoring after each 1%, 5%, 10%, or 25% of the data. In each case, we 
considered ten different randomly-shuffled orders in which to process each dataset and 
report the resulting average nDCG score. The results for the ProcessAll context are as 
follows (again for E2/Pandex data): 
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Table 5. Comparison of Batch AVF with Streaming AVF for the ProcessAll Context 

As these results show, streaming in blocks of as little as 1% of the data does not 
negatively affect detection performance for three out of the four datasets. One dataset, 
FiveDirections, had some variation but the worst-case degradation in nDCG score was 
small (from 0.53 to 0.49). These results suggest that streaming anomaly detection can be 
competitive with batch techniques, but there is still much room for improvement since for 
example the best nDCG score obtained for TRACE by AVF is much lower than the OC3 
score of 0.47. 

A technical report containing a more complete set of results and additional discussion is 
available online [Berrada et al. 2019]. 

3.1.2.6. Formal Concept Analysis and Frequent-Rule Mining 

While the anomaly detection techniques described above help us detect outlier objects 
whose behavior is likely to be malicious, these techniques do not easily allow us to single 
out what exact pattern of behavior really lead to objects being flagged as outliers and 
what pattern constitutes the malicious bit. Unless we go back to the original data, it is not 
easy to explain what makes each flagged outlier an anomaly. 

So we needed anomaly detection methods that could more easily provide some sort of 
anomaly explanation. Rule mining-based anomaly detection techniques seemed like a 
plausible candidate for that. 

As their name suggests, rule mining techniques learn rules from the data (in our case, 
process-centric contexts) and each entity in the data is then compared against the learned 
rules and flagged or not as an outlier. So not only would we be detecting anomalies based 
on the rules learned from the data, but we could also try and use the same rules to explain 
the anomalies found.  

There are two types of rules (rare rules and frequent rules) and therefore two types of 
anomaly detection approaches one can take: 

1. Learn rare rules (i.e rules satisfied by a small fraction of the data and are likely to 
describe anomalous behavior) and find entities that satisfy such rules as such 
entities exhibit anomalous behavior and are most likely to be malicious. This 



 

22 
Approved for public release: distribution is unlimited. 

Data subject to restrictions on the cover and notice page. 

approach is covered in more detail in the “Rare rule mining techniques” section 
below. 

2. Learn frequent rules (i.e rules satisfied by a large fraction of the data and are 
likely to describe normal system behavior) and find entities that violate these 
rules. We describe this approach here. 

The assumption here, of course, is that objects that are part of an attack constitute a very 
small fraction of the data and their behavior would be distinguishable from the rest of the 
data. Though this approach uses rules, the rules we compare process activity against are 
extracted from evolving snapshots of the data as opposed to static rules/signatures crafted 
beforehand by experts. It might be that an approach that combines the dynamically 
learned rules with previously learned signatures and historical rules could improve 
detection rates but that would require further experimentation. 

The frequent rule mining-based anomaly detection approach can be summarized as 
follows: 

1. First, mine the process-centric contexts for frequently co-occurring sets of 
attributes (i.e itemsets).  

2. Derive association rules based on the mined frequent itemsets 

3. Score each object in the context based on the rules they violate and the strength of 
the rules violated 

This approach is similar in spirit to the Outlier Degree algorithm, but there are two 
important differences. First, OD extracts rules from all frequent itemsets, whereas our 
approach uses only closed itemsets; usually there are far fewer closed itemsets and 
resulting rules. Second, our approach to anomaly scoring is sensitive to how many rule 
violations there are and how surprising the rule violations are, whereas OD does not take 
into account the latter factor. 

One way we can mine frequent itemsets is through Formal Concept Analysis (FCA). 
Here we only explain the basic principles of FCA. For more details on FCA, see [Wille 
1992], [Ganter and Wille 1997] and [Ganter and Stumme 2003]. 

In FCA terminology, objects are rows of the data matrix i.e. context while attributes are 
the columns of the matrix. 

More specifically, FCA searches for pairs of sets of objects (the extent) and a sets of 
attributes (the intent). These pairs, called formal concepts, which have the following 
characteristics: 

 all objects in the set of objects have all the attributes in the Itemset/set of 
attributes 
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 there are no other objects in the formal context that have all the attributes in the 
set of attributes/itemset (of the formal concept) 

 there are no other attributes in the set of attributes/itemset (of the formal concept) 
that all the objects (in the set of objects of the formal concept) have.  

Note that the intents of the formal concepts extracted by FCA are closed itemsets. 

Mining closed itemsets as opposed to all itemsets already reduces the number of possible 
rules we can extract from the data but there might still be significant information 
redundancy in the intents extracted by FCA. So instead of mining all possible concepts 
through FCA (which is also computationally very expensive), we also set a minimal 
support threshold (i.e the minimal fraction of context objects a concept extent should 
contain) so that we only keep frequently occurring concepts and therefore frequently 
occurring closed itemsets. 

To illustrate this, here is a simple example. Suppose we have the following view of the 
data (context), with rows representing process identifiers and columns websites accessed 
by those processes: 

 

 

Table 6. An Example Context 

This context contains three concepts: 

 Extent: {P17,P42,P007} and Intent:{abc.com,xyz.com} 

 Extent: {P1337,P007} and Intent:{evil.com} 

 Extent:{P007} and Intent:{abc.com,xyz.com,evil.com} 

The associated itemsets (i.e intents) are the attribute sets {abc.com, xyz.com}, {evil.com} 
and {abc.com,xyz.com,evil.com}. If we set a support threshold of 3/4, then the only 
frequent itemset in this context is {abc.com,xyz.com}. 
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We then use the closed itemsets to derive association rules of the type A → B (i.e A 
implies B where A and B are disjoint sets of attributes) and only keep the rules whose 
confidence (i.e likelihood of seeing B when A is seen) is above a certain threshold. We 

also prune the rules (to reduce redundancy) and remove rules of the type C → D where 

C ⊆ A and D ⊆ B (i.e we remove rules whose antecedents and consequents are included 
in other rules). 

Finally, we go back to the original context and compare the attributes of each object (i.e 
each row in the matrix) has with the association rules learned and score the object 
depending on the rules it has violated weighted by the confidence of the rules violated. 
Objects are then ranked based on their score, with objects with the highest scores at the 
top. 

Table 7 shows the performance (nDCG scores) of this approach (with the optimal 
support/confidence setting for each data source/context pair) on E2/Pandex data. No 
single context seems to perform best for all data providers, though ProcessNetflow (PN) 
is best for three datasets out of four (the exception being CADETS, on which it performs 
rather poorly). This supports the conclusions made in [Berrada and Cheney 2019], 
[Berrada et al.] and previous sections that it is hard to know a priori which context would 
perform best and that there is no guarantee that such context exists.  

The results also support the conclusion that combining all the data in one dataset and 
applying the anomaly detection approach on it is not necessarily the best performing 
strategy (not to mention that it’s computationally expensive): the only case where 
ProcessAll performs best is on CADETS data. 

 

Table 7: nDCG Scores for Optimal Support/Confidence Setting for  
FCA-Based Anomaly Detection on E2/Pandex Data  

(best performance per data source in bold, second best underlined) 

For the FCA-based approach to work, two parameters need to be tuned: support and 
confidence. But, on E2/Pandex, for most datasets (except CADETS), the optimal 
support/confidence settings were relatively stable and small variations in support and/or 
confidence didn’t seem to affect the performance. Table 8 shows the optimal 
support/confidence thresholds per dataset/context for E2/Pandex data. 
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Table 8: Optimal Support/Confidence Settings for FCA-Based Anomaly Detection on 
E2/Pandex Data 

Compared to batch AVF, the performance of the nDCG scores produced by the FCA-
based approach are generally lower but: 

 the performance of the FCA-based approach does not seem to be affected by the 
size of the data the way that AVF does (AVF’s performance seems to degrade 
with data size) 

 the overall performance on Trace data seems to be more stable (the FCA-based 
approach outperforms AVF on 4 contexts out 5, PX being the notable exception)  

On the other hand, the FCA-based approach can provide rules that help understand the 
reason for an anomaly having a high score, and performs much better than the OD 
approach, which also uses frequent rule mining. Both the scoring and rule pruning 
strategies could be affecting the scores so it might be worthwhile exploring different 
scoring and rule pruning strategies. 

3.1.2.7. Rare Rule Mining 

In this section, we present another anomaly detection approach that relies on the 
extraction of rare association rules from summaries of process activities and attributing 
an anomaly score to the processes based on those extracted rules.         

As in the previous approaches, we have also used the formal context data representation 
as illustrated in Table 1, where a set of objects (processes) are related to their properties 
(operating system events or netflow activities) through a binary relationship. Our 
intuition was about summarizing the process activities with categorical or binary features 
such as the kind of events performed by a process, the process executable name, parent 
executable name and IP addresses. The hypothesis that we made is justified by the fact 
that some attacks could be performed through rare combinations of such attributes.  
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As explained above, the association rules have the form of an implication X → Y where 
X and Y are two disjoint itemsets [Agrawal et al. 94]. For instance, using the rare itemset 

{b,c,e} from Table 2, the algorithm can derive the rare rule b, c → e. It can be noticed 
that when the number of attributes in a context converges to n, then the number of 
itemsets tends to 2n. Thus exploring the super set of all possible itemsets is not 
conceivable. This is why we have used a heuristic, which avoids the exploration of the 
total search space, by extracting only a reduced set of the rare itemsets called MRIs (or 
minimal rare itemsets) [Szathmary et al. 12]. The first step of our rare rule mining-based 
anomaly detection method starts by extracting these MRIs, then tries to derive association 
rules, which can be generated by finding combinations between those itemsets.  

The rare rule mining-based anomaly detection approach that we have proposed 
emphasises processes that satisfy rare association rules and consequently have rare 
behavior in the provenance traces. An anomaly score is calculated for each process 
through the quality measures of the rare rules it satisfies. There exist many 
interestingness measures that can be used to highlight the quality of the rules (e.g. 
confidence, lift, coverage, etc … ). In our work we have used the max of the lift as a main 
measure for processes scoring. The output lists of the anomalous entities are then ranked 
downwardly within those scores. An efficient detection would rank the most anomalous 
entities in the top of the list. 

This approach has been evaluated using the previously described formal contexts we 
generated from different O.S. traces. For each operating system, anomalous processes 
have been ranked with their scores, and true positives have been identified using the 
ground truth files available with E2 data.  

For better understanding the ranking results, we have proposed a visualisation technique 
called Band Diagrams, in which the generated ranked lists in each context/O.S. are 
represented as horizontal bands and the positions of the true attack processes (true 
positives) are highlighted with red vertical lines. Top ranked anomalous entities would be 
in the left-hand side of the bands, so obviously a chart with multiple red lines in that 
region would be considered as highly efficient. 
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Figure 6: Example of a Band Diagram Representing Some Anomalous  

Processes in Different Formal Contexts 
The positions (x-axis) of the attacks processes (true positives) are represented  

as red lines in the ranked lists. 	

The effectiveness of the rare rule mining anomaly detection approach has been also 
evaluated with the nDCG scores, and compared with several other existing approaches 
(FPOF, OD, CompreX, AVF and OC3). 	

In the following tables, nDCG scores are presented for ProcessEvent (PE) and ProcessAll 
(OA) contexts (using E2/Pandex data). We have highlighted the best score in each row in 
bold. 	

 

Table 9. nDCG Scores for ProcessEvent (PE) Context 
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Table 10. nDCG Scores for ProcessAll (PA) Context 

In summary, these results have shown that the rare rule mining approach has not only 
been able to rank anomalous entities in the top of the output lists, but also flag the APT-
like attacks in a fast running time (as reported in the next table). Moreover, the security 
expert could easily interpret the results by checking out the attacks through the obtained 
association rules, since these implications highlight rare combinations of actions that 
have been performed by attackers during their malicious activities.  

 

Table 11. Max nDCG Scores Obtained With the Rare Rule Mining  
Anomaly Detection Method Using Different Databases and Contexts 

A paper on these results is submitted and currently under review. 

3.1.3 Combination, Prioritization 

3.1.3.1. Multi-context aggregations 

As illustrated by the results presented so far in sections 3.1.2.6 and 3.1.2.7, the best 
anomaly detection performance is not always obtained with the same context. This arises 
naturally because some attacks involve suspicious network activity, while others involve 
unusual event patterns or unusual executable or parent/child relationships. This leads to a 
problem: if we want to make the most effective use of the results, we would like to know 
which context has attacks ranked closest to the top, but we do not (and maybe cannot) 
know this in advance, since this may depend on the attack itself. 
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Therefore, we investigated the problem of combining the results of several contexts into a 
single unified ranking. This is an instance of a more general problem called rank 
aggregation [Lin 2010]. There are a wide variety of possible techniques for combining 
rankings, some more suitable to our setting than others, and some very simple to 
implement while others rather involved. We experimented with several of the easy-to-
implement approaches, and here report representative results for two aggregation 
techniques: 

 Geometric mean: We construct a new score for each object by taking the 
geometric mean of the ranks (position after sorting by scores) of an object in each 
context. 

 Sum of scores: We construct a new score for each object by adding together the 
scores obtained in each context (ignoring the ranks). 

We applied these (and several other) rank aggregation approaches to E2 and E3 data, 
using the AVF and OC# anomaly detectors (in batch mode). Although geometric mean is 
meaningful for any ranking technique, the sum of scores approach only really makes 
sense where the scores have an additive interpretation. This is the case for OC3 (in which 
the scores can be interpreted as compressed sizes, so adding the scores corresponds to 
taking the size of concatenating the compressed representations). However, for AVF and 
other techniques we investigated, the sum of the scores does not have a clear 
interpretation, and unsurprisingly we obtained poor results when using the sum-of-scores 
approach with AVF. Therefore, here we just report results for E2/pandex data using OC3. 
These results are representative of the additional results for AVF and E3 data. 

The following table shows the nDCG scores obtained using OC3 on each context 
(including the four base contexts and the combined context PA), and the nDCG scores 
results of geometric mean and sum-of-scores aggregation: 

 

Table 12. nDCG Scores Obtained Using OC3 on Each Context 

These results support two interesting conclusions: First, the naive approach of combining 
all of the contexts into a single one (PA) often under-performs compared to the best 
individual context; the only case where PA's nDCG score was better than those of the 
four base contexts was CADETS. On the other hand, combining the scores using the 
sum-of-scores technique (on this dataset) always leads to better nDCG scores than those 
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obtained on any of the base contexts or PA. On the other hand, nDCG scores obtained 
using the geometric mean are not as competitive in this case. Analyzing a single large 
context can be considerably more expensive than analyzing several smaller ones and 
combining the results; our results show that the latter approach is also often more 
effective.  

We recently published a workshop paper containing these results [Berrada and Cheney 
2019], which contains more results and discussion. 

3.1.3.2. Dynamic Thresholding 

Many of the anomaly detection techniques described above produce a ranking of items 
under investigation. The ranking is determined by an anomaly score associated with each 
item. The decision for what to report as a final alarm becomes a question of question 
where in that ranked list to draw the line—or what the anomaly score threshold should 
be. 

Leading up to Engagement 4, we developed a technique for dynamically adjusting this 
threshold based on the number of alarms produced so far. Given the ranked list of 
potential anomalies, the threshold value is adjusted up or down depending on 1.) the 
number of alarms produced recently, and 2.) a parameter set by the user for how “noisy” 
they want the system to be. 

The noisiness parameter is used to determine the size of the set computed by a quantile 
function applied to the ranked list of alarm candidates. New alarms that rank high enough 
to be sorted into the top quantile are yielded downstream to be produced as final alarms 
(pending other methods applied later; see the next section).  

For example: Given a user noisiness setting of 0.01, we might determine that only the top 
1% most novel alarm candidates should lead to final alarms. Considering the current list 
of previously produced alarms, the lowest item that ranks in the top 1% quantile will be 
examined, and its anomaly score (e.g. 0.9975) is used as the new threshold for the next 
period of time (the time period is an adjustable setting; we used: 15 minutes). If a new 
alarm candidate is produced with a calculated alarm score higher than the threshold 
(0.9975), then the candidate is yielded downstream as a final alarm. All other alarms with 
scores lower than the threshold are discarded. 

3.1.3.3. Population Ranking and Filtering 

Before the final engagement, we developed an experimental method to attempt ranking of 
alarms across all detection methods. This procedure established a time span under which 
to collect all alarms, grouping them by the process instance implicated by each alarm. A 
process instance is defined as a unique tuple produced from (processName, processID), 
as defined by the incoming data. Process instance alarm counts were sorted in descending 
order and an alarm emitted only if it was in the top percentile, having had the most alarms 
produced for that process instance within the time window. 
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3.2 Implementations 

3.2.1 Actor System 

The Transparent Computing program was meant to address the needs of large enterprise 
organizations, like the Department of Defense. This goal has the automatic expectation 
that for a system to be usable, it must scale to cover huge numbers of systems being 
analyzed. For this reason, we chose to build our system on the Actor Model [Hewitt, et 
al., 1973], a longstanding and well-respected method for building high-performance, 
resilient distributed systems. Everything else in our system is built inside of the Actor 
System and implemented in a compatible fashion. 

We chose Akka1 as the backbone implementation library because it is written in a 
functional programming language (Scala) and has been used for 10 years in large scale 
industrial deployments. It has very high performance and low overhead, with many 
additional features—like stream processing—which were valuable on this program. 

3.2.2 Back-pressured Ingest 

Ingest of CDM data from Kafka was done using a custom Kafka ingest stream. That 
stream was fully back-pressured so that if the rest of the system is running slowly, the 
ingest of CDM data from Kafka is slowed down. Consequently, the system will never 
overrun the available resources—RAM or CPU—and performance of the system as a 
whole is correctly captured by the ingest rate. 

3.2.3 Graph Rewriting / ADM 

After ingesting from Kafka, the ADAPT system rewrites the CDM data into a format we 
called ADM—the ADAPT Data Model. This graph rewriting process was done in a fully 
streaming fashion. The end result was a graph of data that had the logical entities 
resolved into a single representation in the data, corrected for some CDM problems we 
had seen from TA1 providers, handled out-of-order data and missing data correctly, and 
raised the level of abstraction of the incoming CDM data to better match our analysis 
requirements. 

3.2.4 Graph Data Management 

Our system evolved through the use of several different graph databases, from Titan, to 
Neo4j, to the prototype graph database and interpreter: Quine, developed by our team 
outside of the Transparent Computing program. The Titan and Neo4j databases proved to 
be much too slow to handle the volume of Transparent Computing data being produce, 
even though they were the current market leaders and represented the state-of-the-art in 
graph data management. 

                                                 
 
1 https://akka.io  
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Quine represents a fundamentally new graph database with additional novel capabilities 
that proved essential for the Transparent Computing program. Quine allows queries to be 
issued as “standing queries” which remain resident in the database and are resolved in an 
extremely efficient fashion using a strategy of partial evaluation. These standing queries 
were used to extract the behavior patterns described in the next section. Quine also does 
not need to create nodes before they are referenced or updated (handling out-of-order 
data), and handles update instructions more efficiently than the other systems. The net 
results allowed the Quine system to scale well beyond the requirement of the final 
engagement. 

3.2.5 Behavioral Pattern Matching 

Whether producing numeric feature vectors, or 3- and 5-feature semantic tuples, the 
anomaly detection is done separately for each of the following expert-defined categories 
(noting the tuple shape in the “Type” column): 

Name Type Description 

ProcessFileTouches SPO Observe all files connected to a 
Process node by any type of 
interveneing event. 

FilesTouchedByProcesses SPO Same as ProcessFileTouches except 
that the conditional probabilities for 
the categorical anomaly detection 
appear in a different order. 

FilesExecutedByProcesses SPO Observe all the path of all files 
connected to a process by an execute 
event. 

FilesExecutedIshByProcesses SPO Same as FilesExecutedByProcesses, 
but also includes events which 
represent a more liberal notion of 
execution, like LoadLibrary, some 
MemoryMaps, and StartService 
events. 

ProcessesWithNetworkActivity SPO Observe all processes with any event 
connecting them with network 
activity (IP and port). 

ProcessDirectoryReadWriteTouches SPO Observe the processes that have a 
read or write event to a file object, 
and extract the fully qualified 
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directory of the file (but drop the 
filename). 

ProcessesChangingPrincipal SPO Observe processes which change the 
user associated with them. 

SudoIsAsSudoDoes SPO Observe all event types and all objects 
connected to those events if the event 
is done by a process with 
administrator privileges. 

ParentChildProcesses SS Observe each parent/child relationship 
from the process hierarchy. 

FileExecuteDelete SPOPS Observe the processes that perform 
the ordered combination of an 
execution and deletion of a specific 
file. Also observe the file path. 

FilesWrittenThenExecuted SPOPS Observe the processes that perform 
the ordered combination of a write 
and execution of a specific file. Also 
observe the file path. 

CommunicationPathThroughObject SPOPS Observe the processes that perform 
the ordered combination of writing to 
an object (e.g. file, netflow, socket, 
pipe, etc.) and reading from that 
object. Also observe the name of the 
object serving as communication 
medium. 

CrossHostProcessCommunication SPOPS Same as 
CommunicationPathThroughObject 
except that this category is specially 
written to navigate the (somewhat 
complex) structure of reciprocal 
network communication being done 
by two different processes on two 
different computers. This category 
observes the process names, and the 
network addresses and ports, with 
easy access in the exploration UI to 
investigate the other activity done by 
each process. 
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ProcessWritesFileSoonAfterNetflowRead OPSPO Observe a process which first reads 
from a network connection, then 
writes to a file withing a specifiable 
time period. 

Table 13. Description of the Behavior Types Collected and Used as the Policies Defining 
Classes of Categorical Anomaly Detection During Live Engagements 

Each of these categories aggregates a separate collection of feature vectors or tuples. 
Anomalies in these categories are found using the techniques described in Section 3.1.2, 
and the respective alarms combined, filtered, and sorted as described in Section 3.1.3. 

3.2.6 Prediction by Partial Matching 

PPM tress are created for each category described in section 3.2.5. Each tree learns the 
baseline of normal behavior and adjusts its threshold as described previously. For each 
observation passed in to the root of the PPM tree, the corresponding branches are created 
as nodes in the Quine database. If the branches already exist, then Quine interprets the 
PPM observation accordingly and adjusts the counters in the probabilistic models. 

Each tree has specified conditions applied for when it filters alarms. The simplest version 
of these conditions is simply an existence check—if an alarm is produced because the 
path in the tree has never been seen before, produce an alarm. However, in the final 
engagement, all trees were set to use more complex criteria like the dynamic threshold 
filtering described in Section 3.1.3.  

3.2.7 Summarization 

Since an alarm by itself contains only as much data as described in a single observation 
(see the table in Section 3.2.5), and an analyst would need more context to understand 
how to process an alarm, the final component of the automated system takes the data 
encoded in the alarm and queries the Quine graph database to pull out the context of the 
accused process to better describe the behavior related to the alarm. 

For some processes, the relevant data for a single alarm can be far more than an analyst 
can practically use. So the needs exists to summarize that large volume of data. 
Summarization is a considerable unsolved research topic in its own right, and beyond the 
scope of the ADAPT project. Our implementations on this program was limited to some 
fairly simple attempts to compress the data and maintain usability. Engagement 5 
suffered from over-ambitious summarization, which led to correct automated alarms that 
were not interpretable by a human analyst. Engagement 4 had seen better summarization 
results. 

3.2.8 Exploration and Explanation UI 

The ADAPT team developed an interactive forensic analysis and explanation tool in 
Engagement 1 which we continued to use throughout the life of the program. This tool 
was a web-based UI served up by the ADAPT system for exploring the CDM/ADM 
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graph data. In addition to creating the visualization, development of the exploration tool 
also entailed defining a UI language that also continued to evolve throughout the life of 
the program. 

The role of the UI language was to define the visual look-and-feel, but especially to 
encode and ever-growing library of analyst judgments about what kind of graph 
structures and relationship are meaningful, given the expert knowledge they have about 
the system. As these judgements are encoded, they become available in the UI as context 
menu queries available by right-clicking a node. Based on the node’s type and 
surrounding structure, different queries are made available to the user. So the analyst has 
shortcuts for finding potentially complex subgraphs matching specific patterns. When the 
results are rendered in the UI, the complex traversal is represented with a single dotted 
“synthetic” edge, and the resulting subgraph potentially compressed into a single visual 
node, if desired. This UI language became an integral component for our team in 
performing research between engagements (including labeling data from Engagement 2) 
and performing analysis of alarms during engagements. 

 

Figure 7: Example Screenshot of the Exploration and Explanation UI  
It shows the dotted “synthetic” edges, and the context menu defined by the UI language making 

high-level semantic queries easily accessible to the analyst. 
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4.0 RESULTS AND DISCUSSIONS 

4.1 Evaluation 

Up to Engagement 3, all TA2 teams had been focusing on human-centered methods for 
detecting APT activity. Starting with Engagement 3, the ADAPT team succeeded in 
developing fully automated methods for successfully detecting APT activity. For the first 
time in the program, this allowed for a TA2 system to be evaluated objectively, where the 
results were produced by the system alone, and not dependent on applying human 
judgment or having humans revise the results delivered by the system. The possibility of 
objective evaluation marked a significant accomplishment in the life of the program. 

Correspondingly, following Engagement 3 the ADAPT team engaged with staff at Kudu 
Dynamics—the TA5 evaluation team—to update the evaluation methods so that the 
automatic detection capabilities can be assessed. For the five months leading up to 
Engagement 4, the ADAPT team communicated with Kudu Dynamics and worked to set 
up a system to receive all of the automated alarms, where they would be persisted 
unchanged and available to Kudu Dynamics for inspection and evaluation. 

A Splunk2 system was used as the system-of-record to collect the automated ADAPT 
alarms. Kudu Dynamics confirmed access to the Splunk system as well as an objective 
procedure for testing whether their attack activity was correctly identified in alarms 
produced from the ADAPT system. The evaluation procedure involved Kudu Dynamics 
staff members querying the Splunk system either in real-time or any point after their 
attacks were performed (according to their availability). Queries in Splunk were to use 
the knowledge of ground truth attack activity known only to Kudu Dynamics to test 
whether the ADAPT system successfully produced an alarm for that activity. 

Despite the mutual plans and efforts by the ADAPT and TA5 teams, after delivering their 
report and presentation at the PI meeting following Engagement 4, Kudu Dynamics 
confirmed that they did not apply the evaluation method that had been agreed upon. They 
were apologetic, but did not give a reason why, and asked that we deliver raw data that 
was published in to Splunk. We delivered that data days after their request, but noted that 
the incorrect evaluation results were never revised as discussed. 

The evaluation failure occurred again for Engagement 5 where the process remained as 
agreed, but the TA5 evaluation team did not apply the agreed upon evaluation standards 
or methods. 

As a result of these evaluation failures, two important consequences are identified: 

1. The government has incorrect information about the success of automated APT 
detection done by the ADAPT system. We believe the Engagements 4 & 5 reports 
are incorrect, as well as PI meeting presentations based on those reports. 

                                                 
 
2 http://www.splunk.com  
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2. Program results for the ADAPT team reported herein rely on our team applying 
the objective criteria previously agreed to with Kudu Dynamics. This does mean 
that these results represent a self-evaluation. However, since they rely only on the 
application of mechanical processes of looking up the data in the TA5 
documented ground truth in the Splunk system-of-record for alarms produced live 
during the event. 
 

4.2 Engagement Scenarios 

On five occasions over the life of the program, all teams performed in the engagements to 
rehearse various attack scenarios. The ultimate measure was whether the analysis teams 
(TA2) could successfully detect attacks performed by the TA5 teams. 

The idealized TA2 performance might be hoped to show linear progress through each 
engagement, steadily increasing attack detection with each new round. As Engagements 
progresses, this proved unrealistic since the TA1 data providers were continually 
updating their systems, and the TA5 teams continually updating their attacks. 
Consequently, there was no linear progression of detection results to show—with the 
ADAPT system’s best results being 100% detection in Engagement 3. 

We did achieve consistent additive progress to ADAPT system capabilities as the 
Engagements progressed. The following subsections briefly describe those 
accomplishments. 

4.2.1 Engagement 1: Initial architecture, interactive exploration UI for forensic analysis and 
explanation 

The work leading up to Engagement 1 included cross-team efforts to define the Common 
Data Format (CDM) that all teams would use for data interchange. Concurrently with the 
data syntax design, a plan for the combined Engagement architectures was settled on, 
using Kafka as the persistent log, using only a single partition for each TA1 data source 
(which becomes the bottleneck by Engagement 5). 

Upon ingesting the CDM data, our team successfully demonstrated our ability to do 
forensic analysis using the exploration/explanation UI described in Section 3.2.8. 

4.2.2 Engagement 2: Human/Machine team analysis framework for focusing analyst attention 
and providing feedback into the system; data labeling. 

For this engagement, we build on the prior system to incorporate anomaly detection 
methods to score and rank all process activity. The scored alarms were sorted and 
presented to a human analyst to consider whether to accuse the implicated process as an 
APT. The human would record their assessment of the suspicion and feed that back into 
the system. This served as a baseline for experimentation with using feedback to train the 
anomaly detection, but the overall problem of associating anomalous activity with 
suspicious activity remained outstanding. 
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Following Engagement 2, the ADAPT team spent considerable time labeling the CDM 
data to annotate which CDM IDs were part of the attacks performed by the TA5 team. 
This human labeling was very time consuming, but produced the only baseline on the 
program for labeled training data for supervised machine learning. 

4.2.3 Engagement 3: CDM translation to ADM, combined-OS analysis, experimental 
automated detection. 

During Engagement 3, the ADAPT system reached its maximum resource usage. The 
data production rates were also much higher on this engagement than previous 
engagements (or expectations as described by TA1 teams). The increased load surfaced 
some configuration problems with the virtual machines provided by the TA3 team for 
operation of the ADAPT system. As a result, the ADAPT system did not run in real-time 
during the engagement. The VM configuration problems were fixed after the engagement 
concluded and the ADAPT system run on the same data. 

Since this engagement also was our first implementation using automated detection, there 
needed to be no human analyst interpreting the results. This allowed us to preserve the 
logic of analysis and run the same procedure at any time. Since no human is involved in 
the production of alarms, no bias—or foreknowledge of the attacks performed—can 
influence the final results. Consequently, the script created to test whether the attack 
components described in the TA5 ground truth appear in alarms produced by the ADAPT 
system represents an objective evaluation.  

Machine analysis of the automatically produced alarms allowed the ADAPT team to 
analyze all alarms produced by the ADAPT system and classify them as either true or 
false alarms, providing for the first time in the program: a measure of the cost of 
achieving the true alarms. The more false alarms created, the higher the cost of producing 
the true alarms. We continued to use this scripted objective analysis for future 
engagements, but to our knowledge, no other teams have produced any measure of the 
cost to human attention which their methods require. 

The results of the scripted analysis of automated alarms produced by the ADAPT system 
for Engagement 3 is reflected in the following table: 
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Table 14: Results of a Scripted Analysis of Automated Alarms  
Produced by the ADAPT System in Engagement 3  

Classification of false positives represent the only measure  
of the cost to human attention achieved on the program. 

Engagement 3 was also the first time our system rewrote the incoming CDM graph into 
ADM—the “ADAPT Data Model.” This translation allowed us to perform entity 
resolution, correct some problems in the CDM data we were receiving, and raise the level 
of abstraction to one more compatible with our analysis. 

4.2.4 Engagement 4: Fully automated detection, cross-host analysis. 

In the previous engagement, we produced detection results automatically. So for the five 
months leading up the Engagement 4, we worked with the TA5 team to define a method 
for evaluating the automatically produced real-time alarms using Splunk as the system of 
record. Splunk received all automated alarms from the ADAPT system and persists them 
unchanged for easy querying and future reference at any point. Despite the planning in 
the preceding months and subsequent agreement, the TA5 teams abandoned this 
evaluation method without notice, as described in section 4.1. 

Applying the same objective evaluation methods used in Engagement 3, our team was 
able to classify all alarms as either being a false alarm, or a successful detection of one of 
the attack components. The following figure shows a section of the slide presented at the 
January 2019 PI meeting cataloguing the tallied results and correcting the erroneous draft 
report issued by the evaluation team (the final report was never published). The columns 
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near the right side of the chart show the results of the scripted evaluation the automated 
alarms (“Script”) alongside the human judgment applied to those same alarms. 

 

 

Figure 8: Engagement 4 Attacks Detected by the ADAPT System  
A section of a slide presented at the January 2019 PI meeting showing the attacks detected by the 

ADAPT system (green rows) using both fully automated and human detection. More attack 
components have successful automated alarms (the “Script” column) than successful human 

interpretation of those alarms (the “Human” column). 

The reduced “Human” detections compared to the “Script” detections are illustrative of a 
remaining difficulty in aligning human understanding with the capabilities achieved by 
automated methods. We briefly reflect on this still-outstanding problem in the final 
section of this report. 

4.2.5 Engagement 5: Support 30-times the previous data load, operating in a linearly scalable 
fashion with low resource usage. 

Through the previous Engagement, the ADAPT system was designed for future 
efficiency and scalability, but without that efficiency represented in the implemented 
system. In the time leading up to Engagement 5, the ADAPT team focused on scaling the 
system to handle the 30-fold increase in data volume compared to the previous 
engagement, and integrating the Quine system to complete the full design of an efficient 
automatic APT detection system. 
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Since system performance was a major goal for this engagement, we describe it more in 
detail in the next section: 4.3. 

Ground truth for the attacks performed in Engagement 5 was never released, so we were 
unable to do a comparable analysis for the detection results of the ADAPT system in 
Engagement 5. The TA5 team did release a PDF narrative of their attacks which was 
sufficient for the ADAPT team to test whether the automated alarms included some 
representation of the attacks described, even if not a full analysis of true and false alarms. 
The attacks known to be detected are listed in the following figure, shown at the final PI 
meeting: 

 

Table 15: Known Detected Engagement 5 Attacks 

 

4.3 System Performance 

The primary difference between the final two engagements was a 30-fold data scale 
increase. The experimental methods used in Engagement 4 were tested using the 
machines available and requiring sometime more than 100 GB to run in the smaller data 
sizes. So the final challenge posed to our team was to scale the methods we were using to 
accommodate a massive increase in data size—and correspondingly a necessary increase 
in our analysis rate. 

Leading up to Engagement 5, we replaced the Neo4j database with the Quine database to 
allow the system as a whole to scale to the capabilities of the Quine system. Since the 
entire system is a back-pressured, asynchronous actor system—where all communication 
is handled through message-passing—the ingest pipelines would scale automatically to 
the slowest component. The slowest component has always been the database; 
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consequently, our focus was largely centered on making this component scale to handle 
the new data volume. 

We successfully reconfigured the system to use Quine as the database backend and were 
pleasantly surprised to find that in most cases, the processing bottleneck was the delivery 
of CDM data through Kafka. This was confirmation that the Quine system allowed the 
ADAPT system as a whole to scale well-beyond the necessary volume of data processing 
required for Engagement 5. 

Toward the end of the first week of Engagement 5, the TA3 team experienced a network 
outage. This caused our clustered system to become disconnected and cease coordination 
and processing. We hadn’t engineered for resiliency under these conditions, so we 
decided to restart ingest from the beginning of the data stream. Since our system runs 
entirely automatically, this was a trivial exercise and required no additional effort beyond 
restarting the application. Interestingly, this restart provided us with the chance to test the 
full capabilities of our system. 

While reingesting the first week’s data—where it is all available immediately, instead of 
being produced only as fast as TA1 teams can publish it—our system was able to run at 
full speed. During this “catch up” period, we observed the full ADAPT system ingest at a 
rate often as high as 134,000 CDM statements per second, while simultaneously running 
approximately 2,500,000 complex read queries. Even during this time, most of our 
ingesting systems were limited in their processing speed by the Kafka configuration  
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5.0 CONCLUSIONS 

The structure of the Transparent Computing program did not lend itself well to producing 
scientifically valid results for APT detection. The ad hoc nature of the adversarial 
engagements provided the opportunity to simulate a controlled version of a real-world 
environment, however the control of that situation (e.g. scripted background activity, 
whitelisting administrator’s APT-like activity) ended up making it quite artificial in the 
end. As a result, the scientific results we do have to share are scoped largely to individual 
methods developed along the way. Indeed, the creation of Categorical Anomaly 
Detection and advancement of the Quine distributed graph interpreter/database are 
substantial scientific advances. In this concluding section, we reflect on these core 
achievements and consider contributions of this program to future research. 

5.1 Archiving the Transparent Computing Data and Making it Available for Future 
Research 

The University of Edinburgh Data Library has a great deal of expertise archiving research 
data for reuse by other researchers. We view the datasets constructed in the TC 
Adversarial Engagement exercises (as well as derived datasets such as the ADM data or 
contexts) as a very valuable computer security research data resource both for our own 
future research and for the broader security and data management community. Although 
some of the data from Engagement 3 is already publicly available, it is not clear whether 
this will remain available over a longer-term. We have discussed this with University and 
DARPA staff and put them in contact with each other so that when other TC-related 
datasets are cleared for public release, the University will be ready to host them. 

Besides simply hosting the raw CDM data, it is important to provide adequate 
documentation to allow researchers from outside the TC program to understand and make 
use of the data. This should include documentation of CDM itself, high-level descriptions 
of the different datasets, scenarios, and providers, and summaries of the "ground truth" 
information about the different attacks. We are already aware of colleagues in security 
working on similar techniques to those explored in TC who have tried to work with E3 
data, but with limited success. Ensuring that the data is not just preserved but adequately 
documented could greatly increase the impact of the TC project on the broader computer 
security community. 

5.2 Real-Time Graph Data Management 

The problem of APT detection involves managing and analyzing many separate complex 
domains related to running systems: file system hierarchies, process parentage trees, 
network connections, memory references, user and group accounts, and many other 
operating system and program level abstractions. To understand what a computer is 
actually doing requires analyzing the interactions between these domains and 
understanding the significance of every connection. This makes graph databases a 
somewhat obvious, and arguably inevitable choice for a management system. 
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Over the course of this program, we used three different graph databases to manage the 
Transparent Computing data provided by other team members: Titan, Neo4j, and Quine. 
Neo4j and Titan represented the state-of-the-art as the commercial and open source 
leaders in the graph database space, however, our experience on this program 
underscored the shortcomings of these graph database systems. 

The original design of the ADAPT system in the 2015 proposal took for granted that we 
would be able to ingest data, read it out for analysis, and write annotations back in—all at 
a rate sufficient to keep up with the data volume produced by TA1 teams. Once the TA1 
teams began producing that data, it quickly became apparent that the volume of data for 
ingest alone was too high for existing graph databases to manage. The additional analysis 
and annotation tasks increase the burden on the database even further. 

Quine is a prototype graph database developed by our team outside of the Transparent 
Computing program. It was designed to be run on a cluster of computers (of any size), 
with a single logical graph spread across the set of participating machines. As each 
member of the cluster manages a part of the graph, the cluster system as a whole is able 
to scale linearly to manage arbitrarily large amounts of data. 

Quine also has the ability to process complex graph queries as “standing queries”, which 
remain resident in the database and are process with an extremely efficient partial-
evaluation strategy. This allowed the analysis and annotation tasks to be set on the 
database and left to resolve themselves as new data is streamed in. Combined with 
Quine’s ability to ingest data on a single machine an order of magnitude faster than 
existing commercial databases, and linear scalability across a cluster, these features made 
Quine the perfect choice for the graph data management problem. Combined with a 
streaming, back-pressured ingest system, Quine was able to easily handle the tremendous 
volume of data from Engagement 5 and will scale well beyond. 

5.3 Finding Novel Behavior 

APT detection is a needle-in-a-haystack problem. High volumes of typical behavior data 
vastly drown out the lone signal we hope to pick up on. Because one small event might 
indicate the activity betraying the existing APT, all activity has to be managed and 
analyzed. 

The technique for Categorical Anomaly Detection using Prediction by Partial Matching 
described above proved to be a very effective method for:  

 efficiently learning a probabilistic model of system behavior (a baseline). 

 analyzing all activity in real-time, even high volumes of data. 

 calculating the novelty of each observed action. 

 generating an alarm with relevant context for sufficiently novel activity. 



 

45 
Approved for public release: distribution is unlimited. 

Data subject to restrictions on the cover and notice page. 

Combined with the strengths of the Quine distributed graph database/interpreter, these 
capabilities are practical and needed in current enterprise security systems. 

5.4 Open Questions 

In the most difficult APT example, an advanced adversary can use a zero-day exploit to 
inject code into a running process and simply corrupt existing data. If the corrupted 
process normally accesses that data, there is nothing in this scenario that is novel, 
anomalous, suspicious, or even detectable. —and yet, it was malicious. 

Is some normal behavior malicious? 

So while some of the methods described above—particularly Categorical Anomaly 
Detection—proved to be very effective for finding the needle-in-the-haystack, we believe 
that there still remain some threats that cannot be detected. —certain adversaries will 
leave behind only a needle-less pile of hay. 

While this Categorical Anomaly Detection technique that we developed on this program 
was very effective, and produced low numbers of false alarms after learning a sufficient 
baseline, for every true alarm produced by the system we are still left with the final 
problem addressed to a human: 

Is anomalous behavior malicious? 

This is the question that still hangs over all of the research on this program. Hunting for a 
“threat” implies that we know what constitutes a threat. Despite the progress that we have 
made in automated detection, this final judgement requires human attention. Perhaps this 
reflects only our reticence to let a computer make the final judgment; or maybe the 
problem is underspecified, and before we can make fully automated advanced persistent 
thread detectors, we have to learn for ourselves what we mean by “threat.”   
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

ACRONYM DESCRIPTION 
AD – Anomaly Detection 
APT – Advanced Persistent Threat  
AUC – Area Under Curve 
AVF - Attribute Value Frequency 
CDM - Common Data Model (format created on the TC program) 
FCA - Formal Context Analysis 
MFP - Minimum Feature Prefix 
nDCG - Normalized Discounted Cumulative Gain 
OCO - Online convex optimization 
PAC - Probably Approximately Correct 
PPM – Prediction by Partial Matching 
ROC – Receiver Operator Characteristic 
RPAD - Rare Pattern Anomaly Detection 
SFE - Sequential Feature Explanation 
TC - Transparent Computing (DARPA program) 
UI - User Interface 
UUID - Universally Unique Identifier 
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