
OPERATIONAL DECISION MAKING
UNDER UNCERTAINTY: INFERENTIAL,

SEQUENTIAL, AND ADVERSARIAL
APPROACHES

DISSERTATION

Andrew J. Keith, Capt, USAF

AFIT-ENS-DS-19-S-041

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENS-DS-19-S-041

OPERATIONAL DECISION MAKING UNDER UNCERTAINTY:

INFERENTIAL, SEQUENTIAL, AND ADVERSARIAL APPROACHES

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Operations Research

Andrew J. Keith, MS

Capt, USAF

September 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENS-DS-19-S-041

OPERATIONAL DECISION MAKING UNDER UNCERTAINTY:

INFERENTIAL, SEQUENTIAL, AND ADVERSARIAL APPROACHES

DISSERTATION

Andrew J. Keith, MS
Capt, USAF

Committee Membership:

Darryl K. Ahner, PhD
Chair

Raymond R. Hill, PhD
Member

Brian J. Lunday, PhD
Member

Lt Col Richard S. Seymour, PhD
Member

Adedeji B. Badiru, PhD
Dean, Graduate School of Engineering and Management



AFIT-ENS-DS-19-S-041

Abstract

Modern security threats are characterized by a stochastic, dynamic, partially ob-

servable, and ambiguous operational environment. This research addresses decision

making under uncertainty in operations planning, analysis, and assessment for such

complex security threats. First, a review of the literature on uncertainty modeling,

decision making, and optimization under uncertainty focuses on recent advances in

ambiguity modeling and optimization practice. This review provides a framework

for the subsequent methodological and applied research and provides a comprehen-

sive review of contemporary applications of decision making and optimization under

uncertainty in the literature. Next, a survey of uncertainty models for military as-

sessment addresses both qualitative and mixed-method approaches to complement

the quantitative models discussed in the literature review. This survey provides a

research-based guide for practitioners to apply qualitative but rigorous uncertainty

models to practical assessment problems.

Following the reviews of existing literature and practice, this research develops a

new method for decision making under uncertainty in an inference setting. A method

for robust queue inference addresses a general class of queues in which the internal

queueing system is unobservable and the departure and arrival times are stochastic

and partially observable. This work improves decision makers’ ability to analyze

queues in uncertain environments using a principled method that provably converges

to the true parameter value and has strong empirical performance.

Next, the research transitions from inference to sequential decision making with an

original formulation and solution method for robust information collection in dynamic,

partially observable, and ambiguous environments. The solution method has desirable
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theoretical convexity and convergence properties. A computational experiment shows

improved performance compared to existing methods for a set of classic problems from

the literature. In addition, a detailed application to a cybersecurity detection problem

illustrates the efficacy of the new formulation and solution method.

Lastly, a new application of optimal and approximate techniques for solving

large-scale, extensive-form games with imperfect information addresses the dynamic,

stochastic, and partially observable multi-agent environment. This work provides

explicit details for optimal and approximate formulations of a multi-domain cyber

and air defense problem, produces near-optimal strategies, characterizes the opti-

mality gap of the approximate solutions, and analyzes the sensitivity of results to

key problem parameters. Additionally, an extension to robust opponent exploitation

incorporates bounded rationality and model ambiguity. The robust formulation ad-

dresses both the cyber-physical nature of the problem and the adversarial uncertainty.

Empirical evidence demonstrates the effectiveness of the robust approach when the

opponent plays with bounded rationality.

Collectively, these contemporary surveys, methodological advances, and new ap-

plications provide a suite of mathematical tools and computational algorithms for

solving complex decision making problems under uncertainty in challenging settings.

This research improves the capabilities of decision making and optimization by cap-

turing the state of the art and practice and by extending existing algorithms to

ambiguous and partially observable settings.
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OPERATIONAL DECISION MAKING UNDER UNCERTAINTY:

INFERENTIAL, SEQUENTIAL, AND ADVERSARIAL APPROACHES

I. Introduction

The United States Air Force Future Operating Concept (2015a) envisions a chal-

lenging security environment in 2035. Adversaries may have the capability to conduct

fully integrated, multi-domain operations in a way that achieves disproportionately

destructive effects. Consider the increased difficulty of deterring and responding to

not only a ballistic missile attack, but also to an integrated information campaign and

cyber infiltration. The synergistic effects of this evolution in combined arms warfare

necessitates improvements in both operational art and operational science.

The concerns introduced in the multi-domain attack vignette extend to the broader

security community, as emphasized in the 2018 National Defense Strategy (Mattis,

2018). The security environment is undergoing rapid technological innovation and

is becoming increasingly complex and uncertain. Complex environments and adap-

tive adversaries create fundamental limits on the ability to predict future outcomes,

especially at strategic levels. However, in many planning and assessment problems,

the operating environment is complex, but not so complex that there is a complete

lack of information for decision making. The environment is also rarely so clearly

defined and understood that the uncertainty is negligible. Decision makers face a

dynamic environment characterized by thinking adversaries and varying levels of un-

certainty, ambiguity, and partial observability. How should decision makers address

such a challenging environment?

While rapid technological change introduces security challenges, it also presents
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new opportunities. Increasing computing power has complemented foundational im-

provements in statistical, simulation, and optimization algorithms to improve the

capabilities of quantitative methods for decision making problems. Operations re-

search methods and closely related techniques from applied mathematics, statistics,

computer science, machine learning, and artificial intelligence can now address com-

plex decision problems under uncertainty on a practical scale. While some of the

most important and difficult security problems remain outside the scope of quantita-

tive algorithms, there is a strategic imperative to exploit emerging solution techniques

to expand the class of problems for which modern operations research methods are

tractable.

Recent advances in these methods have focused on exploiting partial knowledge in

a variety of complex settings. It is rarely the case that the operational environment

is either completely known or completely unknown. Instead, the decision maker en-

counters uncertainty due to partially observable states and rewards, ambiguous tran-

sition dynamics, and intelligent adversaries. Exploiting partial information about the

operational environment enables decision makers to improve decisions by embracing

uncertainty and developing solutions that are robust to rapidly evolving environments

and adversaries. This dissertation focuses on solving decision problems characterized

by stochastic, partially observable, and ambiguous environments in static, dynamic,

and multi-agent settings.

The dissertation is structured as a series of independent scholarly articles address-

ing the topic of decision making under uncertainty in operations planning, analysis,

and assessment. Chapter II reviews the literature on decision making and optimiza-

tion under uncertainty, with a focus on recent advances in ambiguity models and

optimization practice. Chapter III complements the theoretical review of quantita-

tive literature in Chapter II with a survey of qualitative uncertainty and applications
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to military assessment practice. Building on the foundational literature in Chapters

II and III, Chapters IV, V, and VI explore decision making under uncertainty in

static, dynamic, and multi-agent settings, respectively. Chapter IV develops a new

method for robust queue inference with partially observable, stochastic arrival and

departure times. This general method is applicable to arbitrary queues but is moti-

vated specifically by cybersecurity and terrorism applications. Chapter V develops

a new method for robust information collection in dynamic, partially observable and

ambiguous environments, with an extended application to a cybersecurity detection

problem. Chapter VI presents a new application to a multi-domain cyber and air de-

fense problem using optimal and approximate techniques for solving extensive-form

games with imperfection information.

1.1 Summary

In particular, Chapter II provides a review of the theoretical foundations for the

methodological and applied research in the subsequent chapters. Recent advances

in decision making have incorporated both risk and ambiguity in decision making

models and optimization methods. These methods implement a variety of uncer-

tainty representations from probabilistic and non-probabilistic foundations, including

traditional probability theory, uncertainty sets, ambiguity sets, possibility theory, ev-

idence theory, fuzzy measures, and imprecise probability. The choice of uncertainty

representation impacts the expressiveness and tractability of the decision models.

This chapter surveys recent approaches for representing uncertainty in both decision

making and optimization to clarify the trade-offs between the alternative representa-

tions. Robust and distributionally robust optimization are surveyed, with particular

attention to standard form ambiguity sets. Applications of uncertainty and decision

models are also reviewed, with a focus on recent optimization applications.
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Chapter III complements the quantitative work in Chapter II with a focused sur-

vey of uncertainty models in military assessment. Evaluation theory provides a rig-

orous foundation for the practice of military operation assessment. Government and

industry assessors have used evaluation theory to improve the effectiveness of assess-

ment across a wide range of fields. This chapter focuses on the relationship between

evaluation theory and military assessment. The chapter briefly surveys the major

evaluation approaches with a focus on connecting the theoretical models to practical,

security-related applications. These evaluation approaches include expertise-oriented,

program-oriented, decision-oriented, and participant-oriented models. Within the

overarching framework of these approaches, alternative monitoring and evaluation

designs are considered in detail, including descriptive designs (e.g., case study, cross-

sectional, time-series), quasi-experimental designs (e.g., interrupted time-series, com-

parison group, case study), and experimental designs (e.g., posttest-only, pre-post).

Then, the chapter discusses quantitative and qualitative methods for analyzing and

reporting uncertainty with respect to each design alternative, with an emphasis on

mixed-method approaches. Throughout the chapter, applied examples make explicit

the relationship between evaluation theory and operation assessment practice.

Chapter IV develops a new method for robust queue inference. The internal

structure and parameters of a queue are completely unobservable in some military

and competitive commercial applications. Furthermore, arrival and departure times

may be observable but subject to substantial uncertainty due to measurement error

in an adversarial environment. This analysis estimates the number of servers in an

internally unobservable, first-come, first-served G/G/c queue using an order-based

approach. This new approach provides a lower bound and converges in probability

to the correct value. Compared to the standard variance minimization method, the

order-based approach has improved performance for small samples. The order-based
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algorithm is robust to noise in arrival and departure time measurements, whereas

the variance minimization approach exhibits poor performance with noisy data. An

extension to last-come, first-served G/G/c queues is also considered. The last-come,

first-served order-based approach also provides a lower bound that converges in prob-

ability to the correct number of servers.

Chapter V develops a new formulation and method for robust solutions to par-

tially observable Markov decision processes (POMDPs) with ambiguous transitions

and belief-rewards. The chapter introduces robust belief-reward partially observable

Markov decision processes as a generalization of Markov decision processes that al-

lows for state uncertainty, model uncertainty, and belief-dependent rewards. In many

practical applications, POMDP transition and observation parameters are difficult

to estimate. This research shows that traditional POMDP solution techniques are

highly sensitive to model misspecification, particularly in the belief-reward setting.

To address this challenge, a robust belief-reward algorithm is developed that ex-

tends point-based value iteration while retaining desirable flexibility and convergence

properties. In addition to the foundational theoretical properties, an empirical inves-

tigation shows that the robust solution technique provides protection against model

misspecification in several different problem classes. To illustrate the importance of

addressing model misspecification for information acquisition problems, this chapter

also presents an application of the robust belief-reward POMDP formulation to a

cybersecurity problem which demonstrates improved performance under worst-case

dynamics.

Chapter VI presents a new application of optimal and approximate extensive-form

solution techniques to an integrated cyber and air defense problem with imperfect

information. Emerging multi-domain threats require an integrated defensive strat-

egy. This chapter develops multi-domain security games to address the combined
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cyber-physical threat to national population centers. This research uses a zero-sum,

extensive-form game to model an attacker and defender in physical and cyber space,

drawing on both the cybersecurity and ballistic missile defense literature to inform

the game structure. To determine optimal defender strategies, a multi-domain secu-

rity game is developed with a reformulation of the problem to find a Nash equilibrium

using an efficient, sequence-form linear program. This chapter also develops an ap-

plication of the approximate counterfactual regret minimization algorithm to this

problem and characterizes the optimality gap. Furthermore, this research quantifies

the value of improved situational awareness in the cyber domain and presents an

extension to robust opponent exploitation.

1.2 Contributions

The literature reviews, methodological advances, and applications developed in

this body of work contribute to the general field of operations research and specif-

ically to military and security operations research practice. The literature review

of decision making and optimization under uncertainty (Chapter II) organizes the

disparate literature on theoretical uncertainty models, decision models, and opti-

mization models into a coherent structure and identifies the relationship between the

three research areas. In addition, the survey of uncertainty models in military assess-

ment (Chapter III) contributes to military operations research practice by providing

a research-based guide for practitioners to apply qualitative but rigorous uncertainty

models to assessment problems.

Building on the foundation of this existing literature, a new method for robust

queue inference contributes to the field by improving decision makers’ ability to ana-

lyze queues in uncertain environments (Chapter IV). This server estimation method is

valid for a large class of general queues with limited knowledge of the structure of the
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queue and small, noisy samples for arrivals and departures. This research proves that

the method produces an estimate which has theoretical convergence and lower-bound

guarantees. It also presents empirical evidence for improved performance compared

to existing methods across a broad range of parameter settings.

Extending to sequential decision making, an original robust belief-reward POMDP

formulation and a newly developed solution algorithm contribute to the field by pro-

viding tools for solving a new class of information-collection problems under model

ambiguity (Chapter V). This research proves that the solution technique has theo-

retical convexity and convergence properties that make it compatible with a mature

family of approximation techniques. It also presents empirical evidence for improved

performance compared to existing methods for a set of classic problems from the

literature and for a practical cybersecurity detection problem in an ambiguous envi-

ronment.

Lastly, an application of counterfactual regret minimization to a multi-domain

cyber and air defense problem contributes to the literature by solving a contempo-

rary operational problem with fast, near-optimal techniques (Chapter VI). This new

application provides explicit details of optimal and approximate formulations for the

problem and characterizes the optimality gap and sensitivity to key problem parame-

ters in the multi-domain security setting, which differ significantly from other recent

applications. It also presents an original robust formulation that addresses both the

cyber-physical nature of the problem and the adversarial uncertainty. Empirical evi-

dence demonstrates the effectiveness of the robust approach when the opponent plays

with bounded rationality.

In addition to contributing to the literature through the publication of surveys,

methods, applications, and results, this dissertation contributes open source software

implementations for all methods and publishes raw data for all results. These code
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and data products are available with testing, benchmarking, and documentation at

https://github.com/ajkeith.

8

https://github.com/ajkeith


II. Literature Review

2.1 Introduction

Kolmogorov’s axiomatic development of a rigorous, mathematical theory of prob-

ability (1933) is the dominant model for uncertainty in academic theory and practical

application. Over the past several decades, various theories have been developed that

generalize the theory of probability to address aspects of uncertainty that are difficult

or impossible to model in standard probability theory. One of the major motivations

for these models is to develop a practical and mathematically sound foundation for

representing imprecision and ambiguity. In addition to the theoretical development

of uncertainty models, the decision-theoretic literature has extended classical theories

to uncertain and ambiguous settings. Furthermore, the recent attention to stochastic

and robust models in the operations research literature has led to rapid growth in

methods to model uncertainty in large-scale and practical decision problems. These

models vary in terms of tractability and expressiveness.

This chapter reviews the most notable models for representing uncertainty, mak-

ing decisions under uncertainty, and optimizing under uncertainty. We describe a

framework that captures the relationships among the different uncertainty represen-

tations and decision models. We also discuss the connections between the representa-

tion, decision, and optimization models to clarify the structure of existing modeling

approaches and to highlight promising areas for future research. To highlight the ap-

plication of these models to current, practical problem solving, we emphasize recent

advances for addressing uncertainty in the optimization literature.

In the following material, we introduce and compare the major uncertainty models

in Section 2.2. Then, we discuss the main classes of decision making under uncer-

tainty in Section 2.3 and the main classes of optimization under uncertainty in Section
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2.4. Section 2.5 provides examples of applications, with a focus on recent optimiza-

tion practice. Section 2.6 concludes by summarizing trends in decision making and

optimization under uncertainty and identifying research opportunities.

2.2 Uncertainty Models

Uncertainty models have developed across distinct fields, resulting in a fragmented

terminology. Although we present each model using its specific terminology, we gen-

erally follow the terminology used by Camerer and Weber (1992) to define three

degrees of uncertainty. First, certainty refers to complete knowledge, or probability

one, that an event will occur. Next, risk refers to probabilistic uncertainty with a

known distribution, as discussed by Knight (1921). Risk is also referred to as aleatoric

uncertainty (Ferson et al., 2004), first-order uncertainty (Klibanoff et al., 2005), or

state uncertainty (Marinacci, 2015). Lastly, ambiguity refers to uncertainty with an

unknown distribution, as discussed by (Ellsberg, 1961). Ambiguity is also referred

to as epistemic uncertainty (Ferson et al., 2004), second-order uncertainty (Klibanoff

et al., 2005), and model uncertainty (Marinacci, 2015). Ambiguity is also sometimes

used interchangeably with uncertainty, without any qualification (Etner et al., 2012).

There are several different approaches to modeling uncertainty. In the degen-

erate case, deterministic models ignore uncertainty. Under the standard approach,

probability distributions are used to model uncertainty stochastically. However, the

decision maker may not have complete information about the probability distribu-

tion. This motivates second-order models of uncertainty, including sets of probability

distributions. Although third and higher-order uncertainty models are possible, they

are not common in the literature.

In addition to these fundamentally probabilistic models, there are a variety of

models that can be developed without a probability theory foundation. This cate-
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gory includes possibility theory, evidence theory, fuzzy measure theory, and imprecise

probability. We consider each of these models in detail in the following subsections.

2.2.1 Probability Theory

Probability distributions are the standard representation of uncertainty. Standard

probability theory is developed axiomatically by Kolmogorov (1933). Probability

theory can represent most aspects of uncertainty that affect decision making and is

built from a measure theory foundation. For all definitions in this section, we adjust

notation to facilitate comparison but also present the terminology unique to each

model, when appropriate.

Definition 1. (Kolmogorov, 2018) Given a non-empty set Ω and a σ-algebra F , a

probability measure is a function P : F → [0, 1] such that the following axioms hold,

1. For all E ∈ F , P (E) ≥ 0

2. P (Ω) = 1

3. Any countable sequence of mutually exclusive events E1, E2, . . . satisfies

P (
⋃∞
i=1Ei) =

∑∞
i=1 P (Ei)

The axioms in Definition 1 have been relaxed in various alternative, but simi-

lar, versions of probability theory (Fishburn, 1986). In the subjectivist tradition,

de Finetti (1974) considers A ∪ B = ∅ ⇒ P (A ∪ B) = P (A) + P (B) in place of

Definition 1, Axiom 3. Good (1977) noted that de Finetti regards Axiom 3 “as irrele-

vant for practical purposes and unjustifiable on theoretical and conceptual grounds.”

This alternative axiomatization replaces countable additivity with finite additivity.

Subjectivity and countability can be assumed independently (Fishburn, 1986).

Probability theory is a special case of most other theories of uncertainty, which is

not surprising since the intent of those theories is often to generalize standard proba-
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bility. In some cases, this relationship is explicit (e.g., upper and lower probabilities).

In other cases, the structure of both theories allow for such an interpretation, but it is

not necessary for the development of either theory (e.g., transferable belief models).

Although finitely additive probability has received some attention in the literature,

it is used less frequently than countably additive probability, likely due to the added

complexity.

2.2.2 Sets of Probability Measures

Sets of probability measures model uncertainty with an arbitrary set of probability

measures, which can be finite or infinite. This category of uncertainty models includes

uncertainty sets and ambiguity sets as major sub-classes. Uncertainty sets are used to

model scenarios in which the only information about the value of a variable is whether

or not it belongs to a given set. This approach implies a deterministic perspective

on uncertainty in the sense that there is no probabilistic information available about

the unknown variable.

Let P be the set of all probability measures on a given sample space Ω and

σ-algebra F , P be a probability measure, and FP be the cumulative distribution

function of P. An ambiguity set, M, can represent an uncertainty set, C, for an

unknown vector, z̃, by including all compatible probability distributions: M = {P :

P[z̃ ∈ C] = 1} (Wiesemann et al., 2014). Conversely, in the degenerate case, an

ambiguity set can represent a single distribution, M = {P}, which is interpreted as

a stochastic or risk model where the distribution is known. In most applications,

however, ambiguity sets are used to represent an intermediate level of knowledge

between a single known distribution and a complete lack of probabilistic knowledge

in the uncertainty set formulation.

Ambiguity sets generalize uncertainty sets by considering sets of probability distri-
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butions rather than sets of real-valued vectors. Ambiguity sets can be interpreted as

uncertainty sets on probability distributions or second-order uncertainty (e.g., Snow

(2010)). Ambiguity sets are often closed and convex sets, in which case they are

also referred to as credal sets and have a one-to-one relationship with coherent lower

previsions (Walley, 2000; Augustin et al., 2014).

2.2.3 Possibility Theory

Fuzzy set theory introduces the notion of graded set membership, represented by a

continuous number. This contrasts with traditional set theory, in which each element

either is or is not a member of a given set. Formally, Zadeh (1965) defines fuzzy sets

in the following way.

Definition 2. (Zadeh, 1965) Let the universe of discourse, Ω, be a set with a generic

element of Ω denoted by ω so that Ω = {ω}. A fuzzy set X is characterized by

its universe of discourse, Ω, and a membership function fX(ω) : Ω → [0, 1] which

associates each point in Ω with a real number in the interval [0, 1]. The value of

fX(ω) at ω represents the ‘grade of membership’ of ω in X.

Fuzzy logic is the specific application of fuzzy sets to logic statements. In this

case, the membership function is interpreted as a truth value, with 0 representing

completely false, 1 representing completely true, and intermediate values representing

statements that are not completely true or false. This approach leads to multivalued

logic with continuous truth values (Zadeh, 1965).

Traditional set theory is a special case of fuzzy set theory where fX(ω) = 1 or 0

(Zadeh, 1965). Similarly, traditional logic is a special case of fuzzy logic where truth

values are binary. The membership function is somewhat similar to a scaled prob-

ability function, but the similarity does not hold when considering membership to
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different sets (Zadeh, 1965). This prevents the membership function from being in-

terpreted as a probability or belief that an element belongs to a set.

Fuzzy sets and fuzzy logic are the foundation for more complex “fuzzy” theories

which are sometimes generically referred to as fuzzy logic, e.g., in fuzzy control ap-

plications (Maiers and Sherif, 1985). Zadeh et al. (2005) also propose a generalized

theory of uncertainty that explicitly supports possibility theory, probability theory,

fuzzy probability theory, fuzzy logic, fuzzy set theory, fuzzy graph theory, random

sets, and the Dempster-Shafer theory of evidence (Zadeh et al., 2005). The gen-

eralized theory of uncertainty is a framework for combining information expressed

in different modalities, which suggests an important shared core among the various

theories.

Fuzzy sets are a basis for possibility theory. The possibility distribution is a

flexible constraint on the value of a variable of interest, which can be interpreted as

a fuzzy restriction (Zadeh, 1978). In practical terms, Augustin et al. (2014) consider

possibility and its converse, necessity, to be types of upper and lower probabilities.

The possibility distribution and measure were originally defined in Zadeh (1978) and

Dubois and Prade (1987). Augustin et al. (2014) also discuss the relationship between

possibility theory and imprecise probability.

Definition 3. (Zadeh, 1978) A possibility distribution is a function π : Ω → [0, 1]

with π(ω) = 1 for at least one ω ∈ Ω, the outcome space. A possibility measure, Π, is

a function Π : ℘(Ω) → [0, 1] defined as Π(X) = supx∈X π(x) with the property that

for any X ⊆ ℘(Ω), Π
(⋃

X∈X X
)

= supX∈X Π(X), where X denotes a set of outcomes

and ℘(Ω) denotes the power set of Ω. The necessity measure is N(X) = 1−Π(Xc) =

1− supx∈Xc π(x).

Dubois et al. (2001) consider the possibility distribution to be a generalized char-

acteristic function of a fuzzy set. The possibility measure is also a particular case of
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the fuzzy measure (Zadeh, 1978). Necessity measures are a subset of the functions

that can be represented in the Dempster-Shafer theory of evidence (Walley, 2000).

2.2.4 Evidence Theory

Dempster (1967) developed another early generalization of probability theory to

upper and lower probabilities, which was formalized and extended by Shafer (1976)

into the mathematical theory of evidence. Dempster-Shafer belief and plausibility

functions are also types of upper and lower probabilities, similar to possibility and

necessity functions. Fine (1977) summarizes the foundation for the theory as follows.

Definition 4. (Fine, 1977) The theory of evidence is based on the frame of discern-

ment, basic probability function, belief function, and plausibility function.

1. The frame of discernment, Ω, is the set of all elements of interest.

2. The basic probability function, m : ℘(Ω) → [0, 1], is a function such that

m(∅) = 0 and
∑

X⊂Ω m(X) = 1.

3. The belief function, Bel : ℘(Ω) → [0, 1], satisfies Bel(∅) = 0, Bel(Ω) = 1, and

∀n,Bel (
⋃n
i=1Xi) ≥

∑n
k=1

(∑
i1<i2<...<ik

(−1)k+1Bel
(⋂k

j=1Xij

))
4. The plausibility function, Pl : ℘(Ω)→ [0, 1], satisfies Pl(X) = 1−Bel(Xc).

The interaction between the basic definitions and the rules for combining evidence

in Dempster-Shafer theory have been criticized from the perspective of more general

uncertainty theories (Zadeh, 1984; Walley, 1987). The transferable belief model of

Smets and Kennes (1994) addresses the core problem by considering “open-world”

and “closed-world” contexts that do or do not allow m(∅) > 0. This change addresses

the situation where events outside the frame of discernment are possible and assigned

to the empty set. Smets and Kennes (1994) emphasize that their construction of the
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transferable belief model does not require any standard probability theory, although

it can be interpreted in a way that is compatible with a probabilistic foundation.

The frame of discernment is equivalent to the sample space or outcome space in

other contexts and the last criterion in Definition 4, Item 3 is equivalent to saying the

belief function is ∞-monotone. In fact, belief functions are a subset of ∞-monotone

capacities, so there is a close connection to fuzzy measure theory.

2.2.5 Fuzzy Measure Theory

Fuzzy measures, also referred to as capacities, generate a broad class of uncertainty

theories (Choquet, 1954). In particular, fuzzy measures generalize standard measures

and probability measures by replacing additivity with monotonicity (Sugeno, 1974).

Murofushi and Sugeno (1991) define a fuzzy measure as follows.

Definition 5. (Murofushi and Sugeno, 1991) Given a non-empty set Ω and a σ-

algebra F , a fuzzy measure, or capacity, is a function f : F → (−∞,∞) such that

1. For all E ∈ F , f(E) ≥ 0

2. f(∅) = 0

3. f(A) ≤ f(B) whenever A ⊂ B and A,B ∈ F

Augustin et al. (2014) highlight several properties related to capacities that are

useful for comparing uncertainty theories.

Definition 6. (Augustin et al., 2014) Set operations for a capacity, f , can be classified

as super-additive, sub-additive, n-monotone, and ∞-monotone.

1. Super-additive: A ∩B = ∅ ⇒ f(A ∪B) ≥ f(A) + f(B).

2. Sub-additive: A ∩B = ∅ ⇒ f(A ∪B) ≤ f(A) + f(B).
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3. n-monotone: Let n ∈ N0, n ≥ 2. A capacity f is n-monotone if for any collection

An ⊆ ℘(Ω) of n events, it holds that

f

( ⋃
A∈An

A

)
≥

∑
∅6=A′⊆An

(−1)|A
′|+1f

( ⋂
A∈A′

A

)
. (1)

4. ∞-monotone: A capacity f is ∞-monotone whenever it is n-monotone for all

n ∈ N0, n ≥ 2.

Capacities, or fuzzy measures, include interval probabilities and lower and upper

probabilities as prominent special cases. These types of probabilities are often used

in safety and reliability applications in the engineering domain. Coherent lower and

upper probabilities correspond to super-additive and sub-additive capacities (Augustin

et al., 2014). For standard probability theory, probability is additive (i.e., it is both

super-additive and sub-additive) and ∞-monotone. Note that if the inequality in

the n-monotone property is replaced with equality, it becomes the calculation for the

probability of the union of n sets under standard probability theory.

2.2.6 Imprecise Probability

Imprecise probability is a unifying framework for a large class of quantitative un-

certainty models. The theory of sets of desirable gambles, which has a one-to-one

correspondence with partial preference orderings, is the most general model of un-

certainty (Walley, 2000). Sets of desirable gambles include coherent lower previsions,

which are a generalization of lower probabilities, as a prominent special case. Any

uncertain phenomenon that can be represented in a more specific model discussed in

the previous subsections can be represented by sets of desirable gambles, and some

aspects of uncertainty can be represented by sets of desirable gambles that cannot be

represented in narrower models.
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The core element in imprecise probability theory is the gamble, which can be

interpreted as the utility associated with each potential outcome of an experiment or

a generic random variable.

Definition 7. (Walley, 2000) A gamble is a bounded mapping g : Ω → R, where Ω

is the set of possible outcomes under consideration.

A coherent set of desirable gambles can be interpreted as all the gambles that are

attractive to a decision maker, along with all the gambles rationally implied by those

judgments. Mathematically, it is a convex cone of gambles that contains all positive

gambles but not the zero gamble (Walley, 2000).

Definition 8. (Walley, 2000) Let L denote the set of all gambles. For g, h ∈ L, let

g ≥ h mean g(ω) ≥ h(ω) for some ω ∈ Ω, and let g > h mean g ≥ h and g(ω) > g(ω)

for some ω ∈ Ω. A set of desirable gambles, denoted by D, is a subset of L. A set of

desirable gambles is coherent if it satisfies the following axioms:

1. 0 /∈ D

2. If g ∈ L and g > 0, then g ∈ D

3. If g ∈ D and c ∈ R+, then cg ∈ D

4. If g ∈ D and h ∈ D, then g + h ∈ D

5. If g ∈ L, g 6= 0,B is a partition of Ω, and Bg ∈ D ∪ {0} for all B ∈ B, then

g ∈ D

Sets of desirable gambles include all the previously discussed models of uncertainty

as special cases (Walley, 2000). Notably, it is a general formulation of nonadditive

probability which includes possibility theory, evidence theory, and fuzzy measure the-

ory as commonly used special cases. However, there are several types of uncertainty
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that can be developed without relying on the utility scale used for sets of desirable

gambles. Dempster-Shafer theory of evidence, possibility theory, and non-monotonic

reasoning can all be developed in alternative ways without relying on a numerical

foundation (Augustin et al., 2014).

2.2.7 Summary

The models discussed previously have varying levels of generality and modeling

fidelity. In the following discussion, we present a framework that describes the rela-

tionship among these uncertainty models.

Augustin et al. (2014) present a summary of the relationship among the various

models of uncertainty. The model as depicted in Figure 1 is comprehensive but adopts

different terminology than used here. One benefit to this format is that it includes the

generalization relationships between classes as well as specific examples within each

class. Note that the distinction between a class and an element is somewhat arbitrary

and the elements could also be considered classes. For instance, the linear previsions

element could be a class that includes both countably-additive and finitely-additive

probability.

Using these models as a basis, along with information in Walley (2000) and Dester-

cke et al. (2008), we develop and present a unified framework for uncertainty in Figure

2. The arrow relationship A → B indicates that A generalizes B in the sense that

models in B are a subset of the models that can be formulated in A. Although

this framework suggests a clear distinction between uncertainty and utility, there are

connections across classes. This distinction is particularly true for the more gen-

eral models, but the separation helps distinguish models with different purposes and

highlight that models from different classes can be combined.

There is a trade-off between complexity and generality for uncertainty mod-
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els. This trade-off suggests that whenever a problem is simple enough to be well-

represented with standard probability, expected utility, and set theory, those are the

preferred approaches. If the problem is too complex to be addressed with those stan-

dard tools, there is no dominant approach among the remaining uncertainty models.

Dempster-Shafer theory is particularly well-known and mature in computer science

applications (Smets, 1999) while sets of probability measures have been well inte-

grated into state-of-the-art optimization theory (Wiesemann et al., 2014). Although

the choice of uncertainty model is application dependent, standard-form ambiguity

sets are highly expressive while remaining computationally tractable. In addition

to the models discussed here, there are other uncertainty models including clouds

(Neumaier, 2004), pari-mutuel (Walley, 1991), odds-ratio (Berger et al., 1994), and

ε-contamination (Huber, 1964).

2.3 Decision Making Under Uncertainty

Representations of uncertainty are an important component of decision theory

and applied decision making. This section summarizes the relationship between un-

certainty models and the classical and contemporary decision theory models. Etner

et al. (2012), Starmer (2010), and Marinacci (2015) provide surveys of decision the-

ory under ambiguity, which include further details on economic considerations and

experimental evidence. There is a significant body of research that investigates the

experimental evidence for a wide range of decision models (Dimmock et al., 2015a,b;

Binmore et al., 2012; Baillon et al., 2018). However, this survey focuses on the decision

models rather than the empirical findings.

There are several alternative approaches to modeling uncertainty in decision mak-

ing. This survey briefly discusses qualitative approaches but is primarily focused

on quantitative methods. Within quantitative methods, we identify several classes
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of related models including expected utility, prospect theory, multiple priors, varia-

tional preferences, second-order beliefs, information models, possibilistic and impre-

cise models, and alternative models. We discuss each class in detail in the following

subsections, with an extended presentation of expected utility and prospect theory

as the rational and behavioral foundations, respectively, for many subsequent models

examined in this dissertation.

2.3.1 Expected Utility

The foundation of expected utility theory is the seminal Von Neumann-Morgenstern

(VNM) Expected Utility Theorem, based on four rationality axioms. Expected utility

theory primarily develops a theory for utility and decision making, but it also makes

assumptions about uncertainty. Following the structure used in Levin (2006), we have

the following exposition.

Definition 9. (von Neumann and Morgenstern, 1947) A lottery is a probability

distribution, P , over an outcome space, Ω, with P ∈ M , the set of all possible

lotteries. When Ω is a finite set of cardinality n, let P = (P1, P2, . . . , Pn) where

Pi = P (ωi).

The following rationality axioms are relatively mild, but the completeness axiom

does imply a precise and comprehensive ability to compare preferences that restricts

expressiveness. VNM rationality is defined by four axioms over lotteries: complete-

ness, transitivity, continuity, and independence.

Definition 10. Let P < Q indicate that P is weakly preferred to Q. Then,

1. Completeness: For any two lotteries, P and Q, P < Q, Q < P , or P ∼ Q.

2. Transitivity: For any lotteries P , Q, and R, if P < Q and Q < R, then P < R.
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3. Continuity: For any lotteries P,Q, and R with P < Q < R, there exists some

α ∈ [0, 1] such that αP + (1− α)R ∼ Q.

4. Independence: For any lotteries P,Q, and R and α ∈ [0, 1], P < Q ⇐⇒

αP + (1− α)R < αQ+ (1− α)R.

The following definition formalizes the notion of expected utility, assuming a finite

outcome space.

Definition 11. (von Neumann and Morgenstern, 1947) A utility function U : M →

R has an expected utility form if there are numbers (u1, u2, . . . , un) for each of the n

outcomes in (ω1, ω2, . . . , ωn) such that for every P ∈M , U(P ) =
∑n

i=1 piui.

The key assumption of the VNM expected utility theorem is that a rational deci-

sion maker will always act to maximize expected utility.

Theorem 1. (von Neumann and Morgenstern, 1947) A complete and transitive pref-

erence relation < on M , the set of all possible lotteries, satisfies continuity and

independence if and only if it admits an expected utility representation.

VNM expected utility can be considered the standard for decision theory. Subjec-

tive expected utility (Savage, 1954) offers a compelling axiomitization using subjective

probabilities that also leads to an expected utility maximization framework. Expected

utility explicitly builds a decision theoretic foundation on the standard, Kolmogorov

probability theory discussed in Section 2.2.1. However, the basic expected utility

structure has been extended in a variety of ways by removing or modifying axioms.

Machina (1982) presents an expected utility variant without the independence axiom.

Removing the completeness axiom results in a rich theory with sets of utility func-

tions (Dubra et al., 2004). The extension to set-valued utility can also be combined

with set-valued probability (Weber, 1987).
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Superficially, the VNM concept of a lottery and the imprecise probability concept

of a gamble are similar, but there is an important, complementary distinction. The

lottery is a probably distribution over outcomes, whereas the gamble is a real-valued

function over outcomes. VNM theory uses preferences and probability to study utility,

whereas imprecise probability theory uses preferences and utility to study probability.

2.3.2 Prospect Theory

Prospect theory is a theory for behavioral decision making under uncertainty

(Kahneman and Tversky, 1979). The motivation for prospect theory is that, in prac-

tice, decision makers violate rationality assumptions for both utility and probability.

These violations are incorporated into cumulative prospect theory as a non-linear util-

ity function and a non-linear probability weighting function, which are improvements

from the original theory to address violations of stochastic dominance constraints

(Tversky and Kahneman, 1992). Formally, Wakker (2010) defines prospect theory

using the following definitions. We omit some details for brevity.

First, a prospect is a payoff based on the outcome of an uncertain process. The

terminology in prospect theory conflicts with the previously discussed models, so we

reframe the language in several cases. Given an outcome space, denoted by the set

Ω, an event, E, is a subset of the outcome space, E ∈ ℘(Ω). Formally, a prospect

is a function r : ℘(Ω) → R, which yields reward r1 under event E1 . . . and rn under

event En and is also denoted as r = E1r1 . . . Enrn (Wakker, 2010).

Next, the preference relation, <, is defined as a natural way of ordering outcomes

by desirability. Notably, < is complete, while several important choice functions in

imprecise probability (e.g., E-admissibility) are not. If a representing function exists,

then < is a weak order (Wakker, 2010). That is, < satisfies:

Transitivity: for prospects r, s, and t if r < s and s < t then r < t, and
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Completeness: for prospect r and s, r < s or s < r.

These definitions are used to make the key assumption for prospect theory, in

particular the finite nature of the reward space and the complete preference relation.

Assumption 1. (Wakker, 2010) Ω is a, finite or infinite, outcome space, and R is

the reward set. Prospects map subsets of outcomes to rewards, taking only finitely

many values. The domain of preference is the set of all prospects, i.e., of all such

maps. < is a preference relation on the set of prospects. Nondegeneracy holds.

Given Assumption 1, prospect theory makes two major behavioral adjustments

to expected value theory. First, the reward values, r(E), are modified by a general

utility function (Wakker, 2010). Second, the probabilities are modified by a specific

type of function that is derived from rank dependent utility theory (Quiggin, 1982).

Rather than weighting individual probabilities directly, rank dependent utility theory

weights probability “ranks,” which are the complement of quantiles (Wakker, 2010).

Consistent with behavioral experiments, the probability weight functions are allowed

to differ for losses and gains, and the weighted probabilities no longer sum to one

(Wakker, 2010). Both of these modifications are applied after framing and referencing

the problem to a zero utility value (Wakker, 2010).

Definition 12. (Wakker, 2010) Prospect theory holds if there exists a strictly in-

creasing continuous utility function U : R → R with U(0) = 0 and two weighting

functions W+ and W−, denoted as π, such that each prospect r = E1r1 · · ·Enrn

with completely sign-ranked rewards r1 ≥ · · · ≥ rk ≥ 0 ≥ rk+1 ≥ · · · ≥ rn for some

0 ≤ k ≤ n is evaluated by

n∑
j=1

πjU(rj) =
k∑
i=1

π(E
Ei−1∪···∪E1

i )U(ri) +
n∑

j=k+1

π(EjEj+1∪···∪En
)U(rj) (2)

=
k∑
i=1

(W+(Ei ∪ · · · ∪ E1)−W+(Ei−1 ∪ · · · ∪ E1))U(ri)
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+
k∑
j=1

(W−(Ej ∪ · · · ∪ En)−W−(Ej+1 ∪ · · · ∪ En))U(rj), (3)

the prospect theory value of the prospect.

The aspects of prospect theory relating directly to uncertainty have been formal-

ized under the name support theory (Tversky and Koehler, 1994). Support theory is a

version of sub-additive probability that models behavioral attitudes toward risk (Tver-

sky and Koehler, 1994). Tversky and Koehler (1994) provide experimental evidence

for descriptive behavior compatible with support theory. The theoretical structure of

the sub-additive probability is not significantly different from various other types of

lower probabilities, which are a particular case of fuzzy measures discussed in Section

2.2.5.

Prospect theory is closely associated with rank dependent utility (Quiggin, 1982;

Schmeidler, 1989), a particular form of the general nonadditive probability models

discussed in Section 2.2.5. However, variants of prospect theory using sets of prob-

ability distributions, interval probabilities, and other uncertainty models have also

been developed (Wakker, 2010; Diecidue and Wakker, 2001). These variants combine

aspects of the decision models in the following subsections with the prospect theory

treatment of utility functions.

Prospects in prospect theory and gambles in imprecise probability, discussed in

Section 2.2.6, are nearly equivalent notions, but prospects are defined over events

(i.e., sets of outcomes) (Wakker, 2010) whereas gambles are defined directly over

outcomes. Recent work has extended prospects from finitely many values to infinitely

many values (Kothiyal et al., 2011). However, prospect theory focuses on behavioral

decision making, whereas imprecise probability focuses on modeling uncertainty. The

main area of overlap between prospect theory and imprecise probability is with respect

to elicitation. The elicitation of imprecise probabilities is a relatively under-developed

26



field (Augustin et al., 2014), which may benefit from more explicit connection to

behavioral results from prospect theory.

2.3.3 Multiple Priors

Decision makers often lack sufficient information to credibly define a unique prior

distribution. In the presence of this uncertainty, one solution is to base the decision

making model on multiple priors modeled as a set of probability distributions, which

is a flexible uncertainty model discussed in Section 2.2.2. By replacing the single

distribution with a set of distributions, the decision maker can represent the ambiguity

about the true prior distribution.

The main multiple priors models directly generalize the classic maxmin utility

and α maxmin utility approaches to sets of probability distributions. In the classic

Wald (1945) maxmin model, the decision maker maximizes utility with respect to

the worst possible outcome, regardless of likelihood. The α maxmin model, due to

Arrow and Hurwicz (1972), generalizes the maxmin criterion by considering a convex

combination of the worst outcome and the best outcome, αu + (1 − α)ū. The best

and worst outcomes are represented by ū and u, respectively, and the α coefficient

represents the decision maker’s pessimism.

In the multiple priors generalization, the maxmin criterion is replaced with maxmin

expected utility in Gilboa and Schmeidler (1989). Let Ω be the outcome space repre-

senting the possible states of the world, C be the consequence space representing any

abstract consequence such as money or health, and f : Ω → C be a decision or act

representing a course of action. Then the decision, f , is evaluated by

min
P∈M

EPu(f), (4)

where P is a probability distribution over outcomes in Ω and P is included in the set
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of priors, M. The expected utility operator with respect to probability distribution

P is denoted by EP. The utility function, u(f) : C → R, represents the utility of

decision f by defining a real-valued utility for the consequence associated with any

outcome through f . In this maxmin expected utility model, the ambiguity averse

(i.e., uncertainty averse) decision maker maximizes expected utility according to the

least favorable probability distribution in the set of prior distributions. Similarly,

Ghirardato et al. (2004) generalize the α maxmin approach to multiple priors in α

maxmin expected utility. In this model, the decision f is evaluated by

αmin
P∈M

EPu(f) + (1− α) max
P∈M

EPu(f), (5)

where α represents the ambiguity aversion of the decision maker. Although the α

parameter allows the decision maker to avoid the worst-case approach of maxmin

expected utility, the α parameter does not have a clear interpretation. In particular,

α = 0.5 does not correspond to expected utility maximization, and the ambiguity

aversion associated with α cannot be cleanly separated from the ambiguity aversion

associated with the size of the set of distributions (Etner et al., 2012).

Choquet expected utility is also closely related to this family of models, but is more

general in the sense that it does not assume ambiguity aversion. This model, due to

Schmeidler (1989), evaluates a decision f by

∫
u(f)dν, (6)

where
∫

is the Choquet integral and ν is a capacity. A capacity generalizes a prob-

ability function and is not necessarily additive, as discussed in Section 2.2.5. The

Choquet integral is necessary to address this special structure. Although the Cho-

quet expected utility model allows for non-ambiguity averse decision makers, not all
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sets of probability distributions can be fully represented as a capacity. Chateauneuf

et al. (2007) present an extension of Choquet expected utility to a Hurwicz-type

optimism-pessimism framework with neo-additive capacities, which we refer to as

neo-Choquet expected utility.

2.3.4 Variational Preferences

Variational preferences are another way of generalizing maxmin expected utility

to non-ambiguity averse decision making, developed in Maccheroni et al. (2006). The

decision maker evaluates decision f by

min
P∈P

[EPu(f) + c(P)] = min
P∈P

[(∫
u(f)dP

)
+ c(P)

]
, (7)

where P is the set of all probability distributions on the state space and c(P) is

a cost function. This decision model also uses sets of probability measures as the

foundational uncertainty model, as discussed in Section 2.2.2. Several notable decision

models correspond to specific forms of the cost function (Etner et al., 2012). The

different models are summarized in Table 1, in which the notional or hypothesized

prior probability distribution is denoted by Q.

The ε-contamination model (Eichberger and Kelsey, 1999) also assumes the deci-

sion maker has a suspected prior distribution, but the decision maker is only (1−ε)%

confident the distribution is correct. To address the uncertainty, the decision maker

considers a combination of the suspected distribution, Q, and any arbitrary distri-

bution, P , (1 − ε)Q + εP . Note that this is a special case of the maxmin expected

utility approach where the set of priors, M, has the specified ε-contamination form.

The cost function then acts as an indicator for membership in the set of priors.

The robust control model (Hansen and Sargent, 2001), or multiplier preferences

model, assumes the decision maker has a specific prior, Q, that is the default prior.
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Table 1. Variational preference cost functions

Cost Function Corresponding Model

c(P) =

{
0 if P = Q
∞ otherwise

Expected utility

c(P) = 0 Maxmin utility

c(P) =

{
0 if P ∈M
∞ otherwise

Maxmin expected utility

c(P) =

{
0 if P ∈ (1− ε)Q + εP
∞ otherwise

ε-contamination

c(P) = θR(P ||Q) Robust control

To account for uncertainty about this prior, the cost function is defined using the

Kullback-Leibler divergence, or relative entropy, R(P ||Q). The relative entropy cost

function weights probability distributions that are closer to the suspected prior higher

than probability distributions that are dissimilar. The parameter θ controls the

strength of this weighting and indirectly represents the decision maker’s ambigu-

ity aversion. Unlike the previous models, this approach allows smooth weighting over

the set of potential prior distributions.

2.3.5 Second-order Beliefs

Klibanoff et al. (2005) present a smooth model of decision making under uncer-

tainty based on second-order beliefs. In this model, the decision maker has first-

order beliefs about the likelihood of states of the world, represented as a probability

distribution, as in decision making under risk. However, the decision maker also

has second-order beliefs about the likelihood each probability distribution is correct,

represented as a probability distribution over probability distributions. What dis-
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tinguishes this model from a second-order Bayesian model that reduces to expected

utility is that Klibanoff et al. (2005) also modify the inner expectation by a function,

Φ, that controls ambiguity aversion. They evaluate a decision f by

EL∈LΦ(EP∈P(u(f))), (8)

where L is a probability distribution in the set of probability distributions, L, over

the inner probability distributions. This model for uncertainty can be interpreted as

a generalization of sets of probability measures, discussed in Section 2.2.2. However,

this approach is distinct because of the second-order probability distribution L. While

the standard set of probability measures has no probabilistic information over the first-

order distributions, the uncertainty model underlying smooth ambiguity introduces

a family of second-order distributions over those first-order distributions. Notably,

without the Φ function, this uncertainty formulation would collapse into a standard

set of uncertainty measures using Bayesian conditioning. The Φ function controls the

ambiguity aversion in the same way the utility function is related to risk aversion.

A concave Φ corresponds to an ambiguity averse decision maker and can represent

maxmin expected utility in the limiting case of infinite ambiguity aversion.

Second-order subjective expected utility (Seo, 2009) with generalizations by Nasci-

mento and Riella (2013), state-dependent models (Nau, 2006), and second-order prob-

abilistic sophistication (Ergin and Gul, 2009) provide alternative axiomatizations of

second-order beliefs that result in a similar decision criterion to the criterion defined

by Klibanoff et al. (2005). Klibanoff et al. (2009) also extend the static smooth model

to the dynamic case. Lang (2017) explores the differences in behavior resulting from

different approaches to second-order belief models.

Cerreia-Vioglio et al. (2011) present uncertainty averse preferences as a general-

ization that includes variational preferences and the smooth model with concave Φ
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as special cases. In this model a decision f is evaluated by

min
P∈P

G (EPu(f),P) = min
P∈P

G

(∫
u(f)dP,P

)
(9)

where G : u(X) × P → (−∞,∞] is a quasiconvex function controlling ambiguity

attitude and X is the outcome space. If G(t,P) = t+ c(P), the model corresponds to

variational preferences (Maccheroni et al., 2006). If G(t,P) = t + minν∈Γ(P) It(ν ||µ),

the model corresponds to the smooth model (Klibanoff et al., 2005). Γ(P) is the set

of all second-order probabilities, ν, that are absolutely continuous with respect to a

prior, µ, and have P as their reduced probability measures over the state space, S.

It(ν ||µ) is a statistical distance function to the prior distribution. Unlike the smooth

ambiguity decision model, the uncertainty model associated with this decision model

is a standard set of probability distributions, as discussed in Section 2.2.2.

2.3.6 Information Models

The subjective process for identifying the set of prior distributions in multiple prior

models is not addressed in the previous formulations. Gajdos et al. (2008) present a

decision model, sometimes called the contraction model, that explicitly includes the

objective information available to the decision maker. Gajdos et al. (2008) represent

this information as a set of probability distributions, Q, and introduce a subjective

mapping, ϕ, from this information to the set of priors, M, such that ϕ(Q) = M.

The decision maker then uses this set of priors to make decisions as in the maxmin

expected utility framework. A decision f is evaluated by

min
P∈ϕ(Q)

EPu(f). (10)
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Under additional axioms, Gajdos et al. (2008) present a specific functional form for

this evaluaiton as

αmin
P∈Q

EPu(f) + (1− α)Es(P)u(f), (11)

where s(P) is the Steiner point of the set of distributions, analogous to a mean

value. The parameter α represents the ambiguity aversion. When α = 0, the model

corresponds to expected utility and when α = 1, the model corresponds to maxmin

expected utility. The uncertainty model supporting these decision models is sets of

probability distributions, as discussed in Section 2.2.2.

Jaffray (1989) also considers the objective information available to the decision

maker in linear utility for belief functions, but does not address subjective formation

of a set of priors. Instead, he works with capacities in the imprecise probability

approach. The capacity associated with decision f , νf ,is evaluated as

∑
E∈A

ϕ(E) [α(mE,ME)u(mE) + (1− α(mE,ME))u(ME)] , (12)

where E is an event in the set of all events A and mE and ME are the minimal and

maximal outcomes on event E, respectively. The α(mE,ME) function controls the

pessimism of the decision maker with respect to uncertainty. The function ϕ is the

Mobius transform of the capacity νf , which is associated with the ambiguity of an

event in terms of lower probabilities. If the α function is constant, this model is equiv-

alent to α maxmin expected utility with an objective set of prior distributions (Etner

et al., 2012). In the general case, the underlying uncertainty model is nonadditive

capacities, as discussed in Section 2.2.5.
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2.3.7 Possibilistic and Imprecise Models

Whalen (1984) presents a generalization of the Wald maxmin criterion using pos-

sibility theory as the uncertainty model. In this decision model, a decision f is

evaluated by

inf
s∈S

maxn(π(s)), µ(f(s)) (13)

where s is a state in the set of states, S, π is a normalized possibility distribution

with values in a plausibility scale, µ is a possibility distribution with values on a

preference scale, and n is an order-reversing map which is n(x) = 1− x when applied

to normalized arguments. Yager (1979) presents an optimistic counterpart to this

criterion, and Dubois and Prade (2001) develop a decision-theoretic axiomatization

of both models which is generalized by Giang and Shenoy (2005) with an alternative

axiomitization. These models explicitly use possibility theory as the uncertainty

model, as discussed in Section 2.2.3.

In addition to the purely possibilistic models, there are several closely related

decision theories. The restriction to Wald-type extreme optimism and pessimism

in the previous models is removed in single-stage and multi-stage one-shot decision

theory (Guo, 2011; Guo and Li, 2014). The one-shot model introduces 12 focus points

that characterize the decision maker’s attitude about possibility and satisfaction and

an optimality criterion which is defined for each focus point. This model explicitly

uses possibility theory, discussed in Section 2.2.3, as the underlying uncertainty model.

One-shot decision theory is generalized to the focus theory of choice in Guo (2019)

using relative likelihood and a positive and negative evaluation system. The relative

likelihood uncertainty model is a tailored nonadditive model that can be used to

scale probabilities by the highest probability event in a subset of events. General

nonadditive models are discussed in Section 2.2.5, but the relative likelihood model

is distinct because it accounts for salience and decision maker behavior. The focus
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theory of choice accounts for the behavioral distinction between positive and negative

frames, salience of payoffs, and provides a formal model for procedural rationality

that can be used as a theoretical foundation for behavioral decision models.

Fuzzy, interval, and imprecise probabilities have also been considered in the deci-

sion theory literature. Bellman and Zadeh (1970) formulate a structure for decision

making in fuzzy environments. Guo and Tanaka (2010) present decision criteria for

dominance, indifference, and incomparable alternatives using interval expected values.

Troffaes (2007) also extends this line of work to models using imprecise probability

as the uncertainty foundation. He introduces several alternative criteria including

admissibility, maximal expected utility, maximality, E-admissibility, and maxmin ex-

pected utility. The interval probability and imprecise uncertainty models used in

these decision models are discussed in Section 2.2.5 and Section 2.2.6.

2.3.8 Alternative Models

In addition to the classes of decision models discussed previously, we briefly high-

light several alternative models. Modifications to traditional rationality axioms in-

clude regret with non-transitive preferences (Loomes and Sugden, 1982), incomplete

preferences (Eliaz and Ok, 2006), general bounded rationality (Conlisk, 1996), and

subjective weighting (Hazen, 1989). Another stream of research considers stochastic

preferences in the trembling hand model (Harless and Camerer, 1994), random prefer-

ences (Loomes and Sugden, 1995), and random expected utility (Gul and Pesendorfer,

2006).

Recent advances at the intersection of neuroscience and economics have led to an

active area of research. Fehr and Rangel (2011) provide a recent review of neuroeco-

nomic models. Krajbich et al. (2014) define a drift-diffusion model of choice based

on physical neurological processes. The stochastic and neuroeconomic sub-fields have
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also been combined in recent work (Woodford, 2014; Natenzon, 2019).

Some decision models take a qualitative perspective on uncertainty, as in the deep

uncertainty literature (Walker et al., 2003; Lempert, 2003; Ben-Haim, 2006; Cox,

2012). Deep uncertainty is intended for decision problems for which even a mild

quantification, such as an unrestricted uncertainty set, cannot be credibly defined.

In many cases, a quantifiable approximation can still provide insight to the decision

maker. Learning models, such as those developed by Epstein and Schneider (2007),

also help to address situations when the decision maker cannot initially formulate the

problem but can learn over time.

2.3.9 Summary

Maxmin expected utility Cumulative prospect theory

Smooth preferences

Maxmin expected utilityMultiplier preferences

Uncertainty averse 

preferences

Variational preferences

Maxmin utility

Maxmin utility Subjective expected utility

Expected utility

Choquet expected utility

Neo-Choquet expected utility

Figure 3. Framework for decision models

Figure 3 summarizes the main relationships among the major categories of de-

cision making models. The arrow relationship A → B indicates that A generalizes

B in the sense that models in B can be formulated as a special case of the more

general models in A. Recent results have explored these relationships and introduced

successively more generalized decision models. However, the majority of modern
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decision-theoretic models use sets of probability distributions as the underlying un-

certainty model. Although there are many different approaches to using these sets

of probability distributions, the foundations are similar. Generalized models such as

variational preferences and smooth preferences emphasize this underlying similarity

through their ability to express a variety of more specific models as special cases.

However, there are some notable exceptions to the trend of using sets of proba-

bility distributions as the foundation for decision modeling. Some recent work uses

capacities rather than sets of probability distributions, such as Choquet expected

utility and recent extensions. Other experimentally-oriented theories focus on the

specific form and parameters of the decision model to address risk and ambiguity

attitudes found in practice. Recent work in this area has focused on smooth models

that allow for a distinction between ambiguity level and ambiguity attitude while

allowing for arbitrary risk and ambiguity attitudes.

2.4 Optimization Under Uncertainty

Uncertainty models and decision models have been incorporated into optimization

using several different approaches. Lim et al. (2006) identify three broad categories

of uncertainty models in the operations research literature: uncertainty for variables,

distribution parameters, or distributions themselves. The first category corresponds

to uncertainty sets and the last two correspond to ambiguity sets. Lim et al. (2006)

also highlight that rewards can be standard or benchmarked through regret or a

competitive ratio, but all of these reward structures are compatible with any of the

uncertainty models. The optimization literature generally focuses on worst-case sce-

narios in the robust framework, as in maxmin utility decision making, but other

decision criteria have become more prevalent in recent years.

Optimization operationalizes decision theory by addressing realistic, large-scale
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decision problems. The three main classes of optimization under uncertainty are

stochastic, robust, and distributionally robust optimization. We also briefly con-

sider alternative approaches based on non-probabilistic foundations. We present the

generic optimization formulation in each case to facilitate comparisons, but much of

the literature is also devoted to exploring important sub-classes of general static for-

mulations including linear, quadratic, convex, non-convex, and discrete optimization.

These optimization frameworks have also been extended to sequential and adversarial

settings. We consider each major class of optimization under uncertainty in detail in

the following subsections.

2.4.1 Stochastic Programming

Stochastic programming (Dantzig, 1955; Beale, 1955) models uncertainty using a

probability distribution for the uncertain variables. The general stochastic program-

ming problem is minx∈X EQf(x, ω) (Kataoka, 2016; Dupacova et al., 2003). In the

following formulation, we formulate the generic stochastic programming problem as

a probability constraint to facilitate comparison with robust formulations. Note that

an uncertain objective function is a specific case of the constraint formulation if a

dummy variable t is introduced such that f(x) = t and the corresponding constraint

is EQ[g(x, ω)] ≤ t. Then, the stochastic program is

minimize
x ∈ X

f(x) (14a)

subject to EQi [gi(x, ωi)] ≤ 0 ∀ i = 1, . . . ,m. (14b)

In this model, x ∈ X ⊆ Rn is the decision vector, f, gi : Rn → R are functions,

and ωi is the stochastic parameter which is distributed according to the probability

distribution Qi. This optimization framework is based on a traditional approach
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to uncertainty. It uses a standard probability distribution and a standard expected

utility decision criterion, as discussed in Section 2.2.1 and Section 2.3.1, respectively.

While stochastic programming addresses risk, the standard formulation has lim-

ited tractability and does not address ambiguity. Such tractability concerns motivate

the robust and distributionally robust variants of stochastic programming, which

adopt a worst-case approach but achieve significant computational benefits while ad-

dressing ambiguity.

2.4.2 Robust Optimization

Robust optimization (Soyster, 1973; Bertsimas and Sim, 2004; Ben-Tal et al., 2009)

models uncertainty using uncertainty sets for uncertain variables. Following Bertsi-

mas et al. (2011), the robust optimization formulation is

minimize
x ∈ X

f(x) (15a)

subject to gi(x,ui) ≤ 0 ∀ui ∈ Ui, i = 1, . . . ,m. (15b)

In this model, ui ∈ Rk is the uncertainty parameter, and Ui ⊆ Rk is the uncertainty

set for some integer k. The robust formulation differs substantially from the stochastic

formulation in that there is no probabilistic information associated with the uncer-

tainty sets. This formulation is computationally tractable and supports models where

the decision maker cannot credibly identify probability distributions.

The underlying uncertainty model in robust optimization is the uncertainty set,

discussed in Section 2.2.2. The underlying decision theoretic model in robust op-

timization is maxmin utility, discussed in Section 2.3.3. The structure of the un-

certainty set in the robust formulation has important implications for tractability.

Goerigk and Schöbel (2016) summarize six common uncertainty sets in the recent lit-
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erature on robust optimization. We present a condensed list with several additional

sets for completeness. In this family of models, the uncertainty is represented by a

vector that belongs to an uncertainty set, ξ ∈ U ⊆ RM . We denote the convex hull by

conv{ξ1, . . . , ξN} = {
∑N

i=1 λiξ
i :
∑N

i=1 λi = 1, λ ∈ RN
+} and take A to be a constant

matrix. The following list provides a brief description for each type of uncertainty

set, but formal definitions are available in works by Bertsimas and Brown (2009),

Ben-Tal et al. (2009), and Natarajan et al. (2009). The uncertainty sets are

1. Deterministic: U = {ξ}

2. Finite: U = {ξ1, . . . , ξN}

3. Interval-based: U = [ξ
1
, ξ1]× · · · × [ξ

M
, ξM ]

4. Polytopic: U = conv{ξ1, . . . , ξN}

5. Ellipsoidal: U = {ξ ∈ RM :
√∑M

i=1 ξ
2
i /σ

2
i ≤ Ω} for a parameter Ω ≥ 0

6. Norm-based: U = {ξ ∈ RM : ‖ξ − ξ̂‖ ≤ α} for a parameter α ≥ 0

7. Risk measure-based: U = conv({Aξ : ξ ∈ X}) for some X ⊆ RM

8. Convex: U = conv{X} for some X ⊆ RM

9. General: U = X for some X ⊆ RM .

There is a close connection between robust optimization over uncertainty sets and

risk measures in mathematical finance. Risk measures can be derived from uncer-

tainty sets (Natarajan et al., 2009) and uncertainty sets can be constructed from risk

measures (Bertsimas and Brown, 2009). These connections extend to the multivariate

setting, as developed by Bazovkin and Mosler (2015) who extend linear programming

with spectral risk measures to the multivariate case. There is also a connection be-

tween robust optimization and multi-objective optimization, as discussed by Perny
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et al. (2006). A comprehensive survey of multiple criteria decision making and multi-

attribute utility theory is available, which includes connections to optimization under

uncertainty (Wallenius et al., 2008).

2.4.3 Distributionally Robust Optimization

While robust optimization is a tractable approach for addressing uncertainty, it

can be overly pessimistic. Recent work in distributionally robust optimization ad-

dresses this shortcoming by providing a middle ground between fully specified prob-

abilistic models in stochastic programming and completely non-probabilistic uncer-

tainty sets in robust optimization. Wiesemann et al. (2014) formalize the initial

work on distributionally robust optimization. Following the notation from the previ-

ous sections, we can express the distributionally robust optimization formulation as

minimize
x ∈ X

f(x) (16a)

subject to EPi [gi(x, zi)] ≤ 0 ∀Pi ∈ Pi, i = 1, . . . ,m. (16b)

In this model, zi is distributed according to P ∈ ∆k which is a probability distribu-

tion in the ambiguity set of probability distributions, P ⊆ ∆k. The full k-dimensional

probability simplex is represented by ∆k. The distributionally robust formulation is

directly related to the maxmin expected utility (Gilboa and Schmeidler, 1989) and

ambiguous stochastic programming (Wozabal, 2012). Using standard techniques with

a dummy variable in the objective and the distributionally robust constraint, we re-

cover the maxmin expected utility criterion, minP∈P EPf(x,u). Bertsimas and Brown

(2009) also identify an equivalence between uncertainty sets in robust optimization

and coherent risk measures, which are closely related to Choquet integrals. Fur-
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thermore, Ben-Tal et al. (2010) propose soft robust optimization, with generalized

constraints of the form

inf
Q∈Q(ε)

EQf(x, ξ) ≥ −ε ∀ε ≥ 0, (17)

where {Q(ε)}ε≥0 is a set of sets of distributions. This formulation can be shown to

be equivalent to robust control (Hansen and Sargent, 2001) and variational prefer-

ences (Maccheroni et al., 2006) for certain choices of Q(ε). These close connections

between decision theory under ambiguity and optimization under ambiguity highlight

the potential for advances in optimization using recent research in decision theory.

The underlying uncertainty model in distributionally robust optimization is am-

biguity sets, which are concrete forms of sets of probability measures, discussed in

Section 2.2.2. The underlying decision theoretical model for distributionally robust

optimization is maxmin expected utility, as discussed in Section 2.3.3 on multiple

priors. As in robust optimization, the structure of the ambiguity set is an important

consideration. The following list provides a brief introduction to ten common am-

biguity sets, but formal definitions are available in the works by Wiesemann et al.

(2014) and Augustin et al. (2014). Using the same notation as in Section 2.2.2, the

ambiguity sets are

1. Deterministic: M = {Pd} where FPd(x, k) = {1, if x ≥ k; 0, otherwise} for some

k

2. Stochastic: M = {P0} for some P0 ∈ P

3. Finite: M = {P1, . . . ,PN}

4. P-box: M = {P ∈ P : FP(x) ≤ FP(x) ≤ FP(x) ∀x ∈ R} for some P,P ∈ P

subject to mild conditions
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5. Uncertainty set: M = {P ∈ P : P[z̃ ∈ C] = 1} for some set C

6. Standard form: M = {P ∈ P : EP[Az̃ + Bũ] = b, P[(z̃, ũ) ∈ Ci] ∈ [p
i
,pi]∀i ∈

I} subject to mild conditions

7. Polytopic: M = conv({P1, . . . ,PN})

8. Norm-based: M = {P ∈ P : ‖P− P̂‖ ≤ α} for a parameter α ≥ 0

9. Convex: M = conv(Q) for some Q ⊆ P

10. General: M = Q for some Q ⊆ P .

We now discuss the “standard form” ambiguity set in some detail, but refer the reader

to the work by Wiesemann et al. (2014) for the full definition. This ambiguity set is

of particular interest in this survey due to its high level of expressiveness while main-

taining tractability. Most optimization models used in the applications considered

in this survey use explicit standard form ambiguity or uncertainty models that can

also be represented as standard form ambiguity. The standard form ambiguity set is

defined as the set of all distributions with conic representable confidence sets subject

to two mild conditions and with mean values on an affine manifold (Wiesemann et al.,

2014). Mathematically, Wiesemann et al. (2014) present the standard form ambiguity

set as

P =

P ∈ P0(RP × RQ) :
EP[Az̃ + Bũ] = b,

P[(z̃, ũ) ∈ Ci] ∈
[
p
i
,pi

]
∀i ∈ I

 , (18)

where P represents a joint probability distribution of the random vector z̃ ∈ RP and

some auxiliary random vector ũ ∈ RQ, with A ∈ RK×P , B ∈ RK×Q, b ∈ RK , and
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I = {1, . . . , I}. The confidence sets Ci are defined as

Ci = {(z,u) ∈ RP × RQ : Ciz + Diu 4Ki ci} (19)

where Ci ∈ RLi×P , Di ∈ RLi×Q, ci ∈ RLi , p
i
,pi ∈ [0, 1], p

i
≤ pi ∀ i ∈ I, and the Ki

are proper cones. The standard form ambiguity set is also subject to the following

two conditions

(C1) The confidence set CI is bounded and has probability one, that is, p
I

= pI = 1.

(C2) There is a distribution P ∈ P such that P[(z̃, ũ) ∈ Ci] ∈ (p
i
,pi) whenever

p
i
≤ pi, i ∈ I.

Such standard form ambiguity sets are capable of representing ambiguity sets

based on higher-order moments, the marginal median, variability measures based on

the mean absolute deviation and the Huber loss function (Wiesemann et al., 2014).

However, this standard form cannot represent ambiguity sets derived from infinitely

many moment restrictions (Wiesemann et al., 2014), which are needed to describe

symmetry, independence, or unimodality (Hu and Hong, 2012; Popescu, 2005).

The main benefit to this somewhat involved standard form is that it results in

tractable optimization problems given mild restrictions on constraints, see in partic-

ular Appendix E of the formal development by Wiesemann et al. (2014) for problem

complexity under a variety of restrictions. There are also straightforward methods

to build standard form ambiguity sets directly from sampled data (Van Parys et al.,

2017).

2.4.4 Alternative Optimization Models

Alternatives to the standard stochastic and robust optimization models include

fuzzy optimization and optimization under imprecise probabilities. Zimmermann
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(1978) presents a comprehensive development of fuzzy linear programming. In a simi-

lar vein, Julien (1994) presents an approach to possibilistic linear programming. More

recently, Doria (2017) provides foundational results for the properties of conditional

previsions defined by Choquet integrals. The adoption of these non-probabilistic

techniques in practice has been sparse, perhaps due to the comparatively small set of

solvers and modeling tools as compared to the traditional optimization approaches.

2.4.5 Sequential and Adversarial Optimization

Dynamic decision theory has received significant attention in the recent literature

(Klibanoff et al., 2009; Maccheroni et al., 2006; Siniscalchi, 2011). Often leveraging

these results, optimization has also addressed sequential problems under uncertainty.

For short, finite horizons, two-stage and multi-stage problems allow the deci-

sion maker to take recourse actions after the uncertain parameters become known.

These adjustable variables are functions of uncertain variables and these problems

are commonly referred to as adaptive optimization problems (e.g., Bertsimas and

Goyal (2010)). Two-stage and short-horizon multi-stage decisions can be modeled

as a multi-level optimization problem. Sariddichainunta and Inuiguchi (2017) extend

such a bilevel linear programming approach to the case with an uncertain lower level,

using a convex polytope as the uncertainty set. Probabilistic decision graphs provide

an alternative approach to sequential decision making in these settings (Jensen and

Nielsen, 2013).

Arbitrary length and infinite horizon decisions are often modeled with Markov

decision processes (MDPs) (Puterman, 2014). The class of uncertain MDPs includes

a variety of approaches. Uncertain transition probabilities were introduced by Satia

and Lave (1973). White and Eldeib (1986) and White and Eldeib (1994) also produced

early uncertain MDP models, with similar work by Harmanec (2002) in the planning
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literature. From the general class of MDPs with imprecise parameters (Delgado et al.,

2011a, 2016), bounded parameter MDPs (Givan et al., 2000) and MDPs with set-

valued transitions (Trevizan et al., 2007) were later developed as special cases in the

artificial intelligence community. In the operations research literature, robust MDPs

allow the parameters for the transition matrix to vary within uncertainty sets and

use a worst-case solution approach (Wiesemann et al., 2013; Nilim and El Ghaoui,

2005; Iyengar, 2005). The high cost of robustness in this formulation motivates the

distributionally robust MDP (Xu and Mannor, 2012), which replaces the uncertainty

sets with ambiguity sets, as in the optimization literature, including standard form

ambiguity sets specifically (Yu and Xu, 2016). Coherent risk measures have also been

extended to the sequential decision making context in a similar manner (Artzner

et al., 2007).

In addition to the uncertainty in transitions and rewards, in many real-world

scenarios the environment is not completely observable. This leads to the need for

partially observable MDPs (POMDPs). Although POMDPs can be reformulated

as MDPs, the reformulation is non-trivial, which motivates the need for uncertain

POMDPs in addition to uncertain MDPs. Early work developed the underlying the-

ory and POMDP formulation (Dynkin, 1965; Aoki, 1965; Astrom, 1965) and these

models have seen many applications in the following years (Monahan, 1982; Love-

joy, 1991; Aberdeen, 2003). The effort to incorporate uncertainty in MDPs has also

been recently extended to POMDPs in the form of POMDPs with imprecise param-

eters (Itoh and Nakamura, 2007), robust POMDPs (Osogami, 2015), and ambiguous

POMDPs (Boloori and Cook, 2017; Saghafian, 2018).

The most recent ambiguous POMDP model (Saghafian, 2018) addresses uncer-

tainty in two unique ways. First, it combines model ambiguity with partial observ-

ability which allows for models that address problem settings with high levels of
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uncertainty. Second, the key results are developed for both maxmin expected utility

and α maxmin utility paradigms. Most other work in the optimization community

focuses on the maxmin criterion. Further development of optimization results incor-

porating α maxmin, smooth ambiguity, or generalized uncertainty averse preferences

would complement the existing body of work that focuses largely on expected util-

ity and maxmin expected utility. Higher-order uncertainty has also been applied to

adversarial models. The distinction between uncertainty sets and ambiguity sets is

common in the game theory literature, resulting in robust stochastic games (Aghassi

and Bertsimas, 2006) and distributionally robust stochastic games (Qu et al., 2017).

In particular, Liu et al. (2018) use standard form ambiguity sets to take advantage

of tractability results by Wiesemann et al. (2014). The connection to risk measures

is also exploited by Loizou (2016). Data-driven ambiguity sets, chance-constraints,

and moment-based ambiguity sets are also considered in the distributionally robust

stochastic game literature (Sun and Xu, 2016; Ahipaşaoğlu et al., 2015; Singh et al.,

2017). In static games, Sasaki (2017) considers the problem of stable generalized Nash

equilibria in the presence of unawareness. These results demonstrate the utility of

extending the foundational results in robust and stochastic optimization to sequential

and adversarial problems.

2.5 Applications

In this section, we provide a brief overview of application areas for the major

uncertainty models. Then, we present a more detailed review of applications of un-

certainty sets and ambiguity sets, focusing on recent operations research literature

from 2010 to early 2018.
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2.5.1 Uncertainty Models

Typical applications of each major class of uncertainty models are shown in Table

2. Traditional Kolmogorov probability is used as the default probability model in

most theory and practice, including the physical sciences, social sciences, economics,

and decision making. However, finitely-additive de Finetti probability has also found

some niche uses. For instance, it is used in some subjective decision making problems

to ground the interpretation of the axioms in actual behavior (de Finetti, 1974). It has

also been used to address the first digit problem, which deals with the phenomenon

of the first digit of a given number in many application areas (e.g., insurance claims)

being more likely to be low than high (Jech, 1992).

Table 2. Applications, adapted from Walley (2000)

Model Typical Applications

Probability Statistics, models of variability and error
Non-additive Probability Subjective decision making, models of knowledge
Possibility Theory Vague judgments of uncertainty in natural language
Evidence Theory Multivalued mappings and non-specific information
Fuzzy Measure Theory Statistical neighborhoods, economics

Imprecise Probability
Buying and selling prices for gambles, envelopes of expert
opinions, preference judgments in decision making

Possibility theory, Dempster-Shafer theory, and fuzzy measure theory have all

seen relative popularity in computer science applications. Possibility theory has been

applied to scheduling, database querying, medical diagnosis, and risk analysis (Dubois

and Prade, 2003). Dempster-Shafer theory has been applied to discriminant analysis

in classification problems, information retrieval in database systems, and fusing data

from different sensors (Smets, 1999). Fuzzy measures have been applied primarily

to financial risk measures and risk analysis (Nguyen and Sriboonchitta, 2010). In

addition to their intermediate use to develop some of the uncertainty models, fuzzy

sets have been used directly for industrial control, industrial management, economic

decision making, and inference in linguistic reasoning (Maiers and Sherif, 1985).
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The three main types of imprecise probability are less widely used, but there are

some examples of applications. They have been applied to economic decision making

for solar energy, climate change, forestry, bio-medical problems, statistical learning,

and reliability analysis (Miranda, 2008).

The broader approaches related to utility and sets have widespread application.

VNM expected utility is prevalent across decision making applications, similar to the

prevalence of traditional probability theory. Although not as ubiquitous as expected

utility, prospect theory has seen broad application in finance, insurance, industrial

organization, labor supply, and general decision making under uncertainty (Barberis,

2013; Wang and Guo, 2017; Siniscalchi, 2009; Arad and Gayer, 2012; Dimmock et al.,

2015b; Li et al., 2017).

2.5.2 Optimization

Gabrel et al. (2014) review applications of robust and distributionally robust op-

timization. The applications include inventory and logistics (combinatorial prob-

lems, scheduling, facility location, inventory management), finance (portfolio opti-

mization, risk measures, derivatives), revenue management (quantity management,

quantity allocation, project selection, price management), stochastics (queuing net-

works, Markov decision processes, stochastic games), machine learning and statistics

(maximum likelihood, support vector machines, principal component analysis), en-

ergy systems (oil supply chain, power grid, unit commitment), and the public good

(medical treatment, patient management, humanitarian supply chain) (Gabrel et al.,

2014).

Robust optimization continues to be a popular modeling technique in all of these

areas of application. We highlight several representative applications, but these ex-

amples are not exhaustive. Recent examples of robust optimization include a surgery
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scheduling model in the health care area (Neyshabouri and Berg, 2017). Logistics

remains a popular application area with facility location, capacity acquisition, and

technology choice (Jakubovskis, 2017), fleet sizing and routing (Lei et al., 2016),

and supply chain planning models (Wong et al., 2016). Some recent approaches use

dynamic programming to solve static robust optimization problems, for instance in

robust lot-sizing (Agra et al., 2016; Santos et al., 2018) and robust knapsacks (Claßen

et al., 2015).

Distributionally robust applications are becoming more prevalent, although still

less widely used than robust optimization. Energy applications are disproportionately

represented in the distributionally robust field, for example power generation unit

commitment (Bai and Yang, 2014) and wind farm allocation (Alismail et al., 2018).

There are also results in diverse areas such as network optimization (Nakao et al.,

2017) and finance (Yang et al., 2014; Paç and Pnar, 2018; Ben-Tal et al., 2013). Yang

et al. (2014) consider coherent risk measures, specifically conditional value at risk, and

use box constraint uncertainty sets for an application to portfolio selection. Romanko

and Mausser (2016) also consider value at risk optimization, but from a scenario-based

perspective. Data-driven methods have also been studied recently in both robust and

distributionally robust optimization (Bertsimas et al., 2018a; Mohajerin Esfahani and

Kuhn, 2017; Gotoh et al., 2017; Delage and Ye, 2010; Wang et al., 2018; Gotoh and

Uryasev, 2017). As in the case of robust optimization, this is set of references is

representative but not exhaustive.

2.5.2.1 Robust Sequential Optimization

There are relatively few recent applications focusing on sequential decision making

under ambiguity compared to those using unqualified Markov decision processes or

robust optimization in a static setting.
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Since the uncertain parameters in an MDP are often the transition probabilities

themselves, the distinction between uncertainty sets and ambiguity sets is less clear

in the sequential context. Typically, robust MDPs employ uncertainty sets, including

for transition probabilities. Distributionally robust MDPs, however, typically make

use of nested sets to build the ambiguity sets, especially the standard form ambiguity

sets due to Wiesemann et al. (2014).

There are a variety of recent results that model uncertainty in robust sequen-

tial decision making. Wiesemann et al. (2013) formalize the framework for robust

MDPs and the notion of (s, a)-rectangular uncertainty sets, which are referenced in

several other applications. For instance, Gutin et al. (2015) present an application

for interdicting project management schedules (terrorist plots, nuclear proliferation)

using the (s, a)-rectangular sets. Coupled uncertainty sets generalize the uncoupled

(s, a) rectangularity to k-rectangularity (Mannor et al., 2016). Ahmed et al. (2017)

use rectangular uncertainty sets for both the reward and transition functions with a

sampling approach for minimizing regret, with an application to stochastic inventory

control.

The robust MDP applications are diverse, including data center controls (Weng

et al., 2017), Kalman filters with interval uncertainty sets (Shashua and Mannor,

2017), and safety-critical systems (Dimitrova et al., 2016). Robust MDPs have also re-

cently been used to address classic operations research problems, including asset pric-

ing and the multi-item newsvendor problem (Ben-Tal et al., 2013), inventory control

(Shapiro, 2011), lot-sizing (Tan and Hartman, 2011), and spectrum allocation (Wang

et al., 2015b). In particular, Ben-Tal et al. (2013) use uncertainty regions defined

by φ-divergences (e.g., chi-squared, Hellinger, Kullback-Leibler). Classic MDP solu-

tions methods have also been extended to robust MDPs by Sinha and Ghate (2016)

who use policy iteration for robust, non-stationary MDPs with arbitrary, nonempty,
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compact uncertainty sets and rectangularity.

The standard robust MDP has also been extended with alternate modeling or

solution techniques. Iancu and Trichakis (2014) account for Pareto efficiency within

robust MDP solutions using polyhedral uncertainty sets with applications to portfolio

optimization, inventory management, and project management. Similarly, Hahn et al.

(2017) analyze multi-objective processes with interval uncertainty sets. Sinha et al.

(2016) also use interval uncertainty sets, but their application is to response-guided

dosing in the medical setting. Dimitrov et al. (2014) consider robust decomposable

MDPs that are subject to a shared resource with applications to allocating school bud-

gets. Influences from the computer science literature can be seen in robust POMDPs

(Osogami, 2015), hidden parameter MDPs which use unusual uncertainty sets (Kil-

lian et al., 2017), and robust MDPs with learning (Lim et al., 2016). Computational

approaches also influence the neural net approximate solution by Li and Si (2010)

and the minimax regret solution by Oh and Kim (2011).

The control theory literature also employs robust MDPs. Bertuccelli et al. (2009)

address robust MDPs from a controls perspective, mixing off-line robust planning

with on-line adaptive planning. Ure et al. (2012) take a similar adaptive planning

approach that updates the uncertainty sets through data collection. Other recent

control applications include path planning (Wolff et al., 2012) and power systems

(Xiao et al., 2012).

2.5.2.2 Distributionally Robust Sequential Optimization

There are also recent results that model uncertainty in distributionally robust

sequential decision making. Yu and Xu (2016) present a standard distributionally

robust MDP formulation that explicitly uses standard form ambiguity sets. Other

ambiguity sets are also used, including conic confidence sets (Yang, 2017a) and norm-
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based ambiguity sets with the Wasserstein distance (Yang, 2017b). As in the robust

MDP case, rectangularity remains an area of attention (Shapiro, 2016), with further

connections to coherent risk measures.

Classic operations research applications are also addressed in the recent distribu-

tionally robust literature. Bertsimas et al. (2018b) present adaptive distributionally

robust MDPs using standard form ambiguity sets with applications to medical ap-

pointment scheduling and multi-period inventory control. Xin and Goldberg (2015)

also consider distributionally robust inventory control, specifically when demand is

a martingale, while Chen et al. (2018) consider data-driven inventory control with

norm-based Wasserstein ambiguity sets. Energy systems continue to be of interest,

with more applications to wind power (Samuelson and Yang, 2017) and hydrothermal

scheduling (Huang et al., 2017).

There are several recent results that model uncertainty in POMDPs and MDPs us-

ing bounded-parameter methods (Ni and Liu, 2013; Fussuma et al., 2014; Scheftelow-

itsch et al., 2017), which correspond to interval uncertainty sets in the robust MDP

literature. For the broader approach of MDPs with imprecise parameters, recent pub-

lications combine polyhedral uncertainty sets with a factored representation (Delgado

et al., 2016, 2011b).

There has been limited overlap between the robust sequential decision making

literature and behavioral decision theory. Liu et al. (2015) present an application

to multi-period portfolio optimization with behavioral factors incorporated through

prospect theory. They use a particle swarm optimization approximate solution tech-

nique to analyze market return data. Wang et al. (2015a) also use prospect theory

to model a routing problem with interval uncertainty sets and a heuristic solution.
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2.5.2.3 Adversarial Optimization

Robust and distributionally robust stochastic games have been applied to classic

operations research problems with adversarial extensions, including the newsvendor

problem and queues (Jiang et al., 2011; Kardeş et al., 2011). Lim et al. (2016) consider

a partially adversarial problem where some uncertain parameters are adversarial and

some are stochastic, using arbitrary compact uncertainty sets. Adversarial optimiza-

tion under uncertainty has also been applied to security games that address terrorism

(Kardeş, 2005, 2014), fisheries (Haskell et al., 2014), and other fields (Nguyen et al.,

2014, 2016). The robust approach in optimization also has analogues in the game-

theoretic research on safe strategies in competitive games (Johanson and Bowling,

2009; Ganzfried and Sandholm, 2015; Ponsen et al., 2011; Wang et al., 2011; Johanson,

2016).

2.6 Conclusion

This survey reviews recent approaches for addressing uncertainty through risk and

ambiguity models. We develop a framework that describes the relationships among

uncertainty modeling approaches for representation, uncertainty modeling approaches

in decision making, and uncertainty modeling approaches in optimization. We also

survey recent applications in optimization. These discussions provide a comprehensive

view of uncertainty modeling from foundation to application and clarify the trade-offs

among the alternative representations.

Uncertainty sets and ambiguity sets are the most formally developed representa-

tions of uncertainty in optimization and sequential decision making. Robust methods

using uncertainty sets remain popular while distributionally robust methods using am-

biguity sets have seen increasing application. Standard form ambiguity sets have been

partially adopted but simpler representations also remain in use. Non-probabilistic

54



uncertainty models continue to see application outside of formal decision making, but

have not been adopted in the optimization and sequential decision making communi-

ties.

The adoption of uncertainty modeling in sequential decision problems lags static

optimization, despite the existence of tractable theoretical solutions. This suggests

an opportunity for the development of improved techniques for sequential decision

making under second-order uncertainty, which will likely increase adoption in practice

and applied research. Recent advances toward generalizing ambiguity aversion in

decision theory, such as smooth ambiguity and variational preferences, might be a

useful foundation for extending sequential optimization under uncertainty.

There is also potential for further research at the intersection of behavioral deci-

sion making and robust optimization. Some recent results consider prospect theory

decision models in a robust context, but advances in this area could lead to significant

improvements in the applicability and realism of static and sequential decision models.

As decision theory continues to advance and the experimental evidence base grows

for attitudes toward ambiguity, there is opportunity to develop more sophisticated

and practical optimization methods in static, dynamic, and multi-agent settings.

55



III. A Survey of Uncertainty Modeling in Operation
Assessment

This chapter includes joint work with LTC Nicole Curtis, United States Army,

who provided the descriptions of military assessment examples.

3.1 Introduction

Operation assessment is a critical aspect of modern military operations. Comman-

ders, civilian leadership, and other stakeholders use assessment to determine progress

toward goals at various levels of national security. Recent attention to operation as-

sessment has generated discussion about how assessment practices can be improved

across all types of security-related assessment.

Narrative and standards-based approaches are considered best practices in mil-

itary operation assessment, but there is an opportunity to complement these ap-

proaches with best practices from the closely related field of evaluation theory (Arn-

hart and King, 2018). Some types of operation assessment are more directly related

to evaluation theory than other types. There is a particularly close relationship for

assessments dealing with development issues, such as assessment of peace operations,

stability operations, counter-insurgency, or security cooperation. Assessment of op-

erations with significant public opinion goals are closely related as well, including

inform, influence, and persuade (IIP) operations (Paul et al., 2015b). Assessment

of traditional kinetic and high-intensity operations differ significantly from standard

program evaluations but they do have similarities with performance monitoring, a

subset of evaluation theory.

While military assessment shares many characteristics with program evaluation

and performance monitoring, the dynamic and extreme nature of conflict environ-

ments introduces some critical areas of dissimilarity. Not every assessment will be
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able to make use of evaluation and monitoring approaches, and no assessment will

be entirely programmatic in nature. Nonetheless, the theoretical foundations and

practical guidelines developed over the past several decades of research and practice

in evaluating and monitoring military operations in Afghanistan, Iraq, and elsewhere

provide a rich source of material for assessors to use for improving the practice of

operation assessment.

In the remainder of this chapter, we discuss the connections between evaluation

theory and military assessment. In Section 3.2, we review a framework for classify-

ing evaluations and discuss four major approaches for implementing evaluations. We

also highlight different military contexts for each evaluation approach and propose a

classification of military assessment along two dimensions of evaluation (formative-

summative and qualitative-quantitative). In Section 3.3, we describe three classes

of evaluation design (descriptive, quasi-experimental, and experimental) with corre-

sponding military applications. In Section 3.4, we review qualitative and quantitative

uncertainty representations in evaluation and assessment. We conclude by summa-

rizing the relationship between evaluation theory and military assessment and by

suggesting future areas of research.

3.2 Evaluation, Monitoring, and Military Assessment

3.2.1 Evaluation Theory

The primary purpose of evaluation is to determine the value or quality of an orga-

nization, program, or policy (Fitzpatrick et al., 2011). This primary purpose directly

enables related purposes including supporting decision making, program improve-

ment, accountability, and long-term organizational improvement (Fitzpatrick et al.,

2011). All of these secondary purposes are relevant in the national security context,

but military assessments often emphasize decision making and accountability.
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For each of these purposes, there are also different approaches for conducting

evaluations. Wholey et al. (2010) suggest several continuous dimensions which define

the range of possible evaluation types, as shown in Figure 4. Fitzpatrick et al. (2011)

organize the different approaches to evaluation by grouping them into four major

categories: expertise-oriented, program-oriented, decision-oriented, and participant-

oriented. These categories represent alternative ways of framing the context and

purpose of evaluation. Assessors may find different categories appropriate for different

assessment problems or find that a blended approach is most appropriate. We consider

each of the four approaches in more detail in the following subsections.

Formative Summative

Ongoing One-shot

Objective observers Participatory

Goal-based Goal-free

Quantitative Qualitative

Problem orientation Non-problem

Figure 4. Dimensions of evaluation, adapted from Wholey et al. (2010)

3.2.1.1 Expertise-oriented Evaluation

Expertise-oriented evaluation is the earliest and most straightforward type of eval-

uation (Fitzpatrick et al., 2011). In this evaluation paradigm, an expert or group of

experts studies a program or organization and judges its quality.

Fitzpatrick et al. (2011) further classify expertise-oriented approaches as formal

review systems, informal review systems, ad hoc panel reviews, and ad hoc indi-

vidual reviews. Formal review systems have a structured review process, published

standards, multiple expert reviewers, and the ability to affect the status of the orga-

nization under review (Fitzpatrick et al., 2011). At the other end of the spectrum,

ad hoc individual reviews lack both formal structure and published standards and
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are often conducted by a single reviewer without significant ability to change the

organization or process under evaluation.

Although the formal review system is the most comprehensive of the expertise-

oriented approaches, each of the less developed approaches can be appropriate under

certain circumstances. For instance, a single expert brought in as a consultant can

provide meaningful and expedient assessment of basic processes. Whether ad hoc or

formalized, expertise-oriented evaluation relies completely on highly competent and

objective reviewers. The reviewer plays the role of a critic who describes, interprets,

and evaluates the system under observation (Eisner, 1976). The primary contribution

of the critic is not the final judgment, but the ability to highlight important aspects

of the program or system which may not be clear to non-expert observers (Fitzpatrick

et al., 2011).

In the development of new weapon system capabilities, military analysts have used

wargaming as a method to develop operational concepts, tactics, techniques, and pro-

cedures. These wargames often use vignettes within an approved Defense Planning

Scenario to provide qualitative assessments and observations that are later integrated

into either a closed-form or human-in-the-loop simulation (N. Curtis, personal com-

munication, July 10, 2018). Another example of expertise-oriented evaluation is a

Rehearsal of Concept (ROC) Drill which assessors use to examine the flow of forces

into an area of operations during a crisis (N. Curtis, personal communication, July

10, 2018). Both methods rely on several subject matter experts across multiple func-

tional roles to help commanders refine requirements and concepts while identifying

risks.

By relying on expert judgment, the expertise-oriented approach addresses holistic

factors that may be difficult to consider with other approaches. However, the method

is also vulnerable to personal biases and lack of evaluation expertise. While orga-
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nizations often use this approach in practice and academia has formally studied it,

modern evaluation theory typically does not recommend expertise-oriented evaluation

(Fitzpatrick et al., 2011).

3.2.1.2 Program-oriented Evaluation

Program-oriented evaluation shifts the focus from expert reviewers to objective

standards based on the goals of the program. Program-oriented evaluation includes

both objective-oriented evaluation and theory-driven evaluation as sub-categories.

In the objective-oriented approach, evaluators specify explicit program goals, iden-

tify measures which indicate whether those goals are met, then collect and analyze

data related to the measures (Tyler, 1942). The U.S. government and the Depart-

ment of Defense have conducted objective-oriented evaluation in a variety of contexts

(Fitzpatrick et al., 2011; National Performance Review, 1993; Office of Management

and Budget, 2004). This classic approach to evaluation remains popular but has

been “largely discredited by professional evaluators today” (Fitzpatrick et al., 2011,

p. 155). The major limitation of objective-oriented evaluation is that it does not

enable the evaluator to determine why a program is succeeding or failing (Fitzpatrick

et al., 2011). A secondary limitation is that only the identified objectives will be

considered in the final judgment, which will necessarily be incomplete (Fitzpatrick

et al., 2011).

Theory-driven evaluation, also called theory based evaluation, addresses this con-

cern. In theory driven evaluation, the evaluator explicitly records the logical structure

of the program. There are various methods of defining the program theory, but a com-

mon approach is to define a logic model that includes inputs, actions, outputs, and

outcomes (Fitzpatrick et al., 2011). There is a critical distinction between outputs,

which are the immediate products of the program, and outcomes, which are the de-
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sired results, categorized as near, medium, or long term (Fitzpatrick et al., 2011).

Theory-driven evaluation also requires measurement of the implementation environ-

ment (Fitzpatrick et al., 2011). By measuring both outcomes and the environment,

evaluators can determine whether the program was implemented as designed. If not,

it represents a failure of implementation. If it was implemented according to plan

but the desired results are not achieved, the program theory may be inadequate or

the environment may be different than expected. This approach helps the evaluator

to identify why the program is succeeding or failing.

Objective-oriented evaluation is a common approach in military assessments, ex-

emplified by standards-based assessment (Arnhart and King, 2018). Assessors often

augment the standardized bins in this approach with a written narrative that cap-

tures additional nuance and risk to account for the limitations of objective-oriented

methods. Recent military assessments have also used theory-driven evaluation. Mar-

quis et al. (2016) develop an assessment framework for defense security cooperation

using an evaluation theory foundation. Paul et al. (2015a) also use a theory-driven

framework for IIP evaluation. In official guidance, Department of Defense instructions

explicitly recommend the use of evaluation theoretic concepts in defense assessments

(Office of the Under Secretary of Defense for Policy, 2017). Conversely, the evaluation

community has also recognized the link between military assessment and evaluation

(Williams and Morris, 2009).

3.2.1.3 Decision-oriented Evaluation

While similar to program-oriented evaluation, the decision-oriented evaluation ap-

proach focuses on producing evaluations that impact decisions. A rigorous evaluation

is not useful if its recommendations are not implemented, but there are many chal-

lenges associated with translating an evaluation report into action. These challenges
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include methodological factors and the desirability of the findings, but the two most

important factors are political considerations and the presence of a senior leader who

supports the evaluation (Patton, 1994). Given these findings, utilization-focused eval-

uation primarily focuses on identifying and integrating a senior decision maker into

the evaluation process (Patton, 2008). Although this support can make the evaluation

more likely to successfully influence decisions, it can be difficult to find a senior leader

with both the interest and the power to support the evaluation (Patton, 2008). Fur-

thermore, organizational decision making typically involves multiple decision makers

and bureaucratic systems, which may limit the positive impact of a single decision

maker involved in the assessment process (Weiss and Mark, 2006).

Although theory-driven evaluation has largely replaced objective-oriented evalu-

ation, performance monitoring is still relevant today as a decision-focused evolution

of classic objective-oriented evaluation. Performance monitoring continuously col-

lects data on outputs and outcomes with a focus on program improvement (formative

evaluation) (Fitzpatrick et al., 2011). This type of monitoring is limited to data that

is easy and inexpensive to collect, so it often focuses on a small set of quantitative

measures (Fitzpatrick et al., 2011). However, performance monitoring plays a useful,

complementary role to traditional theory-driven evaluations, which typical provide

feedback at a slower rate.

Performance monitoring is particularly useful in a military context at the tactical

levels or for time-sensitive decision making. Ideally, analysts can automate this type of

data collection for presentation in a dashboard or other continually accessible format.

The data reporting mechanism should include a quantitative estimate of uncertainty

along with the reported value. There is also overlap between performance monitoring

from an assessment perspective and routine military intelligence gathering.

Military commanders, who are responsible for every Soldier and civilian assigned
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to the installation, often use decision-oriented evaluations when assessing installation

“campaign plans” (N. Curtis, personal communication, July 10, 2018). Similar to

campaign plans for military operations, these installation campaign plans have specific

objectives and tasks with associated metrics that assess outcomes with respect to a

defined end state (N. Curtis, personal communication, July 10, 2018). This continuous

monitoring allows commanders to shift resources to activities that need improvement.

Installation level campaign plans include programs such as Soldier Sponsorship and

Inprocessing, Partners in Education, and Suicide Prevention (N. Curtis, personal

communication, July 10, 2018).

Another example of the military’s use of decision-oriented evaluation is in sui-

cide prevention training effectiveness assessment. One Army installation funded a

civilian suicide intervention training program as part of their suicide prevention ef-

forts (N. Curtis, personal communication, July 10, 2018). Upon completion of the

two-day workshop, participants completed a survey which primarily provided results

to the contractor who developed the program (N. Curtis, personal communication,

July 10, 2018). The installation commander directed an assessment of the train-

ing in which analysts examined over 11,000 participants’ data (N. Curtis, personal

communication, July 10, 2018). The positive feedback and high level of participant

satisfaction resulted in recommendations for continued program funding (N. Curtis,

personal communication, July 10, 2018). Additionally, the results helped the program

vendor tailor the instruction for a military audience and informed the installation’s

higher headquarters of an effective alternative to the current mandated program (N.

Curtis, personal communication, July 10, 2018).
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3.2.1.4 Participant-oriented Evaluation

Participant-oriented evaluation differs significantly from program-oriented and

decision-oriented evaluation. There are many variants of participant-oriented eval-

uation but, in all of these approaches, participants have power to influence the eval-

uation. Practical participatory evaluation (Cousins and Earl, 1992) and stakeholder-

based evaluation (Mark and Shotland, 1985) are two of the most relevant approaches

to defense assessments. Fitzpatrick et al. (2011) characterize participatory evalua-

tion using three primary criteria: the degree to which participants have control over

the evaluation process, the breadth of stakeholders involved in the process, and the

depth of participation of those stakeholders. Practical participatory evaluation and

stakeholder-based evaluation both moderately expand the control, breadth and depth

of stakeholders while maintaining significant control with the evaluator (Fitzpatrick

et al., 2011). Stakeholders assist in determining the overall structure of the evalua-

tion and in collecting and analyzing data. The evaluator’s role includes acting as a

technical consultant and negotiator among the stakeholders (Fitzpatrick et al., 2011).

There are several strengths and limitations for participant-oriented approaches.

They involve the end users of the program and may make eventual adoption of the

evaluation recommendations more likely (Fitzpatrick et al., 2011). This approach

is one way to address the challenge of political or bureaucratic factors limiting an

evaluation’s effectiveness. Sustained participant involvement can also enhance the

evaluator’s understanding of the program, leading to a better evaluation (Fitzpatrick

et al., 2011). However, participant-oriented approaches can be difficult to implement

if there are many stakeholders or if the stakeholders are difficult to access. Senior

decision makers may also perceive participatory evaluation as illegitimate due to bias

or incompetence (Fitzpatrick et al., 2011). The participants who plan and execute the

program are involved in the evaluation, which may bias the results. The participants
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are also not trained in evaluation, so their increased control over the evaluation process

may degrade the rigor of the results.

Military analysts have used participant-oriented evaluation to assess brigade-level

home station training. On one Army installation, analysts assessed a new capability

that provided standardized home station training through live, instrumented, and

collective training experiences (N. Curtis, personal communication, July 10, 2018).

Stakeholders at the Army Service Component Command participated in developing

the scope of the analysis and the Soldiers conducting the training provided feedback

through questionnaires, focus group sessions, and key leader interviews (N. Curtis,

personal communication, July 10, 2018). Participants’ perceptions of the training ex-

perience informed the analysis that provided recommendations for continued funding

and implementation of an instrumented home station training capability (N. Curtis,

personal communication, July 10, 2018).

3.2.2 Military Assessment

Military assessments take a wide variety of forms which can be categorized by

each of the four approaches discussed previously and along the six dimensions of

evaluation. Although practice often deviates from established doctrine and policy, of-

ficial military guidance is available through Department of Defense instructions and

military doctrine at the service, joint, and coalition levels (Office of the Under Sec-

retary of Defense for Policy, 2017; North Atlantic Treaty Organization, 2015; United

States Joint Chiefs of Staff, 2017a,b; Joint Staff J-7, 2011; United States Joint Chiefs

of Staff, 2015b,a; Office of the Chief of Naval Operations, 2013; Department of the

Army, 2014, 2017). A partial list of military assessments includes:

• national strategic assessment

• country assessment
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• security cooperation program assessment

• global campaign assessment

• contingency campaign assessment

• theater campaign assessment

• operational campaign assessment

• operation assessment

• intelligence assessment

• training assessment

• operating environment assessment

• after-action review (Military Operations Research Society, 2018).

Using the dimensions of evaluation developed by Wholey et al. (2010), the ma-

jority of military assessments are problem oriented and goal-based. Conversely, most

military assessments can be either ongoing or one-shot and either objective or partic-

ipatory. However, the remaining two dimensions provide a useful distinction among

the different types of assessment applications. Formative evaluation focuses on im-

proving the task or operation which is under assessment, whereas summative evalua-

tion focuses on evaluating the effectiveness of a task or operation after it is complete

(Wholey et al., 2010). Quantitative methods analyze numerical data, while qualitative

methods address narrative responses, images, and other unstructured data (Wholey

et al., 2010). As Figure 5 indicates, assessments can employ blended or intermediate

methods along each dimension. The distinction between quantitative and qualitative

methods, in particular, has diminished as modern analytic methods become more so-

phisticated at addressing unstructured data. For instance, text mining of open-ended
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survey responses can produce a quantitative sentiment analysis of unstructured nar-

rative data. The distinction between quantitative and qualitative data and methods

is not always clear, and most assessments use both types of data and both types of

methods.

Figure 5 shows a notional, relative categorization of each of the military appli-

cations along the two primary dimensions. Note that the precise location of each

assessment type is not fixed and may change depending on context, but the overall

relative relationships suggest different areas of emphasis for each type of assessment.

National Strategic
Country

Operations

Operational Campaign

Theater Campaign

Contingency Campaign

Global Campaign

Security Cooperation

Intelligence

TrainingStatus

Effectiveness Battle Damage

QuantitativeQualitative

Summative

Formative

Figure 5. Types of military assessments

3.3 Assessment Design and Analysis

Within any of the overarching evaluation approaches discussed previously, select-

ing the assessment design is a key part of planning an effective assessment. The major

classes of assessment designs are descriptive, quasi-experimental, and experimental

(Fitzpatrick et al., 2011). The design choice directly affects the conclusions that can
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be drawn from the assessment. The underlying trade-off is that designs support-

ing causal claims are usually more expensive and logistically difficult to implement.

Assessment resources may be limited with respect to time, available personnel, or

funding. The resource constraints influence the type of assessment than can be im-

plemented. If there are severe restrictions on the time available for evaluation, a hasty

assessment might use only qualitative, narrative methods. If there are few restrictions

on the time available for evaluation, a deliberate assessment can build a full evalu-

ation of the operation using robust quantitative and qualitative methods. If a full

experimental design is not feasible, but descriptive or quasi-experimental evidence

supports a conclusion, Wholey et al. (2010) suggest using the term plausible attribu-

tion instead of stronger causal terms. The following subsections discuss each major

class of assessment design in more detail, drawing connections between Chapter 15

(Fitzpatrick et al., 2011) and military assessment.

3.3.1 Descriptive Designs

Descriptive designs are a comparatively low cost way to collect important infor-

mation on the state of the program and its outputs and outcomes. While descriptive

designs cannot answer strategic questions related to root causes, they are critical for

providing a basic level of understanding for the assessment. If a descriptive design

indicates a desired outcome is not being achieved, it may avoid the need for a lengthy

causal assessment. Descriptive designs are particularly useful for performance moni-

toring. The main types of descriptive designs are case studies, cross-sectional designs,

and time-series designs.
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3.3.1.1 Case Study

Practitioners frequently use case study methods. These designs allow for an in-

depth exploration of a single or small number of cases but do not provide enough

information to generalize to other environments (Fitzpatrick et al., 2011). Case stud-

ies can use both quantitative and qualitative methods but typically focus on qualita-

tive methods. The primary qualitative methods are observations, interviews, and the

study of existing documents (Fitzpatrick et al., 2011). In some cases, quantitative

surveys or statistical analysis of existing data is also appropriate (Fitzpatrick et al.,

2011). The output of a case study design is typically a narrative report providing

a detailed discussion of the case or cases studied. Assessors select the cases under

study because they are either typical or exceptional, whether successful or unsuc-

cessful (Fitzpatrick et al., 2011). If the operation under assessment is small enough,

a case study may provide all the needed information. Stake (1995) and Yin (2009)

provide detailed guides for implementing case studies.

While case studies are primarily descriptive, Yin (2009) argues that case studies

can play a critical role in causal investigations. Experiments often impose artificial

restrictions on the number of variables investigated or the environment in which

the study is performed (Yin, 2009). Case studies address these problems directly by

investigating the full complexity of a real-world case. Case studies are rarely sufficient

for making causal conclusions, but they can play an important complementary role

(Cook et al., 2002).

In the military context, assessors frequently use a case study approach. A case

study may select one geographic area to study in depth using phone interviews with

operational forces and existing after action reports (AARs). The case study some-

times includes specific interview questions or quantitative survey questions on the

AAR form. If possible, the assessor might travel to the location or unit under study
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to get a better understanding of the performance of the unit.

Assessors can also use case studies preemptively with trial runs. For instance,

the results of an ROC Drill that assessed the flow of military units into the theater

of operation primarily provided qualitative feedback to the Combatant Commander

(N. Curtis, personal communication, July 10, 2018). This feedback was similar to an

AAR, highlighting specific issues or changes in the environment not known during

the development of the deployment plan. Specifically, poor runway conditions in a

partner nation highlighted a need for repairs that would cause a delay in large cargo

aircraft arrival into theater (N. Curtis, personal communication, July 10, 2018). This

insight led to a change in the sequence of equipment and personnel arriving in theater

and planners then used the results of the ROC Drill to refine the plan and associated

deployment models (N. Curtis, personal communication, July 10, 2018).

Another example of a case study in a military context is the use of vignettes, based

on a strategic-level Concept of Operations or Defense Planning Scenario (DPS) (N.

Curtis, personal communication, July 10, 2018). Because these are strategic-level op-

erations, analysts examining new weapon system capabilities often develop vignettes

appropriate to the scope of the assessment. An assessment of a new unmanned aerial

system controlled by a company formation may only need to evaluate its capabili-

ties within a battalion-level mission set (N. Curtis, personal communication, July 10,

2018). Focusing on tactical operations and specifically decisive action, “the continu-

ous simultaneous combination of offensive, defensive, and stability or defense support

of civil authorities’ tasks” (Department of the Army, 2017) requires a greater level

of detail than what is found in the DPS. Due to resource and time constraints, these

constraints may limit the number of vignettes considered by the assessment.
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3.3.1.2 Cross-Sectional

The cross-sectional design is a basic design used to collect information across

a variety of subjects at a specific point in time (Fitzpatrick et al., 2011). Cross-

sectional designs typically use surveys on opinions and behaviors, but they can also

employ other data collection techniques (Fitzpatrick et al., 2011). The design can

include all subjects of interest or a subset of the full population. The design typically

breaks subjects into interesting sub-groups (Fitzpatrick et al., 2011). It is important

to include enough questions or data items to identify relevant sub-groups. Given

the broad nature of cross-sectional designs, they can identify problems or help to set

priorities for further exploration in case studies (Fitzpatrick et al., 2011).

Military applications frequently use this type of design. Using a cross-sectional

design is valuable when comparing training feedback from diverse populations. For

example, the perceived quality of a military training event may vary between junior

enlisted soldiers in an infantry company and the junior enlisted soldiers in an infantry

brigade headquarters due to their markedly different operational roles (N. Curtis,

personal communication, July 10, 2018). Likewise, a junior enlisted soldier will have a

different experience than a senior officer (N. Curtis, personal communication, July 10,

2018). Differentiating among multiple military occupational specialties, ranks, and

units is useful to understand variance in the data and allows analysts the opportunity

to tailor recommendations for specific populations. Figure 6 displays this type of

cross-sectional data by sub-group using survey data from the Iraq Index (O’Hanlon

and Campbell, 2007). The figure communicates uncertainty in the category values

with error bars representing the 95% confidence intervals for each sub-group, which

show more uncertainty in the Kurdish polling data than in the data for the other

population groups. Note that this continuous summary would not be appropriate

for ordinal data. The major limitation of cross-sectional designs is that they do not
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provide descriptive data for trends over time.
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Figure 6. Cross-Sectional data with uncertainty (O’Hanlon and Campbell, 2007)

3.3.1.3 Time-Series

Time-series designs, also called longitudinal designs, provide the data necessary

to describe trends over time (Fitzpatrick et al., 2011). The key decisions in a time-

series design are the frequency of collection and the total amount of data to collect

(Fitzpatrick et al., 2011). It is important to ensure that the data quality is consistent

over the design time frame, so any trends identified reflect changes in the environment

rather than changes in data collection methodology (Fitzpatrick et al., 2011).

While time-series designs are relatively straightforward, the interpretation of time-

series data can be difficult, even without considering causation. In some cases it may

be difficult to distinguish between noise and a trend in the data. Seasonality is also
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common in time-series data and may be difficult to identify, particularly if there are

multiple seasonal components with different cycles.

The major barriers to time-series designs in military operation assessment are

the dynamic nature of operational objectives and the frequent turnover of person-

nel. Different decision makers may be interested in different strategic questions, or

the mission may change rapidly enough that historic data are no longer relevant. If

available, pre-existing historical data can mitigate these challenges. Despite these

challenges, time-series designs are common and provide a useful descriptive compo-

nent in most assessments. When presenting multiple descriptive time-series together,

it is important to accurately represent the limitations for assigning causation. Figure

7 shows a sample presentation of time-series data. This plot shows smoothed data

with uncertainty represented by a 95% confidence interval, using Iraq Index data for

national electricity generation (O’Hanlon and Campbell, 2007). The uncertainty level

for this data set is relatively low and stable. In some cases, the raw data may be more

appropriate.

The need for baseline data in time-series analysis combined with the frequently

shifting goals in a military context suggest that repeated data collection on indicators

not currently of interest, but which may become important, is a useful task. Clearly,

data collection and storage have associated costs, but analysts should consider both

the current utility and the potential utility of data for future assessments in the

cost-benefit analysis.

3.3.2 Quasi-Experimental Designs

Although describing the operational effects and the operating environment is a

critical part of assessment, strategic questions often include a causal component. For

instance, one of the strategic questions cited in Arnhart and King (2018), “To what
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Figure 7. Time-Series data with uncertainty (O’Hanlon and Campbell, 2007)

extent have military operations deterred the actions of terrorist groups?”, seeks to

determine whether terrorist groups were deterred (descriptive) and if military actions

caused the deterrence (causal). Unfortunately, causal designs are typically more dif-

ficult to implement. This difficulty motivates the use of designs that provide more

information than descriptive designs without incurring the full costs of a causal design.

Although the terminology of “descriptive” and “causal” suggests a binary distinction,

the rigor and strength of assumptions associated with a design are continuous at-

tributes. The main types of quasi-experimental designs are comparison group designs

and interrupted time-series designs.

3.3.2.1 Comparison Group

The comparison group design is an extension of the cross-sectional design. This

design compares subjects exposed to the operation or program under study with sub-
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jects that have not been exposed (Fitzpatrick et al., 2011). However, the design se-

lects quasi-control subjects from pre-existing groups (e.g., neighboring regions) rather

than selecting them randomly. Ideally, the experimenter will measure both the target

group and the quasi-control group on relevant indicators, both before and after the

operation or program (Fitzpatrick et al., 2011). The target group and quasi-control

group should be similar with respect to the critical pre-intervention measures. Col-

lecting additional descriptive data about both groups can also help to establish their

similarity (Fitzpatrick et al., 2011).

The major limitation to the comparison group method is that there may be sys-

tematic differences between the two groups. If the two groups have different outcomes

after the intervention, the assessor will not be able to determine whether the difference

is due to the intervention or to the underlying group differences (Fitzpatrick et al.,

2011). The groups may have differences not captured in the indicators and descrip-

tive measures, or they may start the same but diverge over time (Fitzpatrick et al.,

2011). This type of design is also vulnerable to spill-over effects, where the primary

operation incidentally affects the quasi-control group (Fitzpatrick et al., 2011).

In the dynamic military environment, it can be difficult to identify a suitable quasi-

control group. Geographic regions provide a natural grouping if there is sufficient

similarity between groups and there are few spill-over effects. Figure 8 provides a

sample presentation of comparison group results, using survey data from an ABC

and BBC news poll (ABC News, 2007). The presentation is similar to the cross-

sectional presentation, but with each category split into the primary and comparison

groups. In this analysis, there is more uncertainty in the Southwest Afghanistan

region because it relies on a smaller subset of data than the combined regions. As in

the cross-sectional case, this type of display is only appropriate for continuous data.

There is a wide variety of other data visualization options for both continuous and
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ordinal data (Wickham, 2016).
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Figure 8. Comparison group data with uncertainty (ABC News, 2007)

3.3.2.2 Interrupted Time-Series

The interrupted time-series design requires repeated data collection before and

after an event of interest (Fitzpatrick et al., 2011). This type of design often takes

advantage of pre-existing historical data. It is important to have a sufficient length

of time-series data collected prior to the intervention. Military plans often target

operations to address problems which have recent poor performance, so if the his-

torical time-frame is too short, the interrupted time-series design may falsely show

76



improvement when the data are varying within usual parameters (Fitzpatrick et al.,

2011). If the characteristics of the time series data taken after the event are different

than the characteristics of the time series data collected before the event, there is

some evidence that the event impacted the data. Additionally, the time-series may

differ in average value, trend, seasonality, or noise.

However, some other synchronous, outside factor may have also impacted the

data. This concurrent factor may be an uncontrolled environmental factor or other

synchronous operations. Another complicating factor in interpretation is that the

event under study is often not instantaneous and the impacts of the event may be

lagged (Fitzpatrick et al., 2011). Similarly, the impacts of other environmental fac-

tors may have lagged effects on the post-event time-series. These limitations make

interrupted time-series a quasi-experimental design rather than a full experimental

or causal design.

Interrupted time-series designs are a form of comparison with a baseline, where

the pre-event time-series can be considered the baseline performance. For instance,

to demonstrate value in a country assessment framework, the time-series value of

a meaningful outcome indicator before and after a funding program provides some

evidence that the funding led to improved outcomes (although still not definitive

evidence). Reporting the value of the indicator only after the funding provides much

weaker evidence of improvement due specifically to the funding. Figure 9 provides an

example of the results from an interrupted time-series of civilian casualty data from

Iraq (O’Hanlon and Campbell, 2007; Conflict Casualties Monitor, 2018). The dashed

red line indicates the deployment of troops under the “surge” strategy, which coincides

with a sharp decline in civilian casualties. Since this analysis is quasi-experimental,

we cannot definitively attribute the decline in violence to the surge but the evidence

suggests a plausible relationship (Saie and Ahner, 2018). We discuss the issue of
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uncertain attribution in further detail in Section 3.4.1. Note that this plot shows raw

data, but a smoothed version similar to Figure 7 is another display option.
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Figure 9. Interrupted time-series data (Conflict Casualties Monitor, 2018)

Operation assessments examining policy implementation and effectiveness may

use interrupted time-series. Military commanders often track data derived from sex-

ual assault and sexual harassment reports. Data elements include metrics such as

the number of incidents, the type of report, number of incidents involving alcohol,

gender of victim, and the time of day the incident occurred (N. Curtis, personal com-

munication, July 10, 2018). In some instances, there may be several years of data.

With historical data, analysts can assess the impacts of the new policy by examining

data before and after the policy was enacted. Analysts must also be cautious in using

historical data because the data collection process or the definition of data elements

may have changed over time.
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3.3.3 Experimental Designs

Experimental designs provide stronger evidence than quasi-experimental designs

or descriptive designs. The purpose of an experiment is to determine the causal

relationship between a suspected cause and effect (Cook et al., 2002). The ideal

causal test is to compare reality to the counterfactual, an alternate reality without

the suspected cause (Cook et al., 2002). Because a true counterfactual is impossible,

experiments and quasi-experiments attempt to approximate the counterfactual. The

primary distinction between experiments and quasi-experiments is that experiments

use randomization (Cook et al., 2002). Randomization is a key feature of experi-

ments because it protects against unknown biases. See Cook et al. (2002) for a

detailed discussion of causal inference and the distinction between experiments and

quasi-experiments. Many strategic questions seek to determine causes, which leads

to experimental designs as the strongest form of evidence available.

In addition to the cost and logistical difficulty of experiments, sometimes experi-

ments are inappropriate if assessors expect the operation or program to be much more

effective than current operations. In this case, purposefully limiting the scope of the

operation to gain more information about the causal question may be unattractive.

There is a delicate balance between experimentation to determine what is effective

and exploitation of methods known or expected to be effective. The primary risk

of fully exploiting a promising alternative without experimentation is that expecta-

tions of effectiveness might turn out to be incorrect. The main types of experimental

designs are posttest-only designs and pre-post designs.

3.3.3.1 Posttest-only

The posttest-only design randomly assigns subjects to treatment groups and com-

pares them against a pre-determined measure after treatment (Fitzpatrick et al.,
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2011). Some groups may include no treatment or the status quo treatment (Fitz-

patrick et al., 2011). In the simplest case, there is a comparison between a treatment

and no treatment, but some experiments may involve several different factors with

varying treatment levels. In this case, analysts should use design of experiments to

efficiently collect information on all factors simultaneously. For more details, see the

work by Montgomery (2017).

Although referred to as a posttest, assessors can use surveys, interviews, obser-

vations, or data collection to derive the comparison measure and may also include

multiple measures (Fitzpatrick et al., 2011). It is important to ensure treatment

groups are kept as independent as possible during the operation or program, so the

treatment for one group does not affect another group (Fitzpatrick et al., 2011).

Test and evaluation frequently uses this type of assessment, but it also relevant for

military assessment. In the suicide intervention training program one Army installa-

tion implemented, Soldiers completed a 20-question survey at end of the workshop (N.

Curtis, personal communication, July 10, 2018). Of the 11,000 soldiers who partici-

pated in the workshop, analysts compiled approximately 2,700 responses, randomly

selected over a 14-month period (N. Curtis, personal communication, July 10, 2018).

Soldiers answered questions requiring open-ended responses as well as questions that

included Likert-style agreement scales (e.g., strongly disagree, disagree, neutral, agree,

strongly agree) (N. Curtis, personal communication, July 10, 2018). These questions

measured overall satisfaction of the training and perceived preparedness to intervene

when someone expresses suicidal ideation (N. Curtis, personal communication, July

10, 2018).
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3.3.3.2 Pre-Post

The pre-post experimental design is similar to the posttest-only design, but it

adds a pretest for the treatment and control groups (Fitzpatrick et al., 2011). Again,

the pretest terminology refers generically to any measure or set of measures taken

before the operation or program. Although the design randomly assigns subjects to

groups, the groups are sometimes small or lose members over the treatment period.

The purpose of the pretest is to establish equivalence between the groups on the

measures considered (Fitzpatrick et al., 2011). The pretest can also provide data for

a statistical correction for changes in each group’s composition over time (Fitzpatrick

et al., 2011).

In the data analysis phase, this design supports a comparison between the posttest

results for the treatment group and the control group. For operations or programs

with lengthy implementation periods, it does not support a comparison between the

pretest and posttest of the treatment group (Fitzpatrick et al., 2011). The change

from the pretest to the posttest may be caused by the treatment or by outside factors.

The same limitations that apply to interrupted time-series apply here, but magnified

by the restriction to a single pretest measurement and a single posttest measurement

(rather than a full time-series).

Although this is the most rigorous test design and provides the strongest evidence

for answering causal strategic questions, the costs in terms of time and funding are

high. In some cases, when the strategic question is critical to the mission and there

are sufficient resources and support, a pre-post design may be appropriate. In some

domains, for instance IIP operations, it may be more feasible to conduct such designs.

Digital social media services are amenable to random selection of groups to receive

different information campaigns and it can be relatively easy to collect opinion and

demographic data before and after the operation.
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3.3.4 Assessment Feasibility

The designs discussed in the previous sections are usually costly to implement. In

some cases, the value the assessment provides to decision makers does not justify the

organizational effort required to conduct the assessment. This problem is particularly

relevant for summative assessments. Wholey et al. (2010) suggest that prior to

beginning an assessment, the following criteria should be met:

• program goals are agreed on and realistic

• information needs are well defined

• evaluation data are obtainable

• intended users are willing and able to use the evaluation information.

If these criteria are not met, assessors can use exploratory evaluation to refine goals

and information needs and to build support for a full assessment. Table 3 summarizes

several approaches to exploratory assessment, with further details available in the

work by Wholey et al. (2010).

Table 3. Exploratory evaluation approaches, adapted from Wholey et al. (2010)

Approach Purpose Staff Months

Evaluability assessment
Evaluate readiness, clarify

goals, focus evaluation
0.5 to 3

Rapid feedback evaluation
Estimate effectiveness and
uncertainty, produce tested

designs, focus evaluation
3 to 12

Evaluation synthesis Synthesize prior studies 1 to 3

Small-sample studies
Estimate effectiveness,

produce tested indicators
0.5 to 12
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3.4 Uncertainty in Assessments

Each of the designs discussed in Section 3.3 introduces uncertainty into the assess-

ment in different ways. Measuring and communicating uncertainty is a difficult but

critical part of operation assessment. In an engineering setting, traditional quanti-

tative techniques are available for uncertainty quantification. Analysts can use these

tools to measure uncertainty for single elements and to aggregate uncertainty across

systems or systems of systems. Systems models are an important part of effective

operation assessment at some levels, particularly for tactical assessment and terminal

objectives. However, engineering models are inadequate to represent the full range

of complex social and environmental aspects of operation assessment and program

evaluation. Unfortunately, these difficult aspects are critical to successful operation

assessment. While any model simplifies reality to enable timely decision making, the

social-science models discussed here are better able to capture critical human aspects

of warfighting. One trade-off for this increased capacity to represent complexity is

that it is less straightforward to measure and communicate uncertainty for qualitative

models.

The most effective operation assessments use both quantitative and qualitative

approaches, also known as mixed methods. Next, we discuss approaches to addressing

uncertainty for qualitative methods, quantitative methods, and mixed methods.

3.4.1 Qualitative Uncertainty

For causal strategic questions, there are three sources of structural uncertainty.

First, internal validity addresses the degree to which the experiment demonstrates

causation in addition to correlation (Cook et al., 2002). Second, construct validity

addresses the degree to which the actual experiment reflects the intent of the strategic

question (Cook et al., 2002). For instance, deterrence is a multi-faceted, complex
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phenomenon that cannot be fully studied in a single assessment. While a strategic

question might be interested in deterrence, an assessment study typically uses proxy

measures to evaluate the level of deterrence. Third, external validity addresses the

degree to which the results of an assessment of a specific instance generalize to other

populations, operating environments, program implementations, and outcomes (Cook

et al., 2002).

Uncertainty for these structural questions is typically both qualitative and sub-

jective. However, it is a critical component of the overall uncertainty associated with

the assessment. Assessors often address this type of qualitative uncertainty in the

constraints, limitations, and assumptions of a study. Although this uncertainty is

expressed qualitatively, it affects designs with either qualitative or quantitative data.

The most comprehensive way to communicate qualitative uncertainty is with a de-

tailed narrative discussion addressing the complexity of the assessment environment

and communicates the uncertainty in practical, decision-oriented terms. However,

narrative reports are time consuming to read and may be at risk of being unused.

One potential solution is to produce an executive summary highlighting the most im-

portant and unexpected aspects of the qualitative uncertainty. Another solution is to

summarize the sources of uncertainty for each type of validity in a table and identify

the most important contributors. The limitation of these summary methods is that

they fail to convey important detail and may mask the true level of uncertainty. The

assessment of qualitative uncertainty is necessarily subjective and is itself uncertain.

For instance, the narrative description of the internal validity may describe the valid-

ity as high, when in fact there is an unexpected relationship that makes the validity

low. Both the executive summary and the table summary entail an unavoidable loss

of detail, but may be required to communicate results quickly. In the following sub-

sections, we discuss internal validity, construct validity, and external validity in more
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detail.

3.4.1.1 Internal Validity

Internal validity is the most basic form of qualitative uncertainty. To demonstrate

full internal validity, assessors need to show the cause precedes the effect, there is an

appropriate statistical relationship between the cause and effect, and no other factors

explain the relationship between the cause and effect (Cook et al., 2002).

There are several sources of uncertainty that make it difficult to accurately eval-

uate and communicate the internal validity of an assessment. Even the relatively

simple requirement of showing precedence can be difficult if only cross-sectional data

are available (Cook et al., 2002). Cook et al. (2002) refer to the qualitative uncer-

tainty associated with precedence as ambiguous temporal precedence. However, even

in such cases, the assessor may be able to make pragmatic, documented assumptions

to help establish plausible attribution in the absence of strong internal validity re-

quired for causation. One method to mitigate the limitations of cross-sectional data

is to add a case study that illuminates the precedence relation between the suspected

cause and effect (Cook et al., 2002). While this case study will necessarily be limited,

it may provide more evidence to bolster the attribution claim.

The remaining sources of qualitative uncertainty for internal validity relate to the

need to distinguish between the hypothesized cause and other causes. We address

statistical uncertainty in Section 3.4.2.

Selection and attrition are qualitative sources of uncertainty related to the re-

quirement that treatment and control groups are similar (Cook et al., 2002). The

selection problem refers to the degree to which the treatment and control groups are

different (Cook et al., 2002). In a descriptive or quasi-experimental design, assessors

should assume that casual uncertainty due to selection exists (Cook et al., 2002). The
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randomization used to create an experimental design addresses the selection problem

probabilistically, but can still be inadequate with small sample size (Cook et al.,

2002). Attrition is a subset of selection that deals with heterogeneous changes in the

treatment and control groups over time (Cook et al., 2002). Over the course of an

assessment, it is common for subjects to leave the original study groups. The change

in group composition is also typically asymmetric between the control group and the

treatment group, resulting in groups that are no longer similar (Cook et al., 2002).

Pretesting in quasi-experimental designs helps to address both selection and attrition

uncertainty (Cook et al., 2002). Reporting attrition rates can also provide an indica-

tion of the uncertainty associated with dissimilar experimental groups (Cook et al.,

2002).

History, maturation, and regression relate to outside factors that also vary over

time and which may be confused with the treatment effect (Cook et al., 2002). His-

torical uncertainty is the possibility that any other event that occurred between the

intervention and data collection may have produced the observed outcome without

the intervention occurring (Cook et al., 2002). This limitation is a fundamental prob-

lem for determining causation because there are an unlimited number of potential

alternate explanations for any experiment. In practical application, assessors should

attempt to insulate the test from outside influence as much as possible and explicitly

address any remaining plausible outside factors that may be competing explanations.

The major subjective distinction here is the difference between plausible outside ex-

planations and unlikely explanations that are not worth considering. While assessors

can address and reduce this type of uncertainty, they can never eliminate it com-

pletely.

Maturation refers to the problem of test subjects changing over time (Cook et al.,

2002). Many stability operations take place over years, so the treatment and control
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groups will change over time, possibly in different ways. This problem is addressed

by selecting groups with similar circumstances, locations, and ages to minimize any

difference in maturation (Cook et al., 2002). Regression also refers to changes in group

characteristics over time, but is related to statistical fluctuation of the random noise

in measurements (caused by both error and underlying factors) (Cook et al., 2002).

In descriptive designs and quasi-experiments, subjects often enter the study with

extreme measurements, either due to the intervention design or due to self-selection

(Cook et al., 2002). Given the extreme measurement, following measurements are

likely to be more typical, with or without the intervention (Cook et al., 2002). If the

extreme selection is unavoidable, assessors can limit the negative effects by drawing

both the treatment and control groups from the same extreme subjects, using multiple

measures, or measuring at multiple points in time (Cook et al., 2002).

The assessment implementation can also affect the internal validity. Testing and

instrumentation are ways the act of assessing can introduce uncertainty. Participa-

tion in the assessment, through surveys, interviews or data collection, may change

the behavior of the subjects in a way that can be confused with the treatment (Cook

et al., 2002). For example, if the design selects trainees as a control group for an

existing training program, the additional data collection or observation may cause

them to work harder and performer better than they would have performed without

the observation. The instrumentation, or methods of observing and collecting data,

may also change over time. Changes in instrumentation may cause changes in obser-

vation, even in the absence of the intervention (Cook et al., 2002). Data collectors

should avoid changes in instrumentation but, if necessary, the collectors should use

both the old and the new methods to allow for comparison (Cook et al., 2002).

All of the previous methods may occur independently or in an additive or in-

teractive manner (Cook et al., 2002). Ideally, assessors can limit these sources of
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uncertainty using randomization and appropriate sample sizes. In most practical

cases, it will be necessary to investigate and respond to these issues using statistical

techniques, design changes, and case studies.

In an applied military scenario, the instrumentation of military personnel and

equipment during collective training events can increase training realism. For in-

stance, instrumentation such as Multiple Integrated Laser Engagement System (MILES)

simulates soldiers killed or wounded in action (N. Curtis, personal communication,

July 10, 2018). However, uncertainty is introduced when the instrumentation loses

power or malfunctions at some point during the training exercise (N. Curtis, personal

communication, July 10, 2018). Unreliable instrumentation may also change soldiers’

behavior and impact the manner in which they execute the mission. Observers often

adjudicate as necessary and provide qualitative assessments of internal validity to

augment the numeric data collection (N. Curtis, personal communication, July 10,

2018).

3.4.1.2 Construct Validity

Construct validity refers to the degree to which the actual experiment reflects the

intended assessment question (Cook et al., 2002). Most causal assessment questions

concern abstract concepts that are not directly measurable. If the measured aspects

of the experiment do not adequately reflect the abstract concept, an experiment that

has strong statistical and causal validity may still fail to provide strong evidence to

answer an assessment question.

Consider the strategic question, “To what extent have group members been ef-

fectively removed by counter-network actions?” (Arnhart and King, 2018). Given a

well-defined strategic question, the intent of the strategic question and the experi-

mental design might diverge with respect to the populations, operating environments,
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operational implementation, and outcomes (Cook et al., 2002).

In this case, the population under study is group members, but it is important

that the decision-maker and assessment team are in agreement about the precise

definition of group membership, beyond identifying the specific group. Does it in-

clude all self-proclaimed group members? Does it include group members that are

geographically separated or inactive? Once the experiment has been conducted, this

type of conceptual distinction can drive disagreement about the rigor or validity of

the assessment results. The decision-maker and assessment team might agree to a

restrictive definition of group members and only include some group members in the

experiment. If auditing agencies interpret group members using a broader defini-

tion, their interpretation of the study results may differ. By making these types of

abstract concepts explicit, assessors can reduce the potential for future confusion or

disagreement.

Similar considerations apply to the other components of the assessment. For the

operating environment, perhaps successful removal of group members in one geo-

graphic area increases recruitment in another geographic area. The operational im-

plementation envisioned in the assessment and the actual implementation may also

differ. The assessment may be framed with the assumption that the counter-network

operations were conducted by well-trained operators while, in practice, the training

levels of the operators may have been lower than expected. This risks attribution of

negative results to counter-network operations rather than the level of training of the

operators. Lastly, the conceptual outcomes are also vulnerable to differences between

the concept and the concrete study. Effective removal may be approximated by lack

of activity or contact with the group for a set period of time. However, if many of the

discouraged group members rejoin the group after this period, the experiment would

show an inaccurate improvement.
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The task of making the concepts in the strategic question explicit is challenging.

As in the case of ruling out alternative causal explanations, there are an unlimited

number of interpretations of abstract concepts. In practice, the construct validity of

an experiment will never be perfect, but the risk of divergence can be mitigated by

addressing several common threats. We discuss the risks most relevant to military

operations here, but Cook et al. (2002) provide a comprehensive list.

The primary threat to construct validity is an inadequate definition of the con-

cepts under study, also called inadequate explication of constructs (Cook et al., 2002).

Assessment teams should define concepts at the right level of specificity for the as-

sessment and subsequent decisions. For instance, an assessment team might use the

public perception of local governance as an indicator in an assessment of stability op-

erations. Self-reported satisfaction and satisfaction elicited through other means may

differ, so distinguishing between the two explicitly can reduce disagreement about

results.

Assessors can also reduce uncertainty concerning the relationship between the

experiment and the conceptual question by using multiple means of operational im-

plementation and outcome measurement. This addresses the mono-operation bias

and monomethod bias (Cook et al., 2002). If a high-level assessment question seeks

to determine if key leader engagements are effective, an ideal assessment design would

include several different types of key leader engagements. If the design is restricted to

military-to-military engagements, the results may not reflect the effectiveness of all

types of key leader engagements. Similarly, if an opinion-based outcome is measured

only through in-person interviews, the concept measured may be publicly-acceptable

opinion, while the addition of anonymous surveys might broaden the concept to in-

clude private opinions as well.

There are a broad class of threats to construct validity that result in an inability
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to distinguish between the desired concept and the combination of the desired concept

and the experiment. If operators, local populations, or even assessors are aware that

an experiment or assessment is taking place, their behavior will reflect both the result

of the operation and the awareness of the assessment (Cook et al., 2002).

Lastly, the risk of treatment diffusion refers to the possibility that the control

group receives some or all of the effects from the treatment (Cook et al., 2002). A

development project intended for a specific locality may directly or indirectly benefit

nearby localities, so their status as a control group might be compromised. Assessors

can mitigate the detrimental effects of treatment diffusion by measuring the degree

to which each group is impacted by the treatment or operation, whether or not they

are the intended target (Cook et al., 2002).

3.4.1.3 External Validity

External validity refers to the degree to which the experimental results generalize

to other settings of interest (Cook et al., 2002). This generalization applies to each

of the four components of the assessment: subject, operating environment, opera-

tional implementation, and outcome. While the generalization can include settings

explored explicitly in the experiment, external validity is typically concerned with

extrapolation outside the data collected in a single experiment (Cook et al., 2002).

If the assessment questions are narrow and relate only to the scenario under study,

external validity may not be a concern. However, for ongoing operations, the data

used for the assessment only cover a subset of all the cases of interest. In this sce-

nario, a qualitative estimate of how well the results will transfer to other settings is

important.

The major sources of uncertainty for external validity are the potential for un-

known interactions between the observed causal relationship and each of the four
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components of the assessment (Cook et al., 2002). Whether the subjects studied are

people, military units, regions, or any other experimental group, the subjects not in-

cluded in the experiment may react differently to the operation or program. Similar

concerns hold for operating environment, operational implementation, and outcomes.

There is also the possibility of context-dependent mediation, in which the same

causal relationship is found in different settings, but the exact process through which

the effect is achieved differs (Cook et al., 2002). For example, security cooperation

funding for a training program may cause increased effectiveness of partner nations

in security efforts. However, it might be the case that one country used the funding

to conduct more hours of training and another country used the funding to procure

better training equipment. Although the cause and outcome are the same, the specific

process differs. The best evidence for generalizability is to conduct a meta-analysis

of multiple studies, either as a coordinated program or through historical review

(Cook et al., 2002). When this type of evidence is unavailable, assessors can identify

plausible interactions or barriers to generalization through professional experience or

by comparing prior related work (Cook et al., 2002). By definition, such extrapolated

external interactions will not have statistical evidence for or against the presence of

interaction.

3.4.2 Quantitative Uncertainty

While qualitative uncertainty has a fundamental impact on the reliability and util-

ity of an assessment, quantitative uncertainty is also critical to many decisions based

on assessments. Despite the importance of both qualitative and quantitative uncer-

tainty, qualitative uncertainty analysis is more common due to resource constraints,

data limitations, and training practices. Furthermore, qualitative and quantitative

certainty are not necessarily coupled: an assessment may have high statistical and
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quantitative certainty, but low qualitative certainty.

Quantitative uncertainty includes both aleatoric uncertainty, caused by known

variation, and epistemic uncertainty, caused by incomplete knowledge (Ferson et al.,

2004). These categories are context dependent, but they can be useful for analyzing

and communicating quantitative uncertainty. The decision making literature refers to

these concepts as risk (Knight, 1921) when the probability distribution is known and

ambiguity (Camerer and Weber, 1992) when the probability distribution is unknown.

This distinction is also similar to the “known unknown” and “unknown unknown”

popularized by former Secretary of Defense Donald Rumsfeld (Rumsfeld, 2002).

Methods for analyzing risk, or statistical variation, are mature and relatively well

understood by decision-makers. Methods for analyzing ambiguity, however, are more

complex to implement and less well-known. As is the case with quasi-experimentation

in assessment design, there are approaches to partially address ambiguity when a full

treatment is not feasible. Some modern data analysis techniques are powerful but

lack associated methods for expressing quantitative uncertainty associated with the

results. For instance, sentiment analysis packages typically do not include a standard-

ized method of reporting the uncertainty associated with the calculated sentiment. It

is important to address both the risk and the ambiguity associated with any assess-

ment approach, using numerical and narrative approaches as necessary. The following

subsections discuss statistical validity and uncertainty intervals in more detail.

3.4.2.1 Statistical Validity

In traditional statistical hypothesis testing, Type 1 error is the likelihood of a false

positive, i.e., concluding that there is an effect when no effect exists. Type 2 error

is the likelihood of a false negative, i.e., concluding that there is no effect when an

effect exists. The complements of these errors are confidence and power, respectively.
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A test with high confidence and high power has a low probability of reaching a false

conclusion in either direction. Unfortunately, there is a trade-off between confidence,

power, and experiment settings.

Low statistical power increases the uncertainty in quantitative results (Cook et al.,

2002). The power of an assessment design depends on the confidence, the difference

to detect, the noise in the measurements, and the sample size (Montgomery, 2017).

Analysts typically determine the confidence level first, based on the expected costs

of false positives. Confidence levels in practical designs may be lower than those

commonly accepted in research, but if the confidence level is too low, the limited

additional information the experiment provides may not justify the cost. The power

of an assessment is sensitive to the difference the study is designed to detect. It is

easier to test for large differences. Conversely, the more noise in the measurement, the

lower the power of the design. Analysts typically interview stakeholders to determine

a meaningful detection difference. Is a one-percent decrease in violence operationally

meaningful? Is a ten-percent reduction meaningful? Measurement noise, on the other

hand, is intrinsic to the method of measurement. Lastly, analysts choose sample size

to balance power and cost. The more samples collected, the higher the power of the

experiment. There are many other ways to increase the power of an experimental

design (e.g., Cook et al., 2002).

Restriction of range can also reduce the power of a statistical test (Cook et al.,

2002). To increase power, analysts should design tests to include the conditions

which they expect to produce the largest difference in effect between groups. This

design typically involves selecting conditions that are near the extremes of the possible

values of a variable under study, while staying within normal operating limits. For the

same reasons, designs should use continuous scales whenever possible for quantitative

variables. For example, the raw miss distance of a weapon impact is preferable to
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categorizing impacts as hit or miss.

Violated assumptions of the test statistics also increase uncertainty about the

results of a statistical test, but in a less direct way (Cook et al., 2002). However,

analysts can usually evaluate statistical assumptions with both subjective expertise

and formal tests of assumptions (e.g., normality tests, correlation). Some tests are

robust to violations of assumptions while others are not.

The error rate problem exists when multiple statistical tests are conducted. The

probability of error in a single test is lower than the combined probability of error

in a group of tests because the probability of at least one error compounds. For

formal hypothesis tests, the Bonferroni correction provides a conservative method to

account for multiple tests (Cook et al., 2002). Fishing is another version of the error

rate problem that exposes the analysis to the risk of spurious statistical relationships

if enough relationships are tested (Cook et al., 2002).

Undesirable variability in the operational implementation, the operating environ-

ment, or the subjects can introduce quantitative noise that obscures the effect of

interest (Cook et al., 2002). Differences in operational implementation for different

data points may or may not be desirable. In some cases, the design may tailor the

implementation to different experimental subjects or operating environments (Cook

et al., 2002). However, if the quality of the implementation varies undesirably, it

reduces the power of the test (Cook et al., 2002).

Assessments can never control the operating environment to the same degree that

academic or field studies control their environments. To address this limitation, as-

sessors can use quantitative measures and qualitative descriptions of the actual op-

erational environment during implementation to adjust the analysis to account for

changes (Cook et al., 2002). Variability in subjects increases noise, but it can also

provide more evidence for generalization (Cook et al., 2002). If the noise associated
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with variability in subjects is too high, one solution is to block the design against

the different types of subjects (Montgomery, 2017). This technique measures the

variability in subjects separately from the random variations due to noise.

An alternative to presenting a formal hypothesis test is to report effect size, con-

fidence intervals, confidence, and power (Cook et al., 2002). This avoids the artificial

distinction between “statistically significant” and “statistically insignificant,” while

also ensuring a pragmatic treatment of effect size and power (Cook et al., 2002). In

some cases, a result may be statistically significant but practically insignificant. In

other words, the analysis might show with high confidence a very small difference

between two groups that has no impact on operations. Conversely, statistically weak

evidence of a potentially large difference in groups might justify a follow-on study.

3.4.2.2 Uncertainty Intervals

Whenever possible, assessments should avoid point estimates because they imply

an implausible level of precision. Interval estimates help to represent the quantitative

uncertainty in the results more accurately. However, interval estimates are vulnerable

to the same type of criticism as point estimates: the exact bounds of the interval are

not known precisely and are themselves subject to second-order uncertainty. But

the second-order uncertainty is also subject to third-order uncertainty and so on. In

principle, we can model arbitrarily higher orders of uncertainty, but the additional

modeling complexity quickly becomes intractable. Uncertainty models higher than

second-order models are rare.

In time-critical scenarios, a point estimate may be the best option, preferably with

a qualitative explanation of the remaining uncertainty. At the other extreme, second-

order uncertainty, represented by a set of probability intervals, is appropriate when

there is sufficient time for a detailed analysis and follow-on decisions rely critically on
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a high-fidelity model of the ambiguity. In most operation assessment scenarios, how-

ever, a first-order uncertainty model using an interval estimate provides a reasonable

trade-off between fidelity, speed, and complexity. Again, assessors can mitigate the

remaining uncertainty by addressing it qualitatively in narrative form.

Within the class of interval uncertainty representations, there are several differ-

ent options. The most familiar option is the confidence interval. In practical terms,

confidence intervals define an interval that usually contains a parameter of interest.

Strictly speaking, from a frequentist point of view, a c% confidence interval is de-

fined so that if confidence intervals were calculated from an arbitrarily large number

of independent samples, the proportion that include the true mean approaches c%

(Vardeman, 1992). The formal distinction has little bearing on practice. Furthermore,

Bayesians take the explicit view of subjective probability, using credible intervals for

the same intent but with the strict interpretation of the interval having a c% subjec-

tive probability of containing the parameter. We can also define confidence intervals

for other parameters that might be of interest (e.g., median, variance).

Prediction intervals are defined similarly, but instead of creating an interval around

a parameter, the interval is defined around the next predicted value (Vardeman, 1992).

This type of interval is appropriate when the follow-on decision depends on the pre-

dicted value of a single outcome, rather than the mean value. The prediction interval

will be larger than the confidence interval. Furthermore, as the sample size increases,

the size of the confidence interval decreases toward zero, but the size of the prediction

interval approaches the non-zero, true variability of the process (Vardeman, 1992).

In other words, the prediction interval includes the error due to sampling and the

inherent variability of the process that generates the random variables. Prediction

intervals can be interpreted from either a frequentist or Bayesian perspective, and

they can also be calculated with parametric or non-parametric methods, which make
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fewer or no distributional assumptions.

Tolerance intervals are somewhat more complex, but are often useful to decision

making. A tolerance interval contains at least p proportion of the population with

at least c% confidence (Hahn and Meeker, 2011). For example, the 95% tolerance

interval for 99% of the population gives the interval that contains at least 99% of the

population with 95% confidence. This type of interval provides statistical guarantees

for the value of groups of observations. In many cases, the tolerance interval is more

relevant to decision making than the relatively narrowly focused confidence interval.

As with the other intervals, there are both frequentist and Bayesian interpretations

and parametric and non-parametric methods.

Statistical intervals provide the best representation of interval uncertainty but,

if necessary, descriptive intervals can also give an indication of uncertainty. These

descriptive intervals are defined by percentiles, for example the 2.5% percentile and

the 97.5% percentile. Quartiles, used in box plots, and the minimum and maximum

values are special cases of sample percentiles. Although the descriptive interval is

a simple and fast way to give an indication of variability, it underrepresents the

uncertainty due to sampling error (Hahn and Meeker, 2011). The communication of

assessments with these intervals should include an appropriate qualitative explanation

of their limitations. For further details, a short introduction to statistical intervals

is available in the work by Vardeman (1992) and a full treatment is available in the

work by Hahn and Meeker (2011).

3.4.3 Mixed Methods

As in the field of operation assessment (Mushen and Schroden, 2014), the broader

evaluation literature discusses the relative merits of qualitative and quantitative meth-

ods (Fitzpatrick et al., 2011). However, the modern consensus in program evaluation
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is that a mix of both quantitative and qualitative methods tailored to the evalua-

tion questions is the most effective approach (Fitzpatrick et al., 2011; Wholey et al.,

2010). Often, the mixed-method approach includes several different qualitative and

quantitative methods for a single evaluation. Mushen and Schroden (2014) arrive

at a similar conclusion for operation assessment, although with more skepticism for

quantitative methods. Military assessments are conducted at a variety of levels for

different purposes. Accordingly, the appropriate mix of quantitative and qualitative

methods varies with the purpose.

Mixed methods support five main purposes: triangulation, complementarity, de-

velopment, initiation, and value diversity (Mathison, 2005). Triangulation uses sev-

eral different proxy measures for a single abstract concept, with the intent of broader

coverage of the concept (Fitzpatrick et al., 2011). Ideally, the evidence from the set of

proxy measures converges in a coherent way, providing stronger evidence for answer-

ing the assessment question. Complementarity has a similar motivation but seeks out

different results to highlight the complexity of the concept (Fitzpatrick et al., 2011).

The development and initiation purposes are ways of employing additional meth-

ods to improve follow-on assessments. The development approach uses additional

testing (e.g., case studies, cross-sectional data) to refine the measures (Fitzpatrick

et al., 2011). Initiation uses additional methods to find unexpected results that may

require follow-on assessments to move in an entirely new direction (Fitzpatrick et al.,

2011).

Mixed methods also address value diversity across stakeholders in the assessment

(Fitzpatrick et al., 2011). This solution is a useful way to address the different needs of

line of effort (LOE) owners, senior-decision makers, and oversight organizations. The

best method to produce data useful for LOE owners will not be the same as the best

method to satisfy summative accountability questions. Instead of choosing a single
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compromised method, the mixed method approach suggests choosing a combination of

methods that satisfy all stakeholders. The additional methods will likely enhance and

complement each other, even for the stakeholders who are not the primary consumers

for a given method. However, cost restrictions will likely limit the extent to which

the set of methods can be tailored to every stakeholder.

Given the mix of quantitative and qualitative methods, assessors need to produce a

report that synthesizes the qualitative and quantitative uncertainty from the analysis

of structured and unstructured data. Generally speaking, assessments can address

the qualitative and quantitative uncertainty separately, but it is important to avoid

false certainty in the quantitative uncertainty reporting if there is high qualitative

uncertainty in the supporting model. For instance, a confidence interval might be

tight, but if the internal validity is weak, the assessment should include a clear caveat

associated with the precise numeric result.

3.5 Conclusion

In this chapter, we highlighted the significant overlap between the practice of mil-

itary assessment and program evaluation. The framework for identifying, analyzing,

and reporting uncertainty in an evaluation context has value for the military assess-

ment context. Evaluation theory provides a broad range of assessment paradigms for

different contexts, which can be tailored to a particular staff structure or organiza-

tional level. Given an assessment paradigm, evaluation and monitoring also provide

different levels of rigor and cost for the assessment design and data collection. As-

sessors can use this set of options to determine if a descriptive, quasi-experimental,

or experimental approach is most appropriate. Then, the assessment report should

include appropriate analysis of the qualitative and quantitative uncertainty for the

selected design. A mixed-method approach that incorporates both quantitative and
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qualitative methods produces the highest-quality assessment.

The assessment designs and uncertainty framework discussed here serve two pri-

mary purposes. First, they can help assessors improve assessment conduct. The

complex implementation environment will always require modification to the basic

forms of evaluation presented here, but they can serve as an initial assessment de-

sign. The second purpose for using program evaluation and performance monitoring

as a foundation for assessment is that assessors can use them to rigorously justify

methodology choices to oversight organizations.

As the military assessment community continues to professionalize and work to-

ward improved assessment, there is opportunity for further research at the intersection

of military assessment and program evaluation. Empirical studies and meta-analysis

of previous assessments could provide concrete evidence that explores the frequency

of different types of strategic questions under consideration, what types of assessment

designs were used to answer those strategic questions, and how successfully those de-

signs answered the strategic questions. Military assessors conduct evaluation under

unique conditions, including a dynamic environment, adversarial setting, and shift-

ing political objectives. More research on best practices for assessment design and

uncertainty modeling under these conditions could also help to grow the set of tools

available to practitioners.
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IV. Robust Queue Inference Under Uncertainty

4.1 Introduction

Although queues have been well studied, much of the prior work has focused on the

performance of a queueing system given its internal structure, arrival rate, and service

rate (Asanjarani et al., 2017). In this analysis, we consider the opposite perspective:

given a queue’s input and output, we infer conclusions about its internal structure.

4.1.1 Problem Description

In particular, this research is related to adversarial applications in both military

and commercial settings. One of the primary research areas with potential applica-

tions for unobservable queue inference is cybersecurity, including security games for

modeling cyber attack and defense. In this application area, attackers use malicious

software to degrade or infiltrate a defender’s computer network. Attackers’ actions

are commonly modeled using attack trees, which often assume attacker knowledge

of defender nodes (Mauw and Oostdijk, 2005). For instance, in standard game the-

oretic cybersecurity formulations, the attacker requires full or partial knowledge of

the number of nodes in the defender’s system to develop their optimal policy. Ki-

ennert et al. (2018) provide examples of this modeling approach in cybersecurity

resource allocation games (e.g., Otrok et al. (2008) and Chen and Leneutre (2009))

and in countermeasure optimization games (e.g., Lye and Wing (2005) and Shen et al.

(2007)). To meet the assumptions for these game theoretic models and other attack

tree models, the attacker must know the number of nodes in the defender’s system.

One way for the attacker to collect this information is to use surveillance of traffic

outside the closed system to infer the hidden number of servers. Knowledge of the

number of nodes in a closed system allows the attacker to develop more accurate and
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effective strategies. Accordingly, it is valuable for the defender to know how much

information the attacker can derive about the number of defended nodes using only

unsecured traffic.

The problem of unobservable queue inference is closely related to terror plot iden-

tification and interdiction. Terror queues, introduced by Kaplan (2010) and extended

by Seidl et al. (2016), model terrorist plot development and interdiction as a queue,

where terror plots are customers and intelligence agents are servers. From an ad-

versarial perspective, it is valuable for the terrorist organization to infer the number

of intelligence agents available without access to internal information of the security

organization. This problem is also relevant to generalized border security and ad-

versarial interdiction problems that maintain a similar structure but are outside the

specific application of terrorism.

This work also has applications in the broader commercial setting. Park et al.

(2011) identify several potential application areas for unobservable queue inference,

including internet traffic analysis, estimating a competitor’s production capacity and

queueing delays, and working with internal but incomplete historical data. Simi-

larly, Guo et al. (2016) present an application of service time characterization under

incomplete data in the setting of hospital emergency departments. In all of these

application areas, real arrival and departure time data may include noise or may be

limited to small samples, but current estimation methods are designed for exact data

with large samples (Park et al., 2011).

In this context, we consider a multi-server, single queue with independent arrivals

and no restriction on arrival distribution or service distribution. Using standard no-

tation, this is a GI/G/c queue (Gross et al., 2011). The GI/G/c queue also implies

unlimited queue length and an infinite pool of customers. We assume that we cannot

observe any parameters internal to the queue, including queue length, service times,
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number of servers, and service rates. However, we assume that we can observe arrival

times, departure times, and customer identity so we can match the arrival and depar-

ture times of a given customer. We also consider a relaxation of perfect observation

of these data sources. The goal is to determine all unknown parameters of the queue.

Once we have determined the number of servers, we can determine all other quantities

of interest (e.g., wait in queue, number in queue, service length, number in service)

and estimate the corresponding parameters (Park et al., 2011). This analysis focuses

on estimating the number of servers in a GI/G/c queue from arrival order, departure

order, and customer identity.

4.1.2 Related Work

Queue inference was originally used to refer to estimation of queue parameters,

such as queue length and wait in queue, from transaction data (Larson, 1990; Bertsi-

mas and Servi, 1992; Jones and Larson, 1995). Here, we use it in a more general sense

to refer to queue parameter estimation when the service is unobservable. Our work

is most closely related to Park et al. (2011) who proposed the variance minimization

method to address this problem. We take their work to be the standard approach

and use it as a baseline to compare performance.

The developments presented in this chapter are tangentially related to the work

of Dong and Whitt (2015), which involves analyzing birth-death processes, but their

focus is on the limiting distribution of the number of customers in the system for

arbitrary birth-death processes. Our work is also related to the research by Frey and

Kaplan (2010), who consider a similar problem using only periodic departure data

but make additional distributional assumptions by assuming Poisson arrivals. Their

results are also subject to the limitations described by Jones (2012).

Unobservable and partially unobservable queues are also considered in the litera-
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ture dealing with economic models of balking and reneging (Edelson and Hilderbrand,

1975; Jones, 1999; Burnetas and Economou, 2007; Pazgal and Radas, 2008). This area

of research is conducted from the customers’ perspective with the goal of making de-

cisions about joining different types of queues, rather than estimating the number of

servers. This remains an active area of research (Yu et al., 2016; Guha et al., 2016),

but to our knowledge Park et al. (2011) published the benchmark in server estimation

for GI/G/c queues with unobservable service.

We present the methodology for our new approach and the existing approach in

Section 4.2. We describe the experimental design in Section 4.3 and discuss results

for small samples and noisy observations in Section 4.4. We extend the primary

results to address the non-preemptive last-come, first-served (LCFS) case in Section

4.5. Finally, we conclude with a summary and recommendations for future work in

Section 4.6. Supporting theory is presented in Appendix A Section 1.1 and Appendix

A Section 1.2 and details for accessing code and data are provided in Appendix A

Section 1.3.

4.2 Methodology

This section presents an order-based method for estimating the number of servers

in an unobservable queue. The stable order of a first-come, first-served (FCFS) queue

prior to service presents an opportunity for an efficient server estimation method. We

compare this new approach to the existing variance minimization approach. We

also show that a modified extension of the order-based method to LCFS queues has

similar convergence performance to previous techniques, but may display greater error

prior to convergence in some cases. To implement the analysis methods, we use the

Julia computer programming language (Version 0.6) (Bezanson et al., 2017) with

the SimJulia, DataFrames, Distributions, StatsBase and BenchmarkTools packages

105



(Lauwens, 2018; Arslan et al., 2018; JuliaStats, 2018a,b; Revels, 2018). First, we build

a standard GI/G/c queue simulation, then we apply each algorithm to the output

of the simulation to compare performance, using JMP for statistical analysis (SAS

Institute, 2016).

4.2.1 Variance Minimization Method

The variance minimization method is an existing approach proposed by Park

et al. (2011). This method can be used for both FCFS and LCFS queues with minor

variations. We focus primarily on FCFS queues, but a discussion of the LCFS case is

included in Section 4.5. Park et al. (2011) prove that the variance of estimated service

times achieves a minimum at the actual number of servers. Using this theorem, they

take the solution of the minimization problem in Eq. (20) as the estimate for the

number of servers in the queue. Table 4 defines the parameters and variables used in

Eq. (20) (Park et al., 2011). Note that we replace ĉ with ĉn to emphasize that the

estimator depends on the number of observations.

minimize
ĉn

n∑
i=1

(
Ŝi − ¯̂

S
)2

(20a)

subject to B̂i = Ai, i = 1, . . . , ĉn, (20b)

B̂i = max (Ai, D(i−ĉn,i−1)), i = ĉn + 1, . . . , n, (20c)

Ŝi = Di − B̂i, i = 1, . . . , n, (20d)

Ŝi > 0, i = 1, . . . , n, (20e)

1 ≤ ĉn ≤ n, (20f)

ĉn ∈ Z. (20g)

The objective function (20a) represents the sum of squared error of the estimated

service times and the estimated mean service time. The decision variable is the
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Table 4. Parameter and Variable definitions

Variable Definition
Ai Arrival time of the ith arrival
Xi Interarrival time following the ith arrival
Si Service time of the ith arrival
Di Departure time of the ith arrival
D(k,m) kth order statistic among the first m departure times
c Number of servers
n Total number of customers
c̃j Running estimate for the number of servers after jth departure
ĉj Cumulative estimate for the number of servers after jth departure

estimated number of servers. Constraint (20b) sets the estimated begin-service time

to the actual arrival time, for the first ĉn customers. For the subsequent customers,

constraint (20c) sets the ith estimated begin-service time to either the ith arrival

time (corresponding to a customer arriving to an empty queue) or to the departure

time of the (i− ĉn)th departure (corresponding to a customer waiting in queue then

taking the first available server). Constraint (20d) sets the estimated service time to

the difference between the true departure time and the estimated begin-service time.

Constraints (20e), (20f), and (20g) ensure estimated service times are positive and

that the estimated number of servers is feasible.

We observe that this optimization problem is equivalent to minimizing the sam-

ple variance of estimated service times. However, to accurately use the theoretical

variance minimization results, we need sufficient data for the sample variance to con-

verge to the population variance. In the general service case with unknown service

distributions, this requirement is non-trivial. Park et al. (2011) show good results

for samples of n = 1000 with exact arrival and departure times. In this application

area, we are interested in good performance for small, noisy samples in addition to

the long-run performance.
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4.2.2 Order-based Method

The approach presented here is a function of arrival and departure order rather

than arrival and departure times. Due to these reduced information requirements, we

refer to it as the order-based method. This approach is motivated by the straightfor-

ward observation that the number of servers can be estimated directly by considering

the number of customers that are in service. For an FCFS queue, given the ith cus-

tomer to arrive has departed the system, all i− 1 customers that arrived before that

customer must have already entered service. Of those i− 1 customers, any customers

that have not yet departed must still be in service. The number of customers in

service can be used to identify a lower bound on the number of servers. Although the

order-based approach is straightforward, the theoretical and experimental results in

the following sections suggest that this method has the best published performance

for unobservable queue inference with small, noisy samples.

The methodology for this approach is formalized in Algorithm 1, which uses set

operations to parallel the logic of the algorithm development discussed in the previous

paragraph. Algorithm 2 provides a fast implementation that yields the same results

as Algorithm 1, with variable and function definitions for both algorithms shown in

Table 5. The main change in Algorithm 2 is that, instead of using a mathematical

set difference operator, which is computationally expensive, we manually track the

estimated number of servers occupied after each departure with incremental updates.

Note that, depending on the arrival index of a departing customer, it is possible to

update the estimated number of servers by more than one, as shown in the conditional

if-statement of Algorithm 2. In these algorithms and the remainder of the chapter, we

use X[i] to refer to the ith component of the vector X. For instance, DepartOrder[3]

is the third component of the DepartOrder vector.

The set-based server estimation algorithm has worst-case complexity of O(cn2)
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Table 5. Variable and function definitions for Algorithm 1 and Algorithm 2

Name Type Definition

DepartOrder
Vector of
integers

Arrival indices of first n departed
customers, sorted by departure
order

n Integer Number of departed customers

MaxCustomer Integer
Largest arrival index of first i de-
parted customers

NumServers Integer Estimated number of servers

CustIndexAll Set of integers

Set of arrival indices of customers
known to have entered service
given the first i departed cus-
tomers

CustIndexDeparted Set of integers
Set of arrival indices of first i de-
parted customers

CustIndexInService Set of integers
Set of arrival indices of customers
known to be in service given the
first i departed customers

NumServersOccupied Integer
Estimated number of servers oc-
cupied

MaxCustomerNext Integer
Largest arrival index of first i de-
parted customers and the previ-
ous MaxCustomer value

Max Function Maximum of two integers

MakeSet Function
Convert vector of integers to set
of integers

SetDifference Function
Return the elements of the first
set that are not in the second set

Length Function
Return the number of elements of
a vector
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where c is the number of servers and n is the number of observations (departed

customers). The complexity is calculated from n loops of a set-difference operation

between sets of size n and cn in the worst case, which gives an inner-loop complexity

of O(n+cn). The order-based algorithm, shown in Algorithm 2, gives the same results

with O(n) complexity. Algorithm 2 is used for all data collection and throughout this

chapter as the order-based algorithm. The variance method uses a mixed integer non-

linear programming formulation, but can be solved directly with a brute force search

over a small search space (Park et al., 2011). Micro-benchmarks on a 2.4 GHz Intel

Core i5 CPU with 8 GB RAM show a substantial relative reduction in computational

time for the order-based method. For a 7 server queue with 1,000 customers, the

variance method has a median computation time of 225 ms with a minimum of 218

ms and a maximum of 231 ms over 23 samples. For the same queue, the order-based

method has a median computation time of 0.462 ms with a minimum of 0.444 ms

and a maximum of 6.101 ms over 8,709 samples. Note that the number of samples is

tuned to the computation time, resulting in a large sample size for the order-based

benchmark. Although the order-based method has a large relative reduction, both

methods are fast enough for the projected application areas. The source code, testing,

benchmarks, and data are available online, with details in Appendix A Section 1.3.

The numerical example in Table 6 illustrates the algorithm for a small sample.

The running estimate corresponds to the estimate calculated in the inner loop of

the algorithm while the cumulative estimate corresponds to the final estimate, for a

given sample size. Jobs are listed in departure order since the estimates are updated

upon each departure event. In the notation that follows, c̃m is used for the running

estimate produced after the mth departure, and ĉm = maxk∈{1,...,m} c̃k is used for

the mth cumulative estimate, which is equivalent to the estimate produced by the

order-based method.
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Algorithm 1 Set-based Server Estimation

1: procedure SetEstimator(DepartOrder)
2: n← number of departed customers
3: MaxCustomer← 0
4: NumServers← 0
5: for i = 1 : n do
6: MaxCustomer← Max(DepartOrder[i],MaxCustomer)
7: CustIndexAll← MakeSet(1 : MaxCust)
8: CustIndexDeparted← MakeSet(DepartOrder[1:i])
9: CustIndexInService← SetDifference(CustIndexAll,CustIndexDeparted)

10: NumServers← Max(Length(CustIndexInService) + 1,NumServers)
11: end for
12: return NumServers
13: end procedure

Algorithm 2 Order-based Server Estimation

procedure OrderEstimator(DepartOrder)
n← number of departed customers
MaxCustomer← 0
NumServers← 0
NumServersOccupied← 0
for i = 1 : n do

MaxCustomerNext← Max(DepartOrder[i],MaxCustomer)
if DepartOrder[i] < MaxCustomer then

NumServersOccupied← NumServersOccupied− 1
else

NumServersOccupied ← NumServersOccupied + MaxCustomerNext −
MaxCustomer− 1

end if
MaxCustomer← MaxCustomerNext
NumServers← Max(NumServers,NumServersOccupied + 1)

end for
return NumServers
end procedure
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Table 6. Order-based algorithm example

Customer
ID

Arrival
Index

Departure
Index

Running
Estimate

Cumulative
Estimate

79305 1 1 1 1
89698 3 2 2 2
48692 5 3 3 3
87269 4 4 2 3
21094 2 5 1 3
26318 6 6 1 3

The order-based method is subject to the mild restrictions listed in Table 7, where

traffic intensity is denoted by ρ. These restrictions are developed from the discus-

sions by Kiefer and Wolfowitz (1955), Whitt (1972), and Kennedy (1972). Assump-

tion (iii) is met for any pair of independent distributions with support such that

max (support(Xi)) > min (support(Si)), where Xi is the interarrival distribution and

Si is the service distribution. Note that Assumptions (iii)-(vi) are met if interarrival

and service distributions are independent and continuous with support over [0,∞).

Appendix A Section 1.2 provides more detail on the motivation for each assumption.

The variance method implicitly assumes the first two criteria, but does not explicitly

require the remaining criteria. In particular, the variance method is appropriate for

deterministic service distributions, as discussed further in Section 4.4.

Table 7. Assumptions

Index Assumption
(i) Customers are uniquely identifiable
(ii) ρ < 1
(iii) P (Xi > Si) > 0
(iv) Support of interarrival distribution includes 0
(v) Interarrival and service distributions are absolutely continuous
(vi) Interarrival and service distributions are independent

Given the assumptions in Table 7, we prove three FCFS results.

Proposition 2. Given an FCFS GI/G/c queue that meets Assumptions (i)-(vi),
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there is a positive probability that the order-based estimation algorithm produces the

correct estimate immediately following the cth departure.

Proposition 3. Given an FCFS GI/G/c queue that meets Assumptions (i)-(vi), the

order-based estimation algorithm produces an estimate that is a lower bound on the

true number of servers.

Theorem 4. For an FCFS GI/G/c queue that meets Assumptions (i)-(vi), the order-

based server estimation algorithm produces estimates ĉn such that limn→∞ P (|ĉn−c| >

ε) = 0 ∀ ε > 0.

The proofs for these results are presented in Appendix A Section 1.1. Proposition

3 shows that the order-based approach provides a lower bound on the true number of

servers, regardless of sample size. This guarantee may be useful to decision makers in

practical application. Proposition 2 and Theorem 4 show that the order-based method

produces an estimate that converges in probability to the true number of servers.

These results provide a theoretical justification for using the order-based method for

arrival and service distributions that are not considered in the experimental results.

4.3 Experimental Design

Given the theoretical results in Section 4.2 and Appendix A Section 1.1, we now

consider a simulation that explores the performance of the order-based method across

several factors of interest. We first consider the standard scenario in which arrival

and departure times are observable without error and characterize the performance

of the order-based approach relative to the baseline of the variance approach. Then,

we relax the precise observation assumption by introducing error into the arrival and

departure times to evaluate the robustness of the order-based approach. The LCFS

setting is considered separately in Section 4.5.
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We are interested in two responses: average estimation error and the number of ob-

servations required to approximately converge. The ideal estimator converges quickly

to the true value and has low error before it converges. In both cases, we introduce

approximations to address computational limitations and to explore a larger design

space. First, we define average estimation error as 1
k

∑k
i=1 | c− ĉi |. In particular, we

consider a 50 observation window, then take the average of the absolute difference

between the true number of servers and the estimated number of servers. The esti-

mation error from a particular number of observations on a particular experimental

run is relatively noisy. By taking the average estimation error over a window, the

response has less noise at a cost of lower fidelity. This trade-off reduces the size of

the experiment. The numerical setting of 50 observations for the window size was

selected after pilot runs of the simulation, which were used to balance coarseness and

computation time.

The second response is the number of observations needed to approximately con-

verge. Given the finite nature of any simulation, we can only report approximate

convergence. We define approximate convergence as zero estimation error for 200

consecutive observations and calculate it by sampling every 20 observations, with

a maximum of 1000 total observations. Again, this definition balances coarseness

against experiment size. The particular numerical settings for this sampling rate

were set after initial pilot runs.

We consider six factors in the design space: estimation method, number of obser-

vations, number of servers, traffic intensity, arrival distribution, and service distribu-

tion. These factors are summarized in Table 8. The primary factor of interest is the

estimation method. The number of observations refers to the number of customers

that have been processed through the queue and departed. The ideal estimator would

perform well even with a low number of customers observed. Note that this factor
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is ignored for the second response, number of observations to converge. That is, we

calculate the error at the set number of observations, then let the simulation run

until approximate convergence or the maximum observation limit is reached. The

observation and server factors are modeled as continuous factors although they are

technically discrete.

The remaining factors are included to characterize the performance of the esti-

mators over different environmental conditions. The ideal estimator would be robust

to changes in all of these factors. The traffic intensity is set to maintain compara-

bility between the different settings for the GI/G/c queues. Although the theoretical

work only requires traffic intensity in (0, 1), we set the levels to represent queues that

are not over-served. The service distributions were chosen to explore the breadth of

possibilities in a GI/G/c queue. The exponential distribution is a classic service dis-

tribution for queueing models and serves as a baseline. The log-normal distribution

has higher variance than the exponential distribution and is also explored by Park

et al. (2011). We also test two distributions with finite support. The uniform dis-

tribution has a substantially different shape than the other three distributions while

the beta distribution has a similar shape to the exponential distribution but has fi-

nite support. This mix of characteristics allows us to explore the performance of the

estimator under a variety of conditions.

Initial test runs for the simulation indicated that the arrival distribution did not

have a large effect on performance. To reduce the size of the experiment, the arrival

distribution was limited to two levels: the baseline exponential case and the least

similar case, the uniform distribution. The observations, servers, and traffic intensity

were set to three levels because initial test runs indicated non-linearity.

We developed a full factorial experimental design with both estimation methods

applied to each run, which results in 216 runs per replication. We conducted four total
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replications to achieve the desired precision for comparison. We set the confidence

level to 0.95 resulting in a power above 0.90 for all three-way interactions and above

0.97 for all lower-order terms.

Table 8. Factors

Name Type Levels
Estimation Method Categorical Order-based, Variance
Observations Numeric 40, 200, 400
Servers Numeric 2, 9, 15
Traffic Intensity Numeric 0.70, 0.90, 0.99
Arrival Distribution Categorical Exponential, Uniform
Service Distribution Categorical Exponential, Log-Normal, Uniform, Beta

4.4 Results

4.4.1 Estimation Error

The estimation error data collected in the experiment exhibit a disproportionate

number of zero values, as shown in Figure 10. The two-server runs and high observa-

tion runs often had no estimation error. To address this non-normality in the data, we

fit a zero inflated Poisson regression model (Lambert, 1992). Although the estimation

error is not strictly count data, as it is averaged over a window of observations, the

departure is not severe (Gourieroux et al., 1984). We explored a two-stage model and

a neural network as confirmatory models and found similar results.

Overall, applying a t-test, we find a statistically significant difference in the aver-

age estimation error with a p-value less than 0.001. The mean estimation error for

the variance method is 0.81 servers, while the mean estimation error for the order-

based method is 0.27 servers, a 66% reduction in error. However, the regression

model provides evidence for multiple higher order interactions that are statistically

significant, which indicates that the relative performance of the order-based method

is not constant as other factors change. In some cases, the reduction in error is three
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Figure 10. Average estimation error
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servers or higher. All model terms with p-value less than 0.0001 are shown in Table

9. The generalized R-squared is 0.63 on a validation set. Since this is a computer

simulation, all sources of variance are controlled. These results suggest that much of

the variance in estimation error is due to the stochastic nature of the interarrival and

service times.

Table 9. Significant model terms

Term p-value Coefficient
Estimation Method[Variance Method] < 0.0001 3.19
Observations < 0.0001 -0.01
Servers < 0.0001 0.55
Traffic Intensity < 0.0001 -6.34
Estimation Method*Observations < 0.0001 0.01
Estimation Method*Servers < 0.0001 -0.29
Estimation Method*Traffic Intensity < 0.0001 3.37
Observations*Traffic Intensity < 0.0001 -0.01
Servers*Servers < 0.0001 -0.03

On average, the regression model estimates that the order-based method produces

a server estimate with error that is 3.19 servers lower, with a 95% confidence interval

of (2.26, 4.11). However, due to the higher-order interactions, this difference is not

constant across factor settings. In many cases the order-based method performs much

better than the variance method. Under nominal conditions of exponential arrivals

and traffic intensity of 0.9, Table 10 shows the model predictions for each combination

of factors, where the asterisk indicates a non-statistically significant difference using

individual confidence intervals. There is a statistically significant improvement for

all but three factor setting combinations. In two of those cases, there is a non-

statistically significant degradation in performance. While this degraded performance

is not statistically significant, the performance of the order-based method and variance

method is not clearly different for the combination of low observations and high servers

in the absence of measurement error. However, when there is measurement error, the

order-based method shows a clear improvement even in the low observation, high
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server cases, as shown in Figure 13.

Table 10. Model predictions

Factor Order-based Method Variance Method Result
Obs. Serv. Service Mean 95% Conf. Int. Mean 95% Conf. Int. % Impr.
40 2 Expo 0.001 (0.000, 0.003) 0.122 (0.069, 0.214) 99
40 2 LogNorm 0.008 (0.003, 0.019) 0.363 (0.185, 0.712) 98
40 2 Beta 0.001 (0.000, 0.002) 0.041 (0.021, 0.078) 98
40 2 Unif 0.001 (0.000, 0.003) 0.036 (0.018, 0.071) 97
40 9 Expo 0.094 (0.050, 0.177) 1.713 (1.297, 2.263) 95
40 9 LogNorm 0.601 (0.411, 0.880) 3.490 (2.504, 4.865) 83
40 9 Beta 0.080 (0.049, 0.132) 0.690 (0.508, 0.939) 88
40 9 Unif 0.115 (0.065, 0.206) 0.617 (0.437, 0.871) 81
40 15 Expo 0.569 (0.342, 0.949) 1.751 (1.183, 2.591) 68
40 15 LogNorm 2.609 (1.935, 3.518) 2.563 (1.973, 3.330) -2*
40 15 Beta 0.565 (0.378, 0.844) 0.826 (0.606, 1.126) 32*
40 15 Unif 0.831 (0.558, 1.239) 0.753 (0.487, 1.162) -10*
200 2 Expol 0.000 (0.000, 0.001) 0.037 (0.018, 0.076) 99
200 2 LogNorm 0.001 (0.000, 0.002) 0.125 (0.064, 0.248) 99
200 2 Beta 0.000 (0.000, 0.001) 0.009 (0.004, 0.019) 99
200 2 Unif 0.000 (0.000, 0.001) 0.009 (0.004, 0.018) 99
200 9 Expo 0.010 (0.005, 0.021) 0.805 (0.526, 1.230) 99
200 9 LogNorm 0.072 (0.044, 0.118) 1.889 (1.290, 2.770) 96
200 9 Beta 0.006 (0.003, 0.012) 0.240 (0.165, 0.349) 98
200 9 Unif 0.010 (0.004, 0.021) 0.234 (0.156, 0.352) 96
200 15 Expo 0.087 (0.048, 0.159) 1.213 (0.855, 1.721) 93
200 15 LogNorm 0.460 (0.308, 0.687) 2.044 (1.560, 2.678) 77
200 15 Beta 0.064 (0.036, 0.114) 0.423 (0.315, 0.567) 85
200 15 Unif 0.103 (0.055, 0.191) 0.421 (0.283, 0.623) 76
*not statistically significant

4.4.2 Approximate Convergence

The experiment uses the approximate convergence summary metric described in

Section 4.3, but a full sample path is shown for one run of the experiment in Figure

11. This sample convergence path highlights the typical behavior of both methods.

The variance method tends to underestimate the true number of servers, followed by

an overestimation before converging. As shown in Proposition 3 and seen in Figure

11, the order-based method never overestimates the true number of servers. In some

cases, both methods perform similarly and the variance method has no overestimation.

The underestimation from the order-based method is also sometimes greater than the
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overestimation in the variance method. Despite these scenarios where the methods

are similar, the order-based method has good overall empirical convergence properties

as compared to the variance method.

Figure 11. Sample approximate convergence path

The variance method did not reach approximate convergence within the observa-

tion limit in 203 of the 864 total runs. As a result, we have censored data for 23%

of the variance method data. The order-based method reached approximate conver-

gence for all but 12 runs. We use the censored data to produce a non-parametric

simultaneous 95% confidence interval (Hall and Wellner, 1980) for the distribution of

observations required to reach approximate convergence for each estimation method,

shown in Figure 12. There is a statistically significant difference between estimation

methods, with the order-based method requiring fewer observations to approximately

converge in the majority of the design space. Over the design space considered in the

experiment, the order-based method has a 50% probability of converging within 60

observations, compared to 401 observations for the variance method, an 85% reduc-

tion. In some cases, there is no distinction between the two methods. Both methods

sometimes converge quickly to the correct number of servers, typically during the
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runs with two servers. At the extreme upper end, the censored variance method does

not provide enough data to fully estimate the upper quantiles above 0.75, while the

order-based method has enough data to estimate quantiles through 0.98.

Figure 12. Approximate convergence for variance method (left) and order-based
method (right)

4.4.3 Deterministic Service

In the case of deterministic service, the order-based method fails to produce mean-

ingful estimates. This contrasts with the variance method which suffers no degrada-

tion for deterministic service queues. For the order-based method, the case with

deterministic service is identifiable by identical departure and arrival order. If the

data exhibit this property, the variance method is preferred.

4.4.4 Robustness

In addition to the standard case, we examine the performance of both methods

when the arrival and departure times are subject to measurement error. In practice,

it may be difficult to precisely capture the arrival and departure times. We introduce

measurement error into the arrival and departure times by allowing the measured
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times to vary uniformly between successive customers. This change introduces a high

amount of time measurement error while maintaining the true order of customers.

The same experiment described in Section 4.3 was conducted with the noisy data.

Figure 13. Average estimation error with noisy data

The order-based method is unaffected by time measurement error because it only

uses arrival and departure order as inputs. The variance method, however, is highly

sensitive to this amount of measurement error. In the majority of cases there is no
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feasible solution to the variance minimization problem because the time error makes

some estimated service times negative for any ĉn value. If we relax the variance

method to default to a single server if there is no feasible solution, the performance

is poor. The raw results in Figure 13 suggest that the order-based method is more

robust than the variance method. Overall, using the noisy arrival and departure data

and a t-test, we find a statistically significant difference in the average estimation

error with a p-value less than 0.001 and a 95% reduction from 5.85 servers to 0.27

servers. The same regression approach used for the non-robust case yields a a 95%

confidence interval of (4.25, 5.59) for the Estimation Method[Variance] term. These

results confirm the qualitative relationship seen in Figure 13. Furthermore, in 98% of

runs, the variance method fails to approximately converge. In the majority of cases,

the variance method has c − 1 estimation error because it is forced to accept the

default estimate of a single server. The approximate convergence of the order-based

method is not affected by the time error, as expected. These results highlight the

robust performance of the order-based method with respect to arrival and departure

time measurements.

We also consider the performance of both methods when the arrival and departure

order are subject to measurement error. This error might be induced by the process of

identifying the arriving or departing customers, for example based on the misclassifi-

cation rate of facial identification or digital signatures. Unfortunately, both methods

are highly sensitive to even small errors in order measurement. To represent misiden-

tification, we randomly reassign the customer identifier for 10% of customers. This

relatively minor measurement error leads to extremely poor performance for both

methods. Neither method reaches approximate convergence within the observation

limit for any factor settings.

Although not examined experimentally here, it is known that the variance method
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performs poorly in over-served queues with low traffic intensity (Park et al., 2011).

The same problem applies to the order-based method, although the order-based

method does provide a lower bound, as long as customers are accurately identified.

The underlying difficulty in low-traffic queues is that some servers are never or rarely

busy, leading to incorrect estimators.

4.5 Last-Come, First-Served

We also extend the primary work to the non-preemptive LCFS setting. The LCFS

variance minimization method developed by Park et al. (2011) is shown in Eq. (21)

with additional variable definitions in Table 11. This minimization problem is that

same as the minimization problem in Eq. (20), with the exception of constraint (21b).

min
ĉn

n∑
i=1

(
Ŝi − ¯̂

S
)2

(21a)

subject to B̂i =


Ai if NA

i < ĉn

D1(NA
i , Ai) otherwise

, i = 1, . . . , n, (21b)

Ŝi = Di − B̂i, i = 1, . . . , n, (21c)

Ŝi > 0, i = 1, . . . , n, (21d)

1 ≤ ĉn ≤ n, (21e)

ĉn ∈ Z. (21f)

The order-based algorithm does not transfer directly to the LCFS case. The

LCFS discipline introduces disorder in the queue prior to service, which invalidates

the framework for the order-based algorithm. However, with slight modifications
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Table 11. Variable definitions (Park et al., 2011)

Variable Definition
NA
i Number of customers that customer i sees upon arrival

ND
i Number of customers that customer i leaves behind at departure

D1(n, t) The first departure time, after time t, that leads to ND
i = n

to the setting assumptions, a similar order-based idea can be extended to LCFS

queues, shown in Algorithm 3 with variable and function definitions in Table 12. The

CombinedOrder variable is a record of both arrivals and departures. It is stored as an

ordered vector of customer arrival indices that includes every arrival index twice: once

for the arrival and once for the departure. The vector is sorted by event order, so that

the relative ordering of arrivals and departures is captured. This contrasts with the

FCFS algorithm in which the order of arrivals is known and the order of departures

is known, but there is no information about the relative ordering of departures with

respect to arrivals or vice versa.

Algorithm 3 uses the CombinedOrder variable to determine exactly which cus-

tomers are in the system, a lower-bound on the number of customers that must be

in service, and an estimate of the number of customers in the queue (some of whom

may actually be in service). The algorithm keeps a running record of which customers

are in the system. When a customer leaves, the customer with the highest arrival

index that is not already known to be in service either enters service or was actually

already in service. In either case, we can update the estimated number of customers

in service and the estimated number of servers. Table 13 shows a numerical example

of the order-based LCFS algorithm.

The LCFS order-based algorithm provides a lower-bound on the number of servers

and converges in probability to the correct number of servers, as stated in the following

results.

Proposition 5. Given an LCFS GI/G/c queue that meets Assumptions (i)-(vi),
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Table 12. Variable and function definitions for Algorithm 3

Name Type Definition

CombinedOrder
Vector of
integers

Vector of arrival indices of customers
ordered by increasing event times of ar-
rivals and departures

n Integer
Combined number of arrived and de-
parted customers

NumServers Integer Estimated number of servers

CustsInSystem Set of integers
Set of arrival indices of customers
known to be in the system given the
first i arrival or departure events

CustsInService Set of integers
Set of arrival indices of customers
known to be in service given the first
i arrival or departure events

CustsInQueue Set of integers
Set of arrival indices of customers esti-
mated to be in the queue given the first
i arrival or departure events

MakeSet Function Initialize set of integers

SetDifference Function
Return the elements of the first set that
are not in the second set

| · | Function Return the number of elements in a set

Add Function
Add the second argument to the set in
the first argument

Maximum Function Maximum element in the set
Max Function Maximum of two integers

126



Algorithm 3 Order-based LCFS Server Estimation

procedure OrderEstimatorLCFS(CombinedOrder)
n← combined number of arrived and departed customers
NumServers← 0
CustsInSystem← MakeSet()
CustsInService← MakeSet()
for i = 1 : n do

if CombinedOrder[i] ∈ CustsInSystem then
CustsInSystem← SetDifference(CustsInSystem, CombinedOrder[i])
CustsInService← SetDifference(CustsInService, CombinedOrder[i])
if |CustsInSystem| > 0 then

CustsInQueue← SetDifference(CustsInSystem,CustsInService)
CustsInService← Add(CustsInService,Maximum(CustsInQueue))

end if
else

CustsInSystem← Add(CustsInSystem, CombinedOrder[i])
end if
NumServers← Max(NumServers, |CustsInService|)

end for
return NumServers
end procedure

there is a positive probability that the LCFS order-based estimation algorithm produces

the correct estimate immediately following the cth departure.

Proposition 6. Given an LCFS GI/G/c queue that meets Assumptions (i)-(vi), the

LCFS order-based estimation algorithm produces an estimate that is a lower bound

on the true number of servers.

Theorem 7. For an LCFS GI/G/c queue that meets Assumptions (i)-(vi), the LCFS

order-based server estimation algorithm produces estimates ĉn such that limn→∞ P (|ĉn−

c| > ε) = 0 ∀ ε > 0.

The proofs for Proposition 5, Proposition 6 and Theorem 7 are included in Ap-

pendix A Section 1.1. These proofs use a similar structure to the FCFS proofs.

Notably, Proposition 6 requires 2c arrivals for the LCFS case while Proposition 3

requires c arrivals for the FCFS case. The increase in required customers for cor-
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rect estimation may be related to the different performance in the FCFS and LCFS

scenarios.

Table 13. Order-based LCFS algorithm example

Customer
ID

Arrival
Index

Event
Type

Running
Estimate

Cumulative
Estimate

79305 1 Arrival 1 1
89698 2 Arrival 1 1
48692 3 Arrival 1 1
79305 1 Departure 1 1
21094 4 Arrival 1 1
89698 2 Departure 2 2
71772 5 Arrival 2 2
50982 6 Arrival 2 2
71772 5 Departure 3 3

Although the LCFS case has desirable long-run properties, the experimental re-

sults suggest that the LCFS order-based estimator does not improve upon the LCFS

variance estimator. The LCFS algorithms were compared using the same experimen-

tal design as in the FCFS case, shown in Table 8. Although four total replications of

the design were conducted for the FCFS case, two total replications were conducted

for the LCFS case. Two replications were sufficient to show the similar performance

of the LCFS order-based method and the LCFS variance method. Both estimators

require a similar number of observations to reach approximate convergence, with no

statistically significant difference at the 95% confidence level, as seen in Figure 15.

The estimation error of the LCFS order-based method is generally similar to the

error for the LCFS variance method, but in some cases there is a statistically signifi-

cant degradation from the LCFS variance method to the LCFS order-based method.

Figure 14 shows the empirical differences in estimation error. Statistical regression

models confirm the empirical trend that the LCFS-order based method does not im-

prove on the LCFS variance method. This lack of improvement might be related

to the increased disorder in the LCFS input queue as compared to the FCFS input
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queue. Since the order-based estimator is conservative, the estimate increases by at

most a single server after a departure in the LCFS setting. In the FCFS setting, how-

ever, the estimate can sometimes jump by several servers after a single departure by

taking advantage of the stable input order. Since the variance of service times is un-

affected by queue discipline, the variance method does not share the same sensitivity

to LCFS queues.

Figure 14. Average LCFS estimation error
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Figure 15. Approximate convergence for LCFS variance method (left) and LCFS order-
based method (right)

Another major difference between the FCFS order-based method and the LCFS

order-based method is that the LCFS order-based method is less robust than the

FCFS order-based method. Any time errors that do not affect the combined arrival

and departure order have no effect on the LCFS order-based estimate. However, the

LCFS order-based estimator depends on the combined arrival and departure order,

while the FCFS order-based estimator depends on the arrival order and departure

order separately. Compared to the combined order, the separate orders allow for

more time measurement error without affecting the overall order. This distinction

limits the amount of error that the LCFS version can address. Furthermore, the

LCFS variance method is also robust to these types of small errors in the departure

time, as seen in Figure 16. In the LCFS context, both methods are able to achieve

good results with small departure error that does not affect the combined event order.

Overall, the performance of the LCFS order-based estimator does not improve upon

the performance of the LCFS variance estimator.
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Figure 16. Average LCFS estimation error with noisy data
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4.6 Conclusion

In this chapter, we propose a robust approach for queue inference when the in-

ternal parameters of an FCFS GI/G/c queue are unknown and the service is non-

deterministic. Compared to the existing variance minimization method, our experi-

mental results for a relevant design space show that, in the FCFS setting, the order-

based method reaches approximate convergence more quickly and has similar or lower

error before converging. Theoretical results show that the order-based method has

desirable long-run properties in general for the setting of interest. Furthermore, the

order-based method is robust to measurement error in arrival and departure times.

These characteristics make the order-based method a suitable estimator for small

sample sizes with noisy measurements and limited knowledge of the internal struc-

ture of the queue. Although the theoretical results can be extended to the LCFS

setting, the LCFS order-based estimator does not improve on the previous methods

with respect to empirical performance for small, noisy samples.

The results presented here could be extended in several ways. A preliminary ex-

ploration of entropy minimization as an alternative to variance minimization suggests

that there is no improvement over the variance minimization approach, but there may

be implementation choices that lead to better results. The current methods could also

be enhanced with measures of statistical confidence for each sample size or expected

time to converge to a given precision. New methods to solve this problem could also

provide value by generalizing the context. Approaches that are able to address par-

tially observable or unobservable customer identity would allow for application to a

broader class of problems. It would also be desirable to relax the setting restrictions

by extending these results to consider queueing networks rather than simple queues.

For GI/G/c queues with unobservable service in the LCFS setting, the order-

based method and variance method have similar performance but the order-based
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method appears to display larger error in some cases. In the FCFS setting, the

order-based method is a robust estimator for the number of servers in a GI/G/c

queue with unobservable service. This estimator has good empirical performance for

simulated small, noisy samples and has desirable theoretical convergence and lower-

bound properties.
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V. Robust Sequential Optimization Under Uncertainty

5.1 Introduction

Markov decision processes (MDPs) have been widely used for complex planning

problems under uncertainty. However, in many practical applications, the imple-

mentation environment differs from the planning model due to noise or incomplete

information, particularly with respect to the model dynamics. The decision maker

may be unable to directly observe the state of the environment and may be uncer-

tain about the precise transition, observation or reward functions. These challenges

introduce a second layer of ambiguity in addition to the traditional probabilistic un-

certainty in MDPs. The ideal policy in this setting should be robust to uncertainty

in any of the model components.

Modeling incomplete information is particularly relevant for sequential decision

making problems that have a goal of collecting information. In MDP and par-

tially observable MDP (POMDP) formulations with utility-based rewards, environ-

mental uncertainty results in information-seeking strategies as an intermediate step

to maximizing rewards. When the rewards are purely information-based, however,

information-seeking strategies are the primary purpose rather than an intermediate

step. Applications with information-based rewards include active sensing, situational

awareness, surveillance, and detection problems. Modeling second-order knowledge

about the problem dynamics is critical in these information-based applications.

This chapter directly addresses the degraded performance of POMDPs under

model misspecification by developing robust belief-reward partially observable Markov

decision processes. Our main contributions include the following. We present a new

formulation for robust belief-reward POMDPs. We present a robust belief-reward

point-based value iteration algorithm for addressing this general class of POMDPs.
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We include theoretical results which show that our algorithm has desirable convex-

ity and convergence properties. We conduct experiments to empirically evaluate the

sensitivity of traditional POMDPs to model misspecification and the improved per-

formance of robust belief-reward POMDPs. Lastly, we apply the robust belief-reward

formulation and solution technique to a practical cybersecurity resource allocation

problem and show that the robust algorithm outperforms the standard algorithm in

the presence of model uncertainty.

In Section 5.2, we provide background on existing modeling approaches. Then,

in Section 5.3, we introduce the formulation for a new model, robust belief-reward

POMDPs, and introduce the robust belief-reward point-based value iteration algo-

rithm. In Section 5.4, we present an experiment comparing the standard, robust,

belief-reward, and robust belief-reward formulations. In Section 5.5, we apply the

robust belief-reward approach to a cybersecurity intrusion detection problem with

realistic limitations on model precision. Lastly, in Section 5.6, we summarize the

findings and identify areas for future research.

5.2 Partially Observable Markov Decision Processes

This section provides background on two partially-observable generalizations of

MDPs. POMDPs extend standard MDPs by incorporating state uncertainty through

an observation model (White, 1991; Cassandra et al., 1994). Belief-reward POMDPs

generalize standard POMDPs by allowing for reward functions that depend on the

true states and actions as well as on the decision maker’s beliefs. Robust POMDPs

generalize standard POMDPs by allowing ambiguity in the transition and observation

functions.
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5.2.1 Belief-Reward and Information-Reward POMDPs

In some domains, the reward is a function of the state uncertainty rather than the

state itself. In principle, this situation can be represented with standard POMDPs,

where future rewards drive information gathering in the short term. This approach

has been successful for military sensing problems (Yost and Washburn, 2000). How-

ever, when the standard actions and information-gathering actions are sufficiently

decoupled, this formulation is not attractive. For instance, in the active sensing prob-

lem area, rewards are most naturally modeled as a function of the information change

(Mihaylova et al., 2003). Furthermore, in surveillance applications, the information

collection problem is well-defined, but the available actions and non-information re-

wards based on the collected information are subject to an ill-structured decision pro-

cess involving collective human judgment. Traditional POMDPs allow sensing costs

and task-dependent rewards, but in these information-focused applications, belief-

dependent rewards are more appropriate.

Information-reward and belief-reward POMDPs modify standard POMDPs to al-

low non-standard rewards. Although closely related, belief-reward POMDPs and

information-reward POMDPs take different modeling approaches. The belief-reward

approach introduces a modified reward function while the information-reward ap-

proach modifies the state space definition of standard POMDPs.

Araya-López et al. (2010) introduce belief-reward POMDPs, also called ρPOMDPs.

Araya-López et al. (2010) define the ρPOMDP with respect to the generalized belief-

dependent reward function, ρ(b, a) rather than the standard state-dependent reward

function r(s, a), where s is a state, a is an action, and b is a belief vector over states.

Convex belief-dependent reward functions maintain convexity of the value function, as

shown by Araya-López et al. (2010, Lemma A.1) and Araya-López et al. (2010, The-

orem 3.1). Furthermore, piecewise linear convex (PWLC) belief-dependent reward
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functions maintain a PWLC value function for the overall ρPOMDP (Araya-López

et al., 2010). This property is exploited by optimal solution techniques, such as in-

cremental pruning (Cassandra et al., 1997; Zhang and Liu, 1996), and by point-based

approximate solution techniques (Lovejoy, 1991; Pineau et al., 2003; Smith and Sim-

mons, 2005; Kurniawati et al., 2008). Convex belief-dependent reward functions vio-

late the PWLC assumption of most POMDP solvers, but they can be approximated by

PWLC functions and the error introduced by the approximation is bounded (Araya-

López et al., 2010). These results allow for information-measure reward functions

such as approximate negative information entropy or approximate Kullback-Leibler

divergence.

Spaan et al. (2015) introduce POMDPs with information rewards using a dif-

ferent modeling approach than belief-reward POMDPs. POMDPs with information

rewards are structured to meet the criteria of a standard POMDP while still allowing

information-dependent rewards. This result is accomplished by augmenting the ac-

tion space with additional commitment actions that allow the decision maker to take

actions that represent assertions about the value of important states (Spaan et al.,

2015).

Eck and Soh (2012) also review several approaches to hybrid rewards that include

a belief-dependent component and a state-action component. The traditional state-

action component is often a negative reward associated with the cost of sensing. For

example, using the negative expected entropy, the hybrid reward, Rh, is a weighted

sum of the state-action component, Rs =
∑

s∈S b(s)R(s, a), and the belief-based

component, Rb = E [H(ba,z)],

Rh(b, s, a, z) = wRs + (1− w)Rb (22)

= w
∑
s∈S

b(s)r(s, a)− (1− w)E [H(ba,z)] , (23)
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where w is the weight, r(s, a) is the state-reward, and H(ba,z) is the entropy given

action a and observation z (Eck and Soh, 2012). In the remainder of this chapter,

we focus on the belief-reward approach to avoid the penalty of augmenting the state

space. Note that belief-reward POMDPs are a strict generalization of POMDPs.

5.2.2 Robust POMDPs

Robust MDPs extend the traditional MDP framework for sequential decision mak-

ing under uncertainty to sequential decision making under ambiguity, where ambigu-

ity is probabilistic uncertainty with an unknown distribution (Camerer and Weber,

1992). Early work on MDPs with ambiguous dynamics was conducted by Satia and

Lave (1973), White and Eldeib (1986), and White and Eldeib (1994). More recent

work addresses MDPs using a formal robust framework (Nilim and El Ghaoui, 2005;

Iyengar, 2005).

In the partially observable setting, robust POMDPs extend POMDPs by allowing

ambiguity in the specification of the transition and observation probabilities (Os-

ogami, 2015). This ambiguity may be caused by noisy data, incomplete knowledge,

or conflicting input from subject matter experts. Robust POMDPs combine princi-

ples from both robust MDPs (e.g., Kaufman and Schaefer (2013)) and POMDPs (e.g.,

Kurniawati et al. (2008)). Specifically, the known transition and observation proba-

bilities are replaced with ambiguous transition and observation probabilities that are

only known to belong to an ambiguity set. The robust solution is optimal in the

worst case scenario, i.e., under the least favorable probabilities in the ambiguity set.

While the robust solution provides protection against worse-than-expected model dy-

namics, the performance in the expected case is generally worse than the non-robust

solution. The degree of conservatism can be controlled by the size of the ambiguity

set, with larger ambiguity sets producing more conservative solutions. Note that ro-
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bust POMDPs generalize POMDPs: when the ambiguity set is a degenerate set of

only a single transition-observation function, we recover a standard POMDP.

5.3 Robust Belief-Reward Partially Observable Markov Decision Pro-

cesses

In this section, we introduce the formulation for robust belief-reward POMDPs.

Robust belief-reward POMDPs generalize the reward, dynamics, and observability

of standard MDPs. For a robust belief-reward POMDP in which the ambiguity set

for the dynamics is degenerate, the belief-reward is degenerate, and the observation

function is perfect, a standard MDP is recovered. However, in many practical applica-

tions the model dynamics are not known precisely and MDP and POMDP solutions

are sensitive to misspecification (Nilim and El Ghaoui, 2005; Itoh and Nakamura,

2007). The robust belief-reward POMDP formulation addresses this shortcoming by

accounting for model misspecification in information acquisition problems.

5.3.1 Formulation

The robust belief-reward POMDP, or robust ρPOMDP, is defined by the tuple

(S,A,Z,P , ρ, γ), where S is the state space, A is the action space, Z is the ob-

servation space, P is the ambiguity set of transition-observation functions, ρ is the

belief-reward function, and γ is the discount factor. We consider POMDPs with

discrete state, action, and observation spaces over discrete time.

The ambiguity set, P , includes all pan(s′, z|s) in the given ambiguity set, where

pan(s′, z|s) is defined as the probability of transitioning to s′ ∈ S and observing z ∈ Z

given that a ∈ A is taken from s ∈ S at time n ∈ [0, N ]. For a given state, s,

and action, a, the ambiguity set Pas is a set of categorical probability distributions of

dimension |S| × |Z|. These ambiguity sets can take a variety of forms (e.g., interval,
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polytope, ellipsoid, norm-based) but are restricted to convex sets for value iteration

solution techniques.

The belief-dependent reward, ρ, is a function of the action, a and the belief-state

vector, b ∈ B, where B is the continuous belief space defined over the discrete state

space, S. The updated belief is represented by b′b,a,z where b is the previous belief,

a is the action selected, and z is the observation received. The discount factor, γ, is

a constant parameter that controls the time-value of rewards.

Given this model, we can construct the value function from the belief-reward

value function and the robust value function. The value function for the belief-reward

POMDP is

Vn(b) = max
a∈A

ρ(b, a) +
∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pan(t, z|s)Vn+1(b′b,a,z)

)
, (24)

the value function for the robust POMDP is

Vn(b) = max
a∈A

min
pan∈Pa

∑
s∈S

b(s)

(
r(s, a) + γ

∑
t,z∈S×Z

pan(t, z|s)Vn+1(b′b,a,z)

)
, (25)

and the value function for the robust belief-reward POMDP can be directly derived

from both of these value functions as

Vn(b) = max
a∈A

min
pan∈Pa

ρ(b, a) +
∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pan(t, z|s)Vn+1(b′b,a,z)

)
. (26)

This chapter introduces two results that provide a foundation for solving robust

belief-reward POMDPs. First, using the result proven by Osogami (2015, Theorem

1), the robust belief-reward value function is convex. The proof for Theorem 8 is

included in Appendix B.

Theorem 8. When N <∞, the robust belief-reward value function, Vn(b), is convex
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with respect to b for each n ∈ [0, N ] for a convex ambiguity set, Pas for s, a ∈ S ×A,

and a convex belief-reward function, ρ(b, a).

Second, using the result proven by Osogami (2015, Theorem 2), the value function

converges. The proof for Theorem 9 is included in Appendix B.

Theorem 9. The robust belief-reward value function, V0, satisfying

Vn(b) = max
a∈A

ρ(b, a) + min
pan∈Pa

∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pan(t, z|s)Vn+1(b′b,a,z)

)
, (27)

converges uniformly as N →∞ if γ < 1.

Theorem 8 and Theorem 9 allow classic value iteration techniques to be applied to

the robust belief-reward setting, while introducing only mild conditions on the model.

5.3.2 Approximate Value Iteration for Robust Belief-Reward POMDPs

In this section, we introduce an approximate value iteration algorithm for ro-

bust belief-reward POMDPs. Using the results proven by Araya-López et al. (2010)

and Osogami (2015), we show that value iteration is valid for robust belief-reward

POMDPs. Value iteration is particularly attractive in the standard POMDP set-

ting because the reward function is PWLC, which allows for ε-optimal solutions to be

found in finite time despite the infinite dimension of the belief space in the underlying

MDP. While continuous space MDPs are generally intractable, the special structure

of the belief space and the original POMDP supports efficient state transitions, or

belief updates, and guarantees a piecewise linear and convex (PWLC) value function

(Kochenderfer, 2015). The structural properties allow for ε-optimal solution tech-

niques for small-sized POMDP problems (White and Eldeib, 1994; Zhang and Liu,

1996; Cassandra et al., 1997).
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In the belief-reward POMDP setting, if the belief-dependent reward is convex, the

value function is convex; if the belief-dependent reward is PWLC, the value function

is PWLC (Araya-López et al., 2010). As a result, ε-optimal solutions are available

for PWLC belief-reward POMDPs. However, in the robust POMDP setting, if the

ambiguity set for the dynamics, P , is convex, the value function is convex (Osogami,

2015). This requirement restricts robust POMDP value iteration to approximate

solutions using a PWLC approximation of the value function.

These results imply two restrictions for the robust belief-dependent case: the

belief dependent reward, ρ(b, a), must be PWLC, and the ambiguity set, P , must

be a convex set. Convexity is a mild restriction on the ambiguity set, which allows

upper and lower probabilities, p-boxes, and polytopic uncertainty, among others.

In practice, the restriction to approximate value iteration is typically not a signif-

icant limitation because computational complexity limits the problem size for exact

value iteration. Under the restriction to PWLC information-reward functions, ρ(b, a)

can be represented by a set of vectors for each action, Γa, such that

ρ(b, a) = max
αρ∈Γa

∑
s∈S

b(s)αρ(s). (28)

This representation is analogous to the alpha-vector representation of POMDP value

functions (Araya-López, 2013). Point-based value iteration algorithms update the

value function over a finite subset, B0, of the full belief space B. However, each point-

based update corresponds to an alpha vector over the entire belief space, so the policy

is fully defined over the original belief space.

To address the robust requirement, we use the argument developed by Osogami

(2015), where equation (29) induces a min-max game against nature in which nature

selects the probability distribution that minimizes rewards for the decision maker.

The estimated value function at iteration n+ 1, Λ̂n+1, is represented as a set of alpha
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vectors, resulting in the following definition for the value-minimizing probability at

iteration n,

pa,∗n = argmin
pan∈Pa

∑
z∈Z

max
αz∈Λ̂n+1

∑
s∈S

b(s)
∑
t∈S

pan(t, z|s)αz(t). (29)

This game results in the minimization problem shown in equation (30), where

U(z) acts as a bounding variable in the optimization formulation,

minimize
pan(·, ·|s)

∑
z∈Z

U(z) (30a)

subject to U(z) ≥
∑
s∈S

b(s)
∑
t∈S

pan(t, z|s)αz(t), ∀αz ∈ Λ̂n+1, ∀z ∈ Z, (30b)

pan(·, ·|s) ∈ Pas , ∀s ∈ S. (30c)

This minimization problem is a linear program for appropriate choices of the

ambiguity sets, Pas , for instance interval or polytopic ambiguity. The maximization

in equation (29) selects the α∗z determined by equation (31) for the solution to equation

(30),

U(z) =
∑
s∈S

b(s)
∑
t∈S

pan(t, z|s)α∗z(t). (31)

Building from these previous results, we adapt the algorithms examined by Araya-

López et al. (2010) and Osogami (2015) to construct Algorithms 4 and 5 for robust

belief-reward point-based value iteration. Algorithm 4 is the overall robust belief-

reward point-based value iteration component. Algorithm 5 is the robust belief-

reward dynamic programming component. The key change required to extend robust

dynamic programming to the belief-reward case is to replace the standard reward with

belief-reward by adding Step 12 based on the alpha vector definition of the belief-

reward in equation (28) and by replacing the reward function in Step 13. Given

that these rewards are modified, the alpha vectors in the approximate value function

at each iteration reflect the value over belief-rewards rather than standard rewards.
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Note that the alpha vector definition of the reward function includes both standard

state-rewards and hybrid rewards as special cases, where the hybrid costs are modeled

through the Γa sets such that Γa1 6= Γa2 and so on.

Algorithm 4 Robust belief-reward point-based value iteration

1: input B0

2: Λ̂N ← {0}
3: for n← N − 1 : 0 do
4: Λ̂n ← Robust belief-reward point-based backup value of Λ̂n+1

5: end for
6: return Λ̂0

Algorithm 5 Robust belief-reward point-based dynamic programming backup

1: input Λ̂n+1,B0

2: Λ̂n ← ∅
3: for all b ∈ B0 do
4: Λ̂n,b ← ∅
5: for all a ∈ A do
6: Solve the robust min-max problem (30) for b, a
7: for all z ∈ Z do
8: α∗z ← αz in the optimal solution of (30) that achieves (31)
9: end for

10: for all s ∈ S do
11: pa,∗n (·, ·|s)← minimizer pa(·, ·|s) in the optimal solution of (30)
12: αρ ← argmaxα∈Γa b · a
13: α∗(s)← αρ(s) + γ

∑
t∈S
∑

z∈Z p
a,∗(t, z|s)α∗z(t)

14: end for
15: Λ̂n,b ← Λ̂n,b ∪ {α∗}
16: end for
17: Λ̂n ← Λ̂n ∪

{
argmaxα∈Λ̂n,b

∑
s∈S b(s)α(s)

}
18: end for
19: return Λ̂n

The standard point-based dynamic programming backup algorithm, at iteration

n, requires O(|B||A||Z||S||Λ̂n+1|) operations (Pineau et al., 2003). The robust belief-

reward version, Algorithm 5, can also be solved in polynomial time at iteration n,

but with an added linear program in the inner-most loop of the algorithm. Assuming
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an interval ambiguity set, the robust calculations, shown in Algorithm 5 Steps 5 - 14,

replace O(|Z||S|) operations in the standard algorithm with three polynomial time

computations: a linear program with |Z||S|2 + |Z| decision variables and |Z|+ |S|+2

constraints, a loop with O(|Z||Λ̂n+1|) operations, and a loop with O(|S|(|Γ|+ |Z||S|))

operations. Linear programs can be solved to optimality in polynomial time, so the

overall robust algorithm can be calculated in polynomial time, but there is still a

substantial robustness penalty with respect to time-complexity.

5.4 Experiments

This section addresses makes two contributions. First, while robust POMDPs have

been proposed in the literature, there is a lack of empirical evidence that demonstrates

the performance of robust POMDPs as compared to standard POMDPs. This section

uses experiments to address the gap in the literature for robust POMDPs. Second,

we conduct another set of experiments for robust belief-reward POMDPs to demon-

strate their improvement in the generalized belief-reward setting. Osogami (2015)

includes testing on a single instance of the Heaven and Hell problem but does not

systematically compare the robust POMDP performance to standard POMDP per-

formance. Itoh and Nakamura (2007) conduct comprehensive baseline experiments

for POMDPs with imprecise parameters (POMDPIPs), but POMDPIPs have sub-

stantive differences from robust POMDPs. The solution technique used in Itoh and

Nakamura (2007) selects any admissible probability distribution from the ambigu-

ity set, rather than taking a max-min utility approach from the robust literature.

The primary goal of their admissible approach is to reduce computational complex-

ity while selecting distributions from a set of acceptable distributions, rather than

guaranteeing performance.

This computational experiment uses a set of standard problems from the POMDP
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literature which we extend to the robust and belief-reward settings. First, we calcu-

late the expected total discounted reward for each problem in the standard POMDP

setting using point-based value iteration (PBVI). Then, we use robust point-based

value iteration (RPBVI) to calculate the pessimistic expected total discounted reward

subject to ambiguity in the transition and observation functions. We compare the

standard and robust policies by calculating the mean simulated value of each pol-

icy. The standard policy is optimal in the nominal setting, so, by construction, it

outperforms the robust policy in the nominal setting. In the ambiguous setting, the

robust policy provides protection against the worst-case, while the nominal policy is

degraded because of model misspecification. Additionally, we investigate the rela-

tive performance of the nominal and robust policies as the ambiguity in the problem

dynamics increases.

We consider ambiguity sets for the transition and observation probability distri-

butions defined as upper and lower probabilities, or probability intervals. We saturate

the ambiguity set at ε and 1 − ε where ε = 1 × 10−6. Fully saturated bounds are

disallowed to enable a comparison of the performance of the robust solution and the

nominal solution when the dynamics follow the nominal case. The experiment also

includes two different belief-dependent rewards. The simple belief-dependent reward

is defined as a linear cone such that the extremes of the belief simplex have value

1 and the center of the belief simplex has value 0. The complex belief-dependent

reward is a PWLC function with variable gradient.

To conduct the experiments, we extend the JuliaPOMDP suite of POMDP models,

solvers, and tools (Egorov et al., 2017; Lubin and Dunning, 2015). Specifically, we

implement a new formulation for robust POMDPs and robust belief-reward POMDPs;

implement a new solver for robust point-based value iteration and robust belief-reward

point-based value iteration; formulate robust, belief-reward, and robust belief-reward
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models for several problems; and extend the tools necessary for interfaces, simulation,

and history recording to the robust and belief-dependent settings. The algorithm

implementation, model formulations, and extended tools are available at https://

github.com/ajkeith/RobustValueIteration.

5.4.1 Robust POMDP Experiments

This section presents results comparing robust POMDPs to standard POMDPs.

We consider several variants of two reference problems from the literature: the Tiger

Problem (Cassandra et al., 1994) and the Crying Baby Problem (Kochenderfer, 2015).

These problems are selected to facilitate comparison with other approaches due to the

manageable size and the ability to interpret policy solutions. Details on the problems

are available in Appendix B.

To demonstrate correctness, we compare the results of our algorithm to the results

of the SARSOP algorithm for the Crying Baby Problem (Kurniawati et al., 2008).

The optimal policy for the Crying Baby Problem is to do nothing until the belief about

the baby’s hunger reaches a certain threshold, then feed the baby. For the default

parameters, the threshold is approximately p(State = Hungry) = 0.28. Figure 17

shows the value function for both the nominal SARSOP policy and the robust PBVI

policy under several levels of increasing ambiguity. The RPBVI functions in the

legend of Figure 17 are listed in decreasing order of average value. The overall value

function decreases as the ambiguity set increases. The transition point in belief-space

from “do nothing” to “feed” also shifts toward 0.5.

5.4.1.1 Parameters

For each decision problem, we vary the solution technique, the ambiguity level

of the modeled problem (solution), and the ambiguity level of the true environment
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Figure 17. Robust baby POMDP value function

(simulation). These combinations correspond to columns 1 through 4 in Table 14.

The fifth and sixth columns report the mean and 95% confidence interval for the

simulated total discounted reward produced by each policy. The seventh and eighth

columns report the accuracy of the policy. For any belief vector, the most-likely

estimator of the true state is the state with the highest belief in the belief vector.

By calculating this estimate at every simulation step, we can compute the percent of

time that each policy’s belief-state correctly predicts the true state. We refer to this

metric as the accuracy metric.

In the standard version of both problems, there is no ambiguity. For the ambigu-

ous versions, we take the original problem’s dynamics as the nominal dynamics and

construct an ambiguity set around the nominal transition-observation distribution.

We vary the size of this ambiguity set from 0.001 to 0.2. The full details of the

problem parameters are included in Appendix B.
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5.4.1.2 Results

The baseline results are provided by the performance of the standard solution on

the nominal model, where both the model ambiguity and the environment ambiguity

are set to zero, and by the performance of the robust solution on the ambiguous model,

where the model ambiguity and the environment ambiguity are non-zero. We collect

these baseline results for each level of ambiguity. Then, we consider each solution

technique under model misspecification. That is, we consider the performance of the

nominal solution computed under the assumption of nominal model dynamics when

the true environment exhibits off-nominal, worst-case ambiguity in the transitions and

observations. We also consider the opposite perspective for the robust solution. That

is, we consider the performance of the robust solution computed under the assumption

of worst-case ambiguity for the model dynamics when the true environment exhibits

nominal transitions and observations.

For each variant of the problems, we compute an approximate policy using 200

solution iterations and 63 uniformly spaced belief points. Then, we simulate the

performance of the policy for the nominal setting and for the worst-case setting.

For the simulated value, we conduct 500 replications of 100 decision epochs. The

transitions and observations are generated from the worst-case distributions in the

ambiguity set or from the nominal distribution in the ambiguity set, depending on

the simulation ambiguity. Table 14 displays the results of these tests.

There are several notable trends in Table 14. For the Tiger Problem, the robust

policy has good performance under the worst-case dynamics as compared to the

standard policy. For an ambiguity parameter of 0.1, the robust policy has a 101%

relative improvement in mean simulated value for the worst-case dynamics. For an

ambiguity parameter of 0.2, the robust policy has an 83% improvement in mean

simulated value for the worst-case dynamics. However, the price of robustness is
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high. Under nominal dynamics, the robust policy has a 25% and 102% reduction in

mean simulated value for ambiguity parameters 0.1 and 0.2, respectively. At lower

ambiguity levels, the robust policy and nominal policy produce similar values.

The accuracy metric shows interesting trends for the Tiger Problem. The stan-

dard method produces a policy which identifies the correct state approximately 75%

of the time for the nominal case. Similarly, the robust policy identifies the correct

state approximately 75% of the time for the worst-case. When the nominal policy

is applied to the worst-case, the accuracy decreases as the ambiguity increases, as

expected. However, when the robust policy is applied to the nominal case, the ac-

curacy increases as the ambiguity of the policy increases. This trend illustrates the

conservative nature of the robust policy. While the policy updates the belief state

using worst-case probabilities, the true metric improves more quickly using the nom-

inal probabilities. As a result, the belief-state is more accurate than is rational. In

other words, under nominal conditions, the robust policy spends too many resources

collecting information.

The results for the Crying Baby Problem show different trends than the tiger

results. In the nominal simulations, the robust solution performs significantly worse

than the standard solution, as expected. However, under worst-case simulation dy-

namics, the robust solution is only statistically better than the nominal solution at

the highest level of ambiguity and this improvement is small relative to the loss in

the nominal simulations. In this case, the nominal solution is nearly robust to the

amount of ambiguity considered in the experiment and the trade-off is not favorable.

The robust policy has improved accuracy at higher ambiguity levels, but the improve-

ment is not as large as in the improvement in the Tiger Problem. The difference in

relative performance between the Tiger Problem and Crying Baby Problem highlights

the importance of considering the trade-off between nominal-case and worst-case per-
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formance.

Overall, the robust policy provides protection from undesirable dynamics, particu-

larly in the Tiger Problem. However, the relative benefit of the worst-case protection

is problem dependent in terms of both the magnitude and the likelihood of worst-case

dynamics.

5.4.2 Robust Belief-Reward POMDP Experiments

In this section, we conduct an experiment to compare the belief-reward variants of

the robust POMDP and POMDP. The test problem is based on the Rock Diagnosis

Problem, discussed in Araya-López (2013). The full model with parameter values is

defined in Appendix B.

5.4.2.1 Parameters

In addition to the parameters described in Section 5.4.1, we consider an extension

to two different belief-reward functions. The first function, referred to as the simple

reward function for this experiment, is a linear cone with a value of 0 at the uniform

belief of [0.25, 0.25, 0.25, 0.25] and value of 1 at the deterministic beliefs at each corner

of the simplex. The second belief function, referred to as the complex reward function

for this experiment, is defined by twice as many vectors and produces a piecewise

linear convex belief function with variable gradient. The complex reward function

also has a value of 0 at the uniform belief and 1 at the corners of the simplex. Figure

18 shows several belief-reward functions for a two-dimensional belief space. The

simple belief-reward function in our experiment is similar to the 1-norm function,

while the complex belief-reward is similar to a lower piecewise approximation of the

negative entropy in the sense that it has non-constant gradient and a similar profile.

We also tune the ambiguity parameters to [0.001, 0.1, 0.2, 0.3, 0.4] based on the rock
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diagnosis dynamics.
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Figure 18. Belief-Reward function comparison for |S| = 2

5.4.2.2 Results

Figures 19 and 20 show two-dimensional slices of the value functions for the nom-

inal solution and the robust solutions to the Rock Diagnosis Problem. In this slice

of the belief space, the decision maker is certain that the sensor is in position 1,

which is feasible because the transition function is deterministic. The horizontal axis

represents the belief that the rock is good, corresponding to a value of zero, or bad,

corresponding to a value of one. In both cases, the robust policies for ambiguity

size of 0.1, 0.2, 0.3, and 0.4 are similar and produce value functions that are visually

indistinguishable.

For the Rock Diagnosis Problem, we fix the solution iterations at 200 with 63

uniformly spaced belief points. Then we conduct 100 replications of 100 decision

epochs each to simulate the value and accuracy of each policy. The results of these

tests are shown in Table 15.
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Figure 19. Robust belief-reward rock diagnosis (simple reward) POMDP value function
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Figure 20. Robust belief-reward rock diagnosis (complex reward) POMDP value func-
tion
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In the simple belief-reward experiments, the simulated value and accuracy results

for the belief-dependent setting follow the same general pattern as the results in the

state-reward setting. While the nominal solution is vulnerable to degraded perfor-

mance under the worst-case dynamics, the robust solution outperforms the nominal

solution for high ambiguity for both metrics. Figure 21 shows this trend graphically

for the simulated value metric and highlights the benefit of a robust belief-reward

policy. Note that although this is a statistically significant difference, the magnitude

of the difference is relatively small compared to the simulated total discounted reward

for the problem.
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Figure 21. Simulated value for rock diagnosis (simple reward) policies with worst-case
dynamics

The results for the complex reward experiments are mixed. Although the robust

policy has higher simulated value than the nominal policy at the 0.3 ambiguity level

with the complex reward, the difference is not as clear as in the simple reward case.

For most sizes of ambiguity sets considered, the confidence intervals for the robust

156



policy and the nominal policy overlap. This overlap is likely due to the interaction

between the shape of the belief-reward and the worst-case dynamics. However, the

robust policy does outperform the nominal policy with respect to accuracy for high

ambiguity levels. Similar to the difference in relative performance between the Tiger

Problem and the Crying Baby Problem, the desirability of the robust belief-reward

policy depends on the problem parameters. If the worst-case loss is minor compared

to typical rewards, the nominal policy is preferred.

5.5 Cybersecurity Application

Cybersecurity is a critical concern in both military and civilian contexts (Schramm

and Gaver, 2013; Sinha et al., 2015). In cybersecurity applications, intrusion detec-

tion systems (IDS) play an important role. In some cases, the IDS is paired with an

intrusion response system (IRS) that automatically employs counter-measures for de-

tected threats (Kiennert et al., 2018). However, the problem of detection is a difficult

problem even without considering response selection. The subset of cybersecurity de-

tection problems is closely related to sensing problems (e.g., Szechtman et al. (2008)

and Romich et al. (2015)) and has also been addressed with POMDPs (Miehling et al.,

2018). The IDS decision problem is a canonical example of an information-reward

problem. While MDPs and POMDPs have been used to model IDS, we develop an

application of the robust belief-reward POMDP to cybersecurity.

We present an application of cyber resource allocation for an IDS in this section to

demonstrate the implementation of the robust framework. However, full application

of the robust belief-reward POMDP method for modern IDS would require scaling

to a larger problem in terms of both size and diversity of the state, action, and

observation spaces to better reflect cybersecurity systems in use today. Cybersecurity

systems are used widely by private industry, government, and military organizations.
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In the military setting, cyber IDS are a single-domain component of more general

multi-domain assessment, monitoring, and evaluation systems. Although the model

described here is presented in terms of cyber assessment, the principles can be applied

to other domains as well.

5.5.1 Nominal Formulation

For this application, we consider a cyber network with three nodes. For each

node, the intrusion threat-level is measured on a three-level ordinal scale representing

no threat (threat level 1), degraded capability (threat level 2), and critical threat

(threat level 3). We also consider the IDS planning problem to be infinite-horizon

with discrete-time decision epochs. IDS controllers may be limited in deployment due

to cost or due to the negative impact on the usability of the network. Formally, the

state space is S = {(1, 1, 1), (1, 1, 2), . . . , (3, 3, 3)} where each state is represented by

factored notation, s = (s1, s2, s3), in which the jth entry represents the threat-level

of the jth node. For the second state, s = (1, 1, 2), the first node is at threat-level

1, the second node is at threat-level 1, and the third node is at threat-level 2. Given

Nn = 3 nodes and Nl = 3 threat-levels, the size of the state space is |S| = NNn
l = 27.

For this example, we consider an IDS with Nc = 2 monitoring systems. The action

space is the assignment of either one monitor or no monitors to each node, without

doubled assignments. Then, the size of the action space is |A| = Nn!
(Nn−Nc)! = 6

actions. Using a similar factored notation as the state space, the action space is

A = {(1, 2), (1, 3), . . . , (3, 2)} where each action is represented by factored notation,

a = (a1, a2), in which the jth entry represents the node to which the jth monitor is

assigned. For example, a = (1, 2) assigns the first monitor to node 1 and the second

monitor to node 2.

The observation space captures the threat-level detected by each monitor. Each
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monitor can detect any of the three threat-levels, so the size of the observation space

is |Z| = NNc
l = 9. Using the same factored approach, the observation space is Z =

{(1, 1), (1, 2), . . . , (3, 3)} where each observation is represented by factored notation,

z = (z1, z2), in which the jth entry represents the threat-level which the jth monitor

detects. For example, if z = (1, 3), the first monitor detects threat-level 1 and the

second monitor detects threat-level 3.

The transition function describes how the state changes based on the actions,

in other words, the dynamics of the problem. In this case, the monitoring actions

are assumed to have no impact on the state, so the transition function is relatively

simple. The transition function is also assumed to be the same for each node. The

state transition function for this scenario represents the a priori likelihood of the

state transitioning, given suspected threats.

There are six parameters that control transitions in this model, shown in Table

16. These probabilities represent the likelihood of independent events of a given node

changing threat-levels in one decision epoch, where si and s′i indicate the threat-level

of node i before and after the decision epoch and l and k are threat-levels. Note that

these constants are defined with respect to a single node, then used to determine the

probability for the full state that includes all three nodes. The basic structure is that

a given node will stay at the same threat-level, decrease one threat-level, or increase

one threat-level without skipping over levels. When a node is at the highest or lowest

threat-level, the distribution has to be modified to prevent transitions to threat-levels

outside the state space. We assume that all nodes have the same probability of

changing, but that assumption can be generalized in a straightforward manner by

changing the value of the parameters. Furthermore, complexity increases for larger

systems where one node’s transitions affect the transition probabilities of neighboring

nodes.

159



Table 16. Nominal transition parameters

Parameter Value Definition Explanation

pd 0.15
p(s′i = l − 1|si = l),
i ∈ {1, 2, 3}, l > 1

probability of decrease

pu 0.3
p(s′i = l + 1|si = l),
i ∈ {1, 2, 3}, l < 3

probability of increase

ps 0.55
p(s′i = 2|si = 2),
i ∈ {1, 2, 3} probability of no change

ps∪d 0.7
p(s′i = 1|si = 1),
i ∈ {1, 2, 3}

probability of no change
(lower limit)

ps∪u 0.9
p(s′i = 3|si = 3),
i ∈ {1, 2, 3}

probability of no change
(upper limit)

ph 0
p(s′i = k|si = l),
i ∈ {1, 2, 3},
k /∈ {l − 1, l, l + 1}

probability of skipping levels

These constants and the dynamics discussed previously define the transition ar-

ray, T. The full transition array is a 27 × 6 × 27 array, but each two-dimensional

slice for a given action is the same because the transition does not depend on the

action selected. For notational clarity, we give the state s an integer-valued index,

ks, numbered in increasing ternary order, as in the definition for S. For convenience,

we refer to state s by its identifying variable and also by its index, using context to

distinguish. For example, the first state, (1, 1, 1), has index ks = k(1,1,1) = 1, so we

will refer to it both as state 1 and as (1, 1, 1). We treat the notation for actions and

observations in an analogous manner. Formally, the transition function can be de-

fined as T (s, a, s′) = Tks,ka,ks′
, where Tks,ka,ks′

is the (ks, ka, ks′) entry of the T array.

All transition matrices indexed by action are available in the source code.

Since the observation function does depend on the actions, unlike the transition

function, we have a three-dimensional array, with dimensions 6× 27× 9. Each two-

dimensional slice in this array represents the observation function given a certain

action. That is, we have an array O, where entry (i, j, k) indicates the probability

of observing state k given the current state is j and the action chosen is i. Then

160



O(a, s′, z) = Oka,ks′ ,kz
.

For the detection process of collecting information and determining the threat-level

of a given node, we set a performance parameter for each monitor, where p1
correct = 0.8

is the probability of correct detection of the first monitor and p2
correct = 0.9 is the

probability of correct detection of the second monitor. The probability of incorrect

detection is uniformly distributed over the adjacent incorrect threat-levels, but zero

for threat-levels with more than one level of error. For instance, if the actual state

of node 1 is threat-level 2 and we assign monitor 1 to node 1, then we will observe

node 1 at threat-level 1 with probability 0.1, threat-level 2 with probability 0.8, and

threat-level 3 with probability 0.1. We assume independent observations for different

nodes. For a given node, if no monitor is assigned, no change in its threat-level can be

observed. These parameters are summarized in Table 17, where zi is the observation

of monitor i and ai is the node to which monitor i is assigned. Similar to the transition

table, we define the observation parameters with respect to a single node rather than

the entire state. The difficulty in estimating these probabilities in practice is one

of the primary reasons for incorporating ambiguity in the robust formulation. All

observation matrices indexed by action are also available in the source code.

The belief-reward is ρ(b) = maxα∈Γ bα, defined using alpha-vectors over the state

space. We use a simple belief-reward function defined as a set of vectors, Γ, that

includes |S| = 27 vectors. Each vector has a value of 1 at a single position and −1/26

otherwise, giving a value of 1 at each corner of the belief simplex and a value of 0 at

the center of the simplex. The value increases linearly toward each extreme point of

the belief simplex, creating a PWLC cone. Formally, the alpha vector set is

Γ = {[1,−1/26,−1/26, . . . ,−1/26], (32)

[−1/26, 1,−1/26, . . . ,−1/26], (33)

... (34)

[−1/26,−1/26, . . . ,−1/26, 1]}. (35)
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Table 17. Nominal observation parameters

Parameter Value Definition Explanation

p1
correct 0.8

p(z1 = l|sa1 = l),
l ∈ {1, 2, 3} probability monitor 1 correct

p2
correct 0.9

p(z2 = l|sa2 = l),
l ∈ {1, 2, 3} probability monitor 2 correct

q1
center 0.1

p(z1 = l|sa1 = 2),
l ∈ {1, 3} probability monitor 1 incorrect

q2
center 0.05

p(z2 = l|sa2 = 2),
l ∈ {1, 3} probability monitor 2 incorrect

q1
boundary 0.2 p(z1 = 2|sa1 ∈ {1, 3})

probability monitor 1 incorrect
(boundary)

q2
boundary 0.1 p(z2 = 2|sa2 ∈ {1, 3})

probability monitor 2 incorrect
(boundary)

p0 0
p(zi = k|sai = l),
i ∈ {1, 2},
k /∈ {l − 1, l, l + 1}

probability of two-level error

We set the initial state to (1, 1, 1) so that the network starts with no threats present,

and we set γ = 0.9 to a moderate discount rate to reflect the dynamic nature of the

security environment.

The nominal belief-reward POMDP model for cyber intrusion detection planning

is the tuple (S,A,Z, T, O, ρ, γ):

S = {(1, 1, 1), (1, 1, 2), . . . , (3, 3, 3)} (36)

A = {(1, 2), (1, 3), . . . , (3, 2)} (37)

Z = {(1, 1), (1, 2), . . . , (3, 3)} (38)

T (s, a, s′) = Tks,ka,ks′
(39)

O(a, s′, z) = Oka,ks′ ,kz
(40)

ρ(b) = max
α∈Γ

bα (41)

γ = 0.9 (42)
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5.5.2 Robust Formulation

Using the nominal dynamics, we define the robust dynamics with probability

intervals. For the ambiguity in the transition and observation functions, we can

introduce ambiguity into the transition array directly or into the parameters used

to calculate the dynamics. Introducing ambiguity into the parameters seems to be a

more natural way to represent real world ambiguity, so that approach is used here. To

facilitate interpretation, we vary the size of the ambiguity sets but keep the transition

function near certain for all distributions. For the observation function, we consider

the performance of one monitor to be near certain while the other has high ambiguity.

Specifically, we set a one-sided ambiguity parameter for the transitions, δt = 1e−6,

and for each monitor, δ1 = 1e−6 and δ2 = 0.4. These ambiguity parameters are

added and subtracted to each nominal parameter used to generate the transition

and observation arrays. We bound any interval by ε and 1 − ε if the raw ambiguity

interval extends beyond probability bounds. This approach generates an array of

upper probabilities and an array of lower probabilities, neither of which have rows

that sum to one. The probability intervals defined by these two arrays are used to

define a closed, convex polytope that contains valid probability distributions.

For the transition function, we apply the δt ambiguity to the three main param-

eters, pd, ps, and pu in Table 16, and derive the ambiguity for the union parameters.

We keep the probability of skipping levels precise at 0. The interval widths of the

resulting array are near zero, modeling a high level of certainty about the transition

dynamics. Using the same logic as the nominal model dynamics, we calculate an

upper transition array using the upper bounds and a lower transition array using the

lower bounds. These arrays represent the upper and lower probabilities of transi-

tion, so we have two arrays with real-valued elements rather than a single array with

interval-valued elements. We denote the upper and lower transition arrays by TU
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and TL. Given these arrays, and the element indexing discussed earlier, the robust

transitions are defined by TR(s, a, s′) = [TL
ks,ka,ks′

,TU
ks,ka,ks′

]. The full upper and lower

transition arrays are available in the source code.

The observation array is developed in an analogous way. We use δ1 and δ2 to create

the interval-valued parameters shown in Table 18. The logic for the observation

function remains the same as in the nominal case and when applied to both end

points of the parameter intervals, this produces upper and lower observation arrays

OU and OL. Given these arrays, the robust observations are defined by OR(a, s′, z) =

[OL
ka,ks′ ,kz

,OU
ka,ks′ ,kz

]. This robust observation interval-array models low ambiguity

about the first monitor and high ambiguity about the second monitor.

Table 18. Robust observation parameters

Parameter Value
p1

correct [0.8− 1e−6, 0.8 + 1e−6]
p2

correct [0.5, 1− 1e−6]
q1

center [0.1− 5e−7, 0.1 + 5e−7]
q2

center [5e−7, 0.25]
q1

boundary [0.2− 1e−6, 0.2 + 1e−6]
q2

boundary [1e−6, 0.5]
p0 0

The belief-reward and discount factor remain unchanged from the nominal setting.

To summarize, the robust belief-reward model is the tuple (S,A,Z,P , ρ, γ) where P

is defined by TR and OR, and where

S = {(1, 1, 1), (1, 1, 2), . . . , (3, 3, 3)} (43)

A = {(1, 2), (1, 3), . . . , (3, 2)} (44)

Z = {(1, 1), (1, 2), . . . , (3, 3)} (45)

TR(s, a, s′) = [TL
ks,ka,ks′

,TU
ks,ka,ks′

] (46)

OR(a, s′, z) = [OL
ka,ks′ ,kz

,OU
ka,ks′ ,kz

] (47)
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ρ(b) = max
α∈Γ

bα (48)

γ = 0.9 (49)

5.5.3 Results

We use standard belief-reward value iteration to solve the cybersecurity prob-

lem for the nominal formulation and robust belief-reward value iteration to solve the

robust formulation. For comparison purposes, we also consider an off-nominal formu-

lation with no ambiguity but different observation parameters than the nominal for-

mulation. Specifically, the off-nominal formulation has p1
correct = 0.8 and p2

correct = 0.5.

After computing the solution for each formulation, we test each policy using an

empirical simulation in which the transitions and observations are generated from the

worst-case distribution. The beliefs and rewards are generated using the dynamics

associated with each policy. We also test each policy using an empirical simulation in

which the transitions and observations are generated from the nominal distribution.

The performance of each policy is shown in Tables 19 and 20. These results were

computed using 12 selected belief points and 40 uniformly random points in the belief

space. The selected belief points are chosen from points near the starting belief and

are used to check results during the simulation. Following the approach in Pineau

et al. (2003), the solution policy was calculated using 45 iterations of value-iteration

as |ρmax − ρmin|γNiter = 0.945 < 0.01. For the simulation, 25 replications of 100

steps each were performed. In production point-based value iteration algorithms, the

belief set is dynamically adjusted, typically by balancing exploration and exploitation

with reachable beliefs (e.g., Smith and Simmons (2005); Kurniawati et al. (2008)).

However, in this case, we preferred to test the robust belief-reward point-based value

iteration against a static belief set to avoid an artificial disadvantage for the nominal

case. If beliefs not reachable under nominal conditions are not used to develop the
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nominal policy, it would perform worse than it otherwise would in the off-nominal

and robust settings.

Table 19. Empirical cybersecurity belief accuracy (N = 25)

Nominal Worst-Case
Policy Accuracy Accuracy Accuracy Accuracy

(Mean) (95% CI) (Mean) (95% CI)
Standard (Nominal) 51.1 (47.8, 54.4) 14.1 (12.6, 15.7)

Standard (Off-Nominal) 38.7 (35.1, 42.3) 16.0 (13.7, 18.3)
Robust 41.0 (38.7, 43.2) 22.8 (20.5, 25.1)

Table 20. Empirical cybersecurity belief-reward (N = 25)

Nominal Worst-Case
Policy Reward Reward Reward Reward

(Mean) (95% CI) (Mean) (95% CI)
Standard (Nominal) 5.06 (4.93, 5.19) 4.68 (4.51, 4.84)

Standard (Off-Nominal) 4.10 (3.98, 4.21) 3.76 (3.63, 3.89)
Robust 3.87 (3.73, 4.01) 3.93 (3.79, 4.07)

As expected, the robust policy has the lowest simulated total discounted reward

when applied to the nominal simulation in Table 20. However, when applied to the

worst-case simulation, the simulated total discounted reward of the robust policy

remains stable while the simulated total discounted rewards of the nominal and off-

nominal policies decrease but remain higher than that of the robust policy. Table 19

suggests that this finding is a result of over-confidence for the precise policies under

model misspecification. Unlike in the standard reward setting, in the belief-reward

setting, the rewards in the simulation are a function of both the simulation dynamics

and solution dynamics, because the rewards depend on the policy’s belief update.

Although the nominal policy has beliefs with relatively high certainty, even in the

worst-case simulation, the accuracy metric shows that the actual performance of the

nominal policy is worse than the performance of the robust policy, significant at p =

0.05. In other words, the nominal policy reports inaccurate but highly certain beliefs,
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due to the model misspecification. Over time the conflict between the inaccurate

belief and the true dynamics negatively impacts the belief-reward but the impact is

sensitive to the discount parameter and the model structure. As a result, the accuracy

metric is a better measure of performance for each policy for this application.

For this cybersecurity assessment problem, the robust policy has a 61% improve-

ment in the probability of correctly identifying the state of the defended network

under the worst-case problem dynamics. This improvement comes at a cost of a

20% decrease in the probability of correctly identifying the state of the defended

network under nominal conditions. In terms of raw percentage points, the relative

improvement in the worst-case is 86% of the magnitude of the loss in the nominal

case. Despite high probabilities of correct detection for each monitor, the likelihood

of correctly identifying the state of the network, even under nominal conditions, is low

for all three policies. The difficulty in correctly identifying the state of the network is

related to the high dimensionality introduced the by the combinatorial nature of the

nodes and threat-levels. Overall, the robust policy provides improved performance

under worst-case problem dynamics at a reasonable cost in the nominal case.

5.5.4 Sensitivity Analysis

In this section, we conduct an experiment to show that the improvement due to the

robust approach is not restricted to the particular parameter values used in Section

5.5.2. The three key parameters that we vary in this experiment are the relative state

transition probabilities, the relative accuracy of the two intrusion detection systems

(IDSs), and the relative ambiguity between the two IDSs. We parameterize the

relative state transition probabilities by changing the value of the probability of no

change, ps, and keeping the ratio of the probability of increase, pu, to the probability of

decrease, pd, at 2 : 1. For the remaining two parameters, we fix p2 and δ1 and vary the
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relative accuracy and ambiguity. The relative accuracy is p2
correct−p1

correct and the the

relative ambiguity is δ2−δ1. We fix the alternate ambiguity and accuracy parameters

to avoid a situation in which one sensor strictly dominates on both accuracy and

ambiguity. Using these three parameters, we build a central composite design with

six center points and three total replications (Myers et al., 2016). The response for

each run includes the nominal belief-reward, the worst-case belief-reward, the nominal

accuracy, and the robust accuracy for both the nominal policy and the robust policy.

This experimental design results in 60 total runs with design settings summarized in

Table 21. We select a broad range of parameter values to explore the full range of

reasonable parameters for this application area.

Table 21. Cybersecurity experimental design

Value
Factor Lower Axial Lower Center Upper Upper Axial

Transition Parameter 0.37 0.4 0.5 0.6 0.63
Accuracy Parameter 0.04 0.1 0.3 0.5 0.56
Ambiguity Parameter 0.04 0.1 0.3 0.5 0.56

The results of this experiment are shown in Figures 22 and 23. The overall re-

sponse surface model has an adjusted R2 value of 0.74, with the noise due to the

inherent variability in the simulation. The model includes four significant effects.

The ambiguity main effect and second order effect are both significant at the 0.05

level with p-values less than 0.001 and practically meaningful parameter estimates

(5.7 and 3.1, respectively). The second-order effects for the transition and IDS ac-

curacy parameters are statistically significant at the 0.05 level with p-values of 0.005

and 0.035, respectively. However, the parameter estimates for these effects are about

one third the magnitude of the ambiguity effect (1.9 and -1.4, respectively). No other

effects are significant.

As in the base-case, we find that the robust policy outperforms the nominal policy

with respect to IDS accuracy in the worst-case across a broad range of parameter
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settings. Additionally, the nominal policy shows incorrectly high performance with

respect to belief-reward across the range of parameter settings. Figure 22 shows the

improved accuracy of the robust policy using percent accuracy change, defined as

the increase in accuracy from the nominal policy to the robust policy in terms of

raw percentage change. The improved accuracy of the robust policy is statistically

significant at moderate ambiguity levels and increases as ambiguity increases.
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Figure 22. Cybersecurity percent accuracy change by ambiguity level (robust policy -
nominal policy)

Furthermore, the improvement in accuracy for the robust policy holds regardless

of the value of the transition parameter or the IDS accuracy parameter, as seen in

Figure 23. In the upper-right cell of Figure 23, the relationship between accuracy

change and ambiguity level is similar when the transition parameter is set to 0.4 and
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0.6. Similarly, in the center-right cell of Figure 23, the relationship between accuracy

change and ambiguity level is similar when the accuracy parameter is set to 0.1 and

0.5. The relationship between accuracy change and ambiguity level is also similar

in both of these cells. These qualitative results confirm the small interaction effects

found in the statistical response surface model.
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5.6 Conclusion

In this chapter, we develop a comprehensive approach to address the challenge

of POMDP model misspecification. This approach includes a formulation for robust

belief-reward POMDPs as a generalization of standard MDPs that allows for state
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uncertainty, model uncertainty, and belief-dependent rewards. To solve these models,

we show how to extend approximate solution techniques using the new robust belief-

reward point-based value iteration algorithm. This algorithm has desirable convexity

and convergence properties that make it an efficient approximate solution technique

while still addressing the general case of ambiguous dynamics.

We also provide experimental results for robust POMDPs and robust belief-reward

POMDPs. The experimental results for robust belief-reward POMDPs show that

the robust belief-reward value iteration algorithm outperforms standard belief-reward

value iteration under worst-case model dynamics. This worst-case protection is valu-

able for applications with ambiguous transition and observation dynamics, which are

common in practice.

Finally, we present a detailed application of the robust belief-reward formulation

and algorithm to a cybersecurity resource allocation problem. In this setting, we

show that model misspecification can be particularly problematic, resulting in an

overconfident nominal solution. The robust policy avoids overconfidence and achieves

higher accuracy intrusion detection than the nominal policy. This new approach

enables future cybersecurity analysis applications that address realistic uncertainty

in the domain.

This work also provides a foundation for future work addressing misspecification

in POMDPs. A natural progression from these results is to introduce further modifi-

cations to the approximation technique to address larger problems. Current optimal

POMDP solution methods are still exponential in the observation space (Smith and

Simmons, 2005; Walraven and Spaan, 2017). Recent offline solution techniques use a

point-based approach with alternating lower and upper bound updates to find tight

bounds on solutions for problems on the order of 105 states (Smith and Simmons,

2004; Kurniawati et al., 2008). Recent online techniques find high quality approxi-
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mate solutions for problems of the same size and can also solve larger problems on

the order of 1056 states and 103 observations (Ye et al., 2017). Applying the robust-

ness results from this chapter to large-scale POMDP approximate solution techniques

provides the ability to expand the practical applications by reducing computational

time for large-scale problems while still addressing model misspecification.

This work focuses on the value iteration family of solution techniques, but the

policy iteration family might also be useful. Policy iteration can be more efficient

than value iteration for standard POMDPs (Hansen, 1997). Recent results have

extended modified policy iteration to the robust MDP setting (Kaufman and Schaefer,

2013). This approach is a useful foundation for further extensions to develop a robust

modified policy iteration algorithm for POMDPs in addition to the robust value

iteration approach proposed here.

As POMDP applications continue to address larger and more difficult problems,

model misspecification is an increasingly important risk factor for implementation,

especially in cyber applications. The robust belief-reward POMDP formulation and

algorithm presented here provide a principled approach for developing policies for

robust sequential decision making in uncertain and ambiguous environments.
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VI. Robust Multi-Agent Sequential Optimization Under
Uncertainty

6.1 Introduction

In this chapter, we develop a game-theoretic strategy to optimally defend a set

of high value assets from an integrated cyber-physical threat. This type of resource

allocation in an adversarial security environment is a security game. Security games

address resource allocation for adversarial problems in a variety of domains, includ-

ing drug interdiction, weapons trafficking, illicit finance, wildlife protection, forestry

protection, fishery protection, urban crime, missile defense, and cybersecurity (Kar

et al., 2016). This research area uses game theory, planning under uncertainty, and

optimization techniques to find optimal and approximate security policies, which are

often implemented in practice (Kar et al., 2016). For instance, LAX airport has used

the ARMOR program for managing security checkpoints and the US Federal Air

Marshals have used the IRIS program for scheduling flights (Korzhyk et al., 2011).

As a result of the security game literature’s focus on practical effectiveness, there

are two critical properties for solution techniques in this area. First, solution tech-

niques need to scale to address the full scope of practical protection and interdiction

problems, for instance over large geographical areas, such as fishery protection in

the Gulf of Mexico (Haskell et al., 2014) and checkpoint location in Mumbai (Jain

et al., 2013). Second, solution techniques need to address realistic adversaries. This

requirement has motivated behavioral models, robust models, and robust behavioral

models (Nguyen et al., 2014, 2016). These models address the bounded rationality of

real world adversaries by departing from classic Nash equilibrium solution concepts.

Recent attention in the operations research literature has expanded the available ro-

bust game theoretic formulations, including robust games (Aghassi and Bertsimas,
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2006), robust stochastic games (Kardeş et al., 2011; Kardeş, 2014), and distribution-

ally robust games (Qu et al., 2017; Singh et al., 2017; Liu et al., 2018). However, the

operations research literature has not addressed behavioral adversaries as thoroughly.

The security game literature also draws on economics and computer science to

model adversaries, or opponents, with bounded rationality. The robust approach

takes a pessimistic view that attempts to exploit an opponent’s bounded rationality

while exposing the decision maker to controlled risk of exploitation. There is a funda-

mental tension between Nash equilibrium strategies that are guaranteed to produce

good results and best-response strategies that exploit sub-optimal play by the oppo-

nent. Strategies that exploit weak play generally produce higher rewards against a

weak opponent than Nash equilibrium strategies produce against a weak opponent.

However, these exploitation strategies are also generally vulnerable to exploitation by

a sophisticated adversary that temporarily imitates a weak opponent. This trade-off

between the safe Nash equilibrium strategy and the risky exploitation strategy mir-

rors the risk-reward trade-off between robust policies and expectation-maximization

policies in traditional optimization.

Cybersecurity has been addressed through both the security literature (Sinha

et al., 2015) and the cyber domain literature (Kiennert et al., 2018). In addition to

the standard Stackelberg security game formulation, cybersecurity problems are often

modeled as stochastic games (Shen et al., 2007; Chen and Leneutre, 2009), including

partially observable stochastic games (Zonouz et al., 2014). In addition to heuristic

tree searches, such games can be solved with approximate value iteration approaches

(Hansen et al., 2004; Kumar and Zilberstein, 2009; Horak et al., 2017; Ye et al., 2017)

or non-linear programming approaches (Wray et al., 2018).

From the physical perspective, missile defense security games have been addressed

as weapon-target assignment problems (Kline et al., 2018), location and dispatching
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problems (Han et al., 2016; Davis et al., 2017; Boardman et al., 2017) and sensor

management problems (Lessin et al., 2018). The classic weapon-target assignment

approach focuses specifically on missile-to-missile engagement (Ahner and Parson,

2014; Kline et al., 2017). Missile defense is also closely related to the broader security

game and network security literature (Nystrom et al., 2018; Alpern et al., 2011).

In the typical approach of the security game literature, particularly in Stackelberg

security games, the defender commits to a strategy which the attacker then observes

before attacking. However, in many realistic security scenarios, the attacker does not

have perfect information. Furthermore, multi-domain operations and multi-domain

command and control are emerging as critical focus areas in security applications.

From a multi-domain perspective, it is important to integrate both the physical mis-

sile defense and cyber missile defense together while accounting for limited defender

and attacker knowledge. In military applications, there is often a significant time

delay between the defender’s implementation of physical security measures and the

attacker’s physical attack. In the intervening period, the attacker is likely to deploy

cyber attacks against the defender’s physical assets. This research advances the secu-

rity game literature by addressing an integrated and multi-period air and cyber threat

with imperfect information, and by allowing for continuous, probabilistic strategies.

This work also presents the first comparison of Monte Carlo, discounted, and robust

counterfactual regret algorithms for security games.

The remainder of the chapter is organized as follows. In Section 6.2, we intro-

duce the problem formulation for the multi-domain security game. In Section 6.3,

we describe the application of solution methodologies for optimal and approximate

algorithms. In Section 6.4, we present exact and approximate computational results

for a realistic problem. We also show the impact of different levels of cyber situational

awareness, investigate the impact of stepsize on the convergence rate of the approxi-
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mate algorithm, and explore a broad range of problem-specific parameter settings. In

Section 6.5, we present an extension to robust exploitation of opponents with bounded

rationality. Finally, in Section 6.6, we summarize the results and suggest areas for

future research.

6.2 Problem Formulation

6.2.1 Scenario

In this section, we introduce a multi-domain security game for national defense.

This game is an extensive form, zero-sum game with two players, an attacker and a

defender, which have perfect recall of their actions and observations. The defender’s

overall objective is to protect a set of population centers from a physical attack by

the adversary. In addition to the traditional physical domain, we address the cyber

domain by considering a nested cyber attacker-defender game within the traditional

physical security game. At a high level, we have four sequential stages: the defender’s

physical allocation, the attacker’s cyber targeting, the defender’s cyber allocation,

and the attacker’s physical targeting. Between each player’s decision, a special player

representing nature also acts stochastically. This game can be solved as a single

extensive form game with imperfect information. However, due to the difference in

time scales across domains, we consider the initial physical defensive structure to be

fixed while the cyber decisions and the final attack decision are more flexible.

Specifically, we consider a nested attacker-defender, attacker-defender problem

with the parameters shown in Table 22. This problem has |M| population centers to

defend by locating air defense systems in a subset of the population centers, D ⊆M.

The population centers are vulnerable to physical attack, as in previous literature,

but we also consider the air defense systems to be vulnerable to cyber attack.

To model the physical components, we consider population centers, physical de-
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Table 22. Integrated cyber and air defense parameters

M Set of population centers
D Set of air defense locations
r Coverage radius for each air defense asset
nd Number of air defense assets
na Number of air attack targets
m̃d Number of cyber defense-capable air defense assets
m̃a Number of cyber attack-vulnerable air defense assets
ñd Number of cyber defense teams
ña Number of cyber attack targets
p Probability of effective physical defense
p̃s Probability of cyber sensor detection
p̃d Probability of effective cyber defense
p̃a Probability of effective cyber attack

fensive systems, and physical offensive systems. There are nd physical integrated air

defense systems (IADS) and na population centers targeted by the attacker. Each air

defense system is a physical defensive system with an effective radius, r. Population

centers, or cities, covered by an operational air defense system’s effective radius are

defended with probability p, if attacked. As modern air defense systems incorporate a

variety of physical defenses, we model at the system level rather than at the individual

missile level.

To model the cyber component, we consider automated cyber defenses, cyber

defense teams, and cyber attacks. We assume there are automated cyber defense

assets at each IADS node, ñd human cyber defense assets, and ña human cyber

attack assets. The automated defensive component includes both intrusion detection

systems (IDS) and intrusion response systems (IRS) (Miehling et al., 2018). In the

ballistic missile defense context, these automated cyber defenses have been modeled

as a system that includes automated cyber sensors, analyzers, decision mediators,

and actuators, in addition to human decision makers (Gagnon et al., 2010). While

the automated IDS and IRS can respond to some cyber attacks, other more complex

attacks require human input. United States Cyber Command’s Cyber Mission Forces
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achieved full operational capability in 2018, with their mission including defending

the nation “by identifying adversary activity, blocking attacks and maneuvering to

defeat them” (United States Cyber Command, 2018). Furthermore, according to

the United States Air Force Strategic Master Plan (2015b), effective security strategy

requires that defense forces “integrate and employ capabilities operating in or through

the cyberspace and space domains in addition to air capabilities.” Although recently

activated, these highly trained Cyber Mission Forces are a limited resource and are

not always available, unlike automated cyber protection systems. Cyber attack assets

are also a limited resource and gaining access to each adversary system requires unique

effort.

The cyber component also includes several key probabilistic outcomes. Over time,

cyber vulnerabilities are discovered and patched. The lag between the attacker’s dis-

covery and the defender’s awareness and deployment of a patch introduces a vulnera-

bility to the cyber system. During this lag, the attacker has access to cyber exploits,

but the availability of these capabilities are difficult for both the attacker and defender

to predict. We model this cyber attack capability as a uniformly random assignment

of access to a subset of the defender’s IADS nodes, representing a new exploit un-

known to the defender. This subset has size m̃a. Similarly, it is difficult for the

defender to predict how effectively it will be able to respond to future vulnerabilities,

so we model the defender’s cyber defense capabilities as a uniformly random subset

of the defender’s IADS nodes which are eligible for Cyber Mission Force defense.

This subset has size m̃d. The relative effectiveness of the cyber exploit, p̃a, and the

cyber defense, p̃d, determine how likely it is a cyber defense team can neutralize a

cyber attack. Additionally, each cyber attack may or may not be detected by the

automated cyber IDS, determined by the probability of detection, p̃s. We separate

the probabilistic nodes where Nature acts into several different stages to facilitate
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modeling the asymmetric information between the defender and the attacker.

Given these physical and cyber parameters, the defender’s objective is to protect

the population centers with payoffs defined by the expected loss of life. The attacker’s

objective is to maximize loss of life by allocating cyber and physical attack resources,

consistent with the zero-sum formulation. To summarize, we have the game structure

shown in Table 23.

Table 23. Integrated cyber and air defense game structure

Stage Domain Player Size Action
0 Physical Defender 1 Fixed allocation of air defense assets to cities

1 Cyber Nature
(|M|
m̃d

)
Select subset of cyber defense capable nodes

2 Cyber Nature
(|M|
m̃a

)
Select subset of cyber attack capable nodes

3 Cyber Attacker
(
nd

ña

)
Attack subset of air defense systems

4 Cyber Nature 2ña Determine effectiveness of cyber sensors

5 Cyber Defender
(
nd

ñd

)
Assign cyber teams to subset of air defenses

6 Physical Attacker
(|M|
na

)
Attack subset of cities

6.2.2 Model

Given the imperfect-information extensive form structure, we follow the notation

introduced by Shoham and Leyton-Brown (2008) to develop the sequence-form rep-

resentation of the game. We define G = (N ,Σ, g,K), where

N = {1, 2} is the set of agents,

Σ = (Σ1,Σ2), where Σi is a set of sequences for agent i,

g = (g1, g2), where gi : Σ→ R is the payoff function for agent i,

K = (K1,K2), where Ki is a set of linear constraints on the realization proba-

bilities of agent i.
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This model is a two-player game where agent 1 is the defender and agent 2 is

the attacker. A sequence is an ordered set of player actions taken up to a particular

point in the game tree. Let Ai,j be the set of actions available to player i in stage j.

Agent 1’s fundamental action sequences correspond to allocating the Cyber Mission

Forces to physical defense assets. These actions are defined by the set A1,5, where

|A1,5| =
(
m̃d
ñd

)
. However, to be valid sequences in Σ1, we index each set of fundamental

actions by each information set, so information sets have distinct sequences. Agent 2’s

fundamental action sequences areA2,3 andA2,6, where |A2,3| =
(
m̃a
ña

)
, corresponding to

cyber attacks, and |A2,6| =
(
nd
na

)
, corresponding to physical attacks. Again, Σ2 indexes

each set of fundamental actions by their respective information sets and history of

actions.

An information set is a set of nodes in the game tree in which a player cannot

distinguish between the nodes due to imperfect information about the opponent and

nature. Let Ii be the information sets for player i and Ii,j be the subset of information

sets associated with player i and stage j. We have |I1,5| =
(
nd
m̃d

)∑ña
i=0

(
nd
i

)
for the

defender at stage 5, where the first term represents nature’s action in stage 1 and the

second term represents the defender’s information about the attacker’s cyber posture

in stage 2 and cyber actions in stage 3. Note that even if the cyber sensors are

successful in stage 4, the defender cannot distinguish between some combinations of

nature’s play in stage 2 and the attacker’s play in stage 3. Then for the attacker,

|I2,3| =
(
nd
m̃a

)
as the attacker observes nature’s action assigning their cyber posture in

stage 2, but not the defender’s cyber posture in stage 1. Next, |I2,6| = |I2,3|
(
m̃a
ña

)(
nd
ñd

)
as the attacker has perfect recall of their cyber posture and cyber attack and we

assume they have perfect information on the cyber defense allocation through routine

intelligence. However, we assume the attacker does not observe the success of the

cyber defense teams prior to launching the physical attack. We assume the attacker
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cannot be sure the cyber attack has succeeded until the physical attack because the

cyber attack only provides a small window of compromise, as in the United States

Air Force Future Operating Concept (2015a).

The overall payoff is g(σ) = (g1(σ), g2(σ)) where σ = (σ1, σ2) is pair of sequences

for the attacker and defender with σ1 ∈ Σ1 and σ2 ∈ Σ2. All incomplete action

sequences have a payoff of zero, that is g(σ) = (0, 0) if nature, the defender, and the

attacker have not played at every available stage. Let C be the coverage matrix where

ci,j is 1 if the air defense located at i covers population center j and 0 otherwise, based

on the protection radius, r. Let vi be the value of city i, defined by its population.

Let ap(σ) be the set of indices of the cities targeted by the σ strategy and ac(σ) be the

set of indices of the air defense systems targeted by the σ strategy. Similarly, let dp(σ)

be the set of indices of the cities in which the air defense systems are located and

dc(σ) be the set of indices of the air defense systems defended by the cyber defense

teams. Then the payoff function for the attacker is,

g2(σ) =
∑

i∈ap(σ)

vi
∏

j∈dp(σ)

(1− pi,j) , (50)

where pi,j is the probability city i is protected by air defense asset j. Specifically,

cyber and physical defensive assets are successful with independent probabilities such

that,

pi,j =



0 if Ci,j = 0

0 if j ∈ ac(σ), j /∈ dc(σ)

p if j /∈ ac(σ)

pp̃d(1− p̃a) if j ∈ ac(σ), j ∈ dc(σ).

(51)

Notably, the cyber defense and attack effectiveness terms, p̃d(1 − p̃a), can also be

framed as a single cyber defense success parameter. However, by separating the
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terms and focusing on effectiveness probabilities, rather than success, we maintain

flexibility for modeling asymmetric information, although we maintain information

symmetry in this chapter. Since this game is zero-sum, the defender’s payoffs are

the opposite of the attacker’s payoffs, g1(σ) = −g2(σ). Note also that the nature

probabilities can be consolidated on leaf nodes by multiplying the leaf value by the

probability of reaching that leaf (Koller et al., 1994). This payoff function can be

pre-calculated for all sequences and used as a known parameter in the optimization

formulations, as long as the size of the joint sequence space fits in memory.

Lastly, K = (K1,K2) is the set of linear constraints on the realization probabilities,

where Ki is the set of constraints associated with agent i. We can decompose K1 into

K1 = K1,5 where |K1,5| = |I1,5|. Similarly, we can decompose K2 into K2 = K2,3∪K2,6

where |K2,3| = |I2,3| and |K2,6| = |I2,6|. There is one constraint for each information

set and each constraint is expressed in terms of ri(σi) where ri(σi) is a realization

plan for a sequence, σi ∈ Σi. A realization plan is a set of conditional probabilities of

selecting each sequence from a given information set, for all information sets in the

game. Each constraint enforces the logical requirement that the sum of realization

probabilities for all sequences immediately following an information set equals the

realization probability of the parent set. Let, seqi : Ii → Σi and Exti : Ii → 2Σi , as

in the notation due to Shoham and Leyton-Brown (2008). The first function, seqi(I),

returns player i’s sequence that led to information set I. The second function, Exti(I),

returns all of player i’s sequences that extend the sequence that led to Ii by one action.

Then the constraint set, Ki, for player i is,

∑
σ′i∈Exti(I)

ri(σ
′
i) = ri(seqi(I)) ∀I ∈ Ii. (52)

The naive expected utility function for the defender, g1(ŝ1, ŝ2), given fixed defender
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and attacker mixed strategies, ŝ1 and ŝ2, is

Eŝ1Eŝ2

− ∑
i∈ap(ŝ1,ŝ2)

vi
∏

j∈dp(ŝ1,ŝ2)

(1− φ(ŝ1, ŝ2))

 , (53)

where φ(ŝ1, ŝ2) is a function of integer assignment variables associated with the pure

strategies underlying ŝ1 and ŝ2. Unfortunately, this utility function is a non-linear

function of integer variables and, if used directly as an objective function, results

in a mixed-integer non-linear program (MINLP) formulation. However, the objective

function can be reformulated as a linear utility function by pre-calculating the reward

for each discrete combination of player sequences, rather than full mixed strategies.

This reformulation, discussed more in Section 6.3, also avoids the need for integer and

non-linear constraints, resulting in compact linear programs (LPs) for best-response

and Nash equilibrium calculations that scale moderately with problem size. The

drawback is that the size of the pre-calculated reward function grows exponentially

with problem size, which can limit the scaling of the linear programs.

6.3 Methodology

External sampling linear Monte Carlo counterfactual regret minimization (CFR)

is the state-of-the-art for solving large extensive form games in practice (Brown and

Sandholm, 2018). However, first-order methods have better theoretical convergence

guarantees, O( 1
T

) rather than O( 1√
T

), where T is the number of iterations, and recent

results suggest that with appropriate parameter tuning this class of methods can

outperform counterfactual regret-based methods (Kroer et al., 2018; Nesterov, 2005).

Notably, double oracle column and row generation methods (Bosansky et al., 2014)

scale best for problems in which there is an equilibrium with small support (Lisy

et al., 2016; Kroer et al., 2018). In this application area, we are interested in mixed
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strategies, which have large support over a continuous probability space. Given these

prior results, this research focuses on linear programs for exact Nash equilibrium

computation and counterfactual regret minimization variants for online, approximate

solutions.

6.3.1 Best Response Linear Program

The decision maker can compute a best response to the opponent’s strategy in

polynomial time using a linear program. This linear programming formulation takes

advantage of the sequence form representation to avoid an exponential number of

decision variables. We accomplish this by directly modeling each player’s information

sets, action sequences, and realization plans.

As in Section 6.2.2, an information set for player i, I ∈ Ii, is a set of player i’s

decision nodes which are indistinguishable due to imperfect information. A sequence

for player i, σi, in the set of all possible sequences for player i, Σi, is an ordered list

of all possible combinations of player i’s actions, for every level of the game tree. We

denote the null action by σi,1. A realization plan for player i, ri : Σi → R, assigns a

conditional probability of selecting each sequence, given the agent arrives at the in-

formation set leading to that sequence. This formulation supports behavioral mixed

strategies which coincide with normal form mixed strategies because our game has

perfect recall (Shoham and Leyton-Brown, 2008). In the extensive-form game litera-

ture, a behavioral strategy is defined by specifying the agent’s probability of playing

each action at each information set and does not necessarily imply bounded rational-

ity, as is common in other domains. A behavioral mixed strategy randomizes actions

at each node in the decision tree, while a traditional mixed strategy randomizes over

pure strategies but follows a fixed set of actions within any pure strategy. Recall that

gi(σ1, σ2) is the payoff function for agent i.
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Then, following Shoham and Leyton-Brown (2008) with our problem-specific vari-

able and parameter definitions in Section 6.2.2, we have the following linear program

for the Best Response (BR) problem:

BR: maximize
r1(σ1)∈R|Σ1|

∑
σ1∈Σ1

(∑
σ2∈Σ2

g1(σ1, σ2)r2(σ2)

)
r1(σ1) (54a)

subject to r1(σ1,1) = 1, (54b)∑
σ′1∈Ext1(I)

r1(σ′1) = r1(seq1(I)), ∀ I ∈ I1, (54c)

r1(σ1) ≥ 0, ∀σ1 ∈ Σ1. (54d)

The objective value of this linear program is the value of the game to agent 1 and

the value of r1 is the behavioral realization plan for agent 1’s best response strat-

egy. Note that the set of the defender’s best responses to the attacker’s equilibrium

strategies may include strategies for the defender that are not in the set of the de-

fender’s equilibrium strategies. These best response strategies have the same value

as the equilibrium strategy, but the attacker’s best response to them are not in the

attacker’s equilibrium set. This happens, for example, in Kuhn poker (Kuhn, 1950).

6.3.2 Nash Equilibrium Linear Program

The agents can also compute Nash equilibrium strategies in polynomial time.

Consider the dual linear program to the best response linear program. Let v0 be the

value of the game to player 1 and the dual variables vI ∀ I ∈ I1 be the value of the

sub-game to player 1 at each information set. Note that in this dual-formulation,

r2(σ2) represents the attacker’s behavioral strategy and the dual-value of the dual-

variable of v1 represents the defender’s behavioral strategy. We define a convenience

function, Φi : Σi → Ii ∪ 0, that associates each information set with the sequence
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that leads to it. For the special null sequence, σi,1, the function returns 0.

Then, following Shoham and Leyton-Brown (2008) with our problem-specific vari-

able and parameter definitions in Section 6.2.2, we have the following linear program

for the Nash Equilibrium (NE) problem:

NE: minimize
r2(σ2)∈R|Σ2|

v0 (55a)

subject to vΦ1(σ1) −
∑

I′∈Φ1(Ext1(σ1))

vI′ ≥
∑
σ2∈Σ2

g1(σ1, σ2)r2(σ2), ∀σ1 ∈ Σ1, (55b)

r2(σ2,1) = 1, (55c)∑
σ′

2∈Ext2(I)

r2(σ′
2) = r2(seq2(I)), ∀ I ∈ I2, (55d)

r2(σ2) ≥ 0, ∀σ2 ∈ Σ2. (55e)

The objective value of this linear program is the value of the game to agent

1 and the value of r2 is the behavioral realization plan for agent 2’s equilibrium

strategy. Agent 1’s equilibrium strategy is determined by the dual-value of the vI

variables, which are produced in the solution to the linear program. Note that the

Nash equilibrium concept in imperfect-information extensive-form games is weaker

than sequential equilibrium, which is an imperfect-information variant of the standard

sub-game perfect Nash equilibrium.

6.3.3 Counterfactual Regret Minimization

Counterfactual regret minimization is an approximate technique for solving large

extensive-form games (Zinkevich et al., 2008). This algorithm provably converges

with a good theoretical and practical convergence rate (Ponsen et al., 2011). CFR

has been applied to security games by Lisy et al. (2016) and Davis et al. (2018).

Monte Carlo CFR is a chance sampled version of CFR that allows faster iterations

for large problems, but takes longer to converge in general (Johanson et al., 2012).

There are also a variety of enhancements to the baseline CFR algorithm (Johanson
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et al., 2008; Johanson and Bowling, 2009; Brown et al., 2018).

Algorithm 6 shows the basic Monte Carlo CFR algorithm, also referred to as

chance sampled CFR. The algorithm includes five primary sub-components: utility

evaluation (lines 2-4), Monte Carlo sampling (lines 5-8), regret matching (line 11),

utility updating (lines 13-23), and regret updating (lines 24-29). The solve function

manages iterations and player updates.

Throughout the algorithm, h is a node that represents the history of player actions,

i is the player index, πi is the accumulated reach probability of player i, and π−i is the

accumulated reach probability of player i’s opponent. We let ha denote the history

determined by h followed by the action a.

In the utility evaluation component, we determine whether the current node, h,

is in the set of leaf nodes, Z. Each leaf node has an expected utility based on the

chance of reaching that node due to player i, fc,i(h), the chance of reaching that node

due to player −i, π−ifc,−i(h), and the raw utility associated with the node, ui(h).

This utility value is calculated at the leaf nodes of the game tree and, as a result, is

performance sensitive.

In the Monte Carlo sampling component, we determine whether the current node,

h, is in the set of chance nodes, C. Each chance node has a probability distribution

over actions, fc(a|h), which is used to produce a Monte Carlo sample. In line 9, we use

a function to associate each history node with an information set, where each history

belongs to exactly one information set. Treating this process as a function rather

than a lookup table reduces the memory required and the additional cost of repeated

function calls is less than the time penalty for large lookup tables. We use u and u′

to track utility and updated utility throughout the algorithm. The regret matching
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Algorithm 6 Chance Sampled CFR (Johanson et al., 2012)

1: function WalkTree(h, i, πi, π−i)
2: if h ∈ Z then
3: return fc,i(h)ui(h|π−ifc,−i(h))
4: end if
5: if h ∈ C then
6: Sample outcome a ∈ A(h) with probability fc(a|h)
7: return WalkTree(ha, i, πi, π−i)
8: end if
9: I ← information set of h

10: u← 0
11: σ ← match regret of I
12: for a ∈ A(h) do
13: if player(h) = i then
14: π′i ← σ[a]πi
15: u′ ← WalkTree(ha, i, π′i, π−i)
16: m[a]← u′

17: u← u+ σ[a]u′

18: else
19: π′−i ← σ[a]π−i
20: u′ ← WalkTree(ha, i, πi, π

′
−i)

21: m[a]← u′

22: u← u+ u′

23: end if
24: if player(h) = i then
25: for a ∈ A(I) do
26: rI [a]← rI [a] +m[a]− u
27: sI [a]← sI [a] + πiσ[a]
28: end for
29: end if
30: end for
31: return u
32: end function
33:

34: function Solve
35: for t ∈ {1, 2, . . .} do
36: for i ∈ N do
37: WalkTree(∅, i, 1, 1)
38: end for
39: end for
40: end function
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component updates the players’ current strategies according to scaled regret, where

σ(I, a) =


r+
I [a]∑

b∈A(I) r
+
I [b]

if
∑

b∈A(I) r
+
I [b] > 0

1
|A(I)| otherwise.

(56)

In this regret matching, rI [a] is the regret for playing action a at information set

I. The + operator restricts the matching to positive regret such that r+
I [a] =

max{rI [a], 0}.

In the utility updating component, a is an action in the set of available actions at

a given node, A(h), player(h) is the player acting at h, σ[a] is the current probability

of playing action a, and m[a] holds the updated utility for action a. In this section,

we update both the reach probabilities and the current utilities, then recursively call

the WalkTree function on the child nodes.

In the regret updating component, at every action a in the set of available actions

at a given information set, A(I), we update the regret for the current information

set and action, rI [a], using the counterfactual regret. We also update the cumulative

strategy for the current information set and action, sI [a], using the current strategy

and the reach probability. Lastly, the solve function sets the iteration limit and

alternates player updates.

In addition to the predetermined iteration limit shown in Algorithm 6, we imple-

ment a combined relative-value, time-bound stopping rule parameterized by a relative

utility tolerance and a maximum computation time. The relative utility criterion re-

quires that the sample gradient of the defender’s estimated utility approach zero with

tolerance

δn < ε0 = 5× 10−5, (57)
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where the smoothed sample gradient is calculated as

δn = δn−1

(
n− 1

n

)
+ (un − un−1)

(
1

n

)
. (58)

The maximum computation time is set to 10 minutes, unless otherwise noted. When

Eq. (57) is met or the computation time is reached, the algorithm terminates and

returns the players’ utilities and strategies. In our implementation, we treat the time-

bound as a soft limit to allow the algorithm to complete sub-tree traversal started

before the time limit to avoid partial tree traversals, which results in a small violation

of the time-bound on the order of seconds for a 10-minute time-bound.

For moderately-sized problems, we can compare the relative utility tolerance to

the exploitability of the defender strategy. The defender utility associated with a

given iteration of the CFR algorithm corresponds to the defender’s utility given an

approximate attacker strategy. However, this is limited in the sense that the attacker’s

strategy at that iteration is not optimal. To evaluate the true risk of the defender’s

strategy, we can instead take the defender’s strategy from a given iteration and cal-

culate a best attacker response to that strategy. This criterion is more rigorous than

the estimated utility, but it requires knowledge of the exact best response strategy.

6.3.4 Discounted Counterfactual Regret Minimization

The default, equally weighted stepsize in the CFR algorithm guarantees conver-

gence and has a fast theoretical convergence rate (Powell, 2007). However, a variant

of CFR with adjusted stepsize, CFR+, has been shown to converge more quickly than

CFR for a variety of game settings in poker and related domains (Tammelin et al.,

2015). Recent results in the CFR family of algorithms have extended the work on

stepsize to discounted CFR (Brown and Sandholm, 2018). Discounted CFR uses three

parameters to control stepsize at iteration t. The α parameter scales accumulated
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positive regret by

tα

tα + 1
. (59)

The β parameter scales accumulated negative regret by

tβ

tβ + 1
. (60)

The γ parameter scales contributions to the average strategy by

(
t

t+ 1

)γ
. (61)

Brown and Sandholm (2018) find that α = 1.5, β = 0.5, γ = 2.0 are effective param-

eter settings in the poker domain.

In our Monte Carlo CFR implementation, we consider separate scaling factors for

each information set rather than a global iteration factor to take full advantage of

the different levels of precision at each information set (Powell, 2007). These changes

modify the regret update in Algorithm 6 (line 34-40) such that rI [a] is scaled using α

and β for positive and negative accumulated regret, respectively, and sI [a] is scaled

using γ. The scaling is conducted with respect to each information set’s iteration, tI ,

rather than the overall iteration, t.

6.4 Testing, Results, and Analysis

To evaluate the exact and approximate approaches, we define a base case scenario

with the parameters shown in Table 24 and Table 25. Note that the coverage matrix

is defined by the location of the population centers and the coverage radius.
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Table 24. Integrated cyber and air defense parameters (base case)

Parameter Value Description
M {1, 2, . . . , 10} Set of population centers
D {1, 3, 4, 5, 8, 9} Set of air defense locations
r 0.3 Coverage radius for each air defense asset
nd 6 Number of air defense assets
na 3 Number of air attack targets
m̃d 4 Number of cyber defense-capable nodes
m̃a 4 Number of cyber attack-vulnerable nodes
ñd 2 Number of cyber defense teams
ña 2 Number of cyber attack targets
p 0.9 Probability of effective physical defense
p̃s 0.8 Probability of cyber sensor detection
p̃d 0.7 Probability of effective cyber defense
p̃a 0.2 Probability of effective cyber attack

Table 25. Population center location and value (base case, regularized)

City Index Longitude Latitude Value
1 0.03 0.62 0.4797
2 0.74 0.61 0.1596
3 0.80 0.47 0.7116
4 0.11 0.66 0.9690
5 0.37 0.63 0.7139
6 0.64 0.82 0.4747
7 0.99 0.01 0.5066
8 0.85 0.04 0.7074
9 0.29 0.79 0.2100
10 0.98 0.22 0.2952
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6.4.1 Results

The solution to the sequence-form linear program for the base case scenario iden-

tifies a Nash equilibrium pair of player strategies such that the defender’s utility is

-1.2595. This linear program has 162,422 decision variables, and 3,347 constraints and

solves in 15.49 seconds using the Clp solver (Vesion 1.17) (Lougee-Heimer, 2003) in

the Julia programming language (Version 1.0) (Bezanson et al., 2017). In addition to

the solve time, the linear program requires the explicit reward function construction

and model construction. The reward function is indexed by each player’s sequences

with 3.21×108 total elements, which takes about one hour to construct using a sparse

array. The construction of the linear program objective function and constraints us-

ing this sparse array is relatively fast at 32.66 seconds. All timing is conducted on a

machine with Intel Xeon E5-2680 2.50GHz processors, 24 cores, and 192 GB RAM,

and all implementations and results are available at https://github.com/ajkeith.

Using the optimal Nash equilibrium strategies and utilities as a benchmark, our

results show that the counterfactual regret minimization algorithm finds high quality

approximate solutions quickly. Figure 24 shows the raw utility for the defender by

iteration of the CFR algorithm. As the number of iterations increases, the algorithm

converges to a pair of stationary strategies that approach a Nash equilibrium. The

utility is always negative for the defender because there is always a risk the attacker

is successful.

Figure 25 shows the performance of the CFR algorithm using relative exploitability

as a measure of performance. The absolute exploitability, ε, of a player’s strategy, σ1,

is ε = u1(σ∗1, σ
∗
2)− u1(σ1, σ̇2), where (σ∗1, σ

∗
2) is a Nash equilibrium strategy and σ̇2 is

a best response to σ1 (Ponsen et al., 2011). Relative exploitability scales the absolute

exploitability to the Nash equilibrium utility and measures the player’s expected de-

crease in utility as a result of departing from a Nash equilibrium, assuming a rational
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Figure 24. Defender utility (CFR, base case)

adversary. This metric is analogous to an optimality gap in single agent optimization

problems. To calculate the relative exploitability of the approximate CFR strate-

gies at a given iteration, we use a sequence-form linear program to determine a best

response to the defender’s approximate strategy and record the exploitability. This

best response linear program has 162,091 variables and 1,366 linear constraints. The

results show that the approximate defender strategy produced by CFR converges to

within 0.5% relative exploitability of the Nash equilibrium in less than 15,000 itera-

tions, which takes less than 5 minutes at 13 ms per iteration.

The Nash equilibrium strategies produced by these methods are continuous prob-

abilities over the available discrete actions at any given node in the game tree. To

illustrate a typical strategy, we select a play sequence that includes the first option

at each chance stage and the most likely action for each player at each remaining

stage. This six-action sequence corresponds to node [1, 1, 1, 1, 6, 39], where each entry

is a numbered action at a game stage. This strategy is depicted visually in Figure

26. In this sub-scenario, both the defender and attacker have the same set of defen-

sive systems that can be affected by their cyber actions: {1, 3, 4, 5}. The attacker
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Figure 25. Relative exploitability (CFR, base case)

cyber-attacks air defense asset 3 which has no redundant coverage and air defense

asset 1 which has a low likelihood of being defended. Due to chance, the defender’s

sensors do not detect the cyber attacks so the defender takes a conservative approach

of allocating the cyber defense resources to protect air defense assets 4 and 5 because

of the high value and coverage. Finally, the attacker physically attacks the naturally

undefended city 6, as well as city 2 and city 3 which are undefended due to the cyber

attack.

6.4.2 Scaling Properties

To investigate the scaling properties of the linear programming solution approach

and the CFR approach, we consider the base case parameters with the total number of

cities varying from 7 to 15. We set an upper limit of 12 hours for the calculation of the

sequence-form reward functions. We are not able to calculate the full sequence-form

reward function for |M| = 14 and |M| = 15 within this time limit, completing only

94% and 70% of the discrete utility values, respectively. The largest game for which

we pre-calculated a full sequence-form reward function is |M| = 13 with 9.31 × 106
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Figure 26. Example action sequence ([1, 1, 1, 1, 6, 39], base case)

history nodes and 7.65 × 108 potential sequence combinations, which completed in

8.38 hours. Because the reward function could not be calculated for the last two

parameter settings, we also cannot determine the linear programming solutions for

Nash equilibria and best responses.

We set a time limit of 10 minutes and a tolerance of 5 × 10−5 for each CFR

solver. Games with |M| ≥ 13 were too large to solve to the specified tolerance within

the 10 minute time window. However, for |M| = 13, the exploitability is less than

0.5% despite not reaching the tolerance limit. The full results are shown in Table

26. Over the problem instances that can be solved optimally in the time limit, on

average, our approximate approach finds solutions in 4.94% of the time it takes to

find the Nash equilibrium solution and these approximate solutions have 1.07% more

exploitability than the Nash equilibrium solution. Note that the CFR utility column

in Table 26 is the defender’s utility against an approximate attacker strategy. The
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gap column, however, is calculated using the CFR utility of the approximate defender

strategy against a best-response attacker, which results in a defender utility that is

always lower than or equal to the Nash equilibrium defender utility. The relatively

high gaps for |M| = 7 and |M| = 10 are associated with problem instances that

have low magnitude exact LP utility. This relationship suggests that a dynamic

convergence tolerance which adjusts to the magnitude of the utility might allow for

smaller exploitability gaps.

Table 26. Comparison of linear program and CFR solutions by problem size

|M| Sequences
(×108)

Reward
Time
(hrs)

LP
Time
(sec)

CFR
Time
(sec)

LP
Utility

CFR
Utility

Gap
(%)

7 0.94 0.07 16 12 -0.684 -0.680 2.71
8 1.50 0.21 25 50 -1.215 -1.218 0.86
9 2.25 0.54 36 258 -1.932 -1.930 0.17
10 3.21 1.21 47 28 -0.500 -0.490 2.74
11 4.41 2.35 64 367 -1.586 -1.576 0.39
12 5.89 4.05 95 572 -1.617 -1.609 0.23
13 7.65 8.38 108 601 -1.655 -1.637 0.37
14 9.74 - - 601 - -2.414 -
15 12.2 - - 601 - -1.550 -

6.4.3 Parameter Sensitivity

The Nash equilibrium strategy depends on several problem parameters. One area

of current operational interest is cyber situational awareness (SA). Detecting and

attributing cyber threats can be more challenging than detecting and attributing

physical threats. Our model incorporates this practical challenge with the p̃s pa-

rameter for controlling the defender’s likelihood of successful detection for a given

cyber attack. The defender’s utility is moderately sensitive to this parameter in the

base case, as seen in Figure 27. The defender’s utility increases as the probability

of detection increases, approaching the value of a game with perfect information for

SA. The absolute difference is relatively low, indicating that in this case, a decision

maker could choose to use a perfect information model with a faster solution time
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and approximately a 0.01 decrease in expected utility. Assuming the city value is

measured in millions of people, these results can also be used to inform capability

investment decisions. For the base case scenario, the sensitivity to probability of de-

tection indicates that improvements in cyber SA translate to a approximately 2,000

lives protected for every 10% increase in probability of cyber detection.
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Figure 27. Sensitivity of defender strategy to probability of cyber detection

To investigate the impact of alternative step-sizes for the discounting parameters,

we consider standard CFR where α =∞, β =∞, γ = 0.0, CFR+ where α =∞, β =

−∞, γ = 2.0, and discounted CFR where α = 1.5, β = 0.5, γ = 2.0. To approximate

the∞ parameter values, we set the value to 8 which has an error of less than 1×10−8

after 10 iterations. We run 50 replications of each of the three parameter combinations

and plot the mean and 95% confidence interval of those runs. The results shown in

Figure 28 suggest that the discounted CFR parameters lead to the fastest convergence

of the three step-size options. On average, discounted CFR with α = 1.5, β = 0.5, γ =

2.0 converges to within 1% error of the Nash equilibrium in 36.4% fewer iterations

than standard CFR.

Given these preliminary explorations, we conduct two experiments to investigate
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Figure 28. Sensitivity of CFR convergence rate to stepsize parameters (α, β, γ) with
mean and 95% confidence interval bands

the impact of problem and algorithm parameters on the strategies produced by the

CFR approach. The first experiment is a screening design to identify influential

factors. The second design is a space-filling design on a subset of the full parameter

space.

In the screening experiment, we construct a 15 factor, resolution IV fractional

factorial design with 5 center points and 3 total replications. This design results in

207 runs. The factors and levels are summarized in Table 27. These factors include

all factors used to model the problem with modifications to m̃d, m̃a, ñd, and ña to

account for logical restrictions on problem parameter settings (e.g., more defenders

than defense-capable nodes). The response is the estimated utility of the defender’s

strategy. We do not calculate a Nash equilibrium or optimality gap because most

problems in the design are too large to be solved with linear programming in a 12-

hour time-limit. For the CFR stopping rule, we set a time limit of 30 minutes and a
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tolerance of 5× 10−5.

Table 27. Experimental factors

Factor Lower Upper Description
|M| 9 15 Number of population centers
r 0.2 0.4 Coverage radius
nd 4 8 Number of IADS
na 2 6 Number of air attack targets

m̃d ratio 0.2 1.0 Proportion of cyber defense-capable IADS
m̃a ratio 0.2 1.0 Proportion of cyber attack-vulnerable IADS
ñd ratio 0.2 0.8 Ratio of cyber defenses to defense-capable IADS
ña ratio 0.2 0.8 Ratio of cyber attacks to attack-vulnerable IADS

p 0.6 0.95 Probability of effective physical defense
p̃s 0.6 0.95 Probability of cyber sensor detection
p̃d 0.6 0.95 Probability of effective cyber defense
p̃a 0.05 0.4 Probability of effective cyber attack
α 1 8 Positive regret scale parameter
β -8 8 Negative regret scale parameter
γ 0 8 Strategy scale parameter

After data collection, we use stepwise regression to fit a least squares regression

model to the screening model terms. This analysis produces a model with an adjusted

R-squared value above 0.99. The model suggests that all main effects are significant

at the 0.005 level along with 45 other interactions. Table 28 shows the main effects,

with the m̃ and ñ factors converted to the original space, rather than the ratio space.

To test for over fitting, we fit a model to 70% of the data as a training set and test

the model on the remaining 30% as a validation set. The holdback model results

in greater than 0.99 R-squared on the validation set. The agreement between the

original adjusted R-squared and confirmatory holdback validation analysis indicate

the model is not over fitting in a detrimental way, despite the high number of factors in

the model. The directional relationship between the response and each factor matches

the logic of the scenario. The magnitude of the effects can be grouped into three broad

categories: problem size parameters, problem probability parameters, and algorithm

parameters. The problem size parameters are the most influential, followed by the

problem probability parameters, and finally the algorithm parameters. Although the

algorithm tuning parameters are statistically significant, the magnitudes are small.
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This indicates that, overall, the effect of the algorithm tuning parameters is not large

in this application area.

Table 28. Screening design main effects

Factor Estimate P-value
Intercept -1.391 < 0.0001
|M| -0.148 < 0.0001
r 3.565 < 0.0001
nd 0.184 < 0.0001
na -0.146 < 0.0001
m̃d 0.026 < 0.0001
m̃a -0.106 < 0.0001
ñd 0.139 < 0.0001
ña -0.183 < 0.0001
p 1.000 < 0.0001
p̃s 0.057 < 0.0001
p̃d 0.090 < 0.0001
p̃a -0.358 < 0.0001
α -0.022 < 0.0001
β 0.003 < 0.0001
γ -0.007 < 0.0001

To investigate the effect of the problem probability parameters and algorithm

tuning parameters in more detail, we conduct a second experiment with the problem

size fixed at |M| = 13, r = 0.3, nd = 6, na = 4, m̃d = 6, m̃a = 6, ñd = 3, ña,= 3. This

represents a moderately sized problem with high flexibility for both the defender and

attacker, as every IADS node is both defense-capable and attack-vulnerable. We

also fix p̃a at 0.2 to focus on the defensive probabilities. This game has 2.29 × 106

nodes in the game tree and 2.4 × 108 sequence combinations. Given these fixed

settings, we construct a 6-factor, 200-run space-filling design for the remaining factors

(p, p̃s, p̃d, α, β, γ) with the same limits as in Table 27. The response is the estimated

defender utility but we extend the time limit to 120 minutes with the same tolerance

of 5×10−5. We use a space-filling design and extend the time limit to provide a more

detailed exploration of the probability and parameter tuning space and to identify
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any potential non-polynomial effects associated with the tuning parameters.

We use stepwise regression to fit a least squares model to the data from this ex-

periment. This model also fits the data well with an adjusted R-squared above 0.99

and R-squared above 0.99 on a 30% holdback validation set. The main effects for

this model are shown in Table 29. No runs in this experiment reach the conver-

gence tolerance within the time limit, indicating there is potential benefit associated

with algorithm parameter tuning. However, none of the algorithm tuning parame-

ters are influential for these problem size settings. The β parameter is involved in a

second-order interaction with p̃s with an estimate of -0.002 and a p-value of < 0.0001.

The magnitude of this interaction is small, despite the statistical significance. These

results corroborate the findings from the screening model. The algorithm tuning pa-

rameters do not have a meaningful effect on solution quality for this specific problem

instance or for general problem instances with time limits of 2 hours and 30 minutes,

respectively. However, for some problem settings the parameters do affect the con-

vergence rate of the algorithm, as seen in Figure 28. Note that although the time

limit is constant in the screening design, the number of iterations varies with problem

size. The fewer iterations available for a problem instance, the more parameter tuning

affects the utility.

Table 29. Space-filling design main effects

Factor Estimate P-value
Intercept -4.176 < 0.0001

p 1.362 < 0.0001
p̃s 0.171 < 0.0001
p̃d 1.351 < 0.0001
β 5.398× 10−5 0.2498
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6.5 Robust Opponent Exploitation

While the approaches presented in the previous section produce exact and ap-

proximate Nash equilibria strategies against rational opponents, these strategies fail

to exploit non-equilibria play by opponents with bounded rationality. To address

this shortcoming, we consider an extension to exact and approximate robust best re-

sponses. A robust best response is a compromise between the maximally conservative

Nash equilibria strategy and the maximally aggressive best response strategy.

There are several different approaches to opponent exploitation in the CFR lit-

erature, including data biased CFR (Johanson and Bowling, 2009), safe opponent

exploitation (Ganzfried and Sandholm, 2015), behaviorally constrained CFR (Farina

et al., 2017), Bayesian opponent exploitation (Ganzfried and Sun, 2018), and con-

strained CFR (Davis et al., 2018). In the following sections, we compare a linear

programming formulation for exact robust best response with the data-biased and

constrained CFR variants for approximate robust best responses.

6.5.1 Robust Best Response Linear Program

In the opponent exploitation setting, the defender has partial prior knowledge

about the opponent’s strategy. This knowledge may be derived from play history or

subject matter expertise, but is not sufficient to specify an exact opponent strategy.

The general problem we need to solve in this case is,

argmax
r1∈R1

inf
r2∈U

∑
σ1∈Σ1

(∑
σ2∈Σ2

g1(σ1, σ2)r2(σ2)

)
r1(σ1), (62)

where R1 is the set of feasible realization plans for agent 1 and U is the uncertainty

set for the opponent’s realization plan. When there is not prior knowledge about

the opponent’s strategy, the uncertainty set is the entire space of feasible realization
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plans and we have the standard best response linear program formulation.

The following formulation shows an explicit robust counterpart to the abstract

robust optimization problem using a box uncertainty set. We denote the lower and

upper limits of the uncertainty for each component of r2 by lσ2 and uσ2 , respectively.

Note that this formulation is a linear program. However, the constraints associated

with (63e) and (63f) add |Σ2| additional constraints to the original linear program,

resulting in a substantially larger linear program than the standard best response.

We develop the following linear program for the Robust Best Response (RBR)

problem:

RBR: minimize
r2(σ2)

v0 (63a)

subject to vΦ1(σ1) −
∑

I′∈Φ1(Ext1(σ1))

vI′ ≥
∑
σ2∈Σ2

g1(σ1, σ2)r2(σ2),∀σ1 ∈ Σ1, (63b)

r2(σ2,1) = 1, (63c)∑
σ′

2∈Ext2(I)

r2(σ′
2) = r2(seq2(I)), ∀ I ∈ I2, (63d)

r2(σ2) ≥ lσ2
, ∀σ2 ∈ Σ2, (63e)

r2(σ2) ≤ uσ2
, ∀σ2 ∈ Σ2. (63f)

In single decision maker settings, the uncertain parameter is typically a real-valued

scalar or vector. However, in game theoretic decision making under uncertainty, the

uncertain parameter is the opponent’s strategy, which is a probability distribution

over actions. As a result, a robust formulation in a game theory setting can also be

seen as a distributionally robust formulation, depending on the perspective on the

uncertain parameter. In this case, we use a robust framework with uncertainty sets

rather than distributionally robust ambiguity sets.

6.5.2 Data-Biased Counterfactual Regret Minimization

In this section, we implement a Monte Carlo variant of data biased CFR (Johanson

and Bowling, 2009). In this approach, the opponent (attacker) selects a strategy from

204



a probabilistically constrained strategy space. The constrained space is defined by a

nominal strategy, σfix, and a confidence parameter for each information set, ρI . The

confidence parameter controls the likelihood that the opponent plays the nominal

strategy at the given information set, such that σ2(I, a) = ρIσfix + (1 − ρI)σ̄2(I, a)

where σ̄2(I, a) is the unconstrained regret-matching strategy. This approach is similar

in motivation to ε-contamination approaches to uncertainty modeling (Huber, 1964).

To calculate the defender’s robust strategy, we use Monte Carlo CFR as in Algorithm

6 with the standard regret matching in line 11 replaced with data biased regret

matching algorithm such that

σ2(I, a) =


ρIσfix + (1− ρI)

r+
I [a]∑

b∈A(I) r
+
I [b]

if
∑

b∈A(I) r
+
I [b] > 0

ρIσfix + (1− ρI) 1
|A(I)| otherwise.

(64)

Note that only the attacker’s regret matching is modified while the defender is able

to develop a full best response to the set of possible attack strategies.

6.5.3 Constrained Counterfactual Regret Minimization

Constrained counterfactual regret minimization is an alternative approach to ro-

bust CFR developed by Davis et al. (2018). In this approach, the non-equilibrium

player is constrained based on their sequence form strategy, rather than their be-

havioral strategy. Either player can be constrained, but to simplify the notation,

we constrain player 1 in the following discussion. The optimization problem in Eq.

(62) can be restated by explicitly including the domain constraints in the objective

function using Lagrange multipliers,

max
r1∈R1

min
r2∈R2,λ≥0

r1Gr2 −
k∑
j=1

λjfj(r1), (65)
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where G is the reward matrix associated with g(σ1, σ2), λ is the vector of λj Lagrange

multipliers for k constraints, denoted by fj(r1) (Davis et al., 2018). This Lagrange

multiplier approach can be incorporated into CFR by modifying the utility update

to penalize constraint violation using the Lagrange multiplier such that

ũ = u−
k∑
j=1

λj∇(I,a)fj(Ψ(σ1)), (66)

where u is the standard CFR utility, ũ is the constrained CFR utility, ∇(I,a) is the

gradient with respect to the Ith information set and the ath action, and Ψ(σ1) is

the sequence form strategy associated with the behavioral strategy σ1 (Davis et al.,

2018).

In this work, we develop a Monte Carlo variant of constrained CFR, with and

without discounting on the positive regret, negative regret, and average strategy. To

incorporate the constraint penalty into the Monte Carlo framework, we modify line

21 of Algorithm 6 so that

m[a] = u′ −
k∑
j=1

λj∇(I,a)fj(Ψ(σ1)). (67)

Note that constraint penalty is only applied to this action-utility update for the

current player at a given node. We do not modify the other utility updates in lines

17, 21, or 22. We also perform gradient descent updates to the Lagrange multipliers

prior to the WalkTree call in line 37, such that

λtj = max
(
0,min

(
λt−1
j + ξtfj(Ψ(σ1)), λmax

))
∀j ∈ {1, . . . , k}, (68)

where λtj is the constraint penalty for constraint j on iteration t, ξt is the gradient

descent learning rate parameter at time t, and λmax is the upper bound on the learn-
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ing rate. In the following computational work, we set ξt = λ
λscale
max√
t

where λscale is a

parameter that scales the learning rate.

6.5.4 Computational Results

In this section, we perform a computational experiment to tune the discounting

and constraint parameters for this problem setting, we evaluate the relationship be-

tween problem size and computation time, and we compare the standard and robust

strategies. We consider the Nash equilibrium strategy, the robust best response LP

strategy, the data-biased CFR strategy, and the constrained CFR strategy. Through-

out these results, for the nominal attacker strategy, σfix, we assume an arbitrary

pure strategy that assigns probability one to the first action at every information

set. To model uncertainty about the opponent’s true strategy, we introduce normally

distributed noise with mean 0 and standard deviation 0.02. In practice, the nominal

strategy and uncertainty set can be derived from previous play history or subject

matter expertise.

The Nash equilibrium strategy assumes the opponent will always play a best

response to the defender’s strategy and, as a result, does not account for irrational

strategies like the nominal strategy discussed above. The data biased strategy requires

a confidence parameter for each information set. To facilitate comparison with the

robust LP approach, we set a constant confidence parameter across information sets

at 0.99. For the robust LP approach we define a box uncertainty set based on a

99% confidence interval on the true, normally distributed noise with mean 0 and

standard deviation 0.02. This results in a half-width of 0.052 for each information

set, with action probabilities saturated at 0 and 1 when the interval would otherwise

violate probability limits. We use the same box uncertainty sets as constraints for the

constrained CFR model. The 99% information set confidence used in the data-biased
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approach and the uncertainty sets based on the 99% confidence interval used in the

LP and constrained CFR approaches represent two different ways of modeling the

same uncertainty level about the opponent’s strategy. Although these uncertainty

sets are not equivalent, they are similar from a practical perspective.

To compare these four approaches for opponent modeling, we calculate the Nash

equilibrium, robust LP, data-biased CFR, and constrained CFR strategies. Then, we

conduct a Monte Carlo simulation that calculates the expected utility for each robust

defender strategy against randomly drawn attacker strategies from the distribution

of attacker strategies defined by the nominal attacker strategy and the normally dis-

tributed noise. Using 180 Monte Carlo samples, we construct empirical distributions

and confidence intervals for the mean defender utility under each approach. In addi-

tion to the raw utility, we consider the relative exploitability and relative exploitation

of each strategy with respect to the Nash equilibrium. By definition, the Nash equi-

librium has zero relative exploitability and exploitation. The ideal strategy has high

exploitation with low exploitability.

6.5.4.1 Parameter Tuning

This section explores the effect of discount parameters and constraint parameters

on the constrained CFR solution. We conduct 3 total replications of a 5-factor, 3-

level full factorial experimental design. The factors are the α, β, and γ discount

parameters and two constraint parameters, λmax and λscale, which control the upper

bound of the Lagrange penalties and the learning rate of the gradient descent updates

for the Lagrange penalties, respectively. Specifically, the λscale parameter controls

the gradient descent learning rate, ξt, where ξt = λ
λscale
max√
t

for iteration t. We have

two responses of interest: exploitation and exploitability with respect to the Nash

equilibrium strategy. The parameter settings are shown in Table 30. We use the base
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case scenario for all robust test cases, with a tolerance of 5 × 10−9 and a 20 minute

time limit.

Table 30. Constrained CFR experimental design parameters

Level

Factor Lower Middle Upper
α 1 4 8
β -8 1 8
γ 0 4 8
λmax 10 1000 2000
λscale 1 4 8

We fit a second-order regression model to the results with exploitation and ex-

ploitability as the two responses. The combination of λmax = 2000 and λscale = 8

introduces significant non-polynomial nonlinearities in the response because the strat-

egy fails to converge to a meaningful strategy that outperforms the Nash equilibrium.

As a result, we restrict the experimental space to exclude that combination of pa-

rameter settings before fitting the second-order model to obtain a better model over

the parameter space of interest. To evaluate the effect of removing these data points,

we also conduct exploratory analysis including all data points using a second-order

model and a neural network to account for the non-linearity. These models confirm

the large interaction effect associated with the highest level of these parameters which

results in poor performance.

The second-order model for the restricted parameter space results in the coeffi-

cients shown in Table 31. The exploitation model has an adjusted R-squared value of

0.96 and the exploitability model has an adjusted R-squared value of 0.84. Note that

there are several interactions that are not significant for either response. Removing

these factors results in similar adjusted R-squared values, so we keep all factors for

completeness. Setting equal weights on exploitation and exploitability and using the

second-order model, we find that the following settings maximize exploitation while
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Table 31. Second-Order model for constrained CFR tuning

Exploitation Exploitability

Term Estimate P-value Estimate P-value
Intercept 8.1E-03 < .0001 3.3E-02 < .0001
α 1.9E-04 < .0001 -1.2E-03 < .0001
β 2.6E-04 < .0001 3.2E-03 < .0001
γ 8.8E-04 < .0001 -1.9E-03 < .0001
λmax 3.5E-06 < .0001 2.7E-05 < .0001
λscale 6.3E-05 0.0002 -5.6E-04 0.03
α ∗ α -6.8E-05 < .0001 1.8E-05 0.8602
α ∗ β -2.9E-05 < .0001 -2.7E-04 < .0001
β ∗ β -4.2E-05 < .0001 3.1E-04 < .0001
α ∗ γ -1.0E-06 0.8072 -6.5E-05 0.294
β ∗ γ -8.5E-06 < .0001 -1.6E-06 0.9523
γ ∗ γ -2.1E-04 < .0001 5.1E-04 < .0001
α ∗ λmax -1.1E-08 0.5437 -1.0E-06 0.0002
β ∗ λmax -8.9E-08 < .0001 2.3E-06 < .0001
γ ∗ λmax 4.5E-08 0.0046 -3.6E-07 0.1281
λmax ∗ λmax -2.8E-09 < .0001 -1.8E-08 < .0001
α ∗ λscale 2.3E-06 0.6538 7.0E-06 0.9284
β ∗ λscale -1.4E-06 0.5498 5.8E-05 0.0863
γ ∗ λscale -9.3E-08 0.9838 2.2E-04 0.0015
λmax ∗ λscale -5.8E-09 0.8197 1.7E-07 0.6502
λscale ∗ λscale -1.0E-05 0.1625 2.3E-04 0.0325
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minimizing exploitability,

α = 7.4, β = −2.9, γ = 6.3, λmax = 2000, and λscale = 4.9. (69)

6.5.4.2 Computation Time

We also explore the computation time for our implementation of each approach.

The results are shown in Table 32 where RLP is the robust linear program, DBCFR

is data-biased CFR, and CCFR is constrained CFR. We use a 12 hour limit for the

reward function construction and a 30 minute time limit and 25,000 iteration limit for

the solvers, to account for the additional complexity of the robust problem. We set

a tolerance of 5× 10−9 for the stopping rule. As in the standard setting, the reward

function construction dominates the robust LP solve time. For |M| = 14, the reward

function is incomplete at 12 hours, resulting in no reported data for the RLP time

and utility for that problem instance.

The robust CFR approaches fail to converge to the specified tolerance for any

problem size. However, the robust CFR strategies achieve a defender utility that is

close to the robust LP utility while using less than 6% of the LP computation time

for |M| = 13. The CFR-based methods produce strategies with defender utilities

that are less than 3% degraded with respect to the defender utility of the robust LP,

as seen in Figure 29. As such, the CFR methods are appropriate for scaling to large,

robust problems.

6.5.4.3 Strategy Comparison

In this section, we compare the exploitation and exploitability of the three ro-

bust methods. The 95% confidence interval for the mean defender utility, mean

exploitability, and mean exploitation for the base case scenario are shown in Table 33
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Table 32. Comparison of robust LP and CFR by problem size

Time (sec) Utility

|M| Seq. (×108) Reward RLP DBCFR CCFR RLP DBCFR CCFR
7 0.94 252 8 161 710 -0.080 -0.081 -0.082
8 1.50 756 15 158 1098 -0.235 -0.236 -0.236
9 2.25 1944 20 248 1599 -0.579 -0.580 -0.584
10 3.21 4356 39 355 1800 -0.248 -0.249 -0.249
11 4.41 8460 39 530 1800 -0.390 -0.392 -0.395
12 5.89 14580 62 720 1801 -0.605 -0.609 -0.620
13 7.65 30168 80 947 1800 -0.600 -0.607 -0.612
14 9.74 - - 1294 1802 - -0.734 -0.743
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Figure 29. Robust CFR utility relative to robust LP utility
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with empirical distributions shown in Figure 30. The robust linear program achieves

a favorable exploitation to exploitability ratio of more than 10:1. This strategy allows

the decision maker to exploit bounded rationality in an opponent while only risking

a fraction of the potential gain if the opponent is in fact perfectly rational. The data-

biased CFR approach has a 1:1 ratio of exploitation to exploitability, indicating sub-

stantially more risk and lower benefit than the robust LP solution. The constrained

CFR approach has approximately a 1:2 ratio of exploitation to exploitability, indicat-

ing substantial risk. However, the total exploitation is higher than the data-biased

CFR approach. The Nash equilibrium solution is the safest strategy as it guarantees

no excess exploitability, but it is also not able to exploit the opponent’s mistakes.

Overall, the constrained CFR approach results in near-exact solution quality in a

small fraction of the computational time.
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Figure 30. Density of Nash equilibrium and robust strategies against an opponent with
bounded rationality (N = 180)
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Table 33. Robust strategy performance

Strategy Mean (95% CI) Exploitability (%) Exploitation (%)
Nash Equilibrium -0.4127 (-0.4131, -0.4125) 0 0

Robust LP -0.4060 (-0.4063, -0.4058) 0.15 1.63
Data-Biased CFR -0.4096 (-0.4100, -0.4094) 0.76 0.76
Constrained CFR -0.4065 (-0.4068, -0.4062) 2.90 1.49

6.6 Conclusion

This research presents multi-domain security games and solves an integrated cyber

and air defense problem. This security problem exhibits several challenging features

that have not been addressed previously, including imperfect information and mixed

strategies for a large, integrated cyber-physical attacker defender game. Realistic op-

erational environments exhibit imperfect information and adaptive adversaries, which

are both addressed by this research. Additionally, we present the first implementa-

tion of Monte Carlo constrained CFR in the literature and compare it to alternative

robust methods.

Our results show that CFR can achieve precise results quickly, with exploitability

lower than 0.5% of the optimal exploitability. Furthermore, we quantify the value

of cyber situational awareness in this integrated cyber-physical scenario and show

the multi-stage impact of improved cyber detection. We also investigate the appro-

priate parameter settings for the most recent enhancements to traditional CFR by

conducting a designed experiment to evaluate the effectiveness of a broad range of

stepsizes on algorithm convergence. We also present an extension to robust opponent

exploitation. These robust results are the first computational results for Monte Carlo

constrained CFR and Monte Carlo constrained CFR with discounting.

This research could be extended in several ways. It would be interesting to di-

rectly compare the iterative CFR methods with first-order methods in the domain

of attacker-defender games. The excessive gap technique, in particular, would be a

useful algorithm for comparative analysis. This game structure is also well suited to
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explore opponent exploitation strategies that are based on data-driven methods to

statistically learn optimal policies in real time while controlling risk.

This line of research begins to address the emerging challenge of multi-domain

operations. It also addresses uncertainty through imperfect information and robust

opponent exploitation. As the security environment continues to become more com-

plex, it will be critical to fully integrate cyber and physical security strategies.
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VII. Conclusion

This research develops methods and applications for decision making under un-

certainty in operations planning, analysis, and assessment. First, a review of the

literature is presented to clarify the relationship between modern uncertainty mod-

els, decision making models, and optimization models. This theoretically focused

review is complemented by a survey of evaluation theory and its applications to mili-

tary assessment, focusing on practical applications of qualitative uncertainty models.

Informed by these literature reviews, the primary methodological and applied re-

search addresses decision making under uncertainty from several perspectives. For

static environments, this research develops an order-based server estimation method

for G/G/c queues with unobservable parameters. For dynamic environments, this

research develops a formulation and solution technique for robust, belief-reward par-

tially observable Markov decision processes (POMDPs). Lastly, to address the most

complex case of a dynamic, multi-agent setting, this research presents an application

of counterfactual regret minimization (CFR) to an integrated cyber and air defense

problem. The key findings of this research clarify the literature, prove theoretical

guarantees for new solution techniques, and experimentally evaluate the empirical

performance of several new and existing approaches.

7.1 Summary

In Chapter II, the theoretical literature review of decision making and optimiza-

tion under uncertainty identifies linkages connecting three major areas of research:

uncertainty modeling, decision making, and optimization. The optimization litera-

ture has used decision-theoretic results for maxmin expected utility to advance the

state of the art for optimization under ambiguity. However, the most recent work on
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decision theory under ambiguity, including smooth ambiguity and generalized uncer-

tainty averse preferences, has not been incorporated into optimization, suggesting a

promising area for further research at the intersection of decision making and opti-

mization. Conversely, some popular uncertainty models, such as fuzzy measures and

imprecise probability, have seen several decades of direct implementation but little to

no application in decision theory or optimization. This relationship suggests that the

modeling capabilities associated with non-set theoretic and non-additive uncertainty

models may not justify the additional modeling or computational complexity. The

most successful uncertainty, decision, and optimization models address ambiguity in a

complete and tractable way, while still maintaining a foundation in probability theory

and set theory. This literature review contributes to the field by synthesizing theory

and application from three separate research areas to provide new insights to decision

making and optimization researchers and practitioners.

Chapter III adopts an applied perspective to survey connections between eval-

uation theory and the practice of military assessments. The survey highlights the

significant overlap between the practice of military assessment and program evalua-

tion. Evaluation theory provides a broad range of assessment paradigms for different

contexts, which can be tailored to a particular staff structure or organizational level.

Given an assessment paradigm, evaluation and monitoring also provide different lev-

els of rigor and cost for the assessment design and data collection. Assessors can

use this suite of options to determine if a descriptive, quasi-experimental, or exper-

imental approach is most appropriate. Then, the assessment report should include

appropriate analysis of the qualitative and quantitative uncertainty for the selected

design. A mixed-method approach that incorporates both quantitative and qualita-

tive methods produces the highest-quality assessment. This survey contributes to the

field by introducing the first classification of military assessment using the dimensions
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of evaluation and by providing a guide for practitioners to apply evaluation theory to

military assessment.

Chapter IV develops a robust approach for queue inference when the internal

parameters of a first-come, first-served (FCFS) G/G/c queue are unknown and the

service is non-deterministic. Compared to the existing variance minimization method,

the experimental results for a relevant design space show that, in the FCFS setting,

the order-based method reaches approximate convergence more quickly, with an 85%

reduction in sample size for median convergence, and has similar or lower error before

converging, with a 66% reduction in mean estimation error. Theoretical results show

that the order-based algorithm has desirable long-run properties in general for the

setting of interest as it produces an estimate that is a lower bound and converges to the

true value. Furthermore, the order-based algorithm is robust to measurement error

in arrival and departure times. These characteristics make the order-based algorithm

a suitable estimator for small sample sizes with noisy measurements and limited

knowledge of the internal structure of the queue. This contribution includes a new

method for robust queue inference, open source code and data, proofs of convergence

and lower-bound properties, and experimental results showing improved performance.

Chapter V develops a comprehensive approach to address the challenge of POMDP

model misspecification. This approach includes a formulation for robust belief-reward

POMDPs. To solve these models, this research extends approximate solution tech-

niques using the new robust belief-reward point-based value iteration algorithm. This

algorithm has desirable convexity and convergence properties that make it an efficient

approximate solution technique while still addressing the general case of ambiguous

dynamics. Experimental results for robust belief-reward POMDPs show that the ro-

bust belief-reward value iteration algorithm outperforms standard belief-reward value

iteration under worst-case model dynamics for classic problems from the literature.
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This worst-case protection is valuable for applications with ambiguous transition and

observation dynamics, which are common in practice. Finally, the detailed applica-

tion of the robust belief-reward formulation and algorithm to a cybersecurity resource

allocation problem shows that model misspecification can be particularly problem-

atic in this setting, resulting in an overconfident nominal solution. The robust policy,

however, avoids overconfidence and achieves a 61% improvement in the accuracy

of intrusion detection compared to the nominal policy. This contribution includes

an original formulation for information-collection POMDPs under ambiguity, a new

method for solving this class of POMDPs, open source code and data, proofs of con-

vexity and convergence, experimental results showing improved performance, and an

application to a cybersecurity problem.

Chapter VI presents an application of counterfactual regret minimization to an

integrated cyber and air defense problem. This approach allows the decision maker to

address imperfect information in a dynamic environment using mixed strategies. This

research presents a reformulation of the original problem into a tractable sequence-

form linear program to find an optimal Nash equilibrium solution. Additionally, a new

application of the behavioral-form Monte Carlo counterfactual regret minimization

algorithm achieves an optimality gap of less than 0.5% in 13,310 iterations which take

less than 5 minutes, a 91% reduction in solution time compared to the linear program

construction and solution. Empirical results evaluating the value of information for

the defensive player show that the defender’s expected utility increases with proba-

bility of detection at an approximately linear rate in the base scenario. Additionally,

this research develops an integrated cyber-air defense application of robust opponent

exploitation using linear programming and data biased CFR. This contribution in-

cludes a new model that extends security games to integrated cyber and air defense,

a new application of counterfactual regret minimization that enables mixed strategies
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under imperfect information, open source code and data, and empirical results that

show a low optimality gap and a favorable risk-reward trade-off for the robust variant.

7.2 Future Research

This dissertation provides a substantial body of work to be exploited by future

research. There are several ways that the methodological and applied work could be

extended. For the robust queue inference, there are two primary research directions.

First, the current methods could be improved by deriving measures of statistical con-

fidence for each sample size or expected time to converge to a given precision. Second,

new methods to solve this problem could provide value by generalizing the context.

Approaches that are able to address partially observable customer identity would

allow for application to a broader class of problems. It would also be desirable to

relax the setting restrictions by extending these results to consider queueing networks

rather than simple queues.

The work on robust belief-reward POMDPs is part of an active area of research

on robust and ambiguous POMDPs. The primary research direction for this work is

extending the current approach to address larger problems. The robust point-based

value iteration algorithm could be extended with more sophisticated approximation

techniques or adapted to an online implementation. Applying the robustness results

from this chapter to large-scale POMDP approximate solution techniques would pro-

vide the ability to expand the practical applications by reducing computational time

for large-scale problems while still addressing model misspecification. Another pos-

sible direction is to explore the policy iteration family of solution techniques. Policy

iteration can be more efficient than value iteration for standard POMDPs, which

might also be the case for robust POMDPs.

For the adversarial setting, there are two primary directions of interest. First,
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other recent advances in opponent exploitation in extensive-form games could be

adapted to provide robust solutions for opponents with bounded rationality in the

multi-domain security game setting. A comparison of modern robust modeling ap-

proaches would help to determine which is most effective in this security setting.

Second, there are several variants of counterfactual regret minimization that might

provide improved solution times, including public chance sampling and game-tree

pruning. In addition to these methodological improvements, it would be interesting

to relax some of the scenario assumptions by exploring problems with more cities,

higher fidelity cyber attack and defense actions, or multiple rounds of physical at-

tacks.

The literature reviews, methodological advances, and applications in this disserta-

tion improve decision making under uncertainty in operations planning, analysis, and

assessment. The contributions provide analysts and decision makers with modeling

and algorithmic tools that produce optimal and near-optimal decisions in dynamic,

stochastic, ambiguous, and partially observable environments. As the threat environ-

ment continues to evolve in unpredictable ways, access to advanced decision making

tools will be a key area of strategic advantage.
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Appendix A. Robust Queue Inference Proofs and
Assumptions

1.1 Proofs

Table 34. Variable definitions

Variable Definition
Ai Arrival time of the ith arrival
Xi Interarrival time following the ith arrival
Si Service time of the ith arrival
Di Departure time of the ith arrival
D(k,m) kth order statistic among the first m departure times
c Number of servers
n Total number of customers
c̃j Running estimate for the number of servers following the jth departure
ĉj Cumulative estimate for the number of servers following the jth departure

Table 35. Assumptions

Index Assumption
(i) Customers are uniquely identifiable
(ii) ρ < 1
(iii) P (Xi > Si) > 0
(iv) Support of interarrival distribution includes 0
(v) Interarrival and service distributions are absolutely continuous
(vi) Interarrival and service distributions are independent

The definitions in Tables 34 and 35 are used throughout the Appendix.

Proposition 2. Given an FCFS GI/G/c queue that meets Assumptions (i)-(vi),

there is a positive probability that the order-based estimation algorithm produces the

correct estimate immediately following the cth departure.

Proof. Let r be the infimum of the support of Si, t be the supremum of the support

of Si, and s be an arbitrary value in the support of Si such that r < s < t.

We will show by construction that there exist interarrival and service times such

that the proposition is true. Let s1 = s. Let si = s− (s− r)
(

2i−1
2i

)
for i ∈ {2, 3, . . .}.
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Let xi ∈ (0, s−r
2i+2 ) for i ∈ {1, 2, . . .}. Using Assumption (v), all si are in the support of

Si since for all i, si ∈ (r, s). Using Assumptions (iv) and (v), all xi are in the support

of Xi. For i = 1,

s2 + x1 < s− (s− r)
(

3

4

)
+
s− r

8
= s− (s− r)

(
5

8

)
< s = s1. (70)

By Assumptions (v) and (vi), this is also true for an arbitrarily small open interval

around the particular value of s, so P (S2 +X1 < S1) > 0. For i ∈ {2, 3, . . . , c},

si + xi−1 < s− (s− r)
(

2i − 1

2i

)
+
s− r
2i+1

(71)

= s− (s− r)
(

2i+1 − 3

2i+1

)
(72)

< s− (s− r)
(

2i−1 − 1

2i−1

)
= si−1. (73)

By Assumptions (v) and (vi), this is also true for an arbitrarily small open interval

around the particular value of s, so P (Si +Xi−1 < Si−1 ∩ Si−1 +Xi−2 < Si−2 ∩ · · · ∩

S2 +X1 < S1) > 0. Then, there is a positive probability that each customer finishes

service before the previous customer, which implies a positive probability that the

cth customer finishes service before all previous customers. That is,

P (ĉc = c) ≥ P (Sc +X1 +X2 + . . .+Xc−1 < S1 ∩

Sc +X1 +X2 + . . .+Xc−1 < S2 +X1 ∩ · · · ∩

Sc +X1 +X2 + . . .+Xc−1 < Sc−1 +X1 + · · ·+Xc−2)

(74)

≥ P (S2 +X1 < S1 ∩ S3 +X2 < S2 ∩ · · · ∩ Sc +Xc−1 < Sc−1) (75)

> 0. (76)
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Proposition 3. Given an FCFS GI/G/c queue that meets Assumptions (i)-(vi),

the order-based estimation algorithm produces an estimate that is a lower bound on

the true number of servers.

Proof. Let m ∈ {1, 2, . . . } be the number of customers that have departed the queue.

Then Dm = {i : Di ≤ D(m,m)} is the set of arrival indices of the first m customers to

depart.

Let ī = maxDm be the largest arrival index of customers that have departed.

Since this is an FCFS queue, at the time the īth customer to arrive has departed, all

customers with arrival indices i < ī have already entered service.

Let Sm = {1, 2, . . . , ī} /Dm be the set of arrival indices of customers known to

have entered service but not yet departed, immediately after the mth departure.

Then c̃m = |Sm| + 1. Immediately prior to the mth departure, there are at least c̃m

customers in service: the mth customer to depart and all the customers whose arrival

indices are in Sm. Thus, there are at least c̃m servers and ĉm ≤ c.

Using Proposition 2, Theorem 4 shows that the order-based estimator converges

in probability to the true number of servers. The argument of the proof is that for any

observation period in which the systems starts empty, there is a positive probability

the cth customer to arrive will be the first customer to leave service, which results in

a correct running and cumulative estimate. Furthermore, busy cycles occur infinitely

often with probability one. As the number of observed customers approaches infinity,

the probability of no correct running estimates decays to zero and the probability of

a correct cumulative estimate approaches one.

Theorem 4. For an FCFS GI/G/c queue that meets Assumptions (i)-(vi), the

order-based server estimation algorithm produces estimates ĉn such that limn→∞ P (|ĉn−

c| > ε) = 0 ∀ ε > 0.
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Proof. Let ε1 ≥ 1, then P (|ĉn − c| > ε1) ≤ P (|ĉn − c| > ε) as [ε1,∞) ⊆ (ε,∞).

Without loss of generality, let 0 < ε < 1. As c, ĉn ∈ Z+, P (|ĉn − c| > ε) = P (ĉn 6= c).

Let n be the total number of customers observed, b(n) be the number of busy

periods, and mk be the number of customers in busy period k. Note that by Proposi-

tion 2, for any busy period there is a positive probability that mk ≥ c and that given

mk ≥ c, P (ĉmk = c) ≥ P (ĉc = c) > 0. Then,

P (ĉn 6= c) =

b(n)∏
k=1

P (ĉmk 6= c) ≤ P (ĉc 6= c)b(n) where P (ĉc 6= c) < 1. (77)

By Assumptions (ii) and (iii), the system will be empty infinitely often with prob-

ability one (Whitt, 1972, Theorem 2.2), so limn→∞ b(n) =∞. Then,

lim
n→∞

P (|ĉn − c| > ε) = lim
n→∞

P (ĉn 6= c) ≤ lim
n→∞

P (ĉc 6= c)b(n) = 0 (78)

⇒ lim
n→∞

P (|ĉn − c| > ε) = 0. (79)

We use the same proof structure from Proposition 2, Proposition 3, and Theorem

4 to show that the LCFS order-based estimator produces an estimate which is a lower

bound on the true number of servers and that the LCFS order-based estimator con-

verges in probability to the true number of servers. The key argument in the proof

for Proposition 5 is that a particular relationship between arrivals and departures has

positive probability and that the order-based estimate is correct given that relation-

ship. There are two key arguments in the proof for Proposition 6. First, we note that

all customers that were the last to arrive at the time of another customer’s departure

(i.e., highest priority in the LCFS queue at that time) and who have not departed

must be in service simultaneously. Second, we show that the order-based estimate
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produces the same number.

Proposition 5. Given an LCFS GI/G/c queue that meets Assumptions (i)-(vi),

there is a positive probability that the LCFS order-based estimation algorithm produces

the correct estimate immediately following the cth departure.

Proof. Let St be the set of arrival indices of customers known to have entered service

by time t. By Assumptions (iv), (v), and (vi), there is positive joint probability of a

positive service time and arbitrarily small interarrival time for each customer. There

is positive probability that the first 2c customers arrive before any departures, so

P (X1 +X2 + · · ·+X2c−1 < min {S1, S2, . . . , Sc}) > 0.

Let Ic+1,2c be the arrival indices of the departures c + 1, c + 2, . . . , 2c. Given

the first 2c customers arrive before any departures, by Assumptions (v) and (vi),

there is positive joint probability that the first c customers depart before any of the

customers with higher arrival indices, so P (∩i∈Ic+1,2cSi > max {S1, S2, . . . , Sc} |X1 +

X2 + · · · + X2c−1 < min {S1, S2, . . . , Sc}) > 0. For each of these c departures, the

server immediately begins serving the next highest priority customer in the LCFS

queue since the queue is non-empty with positive probability.

Let tc be the time of the cth departure. Then there is positive probability that

Stc = Ic+1,2c and |Stc | = c. Thus, P (ĉc = c) > 0.

Proposition 6. Given an LCFS GI/G/c queue that meets Assumptions (i)-

(vi), the LCFS order-based estimation algorithm produces an estimate that is a lower

bound on the true number of servers.

Proof. Let m ∈ {1, 2, . . . } be the number of customers that have departed the queue.

For i ∈ {1, 2, . . . }, let At = {i : Ai ≤ t} be the set of arrival indices of the customers

that arrive by time t and let Dt = {i : Di ≤ t} be the set of arrival indices of the

customers that depart by time t, where Di is the departure time of the ith arrival.
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Let Yt = At /Dt be the set of arrival indices of customers in queue or service at

time t. Let St be the set of arrival indices of customers known to have entered service

at time t. Since the queue is LCFS, let SDi = (SDi−ε / {i}) ∪ maxYDi where ε > 0

is arbitrarily small and let St = ∅∀ t < D1. That is, when a customer departs, that

departing customer is removed from the set of customers known to be in service and

the highest priority customer in the system is added to the set of customers known

to be in service.

Then c̃m = |SDm|. Immediately following the mth departure, there are at least c̃m

customers in service: all customers that were the last to arrive at the time of another

customer’s departure and who have not departed yet. Thus, there are at least c̃m

servers and ĉm ≤ c.

Theorem 7. For an LCFS GI/G/c queue that meets Assumptions (i)-(vi),

the LCFS order-based server estimation algorithm produces estimates ĉn such that

limn→∞ P (|ĉn − c| > ε) = 0 ∀ ε > 0.

Proof. Let ε1 ≥ 1, then P (|ĉn − c| > ε1) ≤ P (|ĉn − c| > ε) as [ε1,∞) ⊆ (ε,∞).

Without loss of generality, let 0 < ε < 1. As c, ĉn ∈ Z+, P (|ĉn − c| > ε) = P (ĉn 6= c).

Let n be the total number of customers observed, b(n) be the number of busy

periods, and mk be the number of customers in busy period k. Note that by Propo-

sition 5, for any busy period there is a positive probability that mk ≥ 2c and that

given mk ≥ 2c, P (ĉmk = c) ≥ P (ĉc = c) > 0. Then,

P (ĉn 6= c) =

b(n)∏
k=1

P (ĉmk 6= c) ≤ P (ĉc 6= c)b(n) where P (ĉc 6= c) < 1. (80)

By Assumptions (ii) and (iii), the system will be empty infinitely often with prob-
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ability one (Whitt, 1972, Theorem 2.2), so limn→∞ b(n) =∞. Then,

lim
n→∞

P (|ĉn − c| > ε) = lim
n→∞

P (ĉn 6= c) ≤ lim
n→∞

P (ĉc 6= c)b(n) = 0 (81)

⇒ lim
n→∞

P (|ĉn − c| > ε) = 0. (82)

1.2 Assumptions

This section discusses the motivation for each assumption in Table 35 and presents

counterexamples to highlight the impact of Assumptions (iv) - (vi).

Assumption (i).

Assumption (i) is that customers are uniquely identifiable. Assumption (i) is

required for Proposition 2 to hold. Without Assumption (i), the order-based estimate

is not well-defined.

Assumption (ii).

Assumption (ii) is that ρ < 1. Assumption (ii) is required for Theorem 4 to hold

(Whitt, 1972, Theorem 2.2).

Assumption (iii).

Assumption (iii) is that P (Xi > Si) > 0. Assumption (iii) is required for Theorem

4 to hold (Whitt, 1972, Theorem 2.2).
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Assumption (iv).

Assumption (iv) is that the support of the interarrival distribution includes 0.

Given only Assumptions (i), (ii), (iii), (v), and (vi), the following counterexample

shows that Proposition 2 does not hold in the absence of Assumption (iv).

Suppose customers are uniquely identifiable, Xi and Si are independent, Xi ∼

Unif(0.5, 1), Si ∼ Unif(0, 0.9), and c = 3, where Xi is the interarrival time following

the ith arrival, Si is the service time of the ith arrival, and c is the number of servers.

Then we have,

Assumption (i): True, by assumption.

Assumption (ii): True, as E[Xi] = 0.75, E[Si] = 0.45⇒ ρ < 1.

Assumption (iii): True, as P (Xi > 0.8 ∩ Si < 0.8) > 0⇒ P (Xi > Si) > 0.

Assumption (iv): False, as 0 /∈ Support(Xi).

Assumption (v): True, as Xi and Si follow Uniform distributions.

Assumption (vi): True, by assumption.

The minimum possible departure time for the third customer is 1.0 and the maxi-

mum possible departure time of the first customer is 0.9. So, the first customer always

departs before the third customer arrives and the order-based estimator cannot pro-

duce the correct estimate in the first c customers. This counterexample supports the

necessity of Assumption (iv).

Assumption (v).

Assumption (v) is that the interarrival and service distributions are absolutely

continuous and therefore non-deterministic. Given only Assumptions (i), (ii), (iii),
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(iv), and (vi), the following counterexample shows that Proposition 2 does not hold

in the absence of Assumption (v).

Suppose customers are uniquely identifiable, Xi and Si are independent, Xi ∼

Unif(0, 2), Si ∼ Deterministic(0.9), and c = 3. Then we have,

Assumption (i): True, by assumption.

Assumption (ii): True, as E[Xi] = 1, E[Si] = 0.9⇒ ρ < 1.

Assumption (iii): True, as P (Xi > 1 ∩ Si < 1) > 0⇒ P (Xi > Si) > 0.

Assumption (iv): True, as 0 ∈ Support(Xi).

Assumption (v): False, as the distribution of Si is a deterministic point mass.

Assumption (vi): True, by assumption.

As the service time is deterministic, customers will depart in the same order in

which they arrived, regardless of interarrival time. This guarantees an incorrect order-

based estimate after three departures. This counterexample supports the necessity of

Assumption (v).

Assumption (vi).

Assumption (vi) is that the interarrival and service distributions are independent.

Given only Assumptions (i), (ii), (iii), (iv), and (v), the following counterexample

shows that Proposition 2 does not hold in the absence of Assumption (vi).

Suppose customers are uniquely identifiable,

Xi ∼ Unif(0, 1) (83)

T ∼ Triangular(0.25, 0.75, 0.25) (84)
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Si =


1
2
Xi if Xi < 0.5

T otherwise,

(85)

and c = 3, where T is a dummy triangular distribution. Then we have,

Assumption (i): True, by assumption.

Assumption (ii): True, as E[Xi] = 0.5, E[Si] = 0.2708⇒ ρ < 1.

Assumption (iii): True, as P (Xi > 0.6 ∩ Si < 0.6) > 0⇒ P (Xi > Si) > 0.

Assumption (iv): True, as 0 ∈ Support(Xi).

Assumption (v): True, as the distribution of Xi is Uniform, and the distribution

of Si is absolutely continuous over [0, 0.75] including at 0.25.

Assumption (vi): False, as Si is a function of Xi.

If either interarrival time is less than 0.5, the earlier customer departs before the

arrival of the next customer and the order-based estimator cannot produce the correct

estimate in the first c customers. Otherwise, if both interarrival times are greater than

or equal to 0.5, the minimum possible departure time for the third customer is 1.0.

The maximum possible departure time of the first customer is 0.75. So, the first

or second customer always departs before the arrival of the third customer and the

order-based estimator cannot produce the correct estimate in the first c customers.

This counterexample supports the necessity of Assumption (vi).

1.3 Code

Full code with documentation and testing is available at https://github.com/

ajkeith/UnobservableQueue.jl. Experimental simulation data and benchmarks

are also available at the same location.
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Appendix B. Robust POMDP Proofs and Problem
Formulations

2.1 Proofs

Proof of Theorem 8.

The approach of the proof for Theorem 8 is to use Theorem 3.1 of Araya-López

et al. (2010) to extend Theorem 1 of Osogami (2015) to the belief-reward setting. The

structure of the proof for 8 is step-wise analogous to the structure of the proof for

Theorem 1 in the research conducted by Osogami (2015), with variations to address

the robust belief-reward aspect of this work.

Theorem 8. When N < ∞, the robust belief-reward value function, Vn(b), is

convex with respect to b for each n ∈ [0, N ] for a convex ambiguity set, Pas for

s, a ∈ S ×A, and a convex belief-reward function, ρ(b, a).

Proof. Proof. For n ∈ [0, N), the robust belief-reward Bellman equation follows

directly from Osogami (2015, Theorem 1) and Araya-López et al. (2010, Theorem

3.1):

Vn(b) = max
a∈A

ρ(b, a) + min
pan∈Pa

∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pan(t, z|s)Vn+1(b′b,a,z)

)
, (86)

where b′b,a,z is the belief state after taking action a ∈ A from b ∈ B and observing

z ∈ Z:

b′b,a,z(t) =

∑
s∈S p

a
n(t, z|s)b(s)∑

s′,t′∈S2 pan(t′, z|s′)b(s′)
,∀t ∈ S. (87)

By the induction hypothesis in Osogami (2015, Theorem 1), there exists a possibly

infinite set of vectors, Λn+1, such that

Vn+1(b) = max
α∈Λn+1

[∑
s∈S

α(s)b(s)

]
. (88)
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Substituting (88) into (86), we have

Vn(b) = max
a∈A

ρ(b, a)+ min
pan∈Pa

∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pan(t, z|s) max
αz∈Λ

(a,z)
n+1

∑
x∈S

b′b,a,z(x)αz(x)

)
.

(89)

Substituting (87) into (89), we have

Vn(b) = max
a∈A

ρ(b, a) + min
pan∈Pa

γ∑
z∈Z

max
αz∈Λ

(a,z)
n+1

∑
x,s′∈S2

pan(x, z|s′)b′(s′)αz(x)

 (90)

= max
a∈A

ρ(b, a) + min
pan∈Pa

∑
z∈Z

max
αz∈Λ

(a,z)
n+1

∑
s∈S

b(s)

(
γ
∑
t∈S

pan(t, z|s)αz(t)

)
, (91)

where the variables s′ and x are changed to s and t, respectively, in the last equality.

For a given pan(·, z|s) and a given αz,

∑
s∈S

b(s)

(
γ
∑
t∈S

pan(t, z|s)αz(t)

)
(92)

is a linear function of b. The maximum of linear functions is convex and the sum of

convex functions is convex, so

∑
z∈Z

max
αz∈Λ

(a,z)
n+1

∑
s∈S

b(s)

(
γ
∑
t∈S

pan(t, z|s)αz(t)

)
(93)

is a convex function of b. Let Qa
n(b) be defined as follows,

Qa
n(b) ≡ min

pan∈Pa

∑
z∈Z

max
αz∈Λ

(a,z)
n+1

∑
s∈S

b(s)

(
γ
∑
t∈S

pan(t, z|s)αz(t)

)
. (94)

Exchange the summation over z and maximum over αz in (94) to obtain

Qa
n(b) ≡ min

pan∈Pa
max

αz∈Λ
(a,z)
n+1

∑
z∈Z

∑
s∈S

b(s)

(
γ
∑
t∈S

pan(t, z|s)αz(t)

)
, (95)
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and define M as

M ≡
∑
z∈Z

∑
s∈S

b(s)

(
γ
∑
t∈S

pan(t, z|s)αz(t)

)
. (96)

This M is the same as the M from Osogami (2015, Theorem 1) with the exception

of the removal of the reward term, which is constant with respect to pan and αz. Thus,

Loomis’ Minimax Theorem in Motwani and Raghavan (1995, Theorem 2.3) remains

valid and we have

min
pan∈Pa

max
αz∈Λ

(a,z)
n+1 ,z∈Z

M = max
αz∈Λ̄

(a,z)
n+1 ,z∈Z

min
pan∈Pa

M, (97)

where Λ̄
(a,z)
n+1 is the convex hull of Λ

(a,z)
n+1 . By (97) and (94),

Qa
n(b) = max

αz∈Λ̄
(a,z)
n+1 ,z∈Z

min
pan∈Pa

∑
z∈Z

∑
s∈S

b(s)

(
γ
∑
t∈S

pan(t, z|s)αz(t)

)
(98)

= max
αz∈Λ̄

(a,z)
n+1 ,z∈Z

∑
s∈S

b(s) min
pan(·,·|s)∈Pas

(
γ
∑

t,z∈S×Z

pan(t, z|s)αz(t)

)
. (99)

Thus Qa
n(b) can be represented by the maximum of a possibly infinite number of

functions that are linear with respect to b and Qa
n(b) is convex with respect to b.

By assumption ρ(b, a) is also convex. Then, because the sum of convex functions is

convex and the maximum of convex functions is convex, we have that

Vn(b) = max
a∈A

ρ(b, a) +Qa
n(b) (100)

is convex when Pas and ρ(b, a) are convex.

Proof of Theorem 9.

The approach of the proof for Theorem 9 is to use Theorem 3.1 of Araya-López

et al. (2010) to extend Theorem 2 of Osogami (2015) to the belief-reward setting. The
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structure of the proof for 9 is step-wise analogous to the structure of the proof for

Theorem 2 in the research conducted by Osogami (2015), with variations to address

the robust belief-reward aspect of this work.

Theorem 9. The robust belief reward value function, V0, satisfying Vn(b) =

maxa∈A ρ(b, a)+minpan∈Pa
∑

s∈S

(
b(s)γ

∑
t,z∈S×Z p

a
n(t, z|s)Vn+1(b′b,a,z)

)
, converges uni-

formly as N →∞ if γ < 1.

Proof. Proof. Let L be the operator that maps Vn+1(·) to Vn(·) in

Vn(b) = max
a∈A

ρ(b, a) + min
pan∈Pa

∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pan(t, z|s)Vn+1(b′b,a,z)

)
. (101)

Let V and U be functions that map a belief state to a real number. For a fixed

belief state, b, let

a∗ ≡ argmax
a∈A

min
pa∈Pa

ρ(b, a) +
∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pa(t, z|s)V (b′b,a,z)

)
(102)

pa,∗ ≡ argmin
pa∈Pa

ρ(b, a) +
∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pa(t, z|s)U(b′b,a,z)

)
, ∀a ∈ A, (103)

where b′b,a,z is defined in (87). Suppose that LU(b) ≤ LV (b). Then,

0 ≤ LV (b)− LU(b) (104)

≤ ρ(b, a∗) +
∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pa
∗,∗(t, z|s)V (b′b,a∗,z)

)
(105)

− ρ(b, a∗) +
∑
s∈S

(
b(s)γ

∑
t,z∈S×Z

pa
∗,∗(t, z|s)U(b′b,a∗,z)

)
. (106)

The second inequality remains valid because the belief-reward terms in (106) cancel.

This leads to a simplification which does not include a reward term and the remainder

of the proof follows directly from Osogami (2015, Theorem 2).
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2.2 Detailed Problem Formulation

2.2.1 Tiger Problem

The tiger problem is a classic POMDP introduced in Cassandra et al. (1994). This

section describes the original nominal formulation and our robust formulation for an

instance of size |S| = 2, |A| = 3, and |Z| = 2.

Figures 31 and 32 show the hidden Markov models for the tiger problem dynamics,

where solid lines indicate observations and dashed lines indicate hidden states for all

hidden Markov model figures.

Tiger 

Left

Tiger 

Right

Tiger 

Right

1.0

0.15 0.15

Tiger 

Left

0.85 0.85

1.0

Figure 31. Tiger hidden Markov model
(a = listen)

Tiger 

Left

Tiger 

Right

Tiger 

Right

0.5

0.5 0.5

0.5

Tiger 

Left

0.5 0.5

0.5
0.5

Figure 32. Tiger hidden Markov
model, (a = open left or open right)

The formal POMDP components are defined as follows,

S = {tiger-left, tiger-right} (107)

A = {listen, open-left, open-right} (108)

Z = {tiger-left, tiger-right} (109)
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T (s, a, s′) =



1, s = s′, a = listen

0.5, a 6= listen, s′ = tiger-left

0.5, a 6= listen, s′ = tiger-right

0, otherwise

(110)

O(a, s′, z) =



0.85, s′ = tiger-left, a = listen, z = tiger-left

0.15, s′ = tiger-left, a = listen, z = tiger-right

0.85, s′ = tiger-right, a = listen, z = tiger-right

0.15, s′ = tiger-right, a = listen, z = tiger-left

0.5, a 6= listen

(111)

R(s, a) =



−100, s = tiger-left, a = open-left

−100, s = tiger-right, a = open-right

10, s = tiger-left, a = open-right

10, s = tiger-right, a = open-left

−1, a = listen

(112)

γ = 0.95. (113)

In the robust POMDP version of the problem, the transition function remains precise,

but the observation function is defined using ambiguity sets rather than probability

distributions. The ambiguity sets are defined as intervals around the nominal observa-

tion function using the ambiguity set half-width, δ, where δ ∈ {0.001, 0.01, 0.1, 0.2}.

The bounds of the ambiguity sets are truncated at ε and 1 − ε for the following
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observation function,

OR(a, s′, z) =



[0.85− δ, 0.85 + δ], s′ = tiger-left, a = listen, z = tiger-left

[0.15− δ, 0.15 + δ], s′ = tiger-left, a = listen, z = tiger-right

[0.85− δ, 0.85 + δ], s′ = tiger-right, a = listen, z = tiger-right

[0.15− δ, 0.15 + δ], s′ = tiger-right, a = listen, z = tiger-left

[0.5− δ, 0.5 + δ], a 6= listen.

(114)

2.2.2 Crying Baby Problem

The crying baby problem is an illustrative POMDP introduced in Kochenderfer

(2015). This section describes the original nominal formulation and our robust for-

mulation for an instance of size |S| = 2, |A| = 2, and |Z| = 2. Figures 33 and 34

show the hidden Markov models for the two-observation baby problem dynamics.

Hungry Normal

Crying

1.0

0.8 0.9

1.0

Quiet

0.2 0.1

Figure 33. Baby hidden Markov model
(a = feed)

Hungry Normal

Crying

0.9

0.8 0.9

Quiet

0.2 0.1

1.0
0.1

Figure 34. Baby hidden Markov model,
(a = nothing)
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The formal POMDP components are defined as follows,

S = {hungry, normal} (115)

A = {feed, nothing} (116)

Z = {quiet, crying} (117)

T (s, a, s′) =



1 s = hungry, a = nothing, s′ = hungry

1 a = feed, s′ = normal

0.1 s = normal, a = nothing, s′ = hungry

0.9 s = normal, a = nothing, s′ = normal

0 otherwise

(118)

O(a, s′, z) =



0.8 s′ = hungry, z = crying

0.2 s′ = hungry, z = quiet

0.1 s′ = normal, z = crying

0.9 s′ = normal, z = quiet

0 otherwise

(119)

R(s, a) =



−15 s = hungry, a = feed

−10 a = hungry, a = nothing

−5 s = normal, a = feed

0 otherwise

(120)

γ = 0.9. (121)

In the robust POMDP version of the problem, the transition function and the obser-

vation function are defined using ambiguity sets rather than probability distributions.
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The ambiguity sets are defined as intervals around the nominal observation function

using the ambiguity set half-width, δ, where δ ∈ {0.001, 0.01, 0.1, 0.2}. The bounds

of the ambiguity sets are truncated at 0 + ε and 1− ε for the following transition and

observation functions,

TR(s, a, s′) =



[1− δ, 1 + δ] s = hungry, a = nothing, s′ = hungry

[1− δ, 1 + δ] a = feed, s′ = normal

[0.1− δ, 0.1 + δ] s = normal, a = nothing, s′ = hungry

[0.9− δ, 0.9 + δ] s = normal, a = nothing, s′ = normal

[0− δ, 0 + δ] otherwise

(122)

OR(s, a, z) =



[0.8− δ, 0.8 + δ] s = hungry, z = crying

[0.2− δ, 0.2 + δ] s = hungry, z = quiet

[0.1− δ, 0.1 + δ] s = normal, z = crying

[0.9− δ, 0.9 + δ] s = normal, z = quiet

[0− δ, 0 + δ] otherwise.

(123)

2.2.3 Rock Diagnosis Problem

The rock diagnosis problem is an information gathering belief-reward POMDP

introduced in Araya-López (2013). This section describes the original nominal for-

mulation and our robust formulation for an instance of size |S| = 4, |A| = 3, and

|Z| = 3. Figures 35, 36, and 37 show the hidden Markov models for the 2 × 1 rock

diagnosis problem.

The formal POMDP components are defined as follows. Each state, s ∈ S, in-

cludes a position component and a rock-type component. In this small problem, the

2× 1 grid-world consists of two positions, 1 and 2, and two rock types, bad and good.
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1.0
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Good Rock
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Good Rock

None

1.0

Figure 35. Rock diagnosis hidden Markov model (a = left)
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Figure 36. Rock diagnosis hidden Markov model (a = right)
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Figure 37. Rock diagnosis hidden Markov model, (a =
check)
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The rock is in position 2 and the sensor starts in position 1. Note that the position

refers to the position of the sensor (the position of the rock is fixed and known to the

decision-maker). The observation function depends on the parameters that control

the rate at which the sensor accuracy decays with distance. In this case, p1 = 0.81

and p2 = 0.90 for the probability of correct detection when the sensor is in position

1 and position 2, respectively. The belief reward function is defined as a set of alpha

vectors, Γ, where

Γ = {[1,−1/3,−1/3,−1/3], (124)

[−1/3, 1,−1/3,−1/3], (125)

[−1/3,−1/3, 1,−1/3], (126)

[−1/3,−1/3,−1/3, 1]}. (127)

This gives the following formulation for the nominal ρPOMDP,

S = {1-bad, 1-good, 2-bad, 2-good} (128)

A = {left, right, check} (129)

Z = {good, bad, none} (130)
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T (s, a, s′) =



1 s = 1-bad, a = left, s′ = 1-bad

1 s = 1-bad, a = right, s′ = 2-bad

1 s = 1-bad, a = check, s′ = 1-bad

1 s = 1-good, a = left, s′ = 1-good

1 s = 1-good, a = right, s′ = 2-good

1 s = 1-good, a = check, s′ = 1-good

1 s = 2-bad, a = left, s′ = 1-bad

1 s = 2-bad, a = right, s′ = 2-bad

1 s = 2-bad, a = check, s′ = 2-bad

1 s = 2-good, a = left, s′ = 1-good

1 s = 2-good, a = right, s′ = 2-good

1 s = 2-good, a = check, s′ = 2-good

0 otherwise

(131)
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O(a, s′, z) =



1 a = left, z = none

1 a = right, z = none

p1 a = check, s′ = 1-bad, z = bad

1− p1 a = check, s′ = 1-bad, z = good

1− p1 a = check, s′ = 1-good, z = bad

p1 a = check, s′ = 1-good, z = good

p2 a = check, s′ = 2-bad, z = bad

1− p2 a = check, s′ = 2-bad, z = good

1− p2 a = check, s′ = 2-good, z = bad

p2 a = check, s′ = 2-good, z = good

0 otherwise

(132)

ρ(b) = max
α∈Γ

(bα) (133)

γ = 0.9. (134)

In the robust ρPOMDP version of the problem, the transition function remains

precise, but the observation function is defined using ambiguity sets rather than

probability distributions. The ambiguity sets are defined as intervals around the

nominal observation function using two ambiguity set half-width parameters, δ1 =

1e−6 and δ2 = 0.4 as follows. The variable-width ambiguity set models a trade-off

between uncertainty and ambiguity with respect to sensor performance. The bounds

244



of the ambiguity sets are truncated at ε and 1−ε for the following observation function,

OR(a, s′, z) =



1 a = left, z = none

1 a = right, z = none

[p1 − δ1, p1 + δ1] a = check, s′ = 1-bad, z = bad

[1− (p1 + δ1), 1− (p1 − δ1] a = check, s′ = 1-bad, z = good

[1− (p1 + δ1), 1− (p1 − δ1] a = check, s′ = 1-good, z = bad

[p1 − δ1, p1 + δ1] a = check, s′ = 1-good, z = good

[p2 − δ2, p2 + δ2] a = check, s′ = 2-bad, z = bad

[1− (p2 + δ2), 1− (p2 − δ2] a = check, s′ = 2-bad, z = good

[1− (p2 + δ2), 1− (p2 − δ2] a = check, s′ = 2-good, z = bad

[p2 − δ2, p2 + δ2] a = check, s′ = 2-good, z = good

0 otherwise.

(135)
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