

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-

15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed

as an official Government position, policy, or decision, unless designated by other documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer,

or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie

Mellon University or its Software Engineering Institute.
This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA

01731-2100
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM

PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal

use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and

derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external and/or

commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
DM18-1200

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommended Implementation Priorities for Dev(Sec)Ops
Process – DevOps is about people, not about tooling. It is important that you define your
software development process, requirements, and goals.
Compatibility – When designing a DevOps pipeline and selecting development tools, it is
imperative that tools will smoothly operate in all environments. If this is not possible, it might
be necessary to use more than one tool. However, one must be careful; each development
group or contractor could pick a different tool. This will be management disaster.
Consistency – Consistent software requires consistent processes around the SDLC. Each team
and team member need to understand the chosen software process. Documentation and
process enforcement is the key to success.
Security – An important part of the software deployment process is security. It is also an
integral part of RMF and ATO. Depending on the hardware, software, and environment, there
are numerous ways to implement software assurances.
Communications – DevOps is about people communicating. Open communications are
required to have a successful DevOps environment. The DevOps way is to ensure that there is
transparency across all stakeholders of a project. In addition, developers need to visualize how
and when their builds will be tested and deployed, system operators need to be aware of
upcoming installations, and end user will need to be trained for new features.
Deployment – Software deployment needs to be an automated and repeatable process.
Automation reduces the chance of error, and it will allow for an automated version rollback if
needed.
Auditing – Security and accountability require auditing to understand were bugs and security
flaws were introduced into the software. This is to improve the software process, calculate
insider threats, and help produce teachable lessons.
Scalability – Software builds should not cause a long delay in testing and deployment. If
developers have to wait until free slots are available in the pipeline, productivity is lost. This
can jeopardize the project delivery window.

Example priorities for implementation
 NOTE: Any products mentioned in this document are examples. They are not
recommendations.

Process

Define gates for the pipeline

 Block build for peer code review

 Block build for security deficiencies

 Block for any manual or physical testing

 Block deployment until ATO is granted

Define behavior and unit testing requirements

 Minimum test coverage of a module’s source code

 Manual testing requirements for physical devices

 Behavioral test frameworks, ie: Cucumber or SpecFlow,

 Matching behavioral test to the requirement

[Distribution Statement A] Approved for public release and unlimited distribution.

Define acceptable risk for security baseline

 Patching or update expectations for zero-day security flaws or critical bugs

 Acceptable risk for security flaw that cannot be leveraged in a specific environment

Define ownership of feature and system requirements

 Define the Agile process and sprint expectations

 Define the product owner that is responsible for the service or application

Define ATO-ready

 Define the required reporting needed for ATO

 Different organizations have various RMF requirements for ATO

 Approving parties need to understand the risks and benefits of the deployment

Issue and feature tracking

 JIRA

 Rally

 JAMA

Compatibility

Tooling interoperability between systems and contractors

 Source control should work seamlessly in every development environment

Tooling must be compatible all facets of the system

 Deployment to a Windows system should suppose UNC paths

 Deployment to a Linux/UNIX system should support SFTP and NFS over SSH/TLS

 Container deployment should support a container registry for deployment to
orchestrations like Docker, Docker Swarm, or Kubernetes

Users must be able to use the tools; if they are too complex or unusable, all efficiencies will be lost

 Native TFS on Linux requires a Git plugin or a custom application. This is complicated
and should be avoided

Consistent software builds

Software development methodology

 Define a sprint

 Define a release

 Define a feature

Common source control

 Git

 SVN

 Mercurial

Common artifact repository

 Nexus

 VMware Harbor

Development, build, and test environment parity

 Use Infrastructure as Code tools to build each environment

 Developers will use a similar environment as production; if the application runs in a
container, it should be developed in a container

[Distribution Statement A] Approved for public release and unlimited distribution.

Peer review

 Formal process that can be reviewed after completion, similar to a pull request

 Another developer that is familiar with the project should review source code
submissions

Build tooling

 gcc

 clang

 make

 maven

 msbuild

Automated testing frameworks

 Selenium web driver

 pytest

 JUnit

 XUnit

 NUnit

 MSTest

Logging of all processes

 Build outputs are stored

 Test outputs are stored

 Security and penetration testing results are stored

 Logging is required to automate the generation of an RMF report

Security

Static code analysis

 Brakeman

 SonarQube

 RIPS

 FindBugs

Dynamic code and runtime analysis

 Valgrind

 Purify

 Load testing of software

Container vulnerability analysis

 Clair

 Sysdig Falco

 Dagda

 Twistlock

 JFrog XRay

Communication between tools and humans

RMF report generation

 The final step in the build process should generate the RMF report needed for ATO

[Distribution Statement A] Approved for public release and unlimited distribution.

 Report on automatic testing

 Report on security scanning

 Report on penetration tests

 Report artifact should provide all requirements needed for ATO

System status and monitoring overview of pipeline

 All stakeholders should have visibility of the DevOps CD/CI process and pipeline

Interoperability between tools

 Source code commits that fail any test should reject back to the developer

 Issues and feature tracking tickets should be updated when a feature or fix moves
through the pipeline

On-demand reporting

 Stakeholders and users should be able to view logs and reports from the build system

Documentation

 The project, along with its build and test processes, should be thoroughly documented

 Documentation should be easily accessible and searched

 Wiki-style products and markdown make it easy for developers to update the
knowledge base

 The build process can generate documentation from the source code comments

Deployment

Deploy new builds to different environments

 Builds should be deployable to all environments

 Tool should be configured to block deployments to production until the build is
approved

Automated testing and deployment of testing environment and software

 Testing tools should be able to automatically build an environment, test the software,
and tear down the environment

Feature and Code audit trail

 Build results integrated into issue tracker

 Auditing of builds, source control, and testing

Scalability

 Pipeline should be able to handle parallel builds without blocking development

 Easily replicated for usage by different teams or contractors

 Accessible by all developers

