
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Detecting Leaks of Sensitive

Data Due to Stale Reads

Will Snavely*,

Will Klieber* (presenting),

Ryan Steele*,

David Svoboda*,

Andrew Kotov*

*Software Engineering Institute (SEI)

Carnegie Mellon University

Pittsburgh, PA, USA

IEEE SecDev 2018

2
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,

a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM

PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited

distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM18-1108

3
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Motivation

Invalid memory reads can leak sensitive information.

• Heartbleed (2014, OpenSSL).

• Cloudbleed (2017, HTML parser).

• Unaffected by mitigations such as ASLR and DEP.

• Even reads within the allocated bounds can lead to leaks

in the case of a re-usable buffer with stale data.

This affects even memory-safe languages,

e.g., Jetty leaked passwords (CVE-2015-2080 “JetLeak”).

Focus of

this talk

4
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Leakage of Sensitive Information in Re-Used Buffer
(based on a real vulnerability in the Jetty web server)

" p a s s w o r d " : " h u n t e r 2 "

" s o r t " : " i d " } h u n t e r 2 "

Buffer contents after second HTTP request (from a different client):

Upper bound for reading:

most recently written location

Buffer contents after first HTTP request:

Stale data

5
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Overview

Problem addressed: Leaks of sensitive stale data from a re-used buffer.

Approach: Heuristic-driven dynamic analysis for detecting reads that may be

accessing stale sensitive data.

Results:

• Our dynamic analyses for C and Java can detect & stop Heartbleed

(OpenSSL) and JetLeak (Jetty).

• Evidence for attaining reasonably low false-positive rate

(currently 0.2 alarms / kLOC for GNU Coreutils on its testsuite).

Staleness (unlike out-of-bounds access) is not a mechanically defined property;

it refers on developer intent.

6
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Sequential-write heuristic

Definition (Qualifying): A buffer B is a qualifying buffer iff every write is either

to index 0 or to the successor of the last written position (LWP).

• Note that in addition to writing sequentially, the definition of qualifying allows

restarting at the beginning (index 0).

The sequential-write heuristic posits that the valid (non-stale) portion of a

qualifying array is from index 0 to the LWP.

" p a s s w o r d " : " h u n t e r 2 "

" s o r t " : " i d " } h u n t e r 2 "

After second HTTP request (from a different client):

LWP

After first HTTP request:

Stale data

7
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Runtime monitoring agent

• We’ve designed a runtime monitoring agent to detect stale reads, as

determined by a staleness heuristic.

• We focus on C and Java.

• Intercept primitive memory operations at runtime:

- allocations of buffers in memory

- writes to allocated buffers

- reads of allocated buffers

- deallocations of buffers

• We use the term “buffer” to refers to any array-like data structure, including

simple C arrays as well as the Java ByteBuffer class.

8
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Use in developing secure software

Our technique can be used as an aid in testing and fuzzing a program.

It can be used as a dynamic enforcement mechanism in production.

What about false positives (i.e., qualifying buffers with valid data beyond LWP)?

• First run the dynamic analysis on a representative set of ‘good’ traces,

recording the allocation site of buffers with flagged reads.

• The set of ‘good’ traces can come from a test suite, from logs of running it in

production, or otherwise exercising the program in a controlled manner.

• Adjust instrumentation to exclude allocation sites flagged on the ‘good’ traces.

9
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Data structures used in our analysis

We maintain metadata for every currently allocated buffer B:

• State(B) ∈ {Init, Qualified, Disqualified}.

• LWP(B) is the last written position of B.

The sequential-write heuristic posits that, if State(B) is Qualified, then:

• Every offset i where 0 ≤ i ≤ LWP(B) holds valid (non-stale) data.

• Every offset i where LWP(B) < i < len(B) holds stale or uninitialized data.

10
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Algorithm

11
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Java implementation

The Java implementation of this dynamic analysis has two components:

• a Java agent plugin, which modifies Java class files to insert callbacks, and

• a runtime, which provides implementations of the inserted callbacks.

We focused on java.nio.ByteBuffer. However, the technique applies to any array-

like classes as well as native Java arrays.

The ByteBuffer class implements an array-like data structure:

• Data is inserted with put methods and retrieved with get methods.

We instrumented the put methods to update the LWP and qualification state.

We instrumented the get methods to flag beyond-LWP reads if qualifying.

Our metadata for each buffer (i.e., its state and its last written position) is

maintained in a dictionary data structure within the Runtime class, keyed off a

unique identifier associated with each ByteBuffer instance.

12
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Java bytecode rewriting

13
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Running the Java analysis

• To run the analysis on a Java program, the JVM is invoked with the

“-javaagent” argument, and the agent JAR file passed as an argument.

• The agent plugin runs before the application is launched. The first thing it

does is add our runtime JAR to the bootstrap class loader.

• Next, the desired bytecode modifications are performed.

• Finally, the Java application is launched.

• No source code modifications to the original Java application are required.

14
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

C implementation

The C implementation of the dynamic analysis has two principal components:

• a set of compiler instrumentations, added with a slightly modified

AddressSanitizer pass in the Clang compiler; and

• a runtime agent that intercepts allocations, reads, and write.

The runtime is built on top of Intel Pin, a dynamic binary instrumentation tool.

We are concerned with 3 types of allocation: stack, heap (“dynamic”), global.

15
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Compiler instrumentation

Here we see the instrumentation code

(highlighted in gray) added during

compilation.

Heap allocations do not receive any

special instrumentation during

compilation; neither do reads or writes.

Instead, we use Intel Pin to dynamically

instrument the binary executable to

handle those cases.

16
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

C implementation (2)

Why use dynamic instrumentation instead of doing it all during compilation?

• The deciding factor was that AddressSanitizer can miss some reads/writes,

for example if they occur in a non-instrumented third-party library, or if they

occur within inline assembly.

• To avoid this possibility, we decided to use Pin to capture reads and writes.

We wanted to get as close to the ground truth as possible, and Pin lets us to

that better.

When an allocation is detected, a record holding the state of the allocation is

inserted into a balanced binary search tree.

• The records in this tree are sorted by the starting address of the allocation.

• When the program performs a read or write, our instrumentation finds the

allocation record in the tree with the starting address closest to the read/write

address, without exceeding it. This is a O(log n) operation, where n is the

number of allocations currently tracked.

17
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Adjustments to C analysis

Some implementations of the memcpy function write data starting from the end of

the destination array and ending at the start.

• As a workaround, we treat memcpy as a special case: we treat it as a single

monolithic read followed by a single monolithic write.

Some buffers in OpenSSL are sequentially written except for a small header.

• We relax the constraint that new generations of data must begin at offset 0,

and instead allow new generations to begin in the range [0, ε], where ε is

some small user-defined constant (we used ε=4).

Definition (ε-qualifying): A buffer B is an ε-qualifying buffer iff every write is

either to an index i where 0 ≤ i ≤ ε or to the successor of the last written position

(LWP).

18
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Results

19
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Unpatched Jetty

Using JetLeak testing script provided by Gotham Digital Science:

20
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Jetty with Runtime Bounds Enforcement

21
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Heartbleed

We constructed a standalone test application using version 1.0.1a of the OpenSSL library,

which is susceptible to Heartbleed. This application allows the user to send customized

heartbeat messages to a local OpenSSL server.

The client can control the length of the heartbeat payload (L_actual), as well as the value

of payload length field in the request (L_user). The Heartbleed bug is triggered by setting

L_user to a value larger than L_actual.

We first confirmed that Heartbleed exhibits reads of stale data within the bounds of an

array, in addition to out-of-bounds reads.

We fixed the value of L_actual to some small integer, and fed increasingly large values of

L_user. We did not receive an out-of-bounds access error from AddressSanitizer until

L_user exceeded 17725. This bound was observed when we varied the value of L_actual

as well.

These observations suggest that when L_actual < L_user <= 17725, the server will leak

stale or uninitialized bytes from the in-bound portion of the shared buffer.

22
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Heartbleed log

23
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

GNU Core Utilities

We ran the tool on the GNU Coreutils using the test suite included in the

coreutils repository. (This codebase consists of 80,000 lines of source code,

plus another 486,000 lines from included libraries.)

Running the test suite produced a total of 34,000 traces (executions).

In the table, row 1 shows the number of allocation sites that are disqualified (D),

qualified (Q), and flagged (F) on at least one trace.

24
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Results on GNU Coreutils

25
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Conclusion and future work (1/2)

Our current implementation uses a combination of compile-time instrumentation

and dynamic binary instrumentation. This has the advantage of catching all

memory accesses, even those in code that were not instrumented at compile-

time.

However, it has disadvantages: (1) it is unsuitable for deployment in production

use, and (2) it does not play nice with white-box fuzzing tools. In the future we

plan to perform all instrumentation as part of compilation. Then we would be

able to use white-box fuzzing tools such as AFL [15] to attempt to find inputs that

trigger flagged reads. There would still be some manual analysis necessary to

determine whether the flagged read is a true positive or a false positive.

26
Detecting Leaks Of Sensitive

Data Due To Stale Reads

[Distribution Statement A]

Approved for public release

and unlimited distribution.

Conclusion and future work (2/2): fuzzing and beyond

The manual effort can be minimized by employing a slight variation on existing

fuzzing techniques. Given the original codebase C, we create a variation C0 that

zeroes out any data that the staleness heuristic posits to be stale. We then use

fuzzing techniques to try to find an input vector that not only triggers a flagged

read but also causes C0 to produce different output than C. In that way, manual

code inspection can be avoided if the judgment of true/false positive can be

made simply on the basis of which of the two outputs (those of C and C0) is

correct for the input vector.

Our ultimate goal with this work is to develop techniques for repairing code.

There are two directions we are considering to get closer to this goal: developing

more efficient runtime detection mechanisms, or developing techniques for

directly repairing the source code.

