
SCALING CONTEXTUAL PRIVACY TO MOBILE DEVICE
MANAGER (MDM) ENVIRONMENTS

INTERNATIONAL COMPUTER SCIENCE INSTITUTE (ICSI)

OCTOBER 2019

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2019-204

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2019-204 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
FRANCES A. ROSE BRIAN C. ROMANO
Work Unit Manager Acting Technical Advisor

 Computing & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCTOBER 2019
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAY 2018 – MAY 2019
4. TITLE AND SUBTITLE

SCALING CONTEXTUAL PRIVACY TO MOBILE DEVICE MANAGER
(MDM) ENVIRONMENTS

5a. CONTRACT NUMBER
FA8750-18-2-0096

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Serge Egelman and Nathan Good

5d. PROJECT NUMBER
DHS0

5e. TASK NUMBER
IP

5f. WORK UNIT NUMBER
AA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
International Computer Science Institute (ICSI)
1947 Center Street, Suite 600
Berkeley, CA 94127

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-204
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Examining the privacy/security of mobile apps either involves performing static or dynamic analysis. Static analysis
involves parsing program code to detect risks. It has the advantage of being rapid, as no code is run, but has the
disadvantage of being inaccurate—often yielding false positives—because it evaluates what a program could do, and not
what it actually does. Dynamic analysis involves running programs with instrumentation to monitor their behaviors, which
yields no false positives, but has heretofore not scaled. This contract supported the research and development of
AppCensus, which is a scalable automatic dynamic analysis pipeline. AppCensus uses a testbed of instrumented phones
running a bespoke version of Android to monitor the privacy and security behaviors of mobile apps. It detects what files,
commands, and sensitive user data is accessed by a given app, as well as whether it is transmitted off of the device—
and to whom—regardless of whether or not encryption is used (e.g., TLS). Apps can be queued for testing via website or
API, and the results can be viewed online or downloaded as reports, and the API could provide privacy and security
intelligence to existing MDM solutions. AppCensus is now a commercially-viable SaaS product.
15. SUBJECT TERMS

Privacy, smartphones, BYOD, usability, dynamic analysis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
FRANCES A. ROSE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

43

i

Table of Contents

1 Summary 1

2 Introduction 2

3 Methods, Assumptions and Procedures 4
3.1 Architecture 5

Workers Layer 6
AppCensus Core Layer 7
Endpoints Layer 7

3.2 Studying Permission Circumvention 8

4 Results and Discussion 9
4.1 App Test Dashboard 9

Log in to the AppBot Dashboard 9
Run a New Test 10
Review Scheduled Tests 11
View the Results of a Test 12

4.2 Studying Permission Circumvention 13

5 Conclusions 15

6 Acknowledgments 16

7 References 17

A 50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the
Android Permissions System 18

List of Symbols, Abbreviations and Acronyms 38

Glossary of Terminology 38

ii

List of Figures

Figure 1: Dynamic analysis pipeline at the heart of AppCensus. 3
Figure 2: Our public website (https://search.appcensus.io) that allows consumers to

research the privacy behaviors of free apps. Apps are automatically
downloaded from the Google Play Store, tested on our testbed, and then the
results are shown here. ... 4

Figure 3: Overview of AppCensus architecture. ... 5
Figure 4: The AppBot main dashboard splash page. ... 9
Figure 5: Select "Run New Test" from the menu. ... 10
Figure 6: Enter the package name of a new app to be tested. 10
Figure 7: Screen to review scheduled app tests. .. 11
Figure 8: App test status detail page. ... 12
Figure 9: The results of an app test. ... 13

Approved for Public Release; Distribution Unlimited.
1

1 Summary

In this project, we build on prior research that our laboratory has performed to
better understand how mobile apps access, use, and share personal information
stored on smartphones. In that prior research, we modified the Android platform
to include instrumentation to monitor if and when mobile apps access system
resources that are governed by permission-protected APIs. In this project, in
conjunction with a bespoke network monitoring tool, we used this instrumentation
to construct a testbed to automatically perform dynamic analysis on unmodified
mobile apps. The goal of this project is to use this infrastructure to monitor apps’
privacy and/or security behaviors, so that unmodified client devices can benefit
from this intelligence. That is, apps can be automatically tested in the testbed, and
then the results can be disseminated to feed MDM systems, in order to enforce
organizational policies that govern BYOD devices.

Finally, we transitioned this technology to practice by commercializing it through
a new company, AppCensus, that was spun off from the International Computer
Science Institute (ICSI). In this report, we document the technology, in terms of
its design and practical uses, as well as our successful technology transfer efforts.
AppCensus is now a successful startup with customers ranging from enterprises
to regulators and watchdog groups. We detail the services that we have developed
and now commercially offer based on this research.

Approved for Public Release; Distribution Unlimited.
2

2 Introduction
The current privacy framework in place in the U.S. is based on a notion of “notice and
consent”: companies post privacy policies, and by using their services, users
implicitly consent to their terms. Decades of privacy research have shown us that this
model is simply unworkable because policies are rarely noticed, read, and understood.
Even if a privacy policy is read by an individual capable of understanding it, it is
unlikely to shed light on privacy practices because it is designed to be ambiguous.
Policies are couched in terms like “may” and “might,” which describe “examples” of
data that may be collected, and as a result, consumers are left with few concrete
statements that definitively describe what will happen to their data, and more
importantly, what choices they may have over those practices [4]. This problem is
especially concerning with regard to third-party applications running on mobile
platforms, because these platforms offer access to rich sensor data.

Because mobile devices are carried with users wherever they go, this allows
companies to track users in the physical world, linking their online behaviors with
their offline behaviors. As a result, consumers have very little insight into these
privacy-concerning behaviors and cannot make informed choices about their personal
data. Worse, policy administrators for government and industrial networks cannot
adequately evaluate the risks posed by particular mobile apps. This makes it nearly
impossible for them to make informed decisions about MDM policies to govern the
use of BYOD devices on the networks that they manage.

Over the past several years, our research team has developed infrastructure that gives
us an unprecedented view into the privacy behaviors of Android apps [6]. AppCensus
is our dynamic analysis testbed that combines bespoke instrumentation within the
operating system itself with sophisticated network analysis tools, allowing us to detect
exactly when applications attempt to access sensitive user data and then monitor with
whom it is shared. As a case study last year, we used this infrastructure to examine
children’s apps’ compliance with the Children’s Online Privacy Protection Act
(COPPA) and found that a majority of applications in the Google Play Store appear to
be violating this federal law [3]. The publication of that research led to several
enforcement actions brought by regulators [5], as well as several class action lawsuits
against app developers and advertisers [1]. Based on industry and government interest
stemming from these public uses of our technology, we decided to commercialize it.

Our system exposes APIs for testing new apps from the Google Play Store to observe
their privacy and security behaviors, as well as for querying our results database to
view the behaviors of apps that have already been tested. When apps are tested, they
are installed on Android smartphones running our custom operating system, which

Approved for Public Release; Distribution Unlimited.
3

monitors the types of sensitive data that those apps access and use. Through the use of
user-space network monitoring tools that are able to view each app’s traffic,
regardless of whether or not encryption is used (e.g., TLS), we are able to see if and
when that data is transmitted to third parties. Each app is “played” for a finite period
of time while the aforementioned instrumentation monitors it. Upon completion, logs
are extracted from the smartphone and then parsed to detect:

• Permissions that were requested
• Permissions that were used
• Sensitive data types transmitted over the Internet
• Bundled SDKs
• Files opened
• Commands executed

This entire process is depicted in Figure 1. Currently, our results are being made
available via a website, as well as PDF reports that are sold to customers. However,
we soon expect to offer direct API access, which could be used to automatically
create new rules for MDM client software. Thus, system administrators could create
rules based on apps’ observed behaviors, rather than simply basing them on their
declared permissions, which as we will show, can be circumvented.

Figure 1: Dynamic analysis pipeline at the heart of AppCensus.

As a proof of concept, we applied our tools towards detecting side and covert
channels in tens of thousands of Android apps used by billions of people. We
demonstrated how our dynamic analysis pipeline can automatically identify apps that
inappropriately access personal data, and presented this research at the 2019 USENIX
Security Symposium [2], for which we received the Distinguished Paper Award.

Approved for Public Release; Distribution Unlimited.
4

3 Methods, Assumptions and Procedures

Previously, we modified Android’s permission system to monitor how apps access
protected resources in real-time: sensitive resources include contact lists, SMS
messages, call logs, audio/video captures, and geolocation data [6]. Our
instrumentation records every app’s access to these resources, as well as the
circumstances surrounding the access, such as if the application was under active use
at the time. By building this capability into the Android platform itself, we are able to
perform detailed dynamic analysis of privileged accesses on any Android app as-is;
no preprocessing or modification of the application is required for evaluation under
our instrumentation [7].

Over the past year, we developed this instrumentation into a testbed for performing
dynamic analysis and data exfiltration detection at scale. These capabilities give us an
in-depth view as to how frequently sensitive data is accessed, under what
circumstances, and where it goes when it leaves the device. The design of our testbed
is as follows (Figure 1): we take a mobile application binary (i.e., Android APK) as
input, automatically execute it in an environment that is monitored by our
instrumentation, perform a broad exploration of code branches via a combination of
simulated user input—though will soon support crowdsourced real user input—and
then generate reports of relevant app security and privacy behaviors as output.

Figure 2: Our public website (https://search.appcensus.io) that allows consumers to research the privacy
behaviors of free apps. Apps are automatically downloaded from the Google Play Store, tested on our testbed,
and then the results are shown here.

https://search.appcensus.io/

Approved for Public Release; Distribution Unlimited.
5

The results of this automated and reproducible analysis are then structured in a
database and made available to the public via our website (Figure 2),1 and soon a
public API.

We initially showed how this instrumentation could be used to detect privacy
violations at scale, specifically those governed by the Children's Online Privacy
Protection Act (COPPA) [3]. For instance, upon performing dynamic analysis of
around 6,000 Android applications listed in the “Designed for Families” area of the
Google Play Store (i.e., directed at children and therefore subject to COPPA), we
observed potential COPPA violations in over half of them. Based on these findings
and the ensuing public demand for our tools, we shifted focus to pursue this transition
opportunity, and created AppCensus, Inc. In the remainder of this section, we
describe the infrastructure’s architecture in detail, as well as the methodology for an
experiment that made use of the infrastructure to detect circumvention of the Android
permission system.

3.1 Architecture
The architecture is composed of three layers, which are represented in vertical layers
in Figure 3, with the services on the right-most column of the diagram.

Figure 3: Overview of AppCensus architecture.

1 https://search.appcensus.io/

https://search.appcensus.io/

Approved for Public Release; Distribution Unlimited.
6

These layers are (from left to right in the figure):
• Workers: downloaders, testers, and parsers
• AppCensus Core: job scheduler, database/file stores, and internal API
• Endpoints: web dashboard and external API

Workers Layer
The Worker layer is comprised by a set of workers independent from each other that
communicate directly with the AppCensus Core layer to receive new jobs to be
processed and submit the results of completed jobs. There are three different types of
workers for the three different phases necessary for running a full test of a mobile
app: downloading the app, testing the app, and parsing the logs of the test.

The download phase consists of downloading the app code (APK) along with some
information about the app. This additional metadata includes information about the
version, developer, privacy notices, and some additional Google Play Store-specific
information (such as the category this app is listed under). Once obtained, the
metadata is relayed to the AppCensus Core layer and stored in a relational database,
while the APK code is stored in a file system store within the Core layer. Once the
Core layer has obtained a successful download, it will schedule a test for the
downloaded app.

The tester phase will obtain the APK from the Core layer, install it on a physical
phone running a provisioned and sandboxed version of Android, and run the app for
an allotted time, during which random interactions are submitted to this app to
simulate human usage. Once the test has finished running, the complete logs
(including network traffic and system calls) are sent to the Core layer. Once the Core
layer has obtained a successful test, it will schedule a parse job to analyze the test
logs and extract the results.

The log parse phase obtains the test logs and performs a series of analysis on them,
scanning through network traffic and system calls. The final results showing any data
leakage are then submitted back to the Core layer where the parsed versions are
stored in the Core’s relational database and the raw version in the file store. Once the
Core layer has obtained a successful log parse job it will notify the users via email
with a direct link to the test results page.

The Worker layer is distributed across different machines; however, at the time of
writing, the production workers are all on-premise. Both the download and the log
parser workers can be fully deployed in the cloud, while the app tester workers need a
physical phone, and therefore are tied to physical servers. The code and infrastructure
have been highly modularized (and “Dockerized”) and, in the case of the download
and parse workers, it is horizontally scalable with simple configuration changes.

Approved for Public Release; Distribution Unlimited.
7

For scaling the app tester, phone provisioning (flashing the phones and installing our
instrumented Android operating system) is necessary to be done manually in a one-
off-per-device process that takes an engineer around 10 minutes to go from out-of-
the-box phone to a functioning app test worker state. The app tester worker has also
been containerized using Docker, which allows for seamless re-deployment in any
other physical server that has available instrumented Android phones connected to it.

AppCensus Core Layer
The Core layer contains all the persistent storage, as well as the key pieces of
business logic, the job scheduler and the necessary services to maintain
communication and consistency with the workers, and an internal API.

The Core layer is fully deployed in the cloud, using AWS infrastructure as a cloud
provider. The non-storage services are fully Dockerized for seamless redeployment
on other machines. For storage, AppCensus Core relies on AWS’s storage services:
RDS (for the relational database) and S3 (for the file store). The Core layer also uses
a relational database, MySQL on an RDS instance, for storing structured information,
such as the app and version information, users, tests requested, job status, and the
parsed results. Storage of less-structured data, such as logs, semi-parsed data blobs,
APKs, app icons, and other assets, is performed on an S3 bucket on AWS.

The job scheduler maintains several queues (one per worker type), to which workers
subscribe independently when available to process jobs. Additional services for
maintaining consistency, reliability across the system, and transparent failures have
been added to the job scheduler.

An internal API endpoint exists as an endpoint for accessing the relational database,
so that workers can read and write data to it in a secure and distributed manner. The
internal API also abstracts away the specifications of the database, and provides
easier management of the overall system. A similar abstraction (yet simpler) has been
added as a middleman to the S3 buckets.

Endpoints Layer
The Endpoints layer provides user access to the AppCensus services. There are two
main endpoints: a web dashboard (named AppBot) and a RESTful API to
programmatically obtain results for multiple tests grouped into a collection of apps.

The web dashboard, AppBot, is the main endpoint for logged-in AppCensus users.
The dashboard is deployed in a Docker container on an AWS compute instance, for
seamless scalability and redeployment. For a walkthrough of the dashboard, refer to
the Appendix provided in this document.

Approved for Public Release; Distribution Unlimited.
8

The API, currently under construction, is tied to the dashboard and it provides less
granular functionality so that users can obtain results to several tests without having
to query the database (through the internal API) directly. This also allows us to add
an authentication layer, similar to the user login process, with which users can be
restricted to specific resources (like admin-only resource management) or limited in
the number of requests that they can make.

3.2 Studying Permission Circumvention
As a proof of concept, we employed this infrastructure towards detecting exploitation
of the Android permissions system [2]. By automatically testing hundreds of
thousands of apps, we built a robust dataset that can be used to study mobile app
behavior generally. We queried our dataset for instances of apps that we observed
transmitting sensitive data that they otherwise did not have permission to access. For
instance, in several cases, we observed fine-grained GPS coordinates being
transmitted by apps that lacked any of the relevant Android location permissions. This
indicated that apps were somehow getting this data outside of the permissions system.
When we detected an app doing this, based on the data automatically collected by our
testbed, we then flagged that app for manual analysis.

Manual analysis consisted of decompiling the app to its bytecode, and then examining
it to determine how the permission-protected data was accessed outside of the
permissions system. More often than not, the exploit code was located within a third-
party SDK, rather than the core app code. This means that once we identified the
exploit, we could fingerprint it, and then automatically detect its presence in the
remainder of our dataset. Through this procedure, we were able to detect tens of
thousands of apps used by billions of people that were exploiting these vulnerabilities
(detailed in Section 4). We later reported those vulnerabilities to Google, who fixed
them in the most recent (as of this writing) version of Android.

Approved for Public Release; Distribution Unlimited.
9

4 Results and Discussion

In this section, we describe the completed system. We follow that with the results of
our study in which we used this infrastructure to detect apps’ circumvention of the
Android permissions system at scale.

4.1 App Test Dashboard
AppCensus provides two types of services: on-demand app testing (performed
through a web dashboard) and generating reports for companies interested in the
privacy behaviors apps that have already been tested. Both of these services rely on
the same underlying core technology, which is described in the Architecture section
of this document (Section 3.1).

The web dashboard, named AppBot and accessible at appbot.appcensus.io, allows
AppCensus users to log into their personal dashboard from which they are able to
schedule new tests. They are able to test any apps that are publicly available through
the Google Play Store, review the status of previously-scheduled tests, and view the
results of tests that have been completed.

Log in to the AppBot Dashboard
The AppBot dashboard is only accessible for users with an AppCensus account. The
splash page in Figure 4 is shown to a user after they log in.

Figure 4: The AppBot main dashboard splash page.

https://appbot.appcensus.io/

Approved for Public Release; Distribution Unlimited.
10

Run a New Test
Click on the “Run New Test” on the navigation menu on the left (Figure 5).

Figure 5: Select "Run New Test" from the menu.

Type in the App package name in the field and click “Schedule Test!” (Figure 6).2

Figure 6: Enter the package name of a new app to be tested.

2 The package name can be obtained by looking at the Google Play Store URL for a specific app. For
example, the Google Play Store URL for the Candy Crush Saga app is:
https://play.google.com/store/apps/details?id=com.king.candycrushsaga from which we can obtain the
package name: com.king.candycrushsaga.

https://play.google.com/store/apps/details?id=com.king.candycrushsaga

Approved for Public Release; Distribution Unlimited.
11

Review Scheduled Tests
Automatically after scheduling a test, the dashboard will redirect the user to the
scheduled tests review page, shown below (Figure 7). This page is also accessible by
clicking the “Review Tests” item on the navigation menu on the left.

Figure 7: Screen to review scheduled app tests.

This page contains an entry for each of the user’s scheduled app tests. The user can
click on the test number to navigate to the app test status detail page (from which the
user will be able to navigate to the results of the test, when completed).

Approved for Public Release; Distribution Unlimited.
12

Figure 8: App test status detail page.

The page listing the details of an app test (Figure 8) has some basic information on
the app being tested, along with the status of each of the phases; in this screenshot, we
can see that the first phase (“Download App”) has finished successfully.

Once the test has completed all the phases successfully, the “View Results” button
(seen in the screenshot) will appear between the app information and the test status
information section.

View the Results of a Test
The “View Results” button navigates the user to the page shown below (Figure 9).
This page allows the user to view the data flows the app generated during the test in
which personal and phone identifiers were sent to different domains. The table will
show the user what information was sent, to what domain, and whether the
transmission was secured over TLS or not.

Approved for Public Release; Distribution Unlimited.
13

Figure 9: The results of an app test.

4.2 Studying Permission Circumvention
As a proof of concept, we made use of our infrastructure by running hundreds of
thousands of apps in an instrumented environment. This testing environment included
mechanisms to monitor apps’ runtime behaviors and network traffic. We looked for evidence
of side and covert channels being used in practice by searching for sensitive data being sent
over the network for which the sending app did not have permissions to access it. We then
reverse engineer the apps and third-party libraries responsible for this behavior to determine
how the unauthorized access occurred. We also used software fingerprinting methods to
measure the static prevalence of the technique that we discovered among other apps in our
corpus. Overall, we observed the following [2]:

• We tested our pipeline on more than 88,000 apps and discovered a number of
vulnerabilities, which we responsibly disclosed. These apps were downloaded
from the U.S. Google Play Store and include popular apps from all categories.
We further measured the degree to which they are in active use, and thus pose
a threat to users. We discovered covert and side channels used in the wild that
compromise both users’ location data and persistent identifiers.

• We discovered companies obtaining the MAC addresses of the connected WiFi
base stations from the ARP cache. This can be used as a surrogate for location
data. We found 5 apps exploiting this vulnerability and 5 with the pertinent code

Approved for Public Release; Distribution Unlimited.
14

to do so.
• We discovered Unity obtaining the device MAC address using ioctl system

calls. The MAC address can be used to uniquely identify the device. We found
42 apps exploiting this vulnerability and 12,408 apps with the pertinent code to
do so.

• We also discovered that third-party libraries provided by two Chinese
companies—Baidu and Salmonads—independently make use of the SD card as
a covert channel, so that when an app can read the phone’s IMEI, it stores it for
other apps that cannot. We found 159 apps with the potential to exploit this
covert channel and empirically found 13 apps doing so.

• We found one app that used picture metadata as a side channel to access precise
location information despite not holding location permissions.

The peer-reviewed publication is attached as Appendix A.

Approved for Public Release; Distribution Unlimited.
15

5 Conclusions

AppCensus has developed a service for analyzing and reviewing privacy data-
leakages on mobile apps. Similar to efforts for Android malware detection,
AppCensus performs static analysis of the app’s APK, as well as dynamic testing in a
sandboxed environment. Network traffic, additional libraries and services (SDKs)
used, and permissions requested and used are among the main activities controlled
and monitored by AppCensus during the analysis of the app.

In this report, we also described how we recently used this infrastructure to detect
exploited privacy vulnerabilities in tens of thousands of Android apps. We disclosed
our findings to Google, who announced fixes in Android Q. Our research paper
describing this work received the Distinguished Paper Award at the 2019 USENIX
Security Symposium [2]. We have now successfully commercialized our tools
through AppCensus, Inc., which offers on-demand testing of mobile apps, as well as
access to app behavior intelligence. Through this effort, we have made our
infrastructure available to enterprise customers, government, and watchdog groups.

Approved for Public Release; Distribution Unlimited.
16

6 Acknowledgments

This work is a collective effort involving members of ICSI’s Usable Security and
Privacy Group, the Berkeley Laboratory for Usable and Experimental Security
(BLUES) and Good Research: PI Serge Egelman, Irwin Reyes, Joel Reardon,
Primal Wijesekera, Will Monge, Jennifer Chen, and Nathan Good. We would like
to thank Program Manager Anil John, along with Ryan Triplett and Frances Rose
for their guidance and support.

Approved for Public Release; Distribution Unlimited.
17

7 References

1. Dani Deahl. Disney Sued for Allegedly Spying on Children Through 42 Gaming Apps.

The Verge, August 9, 2017. Retrieved from https://www.theverge.com/2017/
8/9/16115352/disney-sued-spying-children-gaming-apps-disney-princess-palace-pets

2. Joel Reardon, Alvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 50 Ways to Leak Your Data: An Exploration of Apps’
Circumvention of the Android Permissions System. In Proceedings of the 24th
USENIX Security Symposium. USENIX Assoc., Berkeley, CA, USA. 2019.

3. Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas
Razaghpanah, Narseo Vallina-Rodriguez, and Serge Egelman. “Won’t Somebody
Think of the Children?” Examining COPPA Compliance at Scale. In Proceedings on
Privacy Enhancing Technologies (PoPETS), 2018(3):63–83.

4. Joseph Turow (2003). Americans and Online Privacy: The System is Broken.
Annenberg Public Policy Center of the University of Pennsylvania, Retrieved
from https://repository.upenn.edu/asc_papers/526

5. Jennifer Valentino-DeVries, Natasha Singer, Aaron Krolik, and Michael H. Keller.
How Game Apps That Captivate Kids Have Been Collecting Their Data. The New
York Times, September 12, 2018. Retrieved from https://www.nytimes.com/
interactive/2018/09/12/technology/kids-apps-data-privacy-google-twitter.html

6. Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wagner,
and Konstantin Beznosov. Android Permissions Remystified: A Field Study on
Contextual Integrity. In 24th USENIX Security Symposium (USENIX Security 15) (pp.
499-514), 2015.

7. Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman, David
Wagner, and Konstantin Beznosov. The Feasibility of Dynamically Granted
Permissions: Aligning Mobile Privacy with User Preferences. In Proceedings of the
2017 IEEE Symposium on Security and Privacy (Oakland ’17), 2017.

8. Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathan
Good, David Wagner, Konstantin Beznosov, and Serge Egelman. Contextualizing
Privacy Decisions for Better Prediction (and Protection). In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’18), 2018.

https://www.theverge.com/2017/%208/9/16115352/disney-sued-spying-children-gaming-apps-disney-princess-palace-pets
https://www.theverge.com/2017/%208/9/16115352/disney-sued-spying-children-gaming-apps-disney-princess-palace-pets
https://repository.upenn.edu/asc_papers/526
https://www.nytimes.com/%20interactive/2018/09/12/technology/kids-apps-data-privacy-google-twitter.html
https://www.nytimes.com/%20interactive/2018/09/12/technology/kids-apps-data-privacy-google-twitter.html

Approved for Public Release; Distribution Unlimited.
18

A 50 Ways to Leak Your Data: An Exploration of Apps’
Circumvention of the Android Permissions System

Approved for Public Release; Distribution Unlimited.
19

50 Ways to Leak Your Data:
An Exploration of Apps’ Circumvention of the Android Permissions System

Joel Reardon
University of Calgary

AppCensus, Inc.

Amit Elazari Bar On
U.C. Berkeley

Álvaro Feal
IMDEA Networks Institute

Universidad Carlos III de Madrid

Narseo Vallina-Rodriguez
IMDEA Networks Institute / ICSI

AppCensus, Inc.

Primal Wijesekera
U.C. Berkeley / ICSI

Serge Egelman
U.C. Berkeley / ICSI

AppCensus, Inc.

Abstract
Modern smartphone platforms implement permission-based
models to protect access to sensitive data and system re-
sources. However, apps can circumvent the permission model
and gain access to protected data without user consent by us-
ing both covert and side channels. Side channels present in
the implementation of the permission system allow apps to
access protected data and system resources without permis-
sion; whereas covert channels enable communication between
two colluding apps so that one app can share its permission-
protected data with another app lacking those permissions.
Both pose threats to user privacy.

In this work, we make use of our infrastructure that runs
hundreds of thousands of apps in an instrumented environ-
ment. This testing environment includes mechanisms to mon-
itor apps’ runtime behaviour and network traffic. We look for
evidence of side and covert channels being used in practice
by searching for sensitive data being sent over the network
for which the sending app did not have permissions to access
it. We then reverse engineer the apps and third-party libraries
responsible for this behaviour to determine how the unautho-
rized access occurred. We also use software fingerprinting
methods to measure the static prevalence of the technique that
we discover among other apps in our corpus.

Using this testing environment and method, we uncovered a
number of side and covert channels in active use by hundreds
of popular apps and third-party SDKs to obtain unauthorized
access to both unique identifiers as well as geolocation data.
We have responsibly disclosed our findings to Google and
have received a bug bounty for our work.

1 Introduction

Smartphones are used as general-purpose computers and
therefore have access to a great deal of sensitive system re-
sources (e.g., sensors such as the camera, microphone, or
GPS), private data from the end user (e.g., user email or con-
tacts list), and various persistent identifiers (e.g., IMEI). It

is crucial to protect this information from unauthorized ac-
cess. Android, the most-popular mobile phone operating sys-
tem [75], implements a permission-based system to regulate
access to these sensitive resources by third-party applications.
In this model, app developers must explicitly request permis-
sion to access sensitive resources in their Android Manifest
file [5]. This model is supposed to give users control in decid-
ing which apps can access which resources and information;
in practice it does not address the issue completely [30, 86].

The Android operating system sandboxes user-space apps
to prevent them from interacting arbitrarily with other run-
ning apps. Android implements isolation by assigning each
app a separate user ID and further mandatory access controls
are implemented using SELinux. Each running process of an
app can be either code from the app itself or from SDK li-
braries embedded within the app; these SDKs can come from
Android (e.g., official Android support libraries) or from third-
party providers. App developers integrate third-party libraries
in their software for things like crash reporting, development
support, analytics services, social-network integration, and ad-
vertising [16, 62]. By design, any third-party service bundled
in an Android app inherits access to all permission-protected
resources that the user grants to the app. In other words, if an
app can access the user’s location, then all third-party services
embedded in that app can as well.

In practice, security mechanisms can often be circum-
vented; side channels and covert channels are two common
techniques to circumvent a security mechanism. These chan-
nels occur when there is an alternate means to access the pro-
tected resource that is not audited by the security mechanism,
thus leaving the resource unprotected. A side channel exposes
a path to a resource that is outside the security mechanism;
this can be because of a flaw in the design of the security
mechanism or a flaw in the implementation of the design. A
classic example of a side channel is that power usage of hard-
ware when performing cryptographic operations can leak the
particulars of a secret key [42]. As an example in the phys-
ical world, the frequency of pizza deliveries to government
buildings may leak information about political crises [69].

Approved for Public Release; Distribution Unlimited.
20

A covert channel is a more deliberate and intentional effort
between two cooperating entities so that one with access to
some data provides it to the other entity without access to the
data in violation of the security mechanism [43]. As an
example, someone could execute an algorithm that alternates
between high and low CPU load to pass a binary message to
another party observing the CPU load.

The research community has previously explored the po-
tential for covert channels in Android using local sockets and
shared storage [49], as well as other unorthodox means, such
as vibrations and accelerometer data to send and receive data
between two coordinated apps [3]. Examples of side chan-
nels include using device sensors to infer the gender of the
user [51] or uniquely identify the user [72]. More recently,
researchers demonstrated a new permission-less device fin-
gerprinting technique that allows tracking Android and iOS
devices across the Internet by using factory-set sensor cali-
bration details [90]. However, there has been little research in
detecting and measuring at scale the prevalence of covert and
side channels in apps that are available in the Google Play
Store. Only isolated instances of malicious apps or libraries
inferring users’ locations from WiFi access points were re-
ported, a side channel that was abused in practice and resulted
in about a million dollar fine by regulators [82].

In fact, most of the existing literature is focused on under-
standing personal data collection using the system-supported
access control mechanisms (i.e., Android permissions). With
increased regulatory attention to data privacy and issues sur-
rounding user consent, we believe it is imperative to under-
stand the effectiveness (and limitations) of the permission
system and whether it is being circumvented as a preliminary
step towards implementing effective defenses.

To this end, we extend the state of the art by developing
methods to detect actual circumvention of the Android per-
mission system, at scale in real apps by using a combination
of dynamic and static analysis. We automatically executed
over 88,000 Android apps in a heavily instrumented environ-
ment with capabilities to monitor apps’ behaviours at the sys-
tem and network level, including a TLS man-in-the-middle
proxy. In short, we ran apps to see when permission-protected
data was transmitted by the device, and scanned the apps to
see which ones should not have been able to access the trans-
mitted data due to a lack of granted permissions. We grouped
our findings by where on the Internet what data type was sent,
as this allows us to attribute the observations to the actual app
developer or embedded third-party libraries. We then reverse
engineered the responsible component to determine exactly
how the data was accessed. Finally, we statically analyzed
our entire dataset to measure the prevalence of the channel.
We focus on a subset of the dangerous permissions that pre-
vent apps from accessing location data and identifiers. Instead
of imagining new channels, our work focuses on tracing ev-
idence that suggests that side- and covert-channel abuse is
occurring in practice.

We studied more than 88,000 apps across each category
from the U.S. Google Play Store. We found a number of side
and covert channels in active use, responsibly disclosed our
findings to Google and the U.S. Federal Trade Commission
(FTC), and received a bug bounty for our efforts.

In summary, the contributions of this work include:

We designed a pipeline for automatically discovering vul-
nerabilities in the Android permissions system through
a combination of dynamic and static analysis, in effect
creating a scalable honeypot environment.
We tested our pipeline on more than 88,000 apps and
discovered a number of vulnerabilities, which we respon-
sibly disclosed. These apps were downloaded from the
U.S. Google Play Store and include popular apps from
all categories. We further describe the vulnerabilities in
detail, and measure the degree to which they are in ac-
tive use, and thus pose a threat to users. We discovered
covert and side channels used in the wild that compro-
mise both users’ location data and persistent identifiers.
We discovered companies getting the MAC addresses of
the connected WiFi base stations from the ARP cache.
This can be used as a surrogate for location data. We
found 5 apps exploiting this vulnerability and 5 with the
pertinent code to do so.
We discovered Unity obtaining the device MAC address
using ioctl system calls. The MAC address can be used
to uniquely identify the device. We found 42 apps
exploiting this vulnerability and 12,408 apps with the
pertinent code to do so.
We also discovered that third-party libraries provided by
two Chinese companies—Baidu and Salmonads—
independently make use of the SD card as a covert chan-
nel, so that when an app can read the phone’s IMEI, it
stores it for other apps that cannot. We found 159 apps
with the potential to exploit this covert channel and em-
pirically found 13 apps doing so.
We found one app that used picture metadata as a side
channel to access precise location information despite
not holding location permissions.

These deceptive practices allow developers to access users’

private data without consent, undermining user privacy and
giving rise to both legal and ethical concerns. Data protec-
tion legislation around the world—including the General Data
Protection Regulation (GDPR) in Europe, the California Con-
sumer Privacy Act (CCPA) and consumer protection laws,
such as the Federal Trade Commission Act—enforce trans-
parency on the data collection, processing, and sharing prac-
tices of mobile applications.

This paper is organized as follows: Section 2 gives more
background information on the concepts discussed in the in-
troduction. Section 3 describes our system to discover vul-
nerabilities in detail. Section 4 provides the results from our

Approved for Public Release; Distribution Unlimited.
21

study, including the side and covert channels we discovered
and their prevalence in practice. Section 5 describes related
work. Section 6 discusses their potential legal implications.
Section 7 discusses limitations to our approach and concludes
with future work.

2 Background
The Android permissions system has evolved over the years
from an ask-on-install approach to an ask-on-first-use ap-
proach. While this change impacts when permissions are
granted and how users can use contextual information to rea-
son about the appropriateness of a permission request, the
backend enforcement mechanisms have remained largely un-
changed. We look at how the design and implementation of
the permission model has been exploited by apps to bypass
these protections.

2.1 Android Permissions
Android’s permissions system is based on the security prin-
ciple of least privilege. That is, an entity should only have the
minimum capabilities it needs to perform its task. This
standard design principle for security implies that if an app
acts maliciously, the damage will be limited. Developers must
declare the permissions that their apps need beforehand, and
the user is given an opportunity to review them and decide
whether to install the app. The Android platform, however,
does not judge whether the set of requested permissions are
all strictly necessary for the app to function. Developers are
free to request more permissions than they actually need and
users are expected to judge if they are reasonable.

The Android permission model has two important aspects:
obtaining user consent before an app is able to access any of
its requested permission-protected resources, and then ensur-
ing that the app cannot access resources for which the user
has not granted consent. There is a long line of work uncov-
ering issues on how the permission model interacts with the
user: users are inadequately informed about why apps need
permissions at installation time, users misunderstand exactly
what the purpose of different permissions are, and users lack
context and transparency into how apps will ultimately use
their granted permissions [24, 30, 78, 86]. While all of these
are critical issues that need attention, the focus of our work is
to understand how apps are circumventing system checks to
verify that apps have been granted various permissions.

When an app requests a permission-protected resource, the
resource manager (e.g., LocationManager, WiFiManager,
etc.) contacts the ActivityServiceManager, which is the
reference monitor in Android. The resource request originates
from the sandboxed app, and the final verification happens
inside the Android platform code. The platform is a Java oper-
ating system that runs in system space and acts as an interface
for a customized Linux kernel, though apps can interact with

the kernel directly as well. For some permission-protected
resources, such as network sockets, the reference monitor is
the kernel, and the request for such resources bypasses the
platform framework and directly contacts the kernel. Our
work discusses how real-world apps circumvent these system
checks placed in the kernel and the platform layers.

The Android permissions system serves an important pur-
pose: to protect users’ privacy and sensitive system resources
from deceptive, malicious, and abusive actors. At the very
least, if a user denies an app a permission, then that app should
not be able to access data protected by that permission [24,81].
In practice, this is not always the case.

2.2 Circumvention
Apps can circumvent the Android permission model in differ-
ent ways [3,17,49,51,52,54,70,72,74]. The use of covert and
side channels, however, is particularly troublesome as their
usage indicates deceptive practices that might mislead even
diligent users, while underscoring a security vulnerability in
the operating system. In fact, the United State’s Federal Trade
Commission (FTC) has fined mobile developers and third-
party libraries for exploiting side channels: using the MAC ad-
dress of the WiFi access point to infer the user’s location [82].
Figure 1 illustrates the difference between covert and side
channels and shows how an app that is denied permission by
a security mechanism is able to still access that information.

Covert Channel A covert channel is a communication path
between two parties (e.g., two mobile apps) that allows them
to transfer information that the relevant security enforcement
mechanism deems the recipient unauthorized to receive [18].
For example, imagine that AliceApp has been granted permis-
sion through the Android API to access the phone’s IMEI (a
persistent identifier), but BobApp has been denied access to
that same data. A covert channel is created when AliceApp
legitimately reads the IMEI and then gives it to BobApp,
even though BobApp has already been denied access to this
same data when requesting it through the proper permission-
protected Android APIs.

In the case of Android, different covert channels have been
proposed to enable communication between apps. This in-
cludes exotic mediums such as ultrasonic audio beacons and
vibrations [17, 26]. Apps can also communicate using an ex-
ternal network server to exchange information when no other
opportunity exists. Our work, however, exposes that rudimen-
tary covert channels, such as shared storage, are being used
in practice at scale.

Side Channel A side channel is a communication path that
allows a party to obtain privileged information without rel-
evant permission checks occurring. This can be due to non-
conventional unprivileged functions or features, as well as er-
satz versions of the same information being available without

Approved for Public Release; Distribution Unlimited.
22

(a) covert channel

(b) side channel

Figure 1: Covert and side channels. (a) A security mechanism
allows app1 access to resources but denies app2 access; this is
circumvented by app2 using app1 as a facade to obtain access
over a communication channel not monitored by the security
mechanism. (b) A security mechanism denies app1 access to
resources; this is circumvented by accessing the resources
through a side channel that bypasses the security mechanism.

being protected by the same permission. A classical example
of a side channel attack is the timing attack to exfiltrate an
encryption key from secure storage [42]. The system under
attack is an algorithm that performs computation with the key
and unintentionally leaks timing information—i.e., how long
it runs—that reveals critical information about the key.

Side channels are typically an unintentional consequence of
a complicated system. (“Backdoors” are intentionally-created
side channels that are meant to be obscure.) In Android, a
large and complicated API results in the same data appear-
ing in different locations, each governed by different access
control mechanisms. When one API is protected with permis-
sions, another unprotected method may be used to obtain the
same data or an ersatz version of it.

2.3 App Analysis Methods
Researchers use two primary techniques to analyze app be-
haviour: static and dynamic analysis. In short, static analysis
studies software as data by reading it; dynamic analysis stud-
ies software as code by running it. Both approaches have the

goal of understanding the software’s ultimate behaviour, but
they offer insights with different certainty and granularity:
static analysis reports instances of hypothetical behaviour;
dynamic analysis gives reports of observed behaviour.

Static Analysis Static analysis involves scanning the code
for all possible combinations of execution flows to understand
potential execution behaviours—the behaviours of interest
may include various privacy violations (e.g., access to sen-
sitive user data). Several studies have used static analysis to
analyze different types of software in search of malicious be-
haviours and privacy leaks [4, 9–11, 19–22, 32, 37, 39, 41, 45,
92]. However, static analysis does not produce actual observa-
tions of privacy violations; it can only suggest that a violation
may happen if a given part of the code gets executed at run-
time. This means that static analysis provides an upper bound
on hypothetical behaviours (i.e., yielding false positives).

The biggest advantage of static analysis is that it is easy to
perform automatically and at scale. Developers, however,
have options to evade detection by static analysis because a
program’s runtime behaviour can differ enormously from its
superficial appearance. For example, they can use code obfus-
cation [23, 29, 48] or alter the flow of the program to hide the
way that the software operates in reality [23, 29, 48]. Native
code in unmanaged languages allow pointer arithmetic that
can skip over parts of functions that guarantee pre-conditions.
Java’s reflection feature allows the execution of dynamically
created instructions and dynamically loaded code that simi-
larly evades static analysis. Recent studies have shown that
around 30% of apps render code dynamically [46], so static
analysis may be insufficient in those cases.

From an app analysis perspective, static analysis lacks the
contextual aspect, i.e., it fails to observe the circumstances
surrounding each observation of sensitive resource access
and sharing, which is important in understanding when a
given privacy violation is likely to happen. For these reasons,
static analysis is useful, but is well complemented by dynamic
analysis to augment or confirm findings.

Dynamic analysis Dynamic analysis studies an executable
by running it and auditing its runtime behaviour. Typically,
dynamic analysis benefits from running the executable in a
controlled environment, such as an instrumented mobile OS
[27, 85], to gain observations of an app’s behaviour [16, 32,
46, 47, 50, 65, 66, 73, 85, 87–89].

There are several methods that can be used in dynamic
analysis, one example is taint analysis [27, 32] which can be
inefficient and prone to control flow attacks [68, 71]. A chal-
lenge to performing dynamic analysis is the logistical burden
of performing it at scale. Analyzing a single Android app in
isolation is straightforward, but scaling it to run automatically
for tens of thousands of apps is not. Scaling dynamic analysis
is facilitated with automated execution and creation of be-
havioural reports. This means that effective dynamic analysis

app 1 covert

security

a

security mechanism

side channel

deny
access

allow

access
deny
access

Approved for Public Release; Distribution Unlimited.
23

requires building an instrumentation framework for possible
behaviours of interest a priori and then engineering a system
to manage the endeavor.

Nevertheless, some apps are resistant to being audited when
run in virtual or privileged environments [12, 68]. This has
led to new auditing techniques that involve app execution on
real phones, such as by forwarding traffic through a VPN in
order to inspect network communications [44, 60, 63]. The
limitations of this approach are the use of techniques robust
to man-in-the-middle attacks [28, 31, 61] and scalability due
to the need to actually run apps with user input.

A tool to automatically execute apps on the Android plat-
form is the UI/Application Exerciser Monkey [6]. The Mon-
key is a UI fuzzer that generates synthetic user input, ensuring
that some interaction occurs with the app being automatically
tested. The Monkey has no context for its actions with the UI,
however, so some important code paths may not be executed
due to the random nature of its interactions with the app. As
a result, this gives a lower bound for possible app behaviours,
but unlike static analysis, it does not yield false positives.

Hybrid Analysis Static and dynamic analysis methods
complement each other. In fact, some types of analysis bene-
fit from a hybrid approach, in which combining both methods
can increase the coverage, scalability, or visibility of the anal-
yses. This is the case for malicious or deceptive apps that
actively try to defeat one individual method (e.g., by using ob-
fuscation or techniques to detect virtualized environments or
TLS interception). One approach would be to first carry out
dynamic analysis to triage potential suspicious cases, based
on collected observations, to be later examined thoroughly us-
ing static analysis. Another approach is to first carry out static
analysis to identify interesting code branches that can then be
instrumented for dynamic analysis to confirm the findings.

3 Testing Environment and Analysis

Pipeline

Our instrumentation and processing pipeline, depicted and
described in Figure 2, combines the advantages of both static
and dynamic analysis techniques to triage suspicious apps
and analyze their behaviours in depth. We used this testing
environment to find evidence of covert- and side-channel
usage in 252,864 versions of 88,113 different Android apps,
all of them downloaded from the U.S. Google Play Store
using a purpose-built Google Play scraper. We executed each
app version individually on a physical mobile phone equipped
with a customized operating system and network monitor.
This testbed allows us to observe apps’ runtime behaviours
both at the OS and network levels. We can observe how apps
request and access sensitive resources and their data sharing
practices. We also have a comprehensive data analysis tool to
de-obfuscate collected network data to uncover potential

deceptive practices.

Figure 2: Overview of our analysis pipeline. Apps are auto-
matically run and the transmissions of sensitive data are com-
pared to what would be allowed. Those suspected of using a

side or covert channel are manually reverse engineered.

Before running each app, we gather the permission-
protected identifiers and data. We then execute each app while
collecting all of its network traffic. We apply a suite of de-
codings to the traffic flows and search for the permission-
protected data in the decoded traffic. We record all transmis-
sions and later filter for those containing permission-protected
data sent by apps not holding the requisite permissions. We
hypothesize that these are due to the use of side and covert
channels; that is, we are not looking for these channels, but
rather looking for evidence of their use (i.e., transmissions of
protected data). Then, we group the suspect transmissions by
the data type sent and the destination where it was sent, be-
cause we found that the same data-destination pair reflects the
same underlying side or covert channel. We take one example
per group and manually reverse engineer it to determine how
the app gained permission-protected information without the
corresponding permission.

Finally, we fingerprint the apps and libraries found using
covert- and side-channels to identify the static presence of the
same code in other apps in our corpus. A fingerprint is any
string constant, such as specific filename or error message,
that can be used to statically analyze our corpus to determine
if the same technique exists in other apps that did not get
triggered during our dynamic analysis phase.

app
corpus

apps

reverse
 PII

sent
out

PII
allowed

cov.
set minus

side
chan.

Approved for Public Release; Distribution Unlimited.
24

3.1 App Collection
We wrote a Google Play Store scraper to download the most-
popular apps under each category. Because the popularity
distribution of apps is long tailed, our analysis of the 88,113
most-popular apps is likely to cover most of the apps that peo-
ple currently use. This includes 1,505 non-free apps we pur-
chased for another study [38]. We instrumented the scraper to
inspect the Google Play Store to obtain application executa-
bles (APK files) and their associated metadata (e.g., number
of installs, category, developer information, etc.).

As developers tend to update their Android software to add
new functionality or to patch bugs [64], these updates can also
be used to introduce new side and covert channels. Therefore,
it is important to examine different versions of the same app,
because they may exhibit different behaviours. In order to do
so, our scraper periodically checks if a new version of an
already downloaded app is available and downloads it. This
process allowed us to create a dataset consisting of 252,864
different versions of 88,113 Android apps.

3.2 Dynamic Analysis Environment
We implemented the dynamic testing environment described
in Figure 2, which consists of about a dozen Nexus 5X An-
droid phones running an instrumented version of the Android
Marshmallow platform.1 This purpose-built environment al-
lows us to comprehensively monitor the behaviour of each of
88,113 Android apps at the kernel, Android-framework, and
network traffic levels. We execute each app automatically us-
ing the Android Automator Monkey [6] to achieve scale by
eliminating any human intervention. We store the resulting
OS-execution logs and network traffic in a database for of-
fline analysis, which we discuss in Section 3.3. The dynamic
analysis is done by extending a platform that we have used in
previous work [66].

Platform-Level Instrumentation We built an instru-
mented version of the Android 6.0.1 platform (Marshmallow).
The instrumentation monitored resource accesses and logged
when apps were installed and executed. We ran apps one at a
time and uninstalled them afterwards. Regardless of the obfus-
cation techniques apps use to disrupt static analysis, no app
can avoid our instrumentation, since it executes in the system
space of the Android framework. In a sense, our environment
is a honeypot allowing apps to execute as their true selves.
For the purposes of preparing our bug reports to Google for
responsible disclosure of our findings, we retested our find-
ings on a stock Pixel 2 running Android Pie—the most-recent
version at the time—to demonstrate that they were still valid.

1While as of this writing Android Pie is the current release [35], Marsh-

mallow and older versions were used by a majority of users at the time that
we began data collection.

Kernel-Level Instrumentation We built and integrated a
custom Linux kernel into our testing environment to record
apps’ access to the file system. This module allowed us to
record every time an app opened a file for reading or writing
or unlinked a file. Because we instrumented the system calls
to open files, our instrumentation logged both regular files and
special files, such as device and interface files, and the proc/
filesystem, as a result of the “everything is a file” UNIX phi-
losophy. We also logged whenever an ioctl was issued to the
file system. Some of the side channels for bypassing permis-
sion checking in the Android platform may involve directly
accessing the kernel, and so kernel-level instrumentation pro-
vides clear evidence of these being used in practice.

We ignored the special device file /dev/ashmem (Android-
specific implementation of asynchronous shared memory for
inter-process communication) because it overwhelmed the
logs due to its frequent use. As Android assigns a separate
user (i.e., uid) to each app, we could accurately attribute the
access to such files to the responsible app.

Network-Level Monitoring We monitored all network
traffic, including TLS-secured flows, using a network moni-
toring tool developed for our previous research activities [63].
This network monitoring module leverages Android’s VPN
API to redirect all the device’s network traffic through a lo-
calhost service that inspects all network traffic, regardless of
the protocol used, through deep-packet inspection and in user-
space. It reconstructs the network streams and ascribes them
to the originating app by mapping the app owning the socket
to the UID as reported by the proc filesystem. Furthermore, it
also performs TLS interception by installing a root certificate
in the system trusted certificate store. This technique allows it
to decrypt TLS traffic unless the app performs advanced tech-
niques, such as certificate pinning, which can be identified by
monitoring TLS records and proxy exceptions [61].

Automatic App Execution Since our analysis framework is
based on dynamic analysis, apps must be executed so that our
instrumentation can monitor their behaviours. In order to
scale to hundreds of thousands of apps tested, we cannot rely
on real user interaction with each app being tested. As such,
we use Android’s UI/Application Exerciser Monkey, a tool
provided by Android’s development SDK to automate and
parallelize the execution of apps by simulating user inputs
(i.e., taps, swipes, etc.).

The Monkey injects a pseudo-random stream of simulated
user input events into the app, i.e., it is a UI fuzzer. We use the
Monkey to interact with each version of each app for a period
of ten minutes, during which the aforementioned tools log the
app’s execution as a result of the random UI events generated
by the Monkey. Apps are rerun if the operation fails during
execution. Each version of each app is run once in this manner;
our system also reruns apps if there is unused capacity.

Approved for Public Release; Distribution Unlimited.
25

After running the app, the kernel, platform, and network logs
are collected. The app is then uninstalled along with any other
app that may have been installed through the process of
automatic exploration. We do this with a white list of allowed
apps; all other apps are uninstalled. The logs are then cleared
and the device is ready to be used for the next test.

3.3 Personal Information in Network

Flows
Detecting whether an app has legitimately accessed a given

re- source is straightforward: we compare its runtime
behaviour with the permissions it had requested. Both users
and re- searchers assess apps’ privacy risks by examining their
re- quested permissions. This presents an incomplete picture,
however, because it only indicates what data an app might ac-
cess, and says nothing about with whom it may share it and
under what circumstances. The only way of answering these
questions is by inspecting the apps’ network traffic. However,
identifying personal information inside network transmissions
requires significant effort because apps and embedded third-
party SDKs often use different encodings and obfuscation
techniques to transmit data. Thus, it is a significant technical
challenge to be able to de-obfuscate all network traffic and
search it for personal information. This subsection discusses
how we tackle these challenges in detail.

Personal Information We define “personal information” as
any piece of data that could potentially identify a specific
individual and distinguish them from another. Online compa-
nies, such as mobile app developers and third-party advertis-
ing networks, want this type of information in order to track
users across devices, websites, and apps, as this allows them to
gather more insights about individual consumers and thus
generate more revenue via targeted advertisements. For this
reason, we are primarily interested in examining apps’ access to
the persistent identifiers that enable long-term tracking, as well
as their geolocation information.

We focus our study on detecting apps using covert and side
channels to access specific types of highly sensitive data, in-
cluding persistent identifiers and geolocation information. No-
tably, the unauthorized collection of geolocation information in
Android has been the subject of prior regulatory action [82].
Table 1 shows the different types of personal information that we
look for in network transmissions, what each can be used for,
the Android permission that protects it, and the subsec- tion in
this paper where we discuss findings that concern side and
covert channels for accessing that type of data.

Decoding Obfuscations In our previous work [66], we
found instances of apps and third-party libraries (SDKs) us-
ing obfuscation techniques to transmit personal information
over the network with varying degrees of sophistication. To
identify and report such cases, we automated the decoding of
a standard suite of standard HTTP encodings to identify

personal information encoded in network flows, such as gzip,
base64, and ASCII-encoded hexadecimal. Additionally, we
search for personal information directly, as well as the MD5,
SHA1, and SHA256 hashes of it.

After analyzing thousands of network traces, we still find
new techniques SDKs and apps use to obfuscate and encrypt
network transmissions. While we acknowledge their effort to
protect users’ data, the same techniques could be used to hide
deceptive practices. In such cases, we use a combination of
reverse engineering and static analysis to understand the
precise technique. We frequently found a further use of AES
encryption applied to the payload before sending it over the
network, often with hard-coded AES keys.

A few libraries followed best practices by generating ran-
dom AES session keys to encrypt the data and then encrypt
the session key with a hard-coded RSA public key, sending
both the encrypted data and encrypted session key together.
To de-cipher their network transmissions, we instrumented
the relevant Java libraries. We found two examples of third-
party SDKs “encrypting” their data by XOR-ing a keyword
over the data in a Viginère-style cipher. In one case, this was
in addition to both using standard encryption for the data and
using TLS in transmission. Other interesting approaches in-
cluded reversing the string after encoding it in base64 (which
we refer to as “46esab”), using base64 multiple times (base-
base6464), and using a permuted-alphabet version of base64
(sa4b6e). Each new discovery is added to our suite of decod-
ings and our entire dataset is then re-analyzed.

3.4 Finding Side and Covert Channels
Once we have examples of transmissions that suggest the
permission system was violated (i.e., data transmitted by an
app that had not been granted the requisite permissions to do
so), we then reverse engineer the app to determine how it
circumvented the permissions system. Finally, we use static
analysis to measure how prevalent this practice is among the
rest of our corpus.

Reverse Engineering After finding a set of apps exhibit- ing
behaviour consistent with the existence of side and covert
channels, we manually reverse engineered them. While the
reverse engineering process is time consuming and not easily
automated, it is necessary to determine how the app actually
obtained information outside of the permission system. Be-
cause many of the transmissions are caused by the same SDK
code, we only needed to reverse engineer each unique cir-
cumvention technique: not every app, but instead for a much
smaller number of unique SDKs. The destination endpoint for
the network traffic typically identifies the SDK responsible.

During the reverse engineering process, our first step was
to use apktool [7] to decompile and extract the smali bytecode
for each suspicious app. This allowed us to analyse and iden-
tify where any strings containing PII were created and from

Approved for Public Release; Distribution Unlimited.
26

Table 1: The types of personal information that we search for, the permissions protecting access to them, and the purpose for
which they are generally collected. We also report the subsection in this paper where we report side and covert channels for
accessing each type of data, if found, and the number of apps exploiting each. The dynamic column depicts the number of apps
that we directly observed inappropriately accessing personal information, whereas the static column depicts the number of apps
containing code that exploits the vulnerability (though we did not observe being executed during test runs).

Data Type Permission Purpose/Use Subsection No of Apps
Dynamic Static

No of SDKs
Dynamic Static

Channel Type
Covert Side

IMEI READ_PHONE_STATE Persistent ID 4.1 13 159 2 2 2 0
Device MAC ACCESS_NETWORK_STATE Persistent ID 4.2 42 12,408 1 1 0 1
Email GET_ACCOUNTS Persistent ID Not Found

Phone Number READ_PHONE_STATE Persistent ID Not Found

SIM ID READ_PHONE_STATE Persistent ID Not Found

Router MAC ACCESS_WIFI_STATE Location Data 4.3 5 355 2 10 0 2
Router SSID ACCESS_WIFI_STATE Location Data Not Found

GPS ACCESS_FINE_LOCATION Location Data 4.4 1 1 0 0 0 1

which data sources. For some particular apps and libraries,
our work also necessitated reverse engineering C++ code; we
used IdaPro [1] for that purpose.

The typical process was to search the code for strings cor-
responding to destinations for the network transmissions and
other aspects of the packets. This revealed where the data was
already in memory, and then static analysis of the code re-
vealed where that value first gets populated. As intentionally-
obfuscated code is more complicated to reverse engineer, we
also added logging statements for data and stack traces as new
bytecode throughout the decompiled app, recompiled it, and
ran it dynamically to get a sense of how it worked.

Measuring Prevalence The final step of our process was to
determine the prevalence of the particular side or covert
channel in practice. We used our reverse engineering analysis
to craft a unique fingerprint that identifies the presence of an
exploit in an embedded SDK, which is also robust against
false positives. For example, a fingerprint is a string constant
corresponding to a fixed encryption key used by one SDK, or
the specific error message produced by another SDK if the
operation fails.

We then decompiled all of the apps in our corpus and
searched for the string in the resulting files. Within smali
bytecode, we searched for the string in its entirety as a const-
string instruction. For shared objects libraries like Unity, we
use the strings command to output its printable strings. We
include the path and name of the file as matching criteria to
protect against false positives. The result is a set of all apps
that may also exploit the side or covert channel in practice
but for which our instrumentation did not flag for manual
investigation, e.g., because the app had been granted the
required permission, the Monkey did not explore that par-
ticular code branch, etc.

4 Results

In this section, we present our results grouped by the type of
permission that should be held to access the data; first we dis-
cuss covert and side channels enabling the access to persistent
user or device IDs (particularly the IMEI and the device MAC
address) and we conclude with channels used for accessing
users’ geolocation (e.g., through network infrastructure or
metadata present in multimedia content).

Our testing environment allowed us to identify five different
types of side and covert channels in use among the 88,113
different Android apps in our dataset. Table 1 summarizes our
findings and reports the number of apps and third-party SDKs
that we find exploiting these vulnerabilities in our dynamic
analysis and those in which our static analysis reveals code
that can exploit these channels. Note that this latter category—
those that can exploit these channels—were not seen as doing
so by our instrumentation; this may be due to the Automator
Monkey not triggering the code to exploit it or because the app
had the required permission and therefore the transmission
was not deemed suspicious.

4.1 IMEI
The International Mobile Equipment Identity (IMEI) is a nu-
merical value that identifies mobile phones uniquely. The
IMEI has many valid and legitimate operational uses to iden-
tify devices in a 3GPP network, including the detection and
blockage of stolen phones.

The IMEI is also useful to online services as a persistent
device identifier for tracking individual phones. The IMEI is a
powerful identifier as it takes extraordinary efforts to change
its value or even spoof it. In some jurisdictions, it is illegal
to change the IMEI [56]. Collection of the IMEI by third
parties facilitates tracking in cases where the owner tries to
protect their privacy by resetting other identifiers, such as the
advertising ID.

Approved for Public Release; Distribution Unlimited.
27

Android protects access to the phone’s IMEI with the
READ_PHONE_STATE permission. We identified two third-
party online services that use different covert channels to ac-
cess the IMEI when the app does not have the permission
required to access the IMEI.

Salmonads and External Storage Salmonads is a “third
party developers’ assistant platform in Greater China” that
offers analytics and monetization services to app develop- ers
[67]. We identified network flows to salmonads.com com- ing
from five mobile apps that contained the device’s IMEI,
despite the fact that the apps did not have permission to ac-
cess it.

We studied one of these apps and confirmed that it
contained the Salmonads SDK, and then studied the
workings of the SDK closer. Our analysis revealed that the
SDK exploits covert channels to read this informa- tion
from the following hidden file on the SD card:
/sdcard/.googlex9/.xamdecoq0962. If not present, this file
is created by the Salmonads SDK. Then, whenever the user
installs another app with the Salmonads SDK embedded and
with legitimate access to the IMEI, the SDK—through the
host app—reads and stores the IMEI in this file.

The covert channel is the apps’ shared access to the SD
card. Once the file is written, all other apps with the same
SDK can simply read the file instead of obtaining access
through the Android API, which is regulated by the permis-
sion system. Beyond the IMEI, Salmonads also stores the
advertising ID—a resettable ID for advertising and analytics
purposes that allows opting out of interest-based advertising
and personalization—and the phone’s MAC address, which
is protected with the ACCESS_NETWORK_STATE permission.
We modified the file to store new random values and observed
that the SDK faithfully sent them onwards to Salmonads’ do-
mains. The collection of the advertising ID alongside other
non-resettable persistent identifiers and data, such as the IMEI,
undermines the privacy-preserving feature of the advertising
ID, which is that it can be reset. It also may be a violation of
Google’s Terms of Service [36],

Our instrumentation allowed us to observe five different
apps sending the IMEI without permission to Salmonads
using this technique. Static analysis of our entire app corpus
revealed that six apps contained the .xamdecoq0962 filename
hardcoded in the SDK as a string. The sixth app had been
granted the required permission to access the IMEI, which is
why we did not initially identify it, and so it may be the app
responsible for having initially written the IMEI to the file.
Three of the apps were developed by the same company,
according to Google Play metadata, while one of them has
since been removed from Google Play. The lower bound on
the number of times these apps were installed is 17.6 million,
according to Google Play metadata.

Baidu and External Storage Baidu is a large Chinese cor-
poration whose services include, among many others, an on-
line search engine, advertising, mapping services [14], and
geocoding APIs [13]. We observed network flows contain-
ing the device IMEI from Disney’s Hong Kong Disneyland
park app (com.disney.hongkongdisneyland_goo) to Baidu do-
mains. This app helps tourists to navigate through the Disney-
themed park, and the app makes use of Baidu’s Maps SDK.
While Baidu Maps initially only offered maps of mainland
China, Hong Kong, Macau and Taiwan, as of 2019, it now
provides global services.

Baidu’s SDK uses the same technique as Salmonads to
circumvent Android’s permission system and access the
IMEI without permission. That is, it uses a shared file on
the SD card so one Baidu-containing app with the right
permission can store it for other Baidu-containing apps that
do not have that permission. Specifically, Baidu uses the
following file to store and share this data:
/sdcard/backups/.SystemConfig/.cuid2. The file is a
base64-encoded string that, when decoded, is an AES-
encrypted JSON object that contains the IMEI as well as
the MD5 hash of the concatenation of “com.baidu” and the
phone’s Android ID.

Baidu uses AES in CBC mode with a static key
and the same static value for the initializa- tion
vector (IV). These values are, in hexadecimal,
33303231323130326469637564696162. The reason why
this value is not superficially representative of a ran-
dom hexadecimal string is because Baidu’s key is com-
puted from the binary representation of the ASCII string
30212102dicudiab—observe that when reversed, it reads
as baidu cid 2012 12 03. As with Salmonads, we con-
firmed that we can change the (encrypted) contents of this
file and the resulting identifiers were faithfully sent onwards
to Baidu’s servers.

We observed eight apps sending the IMEI of the device to
Baidu without holding the requisite permissions, but found
153 different apps in our repository that have hardcoded the
constant string corresponding to the encryption key. This in-
cludes two from Disney: one app each for their Hong Kong
and Shanghai (com.disney.shanghaidisneyland_goo) theme
parks. Out of that 153, the two most popular apps were
Samsung’s Health (com.sec.android.app.shealth) and Sam-
sung’s Browser (com.sec.android.app.sbrowser) apps, both
with more than 500 million installations. There is a lower
bound of 2.6 billion installations for the apps identified as
containing Baidu’s SDK. Of these 153 apps, all but 20 have
the READ_PHONE_STATE permission. This means that they
have legitimate access to the IMEI and can be the apps that
actually create the file that stores this data. The 20 that do not
have the permission can only get the IMEI through this covert
channel. These 20 apps have a total lower bound of 700
million installations.

Approved for Public Release; Distribution Unlimited.
28

4.2 Network MAC Addresses
The Media Access Control Address (MAC address) is a 6-byte
identifier that is uniquely assigned to the Network Interface
Controller (NIC) for establishing link-layer communications.
However, the MAC address is also useful to advertisers and
analytics companies as a hardware-based persistent identifier,
similar to the IMEI.

Android protects access to the device’s MAC address with
the ACCESS_NETWORK_STATE permission. Despite this, we
observed apps transmitting the device’s MAC address without
having permission to access it. The apps and SDKs gain
access to this information using C++ native code to invoke a
number of unguarded UNIX system calls.

Unity and IOCTLs Unity is a cross-platform game engine
developed by Unity Technologies and heavily used by An-
droid mobile games [77]. Our traffic analysis identified sev-
eral Unity-based games sending the MD5 hash of the MAC
address to Unity’s servers and referring to it as a uuid in the
transmission (e.g., as an HTTP GET parameter key name).
In this case, the access was happening inside of Unity’s C++
native library. We reverse engineered libunity.so to deter-
mine how it was obtaining the MAC address.

Reversing Unity’s 18 MiB compiled C++ library is more
involved than Android’s bytecode. Nevertheless, we were
able to isolate where the data was being processed precisely
because it hashes the MAC address with MD5. Unity provided
its own unlabelled MD5 implementation that we found by
searching for the constant numbers associated with MD5; in
this case, the initial state constants.

Unity opens a network socket and uses an ioctl (UNIX
“input-output control”) to obtain the MAC address of the WiFi
network interface. In effect, ioctls create a large suite of
“numbered” API calls that are technically no different than
well-named system calls like bind or close but used for in-
frequently used features. The behaviour of an ioctl depends
on the specific “request” number. Specifically, Unity uses the
SIOCGIFCONF2 ioctl to get the network interfaces, and then
uses the SIOCGIFHWADDR3 ioctl to get the corresponding
MAC address.

We observed that 42 apps were obtaining and sending to
Unity servers the MAC address of the network card with- out
holding the ACCESS_NETWORK_STATE permission. To
quantify the prevalence of this technique in our corpus of
Android apps, we fingerprinted this behaviour through an er-
ror string that references the ioctl code having just failed.
This allowed us to find a total of 12,408 apps containing this
error string, of which 748 apps do not hold the AC-
CESS_NETWORK_STATE permission.

2Socket ioctl get interface configuration
3Socket ioctl get interface hardware address

4.3 Router MAC Address
Access to the WiFi router MAC address (BSSID) is protected
by the ACCESS_WIFI_STATE permission. In Section 2, we
exemplified side channels with router MAC addresses being
ersatz location data, and discussed the FTC enacting millions
of dollars in fines for those engaged in the practice of using
this data to deceptively infer users’ locations. Android Nougat
added a requirement that apps hold an additional location per-
mission to scan for nearby WiFi networks [34]; Android Oreo
further required a location permission to get the SSID and
MAC address of the connected WiFi network. Additionally,
knowing the MAC address of a router allows one to link dif-
ferent devices that share Internet access, which may reveal
personal relations by their respective owners, or enable cross-
device tracking.

Our analysis revealed two side channels to access the con-
nected WiFi router information: reading the ARP cache and
asking the router directly. We found no side channels that
allowed for scanning of other WiFi networks. Note that this
issue affects all apps running on recent Android versions, not
just those without the ACCESS_WIFI_STATE permission. This
is because it affects apps without a location permission, and
it affects apps with a location permission that the user has not
granted using the ask-on-first-use controls.

Reading the ARP Table The Address Resolution Proto- col
(ARP) is a network protocol that allows discovering and
mapping the MAC layer address associated with a given IP
address. To improve network performance, the ARP protocol
uses a cache that contains a historical list of ARP entries, i.e.,
a historical list of IP addresses resolved to MAC address, in-
cluding the IP address and the MAC address of the wireless
router to which the device is connected (i.e., its BSSID).

Reading the ARP cache is done by opening the pseudo file
/proc/net/arp and processing its content. This file is not
protected by any security mechanism, so any app can ac- cess
and parse it to gain access to router-based geolocation
information without holding a location permission. We built
a working proof-of-concept app and tested it for Android Pie
using an app that requests no permissions. We also demon-
strated that when running an app that requests both the AC-
CESS_WIFI_STATE and ACCESS_COARSE_LOCATION per-
missions, when those permissions are denied, the app will ac-
cess the data anyway. We responsibly disclosed our findings
to Google in September, 2018.

We discovered this technique during dynamic analysis,
when we observed one library using this method in prac- tice:
OpenX [57], a company that according to their web- site
“creates programmatic marketplaces where premium pub-
lishers and app developers can best monetize their content by
connecting with leading advertisers that value their au-
diences.” OpenX’s SDK code was not obfuscated and so we
observed that they had named the responsible function

Approved for Public Release; Distribution Unlimited.
29

Table 2: SDKs seen sending router MAC addresses and also containing code to access the ARP cache. For reference, we report
the number of apps and a lower bound of the total number of installations of those apps. We do this for all apps containing the
SDK; those apps that do not have ACCESS_WIFI_STATE, which means that the side channel circumvents the permissions system;
and those apps which do have a location permission, which means that the side channel circumvents location revocation.

Contact Incorporation Total Prevalance Wi-Fi Permission No Location Permission
SDK Name Domain Country (Apps) (Installs) (Apps) (Installs) (Apps) (Installs)

AIHelp cs30.net United States 30 334 million 3 210 million 12 195 million
Huq Industries huq.io United Kingdom 137 329 million 0 0 131 324 million
OpenX openx.net United States 42 1072 million 7 141 million 23 914 million
xiaomi xiaomi.com China 47 986 million 0 0 44 776 million
jiguang jpush.cn China 30 245 million 0 0 26 184 million
Peel peel-prod.com United States 5 306 million 0 0 4 206 million
Asurion mysoluto.com United States 14 2 million 0 0 14 2 million
Cheetah Mobile cmcm.com China 2 1001 million 0 0 2 1001 million
Mob mob.com China 13 97 million 0 0 6 81 million

getDeviceMacAddressFromArp. Furthermore, a close anal- ysis
of the code indicated that it would first try to get the data
legitimately using the permission-protected Android API; this
vulnerability is only used after the app has been explicitly de-
nied access to this data.

OpenX did not directly send the MAC address, but rather
the MD5 hash of it. Nevertheless, it is still trivial to compute

a MAC address from its corresponding hash: they are vul-
nerable to a brute-force attack on hash functions because of
the small number of MAC addresses (i.e., an upper bound of
48 bits of entropy).4 Moreover, insofar as the router’s MAC
address is used to resolve an app user’s geolocation using a
MAC-address-to-location mapping, one need only to hash the
MAC addresses in this mapping (or store the hashes in the ta-
ble) and match it to the received value to perform the lookup.

While OpenX was the only SDK that we observed ex-
ploiting this side channel, we searched our entire app cor-

pus for the string /proc/net/arp, and found multiple third-
party libraries that included it. In the case of one of them,

igexin, there are existing reports of their predatory be-
haviour [15]. In our case, log files indicated that after
igexin was denied permission to scan for WiFi, it read

/system/xbin/ip, ran /system/bin/ifconfig, and then ran
cat /proc/net/arp. Table 2 shows the prevalence of third-
party libraries with code to access the ARP cache.

Router UPnP One SDK in Table 2 includes another tech-
nique to get the MAC address of the WiFi access point: it uses
UPnP/SSDP discovery protocols. Three of Peel’s smart re-
mote control apps (tv.peel.samsung.app, tv.peel.smartremote,
and tv.peel.mobile.app) connected to 192.168.0.1, the IP
address of the router that was their gateway to the Internet.
The router in this configuration was a commodity home router
that supports universal plug-and-play; the app requested the
igd.xml (Internet gateway device configuration) file through

4Using commodity hardware, the MD5 for every possible MAC address

can be calculated in a matter of minutes [40].

port 1900 on the router. The router replied with, among other
manufacturing details, its MAC address as part of its UUID.
These apps also sent WiFi MAC addresses to their own servers
and a domain hosted by Amazon Web Services.

The fact that the router is providing this information to
devices hosted in the home network is not a flaw with Android
per se. Rather it is a consequence of considering every app on
every phone connected to a WiFi network to be on the trusted
side of the firewall.

4.4 Geolocation
So far our analysis has showed how apps circumvent the per-
mission system to gain access to persistent identifiers and data
that can be used to infer geolocation, but we also found sus-
picious behaviour surrounding a more sensitive data source,
i.e., the actual GPS coordinates of the device.

We identified 70 different apps sending location data to 45
different domains without having any of the location permis-
sions. Most of these location transmissions were not caused
by circumvention of the permissions system, however, but
rather the location data was provided within incoming pack-
ets: ad mediation services provided the location data embed-
ded within the ad link. When we retested the apps in a differ-
ent location, however, the returned location was no longer as
precise, and so we suspect that these ad mediators were us-
ing IP-based geolocation, though with a much higher degree
of precision than is normally expected. One app explicitly
used www.googleapis.com’s IP-based geolocation and we
found that the returned location was accurate to within a few
meters; again, however, this accuracy did not replicate when
we retested elsewhere [59]. We did, however, discover one
genuine side channel through photo EXIF data.

Shutterfly and EXIF Metadata We observed that the
Shutterfly app (com.shutterfly) sends precise geolocation data
to its own server (apcmobile.thislife.com) without hold-
ing a location permission. Instead, it sent photo metadata

http://www.googleapis.com/

Approved for Public Release; Distribution Unlimited.
30

from the photo library, which included the phone’s precise
location in its exchangeable image file format (EXIF) data.
The app actually processed the image file: it parsed the EXIF
metadata—including location—into a JSON object with la-
belled latitude and longitude fields and transmitted it to
their server.

While this app may not be intending to circumvent the
permission system, this technique can be exploited by a ma-
licious actor to gain access to the user’s location. When- ever
a new picture is taken by the user with geolocation en- abled,
any app with read access to the photo library (i.e.,
READ_EXTERNAL_STORAGE) can learn the user’s precise
location when said picture was taken. Furthermore, it also al-
lows obtaining historical geolocation fixes with timestamps
from the user, which could later be used to infer sensitive in-
formation about that user.

5 Related Work
We build on a vast literature in the field of covert- and side-
channel attacks for Android. However, while prior studies
generally only reported isolated instances of such attacks or
approached the problem from a theoretical angle, our work
combines static and dynamic analysis to automatically detect
real-world instances of misbehaviours and attacks.

Covert Channels Marforio et al. [49] proposed several sce-
narios to transmit data between two Android apps, including
the use of UNIX sockets and external storage as a shared
buffer. In our work we see that the shared storage is indeed
used in the wild. Other studies have focused on using mobile
noises [26, 70] and vibrations generated by the phone (which
could be inaudible to users) as covert channels [3, 17]. Such
attacks typically involve two physical devices communicating
between themselves. This is outside of the scope of our work,
as we focus on device vulnerabilities that are being exploited
by apps and third parties running in user space.

Side Channels Spreitzer et al. provided a good classifica-
tion of mobile-specific side-channels present in the litera-
ture [74]. Previous work has demonstrated how unprivileged
Android resources could be to used to infer personal infor-
mation about mobile users, including unique identifiers [72]
or gender [51]. Researchers also demonstrated that it may be
possible to identify users’ locations by monitoring the power
consumption of their phones [52] and by sensing publicly
available Android resources [91]. More recently, Zhang et al.
demonstrated a sensor calibration fingerprinting attack that
uses unprotected calibration data gathered from sensors like
the accelerometer, gyroscope, and magnetometer [90]. Oth-
ers have shown that unprotected system-wide information is
enough to infer input text in gesture-based keyboards [72].
Research papers have also reported techniques that leverage

lowly protected network information to geolocate users at the
network level [2, 54, 82]. We extend previous work by re-
porting third-party libraries and mobile applications that gain
access to unique identifiers and location information in the
wild by exploiting side and covert channels.

6 Discussion
Our work shows a number of side and covert channels that are
being used by apps to circumvent the Android permissions
system. The number of potential users impacted by these find-
ings is in the hundreds of millions. In this section, we discuss
how these issues are likely to defy users’ reasonable expecta-
tions, and how these behaviours may constitute violations of
various laws.

We note that these exploits may not necessarily be mali-
cious and intentional. The Shutterfly app that extracts geolo-
cation information from EXIF metadata may not be doing
this to learn location information about the user or may not be
using this data later for any purpose. On the other hand, cases
where an app contains both code to access the data through
the permission system and code that implements an evasion
do not easily admit an innocent explanation. Even less so for
those containing code to legitimately access the data and then
store it for others to access. This is particularly bad because
covert channels can be exploited by any app that knows the
protocol, not just ones sharing the same SDK. The fact that
Baidu writes user’s IMEI to publicly accessible storage al-
lows any app to access it without permission—not just other
Baidu-containing apps.

6.1 Privacy Expectations
In the U.S., privacy practices are governed by the “notice and
consent” framework: companies can give notice to consumers
about their privacy practices (often in the form of a privacy
policy), and consumers can consent to those practices by us-
ing the company’s services. While website privacy policies
are canonical examples of this framework in action, the per-
missions system in Android (or in any other platform) is an-
other example of the notice and consent framework, because
it fulfills two purposes: (i) providing transparency into the
sensitive resources to which apps request access (notice), and
(ii) requiring explicit user consent before an app can access,
collect, and share sensitive resources and data (consent). That
apps can and do circumvent the notice and consent framework
is further evidence of the framework’s failure. In practical
terms, though, these app behaviours may directly lead to pri-
vacy violations because they are likely to defy consumers’
expectations.

Nissenbaum’s “Privacy as Contextual Integrity” framework
defines privacy violations as data flows that defy contextual
information norms [55]. In Nissenbaum’s framework, data
flows are modeled by senders, recipients, data subjects, data

Approved for Public Release; Distribution Unlimited.
31

types, and transmission principles in specific contexts (e.g.,
providing app functionality, advertising, etc.). By circumvent-
ing the permissions system, apps are able to exfiltrate data to
their own servers and even third parties in ways that are likely
to defy users’ expectations (and societal norms), par- ticularly
if it occurs after having just denied an app’s explicit
permission request. That is, regardless of context, were a user
to explicitly be asked about granting an app access to per-
sonal information and then explicitly declining, it would be
reasonable to expect that the data then would not be accessi-
ble to the app. Thus, the behaviours that we document in this
paper constitute clear privacy violations. From a legal and
policy perspective, these practices are likely to be considered
deceptive or otherwise unlawful.

Both a recent CNIL decision (France’s data protection au-
thority), with respect to GDPR’s notice and consent require-
ments, and various FTC cases, with respect to unfair and de-
ceptive practices under U.S. federal law—both described in
the next section—emphasize the notice function of the An-
droid permissions system from a consumer expectations per-
spective. Moreover, these issues are also at the heart of a re-
cent complaint brought by the Los Angeles County Attorney
(LACA) under the California State Unfair Competition Law.
The LACA complaint was brought against a popular mobile
weather app on related grounds. The case further focuses on
the permissions system’s notice function, while noting that,
“users have no reason to seek [geolocation data collection]
information by combing through the app’s lengthy [privacy
policy], buried within which are opaque discussions of [the de-
veloper’s] potential transmission of geolocation data to third
parties and use for additional commercial purposes. Indeed,
on information and belief, the vast majority of users do not
read those sections at all” [76].

6.2 Legal and Policy Issues
The practices that we highlight in this paper also highlight
several legal and policy issues. In the United States, for ex-
ample, they may run afoul of the FTC’s prohibitions against
deceptive practices and/or state laws governing unfair busi-
ness practices. In the European Union, they may constitute
violations of the General Data Protection Regulation (GDPR).

The Federal Trade Commission (FTC), which is charged
with protecting consumer interests, has brought a number

of cases under Section 5 of the Federal Trade Commission
(FTC) Act [79] in this context. The underlying complaints
have stated that circumvention of Android permissions and
collection of information absent users’ consent or in a man-
ner that is misleading is an unfair and deceptive act [84]. One
case suggested that apps requesting permissions beyond what
users expect or what are needed to operate the service were
found to be “unreasonable” under the FTC Act. In another

to collect information without obtaining users’ permission via
the Android permission system, and failed to protect users
from potential third-party exploitation of a related security

flaw [81]. Finally, the FTC has pursued cases involving con-
sumer misrepresentations with respect to opt-out mechanisms
from tailored advertising in mobile apps more generally [83].

Also in the United States, state-level Unfair and Deceptive
Acts and Practices (UDAP) statutes may also apply. These
typically reflect and complement the corresponding federal
law. Finally, with growing regulatory and public attention

to issues pertaining to data privacy and security, data collec-
tion that undermines users’ expectations and their informed
consent may also be in violation of various general privacy
regulations, such as the Children’s Online Privacy Protection
Act (COPPA) [80], the recent California Privacy Protection
Act (CCPA), and potentially data breach notification laws that
focus on unauthorized collection, depending on the type of
personal information collected.

In Europe, these practices may be in violation of GDPR.
In a recent landmark ruling, the French data regulator, CNIL,
levied a 50 million Euro fine for a breach of GDPR’s trans-
parency requirements, underscoring informed consent require-
ments concerning data collection for personalized ads [25].
This ruling also suggests that—in the context of GDPR’s con-
sent and transparency provisions—permission requests serve
a key function of both informing users of data collection prac-
tices and as a mechanism for providing informed consent [81].

Our analysis brings to light novel permission circumven-
tion methods in actual use by otherwise legitimate Android

apps. These circumventions enable the collection of informa-
tion either without asking for consent or after the user has ex-
plicitly refused to provide consent, likely undermining users’

expectations and potentially violating key privacy and data
protection requirements on a state, federal, and even global

level. By uncovering these practices and making our data
public,5 we hope to provide sufficient data and tools for regu-
lators to bring enforcement actions, industry to identify and
fix problems before releasing apps, and allow consumers to
make informed decisions about the apps that they use.

7 Limitations and Future Work

During the course of performing this research, we made cer-
tain design decisions that may impact the comprehensiveness
and generalizability of this work. That is, all of the findings
in this paper represent lower bounds on the number of covert
and side channels that may exist in the wild.

Our study considers a subset of the permissions labeled by
Google as dangerous: those that control access to user iden-
tifiers and geolocation information. According to Android’s
documentation, this is indeed the most concerning and pri-
vacy intrusive set of permissions. However, there may be

case, the FTC pursued a complaint under Section 5 alleging
that a mobile device manufacturer, HTC, allowed developers 5https://search.appcensus.io/

https://search.appcensus.io/

Approved for Public Release; Distribution Unlimited.
32

other permissions that, while not labeled as dangerous, can
still give access to sensitive user data. One example is the
BLUETOOTH permission; it allows apps to discover nearby
Bluetooth-enabled devices, which may be useful for consumer
profiling, as well as physical and cross-device tracking. Addi-
tionally, we did not examine all of the dangerous permissions,
specifically data guarded by content providers, such as ad-
dress book contacts and SMS messages.

Our methods rely on observations of network transmissions
that suggest the existence of such channels, rather than search-
ing for them directly through static analysis. Because many
apps and third-party libraries use obfuscation techniques to
disguise their transmissions, there may be transmissions that
our instrumentation does not flag as containing permission-
protected information. Additionally, there may be channels
that are exploited, but during our testing the apps did not
transmit the accessed personal data. Furthermore, apps could
be exposing channels, but never abuse them during our tests.
Even though we would not report such behavior, this is still
an unexpected breach of Android’s security model.

Many popular apps also use certificate pinning [28, 61],
which results in them rejecting the custom certificate used by
our man-in-the-middle proxy; our system then allows apps to
continue without interference. Certificate pinning is rea-
sonable behaviour from a security standpoint; it is possible,
however, that it is being used to thwart attempts to analyse
and study the network traffic of a user’s mobile phone.

Our dynamic analysis uses the Android Exerciser Monkey
as a UI fuzzer to generate random UI events to interact with
the apps. While in our prior work we found that the Monkey
explored similar code branches as a human for 60% of the
apps tested [66], it is likely that it still fails to explore some
code branches that may exploit covert and side channels. For
example, the Monkey fails to interact with apps that require
users to interact with login screens or, more generally, require
specific inputs to proceed. Such apps are consequently not as
comprehensively tested as apps amenable to automated
exploration. Future work should compare our approaches to
more sophisticated tools for automated exploration, such as
Moran et al.’s Crashscope [53], which generates inputs to an
app designed to trigger crash events.

Ultimately, these limitations only result in the possibility
that there are side and covert channels that we have not yet
discovered (i.e., false negatives). It has no impact on the va-
lidity of the channels that we did uncover (i.e., there are no
false positives) and improvements on our methodology can
only result in the discovery of more of these channels.

Moving forward, there has to be a collective effort coming
from all stakeholders to prevent apps from circumventing the
permissions system. Google, to their credit, have announced
that they are addressing many of the issues that we reported to
them [33]. However, these fixes will only be available to users
able to upgrade to Android Q—those with the means to own a
newer smartphone. This, of course, positions privacy as a lux-

ury good, which is in conflict with Google’s public pronounce-
ments [58]. Instead, they should treat privacy vulnerabilities
with the same seriousness that they treat security vulnerabili-
ties and issue hotfixes to all supported Android versions.

Regulators and platform providers need better tools to mon-
itor app behaviour and hold app developers accountable by
ensuring apps comply with applicable laws, namely by pro-
tecting users’ privacy and respecting their data collection
choices. Society should support more mechanisms, techni-
cal and other, that empower users’ informed decision-making
with greater transparency into what apps are doing on their
devices. To this end, we have made the list of all apps that
exploit or contain code to exploit the side and covert channels
we discovered available online [8].

7.1 Acknowledgments
This work was supported by the U.S. National Security
Agency’s Science of Security program (contract H98230-18-
D-0006), the Department of Homeland Security (contract
FA8750-18-2-0096), the National Science Foundation (grants
CNS-1817248 and grant CNS-1564329), the Rose Founda-
tion, the European Union’s Horizon 2020 Innovation Action
program (grant Agreement No. 786741, SMOOTH Project),
the Data Transparency Lab, and the Center for Long-Term Cy-
bersecurity at U.C. Berkeley. The authors would like to thank
John Aycock, Irwin Reyes, Greg Hagen, René Mayrhofer,
Giles Hogben, and Refjohürs Lykkewe.

7.2 References
[1] IDA: About. Ida pro.

https://www.hex-rays.com/products/ida/.

[2] J. P. Achara, M. Cunche, V. Roca, and A. Francillon.
WifiLeaks: Underestimated privacy implications of the
access wifi state Android permission. Technical Report
EURECOM+4302, Eurecom, 05 2014.

[3] A. Al-Haiqi, M. Ismail, and R. Nordin. A new
sensors-based covert channel on android. The Scientific
World Journal, 2014, 2014.

[4] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta,
and A. M. Memon. MobiGUITAR: Automated
model-based testing of mobile apps. IEEE Software,
32(5):53–59, 2015.

[5] Android Documentation. App Manifest Overview.
https://developer.android.com/guide/topics/
manifest/manifest-intro, 2019. Accessed:
February 12, 2019.

[6] Android Studio. UI/Application Exerciser Monkey.
https://developer.android.com/studio/test/
monkey.html, 2017. Accessed: October 12, 2017.

https://www.hex-rays.com/products/ida/
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html

Approved for Public Release; Distribution Unlimited.
33

[7] Apktool. Apktool: A tool for reverse engineering
android apk files.
https://ibotpeaches.github.io/Apktool/.

[8] AppCensus Inc. Apps using Side and Covert Channels.
https://blog.appcensus.mobi/2019/06/01/
apps-using-side-and-covert-channels/, 2019.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps. In Proc. of PLDI, pages 259–269, 2014.

[10] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout:
analyzing the android permission specification. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 217–228. ACM,
2012.

[11] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller,
S. Arzt, S. Rasthofer, and E. Bodden. Mining apps for
abnormal usage of sensitive data. In Proceedings of the
37th International Conference on Software Engineering-
Volume 1, pages 426–436. IEEE Press, 2015.

[12] G. S. Babil, O. Mehani, R. Boreli, and M. A. Kaafar. On
the effectiveness of dynamic taint analysis for protecting
against private information leaks on android-based
devices. In 2013 International Conference on Security
and Cryptography (SECRYPT), pages 1–8, July 2013.

[13] Baidu. Baidu Geocoding API. https://geocoder.
readthedocs.io/providers/Baidu.html, 2019.
Accessed: February 12, 2019.

[14] Baidu. Baidu Maps SDK. http://lbsyun.baidu.
com/index.php?title=androidsdk, 2019.
Accessed: February 12, 2019.

[15] Bauer, A. and Hebeisen, C. Igexin advertising network
put user privacy at risk. https:
//blog.lookout.com/igexin-malicious-sdk,
2019. Accessed: February 12, 2019.

[16] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen,
J. Jung, S. Nath, R. Wang, and D. Wetherall.
Brahmastra: Driving Apps to Test the Security of
Third-Party Components. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 1021–1036,
San Diego, CA, 2014. USENIX Association.

[17] K. Block, S. Narain, and G. Noubir. An autonomic and
permissionless android covert channel. In Proceedings
of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pages 184–194. ACM,
2017.

[18] S. Cabuk, C. E. Brodley, and C. Shields. IP covert
channel detection. ACM Transactions on Information
and System Security (TISSEC), 12(4):22, 2009.

[19] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel,
G. Vigna, and Y. Chen. EdgeMiner: Automatically
Detecting Implicit Control Flow Transitions through
the Android Framework. In Proc. of NDSS, 2015.

[20] B. Chess and G. McGraw. Static analysis for security.
IEEE Security & Privacy, 2(6):76–79, 2004.

[21] M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns. Technical
report, Wisconsin Univ-Madison Dept of Computer
Sciences, 2006.

[22] M. Christodorescu, S. Jha, S. A Seshia, D. Song, and
R. E. Bryant. Semantics-aware malware detection. In
Security and Privacy, 2005 IEEE Symposium on, pages
32–46. IEEE, 2005.

[23] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti,
A. Zand, C. Kruegel, and G. Vigna.
Obfuscation-resilient privacy leak detection for mobile
apps through differential analysis. In Proceedings of
the ISOC Network and Distributed System Security
Symposium (NDSS), pages 1–16, 2017.

[24] Commission Nationale de l’Informatique et des
Libertés (CNIL). Data Protection Around the World.
https://www.cnil.fr/en/
data-protection-around-the-world, 2018.
Accessed: September 23, 2018.

[25] Commission Nationale de l’Informatique et des
Libertés (CNIL). The CNIL’s restricted committee
imposes a financial penalty of 50 Million euros against
Google LLC, 2019.

[26] Luke Deshotels. Inaudible sound as a covert channel in
mobile devices. In USENIX WOOT, 2014.

[27] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–6, Berkeley, CA,
USA, 2010. USENIX Association.

[28] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why eve and mallory love
android: An analysis of android ssl (in) security. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 50–61. ACM, 2012.

https://ibotpeaches.github.io/Apktool/
https://blog.appcensus.mobi/2019/06/01/apps-using-side-and-covert-channels/
https://blog.appcensus.mobi/2019/06/01/apps-using-side-and-covert-channels/
https://geocoder.readthedocs.io/providers/Baidu.html
https://geocoder.readthedocs.io/providers/Baidu.html
https://geocoder.readthedocs.io/providers/Baidu.html
http://lbsyun.baidu.com/index.php?title=androidsdk
http://lbsyun.baidu.com/index.php?title=androidsdk
http://lbsyun.baidu.com/index.php?title=androidsdk
https://blog.lookout.com/igexin-malicious-sdk
https://blog.lookout.com/igexin-malicious-sdk
https://www.cnil.fr/en/data-protection-around-the-world
https://www.cnil.fr/en/data-protection-around-the-world

Approved for Public Release; Distribution Unlimited.
34

[29] P. Faruki, A. Bharmal, V. Laxmi, M. S. Gaur, M. Conti,
and M. Rajarajan. Evaluation of android anti-malware
techniques against dalvik bytecode obfuscation. In
Trust, Security and Privacy in Computing and
Communications (TrustCom), 2014 IEEE 13th
International Conference on, pages 414–421. IEEE,
2014.

[30] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: user attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, page 3, New York, NY, USA, 2012. ACM.

[31] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The most dangerous code
in the world: validating ssl certificates in non-browser
software. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 38–
49. ACM, 2012.

[32] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: Automatically detecting potential
privacy leaks in android applications on a large scale.
In Proc. of the 5th Intl. Conf. on Trust and Trustworthy
Computing, TRUST’12, pages 291–307, Berlin,
Heidelberg, 2012. Springer-Verlag.

[33] Google, Inc. Android Q privacy: Changes to data and
identifiers. https:
//developer.android.com/preview/privacy/
data-identifiers#device-identifiers.
Accessed: June 1, 2019.

[34] Google, Inc. Wi-Fi Scanning Overview.
https://developer.android.com/guide/topics/
connectivity/wifi-scan#
wifi-scan-permissions. Accessed: June 1, 2019.

[35] Google, Inc. Distribution dashboard. https:
//developer.android.com/about/dashboards,
May 7 2019. Accessed: June 1, 2019.

[36] Google Play. Usage of Google Advertising ID.
https://play.google.com/about/
monetization-ads/ads/ad-id/, 2019. Accessed:
February 12, 2019.

[37] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham,
N. Nguyen, and M. C. Rinard. Information flow
analysis of android applications in droidsafe. In NDSS,
volume 15, page 110, 2015.

[38] C. Han, I. Reyes, A. Elazari Bar On, J. Reardon, Á. Feal,
S. Egelman, and N. Vallina-Rodriguez. Do You Get
What You Pay For? Comparing The Privacy Behaviors
of Free vs. Paid Apps. In Workshop on Technology and
Consumer Protection, ConPro ’19, 2019.

[39] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo.
Securing web application code by static analysis and
runtime protection. In Proceedings of the 13th
international conference on World Wide Web, pages
40–52. ACM, 2004.

[40] Jeremi M. Gosney. Nvidia GTX 1080 Hashcat
Benchmarks. https://gist.github.com/epixoip/
6ee29d5d626bd8dfe671a2d8f188b77b, 2016.
Accessed: June 1, 2019.

[41] J. Kim, Y. Yoon, K. Yi, J. Shin, and SWRD Center.
Scandal: Static analyzer for detecting privacy leaks in
android applications. MoST, 12, 2012.

[42] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Annual International Cryptology
Conference, pages 388–397. Springer, 1999.

[43] Butler W Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613–615, 1973.

[44] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka,
and A. Markopoulou. AntMonitor: A System for
Monitoring from Mobile Devices. In Workshop on
Crowdsourcing and Crowdsharing of Big (Internet)
Data, pages 15–20, 2015.

[45] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo.
Don’t kill my ads! Balancing Privacy in an
Ad-Supported Mobile Application Market. In Proc. of
ACM HotMobile, page 2, 2012.

[46] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,
Y. Fratantonio, V. van der Veen, and C. Platzer. Andrubis
- 1,000,000 Apps Later: A View on Current Android
Malware Behaviors. In badgers, pages 3–17, 2014.

[47] M. Liu, H. Wang, Y. Guo, and J. Hong. Identifying and
Analyzing the Privacy of Apps for Kids. In Proc. of
ACM HotMobile, 2016.

[48] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and
G. Giacinto. Stealth attacks: An extended insight into
the obfuscation effects on android malware. Computers
& Security, 51:16–31, 2015.

[49] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun.
Analysis of the communication between colluding
applications on modern smartphones. In Proceedings of
the 28th Annual Computer Security Applications
Conference, pages 51–60. ACM, 2012.

[50] E. McReynolds, S. Hubbard, T. Lau, A. Saraf,
M. Cakmak, and F. Roesner. Toys That Listen: A Study
of Parents, Children, and Internet-Connected Toys. In
Proc. of ACM CHI, 2017.

https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards
https://play.google.com/about/monetization-ads/ads/ad-id/
https://play.google.com/about/monetization-ads/ads/ad-id/
https://gist.github.com/epixoip/6ee29d5d626bd8dfe671a2d8f188b77b
https://gist.github.com/epixoip/6ee29d5d626bd8dfe671a2d8f188b77b
https://gist.github.com/epixoip/6ee29d5d626bd8dfe671a2d8f188b77b

Approved for Public Release; Distribution Unlimited.
35

[51] Y. Michalevsky, D. Boneh, and G. Nakibly. Gyrophone:
Recognizing speech from gyroscope signals. In
USENIX Security Symposium, pages 1053–1067, 2014.

[52] Y. Michalevsky, A. Schulman, G. A. Veerapandian,
D. Boneh, and G. Nakibly. Powerspy: Location
tracking using mobile device power analysis. In
USENIX Security Symposium, pages 785–800, 2015.

[53] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas,
C. Vendome, and D. Poshyvanyk. Crashscope: A
practical tool for automated testing of android
applications. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion
(ICSE-C), pages 15–18, May 2017.

[54] L. Nguyen, Y. Tian, S. Cho, W. Kwak, S. Parab, Y. Kim,
P. Tague, and J. Zhang. Unlocin: Unauthorized location
inference on smartphones without being caught. In
2013 International Conference on Privacy and Security
in Mobile Systems (PRISMS), pages 1–8. IEEE, 2013.

[55] Helen Nissenbaum. Privacy as contextual integrity.
Washington Law Review, 79:119, February 2004.

[56] United Kingdom of Great Britain and Northern Ireland.
Mobile telephones (re-programming) act.
http://www.legislation.gov.uk/ukpga/2002/
31/introduction, 2002.

[57] OpenX. Why we exist.
https://www.openx.com/company/, 2019.

[58] Sundar Pichai. Privacy Should Not Be a Luxury Good.
The New York Times, May 7 2019.
https://www.nytimes.com/2019/05/07/opinion/ google-
sundar-pichai-privacy.html.

[59] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and
B. Gueye. IP geolocation databases: Unreliable? ACM
SIGCOMM Computer Communication Review,
41(2):53–56, 2011.

[60] A. Rao, J. Sherry, A. Legout, A. Krishnamurthy,
W. Dabbous, and D. Choffnes. Meddle: middleboxes
for increased transparency and control of mobile traffic.
In Proceedings of the 2012 ACM conference on
CoNEXT student workshop, pages 65–66. ACM, 2012.

[61] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez,
S. Sundaresan, J. Amann, and P. Gill. Studying TLS
usage in Android apps. In Proceedings of the 13th
International Conference on emerging Networking
EXperiments and Technologies, pages 350–362. ACM,
2017.

[62] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez,
S. Sundaresan, M. Allman, C. Kreibich, and P. Gill.

Apps, Trackers, Privacy, and Regulators: A Global
Study of the Mobile Tracking Ecosystem. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2018.

[63] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan,
C. Kreibich, P. Gill, M. Allman, and V. Paxson.
Haystack: In Situ Mobile Traffic Analysis in User
Space. arXiv preprint arXiv:1510.01419, 2015.

[64] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes,
and N. Vallina-Rodriguez. Bug fixes, improvements,...
and privacy leaks. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

[65] J. Ren, A. Rao, M. Lindorfer, A. Legout, and
D. Choffnes. ReCon: Revealing and Controlling Privacy
Leaks in Mobile Network Traffic. In Proceedings of the
ACM SIGMOBILE MobiSys, pages 361–374, 2016.

[66] I. Reyes, P. Wijesekera, J. Reardon, A. Elazari Bar On,
A. Razaghpanah, N. Vallina-Rodriguez, and S. Egelman.
“Won’t Somebody Think of the Children?” Examining
COPPA Compliance at Scale. Proceedings on Privacy
Enhancing Technologies, 2018(3):63–83, 2018.

[67] Salmonads. About us. http://publisher.salmonads.com,
2016.

[68] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar. On
the effectiveness of dynamic taint analysis for
protecting against private information leaks on android-
based devices. In SECRYPT, volume 96435, 2013.

[69] Sarah Schafer. With capital in panic, pizza deliveries
soar. The Washington Post, December 19 1998. https:
//www.washingtonpost.com/wp-srv/politics/
special/clinton/stories/pizza121998.htm.

[70] R. Schlegel, K. Zhang, X. Zhou, M. Intwala,
A. Kapadia, and X. Wang. Soundcomber: A stealthy
and context-aware sound trojan for smartphones. In
NDSS, volume 11, pages 17–33, 2011.

[71] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you
ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid
to ask). In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP ’10, pages 317–331,
Washington, DC, USA, 2010. IEEE Computer Society.

[72] L. Simon, W. Xu, and R. Anderson. Don’t interrupt me
while i type: Inferring text entered through gesture
typing on android keyboards. Proceedings on Privacy
Enhancing Technologies, 2016(3):136–154, 2016.

[73] Y. Song and U. Hengartner. PrivacyGuard: A
VPN-based Platform to Detect Information Leakage on
Android Devices. In Proc. of ACM SPSM, 2015.

http://www.legislation.gov.uk/ukpga/2002/31/introduction
http://www.legislation.gov.uk/ukpga/2002/31/introduction
http://www.legislation.gov.uk/ukpga/2002/31/introduction
http://www.openx.com/company/
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
http://publisher.salmonads.com/
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm

Approved for Public Release; Distribution Unlimited.
36

[74] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard.

Systematic classification of side-channel attacks: a case
study for mobile devices. IEEE Communications
Surveys & Tutorials, 20(1):465–488, 2017.

[75] Statista. Global market share held by the leading
smartphone operating systems in sales to end users
from 1st quarter 2009 to 2nd quarter 2018.
https://www.statista.com/statistics/266136,
2019. Accessed: February 11, 2019.

[76] COUNTY OF LOS ANGELES SUPERIOR COURT
OF THE STATE OF CALIFORNIA. Complaint for
injunctive relief and civil penalties for violations of the
unfair competition law. http://src.bna.com/EqH,
2019.

[77] Unity Technologies. Unity 3d.
https://unity3d.com, 2019.

[78] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes,
S. Egelman, D. Wagner, N. Good, and J.W. Chen. Turtle

guard: Helping android users apply contextual privacy
preferences. In Thirteenth Symposium on Usable
Privacy and Security (SOUPS 2017), pages 145–162.
USENIX Association, 2017.

[79] U.S. Federal Trade Commission. The federal trade
commission act. (ftc act).
https://www.ftc.gov/enforcement/statutes/ federal-
trade-commission-act.

[80] U.S. Federal Trade Commission. Children’s online
privacy protection rule (“coppa”).
https://www.ftc.gov/enforcement/rules/
rulemaking-regulatory-reform-proceedings/
childrens-online-privacy-protection-rule,
November 1999.

[81] U.S. Federal Trade Commission. In the Matter of HTC
America, Inc.
https://www.ftc.gov/sites/default/files/
documents/cases/2013/07/130702htcdo.pdf,
2013.

[82] U.S. Federal Trade Commission. Mobile Advertising
Network InMobi Settles FTC Charges It Tracked
Hundreds of Millions of Consumers’ Locations
Without Permission. https:
//www.ftc.gov/news-events/press-releases/
2016/06/mobile-advertising-network
-inmobi-settles-ftc-charges-it-tracked , June
22 2016.

[83] U.S. Federal Trade Commission. In the Matter of Turn Inc.
https://www.ftc.gov/system/files/documents/
cases/152_3099_c4612_turn_complaint.pdf, 2017.
[84] U.S. Federal Trade Commission. Mobile
security updates: Understanding the issues.
https://www.ftc.
gov/system/files/documents/reports/
mobile-security-updates-understanding-issues/
mobile_security_updates_understanding_the_
issues_publication_final.pdf, 2018.

[85] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov. Android permissions
remystified: A field study on contextual integrity. In
24th USENIX Security Symposium (USENIX Security
15), pages 499–514, Washington, D.C., August 2015.
USENIX Association.

[86] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon,
S. Egelman, D. Wagner, and K. Beznosov. The
feasibility of dynamically granted permissions:
Aligning mobile privacy with user preferences. In
2017 IEEE Symposium on Security and Privacy (SP),
pages 1077–1093, May 2017.

[87] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning,

and X. S. Wang. Appintent: Analyzing sensitive data
transmission in android for privacy leakage detection.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages
1043–1054. ACM, 2013.

[88] B. Yankson, F. Iqbal, and P.C.K. Hung. Privacy

preservation framework for smart connected toys. In
Computing in Smart Toys, pages 149–164. Springer,
2017.

[89] S. Yong, D. Lindskog, R. Ruhl, and P. Zavarsky. Risk

Mitigation Strategies for Mobile Wi-Fi Robot Toys
from Online Pedophiles. In Proc. of IEEE SocialCom,
pages 1220–1223. IEEE, 2011.

[90] J. Zhang, A. R. Beresford, and I. Sheret. Sensorid:

Sensor calibration fingerprinting for smartphones. In
Proceedings of the 40th IEEE Symposium on Security
and Privacy (SP). IEEE, May 2019.

https://www.statista.com/statistics/266136
http://src.bna.com/EqH
https://unity3d.com/
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htcdo.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htcdo.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htcdo.pdf
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/system/files/documents/cases/152_3099_c4612_turn_complaint.pdf
https://www.ftc.gov/system/files/documents/cases/152_3099_c4612_turn_complaint.pdf
https://www.ftc.gov/system/files/documents/cases/152_3099_c4612_turn_complaint.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf

Approved for Public Release; Distribution Unlimited.
37

[91] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,
X. Wang, C. A. Gunter, and K. Nahrstedt.
Identity, location, disease and more: Inferring
your secrets from android public resources. In
Proc. of 2013 ACM SIGSAC conference on
Computer & Communications Security. ACM,
2013.

[92] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu,
F. Schaub, S. Wilson, N. Sadeh, S. M. Bellovin, and
J. Reidenberg. Automated analysis of privacy
requirements for mobile apps. In 24th Network
&Distributed System Security Symposium, 2017.

Approved for Public Release; Distribution Unlimited.
38

List of Symbols, Abbreviations and Acronyms

• APK - Android Package

• BYOD - Bring your Own Device

• MDM - Mobile Device Manager

• SDK - Software Developers Kit

• UI - User Interface

Glossary of Terminology
• Android The operating system at the time of this writing that is developed

by Google used on mobile phones.

• Android Package The file format for distributing Android mobile apps.

• Background Application Application that is running on a mobile device
but is not readily visible to the end user.

• BYOD Bring Your Own Device Practice is where employees and workers
can bring their own mobile devices into the workplace to be used for both
work and personal purposes.

• Dashboard The user interface we provided for allowing users to have
control over the privacy settings for their applications on the Android
phones.

• Docker A containerization system that allows developers to package up
applications with all their dependencies into a single image that can be
moved to many different systems.

• Fingerprint A unique signature that allows a larger amount of data to be
uniquely identified.

	1 Summary
	In this project, we build on prior research that our laboratory has performed to better understand how mobile apps access, use, and share personal information stored on smartphones. In that prior research, we modified the Android platform to include i...
	Finally, we transitioned this technology to practice by commercializing it through a new company, AppCensus, that was spun off from the International Computer Science Institute (ICSI). In this report, we document the technology, in terms of its desig...

	2 Introduction
	3 Methods, Assumptions and Procedures
	3.1 Architecture
	Workers Layer
	AppCensus Core Layer
	Endpoints Layer

	3.2 Studying Permission Circumvention

	4 Results and Discussion
	4.1 App Test Dashboard
	Log in to the AppBot Dashboard
	Run a New Test
	Review Scheduled Tests
	View the Results of a Test

	4.2 Studying Permission Circumvention

	5 Conclusions
	6 Acknowledgments
	This work is a collective effort involving members of ICSI’s Usable Security and Privacy Group, the Berkeley Laboratory for Usable and Experimental Security (BLUES) and Good Research: PI Serge Egelman, Irwin Reyes, Joel Reardon, Primal Wijesekera, Wil...

	7 References
	A 50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the Android Permissions System
	Amit Elazari Bar On
	Primal Wijesekera
	2 Background
	2.1 Android Permissions
	2.2 Circumvention
	2.3 App Analysis Methods
	3 Testing Environment and Analysis Pipeline
	3.1 App Collection
	3.2 Dynamic Analysis Environment
	3.3 Personal Information in Network Flows
	3.4 Finding Side and Covert Channels
	4 Results
	4.1 IMEI
	4.2 Network MAC Addresses
	4.3 Router MAC Address
	4.4 Geolocation
	5 Related Work
	6 Discussion
	6.1 Privacy Expectations
	6.2 Legal and Policy Issues
	7 Limitations and Future Work
	7.1 Acknowledgments
	7.2 References

	List of Symbols, Abbreviations and Acronyms
	• APK - Android Package
	• BYOD - Bring your Own Device
	• MDM - Mobile Device Manager
	• SDK - Software Developers Kit
	• UI - User Interface

	Glossary of Terminology
	• Android The operating system at the time of this writing that is developed by Google used on mobile phones.
	• Dashboard The user interface we provided for allowing users to have control over the privacy settings for their applications on the Android phones.
	• Docker A containerization system that allows developers to package up applications with all their dependencies into a single image that can be moved to many different systems.
	• Fingerprint A unique signature that allows a larger amount of data to be uniquely identified.

