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1 Summary 

In this project, we build on prior research that our laboratory has performed to 
better understand how mobile apps access, use, and share personal information 
stored on smartphones. In that prior research, we modified the Android platform 
to include instrumentation to monitor if and when mobile apps access system 
resources that are governed by permission-protected APIs. In this project, in 
conjunction with a bespoke network monitoring tool, we used this instrumentation 
to construct a testbed to automatically perform dynamic analysis on unmodified 
mobile apps. The goal of this project is to use this infrastructure to monitor apps’ 
privacy and/or security behaviors, so that unmodified client devices can benefit 
from this intelligence. That is, apps can be automatically tested in the testbed, and 
then the results can be disseminated to feed MDM systems, in order to enforce 
organizational policies that govern BYOD devices. 

Finally, we transitioned this technology to practice by commercializing it through 
a new company, AppCensus, that was spun off from the International Computer 
Science Institute (ICSI).  In this report, we document the technology, in terms of 
its design and practical uses, as well as our successful technology transfer efforts. 
AppCensus is now a successful startup with customers ranging from enterprises 
to regulators and watchdog groups. We detail the services that we have developed 
and now commercially offer based on this research.  
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2 Introduction 
The current privacy framework in place in the U.S. is based on a notion of “notice and 
consent”: companies post privacy policies, and by using their services, users 
implicitly consent to their terms. Decades of privacy research have shown us that this 
model is simply unworkable because policies are rarely noticed, read, and understood. 
Even if a privacy policy is read by an individual capable of understanding it, it is 
unlikely to shed light on privacy practices because it is designed to be ambiguous. 
Policies are couched in terms like “may” and “might,” which describe “examples” of 
data that may be collected, and as a result, consumers are left with few concrete 
statements that definitively describe what will happen to their data, and more 
importantly, what choices they may have over those practices [4]. This problem is 
especially concerning with regard to third-party applications running on mobile 
platforms, because these platforms offer access to rich sensor data. 

Because mobile devices are carried with users wherever they go, this allows 
companies to track users in the physical world, linking their online behaviors with 
their offline behaviors. As a result, consumers have very little insight into these 
privacy-concerning behaviors and cannot make informed choices about their personal 
data. Worse, policy administrators for government and industrial networks cannot 
adequately evaluate the risks posed by particular mobile apps. This makes it nearly 
impossible for them to make informed decisions about MDM policies to govern the 
use of BYOD devices on the networks that they manage. 

Over the past several years, our research team has developed infrastructure that gives 
us an unprecedented view into the privacy behaviors of Android apps [6]. AppCensus 
is our dynamic analysis testbed that combines bespoke instrumentation within the 
operating system itself with sophisticated network analysis tools, allowing us to detect 
exactly when applications attempt to access sensitive user data and then monitor with 
whom it is shared. As a case study last year, we used this infrastructure to examine 
children’s apps’ compliance with the Children’s Online Privacy Protection Act 
(COPPA) and found that a majority of applications in the Google Play Store appear to 
be violating this federal law [3]. The publication of that research led to several 
enforcement actions brought by regulators [5], as well as several class action lawsuits 
against app developers and advertisers [1]. Based on industry and government interest 
stemming from these public uses of our technology, we decided to commercialize it. 

Our system exposes APIs for testing new apps from the Google Play Store to observe 
their privacy and security behaviors, as well as for querying our results database to 
view the behaviors of apps that have already been tested. When apps are tested, they 
are installed on Android smartphones running our custom operating system, which 
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monitors the types of sensitive data that those apps access and use. Through the use of 
user-space network monitoring tools that are able to view each app’s traffic, 
regardless of whether or not encryption is used (e.g., TLS), we are able to see if and 
when that data is transmitted to third parties. Each app is “played” for a finite period 
of time while the aforementioned instrumentation monitors it. Upon completion, logs 
are extracted from the smartphone and then parsed to detect: 

• Permissions that were requested
• Permissions that were used
• Sensitive data types transmitted over the Internet
• Bundled SDKs
• Files opened
• Commands executed

This entire process is depicted in Figure 1. Currently, our results are being made 
available via a website, as well as PDF reports that are sold to customers. However, 
we soon expect to offer direct API access, which could be used to automatically 
create new rules for MDM client software. Thus, system administrators could create 
rules based on apps’ observed behaviors, rather than simply basing them on their 
declared permissions, which as we will show, can be circumvented. 

Figure 1: Dynamic analysis pipeline at the heart of AppCensus.

As a proof of concept, we applied our tools towards detecting side and covert 
channels in tens of thousands of Android apps used by billions of people. We 
demonstrated how our dynamic analysis pipeline can automatically identify apps that 
inappropriately access personal data, and presented this research at the 2019 USENIX 
Security Symposium [2], for which we received the Distinguished Paper Award. 
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3 Methods, Assumptions and Procedures 

Previously, we modified Android’s permission system to monitor how apps access 
protected resources in real-time: sensitive resources include contact lists, SMS 
messages, call logs, audio/video captures, and geolocation data [6]. Our 
instrumentation records every app’s access to these resources, as well as the 
circumstances surrounding the access, such as if the application was under active use 
at the time. By building this capability into the Android platform itself, we are able to 
perform detailed dynamic analysis of privileged accesses on any Android app as-is; 
no preprocessing or modification of the application is required for evaluation under 
our instrumentation [7]. 

Over the past year, we developed this instrumentation into a testbed for performing 
dynamic analysis and data exfiltration detection at scale. These capabilities give us an 
in-depth view as to how frequently sensitive data is accessed, under what 
circumstances, and where it goes when it leaves the device. The design of our testbed 
is as follows (Figure 1): we take a mobile application binary (i.e., Android APK) as 
input, automatically execute it in an environment that is monitored by our 
instrumentation, perform a broad exploration of code branches via a combination of 
simulated user input—though will soon support crowdsourced real user input—and 
then generate reports of relevant app security and privacy behaviors as output. 

Figure 2: Our public website (https://search.appcensus.io) that allows consumers to research the privacy 
behaviors of free apps. Apps are automatically downloaded from the Google Play Store, tested on our testbed, 
and then the results are shown here.

https://search.appcensus.io/
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The results of this automated and reproducible analysis are then structured in a 
database and made available to the public via our website (Figure 2),1 and soon a 
public API. 

We initially showed how this instrumentation could be used to detect privacy 
violations at scale, specifically those governed by the Children's Online Privacy 
Protection Act (COPPA) [3]. For instance, upon performing dynamic analysis of 
around 6,000 Android applications listed in the “Designed for Families” area of the 
Google Play Store (i.e., directed at children and therefore subject to COPPA), we 
observed potential COPPA violations in over half of them. Based on these findings 
and the ensuing public demand for our tools, we shifted focus to pursue this transition 
opportunity, and created AppCensus, Inc. In the remainder of this section, we 
describe the infrastructure’s architecture in detail, as well as the methodology for an 
experiment that made use of the infrastructure to detect circumvention of the Android 
permission system.  

3.1 Architecture 
The architecture is composed of three layers, which are represented in vertical layers 
in Figure 3, with the services on the right-most column of the diagram. 

Figure 3: Overview of AppCensus architecture.

1 https://search.appcensus.io/ 

https://search.appcensus.io/
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These layers are (from left to right in the figure): 
• Workers: downloaders, testers, and parsers
• AppCensus Core: job scheduler, database/file stores, and internal API
• Endpoints: web dashboard and external API

Workers Layer 
The Worker layer is comprised by a set of workers independent from each other that 
communicate directly with the AppCensus Core layer to receive new jobs to be 
processed and submit the results of completed jobs. There are three different types of 
workers for the three different phases necessary for running a full test of a mobile 
app: downloading the app, testing the app, and parsing the logs of the test. 

The download phase consists of downloading the app code (APK) along with some 
information about the app. This additional metadata includes information about the 
version, developer, privacy notices, and some additional Google Play Store-specific 
information (such as the category this app is listed under). Once obtained, the 
metadata is relayed to the AppCensus Core layer and stored in a relational database, 
while the APK code is stored in a file system store within the Core layer. Once the 
Core layer has obtained a successful download, it will schedule a test for the 
downloaded app. 

The tester phase will obtain the APK from the Core layer, install it on a physical 
phone running a provisioned and sandboxed version of Android, and run the app for 
an allotted time, during which random interactions are submitted to this app to 
simulate human usage. Once the test has finished running, the complete logs 
(including network traffic and system calls) are sent to the Core layer. Once the Core 
layer has obtained a successful test, it will schedule a parse job to analyze the test 
logs and extract the results. 

The log parse phase obtains the test logs and performs a series of analysis on them, 
scanning through network traffic and system calls. The final results showing any data 
leakage are then submitted back to the Core layer where the parsed versions are 
stored in the Core’s relational database and the raw version in the file store. Once the 
Core layer has obtained a successful log parse job it will notify the users via email 
with a direct link to the test results page. 

The Worker layer is distributed across different machines; however, at the time of 
writing, the production workers are all on-premise. Both the download and the log 
parser workers can be fully deployed in the cloud, while the app tester workers need a 
physical phone, and therefore are tied to physical servers. The code and infrastructure 
have been highly modularized (and “Dockerized”) and, in the case of the download 
and parse workers, it is horizontally scalable with simple configuration changes. 
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For scaling the app tester, phone provisioning (flashing the phones and installing our 
instrumented Android operating system) is necessary to be done manually in a one-
off-per-device process that takes an engineer around 10 minutes to go from out-of-
the-box phone to a functioning app test worker state. The app tester worker has also 
been containerized using Docker, which allows for seamless re-deployment in any 
other physical server that has available instrumented Android phones connected to it. 

AppCensus Core Layer 
The Core layer contains all the persistent storage, as well as the key pieces of 
business logic, the job scheduler and the necessary services to maintain 
communication and consistency with the workers, and an internal API. 

The Core layer is fully deployed in the cloud, using AWS infrastructure as a cloud 
provider. The non-storage services are fully Dockerized for seamless redeployment 
on other machines. For storage, AppCensus Core relies on AWS’s storage services: 
RDS (for the relational database) and S3 (for the file store). The Core layer also uses 
a relational database, MySQL on an RDS instance, for storing structured information, 
such as the app and version information, users, tests requested, job status, and the 
parsed results. Storage of less-structured data, such as logs, semi-parsed data blobs, 
APKs, app icons, and other assets, is performed on an S3 bucket on AWS. 

The job scheduler maintains several queues (one per worker type), to which workers 
subscribe independently when available to process jobs. Additional services for 
maintaining consistency, reliability across the system, and transparent failures have 
been added to the job scheduler. 

An internal API endpoint exists as an endpoint for accessing the relational database, 
so that workers can read and write data to it in a secure and distributed manner. The 
internal API also abstracts away the specifications of the database, and provides 
easier management of the overall system. A similar abstraction (yet simpler) has been 
added as a middleman to the S3 buckets. 

Endpoints Layer 
The Endpoints layer provides user access to the AppCensus services. There are two 
main endpoints: a web dashboard (named AppBot) and a RESTful API to 
programmatically obtain results for multiple tests grouped into a collection of apps. 

The web dashboard, AppBot, is the main endpoint for logged-in AppCensus users. 
The dashboard is deployed in a Docker container on an AWS compute instance, for 
seamless scalability and redeployment. For a walkthrough of the dashboard, refer to 
the Appendix provided in this document. 
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The API, currently under construction, is tied to the dashboard and it provides less 
granular functionality so that users can obtain results to several tests without having 
to query the database (through the internal API) directly. This also allows us to add 
an authentication layer, similar to the user login process, with which users can be 
restricted to specific resources (like admin-only resource management) or limited in 
the number of requests that they can make. 

3.2 Studying Permission Circumvention 
As a proof of concept, we employed this infrastructure towards detecting exploitation 
of the Android permissions system [2]. By automatically testing hundreds of 
thousands of apps, we built a robust dataset that can be used to study mobile app 
behavior generally. We queried our dataset for instances of apps that we observed 
transmitting sensitive data that they otherwise did not have permission to access. For 
instance, in several cases, we observed fine-grained GPS coordinates being 
transmitted by apps that lacked any of the relevant Android location permissions. This 
indicated that apps were somehow getting this data outside of the permissions system. 
When we detected an app doing this, based on the data automatically collected by our 
testbed, we then flagged that app for manual analysis. 

Manual analysis consisted of decompiling the app to its bytecode, and then examining 
it to determine how the permission-protected data was accessed outside of the 
permissions system. More often than not, the exploit code was located within a third-
party SDK, rather than the core app code. This means that once we identified the 
exploit, we could fingerprint it, and then automatically detect its presence in the 
remainder of our dataset. Through this procedure, we were able to detect tens of 
thousands of apps used by billions of people that were exploiting these vulnerabilities 
(detailed in Section 4). We later reported those vulnerabilities to Google, who fixed 
them in the most recent (as of this writing) version of Android. 
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4 Results and Discussion 

In this section, we describe the completed system. We follow that with the results of 
our study in which we used this infrastructure to detect apps’ circumvention of the 
Android permissions system at scale. 

4.1 App Test Dashboard 
AppCensus provides two types of services: on-demand app testing (performed 
through a web dashboard) and generating reports for companies interested in the 
privacy behaviors apps that have already been tested. Both of these services rely on 
the same underlying core technology, which is described in the Architecture section 
of this document (Section 3.1). 

The web dashboard, named AppBot and accessible at appbot.appcensus.io, allows 
AppCensus users to log into their personal dashboard from which they are able to 
schedule new tests. They are able to test any apps that are publicly available through 
the Google Play Store, review the status of previously-scheduled tests, and view the 
results of tests that have been completed. 

Log in to the AppBot Dashboard 
The AppBot dashboard is only accessible for users with an AppCensus account. The 
splash page in Figure 4 is shown to a user after they log in. 

Figure 4: The AppBot main dashboard splash page. 

https://appbot.appcensus.io/
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Run a New Test 
Click on the “Run New Test” on the navigation menu on the left (Figure 5). 

Figure 5: Select "Run New Test" from the menu. 

Type in the App package name in the field and click “Schedule Test!” (Figure 6).2 

Figure 6: Enter the package name of a new app to be tested. 

2 The package name can be obtained by looking at the Google Play Store URL for a specific app. For 
example, the Google Play Store URL for the Candy Crush Saga app is: 
https://play.google.com/store/apps/details?id=com.king.candycrushsaga from which we can obtain the 
package name: com.king.candycrushsaga. 

https://play.google.com/store/apps/details?id=com.king.candycrushsaga
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Review Scheduled Tests 
Automatically after scheduling a test, the dashboard will redirect the user to the 
scheduled tests review page, shown below (Figure 7). This page is also accessible by 
clicking the “Review Tests” item on the navigation menu on the left. 

Figure 7: Screen to review scheduled app tests. 

This page contains an entry for each of the user’s scheduled app tests. The user can 
click on the test number to navigate to the app test status detail page (from which the 
user will be able to navigate to the results of the test, when completed). 
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Figure 8: App test status detail page. 

The page listing the details of an app test (Figure 8) has some basic information on 
the app being tested, along with the status of each of the phases; in this screenshot, we 
can see that the first phase (“Download App”) has finished successfully. 

Once the test has completed all the phases successfully, the “View Results” button 
(seen in the screenshot) will appear between the app information and the test status 
information section. 

View the Results of a Test 
The “View Results” button navigates the user to the page shown below (Figure 9). 
This page allows the user to view the data flows the app generated during the test in 
which personal and phone identifiers were sent to different domains. The table will 
show the user what information was sent, to what domain, and whether the 
transmission was secured over TLS or not. 
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Figure 9: The results of an app test. 

4.2 Studying Permission Circumvention 
As a proof of concept, we made use of our infrastructure by running hundreds of  
thousands of apps in an instrumented environment. This testing environment included 
mechanisms to monitor apps’ runtime behaviors and network traffic. We looked for evidence 
of side and covert channels being used in practice by searching for sensitive data being sent 
over the network for which the sending app did not have permissions to access it. We then 
reverse engineer the apps and third-party libraries responsible for this behavior to determine 
how the unauthorized access occurred. We also used software fingerprinting methods to 
measure the static prevalence of the technique that we discovered among other apps in our 
corpus. Overall, we observed the following [2]: 

• We tested our pipeline on more than 88,000 apps and discovered a number of
vulnerabilities, which we responsibly disclosed. These apps were downloaded
from the U.S. Google Play Store and include popular apps from all categories.
We further measured the degree to which they are in active use, and thus pose
a threat to users. We discovered covert and side channels used in the wild that
compromise both users’ location data and persistent identifiers.

• We discovered companies obtaining the MAC addresses of the connected WiFi
base stations from the ARP cache. This can be used as a surrogate for location
data. We found 5 apps exploiting this vulnerability and 5 with the pertinent code
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to do so. 
• We discovered Unity obtaining the device MAC address using ioctl system

calls.  The MAC address can be used to uniquely identify the device. We found
42 apps exploiting this vulnerability and 12,408 apps with the pertinent code to
do so.

• We also discovered that third-party libraries provided by two Chinese
companies—Baidu and Salmonads—independently make use of the SD card  as
a covert channel, so that when an app can read the phone’s IMEI, it stores it for
other apps that cannot. We found 159 apps with the potential to exploit this
covert channel and empirically found 13 apps doing so.

• We found one app that used picture metadata as a side channel to access precise
location information despite not holding location permissions.

The peer-reviewed publication is attached as Appendix A. 
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5 Conclusions 
 
AppCensus has developed a service for analyzing and reviewing privacy data-
leakages on mobile apps. Similar to efforts for Android malware detection, 
AppCensus performs static analysis of the app’s APK, as well as dynamic testing in a 
sandboxed environment. Network traffic, additional libraries and services (SDKs) 
used, and permissions requested and used are among the main activities controlled 
and monitored by AppCensus during the analysis of the app. 
 
In this report, we also described how we recently used this infrastructure to detect 
exploited privacy vulnerabilities in tens of thousands of Android apps. We disclosed 
our findings to Google, who announced fixes in Android Q. Our research paper 
describing this work received the Distinguished Paper Award at the 2019 USENIX 
Security Symposium [2]. We have now successfully commercialized our tools 
through AppCensus, Inc., which offers on-demand testing of mobile apps, as well as 
access to app behavior intelligence. Through this effort, we have made our 
infrastructure available to enterprise customers, government, and watchdog groups.
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Abstract 
Modern smartphone platforms implement permission-based 
models to protect access to sensitive data and system re- 
sources. However, apps can circumvent the permission model 
and gain access to protected data without user consent by us- 
ing both covert and side channels. Side channels present in 
the implementation of the permission system allow apps to 
access protected data and system resources without permis- 
sion; whereas covert channels enable communication between 
two colluding apps so that one app can share its permission- 
protected data with another app lacking those permissions. 
Both pose threats to user privacy. 

In this work, we make use of our infrastructure that runs 
hundreds of thousands of apps in an instrumented environ- 
ment. This testing environment includes mechanisms to mon- 
itor apps’ runtime behaviour and network traffic. We look for 
evidence of side and covert channels being used in practice 
by searching for sensitive data being sent over the network 
for which the sending app did not have permissions to access 
it. We then reverse engineer the apps and third-party libraries 
responsible for this behaviour to determine how the unautho- 
rized access occurred. We also use software fingerprinting 
methods to measure the static prevalence of the technique that 
we discover among other apps in our corpus. 

Using this testing environment and method, we uncovered a 
number of side and covert channels in active use by hundreds 
of popular apps and third-party SDKs to obtain unauthorized 
access to both unique identifiers as well as geolocation data. 
We have responsibly disclosed our findings to Google and 
have received a bug bounty for our work. 

 
1 Introduction 

Smartphones are used as general-purpose computers and 
therefore have access to a great deal of sensitive system re- 
sources (e.g., sensors such as the camera, microphone, or 
GPS), private data from the end user (e.g., user email or con- 
tacts list), and various persistent identifiers (e.g., IMEI). It 

is crucial to protect this information from unauthorized ac- 
cess. Android, the most-popular mobile phone operating sys- 
tem [75], implements a permission-based system to regulate 
access to these sensitive resources by third-party applications. 
In this model, app developers must explicitly request permis- 
sion to access sensitive resources in their Android Manifest 
file [5]. This model is supposed to give users control in decid- 
ing which apps can access which resources and information; 
in practice it does not address the issue completely [30, 86]. 

The Android operating system sandboxes user-space apps 
to prevent them from interacting arbitrarily with other run- 
ning apps. Android implements isolation by assigning each 
app a separate user ID and further mandatory access controls 
are implemented using SELinux. Each running process of an 
app can be either code from the app itself or from SDK li- 
braries embedded within the app; these SDKs can come from 
Android (e.g., official Android support libraries) or from third- 
party providers. App developers integrate third-party libraries 
in their software for things like crash reporting, development 
support, analytics services, social-network integration, and ad- 
vertising [16, 62]. By design, any third-party service bundled 
in an Android app inherits access to all permission-protected 
resources that the user grants to the app. In other words, if an 
app can access the user’s location, then all third-party services 
embedded in that app can as well. 

In practice, security mechanisms can often be circum- 
vented; side channels and covert channels are two common 
techniques to circumvent a security mechanism. These chan- 
nels occur when there is an alternate means to access the pro- 
tected resource that is not audited by the security mechanism, 
thus leaving the resource unprotected. A side channel exposes 
a path to a resource that is outside the security mechanism; 
this can be because of a flaw in the design of the security 
mechanism or a flaw in the implementation of the design. A 
classic example of a side channel is that power usage of hard- 
ware when performing cryptographic operations can leak the 
particulars of a secret key [42]. As an example in the phys- 
ical world, the frequency of pizza deliveries to government 
buildings may leak information about political crises [69]. 
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A covert channel is a more deliberate and intentional effort 
between two cooperating entities so that one with access to 
some data provides it to the other entity without access to the 
data in violation of the security mechanism [43]. As an 
example, someone could execute an algorithm that alternates 
between high and low CPU load to pass a binary message to 
another party observing the CPU load. 

The research community has previously explored the po- 
tential for covert channels in Android using local sockets and 
shared storage [49], as well as other unorthodox means, such 
as vibrations and accelerometer data to send and receive data 
between two coordinated apps [3]. Examples of side chan- 
nels include using device sensors to infer the gender of the 
user [51] or uniquely identify the user [72]. More recently, 
researchers demonstrated a new permission-less device fin- 
gerprinting technique that allows tracking Android and iOS 
devices across the Internet by using factory-set sensor cali- 
bration details [90]. However, there has been little research in 
detecting and measuring at scale the prevalence of covert and 
side channels in apps that are available in the Google Play 
Store. Only isolated instances of malicious apps or libraries 
inferring users’ locations from WiFi access points were re- 
ported, a side channel that was abused in practice and resulted 
in about a million dollar fine by regulators [82]. 

In fact, most of the existing literature is focused on under- 
standing personal data collection using the system-supported 
access control mechanisms (i.e., Android permissions). With 
increased regulatory attention to data privacy and issues sur- 
rounding user consent, we believe it is imperative to under- 
stand the effectiveness (and limitations) of the permission 
system and whether it is being circumvented as a preliminary 
step towards implementing effective defenses. 

To this end, we extend the state of the art by developing 
methods to detect actual circumvention of the Android per- 
mission system, at scale in real apps by using a combination 
of dynamic and static analysis. We automatically executed 
over 88,000 Android apps in a heavily instrumented environ- 
ment with capabilities to monitor apps’ behaviours at the sys- 
tem and network level, including a TLS man-in-the-middle 
proxy. In short, we ran apps to see when permission-protected 
data was transmitted by the device, and scanned the apps to 
see which ones should not have been able to access the trans- 
mitted data due to a lack of granted permissions. We grouped 
our findings by where on the Internet what data type was sent, 
as this allows us to attribute the observations to the actual app 
developer or embedded third-party libraries. We then reverse 
engineered the responsible component to determine exactly 
how the data was accessed. Finally, we statically analyzed 
our entire dataset to measure the prevalence of the channel. 
We focus on a subset of the dangerous permissions that pre- 
vent apps from accessing location data and identifiers. Instead 
of imagining new channels, our work focuses on tracing ev- 
idence that suggests that side- and covert-channel abuse is 
occurring in practice. 

We studied more than 88,000 apps across each category 
from the U.S. Google Play Store. We found a number of side 
and covert channels in active use, responsibly disclosed our 
findings to Google and the U.S. Federal Trade Commission 
(FTC), and received a bug bounty for our efforts. 

In summary, the contributions of this work include: 
 

We designed a pipeline for automatically discovering vul- 
nerabilities in the Android permissions system through 
a combination of dynamic and static analysis, in effect 
creating a scalable honeypot environment. 
We tested our pipeline on more than 88,000 apps and 
discovered a number of vulnerabilities, which we respon- 
sibly disclosed. These apps were downloaded from the 
U.S. Google Play Store and include popular apps from 
all categories. We further describe the vulnerabilities in 
detail, and measure the degree to which they are in ac- 
tive use, and thus pose a threat to users. We discovered 
covert and side channels used in the wild that compro- 
mise both users’ location data and persistent identifiers. 
We discovered companies getting the MAC addresses of 
the connected WiFi base stations from the ARP cache. 
This can be used as a surrogate for location data. We 
found 5 apps exploiting this vulnerability and 5 with the 
pertinent code to do so. 
We discovered Unity obtaining the device MAC address 
using ioctl system calls. The MAC address can be used 
to uniquely identify the device. We found 42 apps 
exploiting this vulnerability and 12,408 apps with the 
pertinent code to do so. 
We also discovered that third-party libraries provided by 
two Chinese companies—Baidu and Salmonads— 
independently make use of the SD card as a covert chan- 
nel, so that when an app can read the phone’s IMEI, it 
stores it for other apps that cannot. We found 159 apps 
with the potential to exploit this covert channel and em- 
pirically found 13 apps doing so. 
We found one app that used picture metadata as a side 
channel to access precise location information despite 
not holding location permissions. 

 
These deceptive practices allow developers to access users’ 

private data without consent, undermining user privacy and 
giving rise to both legal and ethical concerns. Data protec- 
tion legislation around the world—including the General Data 
Protection Regulation (GDPR) in Europe, the California Con- 
sumer Privacy Act (CCPA) and consumer protection laws, 
such as the Federal Trade Commission Act—enforce trans- 
parency on the data collection, processing, and sharing prac- 
tices of mobile applications. 

This paper is organized as follows: Section 2 gives more 
background information on the concepts discussed in the in- 
troduction. Section 3 describes our system to discover vul- 
nerabilities in detail. Section 4 provides the results from our 
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study, including the side and covert channels we discovered 
and their prevalence in practice. Section 5 describes related 
work. Section 6 discusses their potential legal implications. 
Section 7 discusses limitations to our approach and concludes 
with future work. 

 
2 Background 
The Android permissions system has evolved over the years 
from an ask-on-install approach to an ask-on-first-use ap- 
proach. While this change impacts when permissions are 
granted and how users can use contextual information to rea- 
son about the appropriateness of a permission request, the 
backend enforcement mechanisms have remained largely un- 
changed. We look at how the design and implementation of 
the permission model has been exploited by apps to bypass 
these protections. 

 
2.1 Android Permissions 
Android’s permissions system is based on the security prin- 
ciple of least privilege. That is, an entity should only have the 
minimum capabilities it needs to perform its task. This 
standard design principle for security implies that if an app 
acts maliciously, the damage will be limited. Developers must 
declare the permissions that their apps need beforehand, and 
the user is given an opportunity to review them and decide 
whether to install the app. The Android platform, however, 
does not judge whether the set of requested permissions are 
all strictly necessary for the app to function. Developers are 
free to request more permissions than they actually need and 
users are expected to judge if they are reasonable. 

The Android permission model has two important aspects: 
obtaining user consent before an app is able to access any of 
its requested permission-protected resources, and then ensur- 
ing that the app cannot access resources for which the user 
has not granted consent. There is a long line of work uncov- 
ering issues on how the permission model interacts with the 
user: users are inadequately informed about why apps need 
permissions at installation time, users misunderstand exactly 
what the purpose of different permissions are, and users lack 
context and transparency into how apps will ultimately use 
their granted permissions [24, 30, 78, 86]. While all of these 
are critical issues that need attention, the focus of our work is 
to understand how apps are circumventing system checks to 
verify that apps have been granted various permissions. 

When an app requests a permission-protected resource, the 
resource manager (e.g., LocationManager, WiFiManager, 
etc.) contacts the ActivityServiceManager, which is the 
reference monitor in Android. The resource request originates 
from the sandboxed app, and the final verification happens 
inside the Android platform code. The platform is a Java oper- 
ating system that runs in system space and acts as an interface 
for a customized Linux kernel, though apps can interact with 

the kernel directly as well. For some permission-protected 
resources, such as network sockets, the reference monitor is 
the kernel, and the request for such resources bypasses the 
platform framework and directly contacts the kernel. Our 
work discusses how real-world apps circumvent these system 
checks placed in the kernel and the platform layers. 

The Android permissions system serves an important pur- 
pose: to protect users’ privacy and sensitive system resources 
from deceptive, malicious, and abusive actors. At the very 
least, if a user denies an app a permission, then that app should 
not be able to access data protected by that permission [24,81]. 
In practice, this is not always the case. 
 

2.2 Circumvention 
Apps can circumvent the Android permission model in differ- 
ent ways [3,17,49,51,52,54,70,72,74]. The use of covert and 
side channels, however, is particularly troublesome as their 
usage indicates deceptive practices that might mislead even 
diligent users, while underscoring a security vulnerability in 
the operating system. In fact, the United State’s Federal Trade 
Commission (FTC) has fined mobile developers and third- 
party libraries for exploiting side channels: using the MAC ad- 
dress of the WiFi access point to infer the user’s location [82]. 
Figure 1 illustrates the difference between covert and side 
channels and shows how an app that is denied permission by 
a security mechanism is able to still access that information. 
 

Covert Channel A covert channel is a communication path 
between two parties (e.g., two mobile apps) that allows them 
to transfer information that the relevant security enforcement 
mechanism deems the recipient unauthorized to receive [18]. 
For example, imagine that AliceApp has been granted permis- 
sion through the Android API to access the phone’s IMEI (a 
persistent identifier), but BobApp has been denied access to 
that same data. A covert channel is created when AliceApp 
legitimately reads the IMEI and then gives it to BobApp, 
even though BobApp has already been denied access to this 
same data when requesting it through the proper permission- 
protected Android APIs. 

In the case of Android, different covert channels have been 
proposed to enable communication between apps. This in- 
cludes exotic mediums such as ultrasonic audio beacons and 
vibrations [17, 26]. Apps can also communicate using an ex- 
ternal network server to exchange information when no other 
opportunity exists. Our work, however, exposes that rudimen- 
tary covert channels, such as shared storage, are being used 
in practice at scale. 
 

Side Channel A side channel is a communication path that 
allows a party to obtain privileged information without rel- 
evant permission checks occurring. This can be due to non- 
conventional unprivileged functions or features, as well as er- 
satz versions of the same information being available without 
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Figure 1: Covert and side channels. (a) A security mechanism 
allows app1 access to resources but denies app2 access; this is 
circumvented by app2 using app1 as a facade to obtain access 
over a communication channel not monitored by the security 
mechanism. (b) A security mechanism denies app1 access to 
resources; this is circumvented by accessing the resources 
through a side channel that bypasses the security mechanism. 

being protected by the same permission. A classical example 
of a side channel attack is the timing attack to exfiltrate an 
encryption key from secure storage [42]. The system under 
attack is an algorithm that performs computation with the key 
and unintentionally leaks timing information—i.e., how long 
it runs—that reveals critical information about the key. 

Side channels are typically an unintentional consequence of 
a complicated system. (“Backdoors” are intentionally-created 
side channels that are meant to be obscure.) In Android, a 
large and complicated API results in the same data appear- 
ing in different locations, each governed by different access 
control mechanisms. When one API is protected with permis- 
sions, another unprotected method may be used to obtain the 
same data or an ersatz version of it. 

 

2.3 App Analysis Methods 
Researchers use two primary techniques to analyze app be- 
haviour: static and dynamic analysis. In short, static analysis 
studies software as data by reading it; dynamic analysis stud- 
ies software as code by running it. Both approaches have the 

goal of understanding the software’s ultimate behaviour, but 
they offer insights with different certainty and granularity: 
static analysis reports instances of hypothetical behaviour; 
dynamic analysis gives reports of observed behaviour. 
 

Static Analysis Static analysis involves scanning the code 
for all possible combinations of execution flows to understand 
potential execution behaviours—the behaviours of interest 
may include various privacy violations (e.g., access to sen- 
sitive user data). Several studies have used static analysis to 
analyze different types of software in search of malicious be- 
haviours and privacy leaks [4, 9–11, 19–22, 32, 37, 39, 41, 45, 
92]. However, static analysis does not produce actual observa- 
tions of privacy violations; it can only suggest that a violation 
may happen if a given part of the code gets executed at run- 
time. This means that static analysis provides an upper bound 
on hypothetical behaviours (i.e., yielding false positives). 

The biggest advantage of static analysis is that it is easy to 
perform automatically and at scale. Developers, however, 
have options to evade detection by static analysis because a 
program’s runtime behaviour can differ enormously from its 
superficial appearance. For example, they can use code obfus- 
cation [23, 29, 48] or alter the flow of the program to hide the 
way that the software operates in reality [23, 29, 48]. Native 
code in unmanaged languages allow pointer arithmetic that 
can skip over parts of functions that guarantee pre-conditions. 
Java’s reflection feature allows the execution of dynamically 
created instructions and dynamically loaded code that simi- 
larly evades static analysis. Recent studies have shown that 
around 30% of apps render code dynamically [46], so static 
analysis may be insufficient in those cases. 

From an app analysis perspective, static analysis lacks the 
contextual aspect, i.e., it fails to observe the circumstances 
surrounding each observation of sensitive resource access 
and sharing, which is important in understanding when a 
given privacy violation is likely to happen. For these reasons, 
static analysis is useful, but is well complemented by dynamic 
analysis to augment or confirm findings. 
 

Dynamic analysis Dynamic analysis studies an executable 
by running it and auditing its runtime behaviour. Typically, 
dynamic analysis benefits from running the executable in    a 
controlled environment, such as an instrumented mobile OS 
[27, 85], to gain observations of an app’s behaviour [16, 32, 
46, 47, 50, 65, 66, 73, 85, 87–89]. 

There are several methods that can be used in dynamic 
analysis, one example is taint analysis [27, 32] which can be 
inefficient and prone to control flow attacks [68, 71]. A chal- 
lenge to performing dynamic analysis is the logistical burden 
of performing it at scale. Analyzing a single Android app in 
isolation is straightforward, but scaling it to run automatically 
for tens of thousands of apps is not. Scaling dynamic analysis 
is facilitated with automated execution and creation of be- 
havioural reports. This means that effective dynamic analysis 
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requires building an instrumentation framework for possible 
behaviours of interest a priori and then engineering a system 
to manage the endeavor. 

Nevertheless, some apps are resistant to being audited when 
run in virtual or privileged environments [12, 68]. This has 
led to new auditing techniques that involve app execution on 
real phones, such as by forwarding traffic through a VPN in 
order to inspect network communications [44, 60, 63]. The 
limitations of this approach are the use of techniques robust 
to man-in-the-middle attacks [28, 31, 61] and scalability due 
to the need to actually run apps with user input. 

A tool to automatically execute apps on the Android plat- 
form is the UI/Application Exerciser Monkey [6]. The Mon- 
key is a UI fuzzer that generates synthetic user input, ensuring 
that some interaction occurs with the app being automatically 
tested. The Monkey has no context for its actions with the UI, 
however, so some important code paths may not be executed 
due to the random nature of its interactions with the app. As 
a result, this gives a lower bound for possible app behaviours, 
but unlike static analysis, it does not yield false positives. 

 
Hybrid Analysis Static and dynamic analysis methods 
complement each other. In fact, some types of analysis bene- 
fit from a hybrid approach, in which combining both methods 
can increase the coverage, scalability, or visibility of the anal- 
yses. This is the case for malicious or deceptive apps that 
actively try to defeat one individual method (e.g., by using ob- 
fuscation or techniques to detect virtualized environments or 
TLS interception). One approach would be to first carry out 
dynamic analysis to triage potential suspicious cases, based 
on collected observations, to be later examined thoroughly us- 
ing static analysis. Another approach is to first carry out static 
analysis to identify interesting code branches that can then be 
instrumented for dynamic analysis to confirm the findings. 

 
3 Testing Environment and Analysis 

Pipeline 

Our instrumentation and processing pipeline, depicted and 
described in Figure 2, combines the advantages of both static 
and dynamic analysis techniques to triage suspicious apps 
and analyze their behaviours in depth. We used this testing 
environment to find evidence of covert- and side-channel 
usage in 252,864 versions of 88,113 different Android apps, 
all of them downloaded from the U.S. Google Play Store 
using a purpose-built Google Play scraper. We executed each 
app version individually on a physical mobile phone equipped 
with a customized operating system and network monitor. 
This testbed allows us to observe apps’ runtime behaviours 
both at the OS and network levels. We can observe how apps 
request and access sensitive resources and their data sharing 
practices. We also have a comprehensive data analysis tool to 
de-obfuscate collected network data to uncover potential 

deceptive practices. 

Figure 2: Overview of our analysis pipeline. Apps are auto- 
matically run and the transmissions of sensitive data are com- 
pared to what would be allowed. Those suspected of using a 

side or covert channel are manually reverse engineered. 

Before running each app, we gather the permission- 
protected identifiers and data. We then execute each app while 
collecting all of its network traffic. We apply a suite of de- 
codings to the traffic flows and search for the permission- 
protected data in the decoded traffic. We record all transmis- 
sions and later filter for those containing permission-protected 
data sent by apps not holding the requisite permissions. We 
hypothesize that these are due to the use of side and covert 
channels; that is, we are not looking for these channels, but 
rather looking for evidence of their use (i.e., transmissions of 
protected data). Then, we group the suspect transmissions by 
the data type sent and the destination where it was sent, be- 
cause we found that the same data-destination pair reflects the 
same underlying side or covert channel. We take one example 
per group and manually reverse engineer it to determine how 
the app gained permission-protected information without the 
corresponding permission. 

Finally, we fingerprint the apps and libraries found using 
covert- and side-channels to identify the static presence of the 
same code in other apps in our corpus. A fingerprint is any 
string constant, such as specific filename or error message, 
that can be used to statically analyze our corpus to determine 
if the same technique exists in other apps that did not get 
triggered during our dynamic analysis phase. 
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3.1 App Collection 
We wrote a Google Play Store scraper to download the most- 
popular apps under each category. Because the popularity 
distribution of apps is long tailed, our analysis of the 88,113 
most-popular apps is likely to cover most of the apps that peo- 
ple currently use. This includes 1,505 non-free apps we pur- 
chased for another study [38]. We instrumented the scraper to 
inspect the Google Play Store to obtain application executa- 
bles (APK files) and their associated metadata (e.g., number 
of installs, category, developer information, etc.). 

As developers tend to update their Android software to add 
new functionality or to patch bugs [64], these updates can also 
be used to introduce new side and covert channels. Therefore, 
it is important to examine different versions of the same app, 
because they may exhibit different behaviours. In order to do 
so, our scraper periodically checks if a new version of an 
already downloaded app is available and downloads it. This 
process allowed us to create a dataset consisting of 252,864 
different versions of 88,113 Android apps. 

 
3.2 Dynamic Analysis Environment 
We implemented the dynamic testing environment described 
in Figure 2, which consists of about a dozen Nexus 5X An- 
droid phones running an instrumented version of the Android 
Marshmallow platform.1 This purpose-built environment al- 
lows us to comprehensively monitor the behaviour of each of 
88,113 Android apps at the kernel, Android-framework, and 
network traffic levels. We execute each app automatically us- 
ing the Android Automator Monkey [6] to achieve scale by 
eliminating any human intervention. We store the resulting 
OS-execution logs and network traffic in a database for of- 
fline analysis, which we discuss in Section 3.3. The dynamic 
analysis is done by extending a platform that we have used in 
previous work [66]. 

 
Platform-Level Instrumentation We built an instru- 
mented version of the Android 6.0.1 platform (Marshmallow). 
The instrumentation monitored resource accesses and logged 
when apps were installed and executed. We ran apps one at a 
time and uninstalled them afterwards. Regardless of the obfus- 
cation techniques apps use to disrupt static analysis, no app 
can avoid our instrumentation, since it executes in the system 
space of the Android framework. In a sense, our environment 
is a honeypot allowing apps to execute as their true selves. 
For the purposes of preparing our bug reports to Google for 
responsible disclosure of our findings, we retested our find- 
ings on a stock Pixel 2 running Android Pie—the most-recent 
version at the time—to demonstrate that they were still valid. 

 
1While as of this writing Android Pie is the current release [35], Marsh- 

mallow and older versions were used by a majority of users at the time that 
we began data collection. 

Kernel-Level Instrumentation We built and integrated a 
custom Linux kernel into our testing environment to record 
apps’ access to the file system. This module allowed us to 
record every time an app opened a file for reading or writing 
or unlinked a file. Because we instrumented the system calls 
to open files, our instrumentation logged both regular files and 
special files, such as device and interface files, and the proc/ 
filesystem, as a result of the “everything is a file” UNIX phi- 
losophy. We also logged whenever an ioctl was issued to the 
file system. Some of the side channels for bypassing permis- 
sion checking in the Android platform may involve directly 
accessing the kernel, and so kernel-level instrumentation pro- 
vides clear evidence of these being used in practice. 

We ignored the special device file /dev/ashmem (Android- 
specific implementation of asynchronous shared memory for 
inter-process communication) because it overwhelmed the 
logs due to its frequent use. As Android assigns a separate 
user (i.e., uid) to each app, we could accurately attribute the 
access to such files to the responsible app. 

 
Network-Level Monitoring We monitored all network 
traffic, including TLS-secured flows, using a network moni- 
toring tool developed for our previous research activities [63]. 
This network monitoring module leverages Android’s VPN 
API to redirect all the device’s network traffic through a lo- 
calhost service that inspects all network traffic, regardless of 
the protocol used, through deep-packet inspection and in user- 
space. It reconstructs the network streams and ascribes them 
to the originating app by mapping the app owning the socket 
to the UID as reported by the proc filesystem. Furthermore, it 
also performs TLS interception by installing a root certificate 
in the system trusted certificate store. This technique allows it 
to decrypt TLS traffic unless the app performs advanced tech- 
niques, such as certificate pinning, which can be identified by 
monitoring TLS records and proxy exceptions [61]. 

 
Automatic App Execution Since our analysis framework is 
based on dynamic analysis, apps must be executed so that our 
instrumentation can monitor their behaviours. In order to 
scale to hundreds of thousands of apps tested, we cannot rely 
on real user interaction with each app being tested. As such, 
we use Android’s UI/Application Exerciser Monkey, a tool 
provided by Android’s development SDK to automate and 
parallelize the execution of apps by simulating user inputs 
(i.e., taps, swipes, etc.). 

The Monkey injects a pseudo-random stream of simulated 
user input events into the app, i.e., it is a UI fuzzer. We use the 
Monkey to interact with each version of each app for a period 
of ten minutes, during which the aforementioned tools log the 
app’s execution as a result of the random UI events generated 
by the Monkey. Apps are rerun if the operation fails during 
execution. Each version of each app is run once in this manner; 
our system also reruns apps if there is unused capacity. 
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After running the app, the kernel, platform, and network logs 
are collected. The app is then uninstalled along with any other 
app that may have been installed through the process of 
automatic exploration. We do this with a white list of allowed 
apps; all other apps are uninstalled. The logs are then cleared 
and the device is ready to be used for the next test. 

 
3.3 Personal Information in Network 

Flows 
Detecting whether an app has legitimately accessed a given 

re- source is straightforward: we compare its runtime 
behaviour with the permissions it had requested. Both users 
and re- searchers assess apps’ privacy risks by examining their 
re- quested permissions. This presents an incomplete picture, 
however, because it only indicates what data an app might ac- 
cess, and says nothing about with whom it may share it and 
under what circumstances. The only way of answering these 
questions is by inspecting the apps’ network traffic. However, 
identifying personal information inside network transmissions 
requires significant effort because apps and embedded third- 
party SDKs often use different encodings and obfuscation 
techniques to transmit data. Thus, it is a significant technical 
challenge to be able to de-obfuscate all network traffic and 
search it for personal information. This subsection discusses 
how we tackle these challenges in detail. 

 
Personal Information We  define “personal information”  as 
any piece of data that could potentially identify a specific 
individual and distinguish them from another. Online compa- 
nies, such as mobile app developers and third-party advertis- 
ing networks, want this type of information in order to track 
users across devices, websites, and apps, as this allows them to 
gather more insights about individual consumers and thus 
generate more revenue via targeted advertisements. For this 
reason, we are primarily interested in examining apps’ access to 
the persistent identifiers that enable long-term tracking, as well 
as their geolocation information. 

We focus our study on detecting apps using covert and side 
channels to access specific types of highly sensitive data, in- 
cluding persistent identifiers and geolocation information. No- 
tably, the unauthorized collection of geolocation information in 
Android has been the subject of prior regulatory action [82]. 
Table 1 shows the different types of personal information that we 
look for in network transmissions, what each can be used for, 
the Android permission that protects it, and the subsec- tion in 
this paper where we discuss findings that concern side and 
covert channels for accessing that type of data. 

 
Decoding Obfuscations In our previous work [66], we 
found instances of apps and third-party libraries (SDKs) us- 
ing obfuscation techniques to transmit personal information 
over the network with varying degrees of sophistication. To 
identify and report such cases, we automated the decoding of 
a standard suite of standard HTTP encodings to identify 

personal information encoded in network flows, such as gzip, 
base64, and ASCII-encoded hexadecimal. Additionally, we 
search for personal information directly, as well as the MD5, 
SHA1, and SHA256 hashes of it. 

After analyzing thousands of network traces, we still find 
new techniques SDKs and apps use to obfuscate and encrypt 
network transmissions. While we acknowledge their effort to 
protect users’ data, the same techniques could be used to hide 
deceptive practices. In such cases, we use a combination of 
reverse engineering and static analysis to understand the 
precise technique. We frequently found a further use of AES 
encryption applied to the payload before sending it over the 
network, often with hard-coded AES keys. 

A few libraries followed best practices by generating ran- 
dom AES session keys to encrypt the data and then encrypt 
the session key with a hard-coded RSA public key, sending 
both the encrypted data and encrypted session key together. 
To de-cipher their network transmissions, we instrumented 
the relevant Java libraries. We found two examples of third- 
party SDKs “encrypting” their data by XOR-ing a keyword 
over the data in a Viginère-style cipher. In one case, this was 
in addition to both using standard encryption for the data and 
using TLS in transmission. Other interesting approaches in- 
cluded reversing the string after encoding it in base64 (which 
we refer to as “46esab”), using base64 multiple times (base- 
base6464), and using a permuted-alphabet version of base64 
(sa4b6e). Each new discovery is added to our suite of decod- 
ings and our entire dataset is then re-analyzed. 
 

3.4 Finding Side and Covert Channels 
Once we have examples of transmissions that suggest the 
permission system was violated (i.e., data transmitted by an 
app that had not been granted the requisite permissions to do 
so), we then reverse engineer the app to determine how it 
circumvented the permissions system. Finally, we use static 
analysis to measure how prevalent this practice is among the 
rest of our corpus. 
 

Reverse Engineering After finding a set of apps exhibit- ing 
behaviour consistent with the existence of side and covert 
channels, we manually reverse engineered them. While the 
reverse engineering process is time consuming and not easily 
automated, it is necessary to determine how the app actually 
obtained information outside of the permission system. Be- 
cause many of the transmissions are caused by the same SDK 
code, we only needed to reverse engineer each unique cir- 
cumvention technique: not every app, but instead for a much 
smaller number of unique SDKs. The destination endpoint for 
the network traffic typically identifies the SDK responsible. 

During the reverse engineering process, our first step was 
to use apktool [7] to decompile and extract the smali bytecode 
for each suspicious app. This allowed us to analyse and iden- 
tify where any strings containing PII were created and from 
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Table 1: The types of personal information that we search for, the permissions protecting access to them, and the purpose for 
which they are generally collected. We also report the subsection in this paper where we report side and covert channels for 
accessing each type of data, if found, and the number of apps exploiting each. The dynamic column depicts the number of apps 
that we directly observed inappropriately accessing personal information, whereas the static column depicts the number of apps 
containing code that exploits the vulnerability (though we did not observe being executed during test runs). 

Data Type Permission Purpose/Use Subsection No of Apps 
Dynamic Static 

No of SDKs 
Dynamic Static 

Channel Type 
Covert Side 

IMEI READ_PHONE_STATE Persistent ID 4.1 13 159 2 2 2 0 
Device MAC ACCESS_NETWORK_STATE Persistent ID 4.2 42 12,408 1 1 0 1 
Email GET_ACCOUNTS Persistent ID Not Found       

Phone Number READ_PHONE_STATE Persistent ID Not Found       

SIM ID READ_PHONE_STATE Persistent ID Not Found       

Router MAC ACCESS_WIFI_STATE Location Data 4.3 5 355 2 10 0 2 
Router SSID ACCESS_WIFI_STATE Location Data Not Found       

GPS ACCESS_FINE_LOCATION Location Data 4.4 1 1 0 0 0 1 

 

which data sources. For some particular apps and libraries, 
our work also necessitated reverse engineering C++ code; we 
used IdaPro [1] for that purpose. 

The typical process was to search the code for strings cor- 
responding to destinations for the network transmissions and 
other aspects of the packets. This revealed where the data was 
already in memory, and then static analysis of the code re- 
vealed where that value first gets populated. As intentionally- 
obfuscated code is more complicated to reverse engineer, we 
also added logging statements for data and stack traces as new 
bytecode throughout the decompiled app, recompiled it, and 
ran it dynamically to get a sense of how it worked. 

 
 
 

Measuring Prevalence The final step of our process was  to 
determine the prevalence of the particular side or covert 
channel in practice. We used our reverse engineering analysis 
to craft a unique fingerprint that identifies the presence of an 
exploit in an embedded SDK, which is also robust against 
false positives. For example, a fingerprint is a string constant 
corresponding to a fixed encryption key used by one SDK, or 
the specific error message produced by another SDK if the 
operation fails. 

We then decompiled all of the apps in our corpus and 
searched for the string in the resulting files. Within smali 
bytecode, we searched for the string in its entirety as a const-
string instruction. For shared objects libraries like Unity, we 
use the strings command to output its printable strings. We 
include the path and name of the file as matching criteria to 
protect against false positives. The result is a set of all apps 
that may also exploit the side or covert channel in practice 
but for which our instrumentation did not flag for manual 
investigation, e.g., because the app had been granted the 
required permission, the Monkey did not explore that par- 
ticular code branch, etc. 

4 Results 

In this section, we present our results grouped by the type of 
permission that should be held to access the data; first we dis- 
cuss covert and side channels enabling the access to persistent 
user or device IDs (particularly the IMEI and the device MAC 
address) and we conclude with channels used for accessing 
users’ geolocation (e.g., through network infrastructure or 
metadata present in multimedia content). 

Our testing environment allowed us to identify five different 
types of side and covert channels in use among the 88,113 
different Android apps in our dataset. Table 1 summarizes our 
findings and reports the number of apps and third-party SDKs 
that we find exploiting these vulnerabilities in our dynamic 
analysis and those in which our static analysis reveals code 
that can exploit these channels. Note that this latter category— 
those that can exploit these channels—were not seen as doing 
so by our instrumentation; this may be due to the Automator 
Monkey not triggering the code to exploit it or because the app 
had the required permission and therefore the transmission 
was not deemed suspicious. 

 
4.1 IMEI 
The International Mobile Equipment Identity (IMEI) is a nu- 
merical value that identifies mobile phones uniquely. The 
IMEI has many valid and legitimate operational uses to iden- 
tify devices in a 3GPP network, including the detection and 
blockage of stolen phones. 

The IMEI is also useful to online services as a persistent 
device identifier for tracking individual phones. The IMEI is a 
powerful identifier as it takes extraordinary efforts to change 
its value or even spoof it. In some jurisdictions, it is illegal 
to change the IMEI [56]. Collection of the IMEI by third 
parties facilitates tracking in cases where the owner tries to 
protect their privacy by resetting other identifiers, such as the 
advertising ID. 
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Android protects access to the phone’s IMEI with the 
READ_PHONE_STATE permission. We identified two third- 
party online services that use different covert channels to ac- 
cess the IMEI when the app does not have the permission 
required to access the IMEI. 

 
 

Salmonads and External Storage Salmonads is a “third 
party developers’ assistant platform in Greater China” that 
offers analytics and monetization services to app develop- ers 
[67]. We identified network flows to salmonads.com com- ing 
from five mobile apps that contained the device’s IMEI, 
despite the fact that the apps did not have permission to ac- 
cess it. 

We  studied  one   of  these   apps   and  confirmed  that   it 
contained the Salmonads SDK, and then studied the 
workings of the SDK closer. Our  analysis  revealed  that the 
SDK exploits covert channels to read  this  informa-  tion 
from the following hidden file on the SD card: 
/sdcard/.googlex9/.xamdecoq0962.   If    not    present,    this file 
is created by the Salmonads SDK. Then, whenever the user 
installs another app with the Salmonads SDK embedded and 
with legitimate access to the IMEI, the SDK—through the 
host app—reads and stores the IMEI in this file. 

The covert channel is the apps’ shared access to the SD 
card. Once the file is written, all other apps with the same 
SDK can simply read the file instead of obtaining access 
through the Android API, which is regulated by the permis- 
sion system. Beyond the IMEI, Salmonads also stores the 
advertising ID—a resettable ID for advertising and analytics 
purposes that allows opting out of interest-based advertising 
and personalization—and the phone’s MAC address, which 
is protected with the ACCESS_NETWORK_STATE permission. 
We modified the file to store new random values and observed 
that the SDK faithfully sent them onwards to Salmonads’ do- 
mains. The collection of the advertising ID alongside other 
non-resettable persistent identifiers and data, such as the IMEI, 
undermines the privacy-preserving feature of the advertising 
ID, which is that it can be reset. It also may be a violation of 
Google’s Terms of Service [36], 

Our instrumentation allowed us to observe five different 
apps sending the IMEI without permission to Salmonads 
using this technique. Static analysis of our entire app corpus 
revealed that six apps contained the .xamdecoq0962 filename 
hardcoded in the SDK as a string. The sixth app had been 
granted the required permission to access the IMEI, which is 
why we did not initially identify it, and so it may be the app 
responsible for having initially written the IMEI to the file. 
Three of the apps were developed by the same company, 
according to Google Play metadata, while one of them has 
since been removed from Google Play. The lower bound on 
the number of times these apps were installed is 17.6 million, 
according to Google Play metadata. 

Baidu and External Storage Baidu is a large Chinese cor- 
poration whose services include, among many others, an on- 
line search engine, advertising, mapping services [14], and 
geocoding APIs [13]. We observed network flows contain- 
ing the device IMEI from Disney’s Hong Kong Disneyland 
park app (com.disney.hongkongdisneyland_goo) to Baidu do- 
mains. This app helps tourists to navigate through the Disney- 
themed park, and the app makes use of Baidu’s Maps SDK. 
While Baidu Maps initially only offered maps of mainland 
China, Hong Kong, Macau and Taiwan, as of 2019, it now 
provides global services. 

Baidu’s SDK uses the same technique as Salmonads to 
circumvent Android’s permission system and access the 
IMEI without permission. That  is,  it  uses  a  shared  file on 
the SD card so one Baidu-containing  app  with  the  right 
permission can store it for other Baidu-containing apps that 
do not have that permission. Specifically, Baidu uses the 
following file to store and share this data: 
/sdcard/backups/.SystemConfig/.cuid2. The file is a 
base64-encoded string that, when decoded, is an AES- 
encrypted JSON object that contains the IMEI as well as 
the MD5 hash of the concatenation of “com.baidu” and the 
phone’s Android ID. 

Baidu  uses  AES  in   CBC   mode   with   a   static key  
and  the  same  static  value  for   the   initializa-  tion 
vector (IV). These values are, in hexadecimal, 
33303231323130326469637564696162. The reason why 
this value is not superficially representative of a ran- 
dom hexadecimal string is because Baidu’s key is com- 
puted from the binary representation of the ASCII string 
30212102dicudiab—observe that when reversed, it reads 
as baidu cid 2012 12 03. As with Salmonads, we con- 
firmed that we can change the (encrypted) contents of this 
file and the resulting identifiers were faithfully sent onwards 
to Baidu’s servers. 

We observed eight apps sending the IMEI of the device to 
Baidu without holding the requisite permissions, but found 
153 different apps in our repository that have hardcoded the 
constant string corresponding to the encryption key. This in- 
cludes two from Disney: one app each for their Hong Kong 
and Shanghai (com.disney.shanghaidisneyland_goo) theme 
parks. Out of that 153, the two most popular apps were 
Samsung’s Health (com.sec.android.app.shealth) and Sam- 
sung’s Browser (com.sec.android.app.sbrowser) apps, both 
with more than 500 million installations. There is a lower 
bound of 2.6 billion installations for the apps identified as 
containing Baidu’s SDK. Of these 153 apps, all but 20 have 
the READ_PHONE_STATE permission. This means that they 
have legitimate access to the IMEI and can be the apps that 
actually create the file that stores this data. The 20 that do not 
have the permission can only get the IMEI through this covert 
channel. These 20 apps have a total lower bound of 700 
million installations. 



Approved for Public Release; Distribution Unlimited.  
28  

4.2 Network MAC Addresses 
The Media Access Control Address (MAC address) is a 6-byte 
identifier that is uniquely assigned to the Network Interface 
Controller (NIC) for establishing link-layer communications. 
However, the MAC address is also useful to advertisers and 
analytics companies as a hardware-based persistent identifier, 
similar to the IMEI. 

Android protects access to the device’s MAC address with 
the ACCESS_NETWORK_STATE permission. Despite this, we 
observed apps transmitting the device’s MAC address without 
having permission to access it. The apps and SDKs gain 
access to this information using C++ native code to invoke a 
number of unguarded UNIX system calls. 

 

Unity and IOCTLs Unity is a cross-platform game engine 
developed by Unity Technologies and heavily used by An- 
droid mobile games [77]. Our traffic analysis identified sev- 
eral Unity-based games sending the MD5 hash of the MAC 
address to Unity’s servers and referring to it as a uuid in the 
transmission (e.g., as an HTTP GET parameter key name). 
In this case, the access was happening inside of Unity’s C++ 
native library. We reverse engineered libunity.so to deter- 
mine how it was obtaining the MAC address. 

Reversing Unity’s 18 MiB compiled C++ library is more 
involved than Android’s bytecode. Nevertheless, we were 
able to isolate where the data was being processed precisely 
because it hashes the MAC address with MD5. Unity provided 
its own unlabelled MD5 implementation that we found by 
searching for the constant numbers associated with MD5; in 
this case, the initial state constants. 

Unity opens a network socket and uses an ioctl (UNIX 
“input-output control”) to obtain the MAC address of the WiFi 
network interface. In effect, ioctls create a large suite of 
“numbered” API calls that are technically no different than 
well-named system calls like bind or close but used for in- 
frequently used features. The behaviour of an ioctl depends 
on the specific “request” number. Specifically, Unity uses the 
SIOCGIFCONF2 ioctl to get the network interfaces, and then 
uses the SIOCGIFHWADDR3 ioctl to get the corresponding 
MAC address. 

We observed that 42 apps were obtaining and sending to 
Unity servers the MAC address of the network card with- out 
holding the ACCESS_NETWORK_STATE permission. To 
quantify the prevalence of this technique in our corpus of 
Android apps, we fingerprinted this behaviour through an er- 
ror string that references the ioctl code having just failed. 
This allowed us to find a total of 12,408 apps containing this 
error string, of which 748 apps do not hold the AC- 
CESS_NETWORK_STATE permission. 

 
2Socket ioctl get interface configuration 
3Socket ioctl get interface hardware address 

4.3 Router MAC Address 
Access to the WiFi router MAC address (BSSID) is protected 
by the ACCESS_WIFI_STATE permission. In Section 2, we 
exemplified side channels with router MAC addresses being 
ersatz location data, and discussed the FTC enacting millions 
of dollars in fines for those engaged in the practice of using 
this data to deceptively infer users’ locations. Android Nougat 
added a requirement that apps hold an additional location per- 
mission to scan for nearby WiFi networks [34]; Android Oreo 
further required a location permission to get the SSID and 
MAC address of the connected WiFi network. Additionally, 
knowing the MAC address of a router allows one to link dif- 
ferent devices that share Internet access, which may reveal 
personal relations by their respective owners, or enable cross- 
device tracking. 

Our analysis revealed two side channels to access the con- 
nected WiFi router information: reading the ARP cache and 
asking the router directly. We found no side channels that 
allowed for scanning of other WiFi networks. Note that this 
issue affects all apps running on recent Android versions, not 
just those without the ACCESS_WIFI_STATE permission. This 
is because it affects apps without a location permission, and 
it affects apps with a location permission that the user has not 
granted using the ask-on-first-use controls. 

 
Reading the ARP Table The Address Resolution Proto-  col 
(ARP) is a network protocol that allows discovering and 
mapping the MAC layer address associated with a given IP 
address. To improve network performance, the ARP protocol 
uses a cache that contains a historical list of ARP entries, i.e., 
a historical list of IP addresses resolved to MAC address, in- 
cluding the IP address and the MAC address of the wireless 
router to which the device is connected (i.e., its BSSID). 

Reading the ARP cache is done by opening the pseudo file 
/proc/net/arp and processing its content. This  file  is not 
protected by any security mechanism, so any app can ac- cess 
and parse it to gain access to router-based geolocation 
information without holding a location permission. We built 
a working proof-of-concept app and tested it for Android Pie 
using an app that requests no permissions. We also demon- 
strated that when running an app that requests both the AC- 
CESS_WIFI_STATE and ACCESS_COARSE_LOCATION per- 
missions, when those permissions are denied, the app will ac- 
cess the data anyway. We responsibly disclosed our findings 
to Google in September, 2018. 

We discovered this technique during dynamic analysis, 
when we observed one library using this method in prac- tice: 
OpenX [57], a company that according to their web- site 
“creates programmatic marketplaces where premium pub- 
lishers and app developers can best monetize their content by 
connecting with leading advertisers that value their au- 
diences.” OpenX’s SDK code was  not obfuscated and so we 
observed that they had named the responsible function 
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Table 2: SDKs seen sending router MAC addresses and also containing code to access the ARP cache. For reference, we report 
the number of apps and a lower bound of the total number of installations of those apps. We do this for all apps containing the 
SDK; those apps that do not have ACCESS_WIFI_STATE, which means that the side channel circumvents the permissions system; 
and those apps which do have a location permission, which means that the side channel circumvents location revocation. 

Contact Incorporation Total Prevalance Wi-Fi Permission No Location Permission 
SDK Name Domain Country (Apps) (Installs) (Apps) (Installs) (Apps) (Installs) 

AIHelp cs30.net United States 30 334 million 3 210 million 12 195 million 
Huq Industries huq.io United Kingdom 137 329 million 0 0 131 324 million 
OpenX openx.net United States 42 1072 million 7 141 million 23 914 million 
xiaomi xiaomi.com China 47 986 million 0 0 44 776 million 
jiguang jpush.cn China 30 245 million 0 0 26 184 million 
Peel peel-prod.com United States 5 306 million 0 0 4 206 million 
Asurion mysoluto.com United States 14 2 million 0 0 14 2 million 
Cheetah Mobile cmcm.com China 2 1001 million 0 0 2 1001 million 
Mob mob.com China 13 97 million 0 0 6 81 million 

 
getDeviceMacAddressFromArp. Furthermore, a close anal-  ysis 
of the code indicated that it would first try to get the data 
legitimately using the permission-protected Android API; this 
vulnerability is only used after the app has been explicitly de- 
nied access to this data. 

OpenX did not directly send the MAC address, but rather 
the MD5 hash of it. Nevertheless, it is still trivial to compute 

a MAC address from its corresponding hash: they are vul- 
nerable to a brute-force attack on hash functions because of 
the small number of MAC addresses (i.e., an upper bound of 
48 bits of entropy).4 Moreover, insofar as the router’s MAC 
address is used to resolve an app user’s geolocation using a 
MAC-address-to-location mapping, one need only to hash the 
MAC addresses in this mapping (or store the hashes in the ta- 
ble) and match it to the received value to perform the lookup. 

While OpenX was the only SDK that we observed ex- 
ploiting this side channel, we searched our entire app cor- 

pus for the string /proc/net/arp, and found multiple third- 
party libraries that included it. In the case of one of them, 

igexin, there are existing reports of their predatory be- 
haviour [15]. In our case, log files indicated that after 
igexin was denied permission to scan for WiFi, it read 

/system/xbin/ip, ran /system/bin/ifconfig,  and   then ran 
cat /proc/net/arp. Table 2 shows the prevalence of third-
party libraries with code to access the ARP cache. 

 
Router UPnP One SDK in Table 2 includes another tech- 
nique to get the MAC address of the WiFi access point: it uses 
UPnP/SSDP discovery protocols. Three of Peel’s smart re- 
mote control apps (tv.peel.samsung.app, tv.peel.smartremote, 
and tv.peel.mobile.app) connected to 192.168.0.1, the IP 
address of the router that was their gateway to the Internet. 
The router in this configuration was a commodity home router 
that supports universal plug-and-play; the app requested the 
igd.xml (Internet gateway device configuration) file through 

 
4Using commodity hardware, the MD5 for every possible MAC address 

can be calculated in a matter of minutes [40]. 

port 1900 on the router. The router replied with, among other 
manufacturing details, its MAC address as part of its UUID. 
These apps also sent WiFi MAC addresses to their own servers 
and a domain hosted by Amazon Web Services. 

The fact that the router is providing this information to 
devices hosted in the home network is not a flaw with Android 
per se. Rather it is a consequence of considering every app on 
every phone connected to a WiFi network to be on the trusted 
side of the firewall. 
 

4.4 Geolocation 
So far our analysis has showed how apps circumvent the per- 
mission system to gain access to persistent identifiers and data 
that can be used to infer geolocation, but we also found sus- 
picious behaviour surrounding a more sensitive data source, 
i.e., the actual GPS coordinates of the device. 

We identified 70 different apps sending location data to 45 
different domains without having any of the location permis- 
sions. Most of these location transmissions were not caused 
by circumvention of the permissions system, however, but 
rather the location data was provided within incoming pack- 
ets: ad mediation services provided the location data embed- 
ded within the ad link. When we retested the apps in a differ- 
ent location, however, the returned location was no longer as 
precise, and so we suspect that these ad mediators were us- 
ing IP-based geolocation, though with a much higher degree 
of precision than is normally expected. One app explicitly 
used www.googleapis.com’s IP-based geolocation and we 
found that the returned location was accurate to within a few 
meters; again, however, this accuracy did not replicate when 
we retested elsewhere [59]. We did, however, discover one 
genuine side channel through photo EXIF data. 
 

Shutterfly and EXIF Metadata We observed that the 
Shutterfly app (com.shutterfly) sends precise geolocation data 
to its own server (apcmobile.thislife.com) without hold- 
ing a location permission. Instead, it sent photo metadata 

http://www.googleapis.com/
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from the photo library, which included the phone’s precise 
location in its exchangeable image file format (EXIF) data. 
The app actually processed the image file: it parsed the EXIF 
metadata—including location—into a JSON object with la- 
belled latitude and longitude fields and transmitted it to 
their server. 

While this app may not be intending to circumvent the 
permission system, this technique can be exploited by a ma- 
licious actor to gain access to the user’s location. When- ever 
a new picture is taken by the user with geolocation en- abled, 
any app with read access to the photo library (i.e., 
READ_EXTERNAL_STORAGE) can learn the user’s precise 
location when said picture was taken. Furthermore, it also al- 
lows obtaining historical geolocation fixes with timestamps 
from the user, which could later be used to infer sensitive in- 
formation about that user. 

 
5 Related Work 
We build on a vast literature in the field of covert- and side- 
channel attacks for Android. However, while prior studies 
generally only reported isolated instances of such attacks or 
approached the problem from a theoretical angle, our work 
combines static and dynamic analysis to automatically detect 
real-world instances of misbehaviours and attacks. 

 
Covert Channels Marforio et al. [49] proposed several sce- 
narios to transmit data between two Android apps, including 
the use of UNIX sockets and external storage as a shared 
buffer. In our work we see that the shared storage is indeed 
used in the wild. Other studies have focused on using mobile 
noises [26, 70] and vibrations generated by the phone (which 
could be inaudible to users) as covert channels [3, 17]. Such 
attacks typically involve two physical devices communicating 
between themselves. This is outside of the scope of our work, 
as we focus on device vulnerabilities that are being exploited 
by apps and third parties running in user space. 

 
Side Channels Spreitzer et al. provided a good classifica- 
tion of mobile-specific side-channels present in the litera- 
ture [74]. Previous work has demonstrated how unprivileged 
Android resources could be to used to infer personal infor- 
mation about mobile users, including unique identifiers [72] 
or gender [51]. Researchers also demonstrated that it may be 
possible to identify users’ locations by monitoring the power 
consumption of their phones [52] and by sensing publicly 
available Android resources [91]. More recently, Zhang et al. 
demonstrated a sensor calibration fingerprinting attack that 
uses unprotected calibration data gathered from sensors like 
the accelerometer, gyroscope, and magnetometer [90]. Oth- 
ers have shown that unprotected system-wide information is 
enough to infer input text in gesture-based keyboards [72]. 
Research papers have also reported techniques that leverage 

lowly protected network information to geolocate users at the 
network level [2, 54, 82]. We extend previous work by re- 
porting third-party libraries and mobile applications that gain 
access to unique identifiers and location information in the 
wild by exploiting side and covert channels. 
 

6 Discussion 
Our work shows a number of side and covert channels that are 
being used by apps to circumvent the Android permissions 
system. The number of potential users impacted by these find- 
ings is in the hundreds of millions. In this section, we discuss 
how these issues are likely to defy users’ reasonable expecta- 
tions, and how these behaviours may constitute violations of 
various laws. 

We note that these exploits may not necessarily be mali- 
cious and intentional. The Shutterfly app that extracts geolo- 
cation information from EXIF metadata may not be doing 
this to learn location information about the user or may not be 
using this data later for any purpose. On the other hand, cases 
where an app contains both code to access the data through 
the permission system and code that implements an evasion 
do not easily admit an innocent explanation. Even less so for 
those containing code to legitimately access the data and then 
store it for others to access. This is particularly bad because 
covert channels can be exploited by any app that knows the 
protocol, not just ones sharing the same SDK. The fact that 
Baidu writes user’s IMEI to publicly accessible storage al- 
lows any app to access it without permission—not just other 
Baidu-containing apps. 
 

6.1 Privacy Expectations 
In the U.S., privacy practices are governed by the “notice and 
consent” framework: companies can give notice to consumers 
about their privacy practices (often in the form of a privacy 
policy), and consumers can consent to those practices by us- 
ing the company’s services. While website privacy policies 
are canonical examples of this framework in action, the per- 
missions system in Android (or in any other platform) is an- 
other example of the notice and consent framework, because 
it fulfills two purposes: (i) providing transparency into the 
sensitive resources to which apps request access (notice), and 
(ii) requiring explicit user consent before an app can access, 
collect, and share sensitive resources and data (consent). That 
apps can and do circumvent the notice and consent framework 
is further evidence of the framework’s failure. In practical 
terms, though, these app behaviours may directly lead to pri- 
vacy violations because they are likely to defy consumers’ 
expectations. 

Nissenbaum’s “Privacy as Contextual Integrity” framework 
defines privacy violations as data flows that defy contextual 
information norms [55]. In Nissenbaum’s framework, data 
flows are modeled by senders, recipients, data subjects, data 
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types, and transmission principles in specific contexts (e.g., 
providing app functionality, advertising, etc.). By circumvent- 
ing the permissions system, apps are able to exfiltrate data to 
their own servers and even third parties in ways that are likely 
to defy users’ expectations (and societal norms), par- ticularly 
if it occurs after having just denied an app’s explicit 
permission request. That is, regardless of context, were a user 
to explicitly be asked about granting an app access to per- 
sonal information and then explicitly declining, it would be 
reasonable to expect that the data then would not be accessi- 
ble to the app. Thus, the behaviours that we document in this 
paper constitute clear privacy violations. From a legal and 
policy perspective, these practices are likely to be considered 
deceptive or otherwise unlawful. 

Both a recent CNIL decision (France’s data protection au- 
thority), with respect to GDPR’s notice and consent require- 
ments, and various FTC cases, with respect to unfair and de- 
ceptive practices under U.S. federal law—both described in 
the next section—emphasize the notice function of the An- 
droid permissions system from a consumer expectations per- 
spective. Moreover, these issues are also at the heart of a re- 
cent complaint brought by the Los Angeles County Attorney 
(LACA) under the California State Unfair Competition Law. 
The LACA complaint was brought against a popular mobile 
weather app on related grounds. The case further focuses on 
the permissions system’s notice function, while noting that, 
“users have no reason to seek [geolocation data collection] 
information by combing through the app’s lengthy [privacy 
policy], buried within which are opaque discussions of [the de- 
veloper’s] potential transmission of geolocation data to third 
parties and use for additional commercial purposes. Indeed, 
on information and belief, the vast majority of users do not 
read those sections at all” [76]. 

 
6.2 Legal and Policy Issues 
The practices that we highlight in this paper also highlight 
several legal and policy issues. In the United States, for ex- 
ample, they may run afoul of the FTC’s prohibitions against 
deceptive practices and/or state laws governing unfair busi- 
ness practices. In the European Union, they may constitute 
violations of the General Data Protection Regulation (GDPR). 

The Federal Trade Commission (FTC), which is charged 
with protecting consumer interests, has  brought a number 

of cases under Section 5 of the Federal Trade Commission 
(FTC) Act [79] in this context. The underlying complaints 
have stated that circumvention of Android permissions and 
collection of information absent users’ consent or in a man- 
ner that is misleading is an unfair and deceptive act [84]. One 
case suggested that apps requesting permissions beyond what 
users expect or what are needed to operate the service were 
found to be “unreasonable” under the FTC Act. In another 

to collect information without obtaining users’ permission via 
the Android permission system, and failed to protect users 
from potential third-party exploitation of a related security 

flaw [81]. Finally, the FTC has pursued cases involving con- 
sumer misrepresentations with respect to opt-out mechanisms 
from tailored advertising in mobile apps more generally [83]. 

Also in the United States, state-level Unfair and Deceptive 
Acts and Practices (UDAP) statutes may also apply. These 
typically reflect and complement the corresponding federal 
law. Finally, with growing regulatory and public attention 

to issues pertaining to data privacy and security, data collec- 
tion that undermines users’ expectations and their informed 
consent may also be in violation of various general privacy 
regulations, such as the Children’s Online Privacy Protection 
Act (COPPA) [80], the recent California Privacy Protection 
Act (CCPA), and potentially data breach notification laws that 
focus on unauthorized collection, depending on the type of 
personal information collected. 

In Europe, these practices may be in violation of GDPR. 
In a recent landmark ruling, the French data regulator, CNIL, 
levied a 50 million Euro fine for a breach of GDPR’s trans- 
parency requirements, underscoring informed consent require- 
ments concerning data collection for personalized ads [25]. 
This ruling also suggests that—in the context of GDPR’s con- 
sent and transparency provisions—permission requests serve 
a key function of both informing users of data collection prac- 
tices and as a mechanism for providing informed consent [81]. 

Our analysis brings to light novel permission circumven- 
tion methods in actual use by otherwise legitimate Android 

apps. These circumventions enable the collection of informa- 
tion either without asking for consent or after the user has ex- 
plicitly refused to provide consent, likely undermining users’ 

expectations and potentially violating key privacy and data 
protection requirements on a state, federal, and even global 

level. By uncovering these practices and making our data 
public,5 we hope to provide sufficient data and tools for regu- 
lators to bring enforcement actions, industry to identify and 
fix problems before releasing apps, and allow consumers to 
make informed decisions about the apps that they use. 

 
7 Limitations and Future Work 

During the course of performing this research, we made cer- 
tain design decisions that may impact the comprehensiveness 
and generalizability of this work. That is, all of the findings 
in this paper represent lower bounds on the number of covert 
and side channels that may exist in the wild. 

Our study considers a subset of the permissions labeled by 
Google as dangerous: those that control access to user iden- 
tifiers and geolocation information. According to Android’s 
documentation, this is indeed the most concerning and pri- 
vacy intrusive set of permissions. However, there may be 

case, the FTC pursued a complaint under Section 5 alleging    
that a mobile device manufacturer, HTC, allowed developers 5https://search.appcensus.io/ 

https://search.appcensus.io/
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other permissions that, while not labeled as dangerous, can 
still give access to sensitive user data. One example is the 
BLUETOOTH permission; it allows apps to discover nearby 
Bluetooth-enabled devices, which may be useful for consumer 
profiling, as well as physical and cross-device tracking. Addi- 
tionally, we did not examine all of the dangerous permissions, 
specifically data guarded by content providers, such as ad- 
dress book contacts and SMS messages. 

Our methods rely on observations of network transmissions 
that suggest the existence of such channels, rather than search- 
ing for them directly through static analysis. Because many 
apps and third-party libraries use obfuscation techniques to 
disguise their transmissions, there may be transmissions that 
our instrumentation does not flag as containing permission- 
protected information. Additionally, there may be channels 
that are exploited, but during our testing the apps did not 
transmit the accessed personal data. Furthermore, apps could 
be exposing channels, but never abuse them during our tests. 
Even though we would not report such behavior, this is still 
an unexpected breach of Android’s security model. 

Many popular apps also use certificate pinning [28, 61], 
which results in them rejecting the custom certificate used by 
our man-in-the-middle proxy; our system then allows apps to 
continue without interference. Certificate pinning is rea- 
sonable behaviour from a security standpoint; it is possible, 
however, that it is being used to thwart attempts to analyse 
and study the network traffic of a user’s mobile phone. 

Our dynamic analysis uses the Android Exerciser Monkey 
as a UI fuzzer to generate random UI events to interact with 
the apps. While in our prior work we found that the Monkey 
explored similar code branches as a human for 60% of the 
apps tested [66], it is likely that it still fails to explore some 
code branches that may exploit covert and side channels. For 
example, the Monkey fails to interact with apps that require 
users to interact with login screens or, more generally, require 
specific inputs to proceed. Such apps are consequently not as 
comprehensively tested as apps amenable to automated 
exploration. Future work should compare our approaches to 
more sophisticated tools for automated exploration, such as 
Moran et al.’s Crashscope [53], which generates inputs to an 
app designed to trigger crash events. 

Ultimately, these limitations only result in the possibility 
that there are side and covert channels that we have not yet 
discovered (i.e., false negatives). It has no impact on the va- 
lidity of the channels that we did uncover (i.e., there are no 
false positives) and improvements on our methodology can 
only result in the discovery of more of these channels. 

Moving forward, there has to be a collective effort coming 
from all stakeholders to prevent apps from circumventing the 
permissions system. Google, to their credit, have announced 
that they are addressing many of the issues that we reported to 
them [33]. However, these fixes will only be available to users 
able to upgrade to Android Q—those with the means to own a 
newer smartphone. This, of course, positions privacy as a lux- 

ury good, which is in conflict with Google’s public pronounce- 
ments [58]. Instead, they should treat privacy vulnerabilities 
with the same seriousness that they treat security vulnerabili- 
ties and issue hotfixes to all supported Android versions. 

Regulators and platform providers need better tools to mon- 
itor app behaviour and hold app developers accountable by 
ensuring apps comply with applicable laws, namely by pro- 
tecting users’ privacy and respecting their data collection 
choices. Society should support more mechanisms, techni- 
cal and other, that empower users’ informed decision-making 
with greater transparency into what apps are doing on their 
devices. To this end, we have made the list of all apps that 
exploit or contain code to exploit the side and covert channels 
we discovered available online [8]. 
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List of Symbols, Abbreviations and Acronyms 

• APK - Android Package 

• BYOD - Bring your Own Device 

• MDM - Mobile Device Manager 

• SDK - Software Developers Kit 

• UI - User Interface 

 

Glossary of Terminology 
• Android The operating system at the time of this writing that is developed 

by Google used on mobile phones. 

• Android Package The file format for distributing Android mobile apps. 

• Background Application Application that is running on a mobile device 
but is not readily visible to the end user. 

• BYOD Bring Your Own Device Practice is where employees and workers 
can bring their own mobile devices into the workplace to be used for both 
work and personal purposes. 

• Dashboard The user interface we provided for allowing users to have 
control over the privacy settings for their applications on the Android 
phones. 

• Docker A containerization system that allows developers to package up 
applications with all their dependencies into a single image that can be 
moved to many different systems. 

• Fingerprint A unique signature that allows a larger amount of data to be 
uniquely identified. 
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