
 

 

 

 
 
BASELINING ALGORITHMIC AND SIDE-CHANNEL ISSUES WITH 
CHALLENGES EXPLOITATION (BASIC)

 
 
TWO SIX LABS 
 
SEPTEMBER 2019 
 
FINAL TECHNICAL REPORT 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 
 
 
 

STINFO COPY 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

 
 
 
 
 
 
 
 
 

AFRL-RI-RS-TR-2019-181 

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND  



NOTICE AND SIGNATURE PAGE 

Using Government drawings, specifications, or other data included in this document for any purpose other 
than Government procurement does not in any way obligate the U.S. Government. The fact that the 
Government formulated or supplied the drawings, specifications, or other data does not license the holder 
or any other person or corporation;  or convey any rights or permission to manufacture, use, or sell any 
patented invention that  may relate to them.  

This report is the result of contracted fundamental research deemed exempt from public affairs security 
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy 
clarification memorandum dated 16 Jan 09.  This report is available to the general public, including 
foreign nations.  Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil). 

AFRL-RI-RS-TR-2019-181 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

FOR THE CHIEF ENGINEER: 

            / S / 
WALTER S. KARAS
Work Unit Manager 

              / S / 
JAMES S. PERRETTA
Deputy Chief, Information 
Exploitation & Operations Division 
Information Directorate 

This report is published in the interest of scientific and technical information exchange, and its publication 
does not constitute the Government’s approval or disapproval of its ideas or findings. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information 
if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)

SEPTEMBER 2019 
2. REPORT TYPE

FINAL TECHNICAL REPORT 
3. DATES COVERED (From - To)

JAN 2015 – JUN 2019 
4. TITLE AND SUBTITLE

BASELINING ALGORITHMIC AND SIDE-CHANNEL ISSUES WITH 
CHALLENGES EXPLOITATION (BASIC)

5a. CONTRACT NUMBER 
FA8750-15-C-0077 

5b. GRANT NUMBER 
N/A 

5c. PROGRAM ELEMENT NUMBER 
61101E 

6. AUTHOR(S)
 
Scott Tenaglia

5d. PROJECT NUMBER 
STAC 

5e. TASK NUMBER 
IN 

5f. WORK UNIT NUMBER 
VI 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Two Six Labs
901 N. Stuart St., Suite 1000
Arlington, VA 22203

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA        DARPA/I20 
525 Brooks Road                675 North Randolph Street 
Rome NY 13441-4505              Arlington, VA 22203 

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI 
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-181
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited.  This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Final report on the STAC project, Space/Time Analysis for Cybersecurity. Report covers performance of the Two Six 
Labs BASIC team, the Control team. Includes information on workflows.

15. SUBJECT TERMS

Algorithmic Complexity, Space and Time Vulnerabilities, Control Team, Cybersecurity Exploits, Workflows

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
WALTER S. KARAS 

a. REPORT
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

19b. TELEPHONE NUMBER (Include area code) 
N/A

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

26



i  

TABLE OF CONTENTS 
List of Figures..................................................................................................iii 
List of Tables……………………………………………………………………….…...iii 
1 SUMMARY ................................................................................................................... 1 

2 INTRODUCTION ......................................................................................................... 1 

2.1 Program Description ................................................................................................ 1 

2.2 Two Six Labs Role .................................................................................................. 1 

2.3 Methodology ........................................................................................................... 1 

2.4 Offshoot technology ................................................................................................ 2 

2.5 Performer Results .................................................................................................... 2 

3 METHODS, ASSUMPTIONS, AND PROCEDURES ................................................. 3 

4 TECHNIQUES AND WORKFLOW ............................................................................ 4 

4.1 Profiling ................................................................................................................... 4 

4.1.1 Advantages .............................................................................................................. 4 

4.1.2 Disadvantages.......................................................................................................... 4 

4.2 Program Interaction ................................................................................................. 5 

4.2.1 Advantages .............................................................................................................. 5 

4.2.2 Disadvantages.......................................................................................................... 5 

4.3 Patching and Code Injection .................................................................................... 5 

4.3.1 Advantages .............................................................................................................. 6 

4.3.2 Disadvantages.......................................................................................................... 6 

4.4 Simulation ............................................................................................................... 6 

4.4.1 Advantages .............................................................................................................. 7 

4.4.2 Disadvantages.......................................................................................................... 7 

4.5 Debugging ............................................................................................................... 7 

4.5.1 Advantages .............................................................................................................. 8 

4.5.2 Disadvantages.......................................................................................................... 8 

4.6 Decompilation ......................................................................................................... 8 

4.7 Use Case .................................................................................................................. 8 

4.7.1 Advantages .............................................................................................................. 9 

4.7.2 Disadvantages.......................................................................................................... 9 

5 BASICLLE .................................................................................................................. 10 

6 TOOLS ......................................................................................................................... 11 

6.1 ACSploit ................................................................................................................ 11 



ii  

6.1.1 Presentations.......................................................................................................... 11 

6.2 Audria .................................................................................................................... 12 

6.3 Byteman ................................................................................................................ 12 

6.4 BytecodeCounter ................................................................................................... 12 

6.5 BytecodeViewer .................................................................................................... 13 

6.6 Debug JDK ............................................................................................................ 13 

6.7 Eclipse Debugger .................................................................................................. 13 

6.8 JD-GUI .................................................................................................................. 13 

6.9 JProfiler ................................................................................................................. 13 

6.10 Jython .................................................................................................................... 13 

6.11 Luyten.................................................................................................................... 13 

6.12 Libmaap ................................................................................................................. 14 

6.13 Soot........................................................................................................................ 14 

7 STAC TOOLS EVALUATION ................................................................................... 15 

8 RESULTS AND DISCUSSION .................................................................................. 16 

8.1 Engagement 2 ........................................................................................................ 16 

8.2 Engagement 4 ........................................................................................................ 16 

8.3 Engagement 5 ........................................................................................................ 16 

8.4 Engagement 6 ........................................................................................................ 17 

8.5 Engagement 7 ........................................................................................................ 17 

9 CONCLUSION ............................................................................................................ 19 

10 REFERENCES ............................................................................................................ 20 

11 List of Symbols, Abbreviations, and Acronyms ........................................................... 20 
 
  



iii  

 

FIGURES 

Figure 1: BASIC Team Workflows .........................................................................................3 

Figure 2: Percentage accuracy by question type for Researchers and Control Team (Image 
from Apogee Research Engagement 7 Report) ................................................................... 17 

 

 

 

 

 

 
 

TABLES 

Table 1: Two Six Labs Engagement 7 Results .................................................................. ..18



Approved for Public Release; Distribution Unlimited.  
 1  

 

1 SUMMARY 
THE VIEWS AND CONCLUSIONS CONTAINED IN THIS DOCUMENT ARE THOSE OF 
THE AUTHORS AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE 
OFFICAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF THE DEFENSE 
ADVANCED RESEARCH PROJECTS AGENCY OR THE US GOVERNMENT. 
 
 
 
2 INTRODUCTION 

 
2.1 Program Description 

 
The Space/Time Analysis for Cybersecurity (STAC) program seeks to enable analysts to 
identify algorithmic complexity (AC) and side channel (SC) vulnerabilities, in both 
space and time, in software at levels of scale and speed great enough to support a 
methodical search for them in the software upon which the U.S. government, military, 
and economy depend. 

 
2.2 Two Six Labs Role 

 
Two Six Labs BASIC (Baselining Algorithmic and Side-channel Issues with Challenges) 
team functioned as the control for TA1 performers. 

 
TA1 performers were tasked with creating beyond state-of-the-art technology to enable 
automated identification of AC vulnerabilities. 

 
Two Six Labs team made use of skilled analysts and current tools to establish a baseline 
of best performance for comparison against TA1 development efforts. 

 
Challenge programs created by the TA2 performers were used in a series of evaluation 
events throughout the life of the STAC program to measure the performance of the 
control team (Two Six Labs BASIC team) against the TA1 performers’ novel tools and 
techniques. 

 
The overall results of these engagements can be found in summary form here, or in 
considerably more granular detail in the engagement reports filed by the BASIC team. 

 
2.3 Methodology 

 
To establish, maintain, and improve on current best practices for AC vulnerability 
exploitation, a series of workflows were developed by the BASIC team over the life of 
the program. The conceptual structure of the workflows was flexible, allowing the team 
to adapt to changing conditions during the challenges, and the team was expected to 
make use of the current best software available, which meant updating or changing 
programs and utilities used over the life of the program. 

 
 
 
 



Approved for Public Release; Distribution Unlimited.  
 2  

As part of the development of these workflows, a toolkit of utilities and training 
materials was compiled and named BASICLLE (Baselining Algorithmic and Side-
channel Issues with Challenges Live Linux Environment), a ready-to-use Linux ISO 
intended for use by an analyst during engagement challenges (though the tools and 
workflows are broad enough to work on or with any real-world challenge in the AC 
space). 

 
2.4 Offshoot technology 

 
Over the life of the program, a series of workflows for discovering and exploiting AC 
vulnerabilities were developed, see section 3 for a full breakdown of these workflows 
and attendant technologies. 

 
Additionally, as part of the process of developing workflows and participating in the 
engagement challenges, the Two Six Labs BASIC team was also allowed to develop their 
own custom tool called ACSploit—a set of worse-case inputs to commonly used 
algorithms. ACSploit was successfully utilized over the life of the STAC program, 
demonstrated publicly at Black Hat Asia 2019 [1], and released publicly on Github [2]. 

 
2.5 Performer Results 

 
For a quantitative analysis of performance by the various STAC teams, and particularly 
for a measure of the BASIC team against the TA 2 performers, we have included data 
gathered by TA4 over the course of the STAC program. 

 
TA4 handled STAC challenge questions for all performers, and recorded the results for 
each of the engagements. 

 
See section 8, Results and Discussion, for a high-level breakdown of performer 
results, or the reports submitted by TA4 for the full documents. 

  



Approved for Public Release; Distribution Unlimited.  
 3  

 
 
 
 

 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

The BASIC team made use of a workflow to solve challenge problems. This workflow 
was refined repeatedly over the course of the engagements to provide a foundation for 
analysis utilizing the tools and techniques established by the team. 

 
Lessons learned from the engagements produced six distinct workflows classified along 
two major axes: interactive vs. non-interactive and top-down vs. bottom-up. 

 
The first axis divides workflows on the degree to which they require a running 
instance of the program. 

 
Fully interactive workflows operate directly on the running program, while non-
interactive workflows never run the program. 

 
The second axis indicates how the workflow builds understanding of the program. A 
bottom-up workflow breaks the program down into a more fundamental representation 
whose components are each analyzed in turn. A top-down workflow, on the other hand, 
attempts to analyze the program as a whole. Eventually, all workflows should identify 
one or more points of interest (POIs), particular pieces of code (e.g. methods, loops, etc.) 
that may contain an AC or SC vulnerability. Figure 1 plots the six workflows along these 
axes. 

 

Figure 1: BASIC Team Workflows 
 
 
 

 



Approved for Public Release; Distribution Unlimited.  
 4  

4 TECHNIQUES AND WORKFLOW 

4.1 Profiling 
 

Profiling is a top-down dynamic analysis method that measures a program’s memory 
usage, execution time, and frequency of instructions executed, as well as other 
program and system information during calls to targeted functions. 

 
A profiling tool instruments the program and monitors its behavior, displaying the 
collected statistics to the operator. Java profilers usually rely on the introspection 
features of the Java Virtual Machine (JVM) that is executing the target program. 
Profiling provides a simple way to quickly understand how the program’s resource 
usage changes in response to different inputs. 

 
In the context of STAC, profiling helps an analyst gain a rough, but focused, 
understanding of a program's runtime artifacts and behavior. This assists in the discovery 
of side channel and algorithmically complex POIs, as well as in determining the 
reachability of POIs. An example of this would be identifying a list of methods that 
consume the most runtime for specific program inputs, potentially leading to the 
discovery of an SC Time vulnerability. 

 
This workflow is useful: 

 
1. For finding POIs without prior detailed static analysis. An analyst can 

run the program several times with different inputs and look for methods 
that consume significant CPU time or memory for those inputs 

2. When developing a POC, as profiling is a simple way to ensure that 
the target method is invoked the appropriate number of times and 
confirm an analyst’s understanding of the POI targeted by the POC 

4.1.1 Advantages 
 

1. Can reveal AC POIs 
2. Allows analysts to verify that AC POCs work as expected 

 
4.1.2 Disadvantages 

 
1. Manual 
2. Limited to observations of behavior induced by known inputs 
3. Separating signal and noise in performance statistics can be difficult 
4. Performance under profiling can differ significantly from real-world 

performance due to profiler overhead 
  



Approved for Public Release; Distribution Unlimited.  
 5  

4.2 Program Interaction 
 

Program interaction is the process of running the application and providing input to drive 
its operations. This can be done either through pre-written scripts that remove the human 
from the loop or via real-time manual usage of the program UI. This workflow does not 
modify or “peek 
inside” the program. Rather, as an extremely top-down approach, it works entirely from 
the outside to build a holistic picture of program behavior. 

 
Interacting directly with the program can be a powerful tool to understanding its features. 
By manually analyzing program’s behaviors and user interface, the analyst builds a top-
down view of program functionality. This helps the analyst prioritize the parts of code on 
which they wish to perform deeper analysis, such as disassembly or decompilation. 
Automating interaction with the program through scripting allows the analyst to 
repeatably gather data on a variety of aspects of program behavior, from timing to RAM 
usage, and can be a significant aid in uncovering SC vulnerabilities and confirming all 
types of POCs. 

 
This workflow is useful: 

 
1. For initial triage and exploration of the program 
2. For final tweaking of POCs and exploitation development 
3. For generating truly accurate data as ground truth for further work 
4. For generating data for simulation 

 
4.2.1 Advantages 

 
1. Requires minimal prior understanding 
2. Generates data on all program outputs (intentional and unintentional) 
3. Automatable 

 
4.2.2 Disadvantages 

 
1. Limited to the actions offered/supported by the program UI 
2. Limited feedback (program output only) 

 
4.3 Patching and Code Injection 

 
Because of the structure of executable .jar programs and their execution by the JVM, it 
is easy to patch existing code and/or inject new code to alter the functioning of the target 
program. This process is heavily influenced by knowledge gained from decompilation. 
Patching and injecting code can be a shortcut to achieving some of the same goals as 
debugging and program interaction with much less time and effort invested by the 
analyst. 
 
Patching an existing program can be an efficient way to perform dynamic analysis. 
Potential results range from determining code reachability (similar to debugging) to 
modifying fundamental program operations. Variables can be assigned to trigger some 



Approved for Public Release; Distribution Unlimited.  
 6  

AC/SC effect, even if the way users modified those variables are unknown. In this 
manner, patching an existing program can be a fast and effective way to validate 
suspected attack vectors. 

 

For several applications, it is necessary for an AC/SC attacker to coordinate with other 
users of the challenge program. In this scenario, scripting a solution that performs 
normal challenge program behavior for most operations would be cumbersome. 
Changing the client program to insert malicious input at the appropriate time(s) is often 
far simpler. 

This workflow is useful: 
 

1. When the source code is well-understood by the analyst 
2. For performing small modifications to the program logic 

 
4.3.1 Advantages 

 
1. Allows the analyst to test hypotheses regarding program behavior by 

monitoring and dumping internal program state 
2. Allows for transformation of program into a simulator of its own behavior 
3. Facilitates easy creation of POCs (e.g. turning the client 

program into a “malicious” client) 
 
4.3.2 Disadvantages 

 
1. Requires understanding of source code layout and semantics 

 
4.4   Simulation 

 
Simulation is the process of modeling a possibly simplified subset of program behavior 
in a script to determine the likely results of exploiting a potential attack vector. The 
simulation workflow requires a custom script/program written for the user to interact 
with, and is meant to model only a single aspect of the program. This differs from the 
scripting component of the program interaction workflow, which uses scripts to interact 
with the actual target program.  Simulation is also distinct from the patching workflow, 
which alters or augments the target program rather than simplifying it. 

 
The goal of simulation is to simplify the target program's execution to the essentials 
relevant to an attack vector. This quickly determines if it is even possible for an attack 
vector to produce the desired effect on the target program. The simulation often makes 
many assumptions and simplifications in the attacker's favor since, if the attack vector is 
not effective in this most favorable world, it will certainly not be effective against the 
actual program. 
 
 
 

 



Approved for Public Release; Distribution Unlimited.  
 7  

This workflow is useful: 
 

1. For modeling side-channels in space, when possible sizes and their 
distribution are already known 

2. For modeling side-channels in time, when simulating a "perfect" 
environment without extra noise to see if an attack vector is even 
possible 
 

4.4.1 Advantages 
 

1. Simplifying assumptions allow quick development of prototype simulations 
2. Simulations can definitively rule out POIs, providing a rare shortcut to 

negative answers on SC problems 
3. Can easily be scaled (e.g. by running longer) 
4. Combines well with more active methods (patching, profiling, etc.) 

 
4.4.2 Disadvantages 

 
1. Requires upfront work to create the simulation code/program 
2. Results may not be useful (i.e. a simulation showing a POI is vulnerable 

may not help develop a POC to exploit the POI) 
3. Incorrectly chosen or overly broad assumptions may invalidate simulation results 

 
4.5 Debugging 

 
Debugging is a bottom-up dynamic program analysis process for identifying, locating, 
and investigating programming errors in an application. A tool called a “debugger” 
wraps around the program and allows fine-grained runtime introspection. Unlike 
profiling, which aggregates data about the program’s interaction with the environment, 
debugging allows actual program states to be observed and manipulated through 
debugger-specific functionality, such as breakpoints. 

 
State information gathered at each breakpoint allows the analyst to iteratively change 
program inputs until the desired state is reached. This technique creates a feedback 
loop between the analyst and the program, similar to how an automated fuzzer mutates 
inputs based on dynamic code coverage information. 

 
Using a debugger helps an operator gain a precise understanding of a program's state at a 
given point in execution when provided with a given set of inputs. This assists in 
discovering side- channel and algorithmic complexity POIs, as well as in determining the 
reachability of POIs. As an example, consider a program that compares user input to a 
secret password character-by- character. The analyst would place a breakpoint at the 
comparison instruction, most likely inside a loop, causing the program to hit the 
breakpoint once for each character in the password, thus leaking the length of this secret. 

 
 
 
 



Approved for Public Release; Distribution Unlimited.  
 8  

 
This workflow is useful: 

 
1. When modifying the program state at a specific point in execution to alter the program’s 

control path. This is useful for artificially generating worst-case conditions without 
knowing the worst-case inputs 

 
2. When micro-level observations of the program one instruction and/or 

source code line at a time are needed to explore a specific POI or 
hypothesis about program behavior 

 
3. For observing runtime behavior and program state to add insight to static 

code review. For example, a worst-case complexity that is hard to spot 
via manual code review may become apparent when the program is run 

 
4.5.1 Advantages 

 
1. Enables analysis of code reachability 
2. Enables inspection of internal program state 

 
4.5.2 Disadvantages 

 
1. Limited to observations of behavior induced by known inputs 
2. Manual, error-prone, and time-consuming 
3. Requires some pre-existing knowledge of the source code layout of the program 

 
4.6 Decompilation 

 
Decompilation is a form of reverse engineering that translates compiled code to a more 
abstract representation for analysts or automated tools to consume. It is a bottom-up 
static workflow that aims to recover a source code’s individual files representing the 
target program from its compiled binary. This workflow thus allows for more rapid and 
thorough analysis of the target program by analysts, as source code is much more 
semantically accessible to humans than compiled binaries. Recovering a source 
representation of the target program also presents an opportunity to create modified 
versions of the program for various analytic purposes (see the Patching workflow). 

 
4.7 Use Case 

 
Decompilation is the only form of static analysis used by the STAC Control Team. It is 
used on its own to help analysts gain a semantic understanding of how a program works 
and to input into other workflows. Semantic understanding aids in the search for 
locations of potential SC or AC vulnerabilities as well as determining how program 
inputs reach vulnerable code. This latter information supplements other workflows with 
capabilities not readily available in their associated tooling. 

 
 
 



Approved for Public Release; Distribution Unlimited.  
 9  

 
 
Decompilation is useful when source code is unavailable, and the operator requires an 
in-depth understanding of one or more of the program’s features. Decompilation is less 
useful when the compiled code decompiles to a source that is not easily understood 
because of either intentional obfuscation or because the scale of the decompiled source 
exceeds the limits of human consumption and comprehension. 

 
In summary, decompilation workflow is useful in two ways: 

 
1. When source code is unavailable 
2. To complement “black-box” challenge analysis by manually 

tracing an input value’s execution path. This is useful for seeing the bounds 
placed on the control flow path that the input traverses and determining if 
hitting these bounds could cause information leaks 

 
4.7.1 Advantages 

 
1.        Provides a “ground truth” understanding for other workflows 
2. Provides a baseline understanding of program flow and function for analysts 

Can be performed as deep or shallow as desired 
4.7.2 Disadvantage 

 
Fully manual, therefore hard to scale and coordinate between analysts and prone to 
human error: Time-consuming 

  



Approved for Public Release; Distribution Unlimited. 
 10 

5 BASICLLE 

The Baselining Algorithmic and Side-channel Issues with Challenges Live Linux 
Environment, or BASICLLE (pronounced “basically”), is a custom Linux distribution 
created to package AC and SC vulnerability discovery tools in a convenient ISO 
package. 

The concept was initially tested as a virtual machine, then converted to an ISO 
for easy distribution on DVDs or flash drives, which is useful for bringing to a 
live Engagement or location with restricted internet access. 

BASICLLE was established early in the program’s lifecycle and revised several times 
over the course of the program. BASICLLE training materials were utilized by new 
staff assigned to the BASIC team. 

5.1 Training 

The BASIC team created a set of documentation covering how to use the tools installed 
on BASICLLE, along with the workflows developed by the BASIC team, to find and 
exploit AC and SC vulnerabilities in Java programs. 
The training material was intended to provide a technically skilled individual (without 
extensive knowledge of AC/SC exploits) proficiency in a variety of reverse engineering 
techniques used by the BASIC team over the course of the STAC program. 

These training documents were included as part of the BASICLLE package. 



Approved for Public Release; Distribution Unlimited.  
 11  

 
 
 

 

6 TOOLS 

The suite of tools utilized by the BASIC team and documented in the BASICLLE 
training materials over the life of the STAC program was extensive. A summary and 
brief description of those tools follows. 

 
Note that not all tools were used for the full duration of the program, as for example, 
a shift in focus from Java 7 to Java 8 around Engagement 5 meant some tools became 
obsolete due to a lack of support for the newer version of Java. 

 
Likewise, some tools used very early in the program may have been dropped before 
they were included in the BASICLLE training materials, whether due to 
underperformance, or the availability of stronger alternatives. 

 
The list should prove suitable for providing a snapshot of the types of utilities 
utilized by the BASIC team. 

 
Note that this list should not be taken as an authoritative or immutable list of ‘perfect 
tools’, but rather, the tools that best fit the needs of the team based on the challenges 
encountered during the STAC program. The training documentation created by the 
BASIC team encourages analysts to explore these and other tools to find the best fit for 
the job at hand. 

 
6.1 ACSploit 

 
An offshoot of work performed by the BASIC team, ACSploit is a tool (located on a 
GitHub repo [2]) to generate worst-case inputs for commonly used algorithms. These 
worst-case inputs cause the target program to utilize a large amount of resources (e.g. 
time or memory). 

 
The team has used ACSploit to discover weaknesses in several open source software 
programs, with all information responsibly disclosed to the authors/maintainers. 
ACSploit grew organically as a way to quickly triage well known algorithms that 
repeatedly appeared in the STAC challenge problems. ACSploit does not find AC 
vulnerabilities like TA1 performer technology, rather it tests for the existence of a 
vulnerability by generating an input known to trigger it, should it exist. It is more akin 
to exploit frameworks like Metasploit that generate exploits for known vulnerabilities, 
rather than find vulnerabilities in programs. 

 
6.1.1 Presentations 

 
ACSploit was presented at the Black Hat Asia conference [1]. The tool was 
demonstrated by the Principal Investigator Scott Tenaglia, who performed a live 
demonstration, and presented background information on the BASIC team’s work in 
creating the tool. 
 
 

 



Approved for Public Release; Distribution Unlimited.  
 12  

6.2 Audria 
 

Audria is a tool for reading various program statistics from the /proc filesystem. Audria 
can monitor the following statistics: 

1. current and average CPU usage 
2. virtual memory usage (peak, resident set, swap etc.) 
3. IO load (current/total read/writes with and without buffers) 
4. time spent in user/system mode 
5. page faults 
6. and other information 

 
Audria can monitor a single process, a group of processes, or all currently running 
processes. It can watch existing processes or spawn processes and watch them directly 
from startup. Audria is designed to run in batch mode at very short intervals and thus 
allows very detailed inspections of the resource usage of a process. Audria is a useful 
complement to a debugger. 

 
6.3 Byteman 

 
Byteman is a bytecode manipulation tool that makes it simple to manipulate Java 
applications at load time and/or runtime. Byteman does not rewrite or alter the original 
program code, so it can even modify core Java classes such as String, Thread, etc. 
Byteman uses an Event Condition Action (ECA) rule language based on Java. ECA rules 
are used to specify where, when, and how the source Java code of the target application 
should be modified. 

 
Byteman provides the following four main features: 

 
1. execution tracing of specific code paths and displaying application and JVM state 
2. subverting normal execution by changing application or JVM state, 

making unscheduled method calls, or forcing an unexpected 
return or throw 

3. orchestrating the timing of independent application threads 
4. monitoring and gathering statistics on application and JVM performance 

 
The Byteman core engine is a general-purpose code injection program capable of 
injecting inline Java code into almost any location reachable during execution of a Java 
method. Byteman rule conditions and actions can employ all the normal Java built-in 
operations in order to test and modify program state. They can also invoke application 
and JVM methods that are in scope at the injection point. 

 
6.4 BytecodeCounter 

 
BytecodeCounter is a JVM agent library that counts the number of Java bytecode 
instructions executed by a Java application on a per-method basis. 
 
 

 



Approved for Public Release; Distribution Unlimited.  
 13  

6.5 BytecodeViewer 
 
BytecodeViewer is a GUI application for viewing and editing decompiled Java code, 
decompiled bytecode, and disassembled bytecode. BV comes with five decompilers: JD-
GUI/Core, Procyon, CFR, Fernflower, and Krakatau. 
BytecodeViewer also provides: 

 
1. DEX2JAR conversion 
2. JAR2DEX conversion 
3. APK decompilation 
4. Smali / Baksmali integration 
5. Search utilities 
6. Plugin system 

 
6.6 Debug JDK 

 
The Debug JDK is a debug build of the Java Development Kit (JDK) with certain 
additional debug features enabled. 

 
6.7 Eclipse Debugger 

 
The Java IDE Eclipse can debug a Java application using source code decompiled 
from a JAR with a tool such as JD-GUI. 

 
6.8 JD-GUI 

 
JD-GUI is a standalone graphical utility that decompiles “.class” files and 
displays the reconstructed Java source code. 

 
6.9 JProfiler 

 
JProfiler is a Java profiler that measures and displays detailed performance 
information, including CPU usage, memory usage, and thread performance. 

 
JProfiler is a commercial product that requires a purchased license after the trial period 
ends. 

 
6.10 Jython 

 
Jython is an implementation of Python in pure Java that allows the rapid scripting 
capabilities of Python to be used on Java classes. Jython allows Python code to interact 
with and inspect Java classes and objects. Jython works directly on class files and Java 
bytecode so there is no need for decompilation. 

 
6.11 Luyten 

 
Luyten is a standalone graphical utility that decompiles “.class” files and displays the 
reconstructed Java source code. It is a GUI built on top of the Procyon Java decompiler. 

 



Approved for Public Release; Distribution Unlimited.  
 14  

Luyten is especially useful when dealing with Java 8 code, as JD-GUI does not fully 
support all Java 8 bytecode. 
 

6.12 Libmaap 
 
Early in the program, Libmaap was a set of open source programs and ‘glue code’ used 
to analyze binaries from the Google Play marketplace, specifically to identify the most 
common libraries used by the most popular apps on the marketplace. 

 
Usage of this tool was discontinued however, after a decision was made by the team to 
avoid targeting live Android code for vulnerabilities. 

 
6.13 Soot 

 
Soot is a Java manipulation and optimization framework. Soot provides intermediate 
representation languages for analysis, instrumentation, optimization, and visualization of 
Java and Android applications. 

 
Soot’s intermediate representations are: 

 
• Baf: a streamlined representation of bytecode that is simple to manipulate 
• Jimple: a typed 3-address intermediate representation suitable for optimization 
• Shimple: an SSA variation of Jimple 
• Grimp: an aggregated version of Jimple suitable for decompilation and 

code inspection 
 
There is an Eclipse plugin for Soot to streamline transformations. 

  



Approved for Public Release; Distribution Unlimited.  
 15  

 
 

7 STAC TOOLS EVALUATION 

At the end of 2018, the team was asked to perform an analysis of the tools developed by 
the TA1 performers. This included tools from Iowa State, Northwestern, Vanderbilt, 
Utah, Draper, UC Boulder, University of Maryland, and GrammaTech. 

 
There were considerable difficulties building and running many of the tools, as the 
majority were custom programs built for specific runtime environments that did not 
always translate cleanly to an easy package for the BASIC team to test. However, this is 
to be expected of prototype solutions undergoing active development in an ongoing 
DARPA program. Full results can be viewed in the submitted report file [3]. 

  



Approved for Public Release; Distribution Unlimited.  
 16  

 
 

 

8 RESULTS AND DISCUSSION 

As the control team for the STAC program, the BASIC team was used as a basis for 
comparison with the automated tools and techniques developed by the TA1 performers. 

 
Full reports for each engagement were submitted by the TA4 performer. A summary of 
top-level results is included here. 

 
Note that aggregate scores were provided for engagements 2 and 4, as 1 and 3 were live 
versions of the same engagement questions, and the results were consolidated by TA4, 
the performer in charge of the engagement organization, before they consolidated the 
testing on the future engagements (from 5 to 7). 

 
Terms used in the reports 

 
• TPR: True Positive Rate, the ratio of the number of correct vulnerable 

response to total number of vulnerable questions answered 
 

• TNR: True Negative Rate the ratio of the number of correct non-vulnerable 
responses to the total number of non-vulnerable questions answered 

 
8.1 Engagement 2 

 
Two Six Labs answered all of the E2 questions with a 71% accuracy. Two Six Labs 
had an 86% accuracy and a 70% accuracy for SC Space and SC Time vulnerabilities 
respectively. 

 
8.2 Engagement 4 

 
Two Six Labs answered 39 questions with 90% accuracy. In E4, Two Six Labs had the 
second highest accuracy and the highest TPR against the set of all questions. Two Six 
Labs’ accuracy increased by 16 percentage points from E2 and 23 percentage points 
from E3. 

 
8.3 Engagement 5 

 
Two Six Labs answered 28 questions during the engagement with the second highest 
take-home accuracy of 71% and the second highest collaborative accuracy of 89%, 
despite being limited on which questions they could collaborate on. Two Six was one of 
two teams to achieve a 100% accuracy in cases where they changed answers between the 
take-home and collaborative engagements. 

 
During the take-home engagement the team had the most difficulty with AC Space 
questions and “No” responses, achieving accuracies of 56% and 50% respectively. 
Following the collaborative engagement their accuracy on answered questions across all  
 
 



Approved for Public Release; Distribution Unlimited.  
 17  

categories was ≥ 75% and their “No” accuracy was 100%. After the live engagement 
the team tied for 2nd on True Positive Rate and tied for 1st on True Positive Rate for 
both the answered questions and all questions segmentations. 
 
8.4 Engagement 6 

 
Two Six Labs outperformed all the research teams during the take-home engagement 
with an 89% accuracy and 38 of the 43 questions answered. As a result of this 
performance the team was excluded from the live collaborative engagement to allow 
the research teams to attempt to match the control team’s performance by working 
together. Two Six Labs tied for the highest TPR (75%) and had the highest TNR 
(100%). Against the segmentation of all questions (unanswered questions treated as 
incorrect) Two Six Labs outperformed the research teams with the highest total 
accuracy of 79% and the highest TPR of 71%. The team’s TNR in the all questions 
segmentation decreased from 100% to the third highest of 85%. 

 
8.5 Engagement 7 

 

 
Figure 2 Percentage accuracy by question type for Researchers and Control Team 

(Image from Apogee Research Engagement 7 Report) 
  



Approved for Public Release; Distribution Unlimited.  
 18  

 
 

Table 1: Two Six Labs Engagement 7 Results 
 

Question Type Number Attempted Reviewed Number 
Correct 

Reviewed Accuracy 
(%) 

SC Space 11 9 81 
SC Time 13 10 77 
SC Space/ Time 7 5 71 
AC in Space 18 14 78 
AC in Time 11 8 72 
Total 60 46 77 
Vulnerable/ Response Number Attempted Reviewed Number 

Correct 
Reviewed Accuracy 
(%) 

Vulnerable 30 16 53 
Not Vulnerable 30 30 100 
Yes Answer 17 16 94 
No Answer 43 30 70 
 
 
 

   
 

 
 
 
 

  



Approved for Public Release; Distribution Unlimited.  
 19  

 
 

9 CONCLUSION 

Two Six Labs worked as the control team for the STAC program, providing a baseline 
‘state-of- the-art performance’ to judge the TA1 performers against. 

 
Over the life of the program, the Two Six Labs BASIC team participated in seven 
challenge engagements conducted as a mix of live and take-home exercises. In addition, 
Two Six Labs was tasked with reviewing TA1 performer tools near the end of 2018. 

 
To build a consistent and reliable method of approaching the engagements, the BASIC 
team developed the BASICLLE toolset, accompanying training documentation, and a 
lengthy series of workflows derived from their work during the challenge engagements. 

 
Finally, during the program, Two Six Labs work produced a spinoff tool known as 
‘ACSploit’, to trigger the worst-case in commonly used algorithms, the results of which 
were discussed publicly and released as open source software. 

  



Approved for Public Release; Distribution Unlimited.  
 20  

 
 

10 REFERENCES 
 

[1] [Online]. Available: https://www.blackhat.com/asia-19/briefings/schedule/#acsploit-exploit- 
algorithmic-complexity-vulnerabilities-14426. 

[2] [Online]. Available: https://github.com/twosixlabs/acsploit. 

[3] T. S. Labs, "Two Six Labs TA1 Tool Review For DARPA STAC Program," 2018. 

 

 

 

 

 

 

 

 

 

 

 
11 List of Symbols, Abbreviations, and Acronyms 
 

Abbreviation Meaning 

 
AC 

 
Algorithmic Complexity 

 
BASIC 

 
Baselining Algorithmic and Side-channel Issues with Challenges 

 
BASICLLE 

 
Baselining Algorithmic and Side-channel Issues with Challenges Live Linux Environment 

 
CPU 

 
Central Processing Unit 

 
ISO 

 
ISO Image 

 
JDK 

 
Java Developers Kit 

 
JVM 

 
Java Virtual Machine 

 
POC 

 
Proof of Concept 

 
POI 

 
Point of Interest (computational) 

 
RAM 

 
Random Access Memory 

 
STAC 

 
Space/Time Analysis for Cybersecurity 

 
TNR 

 
True Negative Rate 

 
TPR 

 
True Positive Rate 

 

http://www.blackhat.com/asia-19/briefings/schedule/#acsploit-exploit-
http://www.blackhat.com/asia-19/briefings/schedule/#acsploit-exploit-

	TABLE OF CONTENTS
	List of Figures..................................................................................................iii
	List of Tables……………………………………………………………………….…...iii
	FIGURES
	TABLES
	1 SUMMARY
	2 INTRODUCTION
	2.1 Program Description
	2.2 Two Six Labs Role
	2.3 Methodology
	2.4 Offshoot technology
	2.5 Performer Results

	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	4 TECHNIQUES AND WORKFLOW
	4.1 Profiling
	4.1.1 Advantages
	4.1.2 Disadvantages
	4.2 Program Interaction
	4.2.1 Advantages
	4.2.2 Disadvantages
	4.3 Patching and Code Injection
	4.3.1 Advantages
	4.3.2 Disadvantages
	4.4   Simulation
	4.4.1 Advantages
	4.4.2 Disadvantages
	4.5 Debugging
	4.5.1 Advantages
	4.5.2 Disadvantages
	4.6 Decompilation
	4.7 Use Case
	4.7.1 Advantages
	4.7.2 Disadvantage

	5 BASICLLE
	5.1 Training

	6 TOOLS
	6.1 ACSploit
	6.1.1 Presentations
	6.2 Audria
	6.3 Byteman
	6.4 BytecodeCounter
	6.5 BytecodeViewer
	6.6 Debug JDK
	6.7 Eclipse Debugger
	6.8 JD-GUI
	6.9 JProfiler
	6.10 Jython
	6.11 Luyten
	6.12 Libmaap
	6.13 Soot

	7 STAC TOOLS EVALUATION
	8 RESULTS AND DISCUSSION
	8.1 Engagement 2
	8.2 Engagement 4
	8.3 Engagement 5
	8.4 Engagement 6
	8.5 Engagement 7

	9 CONCLUSION
	10 REFERENCES
	11 List of Symbols, Abbreviations, and Acronyms



