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ABSTRACT
This report summarizes the progress made in developing a more physics-based method for dealing
with scattering from two-dimensional rough surfaces. A new approach comprising the splitting of
the current induced on a conducting surface into single and multiple scatter components is =
developed. A closed form augmentation of the Kirchhoff current is obtained for the single scatter
part and an integral equation is derived for the multiple scatter current. The single scatter current
is obtained by a simple fitting of extensive numerical computations for one-dimensional,
sinusoidal surfaces which produce a heretofore unknown dependence upon the surface
curvature, This term is essentially the same as the second term in a Luneburg-Kline series but it
differs from previous results in that it is associated with the current vice the scatteied field.
Surface parameter ranges of validity for this result are established and the effects of truncating the
extended surface are obtained and shown to be physically plausible. Finally, computations are
presented that indicate that the simple curvature result can also be used for a sum of sinusoidal
surfaces.

INTRODUCTION

Electromagnetic wave scattering from the ocean surface is highly important to the Navy for
numerous reasons. In the last few years the understanding and predicting of such scattering has
been greatly aided by numerical solutions of the complex interactions between rough surfaces and
the incident radar waves. These numerical solutions have proven to be both accurate and robust in
so far as the classes or surface roughness they can deal with. However, there is one very important
problem that they have not been able to solve and that is depolarization in the scattering process.
Depolarization or cross polarization is the process whereby the polarization of the electromagnetic
field incident upon a rough surface is changed when scattered by the rough surface. This change in
the incident wave’s polarization state is important because it may yield information on certain
characteristics of the scattering surface. The fundamental reason why this problem has not been
numerically solved is that it is critically dependent upon the two-dimensionality (2-D) of the
surface roughness and present numerical models are not readily extendable to 2-D roughness. That



is, the extension from 1-D roughness (a corduroy surface) to a 2-D surface (an ocean surface)
requires too much computer power and memory to practically solve the scattering problem.

One approach to overcoming this limitation is to re-investigate classical solution technique(s)
for the potential to yield insight into this problem. That is, it may not be possible to solve the most
general rough surface scattering problem but the “solution” may yield insight and understanding
which can be used to empirically build upon. In particular the current induced on the surface of a
perfectly conducting body satisfies an integral equation of the second kind called the Magnetic
Field Integral Equation (MFIE) and the classical “solution™ of this equation is an infinite series of
iterations starting with the source or Kirchhoff term in the MFIE. However, it is well known that
this series does not always converge and mathematically this failure to converge is a result of the
eigenvalues of the integral operator falling outside the unit circle. Unfortunately, there is no known
physical reason for this failure so it is very hard to overcome. The research reported herein is an
attempt to use the simple concept of single and multiple scattering to overcome this convergence
problem and render the straightforward use of iteration a viable solution technique.

BASIS OF THE ANALYSIS

For a 1-D or corduroy, petfectly conducting, rough surface that is planar in the mean the current
induced on the surface by an incident field satisfies the following second kind integral equation;

J(x) =Jo (x) + [ Grx (x, x")] (x")dx'! (1)

Where Gpy(x, x") is the kernel of the integral equation and 72X denotes the polarization of the
incident field; X=M for TM or vertical and X=E for TE or horizontal. The hypothesis that forms
the foundation of this work is that the single scattering part of the total current J(x) is not just
J,(x) or the Kirchhoff or source current but there is more that needs to be removed from the
integral so that it cannot interfere with the convergence of an iterative solution of (1). To obtain
the single scattering patt of the current in (1), we add and subtract J(x) to the current in the
integral giving;

J(x) = Jo(0) + Grx ()] () + [ Grx G, x ) (x7) = J (x)]dx’ @)

where Gpx(x) is the integral over x' of Gyx(x,x"). Then solving for f(x) yields the following;

JG) = Jo (/1 = Gry ()] + [EEEED 0006y — ) (2)]dx 3)

{1-Grx(x)}

Now with (%) = Jgs () + Joms (%) where Jo5(x) is the single scattering part of the current and
Jins () is the multiple scattering part, we see that

Jss(x) = Jo(x)/[1 = Gm(x)] 4)

and the integral equation for the multiple scattering part of the total current is as follows;



Jms = Jao () + [ {61306 2) = 2O 5(x" = )} s () (5)

where the quantities appearing (5) are defined as;
Gry(x) = fj:,o Gry (x, x")dx’' G'rx (X, x") = Gy (%, ") /[1 = Gy (x)] (6)
and

Joo () = [ Grx (e, x)ss(x") — Jss(x)]dx’ (7)

The kernels appearing above depend on the polarization (TE or TM) of the incident field as shown

below;
Grp () = 2 "’“’”‘ ) /1 + 33 (x") (8a)

06 (x,x") _ —ko_ [=5:(0)(x —x) + () — ()]
on Y T+ E@VE—2) + () -

H® (oo (6 = 202 + () — (D] ) (8b)

Gry(x) = 22820 /1+< (x") (8¢)

0G(x,x") _ ko [0 (x)(x —x) + ({(x) — {(x)]

T [ g G DT

+ HP (o[ (x = 2)2 + [C(0) = CDTZ ) (8d)

In these equations, k, = 21/, is the electromagnetic wavenumber and A, is the wavelength, z =
(x) is the surface height relative to the plane at z = 0, {,,(x) is the surface slope at the point x

and Hi(z) (+) is the Hankel function of the second kind and order one.

The single scatter current /o (x) is defined as the part of the total current that depends only upon
what is happening at the point x; the multiple scatter part J;,5(x) is determined by all the other
points on the surface. So, the single scatter current at x is determined by the incident field and the



surface behavior at x only while the multiple scatter part at x is determined by the incident field
and surface behavior at potentially all other points on the surface. Note that this is exactly what the
results in (4) and (5) above predict. The terminology “single scatter” and “multiple scatter” are
also known as “local” and “nonlocal” splitting in mathematics.

Equations (4) and (5) are the governing relations for the single and multiple scatter parts of the
total current, respectively. The concept of this research is that subtracting the ‘single scatter current
from the total current and leaving just the multiple scatter part will lead to a more convergent
iterative solution of (5). Equation (4) clearly indicates that the Kirchhoff current J,(x) is not the
complete single scattering current. The factor [1 — Gy (x)]™? is polarization dependent and must
be determined numerically. Equation (5) for the multiple scatter part of the current is an integral
equation that must be solved after the single scatter current is calculated. The integral equation
solution method is to be iteration because of its simplicity. These calculations were the goals of
this investigation.

NUMERICAL ANALYSIS

The calculation of Gy (x), according to using (8) in the first part of (6), would appear to be a
relatively simple task; unfortunately, this was not the case. In order to obtain a better
understanding of the behavior of this integral, it was decided to use a simple sinusoidal surface of

the form;
¢(x) = b cos(ksx) )

where {(x) denotes the height of the surface above a z = {(0) = 0 reference plane, b is the peak
amplitude of the surface and k; is the wavenumber of the surface roughness (= 2m /A where A
is the surface wavelength). An inspection of (8) indicates an integrand that is both oscillatory and
slowly decaying to zero as [x'| = co. Additionally, although not so obvious, there is a singularity
of the integral when k, = k, due to the vanishing of the oscillatory part of the integrand and the

resulting integrand behaving like 1/./|x — x| whose integral is infinite for infinite limits. With
these considerations in mind, the following approach was used.

(A) The infinite limits in (6) were replaced by +10°4, and Gy (x) was calculated for a range of
normalized surface amplitudes (b/A,) and wavelengths (). A simple, physically plausible,
empirical result was obtained as a result of this study.

(B) In order to determine the effect of truncating the infinite limits to limits smaller than £10°4,’
both asymptotic analytical and numerical analyses were carried out to find just how the new
limits affected the end result for a range of normalized surface amplitudes (b/4,) and
wavelengths (Ag).

(C) Calculations of Gy (x) were carried out to determine if and when multispectral surfaces could
be treated using the simplified result obtained in (A).

As will be shown in the next section of this report, accomplishing (A) through (C) comprised
intensive computations along with matching the results with empirical mathematical forms that
represent known and/or anticipated results. This process of matching numerical with analytical



results is a new innovation that is essential to validating the numerical results and providing
simplified mathematical forms that reduce the computational load for more complex surfaces.

DISCUSSION OF RESULTS

The results of the calculations in part (A) above were quite illuminating. They were obtained by
starting with a relatively small value of normalized surface height, b/A,, and a large normalized
surface wavelength, A;/1, because these conditions are rather characteristic of single scattering
conditions. The numerical output which was expected to require a large matrix of outputs versus -
inputs clearly suggested that the result was simply determined by the normalized surface
curvature, (o (X)/k,. With of aid of some additional fitting, the following dependence on the
surface curvature (., (x) was established

Grx(x) = Try 222 (10)
)
Jss () = Jo/ [ = Trx 22201 (10a)
where Tz = +j and Ty = —J denotes the polarization dependence. TE implies that the incident

electric field is parallel to the ridges and dips in the corduroy surface while TM represents the case
where it is the magnetic field that is parallel to these features. The limitations of this result were
found to be approximately;

A¢ =51, (ks < k,/5) and b <051, (10b)

The bound on the surface wavelength is a consequence of the infinite value of Gy (x) and Gpy ()
which occur when the surface wavelength equals A,, where A, is the electromagnetic wavelength.
Even though A, = 51, is relatively far from A; = 4, , the differences between the numerical
results and the curvature result in (10) is noticeable. It should be noted that there is a second
infinite value occurrence for TE when A, = 4,/2 and this comes from the slope dependent factor
under the square root factor in (8a). The physical meaning of these infinite values is as yet
undetermined. However, when taken at face value it seems that the single scatter-multiple scatter
dichotomy simply fails for small ( 0(4,)) values of the surface wavelength because the situation is
so multiple scatter dominated. One final point is that even though the bounds in (10a) appear
restrictive, they translate into a peak slope of 0.2m = 0.63 = 36° which is relatively large.

The use of essentially infinite limits in computing Gpx (x) in part (A) above implies an infinite
extent plane wave as the incident field; such an incidence field is not physically possible and a
bounded field must be used. However, it would be very advantageous to retain the results in (10)
because they are both physically appealing and mathematically simple in form. In order to do this,
it is necessary to understand the effects of truncating the integral limits in the expressions for

Gry () such as was catried out in (B). In the first stages of this truncation study, it was hoped that
the numerical calculations would be amenable to a simple empirical result such as in (10); however,
this was found not to always be the case. To overcome this problem, it was necessary to develop an
analytic asymptotic approach that would provide an accurate, closed-form result for the fruncated



kernel integral, denoted as Gry (%) with the double over-bar denoting the truncation. It is desired to
truncate the integral limits to [—a, +a] and this integral can be written as follows;

fj; Gyl )dx' = f_zo Gy (x,xNdx' — f__c: Gy (x, x ) dx' — f:m Gy (x, xdx’' (11)

The infinite limits integral is known from (10); it is Gy (x) . If @/4, is chosen sufficiently large
and |x| « a, the asymptotic forms for Gy (x, x") can be used because |x'| is very large in both
semi-infinite intervals. These asymptotic forms lead to the two integrals being integrable resulting
in a closed form result. Of course the asymptotic form of Gyx(x, x") is only approximate so the
result will have some error in it; it should increase in accuracy as [—a, +a] = (—o0, +0). In
addition the accuracy of the truncated solution is much less important than having an estimate of
the effects of the truncation on the current and the scattered field. For example, if a very narrow-
beam antenna is illuminating a rough surface this would amount to truncating the integration range
for calculating Gy (%) and, hence, the induced rough surface current and the resulting scattered
field. The results derived here will enable an estimate of the effect of the illumination-produced
truncation on all three quantities. The results of carrying out the operations in equation (11) are
given below for TM polarization and then TE as follows;

TM (or Vertical) Polarization

Gm(x) _ ﬁ‘xx(x) bls(1+]) exp(=jkoa) ) |exp(—jkox) | exp(jkoX) [exp(—jksa)__exp(ﬂcsa)] (11a)

2k, 2 ke (1 %) J(l—ﬁ) (1+Ksg) (1-Ky)

(% = o.os,j—z > 2) (f; = 0.1,% > 3) (a% =05, A/, = 5) (;;0 = 1.0, /A = 7)

TE (or Horizontal) Polarization

Grp () = j 22 | UoDGIDC ko) [ | _ expljkor] | explikor] ( (bies)? [1 1 [explizaks)
TE 2kg Nrvr ((14_4,;(30 J(Hﬁ) J(l‘g) 4 (1-2Kg)
exp(—j2aks)
(1+2K;) ]]) ([ ib)
(LeolEed) [E=t54A.28 E=10i/,=7
Ao Ao Ao Ao
where K, = == = k,/ks. The range of validity considered in this study was restricted in (B) to

what were 001151deted reasonable values of b/A, and A;/A,. Note that in order to achieve smaller
values of A./A,, it was necessary to reduce b/A, below the values given in (10b). The specific



results for each polarization are shown above following the specific approximate analytic form. A
plot of these bounds is shown below. The forms in (11a) and (11b) are valid above the curves and

not valid beneath the curves. That is, for a given value of Ai only corresponding values of 15/4,
0

above the curves produce an error-free result for Gpy (x).

Range of Validity of Equations (11a) and (11b)

e TM

O 1 1 1 | :
-4 -3 -2 -1 0 il

In(b/Ao)

The only real difference between the parameter ranges for the two polarizations is that the TE
results could be extended to j—s < 3. All of the calculations are valid for /A, = 100. It is very

Lo}
interesting to examine the electromagnetics contained in the @ —dependent error terms in (11).

First, they both go to zero when (a) k,a — o or (b) bks — 0. The fact that the error term
decays to zero as [4mk,a] /2 is a distance dependent propagation consequence of the one
dimensionality of the surface roughness. The first term inside the left curly bracket is a
cylindrical standing wave caused by reflections from the truncation points at x = £a. This term
also predicts that Gry (x) will become very large when x — ta because of the square root
singularity there and indeed this has been observed in the numerically integrated values of
Grx(x). The second square bracketed term inside the curly brackets is a consequence of the
roughness slope that appears in (82) and (8c) for the two polarizations. The TM result is simpler

in form for it only has a linear slope term whereas TE contains an additional term /1 + {Z,(x") .



In regard to multispectral surfaces, the calculations referred to in (C) were numerous but not
comprehensive. That is, they focused on the addition of surface wavelengths that were relatively
close together because this was considered to be a good test of superposition. The calculations of

Grx(x) were carried out using three different approaches. The baseline calculation entailed
adding the individual surfaces together to generate a composite surface and then

computing Gpy (%). The second approach calculated Gy (x) for each surface wavelength and then
added all the individual values of Gyx(x) to generate a composite value of Gryx(x). Finally, the

empirical results for GTX(x) were calculated for each surface and then added together for the
composite surface. This three-fold approach can probably be best explained by the following
mathematical representations of the three computations.

First Approach:
Gra(y = Gre (2 G1)) ¢ &) =ZL. 4 () (12)

Second Approach:

G'rx(x)z = rx (%, §(x)) (13)

Third Approach:

Gryx ()3 = TiLa[Ghy (x, G (0], (14)

In these expressions, {;(x),i = 1 ... N are the N cosine surfaces corresponding to different
wavelengths and amplitudes and the subscript "e" in the Third Approach denotes the empirical

expression for Ghy (x, {;(x)). When using different values of peak surface height (b/4,), slope
(bks), and curvature (bk2) for each surface, it is necessary to use root-mean-square values as
given below;

tme - 050 (21 Gome =Bz @)

Do () =@~)—[ a2 (2) ]2}1/2 (15)
o\Sxx/rms ﬁNliﬁ As

For the numerical results obtained in this study, all the surfaces were cosines and no phase shifts in
the individual components were used. These simplifications were largely a result of the calculation
of all three approaches above and certainly can and should be eliminated in the future.

For these calculations, all the amplitudes of individual surface components were taken equal and
computations were carried out for two and some three surface wavelengths components. Emphasis
was placed on composite surfaces with very closely spaced wavelengths because this gave a very
large composite amplitude near x = 0 and was a good test of the various ways of supposing noted
above. The purpose of the multi-wavelength computations was to determine the limits of the
empiric results contained in (10) and (11). Computational results are shown in the table below.



Asl Ao Zx,, . = 0.30 Gep. & 035 Gy % 0.40 Gep, = 045
{7,8) Ceermeto = 025 | Goen Ao = 030 | Gy Ao % 034 | Gy Ao = 0.38
(7,20} Cerpsto % 0.26 | G Ao 0.30 | o A= 0.34 | e Ay = 0.38
{19,203 Coxyito  0.097 | G g m 011 | G Ag~ 013 | G Ao~ 0.15
{20,40} Caxmeto = 0.087 | Gy Ag 2 010 | Gy Ao = 012 | Gy Ag = 0.13
{10,15,20} G A 0,16 * * cx;rms,lo ~ 0.244
{7,8,9} Gt % 0,25 * * (xxpmso = 0.36

*Note the 0.35 and 0.40 rms slope cases were not run for the three frequency surfaces.

TABLE 1. This table gives the surface curvatures for the given component surface wavelengths
and rms slopes

The results for two frequency surfaces show that in general the real component has smaller etrors
than the imaginary and the error increases as the slope is increased. A bound on the surface slope of
about { = 0.40 was found by examining different combinations of surface wavelengths with

corresponding amplitudes to give rms slopes of { 0.30,0.35,0.40,0.45}. For j—s = {20,40},The error is

very small and may be acceptable even up to ¢, = 0.45. At this point, TM has an error of twice
the numerical magnitude and more importantly it has lost desired closed curvature form. The error in

both the real and imaginary parts is greatest around Ai = 0. This is a consequence of phase congruity
0

and maximum surface slope and seems to be true for all sutfaces for which the wavelengths of the
composite surface falls within the [—a, +a] support. TM appears to fare worse than TE but both
look acceptable on all surfaces up to {,, = 0.40. Only on the TM surface with short periods such

as j{—s = {7,8} does the {, = 0.45 case really become questionable with significant errors of about

half the magnitude and in the phase. While some of the surface component amplitudes here are much
larger than previously investigated, the fact that they are mostly linear is encouraging that the
empiric and analytic single frequency results could be valid in this region and applied to spectral
surfaces.

The three frequency surfaces were not examined in enough detail to determine if they follow the
same bound of {, = 0.40 but show promising preliminary results. While the longer period

surraces comprising — = y ; ehave like the two requeﬂcy surftaces wit £00 agreement
f ising 3% = {10,15,20} behave like the two f f ith good




A . ,
evenupto {, = 0.45,the ﬁ = {7,8,9} surface shows significant errors for this rms slope, but had

good agreement for ¢, & 0.35. Examining the rms curvature shows that the latter surface is

significantly rougher than the former, but not more than the two frequency surfaces which had
acceptable agreement up to a slope of {, = 0.45. These results were run with a relatively short

integration supports of % = 100 and since the error seems to largely be in the real
) ‘

component, it may be absolved for larger integration support due to the 1/v/a decay.

Clearly this investigation of superposing sinusoidal surface components should be carried further so
that the validity of the results in (10) and (11) can be validated for composite surfaces.

SUMMARY & FUTURE RESEARCH

The most important outcome of this investigation is given by the single scattering current result

given in (10a). This result has a very important physical foundation for if | {—’;’—:Z(—x—)-l K1, the single

scatter current reduces to

Cxx (%) ,
Jss(x) = Jo[1+ try _ch_a_'] : (16)
and the two terms inside the square brackets are the first two terms of a Luneburg-Kline
asymptotic high frequency expansion for the surface current on a conducting surface, i.e.,

Jss(~Jo@) ) an(0i5™
n=0

where a,(x) = 1, a;(x) = Ty {x(x)/2 and the remaining a,, (x) were found to be zero for the
range of validity of (10). It is limited to the single scattering current because of what has been
shown in [5]. This result is new in that (a) it has never previously been determined for an extended
rough surface, (b) it has never been shown that it is a part of the single scattering current and (¢) it
is an expansion for the current and not the scattered field. One finds a good bit of discussion of the
Luneburg-Kline asymptotic series and the 1/k, term in the literature [1, 2, 3, 4] but these
references all deal with the scattered field rather than the current. The result in (16) actually
augments these other findings and should render them more accurate. It is interesting to note that
the second term in the Luneburg-Kline series is contained in the single scatter current as predicted
in [5]. The closed form of this current, though obtained from numerical results, also carries its
range of validity given in (10b). This is very helpful as it does not usually accompany a purely
analytic approximation; the result is also expected to produce interesting insight regarding the
statistical moments of the field scattered from a randomly rough surface when the surface height,
slope and curvature are stochastic variables. These analyses along with the extension to 2-D rough
surfaces are strongly suggested.

The analytical results predicting the effects of truncating the range of integration to a finite range
in the integration of Gy (x) are both useful and unique for they provide a very good estimate of



both the magnitude of the error and its physical source resulting from the truncation. For example,
if it is desired to be more .quantitative in regard to the etrors introduced by truncation, the results

in (11a) and (11b) are a very attractive alternative to a full-up numerical integration in Gy (x).

The multispectral addition of surfaces of differing wavelengths showed that the simple curvature
result is frequently sufficient to predict an accurate single scatter current. There are limitations
when the number of surfaces is greater than two but this is expected to be a result of the need to
lower the root-mean-square amplitude of the composite surface. This part of the study requires
further investigation as there is a need for applying this work to random surfaces which are
formed. '

Finally, the issue of finding the multiple scatter part of the current by solving the integral equation
that it must satisfy was not considered due to a lack of time. This part of the total current must be
determined if multiple scatter is to be accounted for,
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