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ABSTRACT 

 Anomalies in data often convey critical information that can be leveraged in a 

variety of applications. For the military engaged in combat, this can amount to 

identifying threats early and preserving a lethal edge over an adversary. In other more 

benign cases it can corrupt data integrity and lead to ineffective application of other data 

analysis techniques. To tackle the problem of anomaly detection, there are several 

common methods provided in statistics and machine learning literature, including 

variational autoencoders (VAEs). Using a VAE, we develop a novel objective function to 

improve its performance detecting anomalies. Additionally, we introduce a modeling 

pipeline that works in the fully unsupervised context, where one does not know the true 

proportion of anomalies present in the data. To construct this pipeline, we fit 

reconstruction errors using a Gaussian mixture model (GMM) and select the model 

whose characteristics best match our performance metrics. Using our approach, we 

observe an increase in anomalies detected against a standard objective function, and we 

measure an average improvement of 0.4021 in F1 scores. We show our findings using 

four labeled benchmark data sets and apply our conclusions on an open-source, unlabeled 

data set taken from USASpending.gov. 
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Executive Summary

Anomalous data points can present themselves in a variety of ways, and their detection
is a nontrivial task that could prove critically important for many reasons. To tackle the
problem of anomaly detection, there are several common methods provided in the statistics
and machine learning literature, including variational autoencoders (VAEs).

Using a VAE, we develop a novel objective function to improve its performance detecting
anomalies. Additionally, we introduce a modeling pipeline that works in the fully unsu-
pervised context, where one does not know the true proportion of anomalies present in
the data. To construct this pipeline, we fit reconstruction errors using a Gaussian mixture
model (GMM) and select the model whose characteristics best match our performance met-
rics. Using our approach, we observe an increase in anomalies detected against a standard
objective function, and we measure an average improvement of 0.4021 in F1 scores.

A VAE is a neural network which learns a low-dimensional encoding of input data and then
also learns a decoder that reconstructs the original input from the low-dimensional encoding.
In this sense, anomaly detection can be performed by analyzing the reconstruction error.
The VAEwill learn to encode and then reconstruct the “normal” inputs. Inputs (data points)
that differ from “normal” inputs, however, will be reconstructed poorly, and their anomalous
nature will be revealed by a large reconstruction error. We analyze these reconstruction
errors using a GMM.

A GMM is a combination of multiple underlying Gaussian distributions taken together to
form one continuous density function. The reconstruction errors from our VAEs form the
underlying Gaussian distributions. We use three clusters to represent normal, high-loss
normal, and anomalous reconstruction errors.

Our new objective function is based on a concept called Conditional Value-at-Risk (CVaR),
coming from the risk management literature. Central to this objective function is the
introduction of a new hyperparameter, α ∈ [0, 1], which determines what proportion of
largest-loss training examples (per batch) will be ignored during training, or formally:

min
θ

E[L(X, θ)] − (1 − α)q̄α(L(X, θ)). (1)

xv



Intuitively, we desire to train the VAE on only normal data, but in an unsupervised setting,
we do not know what is normal and what is anomalous. Selecting the correct α for Equation
1 effectively ignores extremely high reconstruction errors during training and trains on only
(presumably) normal data. Selecting α is determined by analyzing the GMMs fit from
the reconstructed errors. The clusters with the largest mean for each GMM are compared
based on their mean, variance, and weight. The most distant, dense, and smallest cluster is
indicative of the best α and thus highest performing VAE for detecting anomalies, which
we show using labeled benchmark data.

We used four labeled benchmark datasets (three unstructured and one image) to measure the
VAE’s performance. Information from their labels was not used in training and only gauged
the effectiveness of our approach. We used a fifth unlabeled dataset for us to apply these
methods in a truly unsupervised context. The proportion of anomalies in the benchmarks
ranged from 0.39% to 7.14%, their features ranged from 9 to 768, and their sizes ranged
from 49,097 to 567,497. The unlabeled dataset had 997 features and 292,853 data points.

Generally, we found that our new objective function outperformed the standard objective
function (i.e., whenα = 1.0). The highest performingVAEhad anα near the true proportion
of normal points in the data, or 1 − α anomalies. Additionally, these results matched our
intuition when we fit the reconstruction errors using a GMM. The α associated with the
highest performing VAE based on F1 Score, also matched the GMMwhose third cluster was
closest to our ideal characteristics. These results present an anomaly detection process that
can be applied in an unsupervised setting, which we demonstrate using our fifth unlabeled
dataset. We show a lower bound and upper bound of anomalies between 0.74% and 6.35%,
respectively.
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CHAPTER 1:
Introduction

In the age of BigData, where datasets are becoming larger and data sourcesmore ubiquitous,
anomalous data points present themselves in a variety of ways. Their detection is a nontrivial
task and can prove critically important for many reasons. Anomalies often translate to
significant actionable information in a wide variety of domains (Chandola et al. 2009). For
the military engaged in combat, this can amount to identifying threats early and preserving
a lethal edge over an adversary. In other situations, it can be a sign of fraudulent financial
activity, illicit computer network activity, or other aberrant behavior. Even seemingly
benign anomalies, such as those arising from simple data entry errors, can corrupt data
integrity and lead to ineffective application of other data analysis or pattern recognition
techniques.

To tackle the problem of anomaly detection, there are several common methods provided in
the statistics and machine learning literature. Some include distance-based, density-based,
and rank-based techniques (Mehrotra et al. 2017), with examples including nearest neighbor
methods, Naïve Bayes Networks, and applications of fuzzy logic. We briefly discuss some
of these methods in Chapter 2. Recently, however, techniques based upon neural networks
have gained popularity due to advancements in neural network technology, which include
newmathematical tools for constructing and training neural networks in addition to relevant
software and hardware improvements (Goodfellow et al. 2016). In particular, researchers
have just begun to explore the use of unsupervised neural network approaches like variational
autoencoders (VAEs) for anomaly detection. In this thesis, we propose a novel objective
function to improve the performance of VAEs in anomaly detection. Additionally, we
propose a modeling pipeline that works in the fully unsupervised context, where one does
not even know the true proportion of anomalies present in the dataset.

A VAE neural network (Kingma and Welling 2014) is much like a typical autoencoder,
which first learns a low-dimensional encoding of the input data and then second learns a
decoder that reconstructs the original input from the low dimensional encoding. In this
sense, anomaly detection can be performed by analyzing reconstruction error. The network
will learn to encode and then reconstruct the “normal” inputs which comprise the majority
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of the dataset. Inputs (data points) that differ from “normal” inputs, however, will be
reconstructed poorly, and their anomalous nature will be revealed by the reconstruction
error.

While an analysis of reconstruction errors seems like a simple and attractive approach,
application of neural networks in this context is nontrivial due to their representational
power. Neural networks have been shown, both theoretically and in practice, to be able to
represent almost any function. Therefore, in the context of autoencoders, they are able to
reconstruct any input with very little reconstruction error. Now, autoencoders aim to tackle
this problem by creating a “bottleneck,” forcing data through a low-dimensional bottleneck
before reconstruction. However, this is often still insufficient in the anomaly context, and
neural networks are still often able to learn to reconstruct rare training examples with high
accuracy. We illustrate this in Figure 1.1 with a visual example involving a dataset with
handwritten digits (normal) and articles of clothing (anomalies).

A primary goal of this work is to alter the objective function of a VAE so that it does not
learn to reconstruct rare (or anomalous) inputs. We show that without alteration, it often
commits errors on rare examples that are of the same magnitude as its worst reconstructions
of normal examples. Our proposed alteration increases the gap between errors committed
on rare examples and the worst errors committed on normal examples.

VAEs differ from traditional autoencoders as they are generative models defined via a
probabilistic graphical model, combining variational inference with deep learning (An and
Cho 2015). This allows a trained network to produce samples from the distribution of inputs.
In the anomaly detection context, the desire is to have it learn the distribution of “normal”
inputs, while committing large errors on anomalous examples. According to An and Cho
(2015), VAEs also outperform standard autoencoder networks and principle component
based methods with input reconstruction. This is particularly important for application in
anomaly detection. Data unable to be reconstructed correctly after being processed through
a VAE would be an indication of an anomaly in this context. In addition, being able to
generate samples from the distribution of “normal” inputs can provide insight into what the
network has learned to be considered “normal.” We explore VAEs in detail in Chapter 2.

An additional challenge in anomaly detection is its unsupervised nature. Many anomaly
detection tasks are in fact approached as a supervised learning problem, with a dataset of

2



(a) Anomaly (T-shirt) reconstructed with standard VAE

(b) Anomaly (T-shirt) reconstructed with our proposed VAE

Subfigure (a) illustrates the power of a VAE to accurately reconstruct data, re-
gardless of class (normal or anomaly). This is undesirable for anomaly detection
and what our method attempts to fix. Subfigure (b) shows our proposed method
and the resulting high reconstruction error when processing anomalies. Notice that
the anomalous T-shirt has been “interpreted” as the number 8, with high error,
indicating a likely anomaly.

Figure 1.1. Fashion-MNIST Image Reconstruction

“normal” versus anomalous data points labeled and ready to be used for training supervised
classification algorithms. Even in the unsupervised context, it is often really approached
as a semi-supervised learning problem. Although, no labeled training data are available, it
is assumed that one knows the approximate proportion of anomalies present in the dataset.
However, real-world tasks are often fully unsupervised, with no labeled training data given
and an unknown proportion of the dataset containing anomalous examples. In addition to
altering the objective function of our VAE so that it works better to commit large errors
on anomalies, we also propose a two step-procedure that allows it to perform strikingly
well in a fully unsupervised context, where labels are now unknown and the proportion
of anomalous training data is also unknown. Specifically, we utilize a Gaussian Mixture
Model (GMM) to select the VAE with the most “preferable” distribution of reconstruction
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errors for anomaly detection. Furthermore, the VAEs that we select from are all trained
using the proposed novel objective function, differing only in the value of an important
hyperparameter used to create the objective function.

This thesis seeks to design and leverage a VAE neural network as a means to identify
anomalies within data. In Chapter 3, we further explore our methodology using a novel
objective function and model-fitting technique to shape the distribution of reconstruction
errors to better indicate anomalous data points. Additionally, we use four benchmark
datasets as well as an open-source, unlabeled Department of the Navy (DoN) contract
award dataset from USASpending (2019). Our choice of data enables us to take advantage
of labels and build inferences about our method’s performance as well as apply what we
discover in a military context.

1.1 Problem Statement
In statistical regression, outliers are identified by their residual distances away from a fitted
curve. The curve is produced from the relationships between a response variable and
dependent variable(s). Anomaly detection is straightforward in this manner since there are
parametric measures that can be used to distinguish normal from abnormal data like Cook’s
Distance.

In contrast to statistical regression, supervised machine learning techniques use labeled data
to create and train and neural networks. These labels allow the network to receive feedback
on its ability to accurately classify outcomes. This is useful when making future inferences
on similar data that is unlabeled. Support Vector Machine Learning does exactly this and
is useful for classification problems, such as anomaly detection, when a labeled training
dataset is available.

Classifying unlabeled data is more challenging and is the primary domain in which this
thesis focuses. Given the open-source, DoN contract award dataset, anomalous data points
must be pulled out without any true indication of accuracy. This poses a problem and one
that we attempt to solve using a VAE neural network.
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1.2 Research Questions
The immediate contribution of this thesis is a new objective function for training VAEs in
anomaly detection combined with a parameter selection technique based on GMMs that
produces a fully unsupervised anomaly detection procedure where one needs zero labeled
training data and no information about the proportion of anomalies present in the data. The
techniques implemented are not tailored to any specific data type and can be applied to a
variety of situations. Succinctly, this research seeks to answer the following questions:

• What is the best network architecture to effectively detect anomalies and how can
we alter the objective function of the VAE to better detect them? Similarly, can
we force the distribution of reconstruction errors to follow a desired distribution
with anomalous data associated with large reconstruction errors that are far from the
distribution of normal reconstruction errors (e.g., long-tail and bimodal)?

• How should we analyze the distribution of reconstruction errors to indicate anomalies
(i.e., how large does the reconstruction error need to be for a point to be labeled
anomalous)? Without ground-truth labels, how do we know if our algorithm is
performing well?

• Can our proposed technique be generalized to perform effectively on many datasets?
If so, how well?

1.3 Scope
Our primary effort in this thesis is developing a novel method that can be used for anomaly
detection. We use various datasets to explore our approach. We first utilize labeled
benchmark data to test the effectiveness of our approach. Note that we do not use these
labels in training, but require them to test its actual detection performance compared to the
standard VAE approach. We apply our network to both image and unstructured data and
see that it is effective in both cases. Finally, we apply our method to DoN contract data,
leaving a specific analysis of the anomalies detected to future work.

1.4 Thesis Organization
Chapter 1 provides an introduction to the topic and provides an overview of the problem.
Chapter 2 examines anomalies, common detection techniques, and describes VAEs in detail.
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It also reviews the primary literature used in writing this thesis as well as related work using
VAEs used for anomaly detection. Chapter 3 explains the process of preparing the data for
use as well as the methods used in creating the VAE. Chapter 4 discusses the results and
provides analysis of our method’s performance. Chapter 5 provides a summary of the work
conducted and recommendations for further study.
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CHAPTER 2:
Background

This chapter provides the requisite background information and theory necessary to under-
stand the methodology used in this thesis. It begins by first defining an anomaly and its
different types. Next, a broad overview of machine learning methods for detecting anoma-
lies are discussed along with their relative strengths and weaknesses. Our chosen method, a
VAE neural network, is then examined in detail. Basic mathematical concepts are included.
Three cases are briefly discussed demonstrating the successful use of VAEs for detecting
anomalies. Finally, the size and scope of the FY18 Department of the Navy (DoN) budget is
provided to form an appreciation of the magnitude of total annual spending by the service as
well as examples of misuse, neglect, and/or fraud cases within the entire military involving
government contractors.

2.1 Anomalies Defined and Challenges with Detection
Observations within data that do not conform to well-defined normal behavior are said to be
anomalies, and their detection refers to the problem of finding patterns in data that do not
conform to expected behaviors (Chandola et al. 2009). There are three kinds of anomalies
that are typically described in literature: point, collection, and contextual. For this research,
we primarily concern ourselves with point anomalies but define each for thoroughness.

2.1.1 Point Anomalies
A point anomaly is a data instance that is labeled anomalous with respect to the rest of the
data. It is the simplest type of anomaly and typically consist of a single, or small group of
points, that is distant in some measurable way from the large majority of other points in the
data. Figure 2.1(a) provides a visual representation this type.

2.1.2 Collective Anomalies
A collective anomaly is one that involves a subset of the data with respect to the full
set. Chandola et al. (2009) describes it as a collection of related data instances whose

7



occurrence together is anomalous but when observed individually is not anomalous (Figure
2.1(b). Consider rocket attacks on a forward operating base. If an enemy typically fires two
rockets before three salvos of 10 rockets apiece, then it would be considered anomalous if
the forward operating base received a sequence of four dual-rocket salvos. While receiving
a volley of only two rockets is normal, it is an anomaly if it occurs repeatedly in this case.
The pattern is important.

2.1.3 Contextual Anomalies
A contextual anomaly, also sometimes called a conditional anomaly (Song et al. 2007),
is one that is dependent on the structure of the data it resides (Chandola et al. 2009).
Time-series data is prime for exploring and detecting contextual anomalies, if they exist.
An example would involve the effects of seasonality and air travel. High volumes of
travelers are expected and considered normal for certain holidays, like Christmas; however,
if the same volume occurred on some Wednesday in April then this could be considered
anomalous. The volume of travelers with respect to their occurrence is what is unusual,
not the volume travelers by itself. Figure 2.1(c) provides a visualization of a contextual
anomaly.

8



(a) Point Anomalies (b) Collective Anomalies

(c) Contextual Anomalies

These subplots represent the three different types of anomalies that occur. (a)
represents a point anomalies. Data instances O1, O2, and O3 are anomalies since
they are not contained within N1 or N2. (b) represents a collective anomalous
electrocardiogram. The red band is within the normal range; however, the duration
of the signal is anomalous. (c) represents a context anomaly. t1 and t2 are the
same temperature; however, t1 occurs in the winter as expected while t2 occurs in
the summer making t2 anomalous.

Figure 2.1. Three Types of Anomalies. Source: Chandola et al. (2009).

2.1.4 Challenges with Detection
Consider the often-used, simple example of anomaly detection in the credit card industry.
Credit card companies collect large amounts of financial transaction information from their
cardholders. Over time, these companies are able to model a cardholder’s expected behavior
or compare similar cardholders to one another. This forms the basis of normal data on their
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cardholders. If a cardholder, or an entity pretending to be a cardholder, is making a purchase
that does not conform to his or her well-defined normal behavior, then the purchase is labeled
anomalous and an alert is transmitted for verification. Although this example is easy to
understand, anomaly detection is a very challenging and nontrivial pursuit. One challenge
with anomaly detection is the proportion of normal and anomalous data is often unknown.
Chandola et al. (2009) presents four other factors relevant to this thesis that highlight the
difficulties detecting anomalies:

• Defining a normal region is very difficult, and points near its boundary carry a higher
chance of being mislabeled.

• Anomalies resulting from malicious activity are often masked to appear normal to
avoid detection.

• Labeled data for model training and validation is often unavailable.
• Data often contains noise similar to actual anomalies making them hard to distinguish.

2.2 Common Anomaly Detection Techniques
In Machine Learning, training falls into one of three categories: supervised, semi-
supervised, and unsupervised learning. With anomaly detection, supervised learning is
when the training and testing data are both labeled as either normal or anomalous; however,
it is rare to have data labeled in this fashion. Semi-supervised learning is the setting in
which some of the data are labeled and some are unlabeled. Additionally, semi-supervised
could be considered to be any setting in which “partial” information is available, such as the
proportion of anomalies present in the data without explicit labels. Finally, unsupervised
learning, which is the primary domain we concern ourselves with in this thesis, is when a
model is trained using unlabeled data. Additionally, anomaly detection techniques can be
generalized further into four broad areas.

2.2.1 Classification
Neural networks, support vector machines (see Figure 2.2), Bayesian networks, and rules-
based techniques all fall within this area. For each, a model is trained on either one- or
multi-class training data with the goal of learning a feature space that can differentiate
between normal and anomalous points in test data. According to Upadhyaya and Singh
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(2012), the advantages of this category are a fast testing phase since test data is input into
a pre-computed model as well as the ability to utilize powerful computing algorithms for
training. In contrast, Upadhyaya and Singh (2012) offer two primary disadvantages with this
group of approaches. First, it requires accurate training labels which is often not feasible
or even possible in most data. Second, test instances are classified as either normal or
anomalous which may be too rigid when instances are near boundaries.

Two classes are depicted, filled and unfilled dots. The solid line represents the
boundary between to classes and the dotted lines are the maximum distances to
the nearest point in each class. The boundary distinguishes the classes.

Figure 2.2. Support Vector Machine. Source: Vanderplas et al. (2012).

2.2.2 Nearest-Neighbor
This area can be used for both classification and regression outputs, with its primary
means of anomaly detection occurring through measurements in distance similarities. Data
instances in some n-dimensional space are grouped according to their k nearest neighbors
with the objective being to minimize the distances between neighbors (see Figure 2.3).
Using this method, anomalies are detected when distances are unusually large between
points. Upadhyaya and Singh (2012) state an advantage of using k nearest neighbors is
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assumptions are not made regarding the distribution of the data; however, they further
explain a significant disadvantage occurs if the normal data instances have distant neighbors
and the anomalous data has close neighbors. This results in mislabeling.

Point x is the unknown target point and the black circle surrounding it subsets
the k nearest neighbors. In this case k = 3. The target point x can be one of two
different classes: red or purple. Its class is determined by the majority class of the
k nearest neighbors. For this example, x would be classified as belonging to the
red class.

Figure 2.3. K-Nearest Neighbor. Source: Robinson (2018).

2.2.3 Clustering
The principal aim of clustering is to identify groups of similar instances within the data.
Various algorithms attempt to identify the optimal number of clusters to accurately partition
the data. Data instances that do not easily fall into any of the clusters are considered
anomalous. Clustering can use several metrics for determining their centroids. K-means
and k-mediod clustering are both common methods in literature. Chandola et al. (2009)
describes one prime advantage of this technique is its fast computation in the testing phase.
A significant disadvantage is anomaly detection by clustering is often a secondary result
and thus this method is not optimized for this task. Figure 2.4 provides an example of 2-D
clustering.
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A scatterplot with three different clusters belonging to 3 different classes (red,
green, and black) is partitioned.

Figure 2.4. Clustering. Source: Priy (2019).

2.2.4 Parametric Techniques
Using parametric statistical methods to detect anomalies falls into the realm of supervised
learning. A response variable is selected for the data and predictors are fit according to
some statistical approach (e.g., linear or logistic regression). For instance, linear regression
would be suitable for detecting anomalies since the measure of residuals could be used to
test outliers. The larger the residual value than the greater the possibility the associated
data instance is an anomaly. Figure 2.5 shows a rudimentary analysis for anomalies using
basic linear regression. A key advantage to using a statistical or modeling approach is the
ability to use parametric techniques to identify anomalies, however, this only works if an
appropriate response variable is chosen which can be difficult or unfeasible for some data.
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Outlier, or anomalous points, are circled in red and are distance from the expected
value, or fitted regression line.

Figure 2.5. Linear Regression with Outlier. Source: Laerd Statistics (2019).

2.3 Neural Networks and Variational Autoencoders

2.3.1 Neural Networks
Neural networks are a wide class of flexible nonlinear pattern recognition models (Sarle
1994) and are also loosely based on the biological brain in that they consist of interconnected
neurons. These neurons can be turned on or off, in a sense, by an activation function.
Weights are added to the values of each neuron’s output. This process of weight summation
and activation using a nonlinear activation function is repeated for each hidden layer in the
neural network (see Figure 2.6). The final layer of a neural network is its output.

One primary benefit of neural networks is their unrivaled ability to adapt to the structure
of the input data via their layer architecture. Much of the recent progress in neural network
research has been pushed by novel constructions of network layers tailored to specific data
structures. For example, if image data is the desired input, one only needs to change
the layers to convolutional layers and performance will be increased dramatically, while
most other modeling components stay generally the same (gradient descent, the objective
function, etc.). Therefore, our proposed VAE can be applied to multiple input data types by
only changing the network architecture, with ourmethodology remaining largely unchanged.

The genesis of neural networks was in 1943 by Warren McCulloch and Walter Pitts with
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their creation of the Preceptron Model. Twenty years later, a technique to dynamically
update parameter weights was developed (Rosenblatt 1961). From then, research in the
field stalled until continuous activation functions were introduced in the 1980s (Rumelhart
et al. 1986). While the concept of neural networks is over 75 years old, their analytic power
is just now becoming apparent. According to Zhang (2000), four key advantages have
helped neural networks become a suitable alternative to more conventional methods:

1. They are data-driven, self-adaptive methods in that they can adjust themselves to the
data without any explicit specification of functional or distributional form for the
underlying model.

2. They are universal functional approximators in that neural networks can approximate
any function with arbitrary accuracy.

3. They are nonlinear models, which makes them flexible in modeling real-world com-
plex relationships.

4. They are able to estimate the posterior probabilities, which provides the basis for
establishing classification rules and performing statistical analysis.

One key element of neural networks is the objective function. The objective function
typically produces a loss value after each iteration from the input data. This value is
the primary measure of the model’s performance. By minimizing the objective function
value through each iteration of the learning process, the weights of the model are adjusted
dynamically through a process called back-propagation, also known as stochastic gradient
descent when discussed in the more general optimization context. Back-propagation is the
process in which a network’s weights are updated by calculating their gradients. It is central
in the application of neural networks. Refer to Goodfellow et al. (2016) for more detail
about neural networks.

2.3.2 Variational Autoencoders
To understand a VAE it is important to first comprehend how an autoencoder is defined.
An autoencoder is a neural network that is trained by unsupervised learning to produce
reconstructions that are close to its original input (An and Cho 2015). In other words, an
autoencoder is simply a process that seeks to produce outputs identical to its input. It uses
unlabeled data for this task, which is important in our context of anomaly detection since
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All inputs xi are assigned a weight wi, j and summed denoted by Σ. The summed
value netj is activated by ϕ if it meets the threshold θ j . This results in the output
oj , which continues to the next hidden layer in the process or terminates depending
on the size of the neural network.

Figure 2.6. Components of a Neural Network–The Perceptron Model.
Source: Goyal (2018).

normal and anomalous data points are rarely known in training sets.

An autoencoder’s architecture can be simplified into two main parts: the encoder and
decoder. Figure 2.7 shows a simple autoencoder model with its encoder and decoder
labeled. Note, this is a fully connected autoencoder since each of the network’s nodes are
connected to all nodes in the adjacent layer. It is also worth noting that the encoder and
decoder are both neural networks themselves.

For an autoencoder to work, the encoder portion receives the data input x and compresses it
into a smaller dimension while feeding it forward to the next layer in the encoder. This can
be accomplished for h layers, which are referred to as hidden layers. The final compression
of the input occurs in the bottleneck of the autoencoder. The input’s representation is now
referred to as z, the latent representation of x. Next, the decoder takes the input’s latent
representation z and attempts to reconstruct the original input x by expanding it through
the same number of hidden layers with identical number of corresponding neurons as the
encoder.

Ideally, the output’s result x′ would be identical to the input x, and the autoencoder would
learn a compressed (lower dimensional) version of the identity function. This is rarely, if
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There is only one hidden layer in this fully-connected autoencoder.

Figure 2.7. An Autoencoder. Source: Galaxy Data Technologies (2019).

ever, the case and the subsequent difference between x and x′ is called the reconstruction
error. We exploit this quantity to detect anomalies.

In order to train the autoencoder to correctly reconstruct the inputs, an objective function
is selected and minimized during the training process. This objective function represents
the difference between the original input x and reconstructed input x′. There are dozens
of different objective functions that could be used, and their selection depends on the
autoencoder’s data and objectives. One of the most common is the mean-square loss
function. Another loss function is binary cross entropy. For a VAE (see Figure 2.8), the
general expression of its objective function is the variational lowerbound of the marginal
likelihood of the data, since the marginal likelihood is intractable (An and Cho 2015). Or
more formally:
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log pθ(x(i)) = DKL(qφ(z |x)| |pθ(z)) + L(θ, φ, x(i)). (2.1)

As An and Cho (2015) explain:

qφ(z |x) is the approximate posterior and pθ(x |z) is the prior distribution of
the latent variable z. The first term of the right-hand side of Equation 2.1 is
the Kullback–Leibler (KL) divergence of the approximate posterior and the
prior. The second term of the right-hand side of Equation 2.1 is the variational
lowerbound on the marginal likelihood of the data point i.

A typical VAE with the encoder colored green, latent space colored red, and the
decoder colored blue.

Figure 2.8. A VAE Neural Network. Source: Weng (2019).

What makes a VAE unique from a standard autoencoder is its bottleneck is a probabilistic
distribution rather than a deterministic value. The posterior distribution, or encoder, qφ(z |x)

attempts to infer a distribution representing the input data. The final hidden layer of the
encoder qφ(z |x) produces two vectors, a vector of means and vector of standard deviations
with dimensions m. The prior distribution, or decoder pθ(x |z), now draws a random sample
from a standardGaussian distribution alongwith the vector ofmeans and standard deviations
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and feeds it through the decoder network pθ(x |z) reconstructing the original input x. Again,
like the autocoder, an objective function is selected and minimized to optimize the weight
parameters φ, θ of the variational autoencoder. Doersch (2016) provides an excellent tutorial
and is recommended for a deeper understanding of VAEs.

While VAEs seem much more complex than a standard autoencoder, they are extremely
similar. For example, the lower-dimensional embedding learned by an autoencoder is simply
treated as a mean vector of a multi-variate distribution. Additionally, the objective of the
autoencoder seems more straightforward (e.g., the reconstruction error). However, for a
Gaussian prior, we have that the objective of the VAE essentially reduces to a regularized
version of the same reconstruction error.

A primary advantage of using a VAE over a standard autoencoder, and one we leverage in
our research, is its robustness. A VAE is able to learn a robust interpretation of the latent
representation since it randomly samples from a Gaussian distribution while decoding the
vector of means and standard deviations. This sampling essentially acts as noise for the
decoder to interpret, forcing it to learn many latent representations for a single data point
while still producing the desired output. In a standard autoencoder, the decoder would
always be presented with the same encoded latent representation z for each data point and
essentially learn to overfit the data in time. Given our context of anomaly detection, a robust
technique is desired due to the wide range of normal instances that may exist in data.

A second advantage of using a VAE rather than a standard autoencoder is its ability to
generate unique outputs from sampling the latent space distribution. It is a generative
model, meaning the decoder can create entirely new data from the latent distribution p(z),
if desired, and it will be as if it is from the same distribution as the actual data. This is
particularly useful when using image data for training and testing. Images can be generated
to show what the model is learning as representative of what the network thinks is “normal”
data. We will explore this further in Chapter 4.

2.3.3 Issues with Standard VAE Approach
It is worth noting that standard VAEs and autoencoders have several shortcomings that can
diminish their ability to detect anomalies as well as we would prefer. Both have significant
representational power and can learn to reconstruct rare inputs or subsets of the data that are
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abnormal. The default objective function of a VAE and autoencoder does not try to avoid
this issue. In fact, it actually penalizes incorrect reconstructions of rare or anomalous data,
which is counter to what we desire. After the VAE or autoencoder has been fit to the data, it
can also be difficult to select an appropriate cut-off threshold, in terms of the reconstruction
error, for determining anomalies. There is often no clear separation between “low” and
“high” reconstruction errors. This is made even more difficult when the proportion of
anomalies in the data are not known beforehand. Our approach remedies these problems
and is discussed in detail in Chapter 3.

2.4 Related Work using Variational Autoencoders for
Anomaly Detection

Although research in this field is relatively new, there are still several studies have been
published leveraging the power of VAEs to detect anomalies. We briefly discuss three of
these.

2.4.1 Segmentation in Brain MR Images
Baur et al. (2018) tested various autoencoder models to detect and delineate brain lesions
from Multiple Sclerosis, tumors, and ischemias in magnetic resonance imaging of the
human brain. They developed an approach they coined AnoVAEGAN which is a spatial
VAE coupled with a Generative Adversarial Net (Goodfellow et al. 2016) and compared
it to several different types of dense and spatial autoencoders and VAEs. AnoVAEGAN
outperformed all other models they tested. It achieved an F1 Score of just over 0.60 with
a standard deviation of about 0.19. What is notable about their research is the spatial VAE
performed nearly as well as the AnoVAEGANmodel by achieving an F1 Score of 0.59 with
standard deviation 0.19. The dense VAE performed poorly, but this is not surprising since
the taskwas detecting anomalies in images andConvolutionalNeuralNetworks (Goodfellow
et al. 2016) generally perform better in this situation.

2.4.2 Internet KPI Analysis
Xu et al. (2018) developed a model called Donut based on a VAE to detect anomalies in
Key Performance Indicators (KPIs) for large Internet companies. KPIs are time-series data

20



metrics such as page clicks, number of reviews, etc. They focused their research on 18
business-related KPIs and conducted an experiment using three datasets, each with about
300,000 instances. The number of anomalies was between 6-7% in each dataset. They
used F1 Score as one of three metrics in determining the best performing model. Compared
to a baseline VAE, their Donut model performed with an F1 Score between 0.75-0.90 for
all three datasets. Additionally, the smoothest dataset saw the highest score for Donut
and lowest for the baseline VAE (around 0.4). For the least smooth dataset, both seem
to perform well with an F1 Score just below 0.8. Xu et al. (2018) concluded their Donut
model, essentially an enhanced VAE, outperforms their non-VAE competitor Opprentice.
Their result highlights the anomaly detection properties intrinsic to VAEs and their capacity
to perform better when targeted modifications are applied.

2.4.3 Robotic Assisted Feeding
Researchers in the field of robotics recently tested the use VAEs to alert them of anomalous
behavior in robots programmed to assist disabled individuals. A study conducted by
Park et al. (2018) compared five different anomaly detection baseline methods to one
they developed that utilizes a VAE coupled with a Long Short-Term Memory (LSTM)
(Goodfellow et al. 2016) neural network. Their experimental setup was anchored around
robotic assisted feeding. They recruited 24 participants and collected 1,556 feeding samples.
Their LTSM-VAEmodel was pre-trained using 1,203 normal data instances and tested using
352 data instances (192 normal and 160 anomalous) which were all collected during the
experiment. Seventeen features were included in the data, accounting for an equal number
of robotic sensors. Their LSTM-VAE outperformed the five other detection methods. It
achieved an area under the curve (AUC) value 0.0443 higher than the closest baseline model
HMM-GP, 0.8564 and 0.8121, respectively. Again, like the previous two studies discussed,
using a VAE or some altered version of a VAE for anomaly detection is a suitable choice
and one worth exploring.

2.5 DoD Financial Anomalies
We show that VAEs are useful for detecting anomalies in a varying range of domains,
from robotics to the medical community. Applying this technique to a relevant military
application while simultaneously seeking to answer our research questions, we now begin
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to shift our attention to Department of the Navy (DoN) budgeting and acquisitions for a
single fiscal year. The DoN’s annual budget provides a glimpse into the magnitude of total
spending that occurs by the service each year and helps build context for our unlabeled
dataset.

According to the Navy’s Fiscal Year 2018 President’s Budget summary, its baseline budget
was $171.5 billion with $26.3 billion allocated for the Marine Corps. This amount includes
expenses for operations and maintenance, personnel, procurement, etc. A large part of
this, $124 billion, is paid to civilian entities across the country and around the globe for
contracted services. While there is plenty of well-known oversight for the use of these funds,
such as audits, history shows that observations that do not conform to well-defined normal
behavior, or anomalies, still occur. We briefly provide three significant, non-conforming
observations as it relates to relationships between the DoD writ large and its contractors.

Consider the now notorious Fat Leonard Scandal (Washington Post 2016). Leonard Glenn
Francis was a businessman whose firm based in Singapore, Glenn Defense Marine Asia,
managed to bribe dozens of officers with money, prostitutes, and lavish vacations for
favorable government contracts. Beginning in the early 2000s until his arrest in 2013,
Francis admitted to defrauding the DoN over $35 million while his company was awarded
over $200 million over the same time.

Inchcape, a United Arab Emirates-owned DoN contractor, was the subject of fraud allega-
tions that it routinely overbilled the Navy from 2005 to 2014 (Stars and Stripes 2018). At
the time, the company carried $240 million in government contracts and supplied food and
communications, in addition to other services, to ports across the globe. Inchcape did not
admit to any wrong-doing in its settlement with the Justice Department in May 2018, but
the company was fined $20 million as a result.

It is not just the DoN that has seen misuse of its treasure. The Air Force was the target of
over-billing scheme by Northrup Grumman employees from 2010 to 2013 (U.S. Department
of Justice 2018). Several employees routinely inflated the number of labor hours they billed
the Air Force for services rendered on two awarded contracts. In total, over $5 million
was stolen resulting in a $31.65 million settlement between the federal government and
Northrup Grumman.
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Given the DoD is not immune from illegal appropriations of its funds, whether from
internal or external entities (and certainly not immune from clerical errors), we can apply
the anomaly detection method we refine with our benchmark data to mine the DoN’s open-
source, contract award data for potential anomalies. We discuss these results in Chapter
4.
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CHAPTER 3:
Methodology

In this chapter, we explain our approach and methodology using a VAE to detect anomalies.
We first introduce our unique objective function and fitting technique for enhancing VAEs
as an anomaly detector. Next, we explain in detail the architecture of the VAE and how it
was tuned to process each dataset. Finally, we describe the data we used and how it was
processed for use in our VAEs.

3.1 Percentile Objective Function
One of the primary drawbacks of autoencoder neural networks for anomaly detection is the
ability of a single network to fit (reconstruct) multiple types of data at once. This ability
is obviously advantageous in the context of learning highly flexible generative models or
simply learning low-dimensional representations of complex data distributions. However,
it is a drawback in the context of anomaly detection, since we want our model to learn to
reconstruct only non-anomalous data inputs and to make large errors when reconstructing
anomalous data points.

To fight this drawback, we introduce a novel objective function that is new to the autoencoder
and VAE literature. Specifically, we utilize a concept called Conditional Value-at-Risk
(CVaR), coming from the risk management literature, see Rockafellar and Uryasev (2002).
While a full introduction to the CVaR concept, particularly in a risk management context, is
beyond the scope of this thesis, it can be understood as a type of conditional expectation or
tail-expectation. Specifically, given a continuously distributed real valued random variable
L, CVaR at probability level α ∈ [0, 1] is given by,

q̄α(L) = E[L |L > qα(L)], (3.1)

where qα(L) = min{t | P(L > t) ≤ 1 − α} is the quantile of L. In other words, this simply
gives the expected value of the right tail of the distribution of L, or the average of the
largest 100 ∗ (1 − α)% realizations of L. More general definitions and calculation formula
exist for CVaR when L does not have a continuous distribution, see again Rockafellar and
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Uryasev (2002). However, the important idea is simply that CVaR is the average of the
largest 100 ∗ (1 − α)% realizations of L.

Moving back to the context of VAEs, the typical objective function takes the form of the
expected value of a random loss function L(X, θ) that depends on some random input X

and neural network parameters θ. This loss is, for example, the reconstruction error of a
random input X . Thus, the objective function seeks to solve:

min
θ

E[L(X, θ)].

This is then optimized via Stochastic Gradient Descent (SGD) in batch-wise fashion, where
each iteration utilizes an empirical estimate of this expectation for gradient calculation given
by

1
|B |

|B |∑
i=1

L(Xi, θ),

where B = {X1, . . . , Xn} is a batch of training examples.

3.1.1 A New Objective
As stated before, the VAE is powerful enough to fit even anomalous data distributions, and
we would like to encourage the VAE to fit only non-anomalous data inputs while making
large errors when reconstructing anomalous data. We accomplish this by using an objective
of the following form, where α ∈ (0, 1) is a parameter chosen by the user to indicate what
proportion of largest training losses should be ignored. Note, when α = 1.0 we have the
standard objective function.

min
θ

E[L(X, θ)] − (1 − α)q̄α(L(X, θ)). (3.2)

This new objective function effectively reduces to the following empirical variation over a
sample batch B = {X1, . . . , Xn}, where we now denote loss realizations as ì := L(Xi, θ) and
denote an ordered permutation of samples as `(1) ≤ · · · ≤ `(n) and also let k = bn(1 − α)c.
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1
n − k

n−k∑
i=1

`(i) (3.3)

Equation (3.3) is the function used to calculate gradients for SGD for each batch. This new
objective function ignores the k-largest losses from each training batch and only propagates
errors for the smallest n − k losses.

Intuitively, this new objective function helps to encourage the VAE to reconstruct non-
anomalous examples which are assumed to produce smaller losses during training. Said
another way, if the network receives an anomalous input and makes a large reconstruction
error, a typical VAE objective function will propagate that error and encourage the VAE to
learn how to reconstruct it. This is, of course, the opposite of what we want. Therefore, we
construct an objective function that ignores these large errors during training.

In terms of the distribution of reconstruction errors which we use after training to detect
anomalies, our objective function is meant to encourage the VAE to have a long right-tailed
distribution so that it will be easier to identify the loss threshold that separates anomalies
and non-anomalies.

3.1.2 Choosing α for the New Objective
Our new proposed objective function introduces one new hyperparameter that needs to be
selected; the parameter α ∈ [0, 1]. This term determines what proportion of largest-loss
training examples (per batch) will be ignored during training. Intuitively, the correct choice
would be with 1−α equal to the true proportion of anomalies present within the training set.
Assuming training batches are sufficiently shuffled and randomly sampled, and assuming
that indeed anomalous training points will produce one of the k = n(1 − α) largest losses
during training iterations, our objective function will ignore the reconstruction errors on
anomalous points (approximately) throughout training if 1 − α is selected to equal the true
proportion of anomalies in the training set.

If this information is known, we are then in a partially supervised learning setting. We
show in the following sections that, indeed, if 1 − α is set to equal to the known proportion
of anomalous data points in the training set, the learned VAE outperforms a traditionally
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trained VAE.

The supervised learning setting, however, is not the setting we want to work in. We desire a
method that works in the fully unsupervised setting, where no information about the training
set (i.e., labels, proportion of anomalies) is known. In this setting, we need an automated
procedure for selecting the best level α.

To gather intuition about how to distinguish between VAEs fit with “good” and “bad”
choices of α, we can look at the resulting distributions of reconstruction errors when we
know the true proportion of anomalous training examples. Indeed, we see that when α is
chosen to match the true proportion of anomalies, the distribution of reconstruction errors
begins to appear bi-modal with a gap between well-reconstructed examples and poorly-
reconstructed examples (see Figure 3.1). This motivates us to use a clustering approach on
the reconstruction errors to identify error distributions which have this natural clustering of
large and small reconstruction errors.

This bi-modal distribution of losses is the ideal case for detecting anomalies with
the new objective function. The red box highlights the suspected region of anoma-
lous reconstruction errors.

Figure 3.1. Desired Distribution of Reconstruction Errors

We utilize a Gaussian mixture model (GMM) to cluster the set of 1-D reconstruction errors
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produced by our trained VAEs. A GMM is a parametric probability density function
represented as a weighted sum of Gaussian component densities (Reynolds 2015). In other
words, it is a combination of multiple underlying Gaussian distributions taken together to
form one continuous density function (see Figure 3.2). The reconstruction errors from our
VAEs form the underlying Gaussian distributions. We choose three clusters to represent
normal, high-loss normal, and anomalous reconstruction errors. Ideally, two clusters
(normal and anomalous) would be sufficient, but this is not practical due to high-loss
normal data we often encounter. In other words, normal data that has a larger than average
reconstruction error must be accounted for in some way and is handled by fitting three
clusters in our GMMs.

This GMM has 3 components represented by the dotted lines. The solid black
line is the sum of the components and the GMM. For our purposes, components
1, 2, and 3 represent the reconstruction errors for normal, high-loss normal, and
anomalous points, respectively.

Figure 3.2. GMM with 3 Components (Clusters)

We train our VAE with multiple levels of α. Then, for each VAE, we fit a GMM on its
errors. We then use the fit models to find which VAE (i.e., which choice of α) produced the
most distinct clusters of reconstruction errors. For each GMM, we select the cluster with
the highest mean. Focusing on only the third, or rightmost, components we compare their
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attributes among all fit GMMs and finally select the GMM (and corresponding α from the
VAE) that has the smallest weight w, where w ∈ [0, 1], smallest variance σ, and largest
mean µ. Put another way, of all distributions of reconstruction errors, we desire the one
whose rightmost cluster has the highest mean and has the smallest weight and variance.
Specific results using this approach are found in Chapter 4.2. Overall, we find that this
approach, in combination with our proposed objective function, is highly effective and
produces a suitable unsupervised approach for anomaly detection using VAE’s when no
labeled training data is given and the proportion of anomalies in the dataset is unknown.

3.2 Model Architecture
For each of the three non-image benchmark and USASpending datasets, we use fully-
connected, or dense, VAEs, meaning each node is connected to every node in the previous
and subsequent layers. For the Fashion-MNIST we utilize a Convolutional Neural Network
(CNN) VAE (see Figure 3.3). CNNs are often used for processing image data, and their
primary advantage over an ordinary, dense VAE is they maintain pixel location information
and have shared weights among layers which leads to better results. We utilized the PyTorch
(Paszke et al. 2017) library in Python for building and training all VAEs.

A basic CNN with Convolutional and Pooling Layers. Notice the input information
is flattened and fed forward into a Fully Connected network.

Figure 3.3. Basic Convolutional Neural Network. Source: SuperDataScience
Team (2018).

There aremany parameters in aVAE that can be tuned, from learning rates to batch sizes. We
select their values from either the default settings in the PyTorch software or from common
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best practices. Our objective in designing the model’s architecture is not to engineer the best
VAE for identifying anomalies in the benchmark data but rather to use consistent parameter
values that may provide clues for building a generalized VAE detector. When discussing
hidden units specifically, Goodfellow et al. (2016) states:

Predicting in advance which will work best is usually impossible. The design
process consists of trial and error, intuiting that a kind of hidden unit may work
well, and then training a network with that kind of hidden unit and evaluating
its performance on a validation set.

His insights carry weight for the entire design process and are heeded here. When appropri-
ate, parameter settings are kept constant for benchmark datasets unless otherwise specified.
Table 3.1 provides their values.

Table 3.1. Summary of Unchanging Parameters

Parameter Value

Epochs 5
Learning Rate 1e-3
Weight Decay 1e-5
DropOut Layer 1 0.2

We initialize our VAEs with three hidden layers (see Table 3.2), including the bottleneck
layer, and our choice of optimizer is Adam (Kingma and Ba 2015). We utilize a dropout
layer (Srivastava et al. 2014) in the encoder qφ(z |x) and as well as weight decay (Krogh and
Hertz 1992) to regularize the network. Dropout is a technique that randomly removes nodes
and their connections within a selected layer during training. This helps the network avoid
over-fitting the training data, which is useful in our case since we do not want our VAE to
learn to reconstruct the anomalous records in our data. Weight decay helps avoid overfitting
as well. It is a penalty term applied to the weights of the network after each update. It
causes them to exponentially decay to zero preventing them from growing arbitrarily large.

Our choice of activation function is Rectified Linear Units (ReLUs) and is shown in Figure
3.4. It is used to activate each neuron in all layers of the VAE with the exception of the final
layer where we use a Sigmoid activation function. The final output is restricted from [0, 1]
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Table 3.2. Initial Node Counts in Each Dense Layer of VAE

Layer KDDCup99 Statlog Shuttle CoverType Fashion-MNIST DoN Contracts

Input 48 9 54 784 997
Hidden 1 24 7 24 200 512
Hidden 2 6 4 6 20 48
Hidden 3 24 7 24 200 512
Output 48 9 54 784 997

in order to use Binary Cross Entropy as the reconstruction error portion of the objective
function.

The ReLU activation function sets a negative input to 0 and is linear otherwise.

Figure 3.4. ReLU Activation Function. Source: Paszke et al. (2017).

Batch size is determined by dividing each dataset into 500 subsets which provides each
epoch 500 iterations. Training batches are shuffled while test batches are not. Shuffling
training batches helps regularize the VAE and not shuffling test batches provides consistent
results that simplifies comparison.

Another distinction between training and testing with the VAE is the decoder does not
sample from a Gaussian distribution during testing but simply uses the mean and standard
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deviation vectors produced by the encoder. This eliminates variability in the final output
and provides a measure of reproducibility in the network. Training is still conducted using
random sampling from the latent space to the decoder.

As previously mentioned, the Fashion-MNIST data is trained using a CNN VAE. The key
difference in architecture from the dense VAE is by the addition of two Convolutional and
two Pooling Layers in the encoder preceding the dense hidden layers. We set the kernel size
for the Convolutional and Pooling layers to 5 and 2, respectively.

3.3 Data and Pre-processing
In order to develop and tune a VAE for unsupervised anomaly detection, we first have to
utilize labeled datasets so that we are able to evaluate its performance against ground truth
labels. We use four benchmark datasets accessed from the University of California–Irvine
Machine Learning Repository. This provides a feedback mechanism during training and
enables exploration into how the VAE handles different data sizes and types. The fifth
dataset we use is accessed from USASpending.gov and is unlabeled.

3.3.1 KDDCup99
Our primary benchmark dataset was used in the Knowledge Discovery and Data Mining
Competition in 1999, and we will refer to it as KDDCup99. The original task of the
competition using this data was “to build a network intrusion detector, a predictive model
capable of distinguishing between bad connections, called intrusions or attacks, and good
normal connections. This database contains a standard set of data to be audited, which
includes a wide variety of intrusions simulated in a military network environment” (Hettich
and Bay 1999). We subset it to fit our requirements, similar to An and Cho (2015) and
Williams et al. (2002). The original data contains 4,898,431 records, 41 features, and 1
label vector. Each record is a network login or an attempted network login. We only use
records with positive (connected) network logins since we are attempting to determine if
the login is normal or anomalous. This decreases the data to 703,066 records. Furthermore,
we subset it by a feature called service which consists of network connection types (e.g.,
http, ftp, smtp). Using only the http service type, the data is further reduced to 567,497
records, of which 2,211 are intrusions. Table 3.3 shows the different classes along with
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their quantities and proportion in the data. DOS, Probe, R2L, and U2R are all intrusions
and considered to be anomalies.

Table 3.3. KDDCup99 Data

Class Records Percent

Normal 565,286 99.61%
DOS 2,203 0.39%
probe 4 ∼ 0%
R2L 0 0%
U2R 4 ∼ 0%

567,497 100%

Next, all categorical features with more than two values are processed via one-hot encoding.
This allows the VAE to interpret them as binary representations. For example, if one
categorical feature has three possible values (e.g., sit, walk, run) then one-hot encoding will
create three new features sit, walk, and run. If that record’s original categorical variable
value is walk, then the new vector will be (0,1,0). One-hot encoding is done frequently for
categorical variables in this thesis and is common practice. After one-hot encoding flag
and removing protocol_type and service, the final number of features in the data 48.
Finally, all features are normalized to have mean zero and variance one.

3.3.2 Statlog Shuttle
Our second benchmark dataset is named Statlog Shuttle and can be found on the University
of California–Irvine Machine Learning Repository (Dua and Graff 2017). It consists of
58,000 records, 9 features, and 1 label vector. There are 7 numeric classes in the label
vector each corresponding to the following: 1 Rad Flow, 2 Fpv Close, 3 Fpv Open, 4 High,
5 Bypass, 6 Bpv Close, and 7 Bpv Open. Following Tan et al. (2011), we label classes 2, 3,
5, 6, and 7 as the anomaly classes due to their low frequency in the data. Class 4 is removed,
and Class 1 is labeled normal since it is the majority class. Table 3.4 displays the number
of records and percentages of each class within the data. All 9 features are numeric, so
one-hot encoding is not required and the final dimension of the data remains at 9. Finally,
similar to the KDDCup99 data, the Statlog Shuttle data is normalized to have mean zero
and variance one.
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Table 3.4. Statlog Shuttle Data

Class Records Percent

Rad flow 45,586 92.86%
Fpv Close 50 0.10%
Fpv Open 171 0.35%
Bypass 3267 6.65%
Bpv Close 10 0.02%
Bpv Open 13 0.03%

49,097 100%

3.3.3 Forest Covertype
Our third benchmark dataset is Forest Covertype, again found at theUniversity ofCalifornia–
Irvine Machine Learning Repository. Blackard (1998) created a database of seven different
forest cover types in northern Colorado. His description of the data is thorough and
reproduced here:

[Predict] forest cover type from cartographic variables only (no remotely sensed
data). The actual forest cover type for a given observation (30 x 30 meter
cell) was determined from U.S. Forest Service (USFS) Region 2 Resource
Information System (RIS) data. Independent variables were derived from data
originally obtained from U.S. Geological Survey (USGS) and USFS data. Data
is in raw form (not scaled) and contains binary (0 or 1) columns of data for
qualitative independent variables (wilderness areas and soil types).

This study area includes four wilderness areas located in the Roosevelt Na-
tional Forest of northern Colorado. These areas represent forests with minimal
human-caused disturbances, so that existing forest cover types are more a result
of ecological processes rather than forest management practices.

The data contains 581,012 records, 54 features, and 1 label vector. Of the 54 features,
44 are binary and the remaining 10 are continuous. For our purposes, we subset the data
similarly to Tan et al. (2011), but keep all features. There are 7 classes of covertypes:
1 Spruce/Fir, 2 Lodgepole Pine, 3 Ponderosa Pine, 4 Cottonwood/Willow, 5 Aspen, 6
Douglas-fir, and 7 Krummholz. The Lodgepole Pine and Cottonwood/Willow classes are
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normal and anomalous, respectively, in our setup and all others are removed. Table 3.5
provides the number of records and proportions of each in our dataset. The dimensionality
of the data remains 54. Finally, the data is normalized to have mean zero and variance one.

Table 3.5. Forest Covertype Data

Class Records Percent

Lodgepole Pine 283,301 99.04%
Cottonwood/Willow 2,747 0.96%

286,048 100%

3.3.4 Fashion-MNIST
Our final benchmark dataset is created from the Fashion-MNIST (Xiao et al. 2017) dataset
and the original handwritten digit MNIST (Lecun et al. 1998). Both consist of a 60,000
28x28 pixel gray-scale image training set and a 10,000 28x28 pixel gray-scale image test
set. We discard the test sets for both and only work with the training sets.

Fashion-MNIST (Figure 3.5) has 10 classes of various articles of clothing and accessories:
0 T-shirt/top, 1 Trouser, 2 Pullover, 3 Dress, 4 Coat, 5 Sandal, 6 Shirt, 7 Sneaker, 8 Bag,
and 9 Ankle boot. Similarly, MNIST has 10 classes of handwritten numbers, all digits
from 0-9. We take the full set of 60,000 MNIST digits and merge them with a sample of
1,203 Fashion-MNIST records to create our dataset. The goal is for the VAE to identify the
Fashion-MNIST records, our anomalies is this case, among the 60,000 MNIST handwritten
digits. What makes this data unique from the other three benchmarks is it provides a
visualization of the VAE’s efforts to reconstruct anomalous points.
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(a) Fashion MNIST (b) MNIST

Both the handwritten MNIST and a portion of the Fashion-MNIST are merged
together to form the only image benchmark used for anomaly detection in this
thesis.

Figure 3.5. Fashion-MNIST Data

3.3.5 DoN Contract Award Data
Our final dataset, DoN contract award data from FY14-FY18, is the only unlabled one we
use in this research. It comes from an open-source, public database available on a U.S.
government website (USASpending 2019). The organization hosting the database states its
mission and background is:

to show theAmerican public what the federal government spends every year and
how it spends the money. You can follow the money from the Congressional
appropriations to the federal agencies and down to local communities and
businesses.

The Federal Funding Accountability and Transparency Act of 2006 (FFATA)
was signed into law on September 26, 2006. The legislation required that
federal contract, grant, loan, and other financial assistance awards of more than
$25,000 be displayed on a publicly accessible and searchable website to give the
American public access to information on how their tax dollars are being spent.
In 2008, FFATA was amended by the Government Funding Transparency Act,
which required prime recipients to report details on their first-tier sub-recipients

37



for awards made as of October 1, 2010.

The transparency efforts of FFATA were expanded with the enactment of the
Digital Accountability and Transparency Act (DATA Act) Pub. L. 113-101 on
May 9, 2014. The purpose of the DATA Act, as directed by Congress, is to:

• Expand FFATA by disclosing direct agency expenditures and linking
federal contract, loan, and grant spending information to federal agency
programs.

• Establish government-wide data standards for financial data and provide
consistent, reliable, and searchable data that is displayed accurately.

• Simplify reporting, streamline reporting requirements, and reduce com-
pliance costs, while improving transparency.

• Improve the quality of data submitted to USAspending.gov by holding
agencies accountable.

Choosing to work with this data not only enables us to rigorously test our methodology but
also provides military relevance to our work. As shown in Chapter 2, anomalies can present
themselves in various domains and in various ways. The U.S. government, and in particular
DoN financial activities, is not immune from erroneous, illicit, or negligent behavior.
While it is not within our scope to identify why certain data instances are anomalous, we
nonetheless make the distinction between normal and anomalous records in the data.

Due to the wide range of services and products that are awarded DoN contracts, we only
analyze a portion of the entire dataset. We subset it based on the North American Industry
Classification System (NAICS) codes and use sector 54 (Professional, Scientific, and Tech-
nical Services). This sector encompasses the majority of all DoN contracts awarded in the
last five fiscal years. Processing the data in this fashion will make the VAE more likely to
detect anomalies since contract awards will be similar to each other. This prevents the VAE
from trying to learn “normal” awards across many NAICS categories (e.g., 23-Construction
and 61-Education Services) . The same approach is done for the service feature in the
KDDCup99 data.

In total, ourDoN contract award dataset consist of 292,853 records (see Table 3.6). There are
6 continuous features (dollar and obligation amounts) and 126 categorical, which increases
to a total of 997 after one-hot encoding.
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Table 3.6. DoN Contract Awards for NACIS Sector 54
Fiscal Year Records

2018 55,755
2017 57,741
2016 57,205
2015 59,592
2014 62,560
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CHAPTER 4:
Results and Analysis

This chapter consists of three sections detailing our results and their analysis. We begin
by discussing how the VAE performed with the benchmark datasets when the proportion
of anomalies within each dataset is known. We show that our proposed VAE outperforms
the traditional VAE, particularly when α is selected proportional to the known fraction of
anomalies in the dataset, as discussed in Chapter 3.1. Next, ignoring labels and assuming
the proportion of anomalies is unknown, we use the GMM methodology from Chapter 3.1
to choose the proper choice of α. Furthermore, we find that this outperforms the standard
VAE approach and effectively separates anomalies from non-anomalies in our datasets. It
additionally chooses the correct choice of α, matching the proportion of known anomalies
when considering the labels after-the-fact. Finally, the DoN contract award data is analyzed
using the same methods and conclusions made with respect to identifying anomalous
records.

4.1 Performance with Benchmark Data and α Known
To test the effectiveness of the proposed objective function and to see whether the intuition
laid out in Chapter 3.1 for choosing α is indeed correct, we begin by assuming we know
the true proportion of anomalies and measure model performance for multiple values of
α. We see that, indeed, model performance is optimal when α is set proportional to the
known fraction of anomalies present in the dataset. In the next section, 4.2, we eliminate
this assumption and utilize our GMM procedure for choosing α. We take advantage of
knowing the true proportion of anomalies by using the benchmark labels in our analysis.

Scores for each model are determined by calculating the model’s precision, recall, and F1

Score, where

Precision =
TruePositive

TruePositive + FalsePositive
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Recall =
TruePositive

TruePositive + FalseNegative

F1Score = 2 ∗
Precision ∗ Recall
Precision + Recall

.

We use F1 Score as our primary measure of performance and test to see which α gives the
best result.

In general, we discover our new objective function outperforms the non-altered baseline
objective function. In other words, α < 1.0 detects more anomalies in data than when
α = 1.0, with α = 1.0 being equivalent to the non-altered baseline VAE objective function.
Also, the optimum value for α is in the vicinity of the true proportion of anomalies within the
data. This makes sense intuitively, since the VAE is ignoring the anomalies when training
the model’s φ, θ weight parameters. We explore the results of the VAE’s performance by
analyzing the results of our benchmark data. Each benchmark provides a useful insight we
carry forward in our analysis and apply to our unlabeled data (DoN Contract Awards) in
Chapter 4.3.

4.1.1 KDDCup99
Using the methodology described in Chapter 3, 10 values of α are compared for their
performance detecting anomalies. The number of anomalies in the data is 2,211 or roughly
0.39%. Table 4.1 shows each α’s corresponding F1 Scores. The highest performing VAE
is the one whose objective function uses α = 0.995. Notice this value is nearly the same as
the proportion of normal data within the dataset.

Inspecting the distribution of losses for each of the VAEs, we see the effects of the α
hyperparameter increasing the anomalies’ reconstruction errors. When comparing α = 1.00
(no change to the objective function) to any other value of α, the distribution of losses
associated with the anomalous classes increase. The separation in losses between the
normal and anomalous classes indicates the VAE is learning exclusively from the data’s
normal records and ignoring the anomalies in training. Figure 4.1 displays this for the
optimum value of α.
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Table 4.1. KDDCup99 F1 Scores at 99.61th Percentile of Losses

α F1 Score

1.00 0.4090
0.995 0.9695
0.99 0.8963
0.98 0.7837
0.97 0.6638
0.96 0.6929
0.95 0.6807
0.94 0.6255
0.93 0.6571
0.92 0.8443

4.1.2 Statlog Shuttle
We find similar, but not identical, results with the Statlog Shuttle dataset (see Table 4.2).
There are 49,097 records of which roughly 7% are anomalies. Inference from the KDD-
Cup99 results suggest the best-performing VAE is the one whose α = 0.93. This is roughly
the true proportion of normal records within this dataset. While this is not exactly the case,
we still get an α value relatively close to 0.93. We find the highest rate of detection when
α = 0.90. Moreover, the absolute differences in detection between the two (α = 0.93 and
α = 0.90) is rather small when comparing each VAE’s F1 Score.

Table 4.2. Statlog Shuttle F1 Scores at 92.85th Percentile of Losses

α F1 Score

1.00 0.7602
0.98 0.5990
0.96 0.7603
0.94 0.5480
0.93 0.7975
0.92 0.8015
0.91 0.7106
0.90 0.9581
0.89 0.9487
0.88 0.8610

43



(a) Normal Records Reconstruction Errors

(b) Anomalous Records Reconstruction Errors

This figure illustrate the differences in reconstruction errors between (a) normal
and (b) anomalous records in the KDDCup99 benchmark dataset. Notice the
anomalous losses (b) increase for α = 0.995 (orange).

Figure 4.1. KDDCup99 Distribution of Losses

The scatter plots of the reconstruction errors between the values of α provides an excellent
visualization of the growing gap between normal and anomalous records. As the value
of α changes and nears its optima for detecting anomalies, the gap expands and seems to
stretch or rip the reconstruction errors into distinct chunks (see Figure 4.2). The effect of
our objective function with the new hyperparameter α is clearly impacting our results in
a favorable way, and choosing α is plausible by closely examining a scatter plot. While
this method is admittedly subjective and could differ based on various interpretations, we
explore our metric-based approach for α selection in Section 4.2.
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(a) α = 1.0

(b) α = 0.90

This figure illustrates the differences in reconstruction error between normal (blue)
and anomalous (yellow) points. Notice the anomalous losses seem to separate
from the normal data when α = 0.90, subfigure(b).

Figure 4.2. Statlog Shuttle Scatter Plots of Reconstruction Errors
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4.1.3 CoverType
Our VAEs had the least amount of success of all the benchmark data detecting anomalies in
the CoverType dataset. It consists of 286,048 records of which 2,747 are anomalies (0.96%),
a slightly higher proportion than the KDDCup99 data. We only achieved a maximum F1

Score of about 0.65 while the other benchmark data consistently produced results above
0.90 for the optimum α. Although anomaly detection was relatively low with this data, we
still saw improved detection applying our new objective function (see Table 4.3). When
α = 1.00 and α = 0.97 the F1 Scores are 0.0662 and 0.6459, respectively. Figure 4.3 shows
some of the difficulty achieving a high F1 Score since there is significant overlap between
normal and anomaly reconstructions, one of the challenges we discussed in Chapter 2.
While the new objective function creates a clear separation between the majority of the
normal and anomalous records, it cannot differentiate highest-loss normal records from the
true anomalies well.

Table 4.3. CoverType F1 Scores at 99.04th Percentile of Losses

α F1 Score

1.00 0.0662
0.99 0.0962
0.98 0.1668
0.97 0.6459
0.96 0.6168
0.95 0.6376
0.94 0.6366
0.93 0.3474
0.92 0.6385
0.91 0.6286

Taking another look at the reconstruction losses, we examine the density distributions for the
same α values (1.0 and 0.97). Figure 4.4(a) is a very close match to our desired distribution
of reconstruction losses previously shown in Figure 3.1. It exhibits the desired bi-modal
curve with clear separation between the two modes; however, this is deceptive since the
anomalies are masked within normal records in this case (see Figure 4.3(a)). A third group,
or cluster, emerges in Figure 4.4(b). The new objective function detects the majority of
anomalies contained within this group and penalizes them more than the baseline VAE
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(α = 1.0), thus creating a small, third group. This insight proved particularly useful when
deciding to use three components for our GMM fitting, as introduced in Chapter 3.1.

(a) α = 1.0

(b) α = 0.97

This figure illustrate the differences in loss values between (a) normal and (b)
anomalous records in the CoverType benchmark dataset. Notice the anomalous
losses (b) seem to create a new cluster for α = 0.97.

Figure 4.3. CoverType Scatter Plots of Losses
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(a) α = 1.0

(b) α = 0.97

Density distribution of reconstruction errors. Note the rise of a third cluster.

Figure 4.4. CoverType Density Plots of Losses

4.1.4 Fashion-MNIST
The Fashion-MNIST data is our only image benchmark. Along with the analysis of recon-
struction errors, it provides visualization of the VAE’s learned behavior (see Figure 4.5).
The data contains 1,203 images of clothing and 60,000 images of handwritten digits. We
test 10 values of α and expect the optimal value to be at or near 0.98, the true proportion
of anomalies (clothing images). Our results show α = 0.97 is the best choice and produces
an F1 Score of just over 0.98. This is also the identical value for α = 0.96. In fact, all
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F1 Scores with α ≤ 0.98 are extremely high and within 0.01 of each other (see Table 4.4).
This is clearly the most definitive indication that choosing any value of α less than or equal
to the true proportion of anomalies is better than the baseline case (α = 1.0).

It is clear from Figure 4.5 that our novel objective function has a dramatic affect detecting
anomalies. With very few samples in the data, a VAE with a standard objective function
(α = 1.0) is powerful enough to reconstruct the images of clothing contained within 60,000
images of handwritten digits, despite them being very different. Our objective function
prevents the VAE from learning any information from the anomalous images. When the
clothing images are fed into the VAE using our objective function, their reconstruction
resembles handwritten digits! This results in a large reconstruction error and improves the
likelihood of detection.

Table 4.4. Fashion-MNIST F1 Scores at 98.03th Percentile of Losses

α F1 Score

1.00 0.7138
0.99 0.9135
0.98 0.9776
0.97 0.9842
0.96 0.9842
0.95 0.9817
0.94 0.9792
0.93 0.9784
0.92 0.9784
0.91 0.9776
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(a) α = 1.0

(b) α = 0.97

This figure illustrates the differences in reconstruction by VAEs that use the base-
line (α = 1.0) and new (α = 0.97) objective function. Notice in subfigure (b) the
rightmost image is beginning to look like a number 8, indicating the VAE learned
digits (normal data) better during training and cannot reconstruct the fashion
articles (anomalies).

Figure 4.5. Fashion-MNIST Image Reconstruction

4.2 Performance with Benchmark Data and α Unknown
We have shown our new objective function, with α < 1.0, improves anomaly detection in
our benchmark data. Additionally, knowing their labels helped provide instant feedback on
the VAE’s performance and enabled us to choose α optimally and subsequently the best
model. The task now is to continue selecting the optimum α when the data is unlabeled
and the proportion of anomalies are unknown. We use the same benchmarks but remove
their labels and focus only on the VAE’s ability, or inability, to reconstruct data and their
associated reconstruction error distributions.

In Chapter 3, we introduce GMMs as a way to fit the reconstruction errors into groups that
can be used for analysis. Measuring the relative sizes, mean distance from the origin, and
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their variability provides insight into how the VAE is working to reconstruct the data.

Using the same values of α as the previous section, we fit the models’ reconstruction errors
into a three-component GMM. Tables 4.5, 4.6, 4.7, and 4.8 show the mean, variance, and
weight for the rightmost GMM component for each benchmark. We observe three key facts
when fitting the GMM on the reconstruction errors for the third component:

1. The optimal α has a large mean
2. The optimal α has a small variance
3. The optimal α has a small weight

This reinforces our initial thoughts about the distribution of reconstruction errors described
in Chapter 3.1. The α which returns the best results also has a small, dense, and high-mean
group of reconstruction errors in the rightmost component. The Statlog Shuttle is the only
exception to this since its weight is 0.0200, which ranks 7th among the other 10 choices.
Despite this difference the trend is clear and provides a quantifiable metric for determining
the best-performing VAE to utilize for anomaly detection with unlabeled data.

Table 4.5. KDDCup99 GMM 3rd (Rightmost) Component

α Mean Variance Weight

1.00 29.78 221.70 0.0259
0.995 88.41 569.03 0.0055
0.99 80.19 610.84 0.0066
0.98 53.63 977.33 0.0317
0.97 45.50 1,049.56 0.0413
0.96 48.46 1,050.95 0.0373
0.95 42.55 1,038,51 0.0455
0.94 50.54 1,022.18 0.0358
0.93 42.17 1,049.36 0.0466
0.92 54.53 985.31 0.0593
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Table 4.6. Statlog Shuttle GMM 3rd (Rightmost) Component

α Mean Variance Weight

1.00 13.08 81.66 0.0037
0.98 11.34 61.08 0.0055
0.96 15.55 105.20 0.0027
0.94 12.39 86.27 0.0041
0.93 6.65 10.20 0.0830
0.92 7.74 13.38 0.0566
0.91 16.54 109.83 0.0030
0.90 30.99 11.26 0.0200
0.89 22.96 199.66 0.0019
0.88 32.37 15.49 0.0387

Table 4.7. CoverType GMM 3rd (Rightmost) Component

α Mean Variance Weight

1.00 35.93 3.55 0.0594
0.99 36.20 4.68 0.0536
0.98 36.73 11.05 0.0541
0.97 62.34 1.79 0.0114
0.96 62.29 2.66 0.0113
0.95 62.79 2.56 0.0117
0.94 63.13 13.10 0.0117
0.93 63.03 2.95 0.0163
0.92 62.57 2.78 0.0174
0.91 62.56 2.33 0.0118
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Table 4.8. Fashion-MNIST GMM 3rd (Rightmost) Component

α Mean Variance Weight

1.00 167.36 4,784.12 0.1255
0.99 280.63 11,330.43 0.0284
0.98 376.24 14,029.17 0.0234
0.97 442.80 7,556.40 0.0201
0.96 454.23 11,602.98 0.0206
0.95 434.84 8,500.19 0.0204
0.94 444.83 12,068.55 0.0210
0.93 436.91 9,708.67 0.0208
0.92 428.47 10,455.35 0.0213
0.91 441.59 10,351.34 0.0209

4.3 Performance with DoN Contract Award Data
Given the method described in Chapter 3 and the results from Chapter 4.1 and 4.2, we apply
what we discovered to our unlabeled data, DoN Contract Awards.

The data consists of 292,853 records and 997 features. It is compiled from USASpending
(2019) and encompasses DoN contract awards from FY14-FY18 in NACIS sector 54
(Professional, Scientific, and Technical Services).

We perform a larger grid search for α than our benchmarks by training the VAE on 16
different possible values. Immediately, we notice our original network configuration used
with our benchmark data is unstable and reconstruction error values diverge toward infinity.
This could be due to the large number of binary features (991), but nonetheless a deeper
network or smaller learning rate is required to remedy this problem. We add an additional
hidden layer to both the encoder and decoder of the VAE and leave all other parameters
untouched. Table 4.9 shows the updated VAE architecture used in this experiment. We note
that this is one of the benefits of our methodology. Our novel objective function and GMM
selection process can be used around any VAE model architecture. This is, in fact, one of
the reasons we chose to focus on the application of neural networks to anomaly detection.
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Table 4.9. Updated VAE Architecture for DoN Contract Award Data

Layer Nodes

Input 997
Hidden 1 512
Hidden 2 256
Hidden 3 48
Hidden 4 256
Hidden 5 512
Output 997

Based on the analysis of the reconstruction error distributions, initial impressions indicate
the best-performing VAE has an α = 0.92 or α = 0.88. If the true proportion of anomalies
is around 10% then these values are plausible based on the findings using the labeled
benchmark data. More generally, the VAE behave as expected as α changes. The right-tails
of the reconstruction error distributions begin to lengthen and develop a second grouping.
Figures 4.6 and 4.7 show this well. When the baseline α = 1.0 reconstruction error
distribution is compared with the ones with α = 0.92 and α = 0.88 we clearly see the right-
tails emerge, which presumably consist of anomalies. Recalling the desired distribution
from Chapter 3 (see Figure 3.1), we conclude the VAE with α = 0.88 resembles this the
best but are reluctant to dismiss α = 0.92 as a possible optimum.

Figure 4.6. DoN Contract Award Reconstruction Error Distribution for α =
1.0
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(a) α = 0.92

(b) α = 0.88

Figure 4.7. DoN Contract Award Reconstruction Error Distributions for (a)
α = 0.92 and (b) α = 0.88

With two possible candidate VAE models identified based on their reconstruction error
distributions, we now fit a GMM to each of the 16 models to identify (or confirm) which
performs the best detecting anomalous data. Table 4.10 displays the results. Based on
mean, variance, and weight of the 3rd component of the GMM, both α = 0.92 and α = 0.88
perform the best; α = 0.92 has the highest mean and α = 0.88 has nearly the smallest
variance. The variance for α = 1.0 and α = 0.99 are smaller, but we ignore those choices
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of α based on their small and insignificant means relative to the other models. A preferred
model is still elusive at this point, but we can safely assume it will be between α = 0.92 and
α = 0.88

Table 4.10. DoN Contract Award GMM 3rd (Rightmost) Component

α Mean Variance Weight

1.00 48.17 153.41 0.2720
0.99 48.64 329.20 0.1426
0.98 78.05 1,114.88 0.0270
0.97 80.38 844.05 0.0334
0.96 83.42 938.44 0.0400
0.95 88.24 863.68 0.0380
0.94 94.19 1,032.86 0.0608
0.93 113.34 1,310.58 0.0613
0.92 121.75 1,032.86 0.0634
0.91 108.27 888.10 0.0727
0.90 109.09 923.22 0.0800
0.89 116.63 870.91 0.0795
0.88 114.28 731.99 0.0847
0.87 110.27 996.31 0.1034
0.86 113.84 936.45 0.1086
0.85 111.71 932.72 0.1142

For thoroughness, we identify the worst 1,000 reconstructed records in eachmodel’s outputs
and determine the fraction of them that are shared between models. In other words, we
compare the worst records for α = 0.92 against each α and count the number of times
a particular record appears in both subsets. This provides a clue about the differences
and similarities each model has in reconstructing these records. We find the 1,000 worst
reconstructed outputs for α = 0.92 comprise 69% of the 1,000 worst reconstructed outputs
α = 0.88. See Table 4.11 for a complete look at the similarities of α = 0.92 with the other
15 values. The results of this comparison is interesting but does not assist in the overall
goal of selecting the best α; however, we can conclude α = 0.92 and α = 0.88 produce
the most similar results, confirming them as our best performing relative the the GMM
selection criteria.

Two arguments can be extracted from the benchmark results for choosing between the two
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Table 4.11. Similarity of 1,000 Worst Reconstructed Outputs between α =
0.92 and All Other α

α Similarity

1.00 0.042
0.99 0.046
0.98 0.071
0.97 0.106
0.96 0.116
0.95 0.101
0.94 0.427
0.93 0.553
0.92 1.000
0.91 0.487
0.90 0.388
0.89 0.552
0.88 0.691
0.87 0.496
0.86 0.418
0.85 0.430

α. The conservative one would be to select α = 0.88. Each model performed better
using α < 1.0, so in this case, simply choosing the one whose variance is small and has
a relatively high mean would certainly be justified. On the other hand, we observe with
the benchmarks the best performing VAE has an α that is no farther than 0.03 of the true
proportion of anomalies. Presumably, the most likely number of anomalies in the DoN
contract award data is smaller than 9-12%, so choosing α = 0.92 may be ideal and supports
a new assumption that the number of anomalies could be 5-8%.

After considering the results from the benchmarks, α = 0.92 is arguably the best choice. It
has the highest mean and 25% lower weight than α = 0.88 in the GMM third component,
although we concede its variance is the larger of the two. Additionally, the likelihood the
number of anomalies is more than 8% seems low and provides a lower bound of about 5%,
but again this is only an assumption on the true proportion of anomalies. Further, the weight
of α = 0.92 is 0.0634. Assuming there is some quantity of high-loss normal data within
this GMM third group, we can also assume there is less than 6% anomalies (i.e., the total
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weight of third component). This is true with three of four results from the benchmark data
(Shuttle Statlog did not have this characteristic in the results).

Determining the cutoff between normal and anomalous records, we start with the weight
of the third group of the fitted GMM on α = 0.92 model as the initial threshold. In other
words, we mark the spot to “slice” the right-tail of the reconstruction error distribution at
the 93.66th-percentile. Splitting here results in 18,567 anomalous records. Trying a Tukey
Fence [Q3 + 3 ∗ (Q3 − Q1)] instead results in 13,378 anomalies (4.57%), and if we look
for natural breaks in the reconstruction error distribution we find two possible values (see
Figure 4.8). Using a break point with a reconstruction errors greater than 100 and 150 result
in 12,772 (4.36%) and 2,175 (0.74%) anomalies, respectively.

Ultimately, for the DoN contract award data, we conclude the best-performing VAE model
uses our proposed percentile objective function with α = 0.92, and the number of possible
anomalous records is bounded between 2,175 – 18,567 records, or 0.74% – 6.34% of the
data.
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(a) α = 1.0

(b) α = 0.92

Figure 4.8. DoN Contract Award Reconstruction Scatter Plots for (a) α =
1.0 and (b) α = 0.92
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CHAPTER 5:
Conclusion

With data collection becomingmore ubiquitous in both the commercial andmilitary sectors,
the power to detect anomalies within that data has increasing value for decision makers.
The impacts vary by domain, but the effects of anomalies can be overwhelming beneficial if
detected or equally as devastating if missed. Our proposed method attempts to add another
tool for analysts to use.

Returning to the research questions in Chapter 1, we address each individually throughout
this thesis. Again, those questions are:

• What is the best network architecture to effectively detect anomalies and how can
we alter the objective function of the VAE to better detect them? Similarly, can
we force the distribution of reconstruction errors to follow a desired distribution
with anomalous data associated with large reconstruction errors that are far from the
distribution of normal reconstruction errors (e.g., long-tail and bimodal)?

• How should we analyze the distribution of reconstruction errors to indicate anomalies
(i.e., how large does the reconstruction error need to be for a point to be labeled
anomalous)? Without ground-truth labels, how do we know if our algorithm is
performing well?

• Can our proposed technique be generalized to perform effectively on many datasets?
If so, how well?

While network architecture varied slightly between data, we kept parameters as consistent
as possible between different experiments and data. Ultimately, each dataset required its
own unique VAE architecture based primarily on the size of its features. This was not a
problem since our comparison was localized by varying the choice of α for the same dataset
with the same architecture. Generalizing the network architecture for all five datasets was
unfeasible and also unnecessary.

Altering our objective function was undeniably the most crucial and beneficial aspect for
increasing anomaly detection using VAEs. Introducing the new hyperparameter α improved
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detection in every benchmark dataset. Simply using any α < 1.0 saw an improvement.
Additionally, we achieved success forcing the distribution of reconstruction errors to follow
our desired pattern (see Figure 3.1).

Using a GMM with three components to fit the distribution of reconstruction errors, we
assign quantifiable metrics (mean, variance, and weight) to analyze the different choices of
α for each VAE. Choosing the best-performing model, and associated α, is predicated on a
large mean, small variance, and small weight in the GMM third component. Furthermore,
in the DoN contract award data, we offer several different approaches for determining the
cutoff between normal and anomalous (weight of 3rd GMM component, natural breaks in
the distributions, and a Tukey Fence).

Generalizing our approach to work on many datasets is certainly feasible. While the VAE
network architecture will be dependent on the data, using our proposed percentile objective
function with α < 1.0 will increase anomaly detection over the baseline VAE (α = 1.0).
The improvement will vary, but the benchmark data had an average increase of roughly
0.4021 in their F1 scores.

While this research shows ourmethod increases anomaly detection comparedwith a baseline
VAE, it leaves areas of future work and study. Namely, altering the network architectures
and parameters and capturing their effects. Implementing a Design of Experiments and
choosing more than just the optimum α, but all optimum parameters, could further increase
detection. This research deliberately focused on only studying the effects of the proposed
objective function on anomaly detection, but a more in-depth and robust study could
certainly strengthen this method.

Repeated experiments and automation are two additional areas for continued research.
With anything stochastic, like VAEs, outcomes can vary between execution. Again, this
thesis focused on determining how best to enhance anomaly detection with VAEs and a
novel objective function, and now that this question is answered, knowing the bounds in
which the results are contained could provide additional insights. In other words, running
thousands of experiments with varying seeds could be fruitful for continued refinement of
the method. Automating this entire process, rather than manually judging the relative merits
of α values, like with the DoN contract award data, could provide a usable tool and quick
means of assessment.
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