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1.0 Summary 

In our in-house research effort entitled “Dynamic Routing between Capsules”, we implemented 
and validated a Capsules Neural Network in python language that was described in (Geoffrey E 
Hinton, 2017) paper. The paper claims that the Capsnet model 1) Produces a discriminatively 
trained multi-layer capsule system that achieves state-of-the-art performance on MNIST Dataset, 
and is considerably better than CNN (Convolutional Neural Network) models at recognizing 
highly overlapping digits. 2) Performs image classification that is not affected by changes in the 
posture or rotation of an input image. 3) Uses a vector activity or vector length that varies as 
viewpoint varies eliminating the viewpoint variation from the vectors instantiation parameters; 
thus, preserving information loss unlike CNN during max pooling or sub-sampling. 4) 
Generalizes about an image with much less training data than CNN. Our approach implemented 
and validated these claims by implementing our own version of the Capsnet model. The outcome 
of this research was to gain inside knowledge on neural network rotational invariance and to lay 
a foundation for potential future research to improve the current state of Capsules Network 
architecture.  

2.0 Introduction 

The novelty behind the Dynamic Routing between Capsules paper by Geoffrey E. Hinton, is that 
the human vision ignores irrelevant details by using a sequence of fixation points to ensure that 
only a tiny fraction of the optic array is ever processed at the highest resolution. For example, 
suppose we have a tree whose hierarchical parts are labeled root, trunk, and crown (leaves, 
branches); our eyes do not have to process every detail of the tree to determine that it is indeed a 
tree; just by looking at the leaves and branches, the brain is able to infer that this is a crown. 
Subsequently, it is able to infer that the crown stands on the trunk leading to the conclusion that 
this must be a tree. The paper refers to these parts of a tree as entities. Moreover, it explains that 
introspection alone is not enough to understand how much of our knowledge of a scene is 
gathered from a sequence of observations, and how much is gathered from a single observation. 
The paper assumes that a single observation is able to tell us much more than just a single 
identified object and its properties. In the multi-layer visual model proposed, a tree-like structure 
is created on each observation, and it ignores the question of how these single observations 
parsed trees are coordinated over multiple observations. Each layer of the network is composed 
of small groups of neurons called capsules; each node such as leaves or trunk in the parsed tree 
corresponds to an active capsule. Through the implementation of an iterative dynamic routing 
process, each capsule will choose a capsule in the layer above to be its parent tree. For example, 
leaves and branches are part of a crown on a tree. The brain is able to infer whole objects such as 
the crown on the tree by just looking at its parts such as leaves and branches, and treat them as 
objects or entities. Furthermore, the instantiation parameters of an active capsule, or better yet 
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that of a vector, represents the various properties of a particular entity that is present in the 
image. For example, one can capture a triangle entity or a rectangle entity in the set of 
parameters contained within the vector. The properties of the vector capture the characteristics 
that make up that specific entity, such as its pose parameters e.g. position, size, orientation and, 
deformation, velocity, albedo, hue, and texture parameters, etc. In addition, by computing the 
length of the vector using the L2 vector norm, we are able to express the probability that the 
entity exists and also enable the orientation of the vector to represent the properties of that entity. 
As images change orientation along some axis, we are still able to classify the image as the same 
image because we are capturing the information of the vector orientation and preserving it and 
not discarding it unlike in CNN (Convolutional Neural Network) during Max Pooling. Moreover, 
the output is a normalized vector to represent a probability using the squashing function provided 
in equation 2. The squashing function is a non-linearity that serves a similar purpose to that of a 
neural network sigmoid, rectified linear unit (Relu), or tangent activation functions leaving the 
orientation of the vector unchanged, but reduced in magnitude.2.1 Dynamic Routing Between 
Capsules Architecture. 

2.1 Dynamic Routing between Capsules Architecture 

The authors of (Geoffrey E Hinton, 2017) the paper suggested to start out by leveraging the 
power of CNN by implementing two convolutional neural network layers. The first convolution 
layer has 256 filters with a kernel size of 9, a stride of 1 and a rectified linear unit (Relu) 
activation function. The second convolutional layer has 256 filters, kernel size of 9, and a stride 
of 2, and a rectified linear unit activation function. Next, we implemented the primary capsules 
with 32 maps of 6 x 6 grid matrix of 8 dimension vectors. 

Figure 1: Capsnet Architecture 

2.2 Primary Capsules

As noted in Figure 1, primary capsules are found in the layers after the first two convolutional 
layers. Primary capsules are the lowest level of multidimensional entities. Normally, one starts 
out with an image and tries to find what object it contains and what their instantiation parameters 
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are. In total, primary capsules have [32 x 6 x 6 x 8] capsule outputs and each capsule in the [6 x 
6] grid is sharing their weights with one another other. The main function of primary capsules is
to predict the output of the parent capsules; that is, they will predict the output of the digit
capsules, which later will be compared with the actual output of the digit capsules during a dot
product multiplication of the primary and digital capsule vectors.

2.3 Digit Capsules Layer 

Digit Capsules is the third layer and has an output vector of 16 dimensions per digit class. As 
stated above, each of these capsules receives input from all the capsules in the layer below, when 
each primary capsule sends their output to a parent capsule via the dynamic routing algorithm. 
The digit capsules together with the primary capsules are responsible for carrying out the 
dynamic routing algorithm. 

Figure 2 Capsnet Architecture 

The output of the primary capsules gets sent to an appropriate parent in the layer above. Initially, 
the output is routed to all possible parents, but is scaled down by coupling coefficients produced 
through a softmax distribution function that sums to 1. For each possible parent, the primary 
capsules compute prediction vectors by multiplying their own outputs by a transformation 
weighted matrix. If this prediction has a large scalar product with the actual output of a possible 
parent, there is top-down feedback, which increases the coupling coefficient for that parent, and 
decreases it for other parents. This increases the likelihood contribution that the capsule makes to 
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that parents. Thus, further increasing the scalar product of the capsules prediction with the 
parents output. This is known as routing-by-agreement and is more effective than routing 
implemented by max-pooling, which allows neurons in one layer to ignore all, but the most 
active feature detector in a local pool in the layer below. No routing is necessary between 
convolutional layers and primary capsules layers; routing by agreement only occurs between 
primary capsules and digit capsules. The paper describes that all routing logits for the softmax 
function are initialized to zero. The authors also point out that they used the Adam optimizer 
with TensorFlow defaults parameters, including the exponentially decaying learning rate to 
minimize the sum of the margin losses Equation 1. 

Equation 1 

2.4  Margin loss for digit existence 

A Margin loss for the digit existence is computed by using the length of the instantiation vector 
to represent the probability that a capsules entity exists.  We would like the top-level capsule for 
digit class k to have a long instantiation vector if and only if that digit is present in the image. To 
allow for multiple digits, we use a separate margin loss Lk for each digit capsule, k: 

Lk = Tkmax(0, m+ − ||vk||)2 + λ(1 − Tk)max(0, ||vk|| − m−)2, 
where Tk = 1 and if a digit of class k is present and m+ = 0.9 and m− = 0.1.  

The lambda down-weighting of the loss for absent digit classes stops the initial learning from 
shrinking the lengths of the activity vectors of all the digit capsule. We make lambda = .5.  The 
total loss is simply the sum of the losses of all digits capsules. 

2.5 Reconstruction as a regularization method 

The paper uses an additional reconstruction loss to encourage the digit capsules to encode the 
instantiation parameter of the input digit capsules. During training, one is told to mask out all but 
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the activity vector of the correct digit capsule. Then we use this activity vector to reconstruct the 
input image. The output of the digit capsule is fed into a decoder consisting of 3 fully connected 
layers that model the pixel intensities as described. One then minimizes the sum of the squared 
differences between the outputs of the logistic units and the pixel intensities. Then, one scales 
down this re-construction loss by 0.0005 so that it does not dominate the margin loss during 
training. The reconstruction from the 16 dimension vectors of the digit capsules are robust while 
keeping only important details. 

3. 0 Methods, Assumptions, and Procedures 

3.1  Methods 
 

In this effort, we developed Dynamic Routing between Capsules method introduced by Hinton in 
his latest paper describing how neural network models can become rotational invariant robust to 
affine transformations. We looked to implement a direct approximation of the authors’ 
description in the paper by following a methodical step-by-step approach using python 

3.1.1  Dynamic routing algorithm 
 

The dynamic routing algorithm is the heart of the (Geoffrey E Hinton, 2017) paper’s 
implementation; its intent is to replace sub-sampling and route information from one layer to 
another. Depending on the number of iteration within this algorithm, the code we develop 
controls how fast a model start converging to a high accuracy rate during training. In this effort, 
we built a routing algorithm based on the pseudocode below. Our framework of choice for this 
implementation was TensorFlow along with Python3.6 programming language. 

 

 
Figure 3: Algorithm 

 
Steps: 

2. For all capsuled in both primary and digital capsules initialize the routing weight bij to zero. 
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3. Enter the loop.

4. Compute the softmax probability distribution of the bij routing weights = the coupling
coefficient ci.

5. Multiply the coupling coefficient ci with the primary capsules prediction uj|i then perform a
weighted sum and obtain the digital capsules output sj.

6. Squash the result of step 5 between 0 and 1 = Vj.

7. Calculate the dot product between lower level capsules output and high level capsules output
and add results to the initial routing weight.

3.1.2  Squash Function 

Capsnet implementation uses a squash function for our activation function in place of a Relu, or 
typical sigmoid or tanh non-linear activation as mentioned in the paper. We want the length of 
the output vector to a capsule to represent the probability that the entity represented by the 
capsule is present in the current input. The non-linear squashing function ensures that vectors get 
shrunk to almost zero length and long vectors gets shrunk to a length slightly below 1. 

3.1.3  Convolutional Neural Network 

Even though we are trying to overcome some inherent deficiencies of CNN sub- sampling, 
introducing the concept of capsules to capture e.g. pose information leverages the power of CNN 
to divide our image input Dataset into a number of desired feature maps. It is done to the point, 
where we would need sub-sampling to make up for the information loss induced from its use. 
The first two layers of the Capsnet model consist of two convolutional layers without sub-
sampling.  

3.1.4  Capsule Network 

The capsule network consists of the primary and digital capsules. In our implementation, we 
defined both primary and digital capsules layers. The idea behind capsule relies on using 

Equation 2 
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instantiation parameters such as pose (position, size, and orientation), velocity, albedo, hue, 
texture parameters to preserve information about the model. Through this approach we are able 
to make our model not only translational invariant, but also robust to affine transformations such 
as rotation and stretching or repositioning of the image.  In order to accomplish this objective, we 
reshaped the output from the CNN layer into vectors without applying sub-sampling so we can 
infer the instantiation parameters aforementioned. The primary capsule layer predicts the outputs 
of their parent capsules in the digital capsules upper layer by multiplying their own reshaped 
output obtained from the CNN layer by a transformation matrix that contains all the pose, 
deformation, velocity, albedo, hue, texture information. 

3.1.5  Label Masking 
 

In this paper we used label masking introduced by Geoffrey Hinton (2017) to simplify training 
and testing with correct digits. Mask has the shape as the digit capsule output vector and is zero 
everywhere in the vector except on the target digit; by multiplying digit capsule output with the 
mask, we get the input to the decoder; however, we are not able to use label during test time. We 
use the predicted value to be masked instead. Therefore, we use a Boolean placeholder such as 
lambda to mask the label during training, and predict value during test time. If the condition is 
true, we use the label to be masked and if it is false, then we use the predicted value.  When the 
output from the digit capsule is masked with respect to the current label of the image, the 
activated label vector passed through fully connected layers of 512, 1024, 784(28X28), which 
results in the original image.  

3.2 Assumptions 
 

During this project, there were many assumptions that we set out to prove according to the 
authors’ claims in the paper. We conducted a series of sensitivity analysis in parallel with the 
most prominent hyper-parameters of Capsule Network (Capsnet) such as the number of iterations 
on the dynamic routing algorithm that controls how fast a model converges, different type of 
optimizers with different learning rates, as well as altering the number of convolutional layers 
and the number of capsules. Irrespective of which hyper-parameters or optimizers we chose, we 
expected better results for MNIST Dataset than CIFAR-10 Dataset as expressed in the authors’ 
paper. The assumption that did not validate against the authors’ claims was the ability of Capsnet 
to be rotational invariant after we applied some affine transformation such as performing 
horizontal flip, stretching the image slightly to the right and left as stated in the Capsnet paper. 
We expected the Capsnet model to be able to handle more aggressive affine transformations such 
as 180 degree rotation, but it failed being transformation invariant to the pronounced 
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perturbations. There may be issues with the ensemble techniques, which is very difficult to 
attain. It may be the reason of not getting exact result for CIFAR-10 Dataset. 

3.3  Procedures 

3.3.1  Capsnet with MNIST 

In this effort, we set up Capsnet with the MNIST Dataset for training and testing. The approach 
taken consisted of training the Capsnet’s model with both perturbed affined and non-perturbed 
regular MNIST Datasets. Moreover, for the testing, we utilized both perturbed and non-perturbed 
Datasets to prove the robustness of the Capsnet model underlining architecture. The model was 
trained using up to 10 epochs as 10 epochs proved to be more than enough to achieve a training 
accuracy of 99.9 %.  Selective affine transformations were performed ensuring not to perform 
rotational transformation more than 180 degrees. We managed not to compromise the integrity of 
the inferencing engine by ensuring not to confuse a 6 for 9 and vice versa. Our rotation 
parameters stayed within less than 180 degrees and were mostly performed as a horizontal flip.   

3.3.2 Capsnet with CIFAR-10 

The CIFAR-10 Dataset was also explored and deployed within the Capsnet model to measure the 
model efficiency against a more complex Dataset CIFAR-10. It contains a fairly generous 
amount of noise level in the background. The Capsnet model with CIFAR-10 Dataset required 
over 50 training epochs to converge before it would start over fitting. Tensorflow too was used to 
process CIFIAR10 Capsnet model. CIFAR-10Capsnet model required similar parameters as the 
parameters for the MNIST Capsnet model. We used 1152 primary capsules of 8 dimensions and 
10 digital capsules of 16 dimensions. We adjusted the input parameters 32 x 32 x 3 channels for 
CIFAR 10 Dataset vs 28 x 28 x 1 channel for MNIST Dataset due to CIFAR 10 being a color 
image with respect to MNIST (black and white).  We then fed this information input to the 
convolutional layers in the model.  

3.3.3 Convolutional Neural Network (CNN) base Model 

A base model implementation of CNN was essential to contrast the performance of our basic 
Capsnet model against a baseline. The baseline model took 3 layers of 256, 256, and 128 
channels. Each layer had a kernel of 5 x5 and a stride of 1. The last two layers were followed by 
two fully connected layers of size 328, 192. The last fully connected layer was connected with a 
dropout regularization method to a 10 class softmax probability output function.  We trained and 
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tested the baseline on a MNIST Dataset of two pixel shifted both to the right and left with Adam 
optimizer. The baseline model had 35.4 M parameters and Capsnet had 8.2 M parameters.  

4.0 Results and Discussion  

4.1 CNN Base Model Confusion Matrix Results Testing with and without data 
augmentation for the MNIST Dataset 
 

 

Figure 4: Augmented Data Accuracy 98%               Non-Augmented data accuracy 99% 

The Convolutional Neural Network (CNN) base model with the configuration proposed in the 
paper managed to score almost same as the base model with non-augmented data using Capsnet 
architecture for the MNIST Dataset. This shows that a simple model of CNN is robust enough to 
withstand a controlled data perturbation experiment given the perturbation parameters presented 
in the paper.  
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4.2 CNN Base Model Training and Validation Accuracy Graph with Augmented and 
Non-augmented MNIST Dataset  

Figure 5:     98% Training Accuracy 99% Validation Accuracy 

4.3  Capsnet with Augmented Data on Training and Non-augmented data on Testing 

Figure 6:  Training Accuracy 98.4 % Test Accuracy 99%

The results above show that the Capsnet model achieved an accuracy rate of 98.4% with MNIST 
perturbed Dataset and a test accuracy rate of 99.0%. The results are clear that the Capnet model 
does equally well compared to a simple convolutional neural base model. An observation was 
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that Capsnet is able to learn a lot faster than CNN; however, CNN will close the gap after 15 
epochs.  

4.4  Capsnet Trained on Augmented MNIST and Validated on Non-Augmented Data 
Using a Hyper-parameter of Routing as R = 2 Iterations within the Dynamic Routing 
Algorithm. 
  

 
             

 
Figure 7:    Training Accuracy 99.12 %,                        Validation Accuracy 98.76% 

 
From the observation above, it is clear that the Capsnet model even with a low iteration 
hyper-parameter of 2 is able to converge to a 98% accuracy in the 2nd Epoch; this shows 
that the model is able to learn fairly fast.  The Capsnet model proves that it is data 
invariant resistant as long as it trains on the perturbed data; the same applies to CNN 
base model.  
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4.5 Basic Capsnet Trained on Non-Augmented MNIST Data, Validated and Tested on 
Augmented MNIST Dataset R = 1, Epoch 20. 

Figure 8: Training Accuracy = 99.99 %   Validation Accuracy = 66.88%, Testing Accuracy = 
10.81% 
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The results above show that the MNIST model does very well as long as we train the model on 
non-augmented data; however, when it is time for testing how robust it is to the perturbed data 
testing, it performs quite poorly.  

4.6 Summary of Capsnet model performance for different epochs, number of routing 
iterations, and augmented vs non-augmented Dataset. 
 

Table 1 
 

Aug-Train Aug- Test Training 
Accuracy 

Testing 
Accuracy 

Epoch Routing 

Capsnet No Yes 99.9 10.81 20 1 

Capsnet Yes No 98.9 98.88 20 1 

Capsnet Yes No 99.11 98.77 20 2 

Capsnet Yes No 98.98 98.81 20 3 

Capsnet Yes No 98.58 98.65 20 5 

Capsnet Yes No 98.45 98.14 20 6 

 
 
The table above represents Capsnet architecture with different augmentations, training and 
testing accuracies, epochs and routings. One observation we can take away is that the number of 
routing iteration stops making a significant difference after 3 epochs. In addition, training on 
non-augmented Dataset produces slightly better results than augmented. The testing accuracy is 
quite poor for Capsnet model under augmented testing and non-augmented training.  

4.7 Augmented Training Data and Non-Augmented Testing Data for CIFAR-10 
Table 2 

Routing Train Accuracy % Testing Accuracy % Training Loss Testing Loss Epoch 

2 66.46  63.03 0.236 0.257 80 

4 66.98 62.88 0.233 0.258 80 

5 67.7 62.34 0.231 0.234 80 
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It’s not a surprise that the Capsnet Model performs poorly for the CIFAR-10 Dataset. The 
CIFAR-10 Dataset is a realistic and far more complicated Dataset than the MNIST Dataset. 
CIFAR-10 Dataset has a lot of background noise that the model needs to account for; our model 
had a lower score than the Hinton’s model; though, our model do not use ensemble technique 
used by Hinton’s model. 

5.0 Conclusion 

During this research and implementation endeavors, we were able to build a framework to 
validate Hinton claims successfully. We were able to generate almost the same results as the 
Hinton claims on the testing accuracy of the augmented MNIST Dataset with the code that we 
developed.  For the CIFAR-10 Dataset, we were not able to duplicate the authors’ results. Our 
accuracy rate was 63% before it would start overfitting. In addition, no meaningful results were 
observed for the CIFAR-10model during training until we would reach 50 epochs. In addition, 
some take away knowledge obtained from this experiment conducted was that Capsnet and CNN 
are perturbation invariant to small affine transformation when trained on perturbed data but not 
to large data perturbation; thus, Capsnet is able to learn a lot faster than CNN, but CNN catches 
up after some number of epochs. We also learned that the routing algorithm controls the 
convergence rate and time it takes to run one epoch. An increase in the number of routing 
iterations of more than 3 has an exponential effect on the time as it takes to complete one epoch. 
Finally, Capsnet performs slightly better than CNN with Augmented MNIST Dataset, but this 
small difference could make all the difference when dealing with a much larger or complex 
Dataset as the underlining technology for the model becomes more mature in the future. A 
recommendation would be usage of dynamic routing between capsules with other deep neural 
networks to see if that improves the accuracy rate of CIFAR-10 Dataset higher than what it is 
shown here. 
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List of Symbols, Abbreviations, and Acronyms 

CAPSNET Capsule Network  

CNN Convolutional Neural Network 
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