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1. INTRODUCTION

With the advent of the Internet—and, in particular, the World Wide Web—came a massive
increase in the amount of data we as a society create on a daily basis. The more recent proliferation
of mobile devices and online social networking has increased the amount of user-generated content
to an enormous level. The current spread of Internet of Things (IoT) devices is causing an even
greater acceleration, with the number of IoT devices online already outnumbering the number of
people in the world. Within all of this data is information of potential value to many missions
of the U.S. government. While IoT devices are plentiful, they tend to be inexpensive and are
sometimes unreliable in their measurements. A prudent consumer of IoT data would be skeptical
of any information gleaned from a single IoT sensor. This, however, is where the sheer volume of
IoT devices in the world can provide a substantial benefit. The low cost of IoT sensors may yield
relatively low performance, but also makes it feasible to collect large amounts of data over a sea of
devices. While, for example, a single traffic sensor may frequently malfunction, fusing data across
a large number of sensors improves robustness to unreliable measurements from any given device.

A diverse array of sensor types, application areas, and data fusion methodologies form a large
body of work in the academic literature. This report provides a survey of the recent literature
on fusion techniques for IoT data, with an eye toward methods that may be interesting for U.S.
government analysts, enabling them to augment their data most effectively and provide the highest
possible force multiplier for their analysis products.

The remainder of this report is organized as follows. Section 2 provides a brief background on
the Internet of Things. Section 3 formally states the objective of the current study. The findings
from several literature surveys are summarized in Section 4. Section 5 highlights recent results in
relevant application areas. Finally, in order to get a set of findings that can be compared to each
other, Section 6 outlines results in a particular application: indoor positioning. Section 7 provides a
discussion of the implications of the current literature on future research and development. Section 8
summarizes and concludes the report.
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2. BACKGROUND

The Internet of Things (IoT) was first notably mentioned in 1999 in private industry and sub-
sequently incorporated into research at the Massachusetts Institute of Technology’s (MIT) Auto
ID Lab for use with radio frequency identification (RFID). IoT, emerging from the integration of
both embedded devices and pervasive computing, aims to create a heterogeneous network archi-
tecture that interacts with the physical world. Physical objects are attached to this network as
“things,” which are often equipped with intelligence that can allow them to operate as autonomous
agents [1]. Before the term was even coined, IoT technology was already in use in both industrial
and government applications, such as Carnegie Mellon’s Coke machine, which in 1982 became one
of the first internet-connected appliances [2]. The overall goals of IoT have been summarized as
providing global, real-time solutions and comprehensive data about the environments of attached
objects [3]. However, the scale and diversity of sensors introduced since the original architecture
was planned have increased a great deal. Market projections indicate about 75 billion devices will
be connected by 2025 [4, 5].

Accordingly, the contemporary vision of IoT, along with the Internet and the variety of
connected devices, has expanded significantly beyond its original vision of RFID and machine-to-
machine (M2M) communication to address the scale and diversity of IoT networks [1]. This is
an ongoing research challenge that combines problems from multiple disciplines. Starting from a
hardware oriented perspective, this includes embedded devices, signal processing, network scaling
and infrastructure, and energy constraints. Extracting meaning from these various sources intro-
duces further challenges in data acquisition and downstream analysis involving integration of sensor
data and analytic methods, including artificial intelligence (AI) and machine learning (ML). A firm
grasp of data aggregation over the IoT space involves three key domains, as depicted in Figure 1,
and their associated challenges: 1) hardware, 2) middleware, and 3) analysis.
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Figure 1. IoT Network Composition
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2.1 HARDWARE AND SENSORS

At the hardware level, IoT devices or “things” have the ability to access or communicate over
a network. The types of devices or sensors included in the definition of “things” are not limited
by any standard definition. One of the first “things,” as discussed above, was a Coke machine
classified as an appliance [2]. Modern technologies have vastly expanded the numbers and types
of things with network access to include smart homes [6], mobile phones [7], smart offices [8],
and, more recently, smart cities and smart cars. These “things” often incorporate multimodal
sensors and have embedded processing; for instance, today’s smart phones include gyroscopes,
cameras, cellular signals, WiFi, Bluetooth, and Global Positioning System (GPS) as standard
sensors. The data from these sensors is often aggregated for purposes such as distance or step
tracking, navigation, and localization [9]. Data fusion with IoT devices often incorporates data
from Internet devices including routers, mobile devices such as smart phones, and more recently
body sensors and implantable devices that monitor vital signs such as heart rate [10]. “Things”
at the hardware level have several key environmental, physical, and energy-related challenges. For
instance, IoT devices used in industrial agriculture would be subject to rain and other weather
phenomena. These same devices might suffer physical interference from birds and other wildlife.
Finally, and probably one of the most significant challenges today, is the question of keeping remote
devices powered on and operable for an undefined duration. This challenge has inspired its own
areas of research on embedded computation, network communication protocols, and algorithms for
analysis that optimize power usage for low power situations [11].
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2.2 MIDDLEWARE: NETWORK TOPOLOGY & DISTRIBUTED COMPUTATION

Once data is generated at the sensor, it is important to understand how to communicate it
across multiple protocols and standards that include different latencies, bandwidths, and frequen-
cies, as well as how to maximize data extraction from these sensor networks [12]. This involves
the creation of middleware that extracts meaning from sensor signals and communicates it to the
network. For example, indoor positioning using a single wireless router would require some protocol
that extracts the signal and processes it into an acceptable format for network communication to
a node that has analysis capability. Usually the node is a server on the network, as most wireless
routers are not equipped with embedded processing for target detection [13]. IoT devices require
the implementation of more complex network topologies, such as mesh networks, to accomplish
these tasks. These network topologies, which are much more dynamic than the traditional dis-
tributed computing model of a static centralized server processing sensor data, must effectively
route communications across heterogeneous data and communication protocols while accounting
for challenges such as limited node availability and delays in data transmission, particularly on low
powered devices [14]. Table 1 gives an overview of several network topologies widely used for IoT
networks. Among these, Zigbee is one of the more popular specifications for IoT devices addressing
power management. Zigbee is a low-power, low data rate, and close-proximity wireless ad hoc
network (WANET) standard [15,16].
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TABLE 1

Network Topologies for IoT Networks

Network Topology Description References

WANET/ MANET/
VANET/ WMN

A wireless/mobile/vehicular ad hoc network (WANET), inclusive of
wireless mesh networks (WMNs), is a decentralized type of wireless
network. An ad hoc network typically refers to any set of networks
where all devices have equal status.

[7, 14,
17]

Wireless mesh net-
work (WMN)

A wireless mesh network (WMN) is a form of wireless ad hoc network,
which is a communications network made up of radio nodes organized
in a mesh topology where all nodes cooperate in the distribution of
data in the network (i.e., each node relays data for the network)

[18–20]

Wireless sensor net-
work (WSN)

A wireless sensor network (WSN) of spatially distributed autonomous
sensors to monitor physical or environmental conditions, such as tem-
perature, sound, pressure, etc. and to cooperatively pass their data
through the network to a main location.

[21–25]

Smart phone ad hoc 
networks (SPAN)

Smart phone ad hoc networks leverage the existing hardware (pri-
marily Bluetooth and WiFi) in commercially available smart phones 
to create peer-to-peer networks without relying on cellular carrier net-
works, wireless access points, or traditional network infrastructure.

[26–30]

Delay-tolerant net-
works (DTN)

DTN are such networks that may lack continuous connectivity. A lot 
of terminologies are used for DTNs in the literature: opportunistic 
networks, disconnected mobile ad hoc networks, time-varying network, 
intermittently connected network (ICNs), extreme networks, etc.

[26, 31–
35]

Low-power wide-area
network (LPWA)/
low-power network
(LPN)

Low-power wide-area (LPWA) network or low-power network (LPN)
are a type of wireless telecommunication wide area network designed
to allow long range communications at a low bit rate among things
(connected objects), such as sensors operated on a battery.

[11, 20,
36,37]

Disparate network topologies, like WANETs, inherently increase the difficulty of responding
in real-time outside of a localized range, and increase the complexity around decisions such as the
size of the transmitted data and its persistence across servers. Constrained embedded processing
on low-power devices and limited data transmission rates can make long distance data transmission
infeasible. Furthermore, network topologies like wireless mesh networks (WMNs) or mesh networks,
a form of WANET, require unique routing protocols to optimize across these spaces [38]. The
introduction of fog, cloud, and edge computing techniques as middleware protocols to replace
traditional communication protocols was especially important for IoT networks, as they make
possible local and distributed computing that prioritizes data, communication, and power usage
for diverse settings across heterogeneous networks [39]. Table 2 gives an overview of the types of
middleware topologies in use for computation and communication across IoT networks.
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TABLE 2

Compute Topologies for IoT Networks

Technology Description References

Edge Edge computing is a method of optimizing cloud computing systems 
“by taking the control of computing applications, data, and services 
away from some central nodes (the “core”) to the other logical extreme 
(the “edge”) of the Internet” which makes contact with the physical 
world.[1] In this architecture, data comes in from the physical world via 
various sensors, and actions are taken to change physical state via 
various forms of output and actuators; by performing analytics and 
knowledge generation at the edge, communications bandwidth between 
systems under control and the central data center is reduced.

[40–43]

Fog Fog computing or fog networking, also known as fogging, is an archi-
tecture that uses edge devices to carry out a substantial amount of 
computation, storage, and communication both locally and routed over 
the Internet backbone, and most definitively has input and output 
from the physical world known as transduction. Fog computing con-
sists of edge nodes directly performing physical input and output of-ten 
to achieve sensor input, display output, or full, closed-loop process 
control, and may also use smaller edge clouds (often called cloudlets) at 
the edge or nearer to the edge than centralized clouds residing in very 
large data centers.

[44–48]

Cloud Cloud computing is an information technology (IT) paradigm that
enables ubiquitous access to shared pools of configurable system re-
sources and higher-level services that can be rapidly provisioned with
minimal management effort, often over the Internet. Cloud computing
relies on sharing of resources to achieve coherence and economies of
scale, similar to a public utility.

[48–52]

2.3 ANALYSIS: ALGORITHMS AND ANALYTICS

After the hardware and middleware challenges are met, the final domain of data fusion for 
multimodal sensors is analysis. The advent of autonomous or “smart” agents compounds existing 
challenges in the IoT space. Autonomous vehicles (AVs), smart cars, smart cities, and mission-
focused data fusion prompt assurances around timely delivery of communications across dispersed, 
heavy-traffic networks, as well as processing the data once it has been received [7,53]. This problem 
is particularly challenging in the case of mobile “things” such as AVs, which often require near 
real-time responses. For example, if IoT data collected from AVs is analyzed and correlated with 
cell phone and weather data available as part of the public infrastructure, we can preemptively 
issue warnings in real-time about slippery intersections, accidents blocking traffic, or detect and 
prevent collisions with pedestrians or bicyclists based on their cell phone location data. As networks 
continue to evolve to include a wide variety of sensors, the rate at which data is produced, processed, 
and analyzed must scale accordingly. AI and ML algorithms are strong contenders for analysis of large
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data sets; however, traditional, supervised training methods for algorithms, like neural networks,
are sensitive to conditions that are likely to exist in dispersed networks like IoT: the curse of
dimensionality (high dimensional data); concept shifts, such as severe weather changes, that render
existing models invalid; and missing and null values in feature sets [54–56]. However, many of
these algorithms are relatively easy to implement and deploy, and provide clearly communicated
results. Traditional signal processing, using methods like received signal strength indicator (RSSI)
or trilateration, can be sensitive to outliers, increased noise, may require extensive investigation
for the creation of each processing algorithm, can be more difficult to deploy, and the results
may not be as easy to communicate [57]. On the other hand, signal processing algorithms are
often designed to be robust to missing values and latency. Recent research combines these efforts
to create algorithmic analysis pipelines with built-in redundancy that provides robustness and
validation for comprehensive data fusion that optimizes across multiple parameters and expands into
multi-objective output algorithms that account for underlying statistical correlations across diverse
data sets. This layer of analysis is the culmination of data fusion for IoT networks. We explore
these further in examining the applications and results from existing experiments in Applications
(Section 5).

Data aggregation, data fusion, and data analysis may vary substantially across networks to
account for scaling, infrastructure, and availability. Hardware, middleware, and analysis approaches
for large scale data are inherent problems in meeting the goals of IoT data fusion. In this work, we
survey a variety of sensors, algorithms, and applications for data fusion methods with a particular
focus on indoor positioning.
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3. STUDY OBJECTIVE

The academic literature contains a large body of work on Internet of Things technology and
analysis of IoT data. As mentioned in Section 1, the focus of this study is on techniques for fusing
data from IoT. The following questions are of particular interest:

• What methods comprise the state of the art (and practice) in IoT data fusion?

• How does performance of these algorithms improve with additional data?

• Are there particular applications in which there has been substantial progress on IoT data
fusion?

• Are there applications in which high-fidelity information is available based on IoT data alone?

• What is the state of commercial IoT fusion services?

The objective of the present study is to make progress toward answering these questions, with
a focus on those techniques that have been demonstrated in applications of potential relevance
to various branches of government. Note that we refer to “fusion” rather than “aggregation” for
consistency with [58], from which the following definitions were summarized:

• Aggregation: summarization techniques often used to reduce redundancy and conserve re-
sources, such as suppression (e.g., discarding duplicates) and packaging (i.e., grouping multiple 
observations together)

• Fusion: the combination of multiple data sources to obtain improved information (cheaper, 
higher quality, or more relevant/useful)

As the focus of this study is providing enhanced information content, the methodologies of interest
fall in the “fusion” category.

9
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4. FINDINGS FROM SURVEYS

TABLE 3

Surveys

Category Description References

Architectures
Key ingredients in an IoT recipe: Fog Computing, Cloud com-
puting, and more Fog Computing : Good general reference
for implementing IoT fog computing at scale. Discusses IoT
challenges that make fog computing a natural solution. Out-
lines approaches, including mobile cloud computing (MCC)
and HetNets (heterogenous networks). Emphasizes computa-
tional offloading in the fog and decentralization for disbursed
networks.

2014 [46]

A Survey of Fog Computing: Concepts, Applications and Is-
sues: Good overview of how fog computing integrates IoT
and the challenges in meeting the QoS critieria for fog compu-
tation.

2015 [39]

Survey of real-time processing technologies of IoT data
streams: Focused on distributed architectures and paradigms
for real-time utilization of massive IoT data streams, and pro-
poses Information Flow of Things (IFoT) framework based on
distributed processing among IoT devices.

2016 [12]

Data Aggregation
A Survey of Distributed Data Aggregation Algorithms: De-
fines and examines standard data aggregation functions that
IoT protocols would have to perform in a distributed environ-
ment. Describes main aggregation techniques, and provides
guidelines for selection and use.

2015 [59]

A review of aggregation algorithms for the Internet of Things:
Provides an overview of IoT data aggregation approaches,
and proposes a new class of consensus-based aggregation with
fault tolerance to address node reliability issues.

2017 [60]

Data aggregation mechanisms in the Internet of things: A
systematic review of the literature and recommendations for
future research: Reviews and categorizes IoT data aggregation
mechanisms, comparing techniques in each class.

2017 [61]

Data Fusion
*Information fusion for wireless sensor networks: Methods,
models, and classifications: Surveys methods, algorithms,
architectures, and models of information fusion, with applica-
tions, limitations, and trade-offs.

2007 [58]

Data fusion and IoT for smart ubiquitous environments: A 
survey : Reviews IoT data fusion literature with focus on 
mathematical methods and specific IoT environments (e.g., 
object tracking). Discusses opportunities, challenges, and 
emerging areas. Includes 214 references, including 8 other 
data fusion surveys (in their Table 1).

2017 [62]

Continued on next page

* Discussed in text

11



TABLE 3

Surveys (continued)

Category Description References

Hardware The Internet of Things on Its Edge: Review of commercial 
IoT edge device hardware characteristics with histograms, 
such as # of IoT devices containing each sensor type (e.g., 
temp, accelerometer, gyroscope, altimeter, microphone) or 
communication standard (e.g. USB, Ethernet, Modbus); res-
olution and accuracy for temp sensing; RF carrier frequencies 
used; RF receiver sensitivity, etc.

2018 [63]

Implementations
Internet of Things (IoT) Operating Systems Support, Net-
working Technologies, Applications, and Challenges: A Com-
parative Review : Detailed comparison of features across nine
IoT operation systems (architecture, schedulers, network
stack, memory management, energy efficiency, etc.). Exten-
sive bibliography (over 300 entries).

2018 [64]

Internet of Things: A survey on the security of IoT frame-
works: Compares features of eight IoT frameworks, including
architecture, app development, hardware, and security ar-
chitecture/features (including comms, authentication, and
authorization/access).

2018 [65]

* Discussed in text

We began our research by reviewing a variety of existing, broad, IoT surveys, such as the
2017 technology assessment published by the United States Government Accountability Office’s
(GAO) Center for Science, Technology, and Engineering, entitled ”Internet of Things: Status and
implications of an increasingly connected world.” [66] While these provided some good background
material, they did not necessarily lend much insight into the questions of interest surrounding data
fusion techniques in IoT. We then broadened our review of surveys to include several more specific
areas that brought us closer to our goal. Table 3 provides examples of these surveys, organized in
categories with a summary description of each example survey.

Surveys on IoT architectures, included under the Architectures category in Table 3, are
closely related to how data is processed and combined in IoT networks under different paradigms
such as centralized cloud computing versus decentralized edge or fog computing [46] [39]. Real-time
applications require consideration of additional constraints and requirements [12].

These architectural paradigms employ a variety of data aggregation techniques, for which
several surveys are included in the Data Aggregation category of the surveys table [59] [60] [61].
However, as outlined in the Objective section, data aggregation techniques are largely aimed at
data reduction for processing efficiency, which is distinct from the goals of data fusion.

Surveys such as those listed in the Implementations section of the surveys table review and
compare realized IoT frameworks [65] and operating systems [64]. Other surveys of tangential
interest include hardware-oriented surveys such as the 2018 Alioto and Shahghasemi review of the
features, capabilities, and trends of IoT devices [63].

12



The 2007 survey by Nakamura et al. [58] is an excellent and widely-cited survey on information 
fusion for wireless sensor networks that provides comprehensive background information, such as 
terminology, definitions, and various ways of classifying approaches, an extensive set of references, 
and detailed descriptions of methods and techniques along with their applications and limitations. 
Here data fusion is distinguished from data aggregation, in that the goal is to combine multiple data 
sources to obtain improved information. One of the interesting ways of classifying fusion methods, 
presented in this survey, is based on the relationship among the data sources. Complementary fusion 
involves fusing different portions of a picture into a more complete picture (for instance, temperature 
readings from different locations within a greenhouse in order to better understand the temperature 
status of the greenhouse as a whole). In contrast, redundant fusion combines multiple instances of 
the same information to increase reliability, accuracy, and/or confidence (e.g., multiple temperature 
readings from the same location in a greenhouse to get a more reliable or accurate understanding 
of the temperature at that location). Finally, cooperative fusion combines multiple independent 
sources of information into new, more complex information (e.g., temperature combined with 
light yields a better understanding of overall growing conditions within the greenhouse).

Another useful contribution of the Nakamura et al. survey is the categorization and enu-
meration of information fusion methods, along with examples of each. For instance, higher level 
method categories include inference, estimation, feature maps, reliable abstract sensors, aggrega-
tion, compression, and information theory approaches. Within the inference category, enumerated 
methods and examples include Bayesian inference (e.g., fusing laser/radar/video to obtain improved 
information f or driving assistance), Dempster-Shafer i nference (e.g., UAV sensor nodes to obtain 
battlefield situational awareness), f uzzy logic (e.g., node positioning and autonomous navigation), 
neural networks (e.g., automatic target recognition), abductive reasoning (e.g., diagnosing problems, 
or event detection/explanation), and semantic information fusion (e.g., recognizing robot behavior 
based on trajectory). Another large category is estimation, which includes maximum likelihood (ML)
(e.g., location discovery), maximum a posteriori (MAP) (e.g., track position of autonomously moving 
objects), least squares (e.g., reduce communications), moving average filter (e.g., reduce errors in 
target tracking), Kalman filter (e.g., refining location and distance estimates), and particle filter (e.g., 
node location discovery and target tracking).

The 2017 Alam et al. data fusion survey [62] cites eight other data fusion surveys as well (in 
their Table 1), and provides extensive references, especially in the area of object tracking, many of 
which are more recent than examples covered in the 2007 Nakamura et al. survey.

As we sought more specific and recent examples of academic research and experiments with 
these data fusion methods, we turned to the application areas in which the work is generally 
published, such as smart cities and transportation, industrial manufacturing and agriculture, public 
health, human activity detection and classification, and mapping and localization. Additional 
related surveys, as well as individual examples, are covered in Section 5, Findings from Application-
Focused Literature, as well as in Section 6, Deep Dive: Indoor Positioning with IoT.

13
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5. FINDINGS FROM APPLICATION-FOCUSED LITERATURE

IoT has diverse applications across many fields, and in this section we survey some of the
established and emerging applications where examples of data fusion abound.

5.1 SMART CITIES & TRANSPORTATION

Smart cities are incorporated into the landscape across a wide spectrum of technologies and
are designed to effectively integrate urban areas for communication, power management, resource
management, transportation, emergency services, law enforcement, and many more applications.
IoT networks in smart cities further extend this to citizens through smart offices and buildings,
and even mobile devices for pedestrian management. The term smart city encompasses a wide
variety of technologies and applications with many significantly funded initiatives underway both
internationally and in the United States [9, 67].

The ongoing focus in smart cities today includes both real-time responses and big data ana-
lytics. Notably, Barcelona’s “CityOS” strategy, a smart city initiative, has implemented a number
of sensors to meet their goals [68]. The irrigation system in a local park uses sensors transmitting
real-time data to gardening crews about the level of water required for the plants. A new bus
network based on data analysis of the most common traffic flows in Barcelona, integrates smart
traffic lights that optimize the number of green lights. In an emergency, emergency vehicles are
prioritized by the traffic light system, setting green lights as the vehicle approaches. This method
integrates local sensors, GPS, and traffic management software. Much of this data is managed by
the Sentilo Platform, an open source software that integrates sensor data, and allows for real time
responses [69].

In further application review, the area of intelligent transportation systems showcased two
related methods of integration in Madrid. Both use forms of Bayesian networks, where a set of
states have their conditional probabilities altered based on observed evidence (e.g., observing that
traffic jams are more likely to occur when it rains, and updating the predictive model accordingly).
A 2018 paper trained a Bayesian network on complex events derived from Twitter, weather data,
and traffic sensors around Madrid. These sources, along with temporal data, create a set of features
that are used to derive a probability of traffic congestion. In simulation, the system achieves a 75%
precision rate with 95% recall when classifying congestion vs. non-congestion, though there is no
direct comparison to a baseline approach [70]. A similar approach is taken in a 2017 paper that
uses a dynamic Bayesian network, in which state transitions are tracked over time. The method is
meant to be general and take arbitrary evidence into account to determine the state of traffic (e.g.,
is what the sensors see consistent with construction or a vehicle breakdown). The empirical results
in this paper focus on using frames from traffic cameras and demonstrate over 80% inferred proba-
bility of the correct condition. Again, no direct comparison to any existing approach is provided [71].

Table 4 provides a list of further applications and methodologies for smart cities.
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TABLE 4

Smart Cities & Transportation

Title Description Reference

Internet of Things for Smart Cities Survey of technologies, protocols, and architecture
for urban IoT, along with discussion of Padova
Smart City project.

[67]

CityPulse: Large Scale Data Ana-
lytics Framework for Smart Cities

CityPulse framework integrates multimodal, mixed
quality, uncertain and incomplete data to create
reliable, dependable information and continuously
adapts data processing techniques.

[72]

An Information Framework for
Creating a Smart City Through
Internet of Things

Illustrates a new method for existing operations that
can be adapted for the enhancement and delivery of
important city services.

[73]

Urban Planning and Building Smart 
Cities Based on the Internet of 
Things Using Big Data Analytics

Open-source real time processing of IoT data for
urban planning or city future development. The
offline historical data generated by smart homes,
smart parking weather, pollution, and vehicle data
sets are used for analysis and evaluation.

[74]

Smart Cities and the Future Inter-
net: Towards Cooperation Frame-
works for Open Innovation

This paper explores “smart cities” as environments
of open and user-driven innovation for experiment-
ing and validating Future Internet-enabled services.
Based on an analysis of the current landscape of
smart city pilot programs.

[9]

City Saves Money, Attracts Busi-
nesses with Smart City Strategy

Barcelona’s investment in data-driven city manage-
ment results in improved city services and reduced
expenditures.

[68]

5.2 INDUSTRIAL MANUFACTURING & AGRICULTURE

The IoT connectivity and “smart” paradigm has seen significant expansion and use in both 
industrial manufacturing and agriculture. Industry leaders like John Deere [75] and Deloitte [76] 
have already implemented the smart factory or Industry 4.0. Smart factories in Korea have already 
been shown to improve productivity [77]. Smart factory sensors allow for a myriad of improve-
ments in production. They can control energy and water usage to reduce waste and optimize for 
environmentally sustainable operations. Quality control in the smart factory can be enhanced with 
real time analytics on the supply chain. The exchange of information from other systems and 
devices directly back into the production line, enables predictive maintenance and forecasts needed 
improvement or down times. Supply chain connectivity improves asset tracking and triggers orders 
when stock runs low, synchronizing stock delivery and the production line [78]. There is even some 
evidence of improved security from cyber attacks in smart factories [79].

Specifically in Korea, a forerunner of smart factory production for small and medium en-
terprises (SMEs), The Ministry of Trade, Industry, and Energy (MOTIE) has implemented smart
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factory production lines in 1,240 small and medium enterprises. The smart factories have improved
the SMEs’ productivity by approximately 25% including a 27.6% decrease in fraction defective,
a cost reduction of 29.2%, and a 7.1% reduction in the length of time taken for prototype pro-
duction. An additional 137 SMEs developed in 2015 resulted in quality improvement of 77%,
and 139% productivity improvement [77]. Smart factory innovation in the USA, including Boeing
and Ford are starting to gain footing as manufacturers realize the value of incorporating IoT into
production [80,81].

Similarly, large scale agricultural has many parallels with industrial manufacturing operations
and has also started to adopt the smart paradigm and incorporate IoT into their business practices.
Smart farming and precision agriculture utilize a wide array of sensor networks to incorporate soil,
temperature, atmospheric and weather data, GPS, cumulative statistics for crop rotation, and
other information. Agricultural sensors utilize both predictive approaches and control approaches
that include information from static crop indicators. As with industrial manufacturing, they have
incorporated robotics, such as John Deere’s self-driving tractors [75]. Data is usually shared over
WSNs and connected to supply chains for information like seed dispersal. Smart farming has been
expanded into cattle care and beekeeping connected to IoT networks [78,82].

John Deere, considered a pioneer in precision agriculture, utilizes a positioning system that
combines GPS signals with ground-based base stations and IoT sensor networks to achieve position
accuracy of about 2 cm for their self-driving tractors and agricultural systems. Described as similar
to NASA’s rover positioning systems, metrics have been withheld for proprietary reasons [83, 84].
However, similar technology is in use by other industry leaders including Monsanto and DuPont
[85,86].

Table 5 covers further examples of smart factories and smart farming/precision agriculture.
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TABLE 5

Smart Factories & Farming

Title Category Description Reference

Smart Factories in Industry 4.0:
A review of the concept and of 
energy management approaches in 
production based on the Internet of 
Things paradigm

Smart
Factory

IoT has stimulated the next phase of factories
launching an evolution called Industry 4.0. Industrial
production of the new era will be sustainable; highly
flexible in production volume and customization; and
will have extensive integration between customers,
companies, and suppliers. This study reviews and
analyzes the current initiatives and related studies of
smart factories./Industry 4.0,

[87]

IoT-Based Intelligent Perception
and Access of Manufacturing Re-
source Toward Cloud Manufactur-
ing

Smart
Factory

This study looks at IoT technologies in cloud man-
ufacturing (CMfg), classifying manufacturing re-
sources and services in a five-layered structure (i.e.,
resource layer, perception layer, network layer, ser-
vice layer, and application layer) The key technolo-
gies for intelligent perception and access of various
resources are explored.

[88]

Internet of Things for Enterprise
Systems of Modern Manufacturing

Smart
Factory

Investigates the impact of emerging Internet of
Things (IoT) on enterprise systems in modern manu-
facturing by examining the evolution of manufactur-
ing system paradigms to identify the requirements of
decision support systems in dynamic and distributed
environments.

[89]

IoT-Based Real-Time Production 
Logistics Synchronization System 
Under Smart Cloud Manufacturing

Smart
Factory

A study examining the interlinkage of cloud manu-
facturing (CM) and Internet of things (IoT) as an
inadequate method for a highly service-driven manu-
facturing execution system which entails systematic
CM support to respond to the real-time dynamics
captured from the IoT-enabled execution hierarchy.

[90]

Smart Agriculture Based on Cloud
Computing and IOT

Smart
Farming

A study examining smart farming development in
China, and the introduction of cloud computing and
IoT solutions. Using cloud computing and key IoT
techniques, visualization and SOA technologies can
take advantage of massive data involved in agricul-
tural production.

[91]

The Study and Application of 
the IOT Technology in 
Agriculture

Smart
Farming

Study examines the rapid development and wide
application of IoT technology in agricultural automa-
tion, including the integration of control networks
with IoT and actual greenhouse agricultural produc-
tion.

[92]

Design of Intelligent Agriculture
Management Information System
Based on IoT

Smart
Farming

Introduces the concept of agricultural information
management and analyzes the features of agricul-
tural data. Discusses Intelligent Agriculture MIS
architecture, and presents an example related to crop
production.

[93]

*John Deere and the Birth of Pre-
cision Agriculture

Smart
Farming

Article looks at John Deere’s pioneering efforts into
smart farming and precision agriculture.

[75]

* Discussed in text
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5.3 PUBLIC HEALTH

The introduction of IoT for public health has seen three major focus areas: wearable or 
bio-sensors for health monitoring and disease onset or progress [94, 95], smart homes and ambient 
assisted living for high risk populations [96], and more general climate monitoring for both disease 
and natural disaster [97–99]. Many of these applications involve extensive data fusion and aggrega-
tion across time, and often require real-time responses for medical emergencies, like heart attacks, 
or relief from natural disasters [99, 100].

Wearable or bio-sensors have become mainstream with technology like FitBit [101] and the 
Apple Watch [102]. Recreational exercisers have used these tools to monitor and improve perfor-
mance and technique [103]. These devices and more specialized versions have recently entered the 
IoT domain, including applications like sharing jogging routes or weight-loss goals with friends and 
social media [104]. The medical community has further advanced the use of bio-sensors for disease 
progression and monitoring. Bachlin et. al.’s study looked at a wearable assistant for Parkinson’s 
disease (PD) patients with the freezing of gait (FOG) symptom and used body acceleration sensors 
to measure the patients’ movements. Time series and fractal analysis algorithms automatically de-
tected FOG events by analyzing frequency components inherent in these movements. FOG events 
triggered real-time auditory responses that stimulated the patient to resume walking. Their meth-
ods detected FOG events with a sensitivity of 73.1% and a specificity of 81.6% and many patients 
expressed resumed mobility concurrent with the auditory stimulation [105].

The use of bio-sensors may be further extended by integration with smart homes and smart 
cities to provide necessary medical interventions. The area of ambient assisted living (AAL) has 
seen an increased usage of this IoT application for monitoring of high risk populations such as the 
elderly. An example application uses a wireless sensor network with visual and wearable sensors for 
smart home monitoring and event detection. This study highlighted fall detection of a person under 
care using a wearable wireless badge to connect the user and the network. The badge provided event 
detection and a voice communication channel for communication with emergency services without 
the use of a phone. The smart home implementation utilized received signal strength indication 
(RSSI) to track the approximate location of the user in the monitoring environment and provide 
additional information about the user’s situation [106]. AAL applications have been extended in 
further studies to include medication management and other helpful services to users of assisted 
living services [107].

When we combine wearable and smart infrastructures with climate monitoring there are even 
greater implications for IoT in the public health sphere. A surprising 2014 study combined aggre-
gated climate data gathered from weather sensors collecting temperature, humidity, and rainfall 
data with health data collected by the Ministry of Health in Chile to accurately predict outbreaks 
of Hantavirus in the region. Auto Regressive Integrated Moving Average (ARIMA) time-series 
models and regression models with ARIMA errors were used to predict outbreaks with greater than 
95% confidence in many cases over a 12 year period between 2001-2012 [108]. Further studies 
integrating social media data with climate and health data have predicted disease outbreaks and 
have been used to locate power outages in disaster stricken areas [109].

Table 6 covers public health related examples.
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TABLE 6

Public Health

Title Category Description Reference

* Wearable Assistant for Parkin-
son’s Disease Patients With the
Freezing of Gait Symptoms

Disease
Onset/
Progres-
sion

A wearable assistant for Parkinson’s disease (PD)
patients with the freezing of gait (FOG) symptom
using acceleration sensors to measure the patients’
movements, detect FOG events and provide an audi-
tory response to enable patients to resume motion.

[105]

ECG signal analysis and arrhyth-
mia detection on IoT wearable
medical devices

Disease
Onset/
Progres-
sion

Study using wearable IoT to monitor and control 
cardiovascular diseases (CVD). Uses Support Vec-
tor Machine (SVM) classifier for ECG analysis and 
heartbeat diagnosis. The best classification accuracy 
achieved is 98.9%, for a feature vector of size 18 and 
2493 support vectors. The ECG analysis and classifi-
cation can be performed in real time.

[100]

Technologies for an aging society: a
systematic review of “smart home”
applications

AAL Comprehensive review of health related smart home
projects and their challenges.

[94]
Addl
Appli-
cations
[96,110]

Health monitoring and manage-
ment using Internet-of-Things
(IoT) sensing with cloud-based
processing: Opportunities and
challenges

AAL Discusses low power, wireless body area networks
(WBAN) for localized IoT sensors in health monitor-
ing. Introduces a hybrid cloud/cloudlet framework
with context awareness, and outlines challenges of
dealing with high dimensional, time series data.

[111]
Addl.
Appli-
cations
[107]

* Smart home care network us-
ing sensor fusion and distributed
vision-based reasoning

AAL An example of sensor fusion for improved fall detec-
tion. Combines image-based sensing and reasoning
(from multiple camera views) to corroborate ac-
celerometer events and reduce false alarms.

[106]
Addl
Appli-
cation
[112]

*Modeling to Predict Cases of
Hantavirus Pulmonary Syndrome
in Chile

Disease/
Disaster

Hantavirus outbreaks are typically small and geo-
graphically confined. Few have considered climato-
logical modeling of HPS incidence for monitoring
and forecasting purposes. Methodology Monthly
counts of confirmed HPS cases were obtained from
the Chilean Ministry of Health for 2001–2012. The
data suggested a seasonal trend, which appeared to
correlate with changes in climatological variables
such as temperature, precipitation, and humidity.

[108]

Wearable IoT sensor based health-
care system for identifying and
controlling chikungunya virus

Disease/
Disaster

Wearable IoT sensors, fog computing, mobile tech-
nology, cloud computing, and better internet cover-
age have enhanced the quality of remote healthcare
services. IoT-assisted fog health monitoring systems
can be used to identify possibly infected individuals
in an early phase of their illness so that the outbreak
of CHV can be controlled.

[109]

Continued on next page

* Discussed in text
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TABLE 6

Public Health (continued)

Title Category Description Reference
A Semantic IoT Early Warning
System for Natural Environment
Crisis Management

Disease/
Disaster

An early warning system (EWS) is a core type of
data-driven IoT system used for environment dis-
aster risk and effect management. This study uses
lightweight semantics for metadata to enhance rich
sensor data acquisition. This approach is validated
through determining both system-related metrics
and a case study integrated with a deployed EWS
infrastructure.

[98]
Addl.
Applica-
tion [99]

* Discussed in text

5.4 HUMAN ACTIVITY DETECTION AND CLASSIFICATION

An area of growing interest, and specifically related to indoor positioning, is human activity 
detection and classification. This area has numerous applications, from smart home or building 
applications, like occupancy monitoring, to more involved human pose detection. As described in 
Akkaya et al. [113], occupancy monitoring is a multi-layered problem, with occupancy detection 
(the presence or absence of people in a space) being the simplest. Beyond that, occupancy counting 
seeks to determine how many people are in the space, while occupancy tracking seeks to discover 
where they are and where they move within the space. The latter overlaps heavily with work 
in indoor localization and tracking. At an even higher level is occupancy behavior recognition, 
with the goal of recognizing and understanding individual or collective activities within the space. 
Challenges mentioned include the desire to be minimally intrusive (i.e., use existing infrastructure), 
and to develop data fusion techniques to improve accuracy. To that end, occupancy detection often 
involves multi-modal data fusion including network nodes, cameras, environmental sensors, and 
more fine-grained wearable sensors to determine occupancy and location of individuals.

Ghai et al.’s work uses only “opportunistic context sources” or “soft sensors,” such as access 
badges, WiFi access points, and applications such as calendaring and instant messaging to per-form 
occupancy detection. They deployed low-cost machine learning algorithms, including linear 
regression and C4.5 classification, to locate and detect occupants. Volunteers in the office were 
manually tagged using a desktop application installed on their laptops that updated location and 
status whenever they moved with annotations such as ‘cubicle’ or ‘break’. This information was 
used to denote ground truth for the machine learning algorithm. The pilot study involved a single 
floor with 5 volunteers for 6 weeks, and demonstrated precision and recall between 80 and 89%
for C4.5 classification for ‘cubicle’ and ‘break’ classes. Linear regression performed less reliably on 
this task with precision between 58% and 92% and recall at approximately 59%. However, there 
were no baseline methods for comparison [114]. In contrast, Nesa and Banerjee used Dempster-
Shafer evidence theory (DSET) to fuse information from multiple heterogeneous data sources such 
as temperature, humidity, light, and CO2. They compared their results to other methods, and 
also showed how performance improved as the number of fusion parameters increased [115]. Oc-
cupancy behavior recognition techniques, such as those investigated by Dong and Andrews, are
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often used for more sophisticated automatic environment management to improve energy efficiency 
and comfort of building occupants. Events such as lights turning on and motion being detected 
are derived from raw data. Significant patterns in event sequences are then recognized based on 
length and periodicity, which then feed into a model of occupancy patterns and duration. This 
model informs environmental adjustments, such as heat and cooling. Simulations demonstrated 
that their dynamically-derived schedule would achieve comparable energy savings to a motion-only 
based strategy, but with less discomfort time [116].

Advanced human activity classification often involves multipath or through wall human ac-
tivity detection including activities like sitting, standing, walking, or tracking. Kim et al.’s 2009 
study used micro-doppler to classify human activity for running, walking, walking while holding 
a stick, crawling, boxing while moving forward, boxing while standing in place, and sitting. This 
study measured radar signals during each of these activities and then applied a short-time Fourier 
Transform (STFT) over an averaged window of time and then applied machine learning (support 
vector machines and decision trees) to the resulting data set. This method achieved 100% ac-
curacy on classifying sitting activity and a more modest result of 78% for boxing while moving 
forward [117]. These results, while impressive, have seen improvement with more recent algorithms 
that isolate fine-grained human pose detection.

A recent MIT CSAIL study utilized wireless signals for two dimensional (2D) pose estima-
tion. This study analyzed radio signals reflected off a person’s body using frequencies in the WiFi 
spectrum. The signal analysis was used to build a confidence map and heat map of joints on a 2D 
figure to obtain the object keypoint similarity (OKS). Average precision for each OKS is roughly 
the distance between ground truth, or the actual activity pose, and detected keypoint from the 
sensor, or WiFi signal. Deep neural networks were trained using visual camera data and then used 
on pose detection from wireless data to implement a cross-modal learning and detection algorithm. 
This method achieved similar performance through walls to the existing OpenPose framework for 
human pose detection that relied primarily on visual data [118].

Table 7 provides a list of further applications and methodologies for human activity detection.
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TABLE 7

Human Activity Detection & Classification

Title Category Description Reference

* Occupancy detection in
commercial buildings us-
ing opportunistic context
sources

Occupancy
Detection

Uses “opportunistic context sources” or “soft sen-
sors” such as access badges, WiFi access points, and 
applications such as calendaring and instant messag-
ing with ML techniques.

[114]
Addl ap-
plication
[115]

Occupancy detection
through an extensive envi-
ronmental sensor network
in an open-plan office
building

Occupancy
Counting

Discusses feature selection - largest info gain sources: 
multiple CO2-based values, acoustics, and PIR (pas-
sive infrared). Compares performance of SVM, NN, 
and HMM. HMM fares well - “successfully describes 
the major changes in occupancy while ignoring abrupt 
fluctuations of short duration”

[119],
Addl ap-
plication
[120]

*IoT-based occupancy
monitoring techniques
for energy-efficient smart
buildings

Occupancy
Monitoring

Survey of multi-modal data fusion techniques for
smart buildings using existing infrastructure; develop
data fusion techniques to improve accuracy.

[113]

*Sensor-based occupancy
behavioral pattern recog-
nition for energy and
comfort management in
intelligent buildings

Occupancy
Behavior
Detection

Occupancy behavioral patterns used to develop dy-
namic schedule for building energy/comfort man-
agement. Detect events from raw data to discover
significant patterns in event sequences and develop
model of occupancy patterns/duration via HSMM
(hidden semi-Markov model).

[116]

* Through-Wall Human
Pose Estimation Using
Radio Signals

Activity Clas-
sification

Wireless signals in the WiFi frequencies traverse
walls and reflect off the human body. We introduce a
deep neural network approach that parses such radio
signals to estimate 2D poses.

[118]

* Human Activity Classi-
fication Based on Micro-
Doppler Signatures Using
a Support Vector Machine

Activity Clas-
sification

Measured 12 human subjects performing seven differ-
ent activities running, walking, walking while hold-
ing a stick, crawling, boxing while moving forward, 
boxing while standing in place, and sitting using a 
micro-Doppler radar

[117]

* Discussed in text

5.5 MAPPING & LOCALIZATION

Simultaneous localization and mapping (SLAM) is a longstanding and key challenge in robotics 
that involves using combined robotic sensors to map the space that a robot occupies as well as 
understand the robot’s positioning in that space. The SLAM problem spans multiple fields including 
physics, sensor fusion, and real-time computation. It has key applications in envi-ronments where 
global positioning systems (GPS) may be inaccurate, previously unmapped areas, or areas of high 
uncertainty such as poorly marked roads, adverse weather events, or unexpected visual interference. 
Ideally, the SLAM algorithm takes place in near real-time and allows for in-teraction with the 
environment, and encompasses a larger variation in sensor times and expected responses. SLAM is 
used in practice for things like autonomous vehicles and robot vacuums which build a map of the 
user’s home and navigates collision avoidance [121–123].
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The SLAM problem incorporates multiple modalities including visual, odometry, gyroscopic 
and many other variations. The problem is diverse enough to give key insight into the challenges we 
will face with autonomous vehicles (AV) and integration with smart factories, smart cities, smart 
homes, and the wider future of IoT. Integrating the AV and other robotics requiring indoor position-
ing into the IoT network will allow deeper integration into emerging infrastructures. Traditionally, 
SLAM has been performed used relatively isolated embedded computation. The introduction of 
fog, cloud, and edge computing and the expansion of IoT has been rapidly changing the way we 
approach the SLAM problem [44].

The canonical example of SLAM is for the use of smart or autonomous vehicles. Several 
commercial examples have already been released and are in limited use including Tesla [124], Uber 
[125], and Google [126]. Much of this development was realized from the DARPA Grand Challenge, 
which over the years has pioneered development in both robotics and autonomous vehicles. The 
2007 DARPA Urban Grand Challenge was won by a vehicle named Boss, created by the Carnegie 
Mellon University (CMU) Team [127]. Boss was a massively complex undertaking fusing global 
positioning system, lasers, radars, and cameras to track other vehicles, detect static obstacles, and 
localize itself relative to a road model. It also utilized extensive AI/ML algorithms for mission, 
behavioral, and motion planning. The mission planning layer optimizes over a value function to 
determine which street to take to achieve a mission goal. The behavioral layer determines when to 
change lanes and precedence at intersections in addition to performing error recovery maneuvers. 
The motion planning layer selects actions to avoid obstacles while making progress toward local 
goals [128].

More recent SLAM variants include applications, like SmartSLAM, that focus on localization 
of pedestrians and mapping of spaces using devices like smart phones. Shin et. al. evaluated map-
ping variants with SmartSlam using a smart phone. Their experiment automatically constructed 
an indoor floor plan and radio fingerprint map for anonymous buildings using odometry tracing with 
inertial sensors, an observation model using WiFi signals, and a Bayesian estimation for floor-plan 
construction. Their method does not require additional devices and achieved an average error 
between 2.98 and 3.51 meters for localizing and mapping using a particle filter algorithm [129].

A relatively recent innovation in mapping and localization applications is radio tomography 
(RT), which refers to the application of tomographic techniques to radio waves. Tomography is 
a long-standing practice across many fields including medical magnetic resonance imaging (MRI), 
ultrasounds, and even archaeology. It refers to imaging by sections or sectioning, through the use 
of any kind of penetrating wave. Specifically, radio tomography has evolved in the past fifteen 
years from theory to practical application. Initially it was applied to geophysical investigations of 
solar-terrestrial processes and has recently expanded to the mapping and modelling of the ionized 
atmosphere with practical radio systems. Modern applications of interest in the IoT domain are 
the use of RT for mapping and localization across many radio or radar nodes. The method applies 
tomographic inversion using RSS and other wave frequency data to give a two-dimensional image 
of the space [130].

Wilson and Patwari demonstrated effective use of radio tomographic imaging (RTI). Their 
RTI system used 28 wireless nodes at 2.4 GHz. Signal processing assumed a Gaussian noise model,
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and image reconstruction used a maximum a posteriori (MAP) estimator. Results showed that the 
system was effective at creating attenuation images of humans standing in areas on the order of 
hundreds of square feet and was able to track targets that moved within a wireless network [131]. 
Through-wall tracking was further evaluated in a follow up paper that used variance based RTI 
(VRTI). Experimental results for a 34-node through-wall imaging and tracking system over a 780 
square foot area saw respectable performance. For example, over a ten second average of human 
movement through 20 known positions using VRTI and Kalman filtering, the average error was 
approximately 1.46 feet. Overall, their experiments demonstrated accuracy between approximately 
2 and 6 feet for localization of a target [132]. The further works by these authors are listed in 
Table 8.

In the commercial sector, Bastille Networks (whose business motto is “security for the inter-
net of radios”) markets Bastille Enterprise, a product aimed at enterprise security, which scans the 
radio spectrum to identify and locate radio emitters operating on frequencies between 60 MHz and 
6 GHz. Among other things, this may be used to discover rogue WiFi access points or unautho-
rized Bluetooth tethering. The company employs several patented technologies, such as Bayesian 
device fingerprinting to detect and identify devices, and distributed tomographic localization to 
determine a device’s position within one meter. The latter technology allows them to estimate the 
position of walls and other objects which are then factored into their device localization model [133]. 
Dr. Robert Baxley, Chief Engineer at Bastille and Adjunct Faculty member at Georgia Tech, has 
co-authored a number of academic research papers related to RTI [134–139].

TABLE 8

Mapping & Localization

Title Category Description Reference

Toward a rapidly deployable ra-
dio tomographic imaging system
for tactical operations

Localization:
RT

A study of a rapidly deployed radio frequency (RF)-
based tomographic imaging (RTI) system for use
in tactical operations by Special Weapons and Tac-
tics (SWAT) and other SOF, using low-power radio
devices around a building to image and track the
motion of humans inside the building.

[140]

*Radio tomographic imaging
with wireless networks

Localization:
RT

A linear model for using received signal strength
(RSS) measurements to obtain images of moving
objects. Noise models are investigated based on real
measurements of a deployed RTI system. Mean-
squared error (MSE) bounds on image accuracy are
derived, which are used to calculate the accuracy of
an RTI system for a given node geometry.

[131]
Addl Ap-
plications
[134, 137,
141–144]

Continued on next page

* Discussed in text

25



TABLE 8

Mapping & Localization (continued)

Title Category Description Reference
Radio frequency tomography in
mobile networks

Localization:
Mobile RT

A study using received signal strength (RSS) mea-
surements as used in ad-hoc networking to describe
how information about the shadowing environment
is encoded into RSS measurements. Utilizes a novel
RF Exploitation for Tomographic Imaging and Non-
cooperative Analysis (RETINA) algorithm to detect
stationary obstacles and track moving objects.

[135]
Addl Ap-
plica-
tions [139]

*See-through walls: Motion
tracking using variance-based
radio tomography networks

Localization:
Multipath
RT

A new method for imaging, localizing, and tracking
motion behind walls in real time. The method takes
advantage of the motion-induced variance of RSS
measurements made in a wireless peer-to-peer net-
work. Using a multipath channel model, it shows the
signal strength on a wireless link is largely dependent
on the power contained in multipath components
that travel through space containing moving objects.

[132]
Addl.
Applica-
tions [145]

Improving radio tomographic
images using multipath signals

Localization:
Multipath
RT

This paper presents a method by which multipath
signals may be treated as useful measurements in an
RTI system to informs the existing spatial loss field
(SLF) image, improve image quality and reducing
root-mean-squared-error (RMSE).

[138]
Addl Ap-
plica-
tions [139]

Regularization techniques for
floor plan estimation in radio
tomographic imaging

Mapping
RT

A potential application of RTI for estimation of
building floor plans and interior features in a wire-
less network. Proposes a technique for the regular-
ization of solutions to RTI problems with the goal of
enhancing building floor plan images by exploiting a-
priori information about the structure, and therefore
spatial covariance, of typical buildings.

[136]

*Bastille Networks Internet 
Security, ‘Product introduction.’

Localization
& Mapping:
RT

Bastille’s technology scans the entire radio spectrum,
identifying devices on frequencies from 60MHz to
6GHz. This data is then gathered and stored, and
mapped so that you can understand what devices are
transmitting data from your corporate airspace. This
provides improved situational awareness of potential
cyber threats and post-event forensic analysis.

[133]
Addl Ap-
plica-
tions [146]

Simultaneous Localization and
Mapping

Localization
& Mapping:
SLAM

A comprehensive introduction to the SLAM prob-
lem, addressing robot navigation in an unknown
environment, map acquisition, and localization using
the map. SLAM aims for detailed environment mod-
els, or an accurate sense of a mobile robot’s location.

[123]
Addl.
Applica-
tion [122,
147–149]

*Autonomous driving in urban
environments: Boss and the Ur-
ban Challenge

Localization
& Mapping:
SLAM

Boss is an autonomous vehicle that uses on-board
sensors (global positioning system, lasers, radars,
and cameras) to track other vehicles, detect static
obstacles, and localize itself relative to a road model.

[128]
Addl. Ap-
plication
[149–152]

Continued on next page

* Discussed in text
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TABLE 8

Mapping & Localization (continued)

Title Category Description Reference
Internet of vehicles: From intelli-
gent grid to autonomous cars and
vehicular clouds

Localization
& Mapping:
SLAM

The car is now a formidable sensor platform, ab-
sorbing information from the environment (and from
other cars) and feeding it to drivers and infrastruc-
ture to assist in safe navigation, pollution control,
and traffic management. The Internet of Vehicles
will be a distributed transport fabric like other im-
portant instantiations of the Internet of Things (e.g.,
the smart building), with storage, intelligence, and
learning capabilities.

[53] Addl.
Appli-
cation
[149–152]

Human SLAM, Indoor Localisa-
tion of Devices and Users

Localization
& Mapping:
Smart-
SLAM

The indoor localisation problem is more complex
than just finding whereabouts of users. Finding posi-
tions of users relative to the devices of a smart space
is even more important. This study proposes a new
system to address the problem of locating devices
and users relative to those devices, and combine
this problem into a single estimation problem using
(RSSI) of devices and motion data from users.

[153]
Addl.
Applica-
tion [122,
147–149]

Google Cartographer Localization
& Mapping:
Smart-
SLAM

Cartographer is a system that provides real-time
simultaneous localization and mapping (SLAM) in
2D and 3D across multiple platforms and sensor
configurations.

[154]
Addl.
Applica-
tion [122,
147–149]

*Unsupervised construction of an
indoor floor plan using a smart-
phone

Localization
& Mapping:
Smart-
SLAM

Indoor pedestrian tracking extends location-based 
services to indoor environments. Typical indoor 
positioning systems employ a training/positioning 
model using WiFi fingerprints that require an in-door 
map, which is typically not available to the av-erage 
user and involves significant training costs.This paper 
presents an indoor pedestrian tracking system, called 
SmartSLAM, which automatically constructs an 
indoor floor plan and radio fingerprint map for 
anonymous buildings using a smartphone employing 
odometry tracing using inertial sensors, an obser-
vation model using WiFi signals, and a Bayesian 
estimation for floor-plan construction.

[129]
Addl.
Applica-
tion [122,
147–149]

* Discussed in text

The various application areas covered in this section offer a broad array of data fusion method-
ologies, including techniques for fusing both homogeneous and heterogeneous data. Very few, how-
ever, make comparisons against a baseline or compare results across several methodologies. In
addition, one of our objectives is to understand the value of data fusion, and very few papers
consider performance as the amount and type of data increases. The application area that best
approaches our goals has had considerable attention, even prior to the dawn of IoT: indoor posi-
tioning. Section 6 provides a more in-depth look at this particular application, in which methods
can be compared to some degree with respect to common metrics.
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6. DEEP DIVE: INDOOR POSITIONING WITH IOT

As described by Sakpere et al. [155] and others, while GPS has become the standard for 
outdoor navigation, there is no one, widely-adopted equivalent for indoor navigation, a relatively 
newer and evolving field which has grown along with the proliferation of personal mobile devices such 
as smartphones. In many indoor positioning or navigation scenarios, a moving or “target” device is 
being localized with respect to fixed infrastructure (e.g., wireless access points at known locations). 
However, in an indoor environment, it is rare to have unobstructed line of sight (LOS) between 
transmitters and receivers; this is one reason, along with signal attenuation through structures, 
that indoor localization using GPS is unreliable. Indoor localization difficulties cited by Liu et 
al. [156] include multipath propagation, wherein the same signals may reach a receiver via two or 
more paths, and the lack of good models for such indoor multipath propagation. Both static and 
dynamic aspects of the indoor environment contribute to the difficulty of this problem, including 
varying floor plans and fixed reflective surfaces, as well as moving objects, such as people and doors 
that may be open or closed.

As a result, a large body of research exists in attempting to solve this problem in a number 
of ways. Researchers have considered using and combining a wide variety wireless technologies and 
indoor sensors, in complementary, redundant, or cooperative schemes (as defined in the previously 
described information fusion survey by Nakamura et al. [58]). Indeed, such an explosion of research 
has occurred that a plethora of surveys have been written attempting to categorize, summarize, 
and compare the works according to various criteria.

In Section 6.1, we describe a number of such surveys and their contributions, while in Sec-
tion 6.2 we provide a discussion and comparison of numerous works from the past ten years wherein 
the authors measured and provided some performance information.

6.1 INDOOR POSITIONING SURVEYS

Table 9 provides examples of surveys and comparisons of indoor positioning techniques and 
systems. Each one has a slightly different focus and provides some insights not found in the others. 
Each is described in more detail below.

The 2007 survey [156], cited by most of the others, provides an overview of various positioning 
algorithms within three main categories: triangulation (including five lateration as well as angula-
tion techniques), scene analysis (including multiple probabilistic and machine learning methods), 
and proximity. The authors further evaluate 20 different systems or solutions based on a va-riety of 
wireless technologies, such as Bluetooth, WiFi, and RFID. These systems are compared across six 
performance metrics: accuracy, precision, complexity, robustness, scalability, and cost. This 
comparison is summarized in Table 1 of their paper. Note that we use a similar format for Table 10 in 
this report in order to extend their summary with additional work that was published after their 2007 
survey.

As indicated by the title, the 2011 survey [110] looks at indoor positioning technologies in
the context of ambient assisted living applications. After an overview of the application area and
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TABLE 9

Indoor Positioning Surveys and Comparisons

Title Year References

Survey of Wireless Indoor Positioning Techniques and Systems 2007 [156]

Overview of Indoor Positioning Technologies for Context Aware AAL
Applications

2011 [110]

Overview of RFID-Based Indoor Positioning Technology 2012 [157]

Performance Evaluation of Localization Algorithms for WSNs 2015 [158]

A state-of-the-art survey of indoor positioning and navigation systems
and technologies

2017 [155]

Robustness, security and privacy in location-based services for future
IoT: A survey

2017 [159]

Evolution of indoor positioning technologies: A survey 2017 [160]

Location of Things (LoT): A review and taxonomy of sensors localization
in IoT infrastructure

2018 [161]

technique basics, the authors discuss metrics; in addition to accuracy, precision, and cost, they also 
consider privacy and “possible context information” that could be gained with sensor fusion. They 
go on to examine six major single-medium systems (e.g., WLAN, Bluetooth, and RFID), but also 
emphasize seven examples of newer, multi-medium approaches (e.g., WLAN + RFID, and 
WLAN+ Altimeter + Image), focusing on works published after the 2007 survey.

The 2012 survey [157] focuses specifically on RFID-based technology, providing an overview of 
principles, characteristics (e.g., frequency ranges), and application areas before delving further into 
RFID-based indoor positioning techniques. Also discussed are hybrid techniques, which in-tegrate 
RFID with other sensors and techniques such that the integrated capabilities compensate for the 
weaknesses of the component techniques, resulting in more reliable and accurate position-ing 
determinations. Table 4 in their survey summarizes the advantages and disadvantages of four 
different measurement models (all of which fall under the triangulation methods described in the 
2007 survey [156]). Table 5 in their survey summarizes the advantages and disadvantages of three 
different RFID-based algorithms (Cell of Origin, lateration, and fingerprinting) and also assesses 
their accuracy, with fingerprinting judged as the most accurate. The survey concludes with remarks 
on future trends.

The 2015 performance evaluation [158] focuses on RSS-based localization algorithms. Re-
ceived signal strength (RSS), or more generally signal attenuation-based methods f all under the 
lateration techniques described i n the 2007 survey [156]. Here the authors classify them i nto two 
main types: range-free and range-based (which are generally more accurate). When trying to lo-
calize a node of i nterest (NOI), range-based techniques estimate the distance between the NOI 
(which may be mobile) and other fixed reference nodes i n the network. Range-based techniques 
include weighted least squares (WLS) multilateration, as well as circular and hyperbolic position-ing 
algorithms. I n contrast, range-free techniques do not base the NOI position on such a distance
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estimation. Examples include several variations of weighted centroid and K-nearest neighbor lo-
calization algorithms, some combined with fuzzy logic. The authors propose yet another variation 
on WLS, and then report extensively on the results of simulation-based evaluations of the various 
techniques. Performance metrics include accuracy, precision, and computational complexity.

The 2017 state-of-the-art survey [155] provides a comprehensive overview of indoor position-
ing techniques, suggesting two different ways of classifying them: by signal property (angle of 
arrival, time of arrival, time difference of arrival, and received signal strength), and by positioning 
algorithm (triangulation, trilateration, proximity, and scene analysis/fingerprinting). Their Ta-
ble 2 summarizes the pros and cons of these approaches. The authors also discuss nine different 
technology categories (infrared, ultrasound, audible sound, magnetic, optical and vision, radio fre-
quency, visible light, dead reckoning, and hybrid). For each category, several papers or systems are 
cited and discussed, along with an assessment of the challenges and drawbacks of the technology 
category. Table 3 in their survey presents a summary and comparison of the technologies across 
several aspects: technique, algorithm, accuracy, cost, complexity, scalability, privacy/security, and 
real-time suitability. This survey includes many works that had not been published at the time of 
the 2007 survey.

The 2017 robustness survey [159] is unique in that it evaluates threats (and mitigations) to 
the accuracy, security, and privacy of both global navigation satellite system (GNSS) and non-
GNSS-based localization solutions including, for example, radio frequency interference (RFI) and 
database-related vulnerabilities.

The 2017 evolution survey [160] purports to differentiate itself from other surveys by the 
breadth of its coverage, and by the structure in which it separates and presents the various tech-
niques (such as multilateration and fingerprinting) versus the technologies (such as optical, sound, 
RF, passive, and hybrid). Their Table 1 provides a comparison to five prior surveys, including 
the 2007 Liu survey [156], detailing which technologies and sensors are considered in each. Their 
Table 2 presents a comparison of indoor positioning technologies across multiple facets (accuracy, 
coverage, cost, strengths, and weaknesses), with accuracies ranging from 1 centimeter (cm) for both 
ultrasonic and computer vision technologies, to 25 cm for Zigbee, to up to several meters for the 
majority of others. The authors further discuss evolving trends, such as taking full advantage of 
existing infrastructure, hybrid technology approaches, the use of mobile devices, and crowdsourcing.

The 2018 survey [161] provides an extensive analysis of localization techniques and compares 
itself to 28 other localization surveys (in their Table II). They classify techniques accord-ing to the 
presence or absence of offline training, including a variety self-determining (geometric, mobility 
model, path planning, and statistical approximation) and training-dependent (fingerprint-ing, 
stochastic modes/Markov process, and machine learning) approaches, which are diagrammed in 
their Figure 3. Each of these seven approaches is examined in detail, including a separate ta-ble 
summarizing and comparing numerous published works for each approach. Also included are several 
figures plotting accuracy versus power consumption for the various approaches.

6.2 INDOOR POSITIONING METRICS ACROSS APPROACHES
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TABLE 10

Indoor Positioning Metrics

Sensors/
Protocols

Data Algorithms Accuracy/
Precision

†Complexity Scalability/
Space
dimension

†Robustness Notes

*Real &
simulated
WINS,
Medusa, RF,
Ultrasound,
RSSI [162]

50-300
simula-
tion, 5-9
real

Atomic, it-
erative, and
collaborative
multilatera-
tion

WINS 2-4m,
Ultrasound
2-20cm

§ moderate /
moderate

30m dis-
tance,
height
of 1.5m;
2D,3D

moderate Foundational
literature on
fine grained
indoor local-
ization

TelosB
2.4GHz
CC2420
radio using
received sig-
nal strength
(RSS) [163]

5 nodes Specialized
localization
using prox-
imity vectors
and sequence
building

≤ 50cm,
90% with
16 channels,
0% with 1
channel

low/medium §8 x 8m;
24m,
nodes 3m
apart; 1D

high for
linear se-
quences
(noise and
multipath)

Linear node
discovery us-
ing minimal
communi-
cation, non
linear pat-
terns not
evaluated

ZigBee wire-
less sensor
networks,
TI 2.4 GHz
CC2530
nodes, using
RSSI [164]

8 nodes Kalman fil-
ter method,
Triangle
Centroid
Location
Algorithm
(TCLA)
based on
weighted fea-
ture points

Kalman
9.5%;TCLA
13%; Gaus-
sian filter
29%; Mean
filter 29.5%

§ low/ mod-
erate

24m; 1m
and 2m
spacing

moderate
(noise)

Focuses on
accuracy of
RSSI value
and opti-
mization of
localization
algorithm

WiFi RSS,
inertial
navigation
sensor, gy-
roscope, a
biaxial ac-
celerometer,
atmospheric
pressure sen-
sor [165]

Pedestrian
at 1m/s,
WiFi
at Ts =
300ms,
and a new
INSmea-
surement
at δ T =
40 ms.

KNN,
Kalman
filter, par-
ticle filter,
statistical al-
gorithm/ML

Mean error
lowest being
1.53m Table
1 and Table
II full results

§ high/high moderate,
40m x
40m;
2D, 3D
potential

moderate
(INS sensor
errors)

Dead-
reckoning
navigation
self localiza-
tion of an
autonomous
mobile device
by fusing
pedestrian
WiFi sig-
nal strength
measure-
ments.

ZigBee RSSI
[166]

4 nodes
emitting
@0.67 Hz

Weighted
centroid

RMSE 10m,
std. dev. 2m

§ Linear in #
of beacons

2D moderate Tour guide
robot appli-
cation

GPS,ZigBee
RSSI [167]

5 sensors Distributed
barycentric
coord. est.

1 m no analysis 10m×10m moderate
(robust to
white noise)

Accuracy
based on
reported
initial error
and “error
ratio”

Continued on next page

* Denotes results obtained from simulation.

† Complexity and robustness apply to the algorithm. When hardware complexity is also known, it is reported as hard-
ware/algorithm complexity.

§ Indicates solution is designed for or feasible in real time
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TABLE 10

Indoor Positioning Metrics (continued)

Sensors/
Protocols

Data Algorithms Accuracy/
Precision

†Complexity Scalability/
Space
dimension

†Robustness Notes

TelosB RSSI
[168]

20 nodes,
16 chan-
nels

Adaptive
Kalman fil-
ter, weighted
RSSI fin-
gerprinting,
optimized by
memetic alg.

0.6m § < 50 ms
per genera-
tion (Matlab
implementa-
tion)

10m×10m high Requires
calibration

ZigBee RSSI
[169]

≤ 8 bea-
cons, 60
points

probability
map from
RSSI

1.5m err.,
std. dev.
0.8m

§ Linear in #
of beacons

30–600 m2 moderate Requires
training of
prob. map

RSS [170] 17 nodes,
100 pack-
ets each

Kalman/
moving avg.
filt.

1.5m § linear in #
nodes

7× 3m2 high Kalman filter
performed
better than
moving aver-
age

WLAN,RSS
and Blue-
tooth
RSSI [171]

4 WiFi
and 3
Bluetooth
access
points

fingerprinting
(Bluetooth
zone followed
by WiFi)

2.3m 1/6:
1.75-2m; 2/3:
2-2.5m; 1/6:
2.5-2.75m

no analysis 2D moderate Requires
Bluetooth
RSSI and
WiFi RSS
maps

Zigbee RSSI
[172]

8 refer-
ence and
1 blind
nodes

Environment
adaptive
distance
matrix

2.75m no analysis 16m x
27m,2D

moderate Requires
calibration

*Zigbee RSSI
and UWB
TOA [173]

number
of simu-
lations,
nodes not
specified

RINPS,
RCAPS with
1-hop rang-
ing/ Least
Squares

RMSE: Zig-
bee RSSI
<0.4m;
UWB TOA
<0.2m

no analysis 100m x
100m, 2D,
3D

moderate Focuses on
improving
accuracy in
cluster-tree
(vs mesh)
topologies

WiFi RSS
and op-
portunistic
GPS [174]

small: 50
locations,
48 visible
APs;
large: 100
locations,
156 visible
APs

hybrid ge-
netic algo-
rithm and
gradient
descent to
compute RSS
model; trilat-
eration/Least
Squares for
mobile de-
vices

mobile device
in small:
1.8m/50th
percentile,
2.8m/80th;
AP small:
2m/50th
percentile,
3.3m/80th;
AP large:
4m/50th
percentile,
7m/80th

§ mobile
node; mins
to hours
for model
estimation

small:
27m x
18m;
large: 90m
x 140m;
2D

moderate;
RF model
more ro-
bust than
RF map;
robust to
gain differ-
ences across
devices

Does not
require col-
laboration
or prior en-
vironment
knowledge

Continued on next page

* Denotes results obtained from simulation.

† Complexity and robustness apply to the algorithm. When hardware complexity is also known, it is reported as hard-
ware/algorithm complexity.

§ Indicates solution is designed for or feasible in real time
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TABLE 10

Indoor Positioning Metrics (continued)

Sensors/
Protocols

Data Algorithms Accuracy/
Precision

†Complexity Scalability/
Space
dimension

†Robustness Notes

WiFi RSS
and acoustic
ranging (AR)
[175]

8 laptops Bayesian
inference

0.7m - 3.5m secs to mins
for 2-5 nodes
depending
on number of
edges

27m x 8m;
2D

makes AR
more robust
in non-LOS
settings;
large error
for one node
can increase
error for
other nodes

EchoBeep,
DeafBeep,
and Centaur
framework

2.4GHz +
5GHz WiFi;
WiFi + ac-
celerome-
ter + gyro-
scope [176]

7 APs,
RSSI mea-
surements
every
0.5m

particle filter 1.7m mean,
1.6m median,
4.5m max

no analysis 100m
path; 2D

use of dual
band in-
creases
robustness

2.4 and
5GHz sig-
nal strength
model errors
not well cor-
related so
using both
provides
more info

20 APs;
hand-
carried
smart-
phone;
RSSI
every 4
secs; 20Hz
accelerom-
eter sam-
pling freq

particle filter 1.3m mean,
5.8m max

no analysis 273m
path; 2D

combo in-
creases
robustness
since PDR
performed
between
WiFi mea-
surements

combines
WiFi and
PDR

Zigbee RSSI
[177]

3-16
reference
nodes,
with co-
ordinates
in interval
(0m,63.75m)

modified tri-
lateration
with proxim-
ity learning

0.2-0.6m § 50µs-13ms
to calculate
node position

64m x
64m po-
sitioning
range; 2D

moderate focuses on
faster com-
putation

Zigbee RSS
and hop
count [178]

9 ref-
erence
nodes and
1 target; 2
hops avg;
5sec sam-
pling rate;
7m trans-
mission
range

hop count
used to de-
termine area,
then RSS-
based trilat-
eration to
refine

1.42m § ˜35% fewer
packets ex-
changed than
for single
methods

12m x 8m;
2D

no analysis fuses hop
count and
RSS for
improved
accuracy and
lower power
consumption
than either
method alone

Continued on next page

* Denotes results obtained from simulation.

† Complexity and robustness apply to the algorithm. When hardware complexity is also known, it is reported as hard-
ware/algorithm complexity.

§ Indicates solution is designed for or feasible in real time
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TABLE 10

Indoor Positioning Metrics (continued)

Sensors/
Protocols

Data Algorithms Accuracy/
Precision

†Complexity Scalability/
Space
dimension

†Robustness Notes

Zigbee fine-
grained RSS
and time
[179]

4 anchor
nodes
(USRP
N210),
1 refer-
ence node
(TelosB);
TelosB
target
nodes
broad-
casting
5 pack-
ets/sec,
20-30 test
positions

learning-
based fin-
gerprinting,
fusing RSS
and DT-
DOA; KNN-
RF pattern
matching

1.61m mean
(range 1.09m
- 1.86m);
36% im-
provement
over tra-
ditional
RSS-based
fingerprinting

high 16m x
18m; 2D

moderate requires site
survey for
RSS fin-
gerprint
collection,
and synchro-
nization of
anchor nodes
(with GPS
receivers via
extended
antennas)

* Denotes results obtained from simulation.

† Complexity and robustness apply to the algorithm. When hardware complexity is also known, it is reported as hard-
ware/algorithm complexity.

§ Indicates solution is designed for or feasible in real time

As mentioned in Section 6.1, the widely cited Liu 2007 survey [156] compared (in their Table 1) 
approximately 20 different systems or solutions across a variety of performance metrics, including 
accuracy, precision, complexity, robustness, and scalability. In our Table 10, we use a similar format 
to provide a representative sample of fusion-oriented work published after their 2007 survey which 
also included some experimental results. Our columns are explained below, along with some 
observations and discussion about the information provided in each.

Sensors/Protocols: indicates which types of technologies, sensors, and/or protocols are 
used in the cited work’s experiments, while an asterisk denotes whether the experiments were sim-
ulated or real-world. Due largely to attempts to take advantage of ubiquitous, existing wireless 
infrastructure, the preponderance of solutions use received signal strength (RSS) or received signal 
strength indicator (RSSI) as a primary feature, regardless of the specific RF technology used. Note 
that while sometimes used interchangeably, there is a technical difference between RSS, which is a 
raw, power value measured in decibel-milliwatts (dBm), and RSSI, which is a unitless, relative in-
dicator derived from raw RSS values for which there is no standard (and therefore may vary across 
hardware vendors/implementations). Regardless, both RSS and RSSI vary with distance between 
the transmitter and receiver. In an indoor environment with limited line of sight (LOS), multipath 
propagation limits the accuracy of RSS-based methods. Therefore, in the quest for greater accuracy, 
we see the realization of prior survey predictions that research would expand into hybrid methods 
and fusing the RSS feature with information from other sources (such as navigational and acoustic 
sensors) that may help pinpoint a device’s location. Notable since the Liu 2007 survey [156] is
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the increase in Zigbee-related research, as this relatively newer technology becomes more popular. 
Given that Zigbee is intended for lower-power, mesh network applications in which individual fixed 
nodes may be in closer proximity to each other than, for instance, WiFi access points, it presents 
an opportunity for finer-resolution localization.

Data: includes details authors provided about experimental data, including number of nodes 
deployed, channels and frequencies used, sampling rates, number of simulations performed, etc. 
Reported details vary widely across publications; many authors provide no indication of actual 
hardware/channels/frequencies used, the number of experiments run, quantity of samples obtained, 
or attempts to vary the quantity or quality of the data. While most report how many fixed and 
target nodes were deployed (often under 10 combined), most do not investigate the effects of more 
or fewer fixed nodes on the results.

Algorithms: describes the algorithms/methods used in the work. RSS-based trilateration is 
popular since it requires neither angle measurements nor time synchronization of devices as other 
methods may require. Variations on weighted centroid algorithms try to improve accuracy by giv-
ing higher weight to closer or more reliable reference nodes as determined by higher RSS values or 
higher link quality, for instance. Due to the previously mentioned multipath propagation issue, and 
the lack of good models for this phenomenon, fingerprinting-based methods are often used with RSSI 
data. With this technique, RSSI values from nodes within range are measured and recorded (such as 
in a database) at numerous locations within the i ndoor space to f orm an RSSI fingerprint map. The 
RSSI readings of a target device then may be compared (e.g., via a pattern matching algorithm) to 
this map in order to determine its most likely location. Kalman filters are often used to reduce the 
relatively high noise in RSSI values, which are heavily influenced by the indoor environment. Particle 
filters and dead reckoning techniques are often used in dynamic location tracking (rather than static 
location determination) applications.

Accuracy/Precision: summarizes the quantitative results reported by the authors which, 
again, is highly variable. Some results are reported as straight Euclidean distance error in meters 
or as a percentage, while others report root-mean-square (RMSE) values. Some include standard 
deviations, percentiles, and/or percent improvement over comparison methods, while other do not. 
In addition, note that in most cases the solution is trying to determine the location of a static, 
target node, but in a few cases they are tracking the position of a moving target along a path. 
In the latter case, accuracy may be determined by examining cumulative error along a navigation 
path and final destination. Another point to consider when comparing accuracy across solutions is the 
scope of the problem being solved. For i nstance, the 50 cm error reported by [163] seems out-of-the-
ordinary compared to others until noting that it is applicable to linear node discovery (1D) only. 
Also of import to accuracy expectations is the up-front calibration or mapping required (versus systems 
designed to operate with no prior knowledge or site survey). Most localization errors reported here 
are in the range of one to three meters, with only a small number reporting sub-meter error 
results.
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Complexity: where provided by authors, includes reported details about algorithmic com-
plexity or runtimes. Qualitative assessments such as low, moderate, and high may be provided
when published information adequately supported such an evaluation. In the case of two such as-
sessments provided and separated by a forward slash, the first applies to algorithmic and the second
to hardware complexity. The special symbol § denotes solutions that are designed for or feasible
in real time. Most authors provide no analysis of the algorithmic complexity of their solution,
nor do they necessarily publish enough detail for others to perform this analysis. Those solutions
intended for real-time applications are more likely to come with runtime measurements or estimates.

Scalability/Space Dimension: includes details authors provided about the size of the space
in which experiments were conducted. Where possible to assess, we also include an indication of
the dimensions (1D, 2D, and/or 3D) in which the approach was tested or to which it may extend.
The vast majority of approaches tackle the 2D problem; those attempting 3D localization generally
require additional sensors (such as the atmospheric pressure sensor considered in [165], which is a
good example of multi-sensor data fusion for both real-time and static indoor localization). Some
3D localization solutions attempt only to discern the floor of a building on which a device is located
rather than an exact height for the third dimension.

Robustness: summarizes authors’ comments on robustness, and/or includes a qualitative
assessment (such as low, moderate, or high), if possible, of the solution’s robustness to interfer-
ence, noise, incomplete information, etc. The correlation between RSS/RSSI values and distance,
upon which the majority of approaches are based, has been experimentally evaluated by several
researchers, such as Dong and Dargie in 2012 [180] who concluded that this signal alone is unac-
ceptably error-prone and unreliable for indoor localization. An interesting 2017 study by Konings
et al. [181] investigated how microwave ovens and WiFi interference may affect Zigbee RSSI val-
ues, and determined that neither affect the RSSI values of packets that are correctly received, but
WiFi interference may cause increased packet loss or corruption as data rates increase. RSSI-based
fingerprinting methods have their own robustness issues as well; for instance, the number of peo-
ple present and moving in an indoor environment can affect location fingerprints. Some authors
attempt to address this issue by creating separate daytime and nighttime fingerprint maps, while
others don’t address it at all.

Notes: includes other thoughts relevant to the work, such as take-aways, caveats, the
goal/focus of the work, or notes on calibration/preparation required. Since most methods rely
on cooperation and/or calibration, it is interesting to note Chintalapudi et al. 2010 [174] as an
example that requires neither pre-deployment calibration nor cooperation/collaboration. It does,
however, rely on an occasional “opportunistic GPS” location of an edge node in order to then
determine the absolute locations of other nodes for which relative positions have been previously
calculated.

37



As we’ve described, comparing the performance of differing approaches is particularly chal-
lenging, since no official benchmark or standard exists against which authors evaluate their solutions 
and report their results. To address this issue, beginning in 2014 Microsoft has held the yearly Mi-
crosoft Indoor Localization Competition, in which teams from both academia and industry deploy 
their solutions in a somewhat realistic environment which allows a direct comparison of their per-
formance. Lymberopoulos and Liu provide an excellent and thorough accounting of the 2014-2017 
competitions and results in [182], while the 2018 results are available online [183]. The competition 
includes both infrastructure-free and infrastructure-based categories. Infrastructure-free solutions 
don’t require the deployment of additional hardware, relying solely on pre-existing WiFi and iner-
tial sensors available on most mobile phones; the best results for these systems have been in the 
one to two meter range. In contrast, infrastructure-based solutions rely on additional technologies 
and custom-deployed hardware associated with, for example, sound/ultrasound, UWB, and visible 
light; many of these systems consistently achieve sub-meter accuracy, as low as 0.17 m for one 3D 
UWB approach. During the 2014 competition, the competition-achieved accuracies were compared 
to the self-tested/self-reported accuracies in an attempt to quantify the bias of the highly controlled 
test environments used in most self-evaluations. Indeed, the accuracy of most entries declined by 
1.5 to 4 meters. Additionally, the 2014 competition investigated the impact of furniture setup on 
the competing solutions by changing the layout after calibration in one room (which did decrease 
accuracy) and not in the other. Interestingly, the fact that the venue varies year-to-year means 
that the indoor evaluation space varies as well, and this has proven to affect the overall results such 
that they cannot be compared from year to year.

Despite another decade of research into improving the accuracy of largely RSS-based indoor 
localization techniques, the WiFi-based results reported here don’t differ tremendously from those 
reported in the Liu 2007 survey [156]. For the most part, accuracy remains in the one-to-three meter 
range for WiFi RSSI approaches, while some Zigbee-based solutions claim slightly better accuracy 
of under one meter. As reported previously by other surveys, and borne out by this sampling, 
achieving substantially smaller errors (e.g., under 200 centimeters) requires incorporating 
relatively more expensive and less ubiquitous technology such as ultrasound or ultra-wideband 
(UWB).
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7. DISCUSSION

This survey considers many application areas in which the recent expansion of IoT provides
information about the environment in which it operates that would not be available without these
new, prolific, inexpensive sensors. The applications are as diverse as the devices themselves, span-
ning several questions of relevance to government analysts, including:

• How is traffic in a given area different than what is typical?

• What is the occupancy of this building (or room)?

• Where is this device located with respect to known locations?

• Are conditions in this area ideal for the spread of a particular illness?

Throughout the broad spread of work considered over the course of this study, much of it
relies on methodologies that have been proven in numerous contexts over the years. The indoor
positioning material in particular makes heavy use of tried and true methodologies from signal and
information processing (e.g., ARIMA modeling and Kalman filtering) that have been studied over
several decades. Indeed, many of these methodologies are applicable for arbitrary RF emitters and
are not IoT specific. The same can be said for technologies such as simultaneous localization and
mapping, which draw heavily on important research problems in the robotics area. Robotics is
an especially relevant area to consider for multimodal data fusion, as there are frequently multiple
sensor modalities used on a platform, such as RF, imagery, and lidar.

Ambient assisted living and occupancy detection are two other areas in which there is fre-
quently multimodal data fusion. In addition to using RF methods like RSSI, positioning methods in
these application areas often incorporate other sources of information, such as accelerometer read-
ings, to provide a more reliable model of the scene. Indeed, the winners of the 2D (infrastructure-
free) positioning challenge in the Microsoft Indoor Localization Challenge have been based on
pedestrian dead reckoning [183], which often uses accelerometer measurements. These multimodal
methodologies typically use off-the-shelf machine learning methods like decision trees, support vec-
tor machines, or deep neural networks, and the novelty is primarily in the application and data
fusion.

The very ubiquity and diversity of IoT, however, presents research challenges when considering
broad questions such as, “How much information can be obtained from IoT sources?” As is clear
when viewing the literature at a high level, it is often difficult to obtain a direct comparison between
candidate fusion methods without explicitly setting out to make such a comparison in a research
program. To reliably gauge how these solutions would perform in practice, a rigorous suite of
experiments must be run in which a controlled context is defined and each method is evaluated in
the same context. For military and intelligence applications, testing in stressed conditions—e.g.,
lack of calibration, node dropouts, interference—would be essential to fully evaluate applicability to
high-consequence, uncooperative scenarios. The Microsoft challenge could be a useful model, and
experimentation could be run for a set of representative applications in a few well-defined scenarios
under conditions of varying difficulty.
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Recent projections suggest the number of IoT devices in operation will soon exceed the number
of people on Earth by an order of magnitude [4]. As this trend continues, greater processing
capability at the edge will likely increase as well [63], presenting new challenges and opportunities.
Where possible, experimentation such as that recommended here could make use of new edge
processing technology, such as existing system-on-chip solutions used as a baseline in [169]. This
would provide an additional layer of information about the capabilities of IoT: What information
(and how much) can be inferred in the field based exclusively on local measurements, and what
requires fusion with broader data? This is a truly rich area for research and development with
many candidate solutions ready for testing, as outlined in this report.
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8. SUMMARY

This report documents the findings of a six-month literature review of the state of the art 
in data fusion methods for data available from Internet of Things sources. Such methods have 
significant potential for use by government analysts to gather information supplemental to that 
obtained via specialized sensors and tradecraft. IoT can provide information on conditions on the 
ground at a specific time and place, such as traffic, weather, and human activity, all of which can 
be essential to describe an area of interest. While there is tremendous potential with this data, 
these prolific devices can be unreliable and information from any one device may not be useful. 
The fusion methods described in this report aim to combine measurements to provide greater 
robustness, leveraging the volume of data to overcome noise and errors arising from using a vast 
sea of inexpensive, uncontrolled sensors.

The literature survey turned up a substantial body of research covering numerous application 
domains, all of which benefit from fusion of multimodal data made available through the prolifer-
ation of IoT. To focus on methods that are potentially relevant to government analysts, the focus 
of the study was directed at a representative sample of applications, including smart cities (“What 
are traffic conditions in this area?”), public health (“Is a disease outbreak likely in this area?”), 
occupancy detection (“How many people are in this building?”), and mapping and localization 
(“What are typical paths taken through this area?”). As there is a particularly large body of work 
on indoor positioning, this area was researched in greater depth to determine what features provide 
greater performance.

While a plethora of methods have been applied to the various applications, a consistent 
challenge in conducting the survey was providing a baseline point of comparison and fixed sets 
of metrics on which the solutions can be evaluated. In the indoor positioning literature, where 
the literature is focused enough that this comparison is somewhat possible, it is clear that using 
additional modalities (such as ultrawideband signals and pedestrian dead reckoning) beyond the 
traditional received signal strength indicator can substantially improve performance (to errors as 
small as 0.5 m in laboratory settings).

An ideal next step in this research area would be to choose a broad set of analytics where IoT 
data are useful and run experiments in a setting where the environment (including obstructions 
and interference) can be controlled and the effects of these variables can be rigorously quantified. 
IoT will only become more prevalent in the years to come, and such a suite of experiments would 
put government professionals in the best possible position to take advantage of the vast sea of data 
it provides.
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9. GLOSSARY

AAL Ambient assisted living, a sub-area of ambient intelligence which seeks to enable elderly
people or those with disabilities to live independently

actuator A device that provides the mechanism for a control system to affect the physical envi-
ronment (e.g. open or close a valve)

AI Artificial intelligence, an area of computer science that seeks to build intelligent machines that
can “think” or work like humans

anchor node In an indoor positioning context, a node (such as a WAP) in a fixed, known location
that serves as a reference when trying to determine the position of a target node)

ANN Artificial neural network (see neural network)

AOA Angle of arrival, a positioning method that requires knowing or calculating the angle and
distance to multiple reference points

AP Access point, a networking hardware device, typically connected to a wired network, that
allows WiFi devices to connect to that wired network

ARIMA Autoregressive integrated moving average, a class of model fitted to time series data
either to better understand the data or to predict future points in the series (forecasting)

AV Autonomous vehicle

BAN Body area network, a wireless network of wearable or body-embedded devices, which may
consist of multiple, miniaturized body sensor units (BSUs) together with a single body central
unit (BCU)

Bayes’ rule An equation describing the probability of an event based on prior knowledge of con-
ditions that might be related to the event: (P(A|B) = P(B|A)*P(A)/P(B)

Bayesian inference A statistical method of combining evidence according to probability theory,
based on Bayes’ rule

Bayesian networks A type of statistical model that represents variables and their dependencies
with a directed acyclic graph (DAG) that can be used to compute the probabilities of various
outcomes

Bluetooth A wireless technology standard (IEEE 802.15.1), managed by the Bluetooth Special
Interest Group, for exchanging data over short distances using short-wavelength UHF radio
waves

BSN Body sensor network (see BAN )

C4.5 An ML algorithm used to build decision trees from training data
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calibration In an indoor positioning context, refers to preparatory work necessary, such as sur-
veying a site to collect and store signal measurements, to serve as reference point for accurate
future operation

cloud In a cloud computing paradigm, devices forward data to shared, centralized storage and
compute services

complementary fusion Fusing data from different portions of a picture into a more complete
picture (for instance, temperature readings from different locations within a greenhouse in
order to better understand the temperature status of the greenhouse as a whole) [58]

cooperative localization A node localization paradigm in which nodes share information to help
each other determine their locations

cooperative fusion Fusing multiple independent sources of information into new, more complex
information (e.g., temperature combined with light yields a better understanding of overall 
growing conditions within the greenhouse) [58]

DARPA Defense Advanced Research Projects Agency

data fusion Combining multiple data sources to obtain improved information (cheaper, higher
quality, or more relevant/useful) [58]

data aggregation Combining data via summarization techniques often used to reduce redundancy
and conserve resources, such as in suppression (e.g., discarding duplicates) and packaging (i.e., 
grouping multiple observations together) [58]

dead reckoning A method of current position estimation and future position prediction based
on a previously known position and direction, the time at which it was obtained, and travel
speed over the intervening period

Dempster-Shafer theory A framework for reasoning with uncertainty involving belief and plau-
sibility

Dempster-Shafer inference A math-based belief accumulation and evidential reasoning ap-
proach based on Dempster-Shafer theory, used to fuse data from different types of sensors
without requiring a-priori probabilities

DFL Device-free localization, a method for detecting and tracking entities that are not carrying
any radio device or participating actively in the localization process, generally by using signal
perturbations from existing infrastructure, such as WiFi networks

DNN Deep neural network, a neural network with many layers between input and output (see
neural network)

DSET Dempster-Shafer evidence theory, (see Dempster-Shafer theory)

DSN Distributed sensor network, a distributed, non-centralized version of a WSN (see WSN )
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DST See Dempster-Shafer theory

DTDOA Differential time difference of arrival, a variation on TDOA (see TDOA)

DTN Delay-tolerant networks lack continuous connectivity and employ store-and-forward strate-
gies to compensate; variations in literature include opportunistic networks, disconnected mo-
bile ad hoc networks, time-varying networks, intermittently connected networks (ICNs), and
extreme networks

edge In an IoT context, edge devices are the “things” containing sensors, actuators, and communi-
cations capabilities, while the edge computing paradigm emphasizes processing data directly
on the edge devices or the devices to which they are directly attached in order to reduce
communications bandwidth to any centralized storage or compute services

fingerprinting A localization method that matches against a previously collected database of
location-dependent characteristics (e.g., RSSI values)

fixed node See anchor node

fog Fog computing, fog networking, and fogging all refer to an IoT architecture that is essentially
similar to edge computing, but in which processing may also occur slightly further away from
the edge devices, such as in an IoT gateway on the LAN

fuzzy logic An inference method of approximate reasoning, drawing imprecise conclusions from
imprecise evidence; useful in real-world situations that are difficult to model precisely such
as node positioning and navigation

Gaussian noise Statistical noise with a probability density function (PDF) equal to that of the
normal distribution (i.e., bell curve)

GPS Global positioning system, a satellite-based system that provides geolocation and time in-
formation to a GPS receiver within unobstructed line of sight of a GPS satellite

HetNet Heterogeneous network, connecting devices with different operating systems, access tech-
nologies, and/or protocols

HMM Hidden Markov model, a tool for representing probability distributions over sequences of
observations

ICN Information-centric networking, an information-centric rather than host-centric networking
paradigm that addresses intermittent connectivity (such as in DTNs) by relying on in-network
caching and replication

INS Inertial navigation system, a navigation system using a variety of self-contained sensors (such
as accelerometers, gyroscopes, and magnetometers) to continuously calculate position by dead
reckoning
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IoT Internet of Things, a network of physical devices equipped with sensors, actuators, embedded
software, and connectivity which enables them to connect and exchange data

IR Infrared radiation, a type of electromagnetic radiation with wavelengths longer than those of
visible light making it generally invisible to the human eye

Kalman filter A type of estimation algorithm used to fuse low-level redundant data and remove
outliers, useful when a linear model can describe observations over time with statistical (Gaus-
sian) noise; often used in guidance and navigation applications

KNN K-nearest neighbor, a non-parametric pattern recognition algorithm used for classification
and regression, where the input consists of the k closest training examples in the feature
space, and the output is a class determination (in the case of classification) or the property
value for the object (in the case of regression)

LAN Local area network, connects computers within a limited area (such as a building), typically
via Ethernet or WiFi

least squares A method of estimation that searches for a function that best fits a set of input
samples, most suitable when the estimated parameter does not have substantial uncertainty,
as the method is strongly affected by noise

LIDAR Light detection and ranging, a detection system that works on the principle of radar, but
uses light from a laser to measure the distance to a target by illuminating it with pulsed laser
light and measuring the reflected pulses with a sensor

linear regression A statistical method that models the relationship between two continuous quan-
titative variables

LPWA(N) Low-power, wide-area network, designed to allow long-range communications at a low
bit rate among low-power connected objects (such as battery-operated sensors)

M2M Machine-to-machine, as in communications

MANET Mobile ad hoc network (see WANET )

MAP Maximum a posteriori, a method for estimating an unknown quantity with a known prior
distribution

MBAN Medical body area network (see BAN )

MCC Mobile cloud computing (see cloud)

mesh network A network topology in which there is a high degree of connection between all
nodes and all nodes can route data, reducing dependency on any one node and increasing
robustness
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middleware In an IoT context, software that serves as an interface or bridge between the sen-
sor/device layer and the application layer, providing basic messaging, routing, and data trans-
formation services

ML Machine learning, a sub-field of AI that uses statistical techniques to automatically build and
improve models from data

MLE Maximum likelihood estimation, a method of estimating the parameters of a statistical
model, given observations

modality In the data fusion context, refers to data obtained from a sensor of a particular type
(e.g., temperature data obtained from a temperature sensor)

multilateration The process of determining the location of an object using the difference between
distances to or arrival times of signals from known reference points (such as in TDOA), based
on the intersection of hyperbolic curves and generally requiring four reference points

multimodal In the data fusion context, refers to data obtained from multiple modalities, or types
of sensors, (e.g., temperature, light, and sound), often used in cooperative fusion in order to 
gain a more complete understanding than could be obtained from one modality alone

multipath propagation A phenomenon wherein the same signals may reach a receiver via two
or more paths due to bouncing off reflective surfaces, posing significant challenges to indoor
positioning methods

neural network An ML paradigm or set of algorithms inspired by the human brain, involving
multiple layers of densely connected nodes with weighted edges through which data propagates
to eventually yield a single result

NN Neural network (see neural network)

NOI Node of interest (see target)

PAN Personal area network, connects an individual person’s electronic devices (such as laptops,
smart phones, and tablets) to each other and/or the Internet

particle filter A type of recursive, statistical signal processing (aka Sequential Monte Carlo) which
uses a genetic mutation-selection sampling approach with a set of particles (or samples),
useful in noisy systems and/or with partial observations; often used in target tracking and
node location discovery applications

PDR Pedestrian dead reckoning, dead reckoning for pedestrians (see dead reckoning)

QoS Quality of service, an indicator of network performance taking into account aspects such as
packet loss, throughput, latency, and availability

range-free localization A localization method that uses non-distance based information, such
as hop count, to infer the proximity of a node to some reference points and typically uses
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centroid calculations to estimate a node’s position, generally producing less accurate results
than range-based localization methods

range-based localization A localization method that uses timing, direction, or signal strength-
based techniques to estimate distance and calculate a node’s position using trilateration or
multilateration, generally producing more accurate results than range-free localization meth-
ods

redundant fusion Fusing multiple instances of the same type of data to increase reliability, ac-
curacy, and/or confidence (e.g., multiple temperature readings from the same location in a 
greenhouse to get a more reliable or accurate understanding of the temperature at that 
location) [58]

RF Radio frequency

RFID Radio frequency identification, a technology that uses electromagnetic fields to identify
and track passive or active electronic tags (containing information) attached to or embedded
within objects

RMSE Root-mean-square error, the standard deviation of prediction errors, a scale-dependent
measure of accuracy used to compare prediction errors within a dataset

RSS Received signal strength, a raw, power value measured in decibel-milliwatts (dBm), which
varies with distance between a transmitter and receiver

RSSI Received signal strength indicator, a unitless, relative indicator derived from raw RSS values
for which there is no standard (and therefore may vary across hardware vendors/implementations),
which, like RSS, varies with distance between a transmitter and receiver

RT Radio tomography, a recent application of tomographic techniques (imaging by sections or
sectioning through the use of any kind of penetrating wave) to radio waves, used for mapping
and localization across many radio or radar nodes

RTI Radio tomographic imaging (see RT )

sensor A device that detects and/or measures events or changes in its environment

SLAM Simultaneous localization and mapping, the problem of building a map of an unknown
environment while navigating through it and keeping track of one’s location within it

SOA Service-oriented architecture, a type of distributed software architecture wherein independent
components (services) communicate over a network to provide data or functionality to each
other

SPAN Smart phone ad hoc network, a type of MANET in which smart phones form peer-to-peer
networks leveraging their own, non-cellular communications capabilities (typically Bluetooth
or WiFi)
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SVM Support vector machine, a supervised ML method used for classification, regression and out-
lier detection, representing the training samples as points in space, mapped so that separate
categories are divided by as wide a gap as possible, and predicting the category of a new
sample based upon which side of the gap it falls

target or target node In an indoor positioning context, the node (typically mobile) for which
we seek to determine a location

TDOA Time difference of arrival, a positioning method based on the difference in propagation
time of a signal from a transmitter to multiple reference points, which requires knowing only
arrival times and not transmission time

TelosB An IEEE 802.15.4 compliant wireless sensor node based on the original open-source TelosB
platform design developed and published by the University of California, Berkeley, including
sensors that measure temperature, relative humidity, and light

TOA Time of arrival, a positioning method that uses the time taken for a signal to arrive at
receiver to calculate its distance from the transmitter, which requires knowing both the time
of transmission and receipt

triangulation The process of determining the location of an object by forming triangles to it from
at least two known references points with measured angle information

trilateration The process of determining the location of an object by measuring distances (not
angles) to at least three known reference points and using the geometry of intersecting circles,
spheres or triangles

UHF Ultra high frequency

ultrasound Sound waves with frequencies higher than those detectable by human hearing

UWB Ultra-wideband, a radio technology operational over a large portion of the radio spectrum,
using very low energy for high-bandwidth communications over short distances; tradition-
ally used in non-cooperative radar imaging, and recently used in tracking and localization
applications

VANET Vehicular ad hoc network, a MANET in the context of a vehicle (see MANET )

WANET Wireless ad hoc network, a decentralized, dynamic, wireless network in which nodes of
equal status may move around and self-organize instead of relying on fixed infrastructure

WAP Wireless access point (see AP)

WBAN Wireless body area network (see BAN )

weighted centroid A variation on the centroid localization algorithm (based on trilateration) in
which weighting factors are added in order to increase or decrease the influence of the distance
information obtained from one of the reference points
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WiFi Wireless RF technology based on the IEEE 802.11 standards for local area networking of
devices

WLAN Wireless local area network, a LAN that uses wireless communications technology

WLS Weighted least squares, a generalization of ordinary least squares (see least squares)

WMN Wireless mesh network (see mesh network)

WPAN Wireless personal area network, low-powered, short-distance (up to a few meters) PAN
using wireless network technology such as Bluetooth or Zigbee

WSN Wireless sensor network, a network of spatially dispersed sensor nodes, not limited to a
particular topology

Zigbee A specification (based on IEEE 802.15.4) for a low-power, low data rate, and close prox-
imity wireless ad hoc network (see WANET )
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[46] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and M. Nemirovsky, “Key ingredients 
in an IoT recipe: Fog computing, cloud computing, and more fog computing,” in 2014 IEEE 
19th International Workshop on Computer Aided Modeling and Design of Communication 
Links and Networks (CAMAD), pp. 325–329, 2014.

[47] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the Internet of Things realize its 
potential,” Computer, vol. 49, no. 8, pp. 112–116, 2016.

[48] M. Aazam and E. Huh, “Fog computing and smart gateway based communication for cloud of 
things,” in 2014 International Conference on Future Internet of Things and Cloud, pp. 464–
470, 2014.

[49] C. Doukas and I. Maglogiannis, “Bringing IoT and cloud computing towards pervasive health-
care,” in 2012 Sixth International Conference on Innovative Mobile and Internet Services in 
Ubiquitous Computing, pp. 922–926, 2012.

[50] S. Nastic, S. Sehic, D. Le, H. Truong, and S. Dustdar, “Provisioning software-defined IoT cloud 
systems,” in 2014 2nd International Conference on Future Internet of Things and Cloud 
(FiCloud)(FICLOUD), pp. 288–295, 2014.

[51] A. Sajid, H. Abbas, and K. Saleem, “Cloud-assisted IoT-based SCADA systems security: A 
review of the state of the art and future challenges,” IEEE Access, vol. 4, pp. 1375–1384, 
2016.

54



[52] H. Truong and S. Dustdar, “Principles for engineering IoT cloud systems,” IEEE Cloud 
Computing, vol. 2, no. 2, pp. 68–76, 2015.

[53] M. Gerla, E. Lee, G. Pau, and U. Lee, “Internet of vehicles: From intelligent grid to au-
tonomous cars and vehicular clouds,” in 2014 IEEE World Forum on Internet of Things 
(WF-IoT), pp. 241–246, 2014.

[54] J. Zhang, “Multi-source remote sensing data fusion: status and trends,” International Journal 
of Image and Data Fusion, vol. 1, no. 1, pp. 5–24, 2010.

[55] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonstationary environments: 
A survey,” IEEE Computational Intelligence Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[56] Y. Wu, E. Y. Chang, K. C.-C. Chang, and J. R. Smith, “Optimal multimodal fusion for 
multimedia data analysis,” in Proceedings of the 12th Annual ACM International 
Conference on Multimedia, MULTIMEDIA ’04, pp. 572–579, ACM, 2004.

[57] G. Deak, K. Curran, and J. Condell, “A survey of active and passive indoor localisation 
systems,” Computer Communications, vol. 35, no. 16, pp. 1939–1954, 2012.

[58] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery, “Information fusion for wireless sensor 
networks: Methods, models, and classifications,” ACM Comput. Surv., vol. 39, Sept. 2007.

[59] P. Jesus, C. Baquero, and P. S. Almeida, “A survey of distributed data aggregation algo-
rithms,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 381–404, 2015.

[60] F. Al-Doghman, Z. Chaczko, and J. Jiang, “A review of aggregation algorithms for the 
Internet of Things,” in Systems Engineering (ICSEng), 2017 25th International Conference 
on, pp. 480–487, IEEE, 2017.

[61] B. Pourghebleh and N. J. Navimipour, “Data aggregation mechanisms in the Internet of 
Things: A systematic review of the literature and recommendations for future research,” 
Journal of Network and Computer Applications, vol. 97, pp. 23–34, 2017.

[62] F. Alam, R. Mehmood, I. Katib, N. N. Albogami, and A. Albeshri, “Data fusion and IoT for 
smart ubiquitous environments: A survey,” IEEE Access, vol. 5, pp. 9533–9554, 2017.

[63] M. Alioto and M. Shahghasemi, “The Internet of Things on its edge: Trends toward its 
tipping point,” IEEE Consumer Electronics Magazine, vol. 7, no. 1, pp. 77–87, 2018.

[64] F. Javed, M. K. Afzal, M. Sharif, and B.-S. Kim, “Internet of Things (IoTs) operating systems 
support, networking technologies, applications, and challenges: A comparative review,” IEEE 
Communications Surveys & Tutorials, 2018.

[65] M. Ammar, G. Russello, and B. Crispo, “Internet of Things: A survey on the security of IoT 
frameworks,” Journal of Information Security and Applications, vol. 38, pp. 8–27, 2018.

[66] United States Government Accountability Office, “Internet of Things: Status and implications 
of an increasingly connected world.” https://www.gao.gov/assets/690/684590.pdf, 2017 
(accessed October 9, 2018).

55

https://www.gao.gov/assets/690/684590.pdf


[67] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for smart 
cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, 2014.

[68] L. Laursen, “City Saves Money, Attracts Businesses with Smart City Strategy.” https://
www.technologyreview.com/s/532511/barcelonas-smart-city-ecosystem/, November 
2014 (accessed October 1, 2018).

[69] “The Urban Internet of Things.” https://datasmart.ash.harvard.edu/news/article/
the-urban-internet-of-things-727, August 2015 (accessed October 11, 2018).

[70] A. Akbar, G. Kousiouris, H. Pervaiz, J. Sancho, P. Ta-Shma, F. Carrez, and K. Moessner, 
“Real-time probabilistic data fusion for large-scale IoT applications,” IEEE Access, vol. 6, 
pp. 10015–10027, 2018.

[71] D. Goel, S. Chaudhury, and H. Ghosh, “An IoT approach for context-aware smart traffic man-
agement using ontology,” in Proceedings of the International Conference on Web Intelligence, 
WI ’17, (New York, NY, USA), pp. 42–49, ACM, 2017.
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