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AFIT-ENG-MS-19-M-012 

 

Abstract 

 

The increasing capabilities of commercial drones have led to blossoming drone 

usage in private sector industries ranging from agriculture to mining to cinema.  

Commercial drones have made amazing improvements in flight time, flight distance, and 

payload weight.  These same features also offer a unique and unprecedented commodity 

for wireless hackers—the ability to gain ‘physical’ proximity to a target without personally 

having to be anywhere near it.  This capability is called Remote Physical Proximity 

(RPP).   

By their nature, wireless devices are largely susceptible to sniffing and injection 

attacks, but only if the attacker can interact with the device via physical proximity.  A 

properly outfitted drone can increase the attack surface with RPP (adding a range of over 

7 km using off-the-shelf drones), allowing full interactivity with wireless targets while the 

attacker can remain distant and hidden.  Combined with the novel approach of using a 

directional antenna, these drones could also provide the means to collect targeted 

geolocation information of wireless devices from long distances passively, which is of 

significant value from an offensive cyberwarfare standpoint.   

This research develops skypie, a software and hardware framework designed for 

performing remote, directional drone-based collections.  The prototype is inexpensive, 

lightweight, and totally independent of drone architecture, meaning it can be strapped to 

most medium to large commercial drones.  The prototype effectively simulates the type of 
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device that could be built by a motivated threat actor, and the development process 

evaluates strengths and shortcoming posed by these devices.   

This research also experimentally evaluates the ability of a drone-based attack 

system to track its targets by passively sniffing Wi-Fi signals from distances of 300 and 

600 meters using a directional antenna. Additionally, it identifies collection techniques and 

processing algorithms for minimizing geolocation errors.   

Results show geolocation via 802.11 emissions (Wi-Fi) using a portable directional 

antenna is possible, but difficult to achieve the accuracy that GPS delivers (errors less 

than 5 m with 95% confidence).  This research shows that geolocation predictions of a 

target cell phone acting as a Wi-Fi access point in a field from 300 m away is accurate 

within 70.1 m from 300 m away and within 76 meters from 600 m away.  Three of the 

four main tests exceed the hypothesized geolocation error of 15% of the sensor-to-target 

distance, with tests 300 m away averaging 25.5% and tests 600 m away averaging at 34%.  

Improvements in bearing prediction are needed to reduce error to more tolerable 

quantities, and this thesis discusses several recommendations to do so.  

This research ultimately assists in developing operational drone-borne cyber-attack 

and reconnaissance capabilities, identifying limitations, and enlightening the public of 

countermeasures to mitigate the privacy threats posed by the inevitable rise of the cyber-

attack drone. 
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CYBER-ATTACK DRONE PAYLOAD DEVELOPMENT  

AND  

GEOLOCATION VIA DIRECTIONAL ANTENNAE 
 

1. I.  Introduction 

1.1 Overview and Background 

The increasing capabilities of commercial drones have led to blossoming drone 

usage in private sector industries ranging from agriculture to mining to cinema [1].  

Commercial drones have made amazing improvements in flight time, flight distance, and 

payload weight.  These same features offer a unique and unprecedented commodity for 

wireless hackers—the ability to gain ‘physical’ proximity to a target without personally 

having to be anywhere near it.  This capability is called Remote Physical Proximity 

(RPP).  By their nature, wireless devices are largely susceptible to sniffing and injection 

attacks, but only if the attacker can interact with the device via physical proximity.  A 

properly outfitted drone could increase the attack surface with RPP (adding a range of 

over 7 km using off-the-shelf drones [2]), allowing full interactivity with wireless targets 

while allowing the attacker to still remain distant and hidden.  

These drones also provide the means to collect targeted geolocation information of 

wireless devices from long distances passively, which is of significant value from an 

offensive cyberwarfare standpoint.   
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1.2 Research Goals 

The goal of this work is to evaluate a drone-based attack system’s ability to track 

its targets by passively sniffing Wi-Fi signals and to develop a framework for an effective 

directional wireless ‘cyber-attack drone.’  The range and precision capabilities offered by 

the use of a directional antenna have yet to be explored.  Development of this drone helps 

determine the threats posed by the inevitable rise of the ‘cyber-attack drone’ and help 

develop countermeasures to mitigate their effects.   

1.3 Problem Statement  

This work attempts to investigate the threats, capabilities, and necessary 

mechanics of a new wireless attack vector in the form of drone-mounted wireless attack 

systems.  Evaluating the limits and capabilities of these devices is a necessary step to 

identifying what threats and privacy concerns exist.  Because few documented platforms 

exist, this research identifies limitations and capabilities from a developer’s perspective.      

This work also addresses geolocation via radiolocation.  A unique weakness of 

wireless devices is that they are forced to leak transmission data whenever they are 

communicating—to include unencrypted Link Layer data.  This information, which 

typically includes a unique identifier for each device, can be passively intercepted by an 

attacker with a nearby sensor and used to track and locate that device.   

Collecting wireless data leakage with a directional antenna on a drone allows an 

attacker adds additional layers of insulation for an attacker trying to remain undiscovered.  

The directional antenna allows the drone to be out of earshot and visual range of the 
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victim, while the drone allows the attacker to theoretically be anywhere in the world by 

communicating over a mobile broadband connection.  The stealth provided by a directional 

antenna drone is a distinct, invaluable advantage over traditional wireless wardriving and 

attack methods.  However, directional Wi-Fi geolocation has not been previously evaluated 

from long distances and presents high potential for error.  This research seeks to find 

operational parameters that, when employed by a drone-mounted wireless attack platform, 

help reduce geolocation prediction errors as well as identify ways to improve geolocation 

via directional Wi-Fi captures in the future.    

1.4 Hypotheses 

This research hypothesizes that geolocation by radiolocation of Wi-Fi signals using a 

directional antenna can be effective at up to 600 m with a prediction error below 15% of 

the distance between the sensor and Wi-Fi target device.  These predictions are calculated 

from Global Positioning System (GPS) coordinates of collection points and bearing to the 

target from the collection point.  Bearing is predicted by mapping Received Signal 

Strength Indication (RSSI) values as the antenna rotates.  Multiple geolocation predictions 

are then processed in a systematic way to provide a final coordinate prediction. 

Secondly, this research also hypothesizes that a functional prototype payload for 

conducting Computer Network Operations (CNO) can be built cheaply (less than $500), 

functionally lightweight (below 1 kg), and quickly (in less than 4 months) by a single 

motivated threat actor with the purpose of leveraging unique drone-borne capabilities.  

This threat actor is simulated by the author.   
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1.5 Approach 

An existing, stationary sensor prototype is used to manually gather bearing 

predictions via RSSI mapping from cell phones acting as Wi-Fi hotspots (the ‘targets’).  

These targets are placed at least 3 times the typical maximum range away from the sensor.  

According to the assumptions listed in Section 1.6, this means experimentation starts at 

300 m away from the targets.     

A partial-factorial experiment is run on several parameters to test their effect on 

geolocation accuracy.  This data is then be used to create geolocation predictions by 

calculating the geodesic intersection of each pair of coordinates and bearing readings.  

Patterns and parameters that statistically yield the best results or best likelihood of results 

are evaluated.    

A new prototype, designed with specifications that make it viable for flight on a 

drone and autonomous from the drone’s internal architecture is developed as a framework 

for conducting geolocation via radiolocation in addition to other advanced attack and 

intelligence gathering functions.  

1.6 Assumptions and Limitations 

This research is conducted under the following understood assumptions and limitations, 

namely: 

 Geolocation attempts are performed in an open field.  Obstructions are thus kept 

to a minimum.  While not realistic in an urban environment, this keeps 

experimental results as controlled as possible and eliminates unknown factors.    



5 

 

 

 Geolocation tests are performed from elevated but ground-based platforms (not yet 

mounted to airborne vehicles).   

 Although dependent on many variables, a typical maximum distance for consumer 

Wi-Fi devices is assumed to be 50 m indoors and 100 m outdoors, so this research 

starts experimentation at 300 m.   

 Additionally, this work limits the amount of coverage the collection device may 

encircle the target to a maximum of 90°.  This is chosen both because of space 

limitations and because smaller angles of coverage, which reduce the distance a 

drone has to fly around a target, provide more stealth (the more the drone has to 

fly, the more likely it is to be observed). 

 Electromagnetic interference created by the prototype is considered non-

destructive in the 2.4 GHz frequency range and ignored. 

 Surrounding traffic (to include Wi-Fi traffic from non-experiment devices) in the 

2.4 GHz is potentially disruptive but is considered what typical for an urban 

environment.  

 Wireless sniffing in this research is limited to Wi-Fi signals in the 2.4 GHz range.  

1.7 Contributions 

This research contributes to the body of airborne wireless attack research, 

specifically wireless network localization.  It presents empirically identified 

recommendations for improving geolocation from distances 3 to 6 times the typical 

maximum outdoor range of Wi-Fi devices.   



6 

 

 

This research also presents an improved and operational hardware prototype and 

software framework designed for remote collection and communication.  The prototype is 

ready to be extended for advanced attack and intelligence-gathering capabilities. 

1.8 Thesis Overview 

This thesis is arranged in six chapters.  Chapter 2 provides a brief background in 

drone technology, current wireless technology and security measures, an overview of 

cyberspace operations, and related research in drone usage for cyber operations.  Chapter 

3 briefly describes the design of a stationary hardware/software prototype used for bearing 

and geolocation predication.  It also presents the design details of a novel hardware 

prototype and software suite designed to demonstrate and expand the utility of drone-

borne cyber operations.  Chapter 4 describes an experiment to evaluate geolocation of 

other wireless devices using directional antennae.  Chapter 5 discusses the results of the 

experiment, while Chapter 6 summarizes the research and presents opportunities for future 

work in this field.  
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2. II. Background and Related Research 

2.1 The Scene 

 The critically-acclaimed 2007 video game Bioshock takes place in an elaborate 

pressurized city constructed at the bottom of the Atlantic Ocean.  “Rapture,” the opulent 

elusive art-deco city was intended to be an objectivism-based utopia “where the artist 

would not fear the censor…where the scientist would not be bound by petty morality,” but 

the city forged on Objectivism rapidly fell into a technologically impressive but 

nightmarish landscape [3].  Among these futuristic science-fiction curiosities are the 

monstrous lethal security drones.  These drones—which are cheap enough for personal 

use—are controlled wirelessly, capable of prolonged flights, autonomous flight and 

navigation, and carrying heavy payloads (usually guns).  The idea is unsettling: an 

autonomous highly mobile machine that acts on behalf of a warfighter.  While they serve 

to make a thought-provoking and unsettling gameplay mechanic, advanced drones 

technologies like those in Bioshock threaten to leap from the rendered screens of dystopian 

science fiction to the real world in the coming years.  

To a room full of junior officers in late 2016, US Strategic Command 

(USSTRATCOM) commander General John E. Hyten cited drones and the continued 

exponential growth in data bandwidth and computer processing power to be among some 

of the largest game-changers in warfare during the next 10 years [4].   He cautioned that 

the Department of Defense (DoD) may not be able to keep up with these rapidly growing 
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technologies, and worried adversaries would be faster to adapt items such as commercially-

available drones and repurpose them for malicious and terrorist activity.  “If you thought 

technology has come a long way in the past ten years, then you better strap in for the 

next ten.” [4] 

2.2 Overview 

 To accurately understand future drone-based threats, it is necessary to understand 

the current state of the commercial technology industry, which has been defined by a 

culture of rapid and volatile change since the beginning of the 21st century.  This research 

focuses on the evolving fields of drones and wireless technologies, with a special interest in 

where they intersect in the interests of cybersecurity.  This chapter explains the current 

state of drone usage in the military and commercial sector (Sections 2.3.2 and 2.3.3 

respectively), gives a background in wireless security protocols and current attacks against 

them (Sections 2.4 and 2.5), briefly discusses the Internet of Things (Section 2.6), 

introduces cybersecurity and warfare topics (Section 2.7), and finally explains current 

research surrounding using drones for cyberspace operations (Section 2.8).    

As shown in Figure 1, this research combines the cybersecurity aspects of wireless 

technology with the expanded attack surface presented by current consumer drone 

capabilities when targeting public and private wireless consumer technologies.  The 

intersection of these fields is the focus of this research.  More specifically, this research 

aims to understand and mitigate digital threats posed by man-portable Multirotor-UAVs 

(MUAVs) when equipped with Computer Network Attack and Exploitation (CNA & 
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CNE) capabilities via Wi-Fi.  Such understanding can lead to mitigation techniques to 

help protect privacy of wireless users and the data confidentiality of organizations using 

wireless devices on their networks.   

 

 

 Figure 1. Exploded Venn-diagram highlighting the intersection of MAUVs, Wi-Fi, and 

CNA/CNE, which is the focus of this research  

2.3 Drones 

2.3.1 Terminology 

 “Drone” is a blanket term for Unmanned Aircraft Systems (UAS) as well as 

Unmanned Arial Vehicles (UAV).  UAV refers to the aircraft vehicle alone, but the term 

has been revised to UAS so it includes the ground and communication links necessary to 

operate it.  According to United States (US) public law, a UAS is defined as an aircraft 
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that is operated without the possibility of direct human intervention from within or on 

the aircraft [5].   

Another important subcategory of drone is the multirotor, which consists of fixed-

pitch blades affixed to multiple rotors.  Flight control is maintained by varying the relative 

speed of each rotor, a scheme that is relatively easier to build and control than the 

traditional helicopter.  While finally proven to be capable of manned flight in 2011 [6], 

almost all are unmanned, controlled by a combination of onboard circuitry and a wireless 

link to a ground station.  Such devices are typically small enough to be man-portable, and 

are classified as miniature-UAVs.  Common configurations include the 4-rotor quadcopter 

and 8-rotor octocopter [7], which have enjoyed explosive growth in the commercial market 

and increasing interest in the research community.  For simplicity and consistency with 

current terminology, this thesis refers to unmanned man-portable multirotor devices and 

systems as Multirotor-UAVs or MAUVs.    

2.3.2 Military Drones 

Drones have undergone rapid development and acquisition in the government since 

the turn of the millennium.  From 2005 to 2012, the number of countries that have acquired 

drones nearly doubled according to a U.S. Government Accountability Office (GAO) 

report [8].  The GAO also states the United States government has determined drone 

development and acquisition supports national security interests. Meanwhile, terrorist 

organizations also seek to acquire drone systems for attacks and intelligence gathering 

against US interests.   
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The DoD has been fielding and testing tactical applications of miniature-UAVs 

(not to be confused with Multirotor-UAVs) at a moderate rate.  Among these technologies 

include Massachusetts Institute of Technology’s “Wide Area Surveillance Projectile,” a 

prototype drone that could be shot out of a 155-millimeter naval gun then sustain an 

independent flight of 15 minutes [9].  The project, which was developed for the US Army, 

quietly disappeared after initial announcements.   

In respect to MAUVs specifically, the DoD is also entering the arena.  In June 

2016, US Special Operations Command (SOCOM) issued a Joint Urgent Operational 

Needs Statement requesting 325 “Lethal Miniature Aerial Missile Systems” to assist and 

replace the current tactical MAUV platform, which it started using in 2013 [10] [11].  The 

request, a contract of at least $51.4 million was fulfilled within the year by the 

AeroVireonement Switchblade, capable of 100 mph speeds, 15-minute flight time, and 

delivering explosives.  For better or for worse, this technology is being embraced on all 

sides.  While visiting Mosul, Iraq, SOCOM commander General Ray Thomas witnessed 

ISIS employing modified commercial off-the-shelf quadcopters to fire 40-millimeter 

ordinances.  

At the 28th Annual Special Operations/Low-Intensity Conflict Symposium & 

Exhibition, James Gerts, Assistant Security of the Navy for Research, Development, and 

Acquisition, stated, “the threat is really changing…[with] this explosion of commercial 

technology…each individual technology path [is] on an accelerated schedule.  When you 

start stacking accelerations on top of each other, pretty soon you’ve got autonomous 
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swarms of drones with facial recognition attacking you on the battlefield. And so how do 

you get out in front of that?” [11] [12] 

2.3.3 Commercial Drones  

The commercial drone market has made astounding technological advances and 

market growth.  Previously only available to hobbyists who chose to build them, consumer 

drones have fallen into the reach of a wide consumer base. Drones are expected to rise to 

a $4.6 billion and $6.6 billion industry for the personal and commercial markets 

respectively by 2020 [13] [14].  This trend can be explained as a combination of the long-

awaited publication of actual Federal Aviation Administration (FAA) drone policy, a 

highly competitive market, and important technological advances, the first being 

miniaturized fixed-wing multirotor control around 2005 [15].  High-density lithium-

polymer batteries, miniaturized actuators and sensors, and brushless electric motors are 

important components that have been vital for the success of the commercial drone.  

Finally, the smartphone revolution, which lowered the cost and size of components such 

as mobile processors, camera sensors, and Wi-Fi chips made an inevitable perfect storm 

that launched drone technology.   

Table 1 illustrates some current specification of drones on the consumer market in 

2018.  Notably, it demonstrates that for less than $1,000, several different models can 

easily fly over twenty minutes and cover over two miles.  This growth of capability is 

remarkable considering the personal drone barely existed pre-2012. 
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Table 1. Specifications of Popular Consumer Drones in 2018 [2] 

Model Manu-

facturer 

Camera 

(MP) 

Maximum 

Flight Time 

(minutes) 

Maximum 

Flight 

Distance 

(miles) 

Maximum 

Horizontal 

Speed 

(mph) 

Weight 

(grams) 

Price 

Phantom 3 Pro DJI 12 23 3.1 38.5 1280 $800  

Phantom 4 

Advanced 

DJI 20 30 4.3 45 1370 $1,200  

Phantom 4 Pro DJI 20 30 4.3 45 1390 $1,400  

Inspire 1 Pro DJI 16 15 3.1 40 3500 $3,000  

Inspire 2 DJI 20 27 4.3 58 4000 $4,900  

Spark DJI 12 16 1.2 31 300 $550  

Mavic Pro DJI 12 27 4.3 40 730 $700  

Mavic Air DJI 12 21 2.4 42 430 $800  

Bebop 2 Power Parrot 14 30 1.2 40 525 $600  

X-star Premium Autel 12 25 1.2 35 1600 $1,600  

Breeze Yuneec 16 12 0.1 11 350 $180  

Typhoon H Pro Yuneec 12 22  1 30 1695 $1,000  

H920 Plus Yuneec 16 24 1 25 4990 $2,800  

H520 Yuneec 20 28 1 38 1633 $3,000  

 

With the commercial-off-the-shelf “hobby” drone approaching single flight times of 

30 minutes, horizontal speeds of over 50 mph, and flight ranges of over 4 miles, the 

applications reach beyond entertainment and into the realm of commercial utility.  Drones 

are increasingly employed in the construction, agriculture, insurance, oil refining, police, 

fire and rescue, journalism, real estate, utility, and cinema industries [18].  While the 

applications vary, so far, the primary usage of drones in these industries derives from some 

type of data collection (video feed, pipeline surveillance, capturing sensor data, monitoring 

pipelines, etc.) [16].  Drones used for data collection typically require little modification 

from their out-of-the-box configuration to achieve their goals. 
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Tech companies have initiated plans for drones that go beyond data collection, 

such as Amazon’s exploration into drone-based delivery or Facebook and Google X’s 

attempt to use drone to deliver Internet connectivity, but the success and sustainment of 

those projects has yet to be evaluated [17]. 

2.3.4 Academic Interest 

Multirotor copters have also been a popular topic in the academic community, with 

282 IEEE publications between 2015 and 2018 using the keyword “multirotor.”  Such 

papers include enhancements such as infrared assisted landing [18], computationally-

efficient trajectory generation [19], video stabilization [20], automated battery swapping 

[21], and multi-sensor navigation in GPS denied environments [22].  Figure 2 show numbers 

of UAV papers identified from the top eight journals/conferences over the years 2001–

2016.  The points have been interpolated with an exponential curve [23]. 

 

Figure 2.  Number of UAV papers published from the top eight journals/conferences [23] 
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It can be expected, due to consumer and academic interest, that drone capabilities 

will continue to increase in terms of autonomy, sensor accuracy, flight control, range and 

flight time, resiliency, and onboard artificial intelligence.     

2.4 Wireless Technologies 

 This section discusses technical aspects of widely used wireless technologies that 

are deployed on devices ranging from routers, smartphones, drones, and other consumer 

and retail devices.  The most applicable to this research is Wi-Fi. 

2.4.1 Wi-Fi 

 Wi-Fi is a popular and widely used physical and link layer specification defined by 

the IEEE 802.11 (hereafter referred to as 802.11) standard [24].  The architecture is 

comprised of four major physical components: (i) access points (APs), (ii) wireless medium, 

(iii) stations (devices), and (iv) distribution systems (i.e., router) [25].  The wireless 

medium is the electromagnetic spectrum allocated in the 2.4 and 5.8 GHz radio bands, 

which are subdivided into different frequency channels.  Client devices poll different 

channels to find APs and attempt to make connections.  APs are typically assigned a 

service set identifier (SSID) to identify them locally.  Devices wishing to connect to the 

system must first authenticate if the system has security enabled and then associate. 

2.5 Wi-Fi Security Protocols & Attacks 

The next section presents security protocols implemented for Wi-Fi, known attacks against 

them, and how the attacks can be augmented with the assistance of a drone. 
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2.5.1 Open Configuration 

 An “open” AP is one that has no encryption or authentication mechanism in place.  

As a result, traffic to and from open APs are susceptible to eavesdropping and injection 

attacks if not encrypted by a high-layer mechanism such as Hyper Text Transfer Protocol 

Secure (HTTPS).  They are also much easier for an attacker to spoof (digitally masquerade 

as someone else for illegitimate gain), which can lead to Man-in-the-Middle attacks. 

 Despite the insecurity, open APs are common in areas that offer public Wi-Fi.  

Out of user convenience, many contemporary smartphones probe for all Wi-Fi APs they 

have connected to in the past using a special broadcast called a ‘Probe Request,’ 

unintentionally leaking the SSID of every network the phone has ever connected to.  A 

list of previous associations can also be used to help uniquely profile a device.  Connection 

authentication only requires the SSID to match, so an unassociated smartphone 

automatically attempts to connect to any AP with a previously associated SSID, even if 

the AP illegitimate.   

For quality of service, if multiple APs of the same SSID are within range, a Wi-Fi 

client chooses to associate with the stronger signal.  An attacker can deauthenticate the 

connection using a special 802.11 packet sent to the client.  Then, the target device 

attempts to reconnect to the AP of the corresponding SSID with the strongest signal.  For 

open APs, this presents a vulnerability because an attacker can take control of the new 

session if they set up an “evil twin” (a spoofed AP with the same SSID) that is closer or 

has a stronger antenna than the legitimate one [26].  An evil twin attack is one that can 
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be easily done with a drone, as drones can carry equipment capable of spoofing APs and 

have mobility to attain proximity to deliver a strong signal to a given target. 

2.5.2 WEP 

 The Wired Equivalency Privacy (WEP) was the first security algorithm for 802.11, 

utilizing the Rivest Cipher 4 (RC4) stream cipher for encryption, the Cyclic Redundancy 

Check 32-bit (CRC-32) checksum for integrity, and secured by a 10 or 26 hexadecimal 

key.  Initially designed to provide the confidentiality of a wired network, an 

implementation flaw was demonstrated in 2001 that allows the key to be cracked with 

cipher-text alone [27].  Because RC4 is a stream cipher, it is important to prevent an 

identical message traffic key from being generated. An initial vector (IV) field is usually 

supplied to prevent such repetition, however WEP uses an IV that is only 24 bits long.  

According to the famous birthday paradox, of the 16.7 million possible IVs, a repeat can 

be expected with a 50% probability after 5,000 frames. With 99% confidence, a repeat 

happens after 12,400 frames.  Since IVs are passed plaintext, it is easy for an attacker to 

know when this has occurred.   

 Improvements to the attack, such as simulated packet replay to increase traffic 

and speed up the attack and open-source hacker tools such as aircrack-ng soon showed 

that WEP could be cracked within minutes.  Now depreciated, WEP usage has dropped 

from its peak of 45% in 2010 to 7% in 2018 [28].   
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2.5.3 WPA 

 While Wi-Fi Protected Access II (WPA2) was the recommended solution to WEP, 

Wi-Fi Protected Access (WPA) was designed to be an intermediate solution for hardware 

that could not support WPA2.  Utilizing the Temporal Key Integrity Protocol (TKIP), a 

new 128-bit key is generated for each packet, making WPA resilient to IV attacks that 

compromised WEP.     

 Both WPA and WPA2 (discussed next) offer two versions tailored to different end-

user architectures: WPA-PSK and WPA-Enterprise.  WPA-PSK, or WPA-Personal, is 

designed for home and small office use where clients authenticate with a pre-shared key 

(PSK), typically in the form of an 8-63 ASCII passphrase [24].  WPA-Enterprise is also 

known as WPA-802.1X and requires an authentication server to be on the network.   

2.5.4 WPA2 

IEEE 802.11i-2004 is an amendment to the original standard that introduced Wi-

Fi Protected Access II (WPA2), the replacement for the broken Wired Equivalent Privacy 

(WEP) and deprecated Wi-Fi Protected Access (WPA) [29].  Using the PSK or 

authentication server parameters, WPA2 devices generate a Pairwise Master Key (PMK) 

using a cryptographic hash function to secure communication.  The PMK itself is never 

sent over the wire yet can still be verified by both sides to provide secure authentication.  

A temporary key called the Pairwise Transient Key (PTK) is generated from the PMK 

for each connection.   
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 WPA2 utilizes the Extensible Authentication Protocol (EAP) over LAN (EAPOL) 

four-way handshake between the AP and client during authentication.  Figure 3 depicts 

the handshake, with the AP on the right and the client station on the left:   

 The AP first sends a one-time use, random 256-bit value called the “ANonce,” (‘A’ 

for AP)  

 The client responds with its own 256-bit random “SNonce,” (‘S’ for station) along 

with a Message Integrity Code (MIC).  The client can now derive the PTK from 

nonce values and the two parties’ Media Access Layer (MAC) addresses. 

 The AP can use the ANonce, SNonce to derive the PTK as well.  It verifies the 

MIC.  If successful, it sends over other connection parameters, to include the Group 

Transfer Key (GTK). 

 The station verifies the MIC to ensure the AP has the correct PTK.  It sends back 

an ACK and a data connection can begin. 

This handshake scheme is unique in that it allows both parties to independently 

prove to each other they both know the correct PMK without ever actually transmitting 

it.    While the details are beyond the scope of this research, it is important to know that 

the authentication is possible because both parties send specific messages encrypted by 

the independently generated PMK.  If both devices can decrypt each other’s message and 

get the expected plaintext, then a secure session can begin.  
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Figure 3. WPA2 four-way handshake.  On the left is the Station (STA) and the right is the 

Access Point (AP) 

Among other implementation changes, WPA2 utilizes the Advanced Encryption 

Standard (AES) block cipher instead of the RC4 stream cipher, which increases cryptologic 

diffusion.  

2.5.5 WPA and WPA2 Brute Force Attacks 

WPA-PSK and WPA2-PSK are considerably more difficult to compromise than 

WEP, but they are still susceptible to brute-force or dictionary-building attacks [29].  Here, 

an attacker must try a potential passphrase, calculate the message authenticity check in 

the same way a legitimate device does, then verify if the password is correct.  For WPA 

and WPA2, parameters that are used in the computation must first be acquired by 

capturing an initial handshake of a legitimate party.  For WPA2, the EAPOL four-way 
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handshake messages depicted in Figure 3 contain all the information that is needed to 

verify if a passphrase is correct.  After sniffing a single legitimate handshake, the attacker 

is free to passively test as many guesses as desired.  This can be done without further 

interacting with the network until the correct passphrase is found.   

WPA and WPA2 have security measures to make this attack less effective.  When 

using the PSK method, a 256-bit shared encryption key is created for the AP.  This is 

done by concatenating the passphrase, SSID, and length of the SSID string, hashing them 

4,096 times using HMAC-SHA1, then feeding the result into an RSA key derivation 

function.  Devices then encrypt their sessions with a 128-bit key derived from it. 

The purpose of hashing 4,096 times is to slow down the speed of an attacker 

attempting to brute-force guess the passphrase.  An attacker must perform 4,096 hashes 

for each guess, adding computational complexity required for each guess.  Since the SSID 

is used as a salt to the passphrase, encryption key pairs are unique to the SSID.  Thus, an 

attacker cannot build a universal pre-built table of passwords and their corresponding 

encryptions keys (known as a rainbow table).  Each table is only relevant to a specific 

SSID.  Still, analysis of worldwide deployments shows that the 100 most common SSIDs 

compose 11.97% of all APs worldwide [28], so some pre-computed tables have generalized 

usefulness.  Using a valid rainbow table allows an attacker to search if a given AP uses 

any of the precomputed passwords in linear time.  The tradeoff with rainbow tables is the 

extreme memory space required to store them as well as the time required to compute 

them in the first place.  Pre-computed rainbow tables for the top 1000 SSIDs and common 

passwords are available online [30].    
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2.5.6 WPA3 

 First announced in January 2018, WPA3 offers security upgrades, such as updating 

the handshake to make password brute-forcing more difficult.  Since the market share that 

implements WPA3 is less than 1% [28], this research does not further investigate WPA3.    

2.6 IoT  

 Conceptually, the Internet of Things (IoT) can be summarized as the combination 

of humans, dedicated physical devices, and Internet connectivity [31].  With an emphasis 

on sensors, controllers, actuators connected to the Internet, IoT continues to increase the 

physical influence cyberspace has on the “real world,” further empowering the cyber 

domain.  While this adds benefits in the form of convenience and automation for 

consumers, it also increases the risk for data leakage, compromise, privacy violations, and 

kinetic attacks enabled by cyber-attack [31].  Additionally, as the emerging market is fast-

paced and full of competition, cybersecurity mechanisms are typically an afterthought.  

One would expect IoT locks to be reasonably secure, yet Rose demonstrated in 2016 that 

12 out of 16 Bluetooth Low Energy locks could be compromised [32]. 

 Regardless of the consequences, even conservative estimates of IoT devices projects 

a number over 10 billion by 2020 [31].  With heavy integration into homes and businesses 

(appliances, sensors, personal devices, cameras, smart hubs), it is vital to understand the 

cyber and wireless-related risks of employing IoT devices.   
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2.7 Cybersecurity and Information Warfare 

  In 2001 Secretary of Defense Robert M. Gates stated, “cyberspace and its associated 

technologies offer unprecedented opportunities to the US and are vital to our Nation’s 

security, and by extension, to all aspects of military operations.”  [33] Increasingly, the 

information domain has played a larger role in US warfare.  “Hacking,” a fuzzy term usually 

referring to gaining unauthorized access to electronic information systems, has gone from 

a fringe hobby to a formalized profession.  Such expertise is leveraged offensively, 

defensively, and passively.  Different groups have different terms for each of these types 

of activity. 

Joint Publication 3-12 defines Cyberspace Operations (CO) as comprised of 

Offensive Cyberspace Operations (OCO) and Defensive Cyberspace Operations (DCO) 

[33].  OCO is analogous to cyber-attack (a projection of force through cyberspace), and 

DCO is defensive or mitigation actions to prevent or recover from a cyber-attack.   The 

terms OCO and Computer Network Attack (CNA) are interchangeable.  Computer 

Network Exploitation (CNE) is a term used to describe digital exploitation, monitoring, 

and data collection used for the purpose of intelligence gathering with no projection of 

force.  Sometimes intelligence gained from CNE can assist OCO, however in the context 

of US operations, the two operate under different legal authorities.   

As hacking has matured, so have the tactics, techniques, procedures, and 

terminology [26].  Though variations exist, a common methodology is largely recognized 

for the attack process that is depicted in Table 2. 
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Table 2. Hacker Methodology 

Reconnaissance 

Scanning / Enumeration 

Gaining Access 

Privilege Escalation / 

Pivoting 

Maintaining Access 

Covering Tracks 

 

Of the steps in the methodology, drones can provide a distinct advantage in the 

first three steps: Reconnaissance, Scanning/Enumeration, and Gaining Access.  

Reconnaissance is passive information gathering of a target.  It is a systematic 

attempt to identify, locate, and collect information.  The more that is known about a 

target, the easier Gaining Access is.  Drones also have the advantage of mobility and 

geographic awareness, allowing the ability to add geographic data (latitude, longitude, 

altitude, etc.) to information collected. 

  The next phase, Scanning and Enumeration, is an active attempt to interact with 

a computer system to elicit a response.  It is used to identify relevant technical information 

about a system for the purpose of gaining access.  This includes identifying open ports, 

applications, services, operating systems, vulnerabilities, and security measures.  When 

enough information is gathered, an actual attempt to gain access can be made based on 

known attack vectors.  This can be accomplished in many ways, to include exploitation, 

social engineering, or password cracking [26].   

There are many possibilities in the Scanning/Enumeration and Gaining Access 

phases that an attacker could benefit from by using drone technology. A drone with a 
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properly equipped Wireless Network Interface Card (WNIC) can surreptitiously allow an 

attacker to capture and interact with wireless traffic as if they are physically close (also 

called Remote Physical Proximity).   

Privilege escalation involves taking steps to acquire higher levels of access beyond 

the level in which they first gain access, while maintaining access consists of attaining 

more persistent, simpler, or redundant methods of control from the original entry vector.  

Covering tracks consists of taking steps to prevent discovery by legitimate users and 

administrators. 

2.8 Related Research 

This section investigates developments and research that employ drones for collecting or 

interacting with wireless networks.  Research about augmentations that could increase the 

drone hacking capabilities are also presented.   

2.8.1 Wireless-Sensing Drones 

 Some drones may be configured to have the capability to detect and monitor 

wireless traffic.  These can be used to target specific wireless protocols, such as Wi-Fi, 

Bluetooth, or Global System for Mobile communications (GSM).  The existence of drones 

designed for such a purpose are rare but do exist.  For instance, in 2015 a modified DJI 

Phantom was used over Los Angeles by the marketing company Adnear (now renamed to 

Near) to collect unique device identification data from Wi-Fi connections for the purpose 

creating targeted advertisements [34]. 
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Wi-Fi devices use a Wireless Network Interface Controller (WNIC) to collect 

wireless traffic.  WNICs are capable of up to three modes: managed, promiscuous, and 

monitor mode.  In normal circumstances, the WNIC is set to managed mode, which means 

the card checks incoming frames for the intended destination address.  A “frame” is the 

name for a data-link layer message, often containing a packet of information.  If the 

destination field matches the device’s globally unique Media Access Control (MAC) 

address, the wireless card continues to process the packet and move it up the network 

stack.  However, if the MAC does not match, the frame is dropped if the card is in managed 

mode.  If a card is set to monitor mode, it processes and stores all intelligible frames, 

regardless if it is for the intended destination [22].  This allows the device to “sniff” all the 

traffic in the air around it.  This includes connection attempts, unique MAC addresses, 

connection information, SSID broadcasts, and other significant data about local users [24].   

The extent to which an entity processes and uses this data may be of interest for 

privacy advocates.  In the case of the Adnear drone, information was correlated to assist 

in location-based advertisement targeting.  The potential possibilities of what can be done 

with similar data is discussed in the next section.  These collections may be done with 

stationary wireless devices, however a drone equipped for a similar task can cover a larger 

geographic area and integrate location data.  As current FAA regulations are safety-

focused and not privacy-focused, there are few checks on these drone capabilities. 
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2.8.2 Identification from Location 

According to a report by Massachusetts Institute of Technology researchers, 

“uniqueness of human mobility traces is high”—that is, using even course data sets and 

minimal samples, it is fairly easily to identify a user by their distinct but predictable 

physical location data [35].  Since smartphones and other personal devices often beacon 

frames with a static MAC address, it is easy to passively collect unique location 

information.  Mounting that capability on a drone makes the attack even more powerful 

to do with drones.  The report found that any cellphone user can be uniquely identified 

with 95% confidence if given just four location data points.  With eleven data points, the 

researchers were able to identify all 1.5 million cell users in an undisclosed “small European 

country.”  The dataset was not particularly extensive or complex, consisting of a list of 

users tagged by their closest cellphone tower once an hour.   

2.8.3 Proof of Concept: Drones That Can Hack 

 While much academic focus and articles exist for hacking drones (where the drone 

is the target) [36], there are only a few examples of developing drones that hack (where 

the drone is the attacker).  However, a few examples exist. 

 A proof-of-concept fixed wing drone running the Backtrack 4 operating system was 

developed by two security researchers in 2011.  The drone weighed 13 pounds and could 

allegedly intercept phone calls by mimicking a cell phone tower, among other capabilities 

[37].  
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 Shown in Figure 4, a rudimentary proof-of-concept hacking MUAV was 

demonstrated in 2015 using DJI Phantom 2 Vision+ with a Raspberry Pi and 

omnidirectional antenna [38].  The total cost was roughly $1,200.  The drone achieves 

communication with the hacker via a 3G dongle and was demonstrated as connecting to 

an open AP then performing arbitrary remote code execution on a demo Windows XP 

machine using the classic MS-08-067 “netapi” exploit.  “Snoopy,” a component referenced 

in the figure, is a distributed tracking and profiling framework for wireless devices 

developed by Sensepost, a consulting arm of Europe’s SecureData, perhaps one of the most 

sophisticated frameworks publicly available in this field [39].  The “802.11 mini card” in 

the figure enables a Wi-Fi link between the Alfa wireless card and the 3G dongle, many 

of which provide connectivity through a mini-hotspot.  
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 Figure 4. DJI Phantom 2 Vision+ with an omnidirectional antenna payload (above) and 

accompanying component schematic (below) [38]  

 Perhaps the most sophisticated publicly recognized hacking drone, the “Danger 

Drone” is a prototype consisting of a Raspberry Pi on a custom drone created by two 

researchers from Bishop Fox in 2016, presenting at the popular hacker DEFCON and 
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Black Hack conferences in 2017 [40].  Hacking capabilities are established through the 

Raspberry Pi’s WNIC.  The drone has a 1.2-mile range and reportedly can use a cellphone 

module for control over a cellular Long-Term Evolution (LTE) connection.  The total cost 

of parts is listed at just below $500.  The drone was presented as a penetration test tool 

to measure the effectiveness of drone defense deployments. 

2.8.4 Directional Antenna  

 A directional antenna offers a unique advantage over the more commonplace 

omnidirectional antennas in that they can offer a larger sensing range.  Because they also 

have a limited bearing, a rotating antenna can determine the relative angle at which a 

target signal is strongest.  Law demonstrated a median bearing accuracy of 9° using a Yagi 

directional antenna connected to a stepper motor and Raspberry Pi [41].  With multiple 

data points at multiple different locations, bearing and signal strength could be used to 

triangulate the actual position of a target.   

2.8.5 Data Leakage 

 After capturing Wi-Fi and Bluetooth Low Energy (BLE) frames of a smart home 

in 2018, Beyer created a program that can correctly classify devices with a 94% accuracy 

for Wi-Fi and a 75% success rate for BLE [42].  On average, the research demonstrated a 

95% accuracy at detecting events such as a door opening or camera detecting motion.  

This was done even when the connections were encrypted—the data was derived purely 

from low-layer headers and other traffic properties such as frame size and rate.  The 
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researcher further correlated the events to accurately assess pattern-of-life information 

about the human user’s daily schedule.   

A similar mechanism can easily be employed on a drone to track pattern-of-life 

information of users and devices in a much larger geographic radius.  If combined with a 

directional antenna, this could be done covertly by being multiple times away from the 

standard maximum range of 100 meters.    

2.9 Background Summary 

 This chapter provides a brief summary of current military drone and commercial 

drone usage and capabilities.  Wireless technology with an emphasis on Wi-Fi is discussed, 

along with associated security protocols and known attacks.  The growing cyber-physical 

crossover caused by the rise Internet of Things (IoT) is explored.  A primer on Cyberspace 

Operations and the role drones offer to enhance cyber-attack capabilities are explored, 

followed by developments and research areas that demonstrate drones currently 

participating in a similar capacity.  This research contributes to the areas of drones, 

wireless technology, and cybersecurity.    
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3. III. Prototype Design 

3.1 Overview 

This research presents and analyzes data obtained from two different hardware and 

software prototypes:  

localizer – a stationary, rotating directional Wi-Fi collection device.  The antenna 

is rotated by a stepper motor and controlled by code written in Python.   This is the same 

device and software used in Law’s thesis on “Passive Radiolocation of IEEE 802.11 

Emitters Using Directional Antennae” [41].    

This research builds on Law’s previous work by investigating the collection device’s 

viability at geolocation and bearing prediction accuracy at further distances.  While 

equipped with a GPS module, localizer framework cannot determine compass bearing 

on its own and needs to be calibrated each time it is moved. 

skypie – a lightweight, directional Wi-Fi collection device developed during this 

research.  This prototype is the next iteration of localizer, with a focus on being viable 

for drone operations.  Pilot tests indicated that using a stepper motor like that in 

localizer is excessively heavy and would make onboard compass readings 

unpredictable, so the antenna is fixed.  Mobility and rotation will be accomplished through 

the rotation of the drone. 

The skypie sensor payload is equipped with its own GPS and accelerometer, offering 

complete independence from the drone’s control architecture.  The sensor can operate 

either autonomously or be controlled via configuration and commands sent over a 3G/4G 
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link.   The codebase, written in Python, also contains skyport, a Python-based set of 

web applications that can process and analyze data from multiple sensors and provides a 

Graphical User Interface (GUI) for interacting and controlling skypie sensors.   

 The localizer prototype is shown in Figure 5 and described in Section 3.2.1, 

and the skypie prototype is shown in Figure 6.  Figure 7 depicts an ‘exploded’ version 

of the skypie hardware components for ease of viewing, which are described in Section 

3.4.   

 

 

Figure 5. localizer prototype
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Figure 6. skypie sensor prototype
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Figure 7. Hardware components presented in an ‘exploded’ fashion for ease of viewing
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3.2 System Summary 

3.2.1 localizer Summary 

As shown in Figure 5,  the localizer prototype consists for a Yagi antenna and signal 

receiver mounted to a rod spun by a high-precision stepper motor.   The stepper motor is 

powered by a 13 V DC power supply.  Movement is managed by a stepper motor driver 

which is controlled by a Raspberry Pi via the General Input and Output (GPIO) pins, 

connected via the ribbon cable and breadboard.  The Raspberry Pi is running the Raspbian 

Operating System (OS) powered by a separate Universal Serial Bus (USB) battery.  Using 

an Ethernet cable, a user can connect to the Pi over Secure Shell (SSH) and initiate the 

localizer Python program, which performs packet and GPS captures.  The Wi-Fi signal 

receiver and GPS module are used to digitize and analyze Wi-Fi packets and GPS signals.  

Figure 8 displays the prototype schematic of localizer.   

For the standard use case, localizer takes in capture parameters such as sweep 

duration and angle.  It uses multithreading to simultaneously start a packet capture, 

capture data from the GPS module, and spin the antenna.  Upon completion, it processes 

each SSID beacon packet it sees, mapping the RSSI values over the time of the capture.  

It then returns the compass bearing at which it interpolated the highest RSSI value for 

each SSID using a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) 

interpolation algorithm.  Because of size and weight additions necessary for the stepper 

motor (to include the stepper motor driver and 13V power source), the device is prohibited 

from practical used on a commercial MUAV.
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Figure 8. localizer prototype schematic [41]
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3.2.2 skypie System Summary 

 Figure 9 displays a high-level summary of the skypie/skyport system design, 

which is described in this section.  Components outlined in solid blue are a part of the “kill 

chain” but not inside the system design.  Components outlined in a dashed blue line are 

part of the system design but are not within the scope of this research.   

The system is divided into two major components: the remote sensor (skypie 

payload) mounted to an MUAV, and the attacker’s workstation, which runs skyport to 

analyze sensor data and control remote sensor behavior.  Each skypie payload has sensors 

for collection, data files, and a communication mechanism for uploading and downloading 

data.  Data is exfiltrated over a cellular or Wi-Fi link to the Internet, with an Internet-

facing server acting as intermediary.  The attacker downloads raw data files to their 

workstation with the skyport software, which runs analysis and correlation algorithms.  

Results are displayed in a web application (web app).  Results such as geolocation history 

and geolocation prediction are available to view over satellite imagery.   

A typical use case is for a cyber attacker to deploy the sensor payload, amiably 

named a skypie, by mounting it underneath a medium to large MUAV.  As the drone 

operator (who may or may not be the cyber attacker) flies the drone, the sensor captures 

Wi-Fi traffic as PCAP files in monitor mode.  It also records GPS data (location, speed, 

angle, etc.) and magnetic compass bearing.  New data files are then uploaded via either a 

cellular network connection from a USB modem, a separate Wi-Fi connection, or are stored 
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locally until a connection becomes available.  Files are uploaded securely to an Internet-

facing Secure File Transfer Protocol (SFTP) server.  Each distinct sensor logs into a 

directory assigned to it with a unique password.   

The cyber attacker can then use the skyport software.  With the ‘master’ SFTP 

credentials, skyport downloads data from each sensor and execute analysis algorithms 

on new data, such as geolocation prediction.  The cyber attacker can view the drone’s 

location history, configuration parameters, and analysis findings via a user-friendly web 

app hosted locally on their machine.  The web app overlays telemetry information over 

satellite imagery to assist in CNA/CNE operations.  

Note the attacker’s workstation never directly contacts the remote sensors, and 

additional steps can be taken to obscure attribution so the attacker can remain 

anonymous.   

The cyber attacker can remotely change many of the sensor’s collection parameters, 

such as adding a Wireshark filter to Wi-Fi collection (to target specific traffic or save 

space), modify storage buffer sizes, toggle collection modes, alter upload and download 

intervals, and put the sensor into a ‘sleep’ mode, to name a few options.  The cyber 

attacker can also send shell commands and scripts to be executed on the sensor even if the 

sensor is currently offline.   These activities can be accomplished in the web app’s graphical 

User Interface (UI), or via modifying text-based configuration files that are uploaded to 

the SFTP server.  The next time the sensor checks in, it sees new requests and executes 

them.  Remote logs and command output are downloaded and available for viewing in the 

same fashion.   
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Extended uses for the skypie/skyport framework are explored in Chapter 6.   
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Figure 9. skypie/skyport system design 
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3.3 Design Goals 

3.3.1 localizer Design Goals 

According to Law [41], design goals for the localizer prototype are as follows: 

i. Low Cost. A significant consideration for this research is the potential for low-cost 

applications. Prototype hardware is limited to commercial commodity hardware, 

and selection of the software framework and any libraries imported into the 

software project is limited to free open source software. 

ii. Low Weight.  This research intends to explore ways to quickly and accurately 

locate distant Wi-Fi access points from a UAV platform. Prototype hardware is 

selected that mimics the capabilities of a drone platform, namely low weight and 

antenna rotation control. Maximum prototype payload capacity is limited to 500 g, 

a reasonable payload for medium to large consumer UAVs [43]. 

3.3.2 skypie Design Goals 

The prototype introduced by this paper is built upon the following design goals: 

A  Low Cost.  Similar to localizer, skypie is developed with a target cost lower 

than $500 to represent the capabilities that can be attained from motivated but 

poorly resourced attacker.  Note these costs do not include the drone itself. 

B  Realistic Utility and Robustness.  This goal stresses the applicability for realistic 

CNA/CNE drone-based operations.  It has several implications: 
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i. Sensor should operate autonomously or be able to be controlled remotely 

over a secure wireless channel.  If communications are interrupted, they 

resume when available.   

ii. Sensor should be capable of near-real time data feedback and control. 

iii. Sensor should be able to operate and collect for multiple hours.  This 

includes sufficient battery life during collection and local storage capacity.  

C  Drone Architecture Portability.  Appliance should not be dependent on any other 

feature of the drone other than its capability to strap it on and carry it.  This 

means the payload must have its own GPS module, accelerometer, and means for 

wireless command and control (C2) reachback to the attacker.   This design goal 

causes important hardware and software changes to the design from the 

localizer prototype.  The advantage of drone architecture independence is 

interoperability with any drone capable of carrying the weight.  This is preferable 

because a payload using onboard drone features is likely be confined to one type 

of drone or control protocol, causing the device to have a higher chance of becoming 

outdated.  

D  Low Weight.  Where the localizer design assumes telemetry and 

communication functions are to be performed by the attached drone, in accordance 

with Design Goal C, skypie requires additional components to give it 

independence from the drone.  A 2017 review of commercial drones payload 

capabilities reveals that payloads up to 1 kg are supported by many medium to 
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large consumer drones, with higher end drones capable of up to 9 kg [44].  

Maximum prototype weight is limited to 1 kg in this research.  

3.4 skypie Hardware Design 

Hardware components are chosen carefully to meet the design goals.  Table 3 depicts 

a chart of all major hardware components, the specific models used, weight, and price at 

time of writing.  Figure 10 shows a detailed schematic of how the hardware components 

are connected to each other.  

 

Figure 10. skypie payload hardware schematic  

 Wi-Fi Antenna.  While there are many directional antennas, the Danets USB-

Yagi TurboTenna antenna is chosen because of its small size (31.5 cm in length), 

low weight (137 g), inexpensive price, and commercial availability.  The cross 

section is small, which is beneficial for MUAV flight in windy environments.  The  
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Table 3. Prototype Hardware Overview 

Item Model / Version Weight (g) Price 

Wi-Fi Antenna Danets USB-Yagi TurboTenna 137 $113  

Wi-Fi Signal 

Receiver USB WiFi Interface - DNX10NH-HP* 35 N/A 

Computer Raspberry Pi 3 Model B+ V1.2 68 $35  

Digital Storage 16 GB SanDisk Ultra microDSCH UHS-1 1.7 $8  

Microcontroller Adafruit Metro 328** 16.5 $18  

GPS External  

Antenna 

Passive GPS Antenna uFL - 15mm x 15mm 

1 dBi gain 5.5 $4  

GPS 

Adafruit Ultimate GPS Breakout - 66 

channel w/10 Hz updates - V3 8.5 $40  

Accelerometer 

Adafruit Triple-axis 

Accelerometer+Magnetometer (Compass) 

Board - LSM303 2 $15  

Power Supply 

Aibocn Power Bank 10,000 mAh External 

Battery Charger 247 $12  

Reachback 

Communication 

Unlocked Modem USB 4G LTE Huawei 

E397u-53 (T-Mobile, US only)*** 51 $25  

Optional Sensors Raspberry Pi Sense HAT 20.4 $38  

Structure 3D printed casing 52 $2  

Structure Mini-breadboard 13 $2  

Miscellaneous 

Components 

Screws, bolts, wiring, headers, USB cables, 

soldering 36 $16  

Total  (without Power Supply) 447 $316  

Total  (with Power Supply) 693 $328  

*Price included with antenna   

**Metro 328 can be replaced with Adafruit Metro Mini (3 g, $12).  The full size is chosen for 

developmental accessibility only. 

***Usage of the 3G/4G modem is not in the scope of this research  
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high-power beam width is approximately 56° with a gain of 18 dBi [45].  The 

antenna functions in the 2.4 GHz band.  

 Wi-Fi Signal Receiver.  The DNX10NH-HP USB Wi-Fi network interface comes 

packaged with the Yagi TurboTenna and reliably works out of the box with the 

Raspbian OS.  It compares well to the popular Alfa AWUS036H USB wireless 

adapter commonly used for wireless cyberspace operations [41]. 

 Computer.  The Raspberry Pi 3 Model B+ is an opportune platform for this 

application because of its low price point ($35), low weight (45 g), sophisticated 

features, and supported ecosystem.  The abundance of USB ports and GPIO pins 

make it flexible for adding additional sensors.   

 Microcontroller.  While the Raspberry Pi functions as a full operating system, it 

does not offer real-time support for hardware modules.  Many sensors, stepper 

motors, and other electronic components require a real-time controller to 

function.  To accommodate the need for the GPS module and accelerometer, plus 

any hardware added later, the Adafruit Metro 328 is chosen because of its 

compatibility with the ubiquitous Arduino Uno (sharing the same Atmega328 

chipset) and for the ecosystem it shares with other Adafruit components.  The 

Metro 328 can be programmed using the free Arduino Integrated Development 

Environment (IDE).   Power and programming can be accomplished via the 

onboard micro USB port, which also doubles as the power source.    The Metro 

328 is also available in a smaller form factor (3 g, $12), however for accessibility 

of development, the larger size is chosen (16 g, $20). 
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 Global Positioning Module.    This Adafruit Ultimate GPS Breakout (66 channel 

with 10 Hz Updates Version 3) device is chosen over the cheaper GlobalSat BU-

353S4 ($31) used in localizer.  This choice is made to reclaim one of the USB 

ports being used on the Raspberry Pi, as well as to couple the accelerometer and 

GPS data into a single data feed, which is sent from the controller to the Pi.  The 

Ultimate GPS Breakout is also technically superior to the GlobalSat BU-353S4, 

notably offering 10 updates per second if desired.  A passive GPS Antenna uFL 

1 dBi gain antenna is attached to boost reception. 

 Accelerometer.  The Adafruit Triple-axis Accelerometer+Magnetometer 

(Compass) Board is chosen because of its tiny form factor, ease of interaction, 

pre-built libraries, and satisfactory factory calibration settings.  The underlying 

chip is the LSM303. 

 Power Supply.  The ideal power supply minimizes weight while maximizing power 

capacity.  At 272 g and 10,000 mAh for $12, the Aibocn Power Bank External 

Battery Charger is acceptable. 

 Reachback Communications.    Though not in the scope of this research, the 

skypie payload is designed to be able to receive and transmit data via a 3G or 

4G link.  This can be done using a modem-mode 3G or 4G USB dongle and a 

Subscriber Identify Module (SIM) card with the appropriate data plan and service 

provider [46].  For experiments in this research, this link is simulated by the Wi-

Fi connection using the Raspberry Pi’s native Wi-Fi interface (not the Yagi 
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antenna used for collection).  According to Design Goal B i, the unit should still 

operate if cellular coverage is not in the area or if the link does not exist. 

 Optional Sensors.  This prototype includes a Raspberry Pi Sense Hardware 

Attached on Top (HAT), which was originally used for the compass sensor 

(ultimately not chosen because of the extensive calibration needs and software 

decencies), but kept for the 8x8 Red-Green-Blue (RGB) Light-Emitting Diode 

(LED) array.  The LED array is useful for indicating the state of the device in 

development mode.  The board also offers pressure, humidity, and gyroscopic 

sensors which are not currently used.  

 Structure.  A 3D-printed plate is designed to securely hold the components.  It 

is printed using Polylactic Acid (PLA) biodegradable filament.  The design is 

shown in Figure 11.  Figure 12 shows where each piece fits on the assembled 

prototype. 
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Figure 11. 3D printed structure components  

 
Figure 12.  Structure components assembled on prototype 
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3.5 skypie Software  

Prototype skypie software is written almost entirely in Python.  The 

microcontroller code and geodesic intersection algorithm are written in C++.  The 

codebase is a single repository divided into three packages: skypie, skyport, and 

shared.  Important components and features of each packages are described in the next 

sections.  The source code is not included in this document due it exceeding 4,200 lines of 

code.   

3.5.1 Design Paradigm 

To meet the design goals in Section 3.3.2, the software is designed with the following rules: 

 Controllable settings of the sensor are in the form of a configuration file.  This is 

how the attacker can control the behavior of sensor-related functions.  An example 

of a skypie configuration is available in Appendix A. 

 The program control is modeled as a control loop.   At the beginning of each loop, 

the latest version of the configuration file is loaded.   

 Subtasks (such as Wi-Fi collection, telemetry collection, file upload or download) 

are initiated using parameters (such as Wireshark filters, duration, interval) as 

specified by the latest configuration file.   

o These changes are only actuated when the previous iteration of the same 

task has been completed.  This is chosen to benefit system stability and is 

a preferred Python programming practice.   
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 Tasks are completed asynchronously as threads.  This takes advantage of multi-

threading and allows multiple operations to occur at once. 

 For collection-based tasks (such as Wi-Fi and telemetry), data files are written to 

a separate file per thread.  This means data file sizes are managed by changing 

collection intervals.  Files are named by start time.   

 Tasks are broken into finite, interval-based tasks.  This is chosen to prevent 

interrupting threads.  The disadvantage is that data may be missed in between the 

short transition periods.  The advantages include increased code readability, 

simpler implementation, better programming practices, and less potential for data 

corruption.   

 Because both the sensor and the attacker are likely to not have static Internet-

facing IP addresses, a public server is required to act as a ‘dead drop’.  In practice, 

this is a web server the attacker has set up.  The sensor uploads data using SFTP, 

and the attacker can login and download data from the sensors at any time.   

 Analysis is performed on the attacker’s workstation.  The attacker uses a secondary 

program (skyport), which utilizes the same looping and threading mechanism in 

the sensor.  In this case, the control loop is responsible for managing uploads, 

downloads, and analysis on new files according to its skyport configuration file.  

An example of a skyport configuration file is available in Appendix A. 

 If the sensor software is somehow killed, a chron job reinitiates it after 60 seconds 

and resumes operation.  If the attacker wants to keep the sensor dormant, they 

can choose to put it in ‘off’ mode.  Therefore, the sensor turns on every 60 seconds, 



52 

 

 

checks for an update, and turns back off.  This is to support persistence and extend 

battery life.  The chron job also initiates skypie software at bootup.    

 The user interface should be friendly and as portable as possible to show 1) viability 

as a useful operational attack tool and 2) how easily cyber-attack drones can be 

harnessed by any threat actor once developed.   

3.5.2 skypie Package 

The skypie package contains code that runs exclusively on deployed sensor device 

(the Raspberry Pi) and has specific software requirements.  Those requirements are listed 

in Table 4.  Important design components of the skypie package are described in the 

following sections.   

Table 4. skypie dependencies 

Package Function 

iwconfig Get Wi-Fi adapter settings, set monitor mode/channel 

iwlist Get Wi-Fi interface current channel 

ifconfig Prepare Wi-Fi interface for monitor mode 

dumpcap Capture packets from Wi-Fi interface 

tshark Makes packet captures available to Python for analysis 

 

3.5.2.1   main.py 

This module parses parameters and starts the execution of the manager module.  

Several parameters the program supports are “-a” which activates the main control loop, 

“-n”, which does not wait for a GPS satellite fix before starting, “-d” which shows 

debugging messages, and “-x”, which starts self-destruct mode.  Self-destruct mode will 
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replace the sensor’s hard drive with 0’s until the system crashes.  Self-sabotaging 

commands can also be executed remotely utilizing the command.py module described in 

Section 3.5.2.5.   

3.5.2.2  manager.py 

This module controls the activities of the rest of the program.  Essentially, the 

other modules in the package offer services, such as Wi-Fi collection, telemetry collection, 

or data transfers.  The manager module is responsible for keeping those services running 

as directed by the sensor configuration file.  This behavior is summarized in Figure 13 and 

is further explained in the rest of Section 3.5.2. 

 

Figure 13: skypie control flow diagram 
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Upon initiation by main, manager sets up data folders and checks for the skypie 

sensor configuration file (./synch/config.txt), which has customizable parameters 

for operation.  An example configuration file is given in Appendix A.  Altering the 

configuration file is the recommended way to change sensor behavior.  manager reads the 

current configuration (loading a default version if none exists), then creates a dictionary 

of threads for each important function.  Each iteration of the loop checks for changes to 

the configuration file and starts new threads as needed.   

Threaded tasks are intended to be finite and expire (for example, “collect Wi-Fi 

packets for 60 seconds”).  When a thread completes, the main loop sees the expired thread 

and start another thread (for example, “collect for another 60 seconds”).  If the attacker 

decides to turn off Wi-Fi collection, manager sees the Wi-Fi collection config value is now 

‘off’, and does not initiate a new collection thread until that value is ‘on’ again.  This is 

the same behavior that dictates all configuration changes.  Note that once a thread is 

started, it is not interrupted, new settings apply only after the current thread has 

completed.  This choice is made for system stability.   

3.5.2.3  collection.py 

This module handles collection of Wi-Fi packets by making a subprocess call to 

dumpcap after setting the selected interface into monitor mode.  Parameters, such as 

Wireshark filter and duration are passed along.   File output locations, including the entire 

data storage scheme are shown in Appendix A. 
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3.5.2.4  telemetry.py 

This module handles parsing telemetry data, which comes from the microcontroller 

over a serial connection from the fourth USB port (/dev/ttyUSB0).  Sentences are 

customized to this application, stripping National Marine Electronics Association (NMEA) 

data for relevant fields and adding the compass bearing from the accelerometer.  An 

example of a skypie telemetry sentence is show in Figure 14, displaying fields, the index 

at which they can be found, and example values.  Fields in indexes 4-6 are added for 

consistency with localizer GPS data even though the skypie sensor does not populate 

them. 

 

Figure 14. ‘SKY’ telemetry sentence 

  Under normal operation, manager requests the GPS module to acquire a satellite 

fix and return a current timestamp before the main loop starts.  The OS then uses that 

timestamp to update the system clock.  This ensures packet captures and telemetry data 

are synchronized as much as possible, which is critical for accurate packet-telemetry 

analysis. 

3.5.2.5  command.py 

This module contains a thread class that checks for new script files sent from the 

attacker.  The commands are executed in a subprocess at the same privilege level as the 
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skypie code (root).  The output is written to a text file, which is placed in the 

‘./data/synch/log’ folder for upload back to the attacker’s workstation.  

3.5.2.6  interface.py 

This module parses ifconfig and iwconfig data and offers support for 

changing available wireless interface settings.  The antenna interface used for collection is 

selected by manager using this module (specified by the config.txt file), and whenever 

a capture is performed this module puts the interface in monitor mode.   This module also 

contains a thread class that asynchronously cycles through 802.11 channels, which is 

invoked consistently through the manager module’s main control loop.  When the 

application closes, the interface is restored to managed mode. 

3.5.2.7  indicator.py 

This module contains code that checks for the presence of the Raspberry Pi Sense 

HAT, which is an optional hardware component.  If present, the 8x8 RGB LED array 

illuminates to signify what actions are happening in the main loop.  This visual is useful 

in a development and testing environment, but may not be desired in real operations.  

Table 5 demonstrates what the different patterns mean.  Behavior of a normal capture 

operation appears as fast-moving purple numbers and occasional flashes for green, blue, 

and pink. 
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Table 5.  8x8 RGB LED Array Indications 

Indicator Event 

Sky Blue Fill Skypie program startup 

Purple Fill 

Skypie is on, waiting to start loop.  A prolonged purple fill 

indicates the system is waiting for a GPS fix to synchronize 

system clock 

Green Fill Indicates a Wi-Fi collection thread has been initiated  

Blue Fill Indicates a telemetry collection thread has been initiated  

Pink Fill Indicates an upload or download has been initiated 

Pink Flashing 

Indicates repeated attempts to upload or download, but no 

connection is available 

Purple Number 

Indicates an iteration of the main loop.  The number 

presents the last digit. 

White Number 

Indicates the Wi-Fi Channel Hopping thread has been 

initiated 

Red Number Buffer checks have been performed and handled 

Orange Number State file has been written 

Flashing Red Self-destruct has been requested 

 

3.5.3 skyport Package 

The skyport package is intended to run on the attacker’s workstation, which 

works best on a x86 or 64-bit Linux platform but most features (with the exception of 

geolocation prediction) also work on x86 and 64-bit Windows.  This package contains two 

web apps, Sensor App and Analysis App, that provide an interactive interface for control 

and analysis. 

To accommodate ease of use and portability, both apps are created using Plotly 

Dash [47], which is a set of libraries that allow for the construction of web-based graphical 
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applications entirely in Python.  It is also tied to the plotly library, suitable for 

generating charts, graphs, and maps.  Mapbox [48] is used for adding satellite overlays 

because it offers a free and customizable map API compatible with plotly graphs.   

The two apps operate separately or simultaneously.  The skyport manager is 

only required to be running if real-time updates are desired, so each of the three modules 

can be ran as independent programs or in unison. 

3.5.3.1  Background Control (manager.py) 

In a similar fashion to the skypie/manager.py, this module acts as the driving 

control module.  It uses a thread dictionary to ensure data upload, download and analysis 

operations are executing as directed by a configuration file.  Data files are stored as Comma 

Separated Value (CSV) files or PCAP files.  State data, logs, and config files are stored as 

text files.  The program organizes data by sensor name and data type.  The file structure 

is show in Appendix A. 

3.5.3.2  Sensor Control and Tracking App (sensor_app.py) 

The purpose of this app is to view sensor geolocation history, change configuration 

settings, view the sensor log, and send remote arbitrary commands via a web console.  It 

can be run with python sensor_app.py, which starts a webserver at 

127.0.0.1:7771.  Figure 15 depicts the UI, which is designed to make the user feel 

“creepy, but friendly.” 
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Figure 15. Sensor App User Interface
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The Sensor App consists of two major components, the Control Settings (on the 

left), which allows a user to control Skypie behavior settings, and Sensor Tabs (on the 

right), which allows the user to view location history, execute remote commands, view 

remote logs, and calibrate the device.   A dropdown at the top allows the user to select 

which sensor they are interacting with, if there are multiple. 

When the UI detects changes to any input fields, it actuates change.  For example, 

if the user selects a new sensor in the sensor selection dropdown, the program reads data 

files for the chosen sensor, in this case, a geographic history CSV file for a sensor named 

‘crunchy’), and plots the coordinates on a map in the Telemetry tab.  Figure 16 

demonstrates how the UI elements relate to the simple flat file ‘database’ scheme of sensor 

data.   

            

Figure 16.  In-app sensor selection dropdown (left) and the skyport/database/sensors/ 

directory (right), showing that database is saved as a simple folder scheme.  

Figure 17 demonstrates a test run of the sensor and the plot of telemetry data in 

the Telemetry tab.  Location history is shown as a series of dots indicating color coded by 

timestamp.  The latest location and heading are printed at the top of the tab.  
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 Figure 17. Geolocation history can be viewed in the ‘Telemetry Tab.’  Hovering over each coordinate shows a box that describes the exact time 

and location of that point.  Dots are color coded chronologically.  The last recorded coordinates and bearing are printed at the top of the tab.
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There is also an option to view the heading of the sensor at different points in time 

using the ‘Line Draw Density’ slider.  Heading is represented as a purple line originating 

at the sensor’s location extending in the direction it was facing at that point in time.  This 

is depicted in Figure 18.   

The remote sensor’s skypie program log can be viewed via the ‘Log’ tab, as shown 

in Figure 19. 

Arbitrary remote commands can also be uploaded and executed on the remote 

sensor using the ‘Console’ tab.  An example of this is demonstrated in Figure 20. 

The Control Settings tabs are shown in Figure 21 and Figure 22.  Figure 21 displays 

the Sensor Control tab, which is used to change properties such a file transfer settings, 

webserver settings, and the device’s name.  Figure 22 shows the Wi-Fi Control tab, which 

can be used to change the Wi-Fi collection mode and filters.   

The user can modify and setup sensor operation settings by using the UI fields in 

the Control Settings tabs and clicking the ‘Submit’ button.  This action modifies the sensor 

configuration file on the attacker’s workstation, which is then uploaded to the SFTP server 

by manager and is downloaded to the sensor when it checks in.   
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Figure 18. View history of compass heading ‘Heading Line Draw Density’ value slider.  Each purple ray extends from a coordinate in time and 

indicates which way the sensor was facing.  In this example, the antenna is mounted to a bicycle doing a half-circle.
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Figure 19. ‘Log’ tab enables user to view remote sensor’s skypie logs. 

 

Figure 20. Using the ‘Console’ tab to execute ‘ifconfig’ and ‘whoami’ commands.   
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Figure 21. ‘Sensor’ settings tab, which allows the attacker to make configuration changes.  

Changes are posted by clicking the ‘Submit’ button. 
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 Figure 22. ‘Wi-Fi’ settings tab.  Note Mirror mode and Bluetooth mode are stubs that 

are not implemented in the scope of this research (discussed in Chapter 6). 

3.5.3.3  Analysis App (analysis_app.py) 

The Analysis App is used to view the data collected by skypie sensors.  Figure 

23 shows the Analysis App UI.  The Analysis App consists of a Target Map pane (left) 

and a Target Analysis pane (right).  At the top is a dropdown selector, allowing the user 

to choose which sensors to query.  Data is fused from each selected sensor’s data.   One or 
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multiple targets can be selected by unique MAC using the “Available Targets” dropdown, 

shown in Figure 24.  In this way, a user can view information collected about one targeted 

device from multiple sensors.  A time slider also allows an analyst to focus on a specific 

timeframe, which is useful if the target is a mobile device such as a phone.  The UI also 

denotes which timeframes the sensors have data collected for the target.  The time slider 

is show in Figure 25.   

Information about the first target in the “Available Targets” dropdown is displayed 

in the Target Analysis pane.  There is the potential for many other features to be added 

to Target Analysis pane, such as correlating clients that have been seen communicating 

together or what a specific target device has connected previously as indicated by 802.11 

Probe Requests.  These possibilities are discussed in Section 6.5.  Currently, geolocation 

prediction is the only feature built-in, which is processed via the analysis.py module 

using the algorithms described in Section 3.6.  The skyport Analysis App operates 

similar to the Sensor App and can be accessed at 127.0.0.1:7773. 



68 

 

 

 

Figure 23. skyport Analysis App UI
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Figure 24. Available targets from each selected sensor are populated in a dropdown in the 

Analysis App.  One, multiple, or all can be selected. 

 

Figure 25. The timeline section indicates when a target was first and last seen.  Using the slider 

allows a user to pick which timeframe they want to analyze the target. 

3.5.4 shared Package 

The shared package contains utilities that can be shared between the deployed 

sensor and the attacker’s workstation.   
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3.5.4.1  transfer.py 

This module executes uploads and downloads of data over an SFTP connection, 

which ensures transfers are encrypted using pre-shared keys, one for each sensor and a 

master key for the attacker.  If a directory upload or download is requested, only new or 

newly modified files (verified by timestamp) are moved to save bandwidth.   

3.5.4.2  analysis.py 

This module contains the various methods and classes that perform different levels 

of data handling and analysis for packet captures and telemetry data.  This module also 

contains the geolocation algorithms presented in the Section 3.6, while Section 5.3 describes 

their effective utility. 

3.5.5 Microcontroller  

The Adafruit 328 microcontroller is programmed in C++ using the Arduino IDE.  

Adafruit libraries (Adafruit_Sensor, Adafruit_LSM303DLHC, and Adafruit_GPS) 

are used for the two sensor chips.  The LSM303 and Ultimate GPS are leveraged to extract 

compass and GPS data respectively.  Code consists of a simple loop polling each device 

for data, then parsing it into the SKY telemetry sentence format seen in Figure 14.  

Compass bearing is derived from an arctangent calculation of the X and Y magnetometer 

sensor readings from the LSM303, shown in Equation 1: 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 =  
tan−1 𝑋

𝑌 ∗ 180

𝜋
                                                             (1) 
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Communication from the GPS chip to the microcontroller occurs at 9600 baud, and 

updates are polled once a second.  The chip is capable of more frequent polls if desired.   

Communication to the Raspberry Pi is a serial connection over USB at 115200 baud.   

3.6 Analysis Algorithms 

The following sections the rudimentary algorithms that are created as a starting point 

for radiolocation with a directional antenna on a moving platform.  They are implemented 

in the shared package.   

If a sensor is stationary and has been calibrated, the ability to determine bearing 

of a target is straightforward if it experiences a full 360° sweep.  The sensor plots RSSI 

over the bearing, and returns the value where the interpolated RSSI peaked.   The process 

is shown in Figure 26, where the actual beacon data points are green dots and connected 

by two interpolation algorithms (PCHIP and Bernstien polynomial).  The true bearing is 

represented a solid vertical line while the bearing predictions are shown by dotted vertical 

lines.    
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Figure 26.  RSSI mapped over bearing during a 360° sweep [41]. 

When independently mounted to a drone, the task is complicated by the fact there 

is no guarantee the antenna gets to experience a 360° sweep at every location, nor that it 

gets a 360° sweep at all.  Instead, the payload is given a flightpath that changes location 

sometimes, changes bearing other times, changes both, and sometimes is completely 

stationary.   

3.6.1 Bearing Prediction and Geolocation Algorithm 1 (BPGA1) 

BPGA1 takes a basic approach to return a result despite the challenges discussed.  

A pictorial overview of the algorithm is shown in Figure 27, breaking it down into steps. 

 First, BPGA1 takes all packets it has seen over a predefined ‘bucket’ of time (60 

seconds), and only considers the top 20% of those with the highest RSSI for each target.  

This is because if the drone is rotating, it is assumed the true bearing of the target is the 

direction from which the antenna receives the strongest signal.  Second, each packet is 
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correlated to a SKY telemetry sentence by timestamp.  Third, a geodesic intersection is 

calculated for each of the top packet locations and supposed bearings (capped at 100 

calculations per unique MAC address) giving a coordinate prediction for each pair of 

packets.  Predictions farther than a certain threshold (3 km) are thrown out to prevent 

blatantly incorrect guesses from ruining the average.   

 Fourth, a weight (𝑤𝑖)  is generated for each prediction and is directly proportional 

to the magnitude of the distance between the two points (𝐿𝑎𝑡𝑖 and 𝐿𝑜𝑛𝑖).     

Fifth, the prediction from each pair is combined into a weighted average 

(𝐿𝑎𝑡𝑎𝑣𝑔 and 𝐿𝑜𝑛𝑎𝑣𝑔) using the formula in Step 5 of Figure 27 and the weights from Step 

4.  The rationale is that predictions taken from measurements farther apart from each 

other may be more accurate given imperfect bearing predictions.  The summation is 

normalized by the sum of the weights (𝑤𝑇) to return a coordinate prediction.   

Finally, the algorithm also returns the largest difference in radio values (Radio 

Confidence) during the time bucket as well as the largest distance between two coordinates 

used (Geolocation Confidence).  These values are used as rudimentary confidence metrics, 

under the assumption that more geographically separated observations are more valuable.  

Higher radio differences are desired because they imply sensor rotation, thus increasing 

the likelihood the bearings used to calculate the predictions are correct.   

These values are calculated for each device for each time bucket and are stored in 

./sensors/[sensor_name]/analysis/geo-mac-analysis.csv for the 

Geolocation Prediction Averaging Algorithm 1 (GPAA1) to use.    
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This algorithm is implemented in the calculateLocation() function of the 

MacInfo class of analysis.py.   

3.6.2 Geolocation Prediction Averaging Algorithm 1 (GPAA1) 

GPAA1 is invoked when a user is viewing targets in the Analysis App.  It takes the 

output of BGPAA1 from each selected sensor, which consists of a coordinate prediction 

for each time bucket and associated weights for both distance and radio difference seen 

from that bucket. 

Using those values, GPAA1 looks only at the timeslice selected by the user and tries 

to form a single geolocation prediction.  It does this by weight averaging each BPGA1 

geolocation prediction.  Guesses taken from larger distances and larger radio power 

disparities are given the most weight.  Weights are first divided by a maximum value (3 

km for distance, 0.1 mW for radio).  The maximums were chosen to normalize both ranges 

from 0 to 1 for common readings.  These values are then combined into a single weighted 

confidence value  

𝐶 =  𝑊𝑅𝑎𝑡𝑖𝑜 ∗ 𝑅 + (1 − 𝑊𝑅𝑎𝑡𝑖𝑜) ∗ 𝐺                                                          (2)                                        

 

where 𝑅 is the Radio Confidence for that interval, 𝐺 is the Geolocation Confidence, and 

𝑊𝑅𝑎𝑡𝑖𝑜 is the weight ratio of radio difference to geolocation difference (currently left equal 

at 0.5).    
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Figure 27.  BPGA1 visualized.   Note this process is repeated for each time bucket.
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These Confidence values (𝐶𝑖)  are used for each time bucket over the timeslice and 

averaged into the latitude and longitude predictions 

  

𝐿𝑎𝑡𝑎𝑣𝑔 =
1

𝐶𝑇
∑ 𝐶𝑖  ∗  𝐿𝑎𝑡𝑖

𝑛

𝑖=0

                                                                       (3) 

 

𝐿𝑜𝑛𝑎𝑣𝑔 =
1

𝐶𝑇
∑ 𝐶𝑖  ∗  𝐿𝑜𝑛𝑖

𝑛

𝑖=0

                                                                      (4) 

 

where 𝐿𝑎𝑡𝑖 and 𝐿𝑜𝑛𝑖 are the predictions for each time bucket, 𝐶𝑖 is confidence value found 

from (1) for each bucket, and 𝐶𝑇 is the sum of the confidence values.   

3.7 Design Summary 

This chapter describes two successive iterations of prototypes with the same ultimate 

goal of demonstrating cyber-attack and intelligence-gathering capabilities.  Both meet 

their respective design goals as outlined in Section 3.3 and have been proven operational.  

The following chapters demonstrate their use in the field and examine geolocation using 

their collection capabilities. 
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4. IV. Methodology 

4.1 Overview and Objectives 

The experiment portion of this research involves testing the viability of using 

radiolocation of Wi-Fi traffic using a directional antenna to geolocate wireless transmitting 

devices passively.    There are many applications of successful passive geolocation that 

range from search-and-rescue to and assisting warfighting operations [41].  

The localizer prototype is primarily used for this assessment because the stepper 

motor gives a controlled mechanism for conducting 360° sweeps.  This research extends 

Law’s thesis by both increasing the distance from the targets and attempting to answer 

the following questions: 

 Is geolocation via radiolocation viable at a distance of 300 m and 600 m?  

How accurate can it be? 

 What collection parameters are most important to geolocation at those 

distances, and what specific settings provide the best results? 

While the localizer is best suited for controlled experimental purposes, it lacks 

the capability to assess bearing on its own and is too heavy for operational purposes.   This 

is why the skypie prototype is also tested in the field.   The skypie experiment’s 

purpose is to demonstrate its collection capabilities, strengths, weaknesses, and provide 

and data for improvement.   
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4.2 System Under Test 

Figure 28 displays the System Under Test (SUT) and Component Under Test (CUT) 

diagram.  Experiment parameters (described in Section 4.3) consist of the factors that are 

tested which are measured by the metrics (covered in Section 4.4).  Constant variables 

and computing parameters are held constant and described in Section 4.5. 

 

Figure 28. System Under Test (SUT) and Component Under Test (CUT) diagram 

4.3 Factors 

This experiment attempts to perform a partial factorial experiment with the following 

variables, described in Table 6.  Variables that need additional explanation are discussed 

after the table.  The location of collection points for the experiment are shown in Figure 

29. 
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Table 6. Factors 

Factor Proposed Settings Description 

Distance 300, 600 (meters) Distance from target.  Addresses the question:  

How does accuracy change as the sensor moves 

away from target? 

Collection Pattern Linear, Circular Pattern in which collections are conducted.  

Addresses the question: Is it more beneficial to 

collect in a circular or linear fashion? 

Collection Points 2, 3, 4, 5, 6, 7 Number of collection points.  Addresses the 

question: How many collection points are 

necessary to get accurate coordinates? 

Angular Coverage 10° - 90° Angle over which collection points surround the 

target.  Addresses the question: How “long” of a 

trail of collection points must be used to get 

accurate coordinates? (see Figure 30) 

Framework localizer, 

skypie 

How the two devices perform at collection.   

 

Angular coverage is a term used to express the widest angle that collection points 

surround a target.  An example is shown in Figure 30. 

 Framework indicates which prototype will be used for collection and what kind of 

analysis will be used.  In the case of localizer the prototype cannot compute geolocation 

itself.  Rather the devices simply projects bearing predictions for each sweep.   Analysis is 

done manually, feeding the results into a geodesic intersection algorithm described in 

Section 5.2.2.1 [49].  In the case of skypie, the prototype collects bearing, GPS, and RSSI 

data.  The framework then uses BPGA 1 and GPAA1 to guess an average location of each 

target automatically.   
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Figure 29. Experimental layout and collection points.  Tent symbols indicate collection points 

along a line, tree symbols indicate collection points along a circle, and campfires represent a 

collection point that is both on a circular and linear collection pattern. 
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Figure 30. Angle of coverage on a linear collection pattern. 

4.4 Metrics 

Metrics are ultimately reflected in the accuracy of bearing and location guesses from 

different collections, with an emphasis on geolocation accuracy.  This is either represented 

as an error value in meters (Geolocation Prediction Error) or error normalized by the true 

distance from the target (Geolocation Percent Accuracy).  Metrics can only be known with 

truth data.  The variables are described in Table 7. 
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Table 7. Metrics 

Metric Unit Description 

Collection Range Boolean A true or false determination if data can be 

collected with a specific framework at a specified 

distance. 

Bearing 

Variability 

Degrees Amount of bearing variation present from 

multiple readings of a stationary target and 

collection points.  Indicates the reliability of 

readings. 

Bearing 

Prediction Error 

(BPE) 

Degrees Difference between an experimentally-determined 

bearing and the true bearing from a collection 

point. 

Geolocation 

Prediction Error 

(GPE) 

Meters Difference between an experimentally-determined 

location prediction and the true target location. 

Geolocation 

Percent Accuracy 

(GPA) 

Percent The Geolocation Prediction Accuracy divided by 

the distance between the sensor and target.  Used 

to compare accuracy at different distances. 

 

4.5 Constant Variables 

Throughout the course of the experiment, several factors are held constant.  This 

does not suggest that variation in these values does not impact the response variables, but 

a necessity to limit the scope of the experiment.  Table 8 summarizes the constant 

variables.   
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Table 8. Constant Variables 

Factor Desired 

Experiment Level 

How Controlled? Anticipated Effects 

Target locations Pre-defined layout 

(see Figure 29) 

Experimental design Varies 

Number of Targets 3 Experimental design None 

Target models LG Rebel 2 LTE, 

ZTE ZFive 2 LTE 

(x2) 

Experimental design None 

Traffic behavior WPA2 Access 

Point 

Device configuration Standardized 

packet capture 

distribution 

Rotation rate 45 seconds per 

revolution 

Device configuration Slowed to increase 

capture at longer 

distances [41]   

Channel hop interval 179 Time Units 

(802.11 protocol), 

about .183 

seconds 

Device configuration Most effective for 

captures [41] 

Channel hop distance 2 channels per 

hop 

Device configuration Most effective for 

captures [41] 

Initial bearing of sweep  0° (facing North) Manual check with 

compass 

Slight bearing 

error introduction 

[41] 

 

Variables that need additional description are discussed here: 

 Target locations – are deployed as demonstrated in Figure 29.  Targets are separated 

enough to reduce interference from each other, but not enough to greatly vary their 

general location from the collection points.  The scale (targets along a 2 m line, <1% 

of closest collection distance) would ideally reflect several Wi-Fi devices in a single 

room.  Targets sit atop a plastic folding table at different orientations as show in 

Figure 31 and Figure 32. 



84 

 

 

 Number of targets – the number is chosen to provide replicants for similar 

measurements.   

 Target models – are chosen for cost efficiency.  All are capable smartphones running 

the same version of Android (6.0, Marshmallow).   

 Traffic behavior – as a Wi-Fi access point, beacon frames are expected roughly 10 

times a second.   

 Rotation rate, Channel hop interval, and Channel hop distance are all chosen from 

earlier research that suggests best packet capture rates [41]. 

 

Figure 31. Targets at target locations 
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Figure 32. Target orientations.  Note each phone is oriented differently.  Target 1 is propped up 

horizontally using a cardboard box.  To prevent Target 1 from blowing away, a partially full 

water bottle is added to weigh it down while a Maroon 5 compact disk case kept the phone 

pointed toward the collection points.   

4.6 Uncontrolled Variables 

As with most developed areas, the 2.4 GHz band is subject to wireless traffic outside 

of the scope of the experiment from nearby devices.  While this may cause interference, 

this traffic simulates an environment in which the systems are designed to be operational.   

A second uncontrollable variable is the inherent inaccuracy of GPS readings, which 

are used in the field to establish target and collection locations.  The error, potentially up 

to 4.9 meters [50], is unavoidable unless using more precise measuring instruments. 
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4.7 Experimental Design 

This section describes detailed instructions on how each experiment is conducted. 

4.7.1 Geolocation Experiment: localizer 

1. The same field location is used for all experiments. 

2. Targets (cell phones) are placed on table at the target location specified in 

Figure 29 in the configuration shown in Figure 31.  The cell phones have their 

Wi-Fi WNICs placed into AP mode.  

3. The prototype is mounted on a stainless-steel support rack (0.78 m high) 

strapped on top of a Ford F-150 truck (1.905 m), so that it rests a total of 

2.685 m above the ground, which is a reasonable elevation for a low-flying 

drone.  A photo of the rig is shown in Figure 33, and details are shown in 

Figure 34. 

4. The prototype is turned on and connected to a laptop via Ethernet cord.  The 

laptop uses SSH to activate the localizer program.  A separate directory is 

made for each collection point to store data files.  Collection parameters are 

set to default, with the exception of sweep duration (set to 45 seconds) 

5. The truck moves to the first collection point along a collection pattern, starting 

at the southernmost point and moving north.  The truck is placed in park and 

remains stationary for collection. 

6.  An analog compass is used to manually move the antenna to 0° (magnetic 

north). 



87 

 

 

7. Using the laptop and SSH, a localizer sweep is performed.  Detected APs 

are shown on screen, which is used to verify all three targets have been observed 

by the sweep.   This is done 3 times for each collection point. 

8. The truck is moved to the next collection point.  The truck is placed in park 

and remains stationary for collection. 

9. Steps 6 through 8 are repeated until the pattern is completed.   This is repeated 

for all 4 collection patterns.  Collection points that are on both a line and circle 

are only collected once during the linear pattern. 

 

Figure 33. localizer mounted in the configuration used to collect data during experiment  
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Figure 34. Detailed components of the mobilized localizer rig, which is secured to the truck 

by ratchet straps 

4.7.2 Bearing Variance Experiment: localizer 

This experiment is done to analyze how much bearing readings differ from a 

singular point at distances roughly 300 m and 600 m from the targets. 

1. The field, targets, and truck are set up the same as Steps 1 through 4 in the 

localizer Geolocation Experiment (see Section 4.7.1). 

2. The truck is moved to point 3L2 shown in Figure 29.  The truck is put in park 

and remains stationary. 
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3. An analog compass is used to manually move the antenna to be facing to 0° 

(magnetic north). 

4. At least 10 sweeps are performed. 

5. The truck is moved to point 6B1.  The truck is put in park and remains 

stationary. 

6. Steps 3 and 4 are repeated for point 6B1.   

4.7.3 Geolocation Experiment: skypie 

In the skypie experiment, a subset of the localizer experiment is performed to validate 

capture functionality and get initial feedback for the geolocation algorithms (BPGA and 

GPAA). 

1. The field, and targets are set up the same as Steps 1 through 3 in the 

localizer Geolocation Experiment (see Section 4.7.1). 

2. The truck is moved to the start of the 300 m collection line. 

3. The skypie sensor payload is turned on.  The skypie software is started 

manually from the IDE using a keyboard and monitor, which are unplugged 

after.       

4. A driver moves the truck at a speed of roughly between 5 and 15 meters per 

second (11 and 35 miles per hour), similar to the speed of commercial MUAVs 

[2].  Meanwhile another individual handler holds skypie prototype out the 

window and rotates it in slow circles using an unpredictable pattern.  This was 

done to resemble a drone operator performing erratic rotations.   
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5. The skypie program is turned off.   

6. Step 4 is repeated for a second pass.   

4.8 Summary 

This chapter outlines the process and parameters under study in this research, as well 

as details about how data collection occurs.  The experimental environment is discussed 

at length as well as metrics to judge effectiveness.  
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5. V. Results 

5.1 Overview 

This chapter describes results obtained from using the localizer and skypie 

frameworks during the experiment described in Chapter 4.   

Section 5.2 covers the localizer geolocation experiment.  Because the localizer 

prototype is designed for experimental use as opposed to operational use, it is the focus of 

the statistical analysis.  The relationship between the factors and the metrics are analyzed, 

demonstrating best collection settings that can translate to any device performing 

directional geolocation.  Post-collection techniques and improvements are suggested in 

Section 5.2.3.2. 

   The remainder of the chapter discusses results from using and developing the 

operationally-oriented skypie.  Section 5.3 demonstrates skypie’s collection 

capabilities in the field and discusses the skypie geolocation experiment.  Section 5.4 

describes results of the skypie development process.   

5.2 Geolocation Experiment: localizer 

At each collection point shown in Figure 29, the localizer prototype took at least 

3 separate readings to prevent having a single data point for each location.  A reading 

consists of a 360° sweep hopping 2 channels every 179 Time Units specified by the 802.11 

protocol (about 0.183 seconds), which are the optimal configurations for beacon collection 
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under normal conditions [41].  The recommended sweep time is relaxed from 30 to 45 

seconds because the distance is increased.   

As bearing values are used to calculate geolocation predictions, this analysis starts 

with a study of bearing prediction findings. 

5.2.1 Bearing Prediction  

In addition to the aforementioned tests, 10 additional sweeps are performed at a 

solitary point along the 300 m and 600 m lines from the targets (see Section 4.7.2) to 

investigate the variance in the bearing prediction given by localizer at these distances.  

The results are depicted in Table 9.  Note that point 3L2 is actually 261 m from targets 

and point 6B1 is actually 599 m.   

Table 9. Bearing predictions (in degrees) and variation from multiple sweeps at the same point 

Point 

Sample 

Size Min Max Mean 

Media

n 

True 

Bearing 

Mean 

Error 

Media

n Error STD Variance 

3L2 12 201 238 231.08 235 261.1 -30.02 -26.1 9.90 98.08 

6B1 30 228 435 279.04 236.5 217.1 17.94 -24.6 64.27 4131.22 

 

 The amount of variance is significant, especially when proven later how much 

bearing error can throw off a geolocation intersection.  Accurate bearing is vital to getting 

accurate results using intersection-based geolocation.  Further inspection of the data 

reveals two interesting features.  The first is that both locations suffer from roughly the 

same median bearing error (-25°) despite the distance and true angle from the targets.  

Indeed, when all geolocation estimates are plotted, many data points in this experiment 

seem to suffer from a systematic offset of -15 to -25 degrees.  This pattern is shown in 
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Figure 35.  Figure 36 visually examines three collection points and the offset of the 

predicted target from the actual.   

 

 

Figure 35. 300 m (light triangle symbols) and 600 m line (dark triangle symbols) geolocation 

guesses. 
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Figure 36. Visual inspection of geolocation guesses demonstrating a possible systematic bearing 

offset.  The angles represent the difference between the true target bearing and bearing of the 

proposed centered from three points on the 300 m line. 

 The second interesting feature is the distribution of bearing guesses at point 6B1 

If the values are combined into a histogram (see Figure 37), it is notable that while the 

majority of predictions are within 220° to 240° (the true direction of the target), a 

secondary majority is found between 0° and 40°, for a difference of roughly 200°.  Because 

the offset for this spike is relatively close to 180°, it is likely this secondary spike is caused 
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by the back lobe of the directional antenna receiving signals when facing opposite the 

targets.   Note that the 300 m collection point does not suffer from this problem as shown 

in Figure 38.  It is likely errors like this are a function of distance and obstacles that cause 

reflections.   

     

Figure 37.  Multiple bearing predictions at 600 m (point 6B1).  Note the secondary majority 

about 180 degrees out of phase with the primary majority. 

        

Figure 38. Multiple bearing predictions at 300 m (point 3L2).  Note that most data points are 

within 9 degrees of each other. 
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It may benefit an advanced geolocation guessing algorithm to remove predictions 

that fall into a secondary majority that are about 180° out of phase from a primary 

majority.   This can prevent geolocation guesses from being in the opposite direction of 

the sensor if two such points are used as input.  If only one input is in the wrong direction, 

however, a geodesic intersection algorithm (similar to the one used in this research) still 

theoretically returns a valid result because the Earth is (mostly) spherical.  Points 

calculated from two out-of-phase bearing predictions do interrupt geolocation averages.  

In the case of a drone, the problem of removing these out-of-phase predictions is 

made difficult because the true location is unknown and because the sensor is not 

guaranteed a complete 360° rotation in a single location.  

Lastly, overall bearing predictions are compared to the true values.  This is shown 

in box-and-whisker plot in Figure 39.  Box-and-whisker plots in this research show 

minimum and maximum as the whiskers while the box represents the 1st and 3rd quartiles.  

The median is denoted by a line inside the box and average is denoted by an ‘x’.  Outliers 

appear dots outside the box.   

Note again the median errors remain close to each other at -16.4° and -20° for 300 

m measurements and 600 m measurements respectively, while outliers in the 600 m range 

resemble back lobe misreadings. 
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Figure 39. Bearing error among all data points.   

 Compared to Law’s original work testing localizer at distances less than 100 

m (with brick, mortar, and glass obstacles) and a median bearing error of 13.7°, results 

indicate a loss of accuracy as distance increases.   The relationship among all three 

distances is plotted in Figure 40.   The data fits a linear correlation (shown as a dotted 
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line) with an R
2 
value of 0.9956, suggesting a 0.0123° decrease in bearing accuracy per 

meter from the target after the first 100 m (1° lost per 81.3 meters).   

 

Figure 40. Absolute median bearing error at different distances.   

5.2.2 Geolocation Prediction 

The approach this research takes to geolocation is evaluated by calculating the 

intersection of point coordinates and their bearings using a geodesic model.  Following an 

ideal situation, if perfect bearings to a target are given at two different sensor locations, 

the resulting intersection of the sensor locations and the perfect bearings intersect at the 

coordinates of the target.   

5.2.2.1  Intersection Algorithm 

The algorithm implemented by this statistical analysis to calculate location is 

designed by Charles F. F. Karney, and the source code is available in Appendix A [49].  
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The algorithm finds the intersection of the two geodesics on the surface of the Earth.  The 

geodesics are created from the two coordinates and bearings the algorithm takes as input.  

This is demonstrated visually in Figure 41. 

 

Figure 41. Taking two collection point coordinates and a bearing from each, the algorithm 

computes where the geodesics would intersect.  This is the predicted location as computed by the 

intersection algorithm. 

To verify geolocation by calculating bearing intersection, Error! Reference source n

ot found. demonstrates what the predictions of all pairs along the 600 m line with a 

prefect bearing (not the experimental result bearings).  The top half of the figure shows 

the entire field.  Predictions are shown as white and black circles, which appear directly 
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on top of the green targets.   The bottom half zooms close enough to show the targets 

separated from each other, and a distinct line of predictions can be seen for each of the 

three targets.  The average error is a shockingly low 1.64 m (more accurate than GPS), 

and the median is 1.56 m.   
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Figure 42: Geolocation predictions at 600 m away, if the bearing predictions are perfect to 7 

places.   

 While Error! Reference source not found. validates the algorithm, results of t

hat quality require precision to 7 decimal places.  If simply rounded to the nearest integer, 

which is consistent to localizer output, the median error of coordinate predictions is 

now 5.45 m and the average is 11.32 m.  This is shown plotted in Figure 43, where red 

markers are the targets and the white markers are geolocation predictions.   This can be 

considered the best possible case for a distance of 600 m without splitting coordinates (as 

suggested in Section 5.2.3.2).  As a reminder, Section 5.2.2 shows that at least 10° degrees 

of error can be expected at 100° m, 15° for 300 m, and 20° for 600 m. 
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Figure 43. Geolocation predictions with perfect bearings, rounded to the nearest integer.   

5.2.2.2  Raw Geolocation Estimates  

In further calculations, geolocation predictions of over 3 km from the sensor are not 

considered.  Such predictions are considered inaccurate because conditions would have to 

be exceptionally ideal for the directional antenna to pick up the signal.  Without any other 

outlier removal, Figure 44 shows an overview of the guesses among the difference collection 

patterns and sizes.   

 

Figure 44. All geolocation guesses by distance and collection pattern 

Figure 45 shows the test field with most of the points plotted (those outside the 

window are not shown). White markers indicate guesses from 300 m and red markers 
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indicates 600 m.  Circle symbols represent guesses from the circle pattern and square 

sybmols represent guesses from the line pattern.  Overall, it seems predictions made at 

300 m center around a point near the targets.  A similar pattern can be seen for 600 m 

predictions, but it is much less clear and many predictions are clearly wrong.   

As found in previous research, a few of the outliers (caused by inaccurate bearings) 

are so distant they make average location approaches inaccurate [41].  If the geolocation 

algorithm is fortunate enough to be able to detect and remove outliers, accuracy can be 

improved.  This ability may be a luxury for data from a drone-mounted platform expected 

to give real-time geolocation, but it could be possible with enough data from several data 

collection locations.   

 

Figure 45. Raw geolocation guesses plotted. White points indicate guesses from 300 m, red 

indicates 600 m.  Circle pins represent guesses from the circle pattern, square pins represent 
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guesses from the line pattern.  The green line is a political boundary and is not part of the 

experiment.   

5.2.2.1  Outliers 

The next sections continue investigation with outliers removed.  Outliers cannot 

simply be removed by Geolocation Prediction Error (GPE) because that involves truth 

data, which a drone would not have in an operational setting.  Instead, outliers are 

considered guesses whose latitude or longitude fall outside 1.5 times the standard deviation 

of the other guesses.  If either latitude or longitude is an outlier, the guess is not included. 

5.2.2.1  Distance 

Normalized by distance from target, the closer distance of 300 m outperforms 600 

m in median and average geolocation prediction error, and also has a tighter distribution.  

Values are shown in Table 10 and represented in Figure 46.   

Overall, median geolocation errors are off by at least a half of the distance from 

the original target, while best-case guesses are 5%-10% for 300 m and 600 m respectively, 

showing that geolocation via radiolocation can be extremely difficult to make accurate 

within the expectation of GPS-quality results.   

Table 10. Normalized Geolocation Error vs. Distance 

 300 m 600 m 

Average 49% 64% 

Median 46% 62% 

Standard Deviation 19% 26% 
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Figure 46. Distance vs. Normalized Geolocation Error 

5.2.2.2  Collection Pattern 

Figure 47 shows the collection pattern mapped at each distance.  At 300 m, results 

indicate geolocation prediction improves when the collection is done by a circular pattern.  

At 600 m, it appears the distinction is less pronounced and a circular pattern is less 

accurate.  This is hard to determine with confidence due to the missing data point at 6C3. 

To further explore if there is a difference between collection pattern, Figure 48 shows 

the results when both line and circle collection cover 68° and use 4 equally-spaced collection 

points {Line = (3B0, 3L2, 3L4, 3B1), Circle = {3B0, 3C1, 3C2, 3B1}}.  Here, the points 
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are essentially the same with the circular points being slightly farther away (but on the 

same azimuth from the target).  While the quartiles appear to make the circular pattern 

look more accurate, the median errors are relatively close at 9.77 m apart.   Table 11 

shows the results for 600 m as well under similar parameters.  In summary, it cannot be 

certain if difference is caused primarily by collection pattern. 

 

Figure 47. Collection pattern normalized by distance (angular coverage varies) 
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Figure 48. Geolocation error among collection pattern at 300 m (same angular coverage)   

Table 11. Collection Pattern Errors  

Pattern Line  

(300 m) 

Circle  

(300 m) 

Line  

(600 m) 

Circle 

(600 m) 

Points 4 4 4 3 

Angular 

Coverage 

68° 68° 68° 68° 

Guesses 32 34 39 30 

Average 47.34% 39.69% 63.73% 67.75% 

Median 44.38% 41.12% 61.11% 77.16% 
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5.2.2.3  Angular Coverage 

The relationship between the angle of coverage as illustrated in Figure 30 and 

bearing error is represented in the scatter plot in Figure 49, where error is normalized over 

the distance from the target.   Overall, increasing angular coverage decreases bearing error.   

The most significant decrease in error occurs by increasing coverage from 10° to 30°.   

More predictions exist for lower coverage angles because there are more points to 

compare against at smaller angles than larger ones.  There exists a large disparity between 

predictions for a single angular value, which indicates that both “good” and “bad” guesses 

can come from small and large angles alike.  “Bad” guesses are more likely to happen at 

values at very low coverage (those less than 25°).  Notably, “good” guesses at low angles 

are relatively comparable to “good” guesses at large angles, suggesting quality bearing 

readings could still produce quality predictions from smaller angles.   

Trends from both distances show that increasing coverage from 10° to 30° decreases 

error the most.  Improving the coverage between 45° and 65° did not improve error by any 

recognizable amount.  The lowest median errors are at 32° and 87°. 

To further show the distributions among similar angles, Figure 51 shows a 

breakdown of box-and-whisker plot of guesses for every set of points at 600 m.    
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Figure 49. Angular Coverage between 2-Sample Geolocation Guesses at 300 m 

 

Figure 50. Angular Coverage between 2-Sample Geolocation Guesses at 600 m 
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Figure 51. Angular coverage box-and-whisker plot shows distribution of angular coverage at 600 

m. 

5.2.2.4  Collection Path Length and Number of Collections 

The next investigation is the number of adjacent points that are needed to get the 

most error reduction.  The real-world application of this is to determine how far (relative 

to target distance) and how many 360° collections a drone needs to perform get the best 

geolocation prediction.   

Figure 52 plots average predictions errors for groups of predictions. The groups are 

composed of subsequent points along a collection pattern.  The more points a group has, 

the larger its dot is, with the smallest groups made of 2 data points and the largest having 

7.  The location on the x-axis of a dot indicates total length of collection the group 

represents.  A reasonable assumption is that as a collection group increases in length and 
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number of points, error should decrease, which would be represented as dots getting lower 

as they increase in size or move to the right. 

Whereas there is a discernable correlation at 300 m (shown by the dashed trendline 

in Figure 52), there is hardly any correlation at 600 m, shown in Figure 53.  It seems 

increasing collection points and length at this distance yields little benefit.  This can be 

seen when the predictions are plotted on a map (Figure 54); most bearing estimates are 

prone to intersecting too far in front or behind the target, creating a pattern sweeping 

around the true locations. 

 

Figure 52. Length of collection vs. average error at 300 m.  Generally, as collection length 

increases and points increase, error decreases. 
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Figure 53. Length of collection vs. average error at 600 m.  Increasing collection points and 

length at this distance yields little benefit. 
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Figure 54. Converging occurs too early or too late at 600 m.  Guesses from the 600 m are shown 

as blue triangles, guesses from the 600 m circle are purple triangles. 

5.2.3 Experiment Summary 

5.2.3.1  Overall Prediction Accuracy 

Overall bearing statistics for the experiment are shown in Table 12, which demonstrates median 

bearing errors between 10.9° and 20.4° degrees and average bearing errors between 12.5° and 

40.1°.  Geolocation statistics are shown in  

Table 13.  Median geolocation prediction errors range for the collection patterns 

range from 38% to 65% of the target distance.  This is attributed to the high average 

bearing errors.   The increase of back lobe bearing readings (about 180° out of phase of 

the true bearing) plus the magnitude of the distance itself also contribute error.   Extending 

target distance is theorized to reduce bearing accuracy for the following reasons: 

 Weaker signals, meaning fewer packets arrive 

 Less variation among RSSI values   

 There is less time the antenna is pointing in the exact direction of the 

targets, meaning fewer packets are collected the farther the target is.   

 More error occurs when interpolating fewer packets.  

These reasons are suspected to be the cause of the decrease in accuracy and increase 

in standard deviation of bearing readings at 600 m, which is modeled to show that every 

meter of distance decrease median bearing accuracy at a rate of 1° lost per 81 meters of 

distance.  A plot of all guesses and the true location of the targets in latitude and longitude 

is show in Figure 55. 

Table 12. Overall bearing statistics 
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 300 Circle 300 Line 600 Circle 600 Line 

Bearing Samples 76 44 22 74 

Average Bearing Error -18.92 -12.48 -29.82 -46.19 

Median Bearing Error -18.67 -15.05 -10.87 -20.40 

 

Table 13. Overall geolocation statistics 

Distance and Pattern 300 Circle 300 Line 600 Circle 600 Line  

Average Prediction Error 112.53 156.58 317.30 388.65 

Median Prediction Error 121.38 141.36 342.09 399.36 

% Median Error 38% 52% 53% 65% 

% Average Error 40% 24% 57% 67% 

 

Figure 55. Plot of all location predictions.  The three targets appear as one at this scale. 
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5.2.3.2  Prediction Improvements   

Methods of analysis so far have taken predictions as a pair of coordinates and the 

resulting distance error from the target.  This is useful for examining which parameters 

and trends to deliver more accurate guesses, but it requires truth data and is not the most 

accurate strategy, as this section will show.   

This next section covers the construction of predictions without knowing the true 

target location while at the same time using a simple technique to reduce error.  

Re-inspection of Figure 43 shows that even when bearing predictions are correct to 

the single digit, the average distance from the target of each prediction increases around 

the target, with few landing on the target itself.  However, when latitudes and longitudes 

are separated and the centroid or medoid are taken for each, then recombined into a new 

coordinate, the result is a better reflection of target location than if done so as coordinate 

pairs.   

 Applying this simple strategy to the experiment results, the predictions fall to a 

more reasonable error rate.     

An approach using the median and averaging of coordinates separately is shown in 

Table 14 and Table 15 respectively.  Averaging latitudes and longitudes separately is 

shown to be the best method for reducing error across most sets, capable of getting 

predictions under 86 meters for three of the four sets (two at 300 meters and one at 600).  

The fourth set (600 m line) suffered from excessive bearing inaccuracy and back lobe 

readings that continued to throw both the average and median off.    
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To show experiment results, Figure 56 shows all predictions and the average and 

median coordinates on the 300 m line.  Figure 57 shows the same for the 300 m circle, 

Figure 58 for the 600 m line, and Figure 59 for the 600 m circle.  Figure 60 shows the field 

from a tilted perspective with all collections combined.  The green line is a political 

boundary and is irrelevant to this research.   

Table 14. Separated coordinate median approach 

Distance and Pattern 300 Circle 300 Line 600 Circle 600 Line  

Median Latitude 39.776798 39.77666 39.777823 39.77822 

Median Longitude -84.10427 -84.1044 -84.1042 -84.10143 

Median Coord Error 97 101 84 321 

% Median Coord Error 32% 34% 14% 54% 

 

Table 15. Separated coordinate average approach  

Distance and Pattern 300 Circle 300 Line 600 Circle 600 Line  

Average Latitude 39.776985 39.77679 39.77772 39.778366 

Average Longitude -84.10445 -84.1045 -84.10425 -84.10136 

Average Coord Error 70.1 85.2 76 333.1 

% Average Coord Error 23% 28% 13% 56% 
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Figure 56. Guesses, median (red ‘M’ marker), and average (orange ‘A’ marker) coordinate 

predictions on 300 m line using centroid calculations
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Figure 57. Guesses, median, and average coordinate predictions on 300 m circle using centroid 

calculations 



119 

 

 

 

Figure 58. Guesses, median, and average coordinate predictions on 600 m line using centroid 

calculations 
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Figure 59. Guesses, median, and average coordinate predictions on 600 m circle using centroid 

calculations
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Figure 60. Guesses, median, and average coordinate predictions on all four collection sets, from the point of view of the targets. (Key: square 

= 600 m, circle = 300 m, white = line, blue = circle)
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5.3 Geolocation Experiment: skypie 

A subset of the localizer experiment is run on the skypie framework to 

demonstrate capture functionality in the field and provide initial feedback for the 

geolocation algorithms (BPGA1 and GPAA1).  The collection pattern chosen is the 300 

m line, as described in Section 4.7.3. 

The telemetry and packet captures are processed through Bearing Prediction and 

Geolocation Algorithm 1 (BPGA1) and Geolocation Predication Averaging Algorithm 1 

(GPAA1) using skyport.   Figure 61 shows the telemetry history of the sensor as seen 

from the Sensor App, and Figure 62 shows the computed geolocation predictions from the 

Analysis App.   

skypie is also capable of successfully collecting from all targets at the 600 m line, 

but analysis suffered the same problems as 300 m.  
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Figure 61. skyport telemetry history of the skypie on the 300 m line test, with the purple 

lines indicating the direction the sensor is facing at the time.  The red dot indicates the location 

of the targets. 



124 

 

 

 

Figure 62. skyport geolocation predictions (circles) of targets (true location at green square) 

on the 300 m line 

It takes only a visual inspection to see geolocation predictions are inaccurate. 

Geolocation guesses are determined more by the location of the sensor rather than the 

target’s location.   The primary reason is theorized to be incorrect bearing readings caused 

by BPGA1’s short bucket time and a necessity to adjust the way GPAA1 determines 

weighted averaging.    

BPGA1 chooses a heading even if it does not see enough change in RSSI or enough 

samples to make a “good” estimate, primarily because there is not enough current research 

to know what kind of data is needed to make one.  The current way GPAA1 averages 
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these guesses is also not sufficient to determine which predictions to apply more weight.  

The result is that many incorrect bearings converge much too quickly, causing predictions 

to be very close to where the antenna is facing.  Improvement for these algorithms based 

upon this trial data is in Section 6.2.2.  

5.4  skypie Framework Developments Results  

This section discusses results and lessons learning from development of the skypie 

prototype. 

5.4.1 Hardware Design Decisions and Rationale 

The next section discusses several design choices that are made after initial research, 

experimentation, or pilot tests. 

I. Stationary vs. Rotating Antenna.  A stationary antenna is chosen because the 

magnetic interference from a stepper motor would greatly interrupt any 

magnometer/compass readings, thus making heading measurements inaccurate.  

Pilot tests with a stepper motor greatly impacted the analog compass during pilot 

tests with the localizer prototype.  

II. Smartphone vs. Raspberry Pi Computer.  The use of a cellular device as the main 

computer was considered, but ultimately decided against. The benefit is that 

cellphones have a slim form factor, good computing specifications, light-weight 

batteries, built-in cellular connectivity, and also come with many sensors needed 

for geolocation.  However, cellphones lack the input/output ports that the 

Raspberry Pi offers (four USB, Ethernet, and GPIO pins), have a higher cost, and 
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less operating system choices, so the Raspberry Pi is chosen as the main computing 

platform.  

III. Drone Dependence vs. Drone Independence.  Deciding the amount of dependency 

on a drone is a difficult choice for designing the payload.  On one hand, payload 

integrated into the drone has the advantages of on-board sensor data (camera feeds, 

GPS feeds), communication channel, and potentially a power source.  While several 

custom and open-source drone protocols exists, most commercial drones have 

propriety protocols, meaning the payload would be pigeonholed into a specific make 

or manufacturer.   

IV. Raspbian vs. Kali Linux.  The two operating systems considered for use on the 

sensor platform are Raspbian and Kali Linux.  Raspbian is a variant of the Debian 

OS made by the Raspberry Pi corporation specifically for operability on Raspberry 

Pi chips, so it provides a larger support ecosystem.  This includes utilities and 

libraries useful with the hardware components.  Kali Linux is also a variant of 

Debian used for penetration testing and CAN, and comes pre-loaded with many 

hacker utilities and programs.  Raspbian supports the necessary Python libraries 

for performing collection and analysis functions required by localizer (originally 

developed for Raspbian) and skypie.  Setup with Raspberry Pi hardware, such 

as the Sense HAT, is much easier with Raspbian. 

While the payload is designed to focus on having cyber-attack capabilities, 

the ultimate goal is to mimic and pass through a connection from the attacker’s 

computer as if it is local (this scheme is described in 6.5).   This gives the hacker 
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more flexibility and the payload operating system does not need excessive hacker 

tools itself.   

V. Cellular vs. Radio Reachback.  A cellular connection is beneficial in urban areas 

where the cellular infrastructure exists.  The attacker also has the advantage of 

communicating with the device from larger distances since the cellular networks 

allow Internet data connections.  From a stealth standpoint, in urban environments 

cellular signals are ubiquitous and it may be harder for a defender to identify the 

link.  A radio communication channel is better in environments with poor or no 

cellular service, however the attacker needs to be within radio range of the sensor.  

Commercial radio chips also come in a limited amount of frequencies, which an 

astute defender may be able detect.  For this research, a cellular connection is 

chosen to mimic a scenario where the attacker is targeting a home or business.  

5.4.2 skypie Framework Functionality 

Table 16 provides a list of features that were planned and completed in this 

iteration of research and suggests steps that could be taken to improve it in the future.  

The symbols in the ‘State’ column indicate the progress of each feature.  A green circle 

indicates the feature is completed, a yellow triangle indicates the feature is implemented 

but should be improved, and a red diamond indicates the feature is not implemented.    
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Table 16. skypie Current Features and Future Work  

 

Category Feature Implementation Status State Next Step

Wi-Fi Passive Wi-Fi Sniffing Proven Operational Complete

Wi-Fi Bearing Prediction

Rudementary algorithm 

(BPGA1) Improve accuracy

Wi-Fi Geolocation Prediction

Rudementary algorithm 

(GPAA1) Improve accuracy

Wi-Fi Device Analysis Rudementary identification

Add features (see 

CNA/CNE category)

Wi-Fi Access Point Interaction

Present in locazlier, not 

skypie Implement

UI Web UI Suite Proven Operational Optimize graphing speeds

UI Satelite Imagary Analysis Proven Operational Complete

Telemetry GPS Sensor Proven Operational Complete

Telemetry Accelerometer Operational Improve accuracy

Operational Database Storage Structure Proven Operational Complete

Operational Data Upload

Works over secondary 

WLAN interface Celluar Implementation

Operational Data Download

Works over secondary 

WLAN interface Celluar Implementation

Operational Secure data transfer SFTP connection Complete

Operational Operation Battery Life

4+ hours while collecting 

Wi-Fi Sufficient

Operational Remote Sensor Control Proven Operational Complete

Operational Remote Sensor Geolocation Proven Operational Complete

Operational

Arbitrary Remote 

Command Execution Proven Operational  Complete

Operational

Multi-Sensor Capability 

and Data Fusion Proven Operational Test with multiple sensors

Operational Survivable Chasis Proven Operational Make water-resistant

CNA/CNE EAPOL Packet Grabbing Stub Implement

CNA/CNE Mirror Mode Stub Implement

CNA/CNE Associated Client Tracking Stub Implement

CNA/CNE Probe Request Tracking Stub Implement

Bluetooth Passive Sniffing Stub Add hardware, implement
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6. VI. Conclusion and Future Work 

6.1 Overview 

This chapter summarizes the research and results found during development and 

experimental evaluations.  Section 6.2 reiterates notable conclusions from experimentation 

and statistical analysis.  Section 6.3 synthesizes findings in the context of cybersecurity 

and privacy.  Section 6.4 discusses potential countermeasures.  Lastly, Section 6.5 provides 

possibilities for future work in the field of cyber-attack drones.    

This research succeeds in proving the hypothesis that a functional cyber-attack drone 

payload could be built under $500, under 1 kg, and within four months.  One of the four 

data sets shows that geolocation via radiolocation of Wi-Fi targets can be accurate below 

the hypothesized 15% of distance from the targets at 600 m using less than 90° of angular 

coverage and full channel hopping, however the other three data sets failed to reach that 

degree of accuracy.  Geolocation efforts with larger coverage angles, targeted single-channel 

sweeps, and intelligent filtering are recommended to increase accuracy.  

The research goals, which are to investigate the effectiveness of geolocation via 

radiolocation and implement an attack drone payload are both met.   

6.2 Research Conclusions 

6.2.1 Geolocation via Radiolocation Conclusions 

Geolocation via 802.11 emissions (Wi-Fi) using a portable directional antenna is 

possible, but difficult to achieve the accuracy that GPS delivers.  This research found that 
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geolocation of a target cell phone acting as a Wi-Fi access point in a field from 300 m 

away is accurate within 70.1 m from 300 m away and within 76 m from 600 m away.  

Three of the four main tests failed to be under the hypothesized geolocation error of 15% 

of the sensor-to-target distance, with tests 300 m away averaging 25.5% and test 600 m 

away averaging at 34%.      

Results suggest collections in a circular pattern experimentally outperformed those 

of a line, however when the two consist of the same angular coverage the results are mixed.  

Greater angular coverage appears to reduce the number of incorrect predictions, with the 

greatest reduction occurring from 10° to 30°, while little is gained from increasing between 

45° to 65°.  Increasing the number of subsequent collection points and length of collection 

generally increased accuracy at 300 m, but there is little correlation at 600 m.  The most 

important factor in reducing geolocation guess error is getting accurate bearing readings.  

The experiment observed many inaccurate bearings as well as high standard deviations 

among readings from the same location.  These are likely the result of few beacons received 

during the sweep because of the limited slice of time at which the target and antenna are 

aligned.  This is combined with the fact that the device needed to channel hop to collect 

from the 11 802.11bg channels.  Bearing readings also are subject to antenna back lobe 

misreadings that caused certain geolocation guesses to be on the opposite side of the sensor.   

It is likely geolocation attempts can be significantly improved by the following 

techniques: 

 Exploring angular coverage exceeding 90° or using multiple sensors to achieve 

the same effect 
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 Intelligently filtering back lobe readings 

 Filtering outlier geolocation predictions intelligently 

 Performing full 360° sweeps on the 802.11 channel of the target 

6.2.2 BPGA1 and GPAA1 Conclusions 

Testing the skypie framework enacted a test of the BPGA1 and GPAA1 algorithms, 

which generally failed in accuracy.  GPAA1 failed because BPGA1 surmised predictions 

from too many incorrect bearing readings.  BPGA1 make geolocation guesses without 

enough data.  BPGA1 can be improved by adding additional weight on RSSI values as 

opposed to just weight based on geographic separation.    

Both algorithms are time-based, where they issue a prediction at the end of every 

time interval, even if the guess is inaccurate.  Both algorithms could be improved by only 

fielding guesses that meet a proven threshold, such as only returning a bearing if the RSSI 

values have seen a spike in power while the accelerometer indicates a minimum threshold 

of rotation.  Buckets in which there is not enough data means the algorithm should wait 

for more information.   

In the future, the algorithms could also gain information from other telemetry fields 

available in the implementation, such as GPS azimuth and GPS speed.  

6.3 Research Significance and Synthesis 

Developing the skypie prototype and testing geolocation with the localizer 

prototype gave insight into challenges with precise geolocation and device tracking from 

long distances by only using Wi-Fi signals.   
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At the observed error rates, distances, and experimental constraints, tracking a 

victim’s cell phone as they walked through the city would be inaccurate, most likely 

showing dots in many places the device never was.  Averaging would most likely yield a 

location in the vicinity.  Trying to track the person as they moved would also be 

challenging, as predictions are so scattered when the device is stationary it is hard to tell 

the difference as to if the device is actually moving or just experiencing variation in guesses.    

This research found several techniques to lower overall error (see Section 6.2.1), but 

overcoming the underlying obstacles—getting accurate bearing readings and a mature 

geolocation algorithm—requires more work on the part of an attacker to get precise and 

accurate results.   

That said, even with error rates in the 30% range, a wireless attack payload can 

easily still perform cyber operations on a target, to include sniffing, injecting, and 

performing denial-of-service attacks.  These are activities an attack framework like 

skypie can perform from 600 m away.  This is significant because a motivated attacker 

can also perform these attacks with less than $500, purely open source software, a 

commercial drone—all while acting from a remote location and remaining anonymous.  If 

the drone becomes captured, the attacker can evade detection by remotely self-destructing 

the payload’s operating system (a bonus feature in skypie).  If the communication 

channel is similar to that of skypie, there would not be a clear data trail to follow since 

the payload only contacts a proxy SFTP server and the cellular SIM card can be bought 

with cash.    
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Indeed, like the drones in Bioshock, a well-crafted cyber-attack drone poses a 

significant threat to an unsuspecting target. 

6.4 Countermeasures 

During the development of a wireless cyber-attack attack platform and experiments 

testing radiolocation using Wi-Fi signals, several countermeasures have been identified 

that would make conducting CNA and CNE more challenging in this field: 

1. Random and Rotating MAC Addresses. Device profiling can be done easily 

if MAC addresses remains constant.  Using MAC addresses is also convenient 

because it still works in the presence of most encryption schemes.  If the MAC 

of a device changes often, the attacker must resort to more complicated forms 

of identification (such as radio frequency fingerprints or behavior correlation).  

2. Wi-Fi PSK Changes and Unique SSIDs.  Each time the PSK changes, an 

attacker needs to re-capture an EAPOL/WPA2 handshake and crack the 

password for that network.  Changing the PSK periodically may deter an 

attacker who has previously compromised a network.  Unique SSIDs prevent 

the password from being cracked quickly by a rainbow table.    

3. Disable Probe Requests in Future Protocols.  Probe requests reveal unique 

connection history about a device, revealing associations with previous SSIDs.  

Since SSIDs do not change often and location information about them can be 

found online [28], probe requests can also leak geolocation history.   
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4. Varying AP Signal Strength.  Radiolocation discussed in this work relies 

inherently on RSSI.  If an AP were to randomly alter signal intensity, even 

slightly, amplitude-based geolocation would lose accuracy.   

6.5 Future Work 

Creating, developing, and forging the technology cyber-attack drone has many 

avenues for improvement.  Several suggestions, particularly those that build upon 

radiolocation techniques and the foundational skypie framework built in this research 

are: 

1. Bearing Prediction.  Decreasing bearing prediction error is the most 

straightforward way to increase geolocation accuracy.  This task is 

complicated by the fact that the sensor is both moving in space and rotating 

unpredictably—making determining a target’s heading difficult to impossible 

if there is not enough rotation in a particular location. Additionally, the 

sensor is designed to be on an airborne MUAV that has lift and steering 

generated by electromagnetic motors.  Overcoming these challenges is 

important for improving this type of radiolocation.  

2. Geolocation Algorithm.  Intelligently identifying how to combine multiple 

predictions with different confidence levels would also improve geolocation 

accuracy.  This requires more experimental geolocation collection and 

alteration of how sensor data is combined into a final guess.  Additional 

telemetry fields available from the GPS module, such as GPS speed and 
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azimuth, may be beneficial to utilize in new algorithms.   Additionally, a 

higher-level algorithm may be able to assess patterns from lower-level 

algorithm to make more informed guesses.  An example of this potential is 

shown in Figure 63 (the experiment results from Section 5.2.3), where rays 

have been drawn where geolocation guesses seem to form lines.  One of these 

intersections occurs at the exact location of the targets.  If a higher-level 

algorithm does a similar analysis, it might be able to identify guesses beyond 

simple averaging.  This would be beneficial in environments with obstacles.    

 

Figure 63. All geolocation guesses from the localizer experiment.  After adding secondary 

rays (pink lines) along trend lines, this plot begs the question: “is the truth out there?” 
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3. Airborne Operation Performance.  Putting and testing the payload for 

operations on an actual drone is an inevitable step in this research.  The 

added elevation from the drone has been shown to increase signal reception 

in pilot studies, and it is possible bearing and geolocation predictions would 

improve as well.  Additional environmental challenges may arise, however 

the skypie successfully can be used in bumpy setting without significant 

issues (it was tested on motorized mountain bicycle on a bumpy field). 

4. Additional Wireless Protocols.  Now that a software framework and 

prototype exists for collecting, transporting, and viewing Wi-Fi traffic, 

adding sensors and support for other protocols is a natural choice.  Adding 

Bluetooth and Software Defined Radio (specifically GSM) sensors expands 

the attack surface to the majority of networked consumer wireless devices 

with little weight addition. 

5. CNA and CNE Features.  The development of skypie ends right at an 

exciting point—where an existing framework exists and higher-level wireless 

CNA/CNE features are ready to be built in.  These can include, but are not 

limited to: connection association correlation, probe request correlation, 

advanced device profiling, EAPOL/WPA2 sniffing and cracking, denial of 

service attacks, replay attacks, and interactive AP connections.   

      A proposed feature for the skypie framework is ‘Mirror Mode,’ which 

would allow an attacker to theoretically trick a victim AP into thinking the 
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attacker’s machine is local as shown in Figure 64.  Mirror Mode is proposed 

as follows: 

1) The Wi-Fi EAPOL/WPA2 handshake has previously been sniffed 

and cracked by skypie or other means.   

2) Mirror Mode is next enabled in the skyport UI by the attacker.    

The attacker uses a laptop with a WNIC to generate traffic.  The 

attacker laptop MAC is entered into the with the skyport 

configuration file by the attacker, so the program knows what 

device to record and forward. 

3) A secondary WNIC (separate from the Internet-connected one) 

on the attacker’s workstation records Wi-Fi traffic from the 

attack laptop’s MAC address in small PCAP files. 

4) The PCAP files are uploaded to the skypie sensor.   

5) When the skypie receives the files, it replays them to the target 

AP over a WNIC using a utility like tcpreplay [51].   

6) The replay simulates the attacker’s laptop being physically 

present, allowing distant devices to react as if it were actually 

there.  Since the password is known, the attacker can authenticate 

and associate with the target AP. 

7) The skypie sensor captures broadcasts and incoming traffic 

addressed to the attacker’s WNIC as PCAP files, sending them 

back to the attacker’s workstation. 
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8) The attacker’s workstation replays the PCAPs back over its 

WNIC connection, playing the traffic back to the attacker’s 

laptop.   

     There no doubt latency will be introduced by Mirror Mode, but if 

successful, the attacker then has the advantage of attacking from ‘inside’ the 

private wireless network remotely, successfully gaining Remote Physical 

Proximity (RPP).  This would be a new type of injection attack that 

combines the ease and anonymity of remote attacks with the inherent 

weaknesses wireless traffic.  
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Figure 64. Conception description of ‘Mirror Mode,’ a theoretical and powerful feature that could be implemented with the skypie 

framework 
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Appendix A. Supplemental skypie Design Resources 

These resources are provided to add clarity on specifics of certain aspects of the 

skypie/skyport framework design. 

A.1 skypie/skyport Data Storage Scheme 

 The framework’s data storage scheme is shown in Figure 65.  Boxes indicate 

directories, and files inside are shown next to or below each box as text.   

The left column represents the attacker’s workstation, which is running skyport.  

Data is stored in the ./skyport/database/sensors directory, with a subdirectory 

for each sensor.  In the example depicted in Figure 65, there are three sensors deployed, 

“starchy,” “gunter,” and “xena.”     

Directories in green are downloaded from the skypie sensor, which is depicted in 

the right column.  Directories that are purple are uploaded to the skypie sensor.   

Directories in blue do not move.   

The center column depicts the SFTP server, which acts as an Internet-facing 

intermediary for the sensor and the attacker’s workstation.  The files in the “synch” 

directory of each sensor are uploaded here until the attacker downloads them.   
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Figure 65.  skypie/skyport data storage scheme 

A.2  skypie Default Configuration File (config.txt) 

 The program utilizes a standard configuration file scheme similar to Microsoft 

Windows INI files, consisting of sections and key-value pairs.   This default file is 

commented to describe each setting.  If the program expects a certain set of values, those 

values are printed in brackets after the description in the comments.  For example, the 

logging_level key in the [log] section accepts values that are ‘debug’, ‘info’, 

‘warning’, ‘critical’ or ‘none’.  

     
## Skypie Config File.  Modifying this file alters the behavior of the program.     
 
# SFTP Server 
[fileserver] 
# Sensor's name, creates unique storage location on skyport.  Useful for multiple 
sensors. 
name=starchy 
# Credentials for the SFTP account of the sensor's name 
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verifier=aSecretPassword9000 
# Port to connect over SFTP for uploading/downloading sensor data 
sftp_port=2222 
# IP/hostname to connect over SFTP for uploading/downloading sensor data 
sftp_server=ftp.balllaboratories.org 
# Whether files will be deleted or kept after uploading to the remote server 
remove_after_upload=False 
 
# Logging Settings 
[log] 
# File logging level.  You may want to set this to 'none' if you are worried about the 
sensor being discovered. [debug, info, warning, critical, none] 
logging_level=debug 
# Debug file size.  How big (kB) each file will be before split.  Smaller sizes give 
feedback faster, but bigger sizes are easier to manage. 
logging_size=50 
 
#Bluetooth Collection (not implemented) 
[bluetooth] 
# MAC of Bluetooth antenna used for collection.  Bluetooth is not supported.  Used as a 
placeholder. 
bluetooth_mac=XX:XX:XX:XX:XX:XX 
 
 
# WiFi Collection 
[wifi] 
# Mode the wifi will be in.  This affects the mirror and collection threads 
[off,collect,mirror] 
mode=collect 
# MAC of WiFi antenna used for collection.  Currently supports only 1.  Can use only 
first half to denote just manufacturer (example: aa:bb:cc) 
antenna_mac=00:25:22 
# Collection interval in seconds 
interval=30 
# Size in mB of buffer for preferred packets (see bookmarks file).  Oldest files will 
be removed when full. 
size_bookmarks=500 
# Size in mB of buffer for envelope data (geo, compass, and packet summary data) 
size_envelopes=500 
# Size in mB of all packets captured 
size_raw=500 
# Turn off collection of all packets, used to save space [on, off] 
raw_collect=on 
# Max size in mB of collected files 
file_size_interval=10 
# Raw filter (libcap format), the filter the antenna will use as the basis for 
collection.  Only packets in this filter will be collected 
raw_filter= wlan[0] == 0x80 
# Bookmark filters (libcap format). Bookmarks are the only packets that are sent 
directly to skyport.  They are a subsest of the raw packets collected. 
#  Multiple filters are allowed.  Seperate by a new line, be sure to indent each line 
with at least one space.  Each one requires processing time, so it's not recommended to 
do more than 4. 
bookmarks_filters=wlan.fc.type_subtype == 4 
 wlan_mgt.ssid=="Stowaway Lounge" 
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 wlan_fc.type == 2 
 wlan.fc.type_subtype == 8 
 
# MirrorMode 
[mirror] 
# The MAC of the attack platform.  This device must be within range of the WiFi 
interface of the C2 machine 
attack_mac=AA:AA:BB:BB:CC:CC 
# The MAC of the victim. 
target_mac=AA:AA:BB:BB:CC:CC 
# 'All' will forward any traffic destined for the target's MAC address, allowing the 
attacker to send spoofed MAC frames. [all,attack_only] 
forward_attackside=all 
# [all,target_only] 
forward_targetside=target_only 
 
 
# Telemetry 
[telemetry] 
# [on,off] Store geo data 
mode=on 
# Max size in mB of telemetry data 
size=80 
# Length of time before data is written to a file in seconds 
interval=42 
 
 
# Update/Transfer Management 
[update] 
# How often config changes are downloaded  (in seconds) from the SFTP server. 0 = 
Constant download attempts 
download_wait=5 
# Time to wait (in seconds) after a data upload completes before initiating another.  0 
= Constant upload attempts 
upload_wait=0 
#  Changing to 'shutdown' notifies all operating threads they need to shutdown.  A 
gentle way to shut down.  Off is maintained when all the threads are done. 
[on,shutdown,off] 
skypie_operation=on 

 

A.3  skyport Default Configuration File (skyport-config.txt) 

Similar to skypie, skyport also has a configuration file used to control its 

behavior.  The contents of the default file are shown below.   

# Config file for the Skyport analyzer.   
 
[fileserver] 
# Username for account that has privilege over all the sensors 
name=sensors 
sftp_port=2222 
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sftp_server=ftp.balllaboratories.org 
# Credentials 
verifier=mySecretMasterPassword9000 
# Whether or not to delete data files from webserver after downloading 
remove_after_download=False 
 
[update] 
# Time to wait (in seconds) after a data download completes before initiating another.  
0 = Constant upload attempts 
download_wait=5 
# Time to wait (in seconds) after a data upload completes before initiating another.  0 
= Constant upload attempts 
upload_wait=5 

 

A.4 Geodesic Intersection Algorithm by Charles F. F. Karney (intersect-

skypie.cpp)  

// INTERSECT2 - modified for interfacing with Skypie 

 

// Author: Charles F. F. Karney  

// Algorith from paper: 

// Geodesics on an ellipsoid of revolution, 

// Feb. 2011, http://arxiv.org/abs/1102.1215 

 

// Find intersection of two geodesics 

// Compile with, e.g., 

// g++ -o intersect -I/usr/local intersect.cpp -lGeographic -Wl,-

rpath=/usr/local/lib 

 

// From: 

https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f/ 

 

/* 

Here's an example of its 

operation. Note that the 4 points must be in the same 

hemisphere centered at the intersection point for the gnomonic 

projection to be defined. 

 

Line A: Istanbul - Washington 

Line B: Reyjkavik - Accra 

 

./intersect 42 29 39 -77 64 -22 6 0 

*/ 

 

#include <iostream> 

#include <iomanip> 

#include <GeographicLib/Gnomonic.hpp> 

#include <GeographicLib/Geodesic.hpp> 

 

class vector3 { 

public: 

  double _x, _y, _z; 



145 

 

 

  vector3(double x, double y, double z = 1) throw() 

    : _x(x) 

    , _y(y) 

    , _z(z) {} 

  vector3 cross(const vector3& b) const throw() { 

    return vector3(_y * b._z - _z * b._y, 

                   _z * b._x - _x * b._z, 

                   _x * b._y - _y * b._x); 

  } 

  void norm() throw() { 

    _x /= _z; 

    _y /= _z; 

    _z = 1; 

  } 

}; 

 

int main(int argc, char *argv[]) { 

  double lata1, lona1, lata2, lona2; 

  double latb1, lonb1, latb2, lonb2; 

  //std::cin >> lata1 >> lona1 >> lata2 >> lona2 

  //         >> latb1 >> lonb1 >> latb2 >> lonb2; 

  if (argc != 9){ 

       std::cout << "[-] Needs exactly 8 arguments (four coordinates, defining 

the two lines you want to calculate the intersection of."; 

       exit(0); 

  } 

 

lata1 = atof(argv[1]); 

lona1 = atof(argv[2]); 

lata2 = atof(argv[3]); 

lona2 = atof(argv[4]); 

latb1 = atof(argv[5]); 

lonb1 = atof(argv[6]); 

latb2 = atof(argv[7]); 

lonb2 = atof(argv[8]); 

 

  const GeographicLib::Geodesic 

    geod(GeographicLib::Constants::WGS84_a(), 

         GeographicLib::Constants::WGS84_f()); 

  const GeographicLib::Gnomonic gn(geod); 

  double 

    lat0 = (lata1 + lata2 + latb1 + latb2)/4, 

    // Possibly need to deal with longitudes wrapping around 

    lon0 = (lona1 + lona2 + lonb1 + lonb2)/4; 

  std::cout << std::setprecision(16); 

  std::cout << "Initial guess " << lat0 << " " << lon0 << "\n"; 

  for (int i = 0; i < 10; ++i) { 

    double xa1, ya1, xa2, ya2; 

    double xb1, yb1, xb2, yb2; 

    gn.Forward(lat0, lon0, lata1, lona1, xa1, ya1); 

    gn.Forward(lat0, lon0, lata2, lona2, xa2, ya2); 

    gn.Forward(lat0, lon0, latb1, lonb1, xb1, yb1); 

    gn.Forward(lat0, lon0, latb2, lonb2, xb2, yb2); 

    // See Hartley and Zisserman, Multiple View Geometry, Sec. 2.2.1 

    vector3 va1(xa1, ya1); vector3 va2(xa2, ya2); 

    vector3 vb1(xb1, yb1); vector3 vb2(xb2, yb2); 

    // la is homogeneous representation of line A1,A2 



146 

 

 

    // lb is homogeneous representation of line B1,B2 

    vector3 la = va1.cross(va2); 

    vector3 lb = vb1.cross(vb2); 

    // p0 is homogeneous representation of intersection of la and lb 

    vector3 p0 = la.cross(lb); 

    p0.norm(); 

    double lat1, lon1; 

    gn.Reverse(lat0, lon0, p0._x, p0._y, lat1, lon1); 

    // std::cout << "Increment " << lat1-lat0 << " " << lon1-lon0 << "\n";  // 

I removed the output to save time. -CB 

    lat0 = lat1; 

    lon0 = lon1; 

  } 

  std::cout  << "Final result " << lat0 << " " << lon0 << "\n"; 

  double azi1, azi2; 

  geod.Inverse(lata1, lona1, lat0, lon0, azi1, azi2); 

  std::cout << "Azimuths on line A " << azi2 << " "; 

  geod.Inverse(lat0, lon0, lata2, lona2, azi1, azi2); 

  std::cout << azi1 << "\n"; 

  geod.Inverse(latb1, lonb1, lat0, lon0, azi1, azi2); 

  std::cout << "Azimuths on line B " << azi2 << " "; 

  geod.Inverse(lat0, lon0, latb2, lonb2, azi1, azi2); 

  std::cout << azi1 << "\n"; 

} 
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