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ABSTRACT 

Traditional classroom instruction provides all students with the same topics, at the 

same time, at the same speed. However, personalized learning systems that take into 

account students’ individual interests, skills, and preferences have been shown to be more 

effective. Our goal is to develop an adaptive teaching-learning method for enhanced and 

personalized education, which we call Curated Heuristic Using a Network of Knowledge 

for Continuum of Learning (CHUNK Learning). CHUNK Learning will provide a 

curated way of moving through a network of modules composed of educational material 

joined together by common attributes (i.e., tagged with competency or skill levels). Here, 

we use a network science approach to develop an initial software prototype, which 

recommends learning content to students based on their current interests. We establish 

methods to automatically extract metadata tags to describe course content and student 

profiles. These tags are used by the software to match courses with individual interests. 

Moreover, our software is able to simulate student feedback, which helps us test the 

updating features of our software. This allows us to adapt course recommendations 

to interest changes throughout the study period and to improve course recommendations 

for future students. This prototype builds the basis for a CHUNK Learning 

platform, in which the learner can heuristically discover or learn based on personal 

background, interests, and skills. 
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Executive Summary

Traditional classroom education teaches fixed contents at a fixed time and speed, which
is generally adapted to the average student, but leaves individual preferences, interests or
skills behind. Personalized learning, where educational content is presented to students in
an individualized manner that takes into account their personal backgrounds and learning
goals, is an emerging concept that is shown to be more effective. Still, such an approach
makes great demands on the administration, organization and personalized selection of
learning content.

Our goal is to establish a network science based real-time and adaptive teaching-learning 
method for enhanced and personalized education, which we call “Curated Heuristic Using 
a Network of Knowledge for Continuum of Learning” (CHUNK Learning). CHUNK 
Learning will provide a network of modules, composed of educational material, which are 
linked by common attributes (i.e., metadata tags describing content, competency or skill 
level, prerequisites, etc.). It recommends to the learner educational modules that 
match his/her individual profile, thereby adapting to any profile changes occurring 
during the period of study.

In this thesis, we develop an initial software prototype for this recommender system that will
provide a basis for the CHUNK Learning platform. We use a network science perspective
where educational material is organized in a multilayer network. Courses (represented as
nodes) are linked by different categories of metadata tags (e.g., content, prerequisites,...)
with each category forming one layer in the network. First, we analyze data from all courses
offered by the Operations Research (OR) department at the Naval Postgraduate School
(NPS) as well as data from former students enrolled in the OR curriculum. We use this data
to automatically extract and assign tags describing learning content, course prerequisites,
and student profiles. Next we develop an adaptive tag weighting system that reflects the
relevance or priority of assigned tags for a course or in a student profile. Tagweighting allows
us to dynamically adapt the importance of a specific tag for a course or profile in a real-time
manner based on student feedback. Thus, the system is able to implement feedback and
adapt course recommendations accordingly in a real-time manner. Furthermore, it can be
used to improve course recommendations to future students, thus continuously optimizing
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the learning platform. We then develop a dynamic recommender system algorithm that
is able to match course content with individual student interests, thereby implementing
feedback and adapting tag weights accordingly. The amount by which feedback affects
course weights can be continuously adjusted via an input variable. Our software program
is able to simulate student feedback based on input variables representing several feedback
scenarios, such as defined feedback distributions with students influencing each other or
not.

We compare this adaptive dynamic recommender system to a static system, in which tag
weights remain constant throughout the experiment, but which works analogously in all
other aspects. We can show that tag weights in the dynamic system do change over time,
and that this results in changes in the recommended course path for individual students.
Verification experiments confirm that these changes are indeed based on the implementation
of feedback, and depending on the settings can improve the matching score of course
content with student profiles. Lastly, we use a Nearly Orthogonal Latin Hypercube (NOLH)
experimental design to modify input variables in order to identify and evaluate relationships
between these variables and their overall impact on the system. Although this experiment
should be expanded to a larger scale, results reveal information on ideal numbers of tags,
the impact of feedback distributions on the recommender score and the overall changes in
course paths.

Taken together, the work described in this thesis provides a prototype for a real-time adaptive
personalized learning framework. From the network science perspective, we mainly focus
on one layer (course content), but the methods suggested and established here can be applied
to other layers. Implementation of these other layers in future work will greatly improve
the quality of individual course recommendations as intended in the CHUNK Learning
concept.
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CHAPTER 1:
Introduction

1.1 Motivation
In the modern world, which is marked by perpetual scientific progress and the swift ex-
change of data and knowledge on a global scale, students often struggle with the problem
of information overload. Educational institutions are increasingly challenged to provide ef-
fective, focused, and well structured learning systems to guarantee on-demand high quality
education across a large variety of topics. Given that millennials best perform in deep and
rich learning environments, the ultimate goal is to streamline the learning experience by
making information convenient and pushing information to the student rather than pulling
it off the web or from professors (Stiles 2000; Herrington and Herrington 2008).

1.2 Problem Statement
In traditional educational approaches, learners interact with the same content, mostly in the
same order, together at the same time and pace. This environment creates carbon copied
educational experiences and similarly skilled learners, impeding diversity and performance
and failing to enhance the individual learner’s skills (Russell 2018). In today’s technologi-
cally connected world, we all have personalized profiles on sites such as Amazon, Netflix,
and Facebook, that push information to us based on our previous on-line behaviors and
experiences. Yet, this is not the case for education. In traditional educational methodology,
there is no educational profile that captures a learner’s background, skills, interests, and
experiences and matches the profile with recommended educational content.

The emerging concept of personalized and adaptive learning claims to fill this gap. Person-
alized education engages the learner, transitioning the focus from educational curriculum
to skills and career, supporting life-long learners that have information at their fingertips,
anytime, anywhere, and across many stages of life (Russell 2018; Pane et al. 2017).

However, a personalized learning strategy brings along new requirements: (1) students
need to be profiled according their current (and future) personal interests, skills, talents and
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learning preferences, and (2) learning material needs to be tagged in a way that optimal
educationalmaterial can bematched to the student’s profile. The currentmetadata associated
with publicly available free educational content makes this connection difficult and does
not provide a convenient delivery method to the learner.

1.3 Purpose
We aim to generate a learning environment that offers personalized adaptive learning, which
we call the “Curated Heuristic Using a Network of Knowledge for Continuum of Learning”
(CHUNKLearning) concept. The aim of this thesis is to explore a network science approach
to offer a framework for personalized learning, in which students can move through a
network of modules of learning material joined together by common attributes like skill
level, competency, etc.

We specifically address the improvement of tagging of learning content with metadata in
a way that allows its algorithm-driven identification and selection to fit the needs of the
individual learner. Furthermore, we simulate students’ learning paths as they progress
through learning content, using real data from the Naval Postgraduate School (NPS). We
analyze these data sets to set up learners’ profiles, thereby exploring ways to implement
adaptive feedback from the (simulated) students. This will build the basis for a CHUNK
Learning algorithm that facilitates a personalized educational experience.

1.4 Thesis Structure
Chapter 1 provides the problem statement and the motivation for the thesis. Chapter 2
provides all necessary definitions, introduces a network science perspective to our problem
at hand, and examines important literature in the field. Chapter 3 gives an overview of all
sources of data used for this thesis and describes the preparation of our data. Chapter 4
presents the methodology used in this work: (1) a network science perspective, (2) an adap-
tive tagging model, (3) a hybrid recommender system, and (4) a simulation that generates
student feedback. In Chapter 5, we show, interpret and discuss the results, and in Chapter 6
we provide a conclusion and suggest future work.
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CHAPTER 2:
Background

In this chapter, we give an overview of background knowledge that is relevant for the
thesis. We define important terms as we understand and use them throughout the following
chapters, summarize important previous findings from this field of research as can be found
in the literature, and highlight what we think needs to be further investigated or improved.

2.1 Hierarchy of Educational Material
Educational content is generally organized in a hierarchic structure. Students subscribe to
a certain curriculum that consists of several courses. Each course has themes organized
into chapters, and each chapter consists of several sections. In general, the smallest level of
educational material relevant for learning is a section, whereas the smallest level a student
can choose from is at the course level.

We now introduce terms describing the hierarchy of educational material, which are relevant
for our CHUNK Learning approach and the models presented in this thesis.

• Microcredits: Generally, at most educational institutions or on learning platforms,
students have to pass the course to get credits. We would like to explore the idea of a
microcredit taught through a module that captures educational information at a differ-
ent granularity than the course credit. This allows for choices on what microcredits
can form the equivalent of credit hour for a course. Of course, restrictions on what
microcredits can be combined to give a whole credit need to be put in place.

• Activity: This term is used for the smallest subdivision of educational material
students experience or engage with. Activities can be videos, webinars, codes, games,
articles, assessments, demonstrations or similar, and represent the atomic element of
educational content.

• CHUNKlet: A CHUNKlet is a coherent collection of one or more activities. CHUN-
Klets form the basic building blocks in the assembly of a four part CHUNK.

• CHUNK: Course content is divided in several modules, so called CHUNKs. A
CHUNK consists of several CHUNKlets arranged in a conventional structure usually

3



consisting of four parts: why, how / what, methodology, and assessment. This is the
level where we envision the possible awarding of microcredits.

• Course: A course consists of several CHUNKs, may be taught or curated by one
or more instructors, and is analogous to the typical credit hour course structure
comprising a standardized period of study (e.g., quarter, trimester, or semester).

• Curriculum: A curriculum is a sequence of courses required to obtain a certification
or degree. While some courses in the sequence are usually mandatory, some can be
chosen, but typically need to be approved by the program of study.

2.2 Personalized Learning
Traditional teaching methodology mostly relies on a relatively rigid structure of educational
content presented to a heterogeneous group of students. However, recent studies indicate,
that learning efficiency can be dramatically improved, if personal prerequisites, skills, and
individual learning preferences of students are taken into account (Pane et al. 2017).

Ideally, learning contentwould be presented to students in a personalized framework, reflect-
ing their individual interests, previous knowledge, susceptibility for different educational
methodology, and speed, often referred to as personalized learning.

Definition 2.2.1 Personalized Learning

Personalized learning refers to instruction in which the pace of learning and
the instructional approach are optimized for the needs of each learner. Learn-
ing objectives, instructional approaches, and instructional content (and its
sequencing) may all vary based on learner needs. In addition, learning activi-
ties are meaningful and relevant to learners, driven by their interests, and often
self-initiated. U.S. Department of Education (2017).

This implies that a variety of educational materials should be presented to students, based
on their different learning profiles, delivered at different speeds, with variable content and
depth of knowledge, which we call a personalized learning framework. Thus, we introduce
the following definition:
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Definition 2.2.2 Personalized Learning Framework

A personalized learning framework is the overall conceptual structure used to
present educational material to an individual student, taking his/her interests,
prior knowledge, learning preferences and learning goals into account.

However, such an individualized approach requires both detailed profiling of the student’s
personal learning preferences, as well as an extraordinary collection and annotation of
educational material. The latter is necessary in order to identify educational material best
fitting the student’s profile. Network science can provide important tools that help to achieve
these goals, as we explore in this thesis.

2.3 Network Science in the Context of Personalized
Learning

Network science is a relatively young discipline, which in particular helps to understand
relations between entities and has great interdisciplinary application (Newman 2010). In the
context of learning platforms, network science provides great tools to analyze, structure and
connect metadata describing existing educational material. Furthermore, network science
can help the user visualize and interact with available learning materials as a network of
knowledge. Moreover, we can analyze the students’ learning paths and behaviors, learn
from them, and make better path suggestions to future students.

As the field of network science has emerged from a variety of research fields with different
backgrounds, terminology in the literature is not always standardized. In order to avoid
misunderstandings, the following section will define the most important terms as they are
used in this thesis. We begin with the following definition of a network:

Definition 2.3.1 Network

A network is, in its simplest form, a collection of points joined together in pairs
by lines ... A network is a simplified representation that reduces a system to an
abstract structure capturing only the basics of connection patterns and little
else (Newman 2010).

5



We use the term network to highlight connections between different forms of educational
content as well as relationships between educational material and its metadata. Referring
to the above definition, single educational content or metadata are points, whereas their
connection / relation are the lines joining them. In this thesis, we also use the term nodes
for points and the term edges for lines. We use the term directed edge if there is a one-
directional relationship between two nodes (e.g., one course is a prerequisite for another
course). We draw a line connecting these two nodes with an arrow on one side, indicating
the direction. Since we desire to display our educational content using multiple networks,
we next define a multilayer network:

Definition 2.3.2 Multilayer Network

Amultilayer network consists of a set of vertices, and a collection of layers, each
of which represents a separate network of connections between the vertices.

M = (VM, EM,V, L), (2.1)

where V is the total number of vertices in the Network, L = {La}
d
a=1 for

elementary layers La for each aspect a, VM ⊆ V × L1 × ... × Ld, and EM ⊆

VM × VM (Kivelä et al. 2014).

In this definition, vertices is used as another term for points / nodes. Multilayer networks
are networks consisting of a fixed set of points / nodes / vertices but with variable lines
/ edges, where each combination of points and lines represents one layer. Each of those
layers reflects one specific type of relation between points, referred to as aspect above. This
provides an ability to look at a common set of points with more flexibility and from different
perspectives.

2.4 Network of Knowledge
The expression network of knowledge is often used for the exchange of new scientific
findings on a global level (Kogleck 2016; Nesshöver et al. 2016). This most commonly
implies publication or presentation of new research findings in scientific journals, books,
or at international conferences, but can be applied to all sorts of educational material.
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In this thesis, we mostly refer to the latter and offer the following definition:

Definition 2.4.1 Network of Knowledge

A network of knowledge is the representation of educational material as a
(multilayer) network, in which educational content builds nodes that are linked
by common attributes in several categories, such as content, prerequisites,
instructors, level, etc. Each category of attributes links the nodules in one
layer, which provides an ability to filter the entire collection of material with
different perspectives.

From a network science point of view, single instances of educational material—on every 
level of the hierarchy described earlier—can be seen as nodes that combine to form a huge 
networked repository of information. Depending on the perspective, a network of 
knowledge can be a certain course, where course content or modules are the nodes, and 
then the prerequisites, instructor and previous knowledge of the students could represent 
edges. A simple version of this has been applied by the Khan Academy, which offers course 
content as nodes in a map, where different lessons are linked to each other if the knowledge 
of one lesson is a prerequisite for the next lesson (Khan Academy 2018).

To our knowledge, nobody has tried to extend this simple network model by adding further
edges or layers. We hypothesize that this simple model could be extended up to a global
level comprising all existing educational material combined in one multilayer network.
Therefore, as part of this thesis, we aim at establishing a first theoretical model of a
multilayer network of knowledge.

2.5 Personalized Learning Framework
Ideally, a personalized learning framework selects and offers educational content to students
in an individually adapted order, speed, and learning methodology.

This brings up two major requirements: First, the system must set up and maintain an
individual student profile that accounts for all factors which influence his / her optimal
learning behavior. Second, all available educational content must be tagged and structured
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in a way that allows the system to identify, select, and present optimal learning material to
the student. For both requirements, an appropriate assignment of metadata is essential.

Definition 2.5.1 Metadata

Metadata is data that provides information about other data (Metadata 2018).

We next describe the selection and assignment of metadata as tagging.

2.5.1 Tagging of Educational Content
To ensure that learning content is reusable and can be found, selected, or exchanged, it is
crucial that tagging is done in a meaningful, reproducible and ideally standardized man-
ner (Keßler et al. 2013). In 2002, a standard for tagging of educational content was published
by the Institute of Electrical and Electronics Engineers Standards Association, New York
(IEEE-1484.12.1), the so called Learning Object Metadata (LoM). This standard provides
a formal orientation, describing which type of metadata should be assigned to each learning
object (Figure 2.1). Among others, these include: type of object, author, owner, terms
of distribution, format, and pedagogical attributes, such as teaching or interaction style.
Furthermore, they define what vocabulary should be used for these descriptions (Barker
2005). A handbook published by Steven J. Miller in 2011, which may serve as a guide for
novices in need of experience in the work with digital material or metadata, takes this LoM
standard as a basis (Miller 2011).

8



Figure 2.1. Schematic representation of the hierarchy of elements in the LoM data 
model. Adapted from Barker and Campbell (2010).

The LoM standard’s main intention is to provide a general, universally applicable structure
for learning content, that allows students, teachers, or automated software to identify and
share learning content (Barker 2005). However, it does not include information that allows
the flexible assignment of educational material to individual students according to their
personal learning preferences.

2.5.2 Establishing Individual Learning Profiles
Personalized learning is an approach that allows students to select the educational material
and methodology out of a large pool, that meets their unique preferences and abilities best.
However, if selection of the appropriate material is left to the student, he/she might quickly
be overwhelmed by the numerous kinds of learning materials, resources and activities (Wu
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et al. 2015). Therefore, so called recommender systems (Burke 2002), which automati-
cally generate personalized recommendations of appropriate material to the students, are
important. This is the 21st century environment, in which people are accustomed to infor-
mation being personalized and pushed to them, rather than being pulled from books and
newspapers, for example.

According to Wu et al. (2015), such recommender systems for e-learning activities need to
meet the following requirements: They need to be able to deal with the complexity of learn-
ing content as well as with the individual learner’s learning characteristics, which includes
personal background, learning goals, prior knowledge, learner characteristics, etc. (Wu
et al. 2015). Furthermore, exterior circumstances, such as barrier-free accessibility for
people with special needs, should be considered (Lazarinis et al. 2011). Finally, pedagog-
ical aspects (e.g., avoiding extensive repetition of content, over- or undertaxing) should
be considered to keep the learner motivated. All these aspects should be reflected when
establishing the individual learning profile of students.

Finally, students’ profiles must update during the course of studies. Learners’ prior knowl-
edge will increase, their focus or main interest might change, and variability in the learning
method might as well increase their motivation and learning success. We thus consider
methods to constantly include students’ feedback into both, their personal profile and the
tagging of learning content. This will also improve the accuracy of the tagging.

To involve student feedback into frameworks to improve them for the general public, rep-
resentative feedback data is required. This requires either (a) trials with a large number of
students, or (b) a modeling approach where student profiles, their feedback and its effect
on the framework are simulated. Due to a lack of commonly representative data, this thesis
takes the modeling approach. To our knowledge, this type of agent-based feedback approach
has not been published before.

In the following chapters, we describe our approach to meet some of the challenges an
adaptive personalized learning platform encounters. We particularly address the topics of
tagging educational material and student profiles, establishing a recommender systems that
matches the tags, and developing a simulation software for students’ feedback, which will
be used to update personalized course recommendations.
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CHAPTER 3:
Data

In this chapter, we describe all the data we use as examples of learning content. We 
also present our pre-processing of data to derive content tags to build a network 
representation, to simulate learning feedback, and to recommend learning content. For all 
these computational tasks, we use the Python programming language.

3.1 Data Description
We analyze four data sets in this thesis: (1) a set of 84 syllabi describing courses offered in
the Operations Research (OR) department at NPS; (2) the entire collection of educational
materials (Microsoft PowerPoint Open XML Presentation File (PPTX) slides) from a single
course; (3) an extract of the NPS course catalog database for the academic year 2018; and
(4) anonymous academic transcript data from 10 former student cohorts in the Operations
Analysis (OA) Curriculum in the OR department at NPS.

3.1.1 Data from Course Syllabi
The data we use for this thesis consists of 84 syllabi from the OR Department at NPS, 45
provided as Portable Data Format (PDF) documents and 39 provided as Microsoft Word
documents (Operations Research Department at the Naval Postgraduate School 2016). The
list of courses described in these syllabi is shown in Table 3.1.
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Table 3.1. List of Courses
OA1600 OA2801 OA2900 OA3101 OA3102 OA3103 OA3201 OA3301
OA3302 OA3304 OA3401 OA3402 OA3411 OA3412 OA3413 OA3501
OA3602 OA3611 OA3801 OA3802 OA4101 OA4106 OA4108 OA4109
OA4118 OA4201 OA4202 OA4203 OA4205 OA4301 OA4333 OA4401
OA4406 OA4408 OA4414 OA4415 OA4602 OA4603 OA4604 OA4607
OA4611 OA4613 OA4655 OA4656 OA4657 OA4702 OA4801 OS2080
OS2103 OS3006 OS3007 OS3008 OS3080 OS3081 OS3082 OS3104
OS3105 OS3111 OS3112 OS3113 OS3180 OS3211 OS3307 OS3311
OS3380 OS3604 OS3640 OS3680 OS3701 OS4010 OS4011 OS4012
OS4013 OS4080 OS4081 OS4082 OS4083 OS4106 OS4118 OS4621
OS4680 OS4701 OS4702 OS4703

These documents do not share a common template and differ in format. We extract the raw
text from the PDF documents via the PyPDF2 package (PyPDF2 2016). We then parse
these documents for their most common words, excluding stop words, common English
words and organizational words typically used in syllabi, such as days of the week, exams,
lectures and so on. From these results, we generate a list of the top ten most common
words found in each document (or all words if less than 10 were found). We use these most
common words as initial tagging candidates to describe the content of each course in the
form of keyword-like metadata.

Figure 3.1 shows a word cloud of the common words in the course OA4801 - Spreadsheet 
Modeling for Military Operations Research. The word cloud analysis reveals descriptive 
candidates, thus representing an example where this simple approach leads to useful results. 
Figure 3.2 shows the respective word cloud for OS3113—Data Analysis for Human 
Systems Integration (HSI) and Modeling, Virtual Environments and Simulation 
(MOVES). This word cloud consists of rather generic words, thus representing a less 
useful example of using word clouds to extract keywords from a syllabus. In these word 
clouds, font size is proportional to the frequency of the respective word in the original 
document. This figure is created with the Python package wordcloud (Mueller 2012).
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Figure 3.1. Word cloud of the most common extracted words for OA4801.

Figure 3.2. Word cloud of the most common extracted words for OS3113.

3.1.2 Data from Course Materials
In an attempt to identify better keyword tags for the course content, we perform an addi-
tional word count analysis on the entire collection of educational material for the course 
MA4404—Structure and Analysis of Complex Networks, for which the slides are publicly 
available (Gera 2018). We analyze the course as a whole, as well as each chapter separately. 
Figure 3.3 shows the resulting word cloud of lesson 2 as a representative example. As 
can be seen, the majority of words in this approach describes the actual content of the 
course. As this is representative for the other lessons of the course as well as for the entire 
course, we conclude that extracting common words from course material is a good way to 
automatically identify keyword tags.
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Figure 3.3. Word cloud of the most common extracted words for MA4404 – Lesson 02.

3.1.3 Data from the NPS Course Catalog
To complement the list of courses from the OR department, we also obtained an extract of
the NPS course catalog database for the academic year 2018, containing the complete list
of courses offered by all departments at NPS in 2018 (Andersen 2018).
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Table 3.2. Example Excerpt from the NPS Course Catalog
OA4202;4;0;N;None;As Required;OA3201
"Network Flows and Graphs
Introduction to formulation and solution of problems involving networks, such as max-
imum flow, shortest route, minimum cost flows, and PERT/CPM. Elements of graph
theory, data structure, algorithms, and computational complexity. Applications to produc-
tion and inventory, routing, scheduling, network interdiction, and personnel management.
PREREQUISITE: OA3201.";;;;;;
OA4602;4;0;N;None;As Required;None
"Joint Campaign Analysis
This course studies the development, use, and recent applications of campaign analysis in
actual procurement, force structure and operations planning. Emphasis is on formulating
the problem, choosing assumptions, structuring the analysis, and measuring effectiveness.
Interpreting and communicating results in speech and writing is an important part of the
course. In the last three weeks students conduct a broad gauge, quick reaction campaign
analysis as team members. PREREQUISITES: A course in basic probability and statistic
theory and operational experience in military environments.";;;;;;

From the course catalog extract shown in Table 3.2, it is straightforward to read course
names. Yet, prerequisites are not listed in a standardized manner in the course descriptions:
some refer to other NPS courses, others ask for prior knowledge in certain fields, etc.
Thus, parsing the whole extract gives a variety of hits that cannot be directly compared.
We therefore focus on the courses that refer to NPS courses as prerequisites, and use
a web scraping technique to extract prerequisite information from the NPS catalog at
nps.smartcatalogiq.com for validation (Naval Postgraduate School 2018).

Figure 3.4 shows a network of courses, where nodes are courses in the OR department and
edges represent the prerequisite relationships. This figure is created with Gephi (Bastian
et al. 2009).
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Figure 3.4. Network of courses in the OR department.

We use the data from Figure 3.4 to build the different layers of the multilayer network of
courses for our research.

3.1.4 Data from Student Transcripts
Additionally, we use anonymous academic transcript data from 10 former student cohorts
in the OA Curriculum in the OR department at NPS. We selected the transcripts at random,
equally distributed from the 10 cohorts over a period dating from academic year 2001 to
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2015. Usage of this data is approved by the Institutional Review Board (IRB) at NPS
(Protocol Number: NPS.2018.0079-IR-EM1-A). The data set consists of 182 different
courses taken by 97 students. Table 3.3 shows a breakdown of the demographics from the
randomly chosen students. The transcripts include information on the quarter a course was
taken and on the grade achieved.

Table 3.3. Summary Statistics from the 10 OR Cohorts
Gender Nationality Branch
Female 13 U.S. students 83 Navy 55
Male 84 International students 14 Army 24

Marine Corps 15
Air Force 2
DoD 1

We will use such data in future work to improve the simulation of course recommendations
by adding layers covering student background, prerequisites, success rate or grading distri-
butions to the personalized learning framework. In this thesis, we use the cohort data to
automatically extract prerequisite courses.

Figure 3.5 shows a representation of the network of courses within the OR department, 
where each node represents a course. The node size indicates whether students from few 
(small node) or many (big node) cohorts have taken the course. Edges are drawn between 
two courses if they are offered to the same cohort. The edge weight—depicted by the 
saturation of green color—represents how many different cohorts are shared. This figure is 
created with Gephi (Bastian et al. 2009).
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Figure 3.5. Network of shared courses between cohorts in the OR department.

3.2 Limitations
While the desired application of our overall learning approach is to general, publicly
available courses and learners, the data analyzed here is limited to students from the
OR department at NPS. This implies a preponderance of military students from different
branches of service and different nationalities, with a prevalence of U.S. Navy officers, all
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interested in the same curriculum. Furthermore, our data analysis stops at the course level
and is limited to only OR courses. Further studies with data from other schools or learning
platforms should be conducted to confirm the generality of our results. Also the male-to-
female ratio should be carefully considered in the future, as NPS specific demographics
might present skewed results.

More specifically, whereas the transcripts include data on all courses taken by a student, they
do not provide information onwhich coursesweremandatory for the degree program. Lastly,
the non-standard format of the syllabi required the use of multiple parsing techniques. Thus
the relevancy of the key words we obtain by parsing these syllabi are limited by the chosen
algorithm (here: word count) and the ability of libraries for parsing different document
types to handle all ways text could be contained within these files.

Taken together, this chapter describes the different kind of data used in this thesis and how
it was processed. We present a more detailed description of the methodology behind our
data analysis in the next chapter.
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CHAPTER 4:
Methodology

This chapter describes themethodswe use to set up our network science approach to generate
a framework for real-time personalized adaptive learning. In Section 4.1, we introduce our
approach to represent educational content and all related information using tools from
network science. Then, in Section 4.2, we describe how we organize relevant data by
assigning and adapting metadata tags for the student and content, and how we use this data
to establish an individualized recommender system which provides a personalized network
of knowledge for each student. Lastly, in Section 4.3, we describe our algorithm to simulate
student profiles and run the recommender system to automatically generate individual
learning paths that take students’ feedback during the studying period into account.

4.1 Presentation of Educational Material as a Network of
Knowledge

The first step in establishing a network science based platform for personalized adaptive
learning is to transfer educational material into a network, which we call the network of
knowledge (see Definition 2.4.1).

Our network of knowledge has two components: The first component supports the student
by connecting all courses and educational material available (based on prerequisites) which
provides the student with a global view of how the learning materials fit together. The
second component captures the metadata that is assigned to all educational content, as well
as to user profiles, the latter allowing the system to select optimal learning content for the
individual student.

We generate differing network perspectives for these two components, which allows us to
utilize all relevant information in different ways depending on the purpose.
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4.1.1 Multilayer Network
In the first perspective, which is most tangible to the students, each network node represents
an educational module in the repository (i.e., a course and corresponding learning material).
The metadata is represented by edges which link the nodes, thereby capturing different
relationships between the modules. Depending on the type of metadata, a multilayer
network is formed, where each layer focuses on a specific relationship, such as instructor,
degree, type of course, and so on. Thus, within each layer, students only see a scaled portion
of all courses available based on their profile preferences to avoid information overload.
Furthermore, this multilayer approach allows students to filter educational material or
traverse a specific metadata layer based on a particular interest (e.g., finding a course
curated or offered by a particular instructor). Figure 4.1 shows examples of how courses
can be connected in different network layers.

Figure 4.1. Example of different layers in a multilayer network of knowledge. The nodes 
represent courses offered in the OR department at NPS, linked by common tags associated 
with the indicated categories.
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In the example shown in Figure 4.1, the first (right) layer shows prerequisite relationships
of modules, with directed edges indicating that knowledge from one course is required to
start the linked courses downstream of it. In the other layers, adaptive metadata connects
courses if these two courses share the same instructor (second right), or have the same
lecture to lab ratio (middle layer), and so on. This approach can be extended to various
forms of metadata and filtered based on individual interest or preference.

To create the multilayer network shown in Figure 4.1, we first use the Python programming
language to create nodes for the courses in the OR department and to build the different
layers based on attributes for these courses from the NPS catalog (see Table 3.2). We then
transform the data into the input format required by muxViz, a tool for multilayer network
visualization and analysis (De Domenico et al. 2015).

4.1.2 Metadata Attributes
In addition to the attributes defined by the LoM standard (see Section 2.5.1), we tag each
educational material with metadata of different categories that are relevant for personalized
recommendations, such as content keywords, prerequisites, instructor, etc. Each student’s
profile is also tagged with individual attributes such as interests, prior knowledge, instructor
preferences, etc. Using these tags, we generate a second network perspective for each course
or each individual profile, in which the course or profile is the central node linked to all
attributes as surrounding nodes. The linking edges in this perspective represent the weight
of the linked tag, which serve to measure the relevance of the respective tag for the course or
profile, respectively. This second perspective allows the visualization of tags from different
categories for a course or profile at the same time, as well as information on the tag weights.

Figure 4.2 shows a schematic example of this network perspective for tags from several
different categories.
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Figure 4.2. The center node is the course visible to the learner, surrounded by its
metadata tags from different categories (highlighted in different colors). The numbers
next to edges represent tag weights.

In Figure 4.2, different tag categories are highlighted in different colors. Other courses
that are a prerequisite for that particular course (course A) are linked by directed edges,
accordingly. Numbers next to edges indicate the weight of the respective tag. Tag weights
can be changed during the period of study according to students’ feedback, thus allowing
a dynamic adaptation of both user profiles and course tags. These weights allow the
system to continuously integrate user feedback and update the relevance of tags, which
helps to improve future course recommendations for the current student as well as path
recommendations for future students.

4.2 Personalized Learning Framework
In order to develop a system that takes into account all currently available information
and continuously updates as new information becomes available during the personalized
learning process, we structure the relevant components into three related layers1:

• a data model,
• an optimization model, and
• analytics.

1Here, the term layer refers to a part of the framework, see Definition 2.2.2, not to the layers as defined for
the multilayer network, see Definition 2.3.2.
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The datamodel incorporates all offered educationalmaterial including assignedmetadata for
each material, as well as all student profiles with respective tags. It also implies an adaptive
tagging model in which tag weights can be updated according to collected feedback.

The optimization model identifies an individual learning path that takes into account the
student profile, as well as the overall student User Interface (UI) experience and feedback.
Based on this information, the optimization model then recommends relevant courses to
the student, so the student experiences learning materials related to existing skills and
information captured by the data model.

The analytics component monitors and analyzes course progress and feedback of the stu-
dents, both individually and collectively. It provides instant feedback and gratification to
the student regarding course completion and learning path progress. Furthermore, it pro-
vides insights on success rates and course perception by students to the instructors, content
curators, and administrators of the educational material. Most importantly, it feeds this
information back into the data model to update tags and into the optimization model to
improve future course recommendations.

A schematic overview of this 3-layered learning framework is shown in Figure 4.3.

Figure 4.3. Components for Personalized Adaptive Learning.
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personalized learning framework in more detail.

4.2.1 Data Model
The data layer manages all data relevant to the system. It consists of a repository containing
all relevant data including courses, instructors, educational material, students, etc, and the
settings required to manage the learning platform. Ideally, it provides an option to store,
structure and identify all existing learning content, as well as current student data, with an
option to be extended anytime in a consistent manner. Thus, the data layer must ensure
data persistence and consistency (i.e., prevention of accidental data loss or redundancy)
and maintain the relationships between the data. Furthermore, it should allow the addition,
modification, or removal of data including metadata tags to/from the repository.

In this thesis, we focus on connecting educational content and prerequisites from the
repository with student interests from the user profile data. In the future, we envision the
addition of instructor/curator/administrator profiles, expansion of educational methods and
extension of profile data to improve the system.

To enable the connection of educational content and students, a crucial part of the data
model is the establishment of a tagging model which allows the consistent assignment of
metadata for each instance of (newly added) learning content, as well as the adaptation
of existing tags according to feedback or profile updates. This methodology is further
described in Section 4.2.1.2.

4.2.1.1 Extraction of Course Tags
As previously stated in Chapter 2, we plan to use the LoM standard as a basis to tag all
educational material, but complement it with tags describing course content, prerequisites,
type of learning activity, etc., as these attributes are relevant in the development of our
personalized learning framework. Manually finding these tags for all of the educational
materials can be very time consuming and somewhat subjective. Thus, we look into ways
to automate this process, thereby focusing on keyword tags which describe course content.
Figure 4.4 illustrates the process of extracting content tags from a course syllabus.
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Figure 4.4. Illustration of the tag extraction process from a course syllabus.

At the top of Figure 4.4 is the three-page syllabus from OA3101, a course offered by the OR
department. The syllabus was provided as a PDF document, as described in Chapter 3. We
then extract the raw text from the PDF document via the PyPDF2 package (PyPDF2 2016)
and parse the document in order to find the most commonly occurring words, as shown
in the bottom middle part of Figure 4.4, manually excluding stop words, common English
words and organizational words typically used in syllabi, such as days of the week, exams,
lectures and so on. A list of excluded words including exclusion criteria can be found in
Table A.2.

For a visual representation, aword cloud is automatically generated from the course syllabus,
as seen in the bottom right corner of Figure 4.4. From this analysis, we generate a list of the
top ten most common words contained within the OA3101 syllabus. We use these words as
our initial keyword tags to describe the content of OA3101 in the form of metadata. This
automated tag extraction process was repeated for every syllabus from every course in the
OR department (see Table 3.1).
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A very similar method is used to extract the most commonly occurring words out of actual
course materials. To extract content keyword tags for each lesson or module separately, we
complement the above process by a term frequency-inverse document frequency (TF-IDF)
score (Ramos 2003), which identifies the most relevant words for each document in the
content collection (i.e., lecture materials).

4.2.1.2 Adaptive Tagging Model
In order to continuously update and improve tags, we envision and introduce an adaptive tag-
ging approach, that takes into account assessment and evaluation of tags by both instructors
and students. First, instructors select tags from a predefined pool. New tags can be added
to this pool, but should be audited in accordance with predefined standards. The instructor
then assigns weights between 1 and 10 to all tags associated with the course. Alternatively,
an automated tag extraction system as described in Section 4.2.1.1 generates and weighs
content keyword tags according to their frequency. Only one tag of each category can be
assigned the highest weight which avoids ambiguity. The weight cannot fall below 1 or
increase above 10.

For the purpose of our analysis, we obtain the starting weight for course content tags from
the extraction method described in Section 4.2.1.1, giving the most common word a weight
of 7.5, the second most frequent word a 7, and so on down to 3 for the 10th most frequent
word. We choose not to exploit the whole spectrum from 1 to 10 as starting weights to allow
for adjustments in both directions for all tags. This enables us to verify that the simulation
implements both positive and negative feedback correctly. Similarly, we assign all interest
tags in the student profile a starting weight of 5, which can increase or decrease accordingly
as the student progresses along his/her learning path.

Learners have the option to provide feedback on whether the course was relevant for them,
whether the content met their expectations, and/or whether they would recommend the
course to others. This feedback is used to adapt the weight of both course tags and user
profile tags.

Figure 4.5 schematically shows the relationships between student feedback, student profile,
and course tags.
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Figure 4.5. Overview of Student Feedback.

In this thesis, student feedback is collected on the following three questions: (1) Was
the course relevant for you? (2) Did it meet your expectations? and (3) Would you
recommend it to others? For simplicity reasons, only two feedback grades (positive or
negative) are considered. A positive or negative answer on question (1) will increase or
decrease, respectively, the weight of interest tags in the student profile that were relevant
for the course recommendation. Accordingly, feedback from question (2) will positively or
negatively affect the weights of course tags and results from question (3) is used to rate the
course.

Student feedback invokes changes to the previous tag weight (i.e., the weight this tag had
right before feedback) by a specified constant, δ. Positive or negative feedback will increase
or decrease the original tag weight by δ, respectively. The value of δ can be varied in the
simulation, thus allowing us to modify the overall impact a single feedback response has on
the tag weight. Tags falling below a certain weight threshold become suspended. These tags
become irrelevant and are no longer considered in the process of matching course content
with student interest. In a real case scenario, we imagine the instructor (or content curator)
would get informed that students evaluated his/her tag as insignificant.

Figure 4.6 illustrates this process of updating tags.
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Figure 4.6. Example of an update to course content tags.

In this thesis, we simulate feedback, as described in Section 4.3, and immediately implement
the results of the feedback. In a real case scenario, we imagine that feedback would be
collected from real students via a survey following completion of the course. As this
approach requires a methodology that enables easy selection and weighting of tags by the
students (and instructors if initial tag weights are not automatically assigned), we design a
program prototype that requires the instructors (or content curators) to add the metadata for
a course from a predefined pool of keywords.

To demonstrate this vision, we build a tool in Microsoft Excel, see Figure 4.7, which allows
users to set the metadata for each course and generates an interactive visualization of the
course network.
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Figure 4.7. A tool to build the relation between course content and to set the
metadata.

As can be seen in the lower left corner of Figure 4.7, upon adding a module to the course,
the instructor selects tags from our standardized pool. Furthermore, the tool provides an
interactive visualization of the course network, shown in the lower right of Figure 4.7. We
create this representation using d3.js (Bostock et al. 2011) and present it as an interactive
web page. Upon clicking on a node the user gets directed to the content, and the respective
node changes color, representing completion, which is stored in a cookie.

4.2.1.3 Student Profiles
Ideally, student profiles contain all types of information that would be relevant in the
establishment of an ideal (or optimal) learning path. This includes personal information
such as name, contact information, age, or profession, as well as educational background
such as previous knowledge, experiences, certifications, or completed courses. It might also
include subjective items such as learning preferences, personal interests, and goals. In this
thesis, we mainly focus on a student’s interest in learning content. As our analysis derived
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from real student data does not contain information on interests, we simulate this portion of
the student profile in the software. To this end, we generate a pool of the content tags from
all courses offered, and randomly assign 30 of these tags to each simulated student profile.
We choose 30 tags for our experiments to ensure a decent overlap with the 10 extracted
course content tags from Section 4.2.1.1. All interest tags get a starting weight of 5 when
the student begins his educational journey, and are increased or decreased by δ based upon
positive or negative feedback, respectively.

4.2.2 Optimization
The second major layer of our personalized learning framework is the establishment of a
personalized recommender system that suggests appropriate educationalmaterial to students
based on their individual profiles. The overall aim is to set up a recommender system that is
able to identify an ideal learning path for each student, thereby taking into account students’
interests and preferences during the whole learning process with each course fitting the
students profile throughout the period of study. This includes ensuring courses that were
already taken by a student are not recommended again even though they still fit his/her
interests. Thus, the recommender system needs to rely on both the learning content and
student profiles, both of which are continuously updated according to learning progress and
personal feedback. Our recommender system evaluates metadata from student profiles, the
tag history of course metadata, and data from other students’ profiles (i.e., which courses
received positive feedback from other students with similar profile interest tags), as shown
in Figure 4.8.

Figure 4.8. Sketch of the Recommender System.

From these three parameters, we calculate a similarity score for all offered courses and
recommend the course with the highest score. The methods we recommend using to

32



determine what we call a recommender score is described in the following two sections.

4.2.2.1 Similarity between Student Profile and Course Tags
To identify the course that best matches a student’s current profile, our system looks for
the highest similarity between tags which describe the student’s interests (contained in the
profile metadata) and the tags assigned to the offered courses. We represent the different
attributes of a student’s profile as a vector and the available course metadata also as a
vector. We then calculate the distance between the student profile and each course offered,
excluding courses that the student already took. We use the cosine similarity to measure
this distance, as this allows us to identify partial tag matches independent of the overall
quantity of tags. This is important for matching course content, as a student profile usually
contains many more tags than the courses. Thus, even if a student profile contains a large
amount of information not related to course content, and consequently the overall ratio of
overlapping tags is small, a course containing some of the profile tags can be identified as a
match. We then sort the results, exclude courses that were previously taken by the student,
and suggest the courses that fit the student’s profile best.

4.2.2.2 k-Nearest-Neighbor (k-NN) of Course Ratings
To identify courses that should be recommended to a student based on other students’
experience and feedback, we use the k-NN method. This method compares either courses
or student profiles with each other, looking for the k, k being an integer, courses or
student profiles, respectively, with the highest proximity, which are then called the k nearest
neighbors. Among all offered courses that a student has not previously taken, we identify
the k nearest neighbors based on feedback received from other students who have completed
the course. For each of the courses, a k-NN score is calculated which indicates how many
neighboring courses overlap with courses that were previously taken by a student. The
course with the highest score is most likely to fit into the student’s learning path.

The idea behind comparing student profiles is based on our opinion that students with
similar profiles are likely to have similar optimal learning paths. Thus, we compare student
profiles, look for those students with the best matching profile tags, and suggest courses that
were previously taken and positively evaluated by the student with the most similar profile.
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4.2.2.3 Recommendations and Path Optimization
Within the simulation, the course that is eventually recommended to the student is selected
using a hybrid approach which combines several techniques. For the software prototype we
establish to support this thesis, we combine the content similarity and the k-NNmethod. As
the k-NNmethod relies on previous experience by other students, during the initial phase of
the simulation only the content similarity approach is used tomake course recommendations.
Once enough course history is established (e.g., once 50% of all courses have been taken at
least one), the k-NN method is used.

The k-NN method or a hybrid of both methods are contained in the software prototype
described in Section 4.3, and can be switched on and off. However, an analysis on how they
affect course recommendations in comparison to just the cosine similarity approach is not
part of this thesis and will be addressed in future work (see Section 6.1.2).

4.2.3 Analytics
Generally, the analytics layer is meant to provide instant feedback to students regarding their
progress in terms of course completion and grading. Furthermore, it shall give feedback to
instructors or administrators of the educational platforms on course evaluation by students
(satisfaction, relevance, educational approach, fulfillment of expectations, etc.), statistics
on participation, grading outcome, and so on. In this thesis, we include in our prototype the
analysis of several of such metrics, including the tracking of tag weights over time, courses
over time, and course feedback over time. In order to keep things simple during the initial
phase of this research, we work with simulated students instead of real users and do not yet
include instructors or content curators. Therefore, feedback important to both these entities
is not a focus of this work and respective methodology should be included as part of future
research (see Section 6.1.2).

4.3 Simulation of Student Experiences
Weemploy a surrogate simulation approach for students’ feedback. This simulation includes
personalized course recommendations to students based on their simulated profiles, models
their feedback based on a statistical distribution, and adapts further course recommendations
based on this feedback, resulting in a specific learning path for each individual student. The
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simulation is implemented in the Python programming language. The following sections
describe the inputs, processes, and outputs for our initial prototype, and the last section
describes the limitations of our simulation model.

4.3.1 Simulation Input
Whereas the simulation generally runs through a fixed sequence of steps (see Figure 4.9),
we construct the simulation so that several input parameters and settings can be varied.
This enables us to investigate how controllable parameters, that can be influenced by an
instructor or administrator (e.g., decision factors), affect the overall result while taking into
account additional factors that cannot be externally manipulated or controlled. For example,
instructors could influence the quality of educationalmaterial or the grading distribution, but
cannot directly influence student feedback. Thus, varying the input parameters describing
educational material or the grading system in the simulationwill help to predict the influence
of these factors on student feedback, helping the instructor choose the best strategy for her/his
course design.

Listing 4.1 provides an example of the simulation configuration file. The listing shows
the default input parameters required to initialize a simulation run. Through the use of a
configuration file, we are able to not only vary values of the parameters, but we are also
able to define statistical distributions. The values shown in Listing 4.1 are the parameter
values and distributions used to simulate student experiences during our initial simulation
run, and we consider these values to be the default or baseline for our simulation.

Among others, we made the following initial assumptions in Listing 4.1: 100% of the
students provide feedback on the course and on content tags; 70% of this feedback is
positive and 30% is negative; 70% of the students pass a course, 10% fail and 20% drop the
course; and δ is set to 2.5 to allow a rather strong effect of feedback on tag weights.

Furthermore, we define the number of students simulated at each time step as 50, the total
simulated period of time as 40, and the period of study for each simulated student as 8,
where each time step represents 1 simulation loop, which in our case is one academic
quarter.
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Listing 4.1. Configuration File—simulation.ini
[DEFAULT]
distribution_grade = [0.7, 0.1, 0.2]
dict_of_grades = {"1": "passed", "0": "failed", "−1": "dropped"}
distribution_feedback = [0.56, 0.14, 0.3]
dict_of_feedbacks = {"1": "positive", "−1": "negative", "0": "none"}
distribution_tag_feedback = [0.7, 0.3, 0.0]
distribution_tag_feedback_trend_neg = [0.20, 0.80, 0.0]
distribution_tag_feedback_trend_pos = [0.80, 0.20, 0.0]
distribution_tag_feedback_learner = [0.7, 0.3, 0.0]
trend_persistence_time = 5
settings_trend_included = False
community_join_probability = 0.5
settings_communities_included = False
communities_number_min = 1
communities_number_max = 5
settings_recommendation_cos_sim = True
settings_recommendation_knn_course = False
settings_recommendation_knn_profile = False
settings_recommendation_hybrid = False
settings_simple_example = False
tag_max_weight = 10
tag_min_weight = 1
tag_automatic_replacement = False
tag_replacement_lower_treshold = 2
settings_sim_replications = 1
number_of_courses_per_time_step = All
number_of_tags_per_student_profile = 30
number_of_courses_picked_per_student_per_time_step = 1
number_of_courses_to_recommend = 1
print_output = False
delta = 2.5
sim_seed = thesis
number_of_students = 50
student_study_duration_min = 8
student_study_duration_max = 8
student_profile_content_tag_weight_min = 5
student_profile_content_tag_weight_max = 5
sim_clock = 0
sim_time = 40
or_courses_list_file = data\input\OR_courses_list.json
courses_obj_list_file = data\input\courses_obj_list_tags_2.5_7.5.obj
temp_tags_obj_list_file = data\output\temp_tags.obj
tagsfile = data\input\tags\stackoverflow_tags.csv
temp_students_with_tags = data\output\temp_students_with_tags.obj
output_students_obj_list_file = data\output\sim_all_students_with_tags.obj
output_courses_obj_file = data\output\sim_all_courses_with_tags.obj
previous_experiments_file = data\input\previous_experiments.json

[exp_00−0001]
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Within the configuration file, it is possible to define experiments containing only those
settings which differ from our default values, under an entry of the form [experiment name]
(e.g., [exp_00-0001]). This experimental configuration file (see Listing 5.1) will adjust the
default parameter values in order to run the desired experiments and replicates, and create
output files with file names containing the experiment name and replication number.

We use these input variables as default settings for our initial simulation experiments and
change them in further experimentation, which is described in more detail in Section 5.4.

4.3.2 Simulation Process
In this section we describe the different steps in the simulation process. A simplified
overview of these steps is depicted in Figure 4.9. A detailed description of the process at
each step follows throughout the remainder of this section.

Figure 4.9. Simulation Overview

initialize simulation: Once the simulation begins, the program reads in all course data
including corresponding content keyword tags from a data file. Next, the simulation
generates the desired number of students (per the number_of_students input variable)
and randomly assigns content keyword tags from all courses to the student profiles as
“interest” tags. Using the information previously defined in the configuration file on
the number of tags to assign per profile (number_of_tags_per_student_profile),
as well as the range for their weights (student_profile_content_tag_weight_min
and student_profile_content_tag_weight_max), the program distributes the weights
within this range to the profile tags. This generates virtual student profiles with randomly
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distributed interests in the offered courses. If desired, the program creates communities
(settings_communities_included) and students join them according to the probability
specified in the configuration file (community_join_probability). Communities may
inherit a trend (settings_trend_included) in providing feedback about the course as
defined by the first student who takes a course (e.g., the other students are more likely to like
a course because the first student likes it), and this trend persists only for a predefined time
(trend_persistence_time). For comparison purposes, we also generate a static course
tag matrix that is necessary for the static recommender system. To obtain reproducibility, a
seed (sim_seed) is set for the random numbers. Finally, the program stores the generated
students and corresponding tags in an output file.

time < sim_time?: The program sets the overall time period for the simulation according to
the sim_time input variable. This value defines the total number of loops in the simulation.
Thus, after each loop (representing one quarter), the system checks if it has to run further
loops. For the first loop, all students generated during the initialization phase enter the
simulation, run through all following steps and can then either continue to study (i.e., enter
the next loop) or leave the system. The program removes the departing students, archives
their data, and generates new student profiles, as required.

courses offered: This comprises either all available courses or the number of randomly se-
lected courses that is specified in the input settings (number_of_courses_per_time_step).

recommend courses: From the offered courses, courses that were previously taken by
the student are excluded. The program makes course recommendations based on one of
two options as defined in the input settings (e.g., settings_recommendation_cos_sim):
(1) the program randomly recommends remaining courses to students without regard to
the generated profile tags, or (2) the program compares the course tags for the remaining
courses with the student profile tags in order to select courses with high similarity. The
second approach can use either static or adaptively updated tags, for both the course tags
and the student profile tags. The number of courses recommended to the student can be
specified in the input settings (number_of_courses_to_recommend). During this step,
the program adds the recommended course(s) to the student’s profile.

students take courses: The number of courses each student takes during a quarter is also de-
fined in the input settings (number_of_courses_picked_per_student_per_time_step).
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During this step, the program randomly selects the course(s) from the list of recommended
courses that was offered to each of the students and adds a record of courses taken by each
student to his/her student profile.

students finish courses: Students can drop, fail or pass the course, and receive grades
according to a grading distribution defined in the input settings (distribution_grades).
During this step, the program generates course completion information for each student and
adds this information to the student profiles.

student’s feedback: “Recommends course?”: The program simulates feedback on
whether students liked or disliked a course in accordance with the feedback distribution
defined in the input settings (distribution_feedback). The program then adds this
information, whether course feedback was positive or negative, to the student profiles.

student’s feedback: “Course content expected?”: In this step, the program sim-
ulates feedback on whether the tags assigned to a course were appropriate or not.
The program generates feedback based on one of three distribution options as de-
fined in the input settings: (1) each student evaluates the tags independently, ac-
cording to a predefined feedback distribution (distribution_tag_feedback); (2)
each student evaluates the tags based on positive or negative trends, which are
set by the first student’s evaluation (distribution_tag_feedback_trend_neg and
distribution_tag_feedback_trend_pos); and/or (3) students who are part of a
community evaluate the tags in accordance with the evaluation by other students of
the same community, again with a probability distribution defined in the input settings
(distribution_tag_feedback_trend_neg and distribution_tag_feedback_trend_pos).

In contrast to (2), only students of the same community follow the trend existing in this
particular community. The program generates the feedback and then adds this information
to the student profiles. The simulated feedback influences the weight of the evaluated tags
by the predefined value of δ (delta).

student’s feedback: “Course relevant to you?”: The program simulates feedback on
whether or not a course was relevant to the individual student following a predefined
probability distribution (distribution_tag_feedback_learner), and the program adds
this information, course relevant or not, to the student profiles.
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stop: Once the predefined time frame for the simulation is complete, the program archives
all remaining students, regardless of whether or not they completed their full learning path.
The program stores all student and course information on the file system as simulation
output.

Figure 4.10 shows how we represent students, courses and tags as objects (here, only a
subset of the inner fields is shown) within the simulation programming software. The
software allows us to define tags of different type (e.g., content, media type, or instructor)
and to assign these tags either to the student profiles or to the courses. In this thesis, we
only focus on course content as our tag type, but the program is ready for the addition of
other tag types.

Figure 4.10. Simplified UML representation of students, courses and tags, as repre-
sented in the simulation.

4.3.3 Simulation Output
After each replication of an experiment, we obtain four data files. The first data file contains
all the student profile information that was recorded during each loop of the simulation
run (output_students_obj_list_file). This student data file contains information
on which courses were recommended either by the static (without feedback-dependent
adaptations) or dynamic (with feedback-dependent adaptations) system, which courses were
taken, which grades were achieved, and what feedback in terms of course recommendations
was given. The second data file contains all course information which includes information
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about the course content tags with their respective weights over the course of the simulation
(output_courses_obj_list_file). The third data file is a graphical representation
of the courses and tags (see Figure 5.3). The fourth, and final, data file summarizes the
statistics for each replication of the experiment.

4.3.4 Limitations of the Simulation
The simulation and course recommendation algorithm designed as part of this thesis is an 
initial prototype that allows the analysis of a number of parameters that we consider essential 
for our personalized learning platform. It is able to simulate student profiles by first randomly 
assigning interest tags to them, and subsequently updating student interest according to the 
courses a student took and the feedback the student gave following completion of the course. 
Furthermore, the system compares student profiles and tags assigned to all courses currently 
offered in the OR department at NPS, and analyzes a recommendation from this data as we 
described it in Section 4.2.2.

As we show in Listing 4.1, several parameters including numbers of simulated students
and offered courses, overall time period, and probability distributions for grading, taking a
course, and giving feedback on it can be set as input parameters in the simulation software.
More importantly, the prototype is able to update both, the student profiles and the course
tags, thereby taking student feedback into account. This dynamic analysis can be directly
compared to a static approach, where the simulation uses the same parameters but does not
update tags based upon student feedback, and it provides the possibility to switch between
different modes how feedback distribution is expected (independent students, according to
trends, or within communities).

However, there are some limitations that we believe need to be addressed in future work.
Most importantly, the simulation data needs to be verified and validated, ideally by compar-
ing it to empirical data from real students (Sargent 2013). As the cohort data we analyze
in this thesis did not contain enough relevant information concerning interests and student
feedback on course content, we randomly assign these to our generated profiles in the sim-
ulation. Still, this might not adequately represent the real situation, where a number of
factors like previous experience, education goal and career ambition, as well as personal
background will certainly effect the distribution of these tags in the student profiles. Sim-
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ilarly, a variety of factors will affect students’ feedback on a course. We start to address
some of them by adding the option to include the trend- or community-based feedback
distributions, but more factors like instructors, grading and overall success rate will need to
be taken into account for a more realistic scenario. This also applies for course tags that are
relevant for the recommender systems. Here, we focus on course content keyword tags and
compare them to simulated student interests, but variables like instructor preferences or ed-
ucational methods should certainly be integrated into a more advanced software prototype.
Moreover, the recommender systemwe describe here does not consider student performance
in previously completed courses when making future course recommendations.

In the next chapter, we present the results we obtain by applying this methodology. We
describe the results obtained from the automatic tagging of course syllabi, the determination
of course prerequisites, and discuss other information extracted from the student transcripts.
We then show the results from our recommender algorithm prototype, including the simu-
lated student feedback.
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CHAPTER 5:
Results and Analysis

The current research aims to outline the initial steps to establish a prototype for an algorithm-
driven, network science based, personalized adaptive learning platform. We analyze data
from students and courses in the OR department at NPS with the aim of establishing an
automated system that assigns useful metadata tags to the learning content as well as to
student profiles. Our goal for the extracted metadata is to allow the set up of an automated
individualized recommender system for course selection, adapted to each student’s profile
based on his/her feedback and learning progress.

In this chapter, we first describe the results we obtain from our analysis of automatically
tagging the available NPS courses, as well as extracting information from the NPS catalog
and real student transcripts. We discuss whether the analysis reveals useful keyword tagging
candidates for course content, identifies course prerequisite relationships, and reveals any
other information beneficial in the creation of our student profiles. We then show and
analyze the simulation output from our recommender algorithm prototype, including the
simulated student feedback.

5.1 Automatically Tagging Metadata from Course Syllabi
Tagging educational material with metadata that describes the content and other features 
of the respective material is a crucial requirement for an automated recommender system. 
We investigate the automated extraction of useful tags—describing the content of courses 
offered by the OR department at NPS—from the syllabi of these courses. The idea behind 
the extraction of tags from course syllabi is that we reasonably expect the highly relevant 
words for a course to be mentioned fairly frequently in the syllabi and thus, the most 
frequently used words from the syllabi could represent useful keyword-like tags to 
describe the course content.

Our analysis is based on the identification of the ten most common words in each syl-
labus. For privacy protection and to boost the results, we exclude personal information on
instructors and stop words, as listed in Table A.2.
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For reference, Table 5.1 shows the results of this analysis for the five most common words
among five OA courses, and a full list comprising all courses is shown in Table A.1. For
brevity, the table depicts the five most common words; however, in our prototype we utilize
ten most common words, whenever ten content-related words were extracted.

Table 5.1. Five Most Common Words Extracted from OA Course Syllabi
course (common word, count)
OA1600 (’introduction’, 9), (’programming’, 9), (’analysis’, 6), (’savage’, 4), (’topic’, 3)
OA2900 (’thesis’, 5), (’operations’, 3), (’research’, 3), (’opportunities’, 3), (’pass/fail’, 2)
OA3101 (’probability’, 5), (’statistics’, 5), (’oa’, 4), (’homework’, 4), (’quarter’, 3)
OA3102 (’statistical’, 6), (’statistics’, 3), (’gl’, 3), (’00’, 3), (’0’, 3)
OA3103 (’data’, 7), (’analysis’, 6), (’glasgow’, 5), (’oa3103’, 4), (’set’, 3)

As can be seen from the five examples in Table 5.1, some of the identified tags are appropriate 
words to describe the course content: for example “programming” and “analysis” for 
OA1600 (Introduction of Operations Analysis I). However, others like “topic,” 
“thesis,” or “homework” relate to common syllabi course organization topics rather than 
to specific course content. Moreover, others describe permanent record type 
information, such as meeting time and location.

The quantity of useful tags varies greatly between each of the courses, which is most likely
due to a lack of a common or standardized format for syllabi. Given the inconsistent format
of the course syllabi, we find that our fully automated tool is unable to consistently provide
content keyword-like tags across all courses.

To improve the robustness of our automated metadata tool, we consider the extraction
of the most commonly occurring words from all educational materials used in each of
the courses. We explore this concept for the course MA4404, Structure and Analysis of
Complex Networks, taught in the Department of Applied Mathematics at NPS. We choose
this course because all of the educational material is publicly available (Gera 2018). We
apply a method similar to our syllabi extraction process to extract the most frequent words
over the whole course. To extract content keyword tags for each lesson or module separately,
we complement this effort with a Term Frequency-Inverse Document Frequency (TF-IDF)
algorithm (Ramos 2003), which identifies the most relevant words for each document in the
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content collection (i.e., a lesson or chapter).

Table 5.2 shows the results of this analysis for four PPTX lesson files, and a full list
comprising all PPTX lesson files is shown in Table A.3.

Table 5.2. Most Common Words Extracted from MA4404 Course Materials
topic (common word, count)

01-RealComplexNetworks (’networks’, 94), (’network’, 29), (’source’, 21),
(’internet’, 16), (’“’, 12), (’”’, 12), (’nodes’, 11),
(’social’, 11), (’newman’, 11), (’information’, 10),
(’web’, 10), (’different’, 10), (’data’, 8), (’graphs’,
7), (’edges’, 7)

02-NetworkScienceOverview1 (’networks’, 23), (’network’, 15), (’graph’, 13),
(’graphs’, 13), (’science’, 12), (’theory’, 12), (’com-
plex’, 11), (’eulerian’, 9), (’random’, 9), (’social’,
9), (’”’, 9), (’“’, 8), (’königsberg’, 8), (’small’, 7),
(’cited’, 6)

03-NetworkScienceOverview2 (’networks’, 32), (’model’, 29), (’random’, 22),
(’graphs’, 19), (’world’, 19), (’network’, 17),
(’nodes’, 16), (’small’, 15), (’path’, 14), (’aver-
age’, 12), (’source’, 12), (’www’, 11), (’degree’,
10), (’scale’, 9), (’free’, 9)

05-NetworkScienceOverview2 (’networks’, 36), (’model’, 29), (’random’, 24),
(’graphs’, 21), (’world’, 20), (’network’, 16),
(’nodes’, 16), (’small’, 15), (’degree’, 14), (’path’,
13), (’average’, 12), (’scale’, 11), (’free’, 11),
(’complex’, 10), (’distribution’, 10)

This method reveals tags that accurately describe course, chapter, or lesson content. The
automatic extraction of tags for the whole course and each separate lesson at the same time
has the additional advantage that course content could be offered in a finer granularity to
students, which is one of our overall goals for theCHUNKLearning system (see Section 2.1).

While this approach looks very promising, we do not have access to the entire collection
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of educational material for all courses offered in the OR department. We therefore use the
keyword tags that we obtain from our syllabi extraction analysis for our initial experiments
described here, keeping in mind that automated methods to tag course content collections
should be included in future work (see Section 6.1.1.1).

5.2 Determination of Course Prerequisites
It is crucial for our recommender system to have access to data that captures prerequisites,
and therefore, we aim to assign tags describing prerequisites to all courses. In order
to automatically identify tags describing course prerequisites, we compare two different
approaches: (1) reading prerequisite information from the course catalog and (2) inferring
prerequisite relationships from student transcript data. We summarize a portion of the
results from both approaches in Table 5.3. Table B.1 shows the complete list of courses.
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Table 5.3. Derived Course Prerequisite Relationships
Method 1 Method 2

Course
ID

Prerequisite Description
from NPS Catalog

Extracted
NPS Courses

Prerequisite Derived
from Student Transcripts

Number of
Students

OA1600 None None 62
OA4105 OA3103 or consent of the instructor OA3103 19
OA4201 OA3201 OA3201 OA3201 97
OA4202 OA3201 OA3201 OA3201 97
OA4203 OA3201 OA3201 OA3301, OA3102, OA3201, OA3101, MA3042,

OA4201, OA2900
18

OA4301 OA3301, OA3201 26
OA4333 OA3302 OA3302 OA3301, OA3103, OA3201, OA3102, OA3101,

MA3042, OA4202
35

OA4401 MA3042, OA2900, OA3101 7
OA4402 Not in data set. -
OA4406 Not in data set. -
OA4408 OA3301, OA3103, OA3201, OA3102, OA3101,

NW3230, OA4801, OA3302, OA4655, MA3042,
OA4201, OA3900, OA3304, OA2900, OA3401,
OA4202

3

OA4414 OA3413 OA3413 Not in data set. -
OA4415 Not in data set. -
OA4602 A course in basic probability and

statistic theory and operational ex-
perience in military environments

69

OA4603 37
OA4604 OA4655 or consent of instructor OA4655 OA3101 67
OA4607 OA3301, MA1025, OA3103, OA3102, OA3101,

OA3201, OA4655, OA4801, OA3302, OA0810,
MA3042, OA4201, OA3900, OA3304, OA1600,
OA2900, OA4602, OA4202

2

OA4613 OA3201 or OS3007 or OA3611 or
permission of instructor

OA3201,
OS3007,
OA3611

MA1025, OA3103, OA3102, OA3101, OA3201,
OA4301, OA3302, MA3042, OA3610, OA4201,
OA4106, OA2801, MA1118, OA3301, MA1113,
MA1114, OA4333, OA1600, OA3501, OA2900,
OA4202

1

OS3112 college algebra and OS3111 OS3111 IT1500, OA3103, OA3200, OA3102, OA3101,
OA3201, OA4301, OA4801, OA3302, OA0810,
MA3042, OA4203, OA4201, TS3002, OA2200,
OA3301, TS4003, TS4001, OA4655, TS4002,
MA1115, OA3602, OA3900, OA3304, OA2900,
OA3401, OA4202

1

We now discuss the two approaches.
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5.2.1 Method 1: Determination of Prerequisite Relationships from the
NPS Course Catalog

In the first approach (Method 1 in Table 5.3), we analyze and extract course prerequisite
information from the NPS course catalog. We automatically search the description and
the prerequisites field for a pattern capturing different ways to define prerequisites using
regular expressions, and extract the information following this pattern (see Column 2 in
Table 5.3). This approach reveals different hits ranging from “none”, meaning that no
previous knowledge is required, to references to other NPS courses.

Since our aim is to establish a network of courses that are linked by directed edges which 
indicate prerequisite relationships, we focus on results referencing other NPS courses 2 and 
“none.” As all NPS courses are described by a unique combination of 2 letters followed by 
4 digits, we use regular expressions to search the results in column 2 for that pattern or the 
word “none” (see Column 3 in Table 5.3).

This approach is straightforward and provides reliable results for a portion of the courses.
Still, it requires the data in the catalog to be formatted in a specific manner (containing
a reference to an existing NPS course or labeled as “none”). However, it appears that
prerequisite information is not standardized across all courses in theNPS course catalog, and
therefore “no prerequisite” tags could possibly be assigned to courses where the prerequisite
information was incorrectly interpreted.

5.2.2 Method 2: Inferring Prerequisite Relationships from Student
Transcript Data

We investigate a second approach (Method 2 inTable 5.3), which is based on actual transcript
data from student cohorts. The basic idea is that if course A is a prerequisite for course B,
then all students in course B must have already completed course A (in a previous quarter).

Therefore, we analyze for all students in one particular course, what courses they have
previously completed. If there are courses that were completed by every student attending

2Noteworthy, the analysis described here also includes prerequisite courses which are offered by other
departments at NPS. The networks generated in this thesis consist exclusively of courses in theOR department.
Thus, prerequisite courses from other departments do not show up in our network layers. Still, in an institution-
wide approach, this would be resolved as all courses offered by that institution would be included in the
multilayer network.
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that particular course, we infer that these courses are prerequisites for the current course.
Prerequisite courses identified according to this analysis are listed in Column 4 of Table 5.3
(expanded in Table B.1). Column 5 shows the number of students in the available data set
that attended the courses we inferred as prerequisites.

Whereas this approach is able to assign prerequisite courses to many courses where the 
first approach failed, there are two major limitations that can lead to false positive or false 
negative results, respectively. The first limitation is present when the analyzed number of 
students in one course is very low, increasing the probability of obtaining a false positive. 
Extreme examples of this are courses like OA4613 or OS3112, which were attended by 
just one student out of the 97 students available for analysis. In this case, the number of 
courses taken by all students of this course—and thus showing up as prerequisite courses
—is equal to every course that was previously taken by that particular student, leading to 
false positive results. This limitation could be circumvented by analyzing a much larger 
data set that ensures each course is taken by a high number of students, or by defining a 
minimum threshold for the number of students in each course.

The second major limitation may be caused by students that come from other learning
institutions and get transferred credit. These validated courses, based on other institutions’
credit, will not be recognized as prerequisite courses by our system, which so far only
recognizes the code pattern for NPS courses. Moreover, these students will not have
attended the prerequisite course at NPS. Therefore, the NPS prerequisite course will not
have been taken by all students taking the follow-on course, thus leading to a false negative
result. Again, this limitation could be circumvented, either by excluding students who are
in their first quarter from the analysis, or by defining a shared prior-course threshold to
identify the prerequisites. The current threshold is 100%, which then misses some of the
course dependencies. Identifying a threshold empirically, and then using verification and
validation, would minimize the risk of false positive or false negative results.

With empirically derived threshold limits, larger scale analysis of student transcripts, and
careful interpretation of the results, we think that method 2 can successfully be used to
identify prerequisite course relationships. This is reinforced by the observation that the two
approaches described here provide overlapping results, whenever a comparison is possible
(i.e., a high number of students are available for method 2, and results are obtained by both
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approaches). With this in mind, method 2 might be a good option to complement the first
method based on course catalog data to identify prerequisite courses.

5.3 Additional Information Extracted from the Student
Transcript Data

In addition to prerequisite course relationships, we try to automatically extract additional
information from the student transcript data. We find that this information is relevant
for creating student profiles based on interests or learning goals, and evaluating students’
feedback based on courses taken. We are able to use the data to automatically assign personal
data like gender, member of military service, and grades to each student. An overview of
the empirically-computed distributions for the student demographic information is given in
Table 3.3. Furthermore, we obtain information on how many people from the same cohort
attended a particular course together, and generate the network of shared courses between
cohorts (see Figure 3.5).

Finally, we extract the grading distribution for each course. Figure 5.1 shows the grade
distribution for all courses, where each color represents one course. For anonymity reasons,
we omit the legend explaining what color represents which course.
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Figure 5.1. Cohort grade histogram derived from student transcript data over all 
courses.

As can be seen in Figure 5.1, for most courses, 4 (A) and 3 (B) are the prevalent grades. At
NPS, an average score of 3.0 over all courses is required for graduation. Thus, grades above
that threshold need to be achieved by most students in the majority of courses. The grading
distributionmight be of particular interest whenmodeling student feedback. We believe that
courses where students receive predominantly good grades (i.e., a high amplitude at grades
3 and 4 in Figure 5.1) can reasonably be expected to receive more positive feedback from
students than courses with a more moderate grade distribution, as students will perceive
a course more positive if they are successful. Furthermore, from the grades distribution,
one can evaluate the pass/fail rate, which again affects the statistics, tags for that course,
and might give a hint to the difficulty level, all relevant information for the recommender
system.

For the establishment of a prototype of an adaptive recommender system based on student
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feedback, we are mostly interested in student interests, learning preferences or study goals.
However, the data obtained for this thesis did not contain this type of information. Thus,
we decide to simulate these parameters, as we describe in Section 5.4.

5.4 Simulation
In this section, we describe results obtained from our software prototype for a real-time
adaptive personalized learning framework. Within our simulation, the prototype’s recom-
mender system suggests courses to students by matching course content (from tags) with
student interests, both of which update during the course of study.

From the three simulated feedback questions offered to the student, we use two of them to
update the student profile and course content tags: (1) Did the course content meet your
expectations? and (2)Was the course content relevant to you?. A positive or negative answer
to the first question will increase or decrease the weight of all course tags, respectively (see
Figure 4.6). This assumes that the student took the course because the course content (via
tags) matched the student’s interest from his/her stored profile. Similarly, a positive or
negative answer to the second question will increase or decrease the tags associated with
the student’s profile. Note that the program only updates the profile tags that match the
tags for this particular course. All other (non-matching) tags in the student’s profile remain
unchanged. During each loop of the simulation (e.g., one academic quarter), we simulate
student feedback and adjust tag weights for courses and profiles by adding or subtracting
the predefined constant δ, according to the process outlined in Figure 4.6.

In the following sections, we analyze how the incorporation of student feedback within
the simulation changes the tag weights in both student profiles and course content tags
temporally, andwhat effect this process has on courses that are recommended to a student and
the order in which courses are recommended, in terms of course sequencing. We compare
this dynamic recommendation system with a static system, in which all tags retain their
original weight throughout the simulation. To this end, we calculate a recommender score as
a measure of how well a recommended course matches the interests of a student which takes
into account the number of matching tags as well as their weight (see Section 4.2.2). Then,
we systematically change some input variables in the software to verify that our simulation
is performing these calculations correctly. Lastly, we use an experimental design approach
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to analyze the overall effectiveness of our recommender system. Specifically, we look at
how a stronger or weaker implementation of the feedback as well as different feedback
distributions affects course recommendations.

5.4.1 Effects of Simulated Student Feedback based on Tag Weights
and Course Recommendations

For the initial experiments, we use the default settings described in Section 4.3. The
assumption of the model is that all students provide feedback independently, with a default
distribution of 70% providing positive feedback (on average) and 30% providing negative
feedback (on average) on either question, and we set δ to 2.5, thus allowing student feedback
to have a clearly measurable effect on the tag weights. These settings are used for all
experiments, unless indicated otherwise. A complete list of all parameters and default
values for this experiment can be found in Listing 4.1 and a discussion of how these
parameters are used within the simulation in Section 4.3.2.

5.4.1.1 Updating Student Profile Tag Weights according to Student Feedback
First, we analyze if and how implementation of student feedback affects theweight of student
profile tags. Figure 5.2 shows the temporal evolution of one student’s profile tags where
we represent each tag with a different color and each dot represents the new tag weight
(only those tags which changed weights are shown at each new time step). Tags that do not
match with recommended courses remain constant throughout the simulation, and thus do
not show up in the plot at all.
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Figure 5.2. Change in student profile tags over time. An example of one
simulated student’s eight term period of study. Each tag is represented by a different
color and only those tags which changed weights are shown at each new time step.
A jitter is added to visualize overlapping dots.

From Figure 5.2, it is clear that the interest tags within the student profile change in our
personalized learning prototype. The student shown here studied 8 quarters, beginning
his/her course of study during simulation time step 16 and finishing during simulation time
step 23. In this example, out of the student’s 30 interest tags, 17 of these interests show up
in the plot, indicating that the student took courses with tags that matched these interests.
Following completion of each course, the student provides feedback and the program
reevaluates the relevance of these tags, leading to adjustments in tag weight. When the
student begins his/her period of study, all student interest tags begin with a default weight
of 5, as defined in our configuration file. Throughout the period of study, we see that the
majority of tags are increased to a weight of 7.5 and some increase to 10, while others are
decreased to a less relevant weight of 2.5. This is expected due to the 70% prevalence of
positive feedback and a δ of 2.5.
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5.4.1.2 Updating Course Content Tag Weights according to Student Feedback
Next, we analyze if and how the implementation of student feedback affects the weight of
course content tags. Figure 5.3 shows the temporal evolution of course content tags for all
courses within the prototype.

Figure 5.3. Change in course content tags over time. For all offered courses,
each course tag is printed on the row of the corresponding course every time a
change in tag weight occurs. The alternating row colors of blue and yellow are used
to distinguish between the different courses. The plot does not indicate if course
weights were increased or decreased.

The congestion in Figure 5.3 indicates that content tag weights undergo frequent changes
throughout our simulation. In contrast to our method of updating interest tags in the student
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profiles, where updates occur for only matching tags, all course content tags are updated
according to student feedback. Furthermore, course content tags update throughout the
entire simulation (here 40 time steps), whereas student profile tags only update during the
respective student’s period of study (i.e., up to 8 quarters per default). Figure 5.3 allows us
to simultaneously see that course content tag weights are changing for all courses, but does
not depict whether a single tag weight was increased or decreased, and to what extent.

Figure 5.4 shows a plot similar to Figure 5.2 where we represented changes in the weights
of student profile interest tags. In Figure 5.4, each color represents one course content tag
with the initial (default) weight ranging from 3 to 7.5. Each dot indicates a change in tag
weight for that particular tag. If a tag repeatedly appears at 10 or 1, this indicates that the
respective tag was positively or negatively evaluated, but retains its previous weight of 10
or 1, respectively.

Figure 5.4. Quantitative changes in course content tags over time for a
single course. An example of tag weight changes for course OA4118. The weights
of the content tags are represented by colored dots. Every time students take the
course and provide feedback, the tag weights are updated. Tags that have reached
the maximal (10) or minimal (1) value retain these weights.

Again, the majority of tags increase in weight due to the feedback distribution of 70%
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positive versus 30% negative. Comparing Figure 5.4 to Figure 5.2, we find that course tags
change more frequently than student tags. This is expected, since (a) all course tags are
updated, not just those which match student profiles, (b) more than one student can take and
evaluate a course at a time, and (c) course content tags persist over the whole simulation
period compared to the student’s period of study which only spans 8 time steps.

Therefore, we conclude that our software prototype for an adaptive personalized learning
framework is able to update tag weights according to student feedback, and that changes in
tag weights occur for both student profiles and course content tags in accordance with our
chosen experimental default settings.

5.4.1.3 Impact of Student Feedback on the Course Recommender System
From an application perspective, we believe that student feedback should impact both course
recommendations and the sequencing of courses. Therefore, it is important to see if, within
our simulation prototype, student feedback impacts the individual learning paths, and if the
tag updating processes previously described impacts the recommender score, which we use
as a metric for the matching quality (see Section 4.2.2). This section demonstrates how
these two variables, course recommendations and course sequencing, are affected using a
dynamic recommender system compared to a simple static course recommendation system.

We first analyze the effects of incorporating student feedback on the recommended learning
path. For this, we compare the sequencing of recommended courses suggested by our
dynamic system (tag weights are updated according to feedback) with a static model (tag
weights remain constant throughout the simulation).

Figure 5.5 shows examples of the recommended learning paths provided by the static versus
the dynamic model. We present these for two randomly selected simulated students. The
course paths shown in Figure 5.5(a) represent the learning paths recommended by the static
model (blue) and our dynamic system (yellow) for one randomly selected student from the
initial group of 50 simulated students. The course paths shown in Figure 5.5(b) are the
recommended learning paths for one randomly selected student who began his/her period
of study at a later point in time, where course content tag weights for the student’s first
quarter may have already changed (by feedback from earlier students).
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(a)

(b)

Figure 5.5. Comparison of individual learning paths by a static versus dy-
namic recommender system. Examples of recommended learning paths for a
student beginning his/her period of study (a) at the beginning or (b) at a later time
of the simulation. The upper (yellow) path represents the course recommendations
resulting from the dynamic model, and the lower (blue) path is generated by the
static model. Overlapping courses from each recommender system are marked in
green, independent of their time of recommendation.

According to Figure 5.5, use of adaptive tags in the dynamic model indeed affects course 
recommendations to the same student since different course paths appear in the dynamic 
versus static system for both students shown. Interestingly, at the start of the simulation 
(Figure 5.5a(a)), we observe a significant amount of overlap between the learning paths, 
especially in the first few time steps, whereas for the student who began his/her period of 
study at later point in the simulation (Figure 5.5a(b)), this overlap does not exist. This can 
be explained by the fact that when the simulation begins the course content tag weights are 
the same for both the static and dynamic models; however, as the simulation progresses 
these weights stay the same in the static model and change in the dynamic model.

For a quantitative analysis, we calculate the ratio of courses that are not recommended by
both systems (“Deviance of course recommendations”), and the ratio of courses that are
recommended at a different time point during the learning path (“Deviance of course order”)
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among all courses which overlap for each simulated student. Furthermore, we calculate
a recommender score (Section 4.2.2) for both, the dynamic and the static system, which
serves as a measure how well the recommended courses fit the student profiles. Results are
shown in Table 5.4.

Table 5.4. Quantitative Analysis of Dynamic Versus Static Recommender System
Output Parameters Mean 95% CI

Deviance of Course Recommendations 0.3250 (0.3072, 0.3428)
Deviance of Course Sequencing (among shared courses) 0.6978 (0.6696, 0.7259)
Average Dynamic Recommender Score 0.1422 (0.1392, 0.1451)
Average Static Recommender Score 0.1297 (0.1272, 0.1322)

With the chosen default settings (see Listing 4.1), the course recommendations generated by
the static and dynamic models overlap for approximately 2/3 of the courses. Implementation
of student feedback to update course content and student profile tags thus leads to course
recommendations that would not have been suggested by a static system for approximately
1/3 of the courses a student takes. With regard to the recommender score, this difference
in course recommendations leads to a higher match between course content and student
interest in our analysis, indicating that a dynamic recommender system can indeed improve
the identification of appropriate learning content in accordance with our default parameter
settings.

Out of the overlapping courses, about 2/3 are suggested at a different time point in our
analysis. However, our analysis is only based on course content of each course independent
of prior knowledge and prerequisite relationships. Implementation of the latter in future
work would most likely change this result (see Section 6.2).

All in all, the results demonstrate that our methodology is able to simulate student feedback 
and use the responses to update both, student profile and course content tags, which—at 
least under the default settings—leads to an improvement in the average recommender 
score. In the next section, we modify some of the input parameters to a means to verify the 
functionality of our software prototype.
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5.5 Verification of the Software Prototype
In order to verify that our dynamic recommender model is performing properly, we create a
series of test cases to systematically modify some of the input parameters related to the tag
update process. First, we set δ to 0, which should eliminate all effects of feedback. Then
we allow positive or only negative feedback, which should exclusively increase or decrease
tag weights, respectively. The results of these verification experiments are described below.

5.5.1 Test Case I: No Change in Tag Weights (δ = 0)
As described in Chapter 4 in more detail, δ is the constant in our system, by which tag
weights are increased or decreased upon positive or negative feedback from the students.
The value of delta determines the amount of impact the feedback has on the increase or
decrease of tag weights. The higher the value of delta, the greater the impact of student
feedback.

The first test case we verify is whether a feedback parameter value of delta=0 results in
no change to the weighting of the tags. The experiment corresponding to this test case is
shown in Listing 5.1.

Listing 5.1: Test Case I: No Change in Tag Weights

[exp_00-0015]

delta = 0

In this case, the software prototype still simulates student feedback, but this feedback should
not lead to changes in tag weights. To confirm this result, we run the simulation software
with the same default parameters except for the value of δ. Figure 5.6 temporally depicts
tag weights for the student profile tags of one randomly picked student (a) and for the course
content tags of one randomly picked course (b).
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(a) (b)

Figure 5.6. Change in tag weights over time with δ = 0. (a) An example
of one randomly selected simulated student. Each student profile tag is represented
by a different color and only those tags which changed weights are shown at each
new time step. A jitter is added to visualize overlapping dots. (b) An example of
content tags weights for one randomly selected course. The weights of the content
tags are represented by colored dots. Every time students take the course and provide
feedback, the tag weights are updated.

As expected with δ = 0, the student profile tags and the course content tags remain at
the same level throughout the entire simulation. In Figure 5.6a, the slight deviations seen
around a weight of 5 are due to the jitter that we randomly add to allow for visualization of
overlapping dots. The appearance of dots during a time step indicates that students provided
feedback on the respective tag. Nevertheless, this feedback does not affect the updated tag
weight as δ is set to zero.

We also conduct a quantitative analysis of the results from the dynamic and static recom-
mender systems when δ = 0. Results are shown in Table 5.5.

Table 5.5. Quantitative Analysis of Recommender Systems (δ = 0)
Output Parameters Mean 95% CI

Deviance of Course Recommendations 0.0000 (0.0000, 0.0000)
Deviance of Course Sequencing (among shared courses) 0.0000 (0.0000, 0.0000)
Average Dynamic Recommender Score 0.1330 (0.1303, 0.1357)
Average Static Recommender Score 0.1330 (0.1303, 0.1357)

As expected with δ = 0, no differences can be observed between the dynamic and the
static recommender systems. These results verify that even though our software prototype
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simulates student feedback, this feedback does not have any effect on the recommended
learning path.

5.5.2 Test Case II: 100% Positive Feedback
The second test case we verify is whether feedback distribution parameter values of 100%
positive feedback and 0% negative feedback, for both the student profile tags and course
content tags, results in only positive increases to the weighting of the tags. The experiment
corresponding to this test case is shown in Listing 5.2.

Listing 5.2: Test Case II: Only Positive Feedback

[exp_00-0016]

distribution_tag_feedback = [1.0, 0.0, 0.0]

distribution_tag_feedback_learner = [1.0, 0.0, 0.0]

Figure 5.7 temporally depicts the resulting tag weights, again for one randomly selected
student (a) and for one randomly selected course (b).

(a) (b)

Figure 5.7. Change in tag weights over time with 100% positive feedback
distributions. Each student profile tag or course content tag is represented by a
different color and only those tags which changed weights are shown at each new
time step. Tags that have reached the maximal (10) value retain this weight. (a) An
example of one randomly selected simulated student. A jitter is added to visualize
overlapping dots. (b) An example of content tags weights for one randomly selected
course. Every time students take the course and provide feedback, the tag weights
are updated.

As expected with feedback distribution parameter values of 100% positive feedback and
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0% negative feedback, all tag weights exclusively increase over time and all course content
tags reach the maximal weight (10) after several simulation time steps. We summarize the
quantitative effects of these distributions on the static and dynamic recommender systems
in Table 5.6.

Table 5.6. Quantitative Analysis of Recommender Systems (100% Positive Feedback)
Output Parameters Mean 95% CI

Deviance of Course Recommendations 0.2935 (0.2764, 0.3106)
Deviance of Course Sequencing (among shared courses) 0.6876 (0.6601, 0.7151)
Average Dynamic Recommender Score 0.1472 (0.1434, 0.1511)
Average Static Recommender Score 0.1330 (0.1303, 0.1357)

Exclusively positive feedback and the resulting increased tag weights for the dynamic
recommender system lead to differences in course recommendations as compared to course
recommendations from the static recommender system. Interestingly, the extent of deviance
and average recommender scores are comparable to the quantitative analysis obtained using
the default settings summarized in Table 5.4.

5.5.3 Test Case III: 100% Negative Feedback
The third test case we verify is whether feedback distribution parameter values of 0%
positive feedback and 100% negative feedback, for both the student profile tags and course
content tags, results in exclusively negative decreases to the weighting of the tags. The
experiment corresponding to this test case is shown in Listing 5.3.

Listing 5.3: Test Case III: Only Negative Feedback

[exp_00-0017]

distribution_tag_feedback = [0.0, 1.0, 0.0]

distribution_tag_feedback_learner = [0.0, 1.0, 0.0]

Figure 5.8 again depicts the resulting tag weights over time for one randomly selected
student (a) and for one randomly selected course (b).
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(a) (b)

Figure 5.8. Change in tag weights over time with 100% negative feedback
distributions. Each tag is represented by a different color and only tags which
changed weights are shown at each new time step. Tags that have reached the
minimal (1) value retain this weight. (a) An example of one randomly selected
simulated student is shown. A jitter is added to visualize overlapping dots. (b) An
example of content tag weights of one randomly selected course. Every time students
take the course and provide feedback, the tag weights are updated.

As expected with distribution parameter values of 0% positive feedback and 100% negative
feedback, all tag weights exclusively decrease over time and all course content tags reach the
minimal weight (1) after several simulation time steps. We again summarize the quantitative
effects of these distributions on the static and dynamic recommender systems in Table 5.7.

Table 5.7. Quantitative Analysis of Recommender Systems (100% Negative Feedback)
Output Parameters Mean 95% CI

Deviance of Course Recommendations 0.2825 (0.2622, 0.3028)
Deviance of Course Sequencing (among shared courses) 0.6727 (0.6445, 0.7010)
Average Dynamic Recommender Score 0.1326 (0.1305, 0.1348)
Average Static Recommender Score 0.1327 (0.1299, 0.1355)

Exclusively negative feedback and the resulting decrease in tag weights still leads to differ-
ences in course recommendations between the dynamic and static recommender systems.
However, in contrast to the previous run, the average recommender score for the dynamic
model does not show improvement over the static system.

64



5.5.4 Modification of Several Parameters by Design of Experiment
So far, in order to verify that our dynamic recommender model is performing properly, we
modify one factor at a time (OFAT analysis). We now aim to explore the effect of several
variables in our software prototype on the quality of course recommendations as measured
by the recommender score. Of particular interest are the following variables:

(1) delta, in order to assess magnitude of impact on the tag updating process;
(2) distribution_tag_feedback, in order to assess the importance of assigning fitting

tags that are likely to be positively evaluated;
(3) distribution_tag_feedback_learner, as optimizing this is a major goal of the

project;
(4) number_of_tags_per_student_profile, to assess a minimum number required

for the recommender system to find reliable matches; and
(5) number_of_students, to check if a minimum number of students is required for

the feedback to have an effect on the recommender score.

To explore the impact of these five variables on our recommender system all at the same time,
we employ an experimental design approach with good space filling properties. We desire a
design which covers the full variable design space and minimizes the number of necessary
experimental runs. To this end, we choose a Nearly Orthogonal Latin Hypercube (NOLH)
design, since this provides good space filling properties and will allow us to see interactions
between the variables. We use a Microsoft Excel template provided by the Simulation,
Experiments, & Efficient Designs (SEED) Center for Data Farming at NPS to generate the
experimental design (Sanchez 2011). In accordance with this design, we run the simulation
software using the 17 different design points (i.e., combination of parameter settings),
with two replications of each design point for a total of 34 simulation runs. We write
a program in Python, which automatically converts the experimental design points from
the Excel spreadsheet into the the experiment entries needed by our simulation software
configuration file (Listing 4.3.1). The settings for these 17 experiments are in the appendix,
Listing C.1.

After running our experiments, we use JMP® Pro 13.1.0 statistical software to explore
the simulation output (see Section 4.3.3) and generate the following figures. Figure 5.9
shows the correlation matrix as well as a bivariate scatterplot matrix revealing the pairwise
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distribution of parameter values across the space of the experimental design.

Figure 5.9. Correlation and scatterplot matrices of the designed experiment.The
NOLH design is chosen to explore the following five variables: delta, feedback distribution
on course tags, feedback distribution on profile tags, number of profile tags per student,
and number of students. The values close to zero in the correlation matrix indicate that
our parameters have little-to-no correlations (and thus are nearly orthogonal). In each of
the bivariate scatterplots, each dot corresponds to a combination of parameter settings.
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As can be seen from the correlation matrix, the design is almost perfectly orthogonal, with
all pairwise correlations having values extremely close to zero indicating that our parameter
values have little-to-no correlation with each other. The scatterplot matrix confirms that the
parameter settings are chosen in a way that ensures even distribution over the design space.

We then conduct our quantitative analysis, computing values for the following four quanti-
tative response variables across all 17 design points:

(1) Deviance of recommended courses (independent of their order);
(2) Deviance of sequencing (among all shared courses);
(3) Average recommender score in the dynamic recommender system; and
(4) Average recommender score in the static system.

Figure 5.10 gives an overview of how the five independent variables and the four quantitative
response variables are related to each other.
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Figure 5.10. Interaction of input variables and readout parameters in the
NOLH experiment. Data for each individual simulated student are shown for the
five input variables: delta, feedback distribution on course tags (“Course feedback”),
feedback distribution on profile tags (“Profile feedback”), the number of tags per
profile, and the number of students per quarter, as well as for the four quantitative
response variables: deviance of recommended courses (“Course deviance”), deviance
of recommendation sequencing among shared courses (“Course order deviance”), the
average recommender score in the dynamic, and the average recommender score in the
static system. Data appear highlighted in yellow if course deviance is above average
and the dynamic recommender score is higher than the average static recommender
score. For additional details on the distributions of the simulation output metrics see
Figure C.1.

As can be seen in Figure 5.10, we observe no clear relationship between the five input
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parameters and the sequencing of courses. Generally, the dynamic system is able to achieve
higher recommender scores than the static system, and a high recommender score in the
dynamic system seems to be associated with a higher deviance of recommended courses.
Furthermore, a recommender score and course deviance above average can only be achieved
if δ > 0, and if the number of student profile tags does not fall below a certain threshold.

As the number of tags in a student profile is of relevance for establishing a learning platform
in the future, we analyze this observation in more detail (see Figure 5.11).

Figure 5.11. A plot of the average dynamic recommender score versus the
number of student profile tages. This plot shows the average recommender
scores from the dynamic recommender system as a function of the number of student
profile tags used in each of the 17 experimental design points. The dots represent the
average values obtained from the simulations, and the line represents a fitting curve.

According to our data, a minimum number of about 6 tags per profile is necessary to
obtain a recommender score above the average static recommender score in our settings. In
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Figure 5.11, it appears that 15 tags per profile may be optimal, as the inclusion of more tags
clearly do not improve the recommender score. Given the limited scope of our experimental
design, as well as our limited number of replications, we recommend using this analysis as
a preliminary basis for future studies (see Section 6.1.2). Also, we caution that this number
of optimal student profile tags relies on matching course content tags with student interest
tags that were generated randomly from a pool of course content tags. In a real scenario,
we envision that student profiles as well as course tags will implicate a wider range of tag
categories, so that a higher overall number of profile tags is very likely to be optimal.

Next, we analyze how the positive / negative feedback distributions for course content tags 
and student profile tags affects the recommender score in the dynamic m odel. This is of 
interest for the future, as the feedback distribution can (at least to some extent) be influenced 
by the quality of tags. We believe that well tagged course content is more likely to obtain 
positive feedback in terms of met expectations, and well designed student profile tags will 
increase the likelihood of identifying relevant learning content for the student. To check 
for such correlation, we generate a contour plot showing average recommender scores as a 
function of both types feedback distribution (Figure 5.12).
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Figure 5.12. Impact of feedback distributions on the recommender score
in the dynamic model. The x-axis and the y-axis represent the proportion (or
percentage) of positive feedback out of 1.00 (or 100%) feedback provided, whereas
the remaining feedback is negative.

As can be seen fromFigure 5.12, contour lines rely on a very low density of actual data points
covered in the experimental design. We thus refrain from drawing any further conclusions
out of this figure and suggest to repeat the analysis in a larger experiment consisting of more
space-filling design points in the future.

All together, experimental design can be well applied with our software and can be used to
analyze relations of different input parameters and output variables. While the small scale
experimental design described here was sufficient to give hints on the effect of different
values for δ and on a minimum number of profile tags, experiments of a larger scale
are necessary to obtain reliable results for relations between feedback distribution and
recommender score. This and other suggestions to improve our personalized learning
framework are described in the following chapter.
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CHAPTER 6:
Discussion

The overall goal of this research project was to generate a personalized and adaptive learning
framework. This frameworkmust be able to suggest learning content to an individual student
based on his/her interests and learning preferences, and make modifications based on how
the student best learns during the period of study. This requires an adaptive recommender
system, which is able to match learning content with individual student profiles. Since
students’ interests and learning preferences often change during the course of study, a
functional system must be able to adapt to these changes, update the profiles accordingly,
and identify the best fitting learning content at each step. In this chapter, we summarize our
progress, discuss several of the challenges, and outline the many opportunities available for
continued work.

6.1 Summary and Recommendations for Future Work
To achieve our goal of developing a personalized and adaptive learning framework, we
first demonstrated a network science approach to our data model, where we organized
all available learning content in a multilayer network of knowledge. Learning content is
tagged with metadata from multiple categories, such as content, prerequisites, instructors,
etc., where each category represents one layer in the network of knowledge. Course
tags are evaluated by students, and updated and improved in accordance with this student
feedback. Student profiles also contain multiple tag categories describing interests, learning
preferences, previous knowledge, etc., and these tags are adapted according to feedback as
well as learning progress.

Next, we established and investigated several methods and techniques to set up a software
prototype to demonstrate this personalized learning framework. We analyzed techniques to
assign tags to courses and student profiles, we simulated students’ feedback on these tags,
and we developed a software prototype that is able to match student profile tags and course
content tags, recommend courses to students, collect student feedback, and use the feedback
to adapt tags in order to improve the recommendation of future courses.
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6.1.1 Assignment of Metadata Tags
Assignment of appropriate metadata tags in a standardized, objective and automatedmanner
is a major challenge for the establishment of a personalized learning platform. We tested
several automatic approaches to extract tags describing course content, course prerequisites,
course grading distributions, and student profiles.

6.1.1.1 Course Content Tags
To obtain course content tags, we designed a program that automatically extracts the most
common words out of pre-existing material from NPS, and run it on course syllabi as well
as on learning material (PPTX slides). While the tags obtained from course syllabi are
heterogeneous and contain many tags which do not actually describe course content, the
learningmaterial from the one course we analyzed revealed good tags for the course content.
Unfortunately, we did not have access to such material for more courses (especially from the
OR department), so we elected to continue working with the tags extracted from the syllabi
for our simulation experiments. In future work, content tags extracted from course material
should be used, not only because the content would be described better, but also because
the educational material would be tagged at a higher fidelity (e.g., by extracting tags for
each lesson of the course separately). Nevertheless, our common word extraction approach
seems an appropriate automatic tool to assign content tags to educational materials.

6.1.1.2 Course Prerequisite Tags
To tag courses that require the knowledge from a previous course with prerequisite tags, we
automatically extracted information from the course catalog by searching for specific word
patterns. This revealed appropriate tags for some of the courses, but did not cover the whole
list of courses in the catalog. In order to better develop this prerequisite list, we investigated
an indirect approach by analyzing student transcript data to identify courses that were taken
by students prior to taking a specific course. If a specific course was previously taken by
all course participants, we assumed this previous course must be a prerequisite. While this
approach was able to fill some of the gaps, and had overlapping results for several courses
that were already identified using the first approach, we believe analyzing a larger quantity
of student transcript data in the future will lead to greater insights. From the very limited
amount of transcript data available for this thesis, we most likely obtained false positive
prerequisite course results when the number of students in a particular course is very
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small. Furthermore, false negative results could be obtained if students take prerequisite 
courses at other academic institutions. To overcome these challenges, we recommend, in 
future work, to consider including the relationships between course content (e.g., subjects 
or topics) into the analysis. In general, a combination of both approaches—after the 
improvements mentioned—may provide a useful tool to automatically assign prerequisites 
to any educational material (not just material tied to a course).

6.1.1.3 Course Grading Distribution
From the student transcript data, we were also able to extract success rates and grading
distributions for the courses. Althoughwe did not yet use this data in our software prototype,
we feel that in future work it might be used to investigate the effect grades have on student
feedback.

6.1.1.4 Student Profile Tags
From the student transcript data, we looked to extract tags that are relevant for establishing 
student profiles. While we successfully extracted personal information and information on 
prior education and previous courses, which will be relevant for a more advanced software 
prototype, we found that we could not extract useful tags describing students’ interests 
or learning preferences. At this initial phase of the project, our aim was to establish a 
recommender system based on student interests and matching course content. We therefore 
decided to simulate student profiles by randomly assigning metadata f rom our available 
course content tag pool. This allowed us to run several experiments with the software 
prototype and to analyze the influence of some p arameters. However, i t i s, admittedly, 
a rather artificial approach t hat must be improved i n t he f uture t hrough t he u se o f real 
student data, such as data obtained from the use of interest questionnaires or surveys. If 
enough data is available, interest tags could also be obtained by analyzing students’ 
learning behavior (e.g., which courses are taken, which grades achieved) or by transferring 
some tags from other students with a very similar learning behavior. Nevertheless, the 
simulation of student profiles, as established in this thesis, offers a valuable tool to run 
basic experiments and to simultaneously study the influence of several parameters on the 
course recommendation algorithm.
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6.1.2 Feedback Simulation and Dynamic Course Recommendation
In this thesis, we established a software prototype that is able to simulate student profiles
and match these simulated profiles with the optimal course content using tags obtained from
course syllabi. In the experiments we ran in this thesis, the matching is exclusively based on
cosine similarity, but the software already contains options to use k-NN or a hybrid of the
two approaches. Furthermore, the software we developed simulates student feedback after
each course, and includes this feedback to adapt both, student profile and course content
tags. We achieved this inclusion of feedback by weighting all tags according to their priority
or relevance. Negative feedback decreases, and positive feedback increases the tag weight.
Furthermore, we included the ability to regulate the effect size of the feedback by setting
the value of the δ parameter, with high δ values causing the feedback to have a stronger
impact. We demonstrated that this feedback-driven dynamic leads to weight changes in both
student profile and course content tags, and that these changes result in altered recommended
course paths. More importantly, adaptive tagging in the dynamic recommendation system
increased the overall recommender score, which we used to measure the overall quality
of the student-to-course match. The system developed here does not currently allow the
deletion or replacement of tags. We believe this option can, and should, be included in future
work, so that tags which continue to get negative feedback and fall below a certain threshold
can be removed from the system. Furthermore, we defined a maximal (10) and minimal (1)
weight for tags, without much analysis. We believe the selection of an appropriate weight
range, and resulting advantages and disadvantages, should be investigated in the future.

Additionally, we included in our prototype the analysis of several metrics, including the
tracking of tag weights over time, courses over time, and course feedback over time. In
order to keep things simple during the initial phase of this research, we did not yet include
how feedback impacts instructors or content curators. Therefore, feedback important to
both these entities should be included as part of future research.

We simulated feedback in our prototype according to distributions that we subjectively
defined in our software initialization file. In the future, we encourage the use of a more
objective approach. With more data available, empirically-derived distributions could be
used. Still, we believe the software prototype, with its ability to simulate student feedback, is
a good tool to run fast experiments, to investigate feedback interactions with other variables,
and to optimize input parameters such as δ. For the experiments we ran for this thesis, we
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assumed that feedback is given by each student independently according to the defined
distribution. This is the most simple and basic approach. However, our software prototype
is also able to simulate feedback trends, where we assume that students influence each other,
which increases the probability of positive or negative feedback depending on feedback by
other students. This can be extended to feedback trends within academic communities (i.e.,
cohorts), where a trend occurs among a certain group of students, and a different trend may
occur in a different group. Although we did not investigate the simulation of trends within
communities, this option is available in the current software prototype, and parameters like
duration of trends or the probability of joining a community can be modified in the input
settings. Thus, the software prototype stands ready to simulate more complex feedback
scenarios that may paint a picture closer to real student behavior.

We ran several experiments to verify our simulation software. First, we confirmed that
the changed course recommendations in the dynamic recommender system are caused by
feedback-induced changes of tag weights and not random. We set the parameter δ to
zero, thus still simulating feedback, but eliminating the impact of the feedback on the
tag weights. The resulting tag weights remained constant throughout the experiment,
and the recommended course paths for the dynamic recommender system were 100 %
identical to the ones suggested by the static recommender system, proving that all observed
changes are indeed based on the student feedback. Furthermore, we tested if exclusively
positive feedback increases, and exclusively negative feedback decreases tag weights. We
confirmed both, indicating that the software was functioning correctly in this regard. Lastly,
we demonstrated that the software can run through a series of input parameters allowing the
identification of interactions between different input variables and quantifying the impact on
the response (or output) variables. Using a small experimental design approach, we found
that a minimum number of profile tags is necessary to obtain decent recommender scores,
while very high numbers of profile tags do not necessarily further improve this score. We
believe that information such as this should be used in the future to identify and optimize
factors that can be influenced by the platform administrator.

6.2 Conclusion and Outlook
The overall goal of the CHUNK Learning project is to offer a framework for personalized
learning which utilizes a network science approach and generates a learning environment for
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personalized adaptive learning. In this thesis, we established an initial software prototype
that is able to adaptively recommend learning content to individual students based on their
interests, by implementing student feedback. This prototype must be improved through
the inclusion of many other categories like prior knowledge / course prerequisites, learning
preferences / type of educationalmaterial, intensity levels, instructor information and overall
study and application goals, to name a few. Our approach of allowing student feedback
to adapt the weighting of tags within a single category could easily be transferred to these
new categories. The inclusion of these additional categories and matching with real student
profiles will allow more differential matches, but will also generate more complex overlaps.
We believe that multilayer networks, like those described in this thesis, will help to deal
with this increased complexity.

Our software prototype is able to take feedback by students into account and adapt tag
weights accordingly. The overall idea behind this thesis was to design a software prototype,
which incorporates a methodology enabling easy selection and weighting of tags by instruc-
tors as well as students. Therefore, in future versions, the program should be designed so
that it enforces and collects feedback, evaluates it, and adapts tag weights accordingly. This
adaptation could also imply that tags with predominantly negative feedback are removed
and replaced by better tags.

Our initial software prototype, which includes the simulation of students and methods to
extract tags, is a valuable tool for initial investigation into a personalized learning framework,
more real data should be implemented in the future. Furthermore, proper verification and
validation experiments should be performed and compared to empirical observations and
experiences.

Some fine tuning of the methods established here will also help to further improve the
software. Details on our ideas for future work were described in the previous section, and
are summarized in Table 6.1.
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Table 6.1. Future Work
Current Limitation Future Work

Feedback
Simulation

Defined distributions Sampling from real data or data
gathered from surveys
Agent-based implementation of stu-
dents (individually different behav-
ior based on own learning experi-
ence)

Simulation
Implementa-
tion

Course data and student data is rep-
resented by objects stored in dictio-
naries

Storing this data in a graph database
intuitively extends the ideas dis-
cussed in this thesis.

Validation System is verified but not validated Validation of the simulation with
real data / students.

Update of
Tags

Metadata stays in the system Replacement based on threshold

Recommender Empty profiles do not receive spe-
cific recommendations

Curated recommendations (like top
10)

Tags are not part of hierarchy Inclusion of hierarchies
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APPENDIX A:
Results from Automatic Tagging of Metadata

A.1 Extraction of Metadata from Course Syllabi
Table A.1. Term and Frequency List of Most Common Words from Detailed
Analysis of Course Syllabi

course (common word, count)
OA1600 (’introduction’, 9), (’programming’, 9), (’analysis’, 6), (’savage’, 4), (’topic’, 3)
OA2900 (’thesis’, 5), (’operations’, 3), (’research’, 3), (’opportunities’, 3), (’pass/fail’, 2)
OA3101 (’probability’, 5), (’statistics’, 5), (’oa’, 4), (’homework’, 4), (’quarter’, 3)
OA3102 (’statistical’, 6), (’statistics’, 3), (’gl’, 3), (’00’, 3), (’0’, 3)
OA3103 (’data’, 7), (’analysis’, 6), (’glasgow’, 5), (’oa3103’, 4), (’set’, 3)
OA3201 (’gams’, 5), (’models’, 5), (’linear’, 4), (’problems’, 4), (’understand’, 3)
OA3301 (’problems’, 1), (’ph.d’, 1), (’put\\\\3301’, 1), ("”", 1), (’ine-mailsubject’, 1)
OA3302 (’email’, 1), (’put’, 1), (’oa3302’, 1), (’insubjectline’, 1), (’glasgow254’, 1)
OA3304 (’decisiontheory’, 1), (’coursesyllabus’, 1), (’january5,2015’, 1), (’ph.d’, 1),

(’mpatkins’, 1)
OA3401 ("”", 61), (’1./’, 12), (’./0’, 10), ("’/", 9), ("’2", 8)
OA3411 (’hsi’, 18), (’program’, 6), (’human’, 5), (’systems’, 5), (’acquisition’, 5)
OA3412 (’acquisition’, 8), (’systems’, 7), (’human’, 6), (’integration’, 6), (’hsi’, 6)
OA3413 ("”", 51), (’234’, 15), ("’3", 11), (’–’, 6), (’3=’, 6)
OA3801 ("”", 2), (’manipulating’, 1), (’displaying’, 1), (’davidl.alderson’, 1), (’ph.d’, 1)
OA4301 (’process’, 12), (’models’, 11), (’understand’, 9), (’word’, 9), (’poisson’, 8)
OA4333 (’model’, 6), (’simulation’, 5), (’analysis’, 3), (’apply’, 3), (’oa3302’, 2)
OA4401 ("”", 57), ("’2", 18), (’0’, 17), (’8.2’, 14), (’.24’, 12)
OA4408 (’organizational’, 5), (’human’, 5), (’team’, 5), (’macroergonomics’, 4), (’factors’, 4)
OA4414 (’hsi’, 12), (’learned’, 5), (’previous’, 4), (’courses’, 4), (’-week’, 4)
OA4415 (’courses’, 5), (’systems’, 4), (’program’, 4), (’hsi’, 4), (’human’, 3)
OA4602 (’analytical’, 6), (’analysis’, 5), (’operational’, 5), (’usn’, 4), (’capt’, 3)
OA4603 (’test’, 12), (’evaluation’, 5), (’project’, 5), (’group’, 4), (’acquisition’, 3)
OA4604 (’wargaming’, 4), (’wargame’, 4), (’develop’, 3), (’operations’, 3), (’analysis’, 3)
OA4607 (’oa4607’, 1), (’coursesyllabus’, 1), (’ph.d’, 1), (’mpatkins’, 1), (’glasgow249’, 1)
OA4656 (’combat’, 10), (’models’, 9), (’case’, 6), (’aoa’, 5), (’studies’, 4)
OA4801 (’spreadsheet’, 6), (’operations’, 4), (’research’, 4), (’military’, 4), (’vba’, 4)
OS2080 (’probability’, 12), (’distributions’, 7), (’statistics’, 4), (’variables’, 4), (’data’, 4)

Continued on next page
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Table A.1 – continued from previous page
course common word, count)
OS2103 (’probability’, 10), (’conditional’, 10), (’expected’, 10), (’understand’, 10), (’definition’,

8)
OS3008 (’excel’, 11), (’operations’, 4), (’research’, 4), (’techniques’, 3), (’using’, 3)
OS3081 (’analysis’, 8), (’analytical’, 8), (’systems’, 6), (’studies’, 5), (’case’, 4)
OS3082 (’systems’, 5), (’analysis’, 5), (’analytical’, 5), (’studies’, 4), (’support’, 4)
OS3104 (’statistics’, 3), (’data’, 3), (’engineering’, 2), (’student’, 2), (’831’, 2)
OS3105 (’chapter’, 6), (’chapters’, 4), (’probability’, 3), (’lectures’, 3), (’tbd’, 3)
OS3111 (’probability’, 5), (’statistics’, 4), (’data’, 3), (’exercises’, 3), (’based’, 2)
OS3112 (’design’, 8), (’experimental’, 5), (’designs’, 5), (’experiments’, 4), (’research’, 4)
OS3113 (’20’, 3), (’15’, 3), (’lectures’, 3), (’chapters’, 3), (’please’, 3)
OS3211 (’systems’, 1), (’optimization’, 1), (’spreadsheet’, 1), (’modeling’, 1), (’decision’, 1)
OS3307 (’modeling’, 4), (’event’, 3), (’sample’, 3), (’models’, 3), (’distributions’, 2)
OS3380 (’ph.d’, 1), (’googlevoice’, 1), (’510’, 1), (’969-2004’, 1), (’simio’, 1)
OS3604 (’data’, 8), (’statistics’, 5), (’use’, 5), (’get’, 4), (’ample’, 4)
OS3680 (’cle’, 4), (’reading’, 4), (’naval’, 2), (’tactical’, 2), (’analysis’, 2)
OS4012 (’˘’, 14), (’˘ˇ’, 2), (’˜’, 2), (’˘˘’, 2), (’ˇ’, 2)
OS4083 (’analysis’, 12), (’systems’, 5), (’system’, 3), (’completion’, 3), (’presentation’, 3)
OS4621 ("”", 3), (’ical’, 1), (’economic’, 1), (’state’, 1), (’studentsatnps’, 1)
OS4702 (’˝’, 4), (’˛ ’, 4), (’“’, 3), ("”", 2), ("’˚", 2)
OA2801 (’basic’, 5), (’computer’, 4), (’data’, 4), (’file’, 4), (’python’, 3)
OA3402 (’question’, 24), (’research’, 23), (’example’, 15), (’empirical’, 14), (’step’, 14)
OA3501 (’excel’, 12), (’homework’, 12), (’–’, 10), (’“’, 8), (’”’, 8)
OA3602 (’search’, 19), (’detection’, 14), (’hr’, 12), (’target’, 7), (’discrete’, 4)
OA3611 (’logistics’, 32), (’operational’, 17), (’planning’, 10), (’information’, 10), (’oplog’, 8)
OA3802 (’data’, 14), (’text’, 7), (’example’, 7), (’tools’, 6), (’bash’, 6)
OA4101 (’chap’, 7), (’designs’, 6), (’experiments’, 5), (’analysis’, 5), (’–’, 5)
OA4106 (’models’, 11), (’data’, 7), (’regression’, 7), (’linear’, 5), (’model’, 5)
OA4108 (’data’, 21), (’mining’, 8), (’large’, 6), (’techniques’, 6), (’r’, 6)
OA4109 (’survey’, 14), (’design’, 9), (’notes’, 8), (’surveys’, 7), (’analysis’, 6)
OA4118 (’r’, 14), (’exercise’, 14), (’data’, 12), (’using’, 9), (’machine’, 8)
OA4201 (’learn’, 12), (’optimization’, 10), (’convex’, 9), (’homework’, 9), (’problems’, 7)
OA4202 (’network’, 20), (’problems’, 16), (’chapter’, 15), (’flow’, 12), (’shortest’, 12)
OA4203 (’programming’, 20), (’problems’, 12), (’optimization’, 8), (’integer’, 7), (’linear’, 6)
OA4205 (’programming’, 4), (’conditions’, 4), (’optimality’, 3), (’optimization’, 3), (’algo-

rithms’, 3)
OA4406 (’safety’, 16), (’health’, 7), (’survivability’, 6), (’occupational’, 6), (’habitability’, 5)
OA4611 (’logistics’, 12), (’joint’, 5), (’material’, 5), (’quizzes’, 4), (’participation’, 3)

Continued on next page
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Table A.1 – continued from previous page
course common word, count)
OA4613 (’energy’, 45), (’operations’, 18), (’logistics’, 16), (’military’, 14), (’operational’, 12)
OA4655 (’modeling’, 24), (’models’, 20), (’combat’, 16), (’warfare’, 12), (’ 1’, 10)
OA4657 (’model’, 9), (’simulation’, 5), (’models’, 4), (’dod’, 4), (’description’, 3)
OA4702 (’cost’, 24), (’–’, 18), (’days’, 14), (’analysis’, 10), (’estimation’, 8)
OS3006 (’“’, 25), (’”’, 25), (’excel’, 17), (’homework’, 17), (’quizzes’, 11)
OS3007 (’energy’, 18), (’optimization’, 13), (’systems’, 12), (’•’, 10), (’modeling’, 9)
OS3080 (’analysis’, 9), (’probability’, 7), (’models’, 7), (’data’, 5), (’regression’, 5)
OS3180 (’probability’, 14), (’statistics’, 12), (”’, 9), (’available’, 7), (’synchronous’, 7)
OS3311 (’probability’, 6), (’models’, 6), (’military’, 5), (’combat’, 3), (’situations’, 3)
OS3640 (’ied’, 9), (’counter’, 7), (’homework’, 5), (’improvised’, 4), (’explosive’, 4)
OS3701 (’cost’, 24), (’–’, 18), (’analysis’, 10), (’hour’, 9), (’estimation’, 8)
OS4010 (’–’, 28), (’risk’, 22), (’ch’, 18), (’g’, 13), (’w’, 13)
OS4011 (’–’, 27), (’risk’, 23), (’ch’, 18), (’g’, 13), (’w’, 13)
OS4013 (’decision’, 15), (’analysis’, 7), (’modeling’, 5), (’solve’, 4), (’problems’, 4)
OS4080 (’analysis’, 10), (’ce’, 9), (’cost’, 6), (’engineering’, 6), (’cba’, 6)
OS4081 (’team’, 20), (’project’, 16), (’cost’, 15), (’presentation’, 14), (’analysis’, 13)
OS4082 (’analysis’, 17), (’team’, 17), (’cost’, 14), (’top’, 11), (’project’, 11)
OS4106 (’model’, 12), (’linear’, 6), (’models’, 5), (’regression’, 5), (’response’, 4)
OS4118 (’methods’, 10), (’machine’, 6), (’learning’, 6), (’techniques’, 6), (’statistical’, 5)
OS4680 (’analysis’, 9), (’problems’, 7), (’practice’, 5), (’homework’, 4), (’linear’, 4)
OS4701 (’manpower’, 11), (”’, 11), (’models’, 8), (’analysis’, 7), (’data’, 6)
OS4703 (’cost’, 16), (’support’, 13), (’decision’, 10), (’analyses’, 10), (’programs’, 8)

Table A.2. List of Excluded Words from Detailed Analysis of Course Syllabi
excluded organizational words

’day’, ’course’, ’1’, ’montuewedthu’, ’Tu’, ’Th’, ’Fri’, ’Mon’, ’Hours’, ’hours’, ’Thursday’,
’Monday’, ’Aug’, ’Jul’, ’able’, ’assignments’, ’final’, ’week’, ’grade’, ’sakai’, ’Schedule’,
’appoinment’, ’Class’, ’Reading’, ’weekend’, ’Please’, ’Office’, ’bring’, ’hours’, ’TBD’, ’ap-
pointment’, ’Grading’, ’Labs’, ’class’, ’slides’, ’one’, ’syllabus’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’,
’¥’, ’instructor’, ’certificate’, ’e.g.’, ’work’, ’courseinformation’, ’professor’, ’january’, ’may’,
’hrs’, ’lab’, ’study’, ’phone’, ’ph.d.’, ’email’, ’students’, ’textbook’, ’supplemental’, ’via’, ’nps’,
’Chapter’, ’Homework’, ’lecture’, ’Lectures’, ’Lab’, ’exam’, ’Exam’, ’os3211’, ’oa3304’,
’OS3380’, ’OA3103’, ’oa3103’, ’syllabusforos3380’, ’th’, ’GL’, ’LCDR’,’:00’, ’Glasgow’,
’nps.edu’, ’edu’, ’http’, ’OA’
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A.2 Extraction of Metadata from Course Content
Table A.3. Term and Frequency List of Most Common Words from Detailed
Analysis of the MA4404 Course Content

topic (common word, count)
01-RealComplexNetworks (’networks’, 94), (’network’, 29), (’source’, 21), (’internet’,

16), (’“’, 12), (’”’, 12), (’nodes’, 11), (’social’, 11), (’newman’,
11), (’information’, 10), (’web’, 10), (’different’, 10), (’data’,
8), (’graphs’, 7), (’edges’, 7)

02-NetworkScienceOverview1 (’networks’, 23), (’network’, 15), (’graph’, 13), (’graphs’, 13),
(’science’, 12), (’theory’, 12), (’complex’, 11), (’eulerian’, 9),
(’random’, 9), (’social’, 9), (’”’, 9), (’“’, 8), (’königsberg’, 8),
(’small’, 7), (’cited’, 6)

03-NetworkScienceOverview2 (’networks’, 32), (’model’, 29), (’random’, 22), (’graphs’,
19), (’world’, 19), (’network’, 17), (’nodes’, 16), (’small’,
15), (’path’, 14), (’average’, 12), (’source’, 12), (’www’, 11),
(’degree’, 10), (’scale’, 9), (’free’, 9)

05-NetworkScienceOverview2 (’networks’, 36), (’model’, 29), (’random’, 24), (’graphs’,
21), (’world’, 20), (’network’, 16), (’nodes’, 16), (’small’,
15), (’degree’, 14), (’path’, 13), (’average’, 12), (’scale’, 11),
(’free’, 11), (’complex’, 10), (’distribution’, 10)

05-SyntheticModelsComplexNetworks (’random’, 28), (’networks’, 23), (’degree’, 18), (’model’, 17),
(’network’, 15), (’nodes’, 15), (’small’, 14), (’world’, 13), (’n’,
11), (’models’, 10), (’“’, 9), (’”’, 9), (’graph’, 9), (’distribu-
tion’, 8), (’erdős-rényi’, 7)

06-CommunitiesModularity (’communities’, 32), (’networks’, 32), (’community’, 32),
(’network’, 21), (’nodes’, 19), (’https’, 19), (’et’, 15), (’al’,
15), (’graph’, 13), (’model’, 13), (’sbm’, 13), (’detection’,
12), (’example’, 12), (’large’, 12), (’algorithm’, 12)

07-CommunitiesModularity (’communities’, 32), (’networks’, 32), (’community’, 32),
(’network’, 21), (’nodes’, 19), (’https’, 19), (’graph’, 13),
(’detection’, 12), (’example’, 12), (’large’, 12), (’algorithm’,
12), (’method’, 12), (’model’, 12), (’data’, 11), (’structure’, 9)

07-CorePeriphery (’networks’, 22), (’structure’, 14), (’core-periphery’, 13),
(’communities’, 11), (’“’, 11), (’core’, 9), (’”’, 9), (’k-core’,
8), (’large’, 8), (’j.’, 8), (’m.’, 8), (’vol’, 8), (’properties’, 7),
(’community’, 7), (’p.’, 7)

Continued on next page
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Table A.3 – continued from previous page
topic (common word, count)

08-Centralities_1 (’1/20’, 13), (’networks’, 11), (’centralities’, 8), (’centrality’,
8), (’degree’, 7), (’group’, 6), (’central’, 5), (’social’, 5), (’net-
work’, 4), (’exploration’, 4), (’node’, 4), (’table’, 4), (’vertex’,
4), (’https’, 4), (’location’, 3)

10-Centralities_Gephi (’gephi’, 9), (’nodes’, 9), (’centralities’, 8), (’centrality’, 7),
(’graph’, 7), (’network’, 6), (’python’, 5), (’code’, 5), (’part’,
5), (’top’, 5), (’use’, 4), (’version’, 4), (’try’, 4), (’closeness’,
4), (’directed’, 4)

11-Centralities_2 (’0’, 182), (’centrality’, 50), (’eigenvector’, 30), (’closeness’,
14), (’example’, 10), (’vertices’, 9), (’social’, 6), (’networks’,
6), (’degree’, 6), (’13’, 6), (’“’, 6), ("”", 6), (’deg’, 6), (’recall’,
5), (’network’, 5)

11-Centralities_3 (’page’, 29), (’pages’, 28), (’pagerank’, 20), (’centrality’, 13),
(’web’, 12), (’matrix’, 12), (’important’, 11), (’source’, 8),
(’degree’, 8), (’hyperlinks’, 8), (’v’, 7), (”’, 7), (’search’, 7),
(’u’, 6), (’algorithm’, 6)

11-Centralities_4 (’centrality’, 18), (’betweenness’, 15), (’matrix’, 12), (’pages’,
11), (’formula’, 9), (’degree’, 9), (’pagerank’, 8), (’page’,
8), (’would’, 8), (’flow’, 7), (’centralities’, 6), (’vertex’, 6),
(’paths’, 6), (”’, 5), (’get’, 5)

14-ClusteringCoefficient (’clustering’, 10), (’networks’, 5), (’source’, 5), (’scale’, 5),
(’free’, 5), (’coefficient’, 5), (’n.’, 4), (’local’, 4), (’section’,
3), (’“’, 3), (’”’, 3), (’prˆzulj’, 3), (’d.’, 3), (’g.’, 3), (’corneil’,
3)

14-Small World (’small’, 8), (’avg’, 6), (’world’, 5), (’effect’, 5), (’path’, 4),
(’networks’, 3), (’model’, 3), (’example’, 3), (’word’, 3),
(’ernesto’, 3), (’estrada’, 3), (’clust’, 3), (’shortest’, 2), (”’,
2), (’milgram’, 2)

15-nodeSimilarity (’similarity’, 18), (’equivalence’, 16), (’regular’, 14), (’equiv-
alent’, 14), (’nodes’, 11), (’structural’, 10), (’vertices’, 9),
(’two’, 8), (’neighbors’, 8), (’d1’, 7), (’q’, 7), (’network’, 6),
(’networks’, 6), (’defn’, 6), (’many’, 6)

16-Homophily (’degree’, 21), (’characteristics’, 20), (’networks’, 14),
(’homophily’, 12), (’assortativity’, 12), (’assortative’, 12),
(’scalar’, 12), (’network’, 11), (’newman’, 11), (’mixing’, 11),
(’vertices’, 11), (’2003’, 11), (’based’, 10), (’age’, 10), (’high’,
8)

Continued on next page
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Table A.3 – continued from previous page
topic (common word, count)

MA4404_schedule_20180105 (’outline’, 2), (’ma4404’, 1), (’schedule’, 1), (’excellence’, 1),
(’knowledge’, 1)

Rudy-ML_Graphs1 (’learning’, 21), (’network’, 19), (’model’, 16), (’perfor-
mance’, 12), (’training’, 11), (’”’, 10), (’nodes’, 9), (’ma-
chine’, 8), (’“’, 8), (’data’, 8), (’algorithms’, 8), (’networks’,
7), (’problem’, 6), (’set’, 6), (’degree’, 6)

Rudy-ML_Graphs2 (’network’, 35), (’distance’, 9), (’analysis’, 8), (’information’,
8), (’mean’, 8), (’small’, 7), (’world’, 7), (’nodes’, 7), (’classi-
fication’, 6), (’incomplete’, 5), (’statistics’, 5), (’erdos-renyi’,
5), (’edge’, 5), (’sw’, 5), (’networks’, 4)

Table A.4. Term and TF-IDF Score of Most Common Words from Detailed
Analysis of the MA4404 Course Content

topic word, TF-IDF score
01-RealComplexNetworks (’networks’, ’0.4718’), (’network’, ’0.1642’), (’internet’,

’0.1279’), (’source’, ’0.1113’), (’source http’, ’0.0963’),
(’biological’, ’0.0923’), (’introduction newman’, ’0.0923’),
(’www’, ’0.0859’), (’level’, ’0.0854’), (’http’, ’0.0848’)

02-NetworkScienceOverview1 (’königsberg’, ’0.1796’), (’networks’, ’0.1756’), (’eulerian’,
’0.1602’), (’theory’, ’0.1517’), (’erdös’, ’0.1347’), (’science’,
’0.1323’), (’graph theory’, ’0.1283’), (’graphs’, ’0.1253’),
(’network’, ’0.1237’), (’cited’, ’0.1184’)

03-NetworkScienceOverview2 (’model’, ’0.2028’), (’networks’, ’0.1774’), (’barabasi’,
’0.1654’), (’world’, ’0.1619’), (’random’, ’0.1596’), (’scale
free’, ’0.1564’), (’free’, ’0.1386’), (’small’, ’0.1330’), (’small
world’, ’0.1300’), (’graphs’, ’0.1263’)

05-NetworkScienceOverview2 (’model’, ’0.2087’), (’networks’, ’0.2041’), (’random’,
’0.1779’), (’world’, ’0.1743’), (’scale free’, ’0.1711’), (’free’,
’0.1516’), (’graphs’, ’0.1437’), (’small’, ’0.1369’), (’scale’,
’0.1358’), (’small world’, ’0.1338’)

Continued on next page
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Table A.4 – continued from previous page
topic word, TF-IDF score

05-SyntheticModelsComplexNetworks (’random’, ’0.2133’), (’networkx’, ’0.1821’), (’erdős’,
’0.1475’), (’world’, ’0.1466’), (’generators’, ’0.1463’),
(’small’, ’0.1397’), (’networks’, ’0.1385’), (’networkx gen-
erators’, ’0.1317’), (’model’, ’0.1315’), (’erdős rényi’,
’0.1291’)

06-CommunitiesModularity (’community’, ’0.2920’), (’communities’, ’0.2779’), (’sbm’,
’0.1504’), (’networks’, ’0.1359’), (’et al’, ’0.1327’), (’et’,
’0.1237’), (’al’, ’0.1237’), (’networkit’, ’0.1157’), (’iti kit’,
’0.1041’), (’kit’, ’0.1041’)

07-CommunitiesModularity (’community’, ’0.3111’), (’communities’, ’0.2960’), (’net-
works’, ’0.1448’), (’networkit’, ’0.1233’), (’recon’, ’0.1109’),
(’kit edu’, ’0.1109’), (’networkit iti’, ’0.1109’), (’https net-
workit’, ’0.1109’), (’kit’, ’0.1109’), (’iti kit’, ’0.1109’)

07-CorePeriphery (’core’, ’0.3768’), (’periphery’, ’0.2819’), (’core periph-
ery’, ’0.2637’), (’dense’, ’0.1758’), (’networks’, ’0.1445’),
(’communities’, ’0.1300’), (’vol’, ’0.1299’), (’decomposi-
tion’, ’0.1108’), (’cores’, ’0.1108’), (’structure’, ’0.1105’)

08-Centralities_1 (’20 20’, ’0.5529’), (’20’, ’0.2698’), (’centralities’, ’0.1458’),
(’group’, ’0.1269’), (’exploration’, ’0.1164’), (’centrality’,
’0.1083’), (’periodic’, ’0.1057’), (’networks’, ’0.1002’),
(’central’, ’0.0911’), (’class exploration’, ’0.0873’)

10-Centralities_Gephi (’gephi’, ’0.1703’), (’centralities’, ’0.1641’), (’centrality’,
’0.1525’), (’export’, ’0.1311’), (’metricsv2’, ’0.1311’), (’net-
workx’, ’0.1192’), (’closeness’, ’0.1190’), (’save’, ’0.1152’),
(’python’, ’0.1084’), (’nodes’, ’0.1066’)

11-Centralities_2 (’centrality’, ’0.3971’), (’eigenvector’, ’0.3844’), (’eigen-
vector centrality’, ’0.3472’), (’closeness’, ’0.1736’), (’ex-
ample eigenvector’, ’0.1536’), (’closeness centrality’,
’0.1488’), (’class eigenvector’, ’0.1365’), (’class’, ’0.0976’),
(’bonacich’, ’0.0853’), (’phillip’, ’0.0853’)

11-Centralities_3 (’page’, ’0.3241’), (’pagerank’, ’0.3024’), (’pages’, ’0.2774’),
(’important’, ’0.1313’), (’web’, ’0.1311’), (’matrix’,
’0.1189’), (’centrality’, ’0.1153’), (’hyperlinks’, ’0.1108’),
(’lecture3’, ’0.1005’), (’degree matrix’, ’0.1005’)

Continued on next page
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Table A.4 – continued from previous page
topic word, TF-IDF score

11-Centralities_4 (’betweenness’, ’0.2796’), (’centrality’, ’0.2149’), (’between-
ness centrality’, ’0.1864’), (’formula’, ’0.1831’), (’flow’,
’0.1796’), (’pagerank’, ’0.1628’), (’matrix’, ’0.1600’),
(’pages’, ’0.1467’), (’degree matrix’, ’0.1353’), (’lecture3’,
’0.1353’)

14-ClusteringCoefficient (’clustering’, ’0.2167’), (’coefficients’, ’0.1636’), (’cluster-
ing coefficients’, ’0.1636’), (’local clustering’, ’0.1636’),
(’higher’, ’0.1298’), (’protein’, ’0.1298’), (’higher order’,
’0.1227’), (’free geometric’, ’0.1227’), (’qbio mn’, ’0.1227’),
(’0404017’, ’0.1227’)

14-Small World (’avg’, ’0.2539’), (’small’, ’0.2127’), (’world effect’,
’0.2116’), (’effect’, ’0.1670’), (’small world’, ’0.1664’),
(’ernesto’, ’0.1600’), (’ernesto estrada’, ’0.1600’), (’clust’,
’0.1600’), (’path avg’, ’0.1600’), (’avg clust’, ’0.1600’)

15-nodeSimilarity (’equivalence’, ’0.3558’), (’equivalent’, ’0.2737’), (’similar-
ity’, ’0.2691’), (’regular equivalence’, ’0.2224’), (’regular’,
’0.1716’), (’d1’, ’0.1557’), (’structural’, ’0.1495’), (’defn’,
’0.1173’), (’pearson’, ’0.1112’), (’d2’, ’0.1112’)

16-Homophily (’characteristics’, ’0.2737’), (’scalar’, ’0.2260’), (’age’,
’0.2072’), (’scalar characteristics’, ’0.1884’), (’mix-
ing’, ’0.1821’), (’assortativity’, ’0.1642’), (’homophily’,
’0.1533’), (’assortative’, ’0.1519’), (’assortative mixing’,
’0.1490’), (’degree’, ’0.1356’)

MA4404_schedule_20180105 (’outline’, ’0.5870’), (’outline outline’, ’0.3339’), (’ma4404
schedule’, ’0.3339’), (’schedule’, ’0.3339’), (’schedule excel-
lence’, ’0.3339’), (’knowledge outline’, ’0.2935’), (’ma4404’,
’0.2426’), (’excellence’, ’0.1554’), (’excellence knowledge’,
’0.1554’), (’knowledge’, ’0.1267’)

Rudy-ML_Graphs1 (’learning’, ’0.2938’), (’performance’, ’0.2196’), (’train-
ing’, ’0.2013’), (’network’, ’0.1577’), (’model’, ’0.1397’),
(’machine’, ’0.1119’), (’testing’, ’0.1041’), (’machine learn-
ing’, ’0.0979’), (’model performance’, ’0.0833’), (’phase’,
’0.0833’)

Continued on next page
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Table A.4 – continued from previous page
topic word, TF-IDF score

Rudy-ML_Graphs2 (’network’, ’0.3420’), (’mean’, ’0.1940’), (’mean distance’,
’0.1697’), (’classification’, ’0.1455’), (’distance’, ’0.1290’),
(’incomplete’, ’0.1212’), (’sw’, ’0.1212’), (’world network’,
’0.1094’), (’small world’, ’0.1004’), (’incomplete informa-
tion’, ’0.0970’)
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APPENDIX B:
Determination of Course Prerequisites

B.1 Determination of Course Prerequisites from the NPS
Catalog and Student Transcripts
Table B.1. Derived Prerequisites for Each Course in the OR Department

Course
ID

Prerequisite Description
from NPS Catalog

Extracted
NPS Courses

Prerequisite Derived
from Student Transcripts

Number of
Students

OA0810 OA3103, OA3201 97
OA1600 None None 62
OA2801 None None 27
OA2900 92
OA3101 94
OA3102 OA3101 OA3101 94
OA3103 OA3102 OA3102 97
OA3201 MA3042 MA3042 97
OA3301 OA3101 or consent of in-

structor
OA3101 97

OA3302 OA3103 and OA3301 OA3103,
OA3301

96

OA3304 75
OA3401 75
OA3411 None None Not in data set. -
OA3412 OA3411 OA3411 Not in data set. -
OA3413 Not in data set. -
OA3501 OA3101 or consent of in-

structor
OA3101 MA3042, OA2900,

OA3101
9

OA3602 OS2103 or OA3101 OS2103,
OA3101

60

OA3611 None None Not in data set. -
OA3801 AO2801 AO2801 MA3042, OA2900,

OA3101
19

OA3802 OA280l or consent of in-
structor

OA280 Not in data set. -

Continued on next page
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Table B.1 – continued from previous page
Course
ID

Prerequisite Description
from NPS Catalog

Extracted
NPS Courses

Prerequisite Derived
from Student Transcripts

Number of
Students

OA3900 Departmental approval 94
OA4105 OA3103 or consent of the

instructor
OA3103 19

OA4106 OA3103 OA3103 OA3301, OA3103,
OA3102, OA3201,
OA3101, MA3042

22

OA4109 OA3301, OA3103,
OA3201, OA3102,
OA3101, OA3302,
MA1114, MA3042,
OA4201, OA3304,
OA2900, OA4202

9

OA4118 OA4106 or consent of in-
structor

OA4106 Not in data set. -

OA4201 OA3201 OA3201 OA3201 97
OA4202 OA3201 OA3201 OA3201 97
OA4203 OA3201 OA3201 OA3301, OA3102,

OA3201, OA3101,
MA3042, OA4201,
OA2900

18

OA4301 OA3301, OA3201 26
OA4333 OA3302 OA3302 OA3301, OA3103,

OA3201, OA3102,
OA3101, MA3042,
OA4202

35

OA4401 MA3042, OA2900,
OA3101

7

OA4402 Not in data set. -
OA4406 Not in data set. -

Continued on next page

92



Table B.1 – continued from previous page
Course
ID

Prerequisite Description
from NPS Catalog

Extracted
NPS Courses

Prerequisite Derived
from Student Transcripts

Number of
Students

OA4408 OA3301, OA3103,
OA3201, OA3102,
OA3101, NW3230,
OA4801, OA3302,
OA4655, MA3042,
OA4201, OA3900,
OA3304, OA2900,
OA3401, OA4202

3

OA4414 OA3413 OA3413 Not in data set. -
OA4415 Not in data set. -
OA4602 A course in basic prob-

ability and statistic the-
ory and operational ex-
perience in military en-
vironments

69

OA4603 37
OA4604 OA4655 or consent of in-

structor
OA4655 OA3101 67

OA4607 OA3301, MA1025,
OA3103, OA3102,
OA3101, OA3201,
OA4655, OA4801,
OA3302, OA0810,
MA3042, OA4201,
OA3900, OA3304,
OA1600, OA2900,
OA4602, OA4202

2

Continued on next page
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Table B.1 – continued from previous page
Course
ID

Prerequisite Description
from NPS Catalog

Extracted
NPS Courses

Prerequisite Derived
from Student Transcripts

Number of
Students

OA4613 OA3201 or OS3007 or
OA3611 or permission of
instructor

OA3201,
OS3007,
OA3611

MA1025, OA3103,
OA3102, OA3101,
OA3201, OA4301,
OA3302, MA3042,
OA3610, OA4201,
OA4106, OA2801,
MA1118, OA3301,
MA1113, MA1114,
OA4333, OA1600,
OA3501, OA2900,
OA4202

1

OA4655 OA3102, OA3103,
OA3201

82

OA4702 79
OA4801 OA3201, OA3102 94
OA4910 A background of ad-

vanced work in opera-
tions research and de-
partmental approval

MA3042, OA2900,
OA3101

21

OS2080 Single variable calculus Not in data set. -
OS2103 Single variable differen-

tiation and integration at
the MA1113 level and
multiple integration at
the MA1115 level

MA1113,
MA1115

Not in data set. -

OS3006 Not in data set. -
OS3007 OA3301, OA3103,

PH3998, OA3102,
OA3101, OA3201,
MN4970, NW3230,
OA4801, OA3302,
OA3801, MA3042,
OA4201, OA3900,
OA3304, OA2801,
MA1118, OA2900,
OA3401, OA4202

3

Continued on next page
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Table B.1 – continued from previous page
Course
ID

Prerequisite Description
from NPS Catalog

Extracted
NPS Courses

Prerequisite Derived
from Student Transcripts

Number of
Students

OS3080 Not in data set. -
OS3081 Not in data set. -
OS3082 Not in data set. -
OS3105 Not in data set. -
OS3111 Not in data set. -
OS3112 college algebra and

OS3111
OS3111 IT1500, OA3103,

OA3200, OA3102,
OA3101, OA3201,
OA4301, OA4801,
OA3302, OA0810,
MA3042, OA4203,
OA4201, TS3002,
OA2200, OA3301,
TS4003, TS4001,
OA4655, TS4002,
MA1115, OA3602,
OA3900, OA3304,
OA2900, OA3401,
OA4202

1

OS3113 Not in data set. -
OS3180 SI1001 or equivalent SI1001 1
OS3211 Not in data set. -
OS3307 Not in data set. -
OS3380 OA3301, IT1500,

OS3640, OA3103,
OA3102, OA3101,
OA3201, OA4301,
OA4801, MA3042,
OA3900, OA2801,
OA4202

1

Continued on next page
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Table B.1 – continued from previous page
Course
ID

Prerequisite Description
from NPS Catalog

Extracted
NPS Courses

Prerequisite Derived
from Student Transcripts

Number of
Students

OS3401 MA1025, OA3200,
NW3210, OA3102,
OA3101, NW3230,
NW3211, MA1117,
OA2200, MA3042,
OA3304, OA1600,
MA1042, OA2900,
MA1118

1

OS3604 Not in data set. -
OS3680 Not in data set. -
OS3701 Not in data set. -
OS4010 Not in data set. -
OS4011 Not in data set. -
OS4012 Not in data set. -
OS4013 Not in data set. -
OS4080 Not in data set. -
OS4081 Not in data set. -
OS4082 Not in data set. -
OS4083 Not in data set. -
OS4106 Not in data set. -
OS4118 OA4106 or consent of in-

structor
OA4106 Not in data set. -

OS4621 OA3103, OA3102,
OA3101, OA3201,
OA4656, OA4301,
NW3230, OA4801,
OA3302, OA0810,
MA3042, OA4201,
OA4106, OA2801,
MA1118, OA3301,
OA4655, OA4702,
OA4333, OA3602,
OA3900, OA3304,
OA2900, OA4602,
OA4202

1

OS4680 Not in data set. -
Continued on next page
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Table B.1 – continued from previous page
Course
ID

Prerequisite Description
from NPS Catalog

Extracted
NPS Courses

Prerequisite Derived
from Student Transcripts

Number of
Students

OS4701 21
OS4702 Not in data set. -
OS4703 Not in data set. -
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APPENDIX C:
Experimental Design

C.1 NOLH Experiments
Listing C.1: Configuration File - simulation.ini - OLH experiments

[exp_00−0020]
distribution_tag_feedback = [1.0, 0.0, 0]
distribution_tag_feedback_learner = [0.81, 0.18999999999999995, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 19
delta = 1.6
number_of_students = 40

[exp_00−0021]
distribution_tag_feedback = [0.25, 0.75, 0]
distribution_tag_feedback_learner = [0.88, 0.12, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 28
delta = 0.3
number_of_students = 30

[exp_00−0022]
distribution_tag_feedback = [0.44, 0.56, 0]
distribution_tag_feedback_learner = [0.06, 0.94, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 13
delta = 0.6
number_of_students = 55

[exp_00−0023]
distribution_tag_feedback = [0.63, 0.37, 0]
distribution_tag_feedback_learner = [0.31, 0.69, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 50
delta = 0.9
number_of_students = 53

99



[exp_00−0024]
distribution_tag_feedback = [0.94, 0.06000000000000005, 0]
distribution_tag_feedback_learner = [0.44, 0.56, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 6
delta = 3.8
number_of_students = 43

[exp_00−0025]
distribution_tag_feedback = [0.31, 0.69, 0]
distribution_tag_feedback_learner = [0.38, 0.62, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 41
delta = 5.0
number_of_students = 33

[exp_00−0026]
distribution_tag_feedback = [0.19, 0.81, 0]
distribution_tag_feedback_learner = [1.0, 0.0, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 16
delta = 3.1
number_of_students = 65

[exp_00−0027]
distribution_tag_feedback = [0.88, 0.12, 0]
distribution_tag_feedback_learner = [0.75, 0.25, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 47
delta = 2.8
number_of_students = 63

[exp_00−0028]
distribution_tag_feedback = [0.5, 0.5, 0]
distribution_tag_feedback_learner = [0.5, 0.5, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 25
delta = 2.5
number_of_students = 50
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[exp_00−0029]
distribution_tag_feedback = [0.0, 1.0, 0]
distribution_tag_feedback_learner = [0.19, 0.81, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 31
delta = 3.4
number_of_students = 60

[exp_00−0030]
distribution_tag_feedback = [0.75, 0.25, 0]
distribution_tag_feedback_learner = [0.13, 0.87, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 22
delta = 4.7
number_of_students = 70

[exp_00−0031]
distribution_tag_feedback = [0.56, 0.43999999999999995, 0]
distribution_tag_feedback_learner = [0.94, 0.06000000000000005, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 38
delta = 4.4
number_of_students = 45

[exp_00−0032]
distribution_tag_feedback = [0.38, 0.62, 0]
distribution_tag_feedback_learner = [0.69, 0.31000000000000005, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 0
delta = 4.1
number_of_students = 48

[exp_00−0033]
distribution_tag_feedback = [0.06, 0.94, 0]
distribution_tag_feedback_learner = [0.56, 0.43999999999999995, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 44
delta = 1.3
number_of_students = 58
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[exp_00−0034]
distribution_tag_feedback = [0.69, 0.31000000000000005, 0]
distribution_tag_feedback_learner = [0.63, 0.37, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 9
delta = 0.0
number_of_students = 68

[exp_00−0035]
distribution_tag_feedback = [0.81, 0.18999999999999995, 0]
distribution_tag_feedback_learner = [0.0, 1.0, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 34
delta = 1.9
number_of_students = 35

[exp_00−0036]
distribution_tag_feedback = [0.13, 0.87, 0]
distribution_tag_feedback_learner = [0.25, 0.75, 0]
settings_sim_replications = 2
number_of_tags_per_student_profile = 3
delta = 2.2
number_of_students = 38
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C.2 Distributions of Simulation Output Metrics

Figure C.1. Distributions of Simulation Output Metrics.
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