
DOMAIN-SPECIFIC INSIGHT GRAPHS 

UNIVERSITY OF SOUTHERN CALIFORNIA 

MARCH 2019 

FINAL TECHNICAL REPORT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

STINFO COPY 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

AFRL-RI-RS-TR-2019-063

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND



NOTICE AND SIGNATURE PAGE 

Using Government drawings, specifications, or other data included in this document for any purpose other 
than Government procurement does not in any way obligate the U.S. Government. The fact that the 
Government formulated or supplied the drawings, specifications, or other data does not license the holder 
or any other person or corporation;  or convey any rights or permission to manufacture, use, or sell any 
patented invention that  may relate to them.  

This report is the result of contracted fundamental research deemed exempt from public affairs security 
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy 
clarification memorandum dated 16 Jan 09.  This report is available to the general public, including 
foreign nations.  Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil). 

AFRL-RI-RS-TR-2019-063   HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

FOR THE CHIEF ENGINEER: 

  / S /        / S / 
EDWARD DEPALMA TIMOTHY A. FARRELL 
Work Unit Manager  Deputy Chief, Information Intelligence 

Systems and Analysis Division 
Information Directorate 

This report is published in the interest of scientific and technical information exchange, and its publication 
does not constitute the Government’s approval or disapproval of its ideas or findings. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information 
if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)

MARCH 2019 
2. REPORT TYPE

FINAL TECHNICAL REPORT 
3. DATES COVERED (From - To)

SEP 2014 – SEP 2018 
4. TITLE AND SUBTITLE

DOMAIN-SPECIFIC INSIGHT GRAPHS 

5a. CONTRACT NUMBER 
FA8750-14-C-0240 

5b. GRANT NUMBER 
N/A 

5c. PROGRAM ELEMENT NUMBER 
62702E 

6. AUTHOR(S)

Pedro Szekely and Mayank Kejriwal 

5d. PROJECT NUMBER 
MEMX 

5e. TASK NUMBER 
00 

5f. WORK UNIT NUMBER 
10 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
4676 Admiralty Way # 1001
Marina del Rey, CA 90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIEA 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI 
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-063
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited.  This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Developing scalable, semi-automatic approaches to derive insights from a domain-specific Web corpus is a longstanding
research problem in the knowledge discovery and web communities. The problem is particularly challenging in illicit
fields, such as human trafficking, where traditional assumptions concerning information representation are frequently
violated. In the Domain-Specific Insight Graphs project (DIG),we developed technology to build end-to-end investigative
knowledge discovery and search systems, focused primarily on illicit Web domains. The technologies include
components for information extraction, semantic modeling and query execution, and was tested in on a variety of real-
world domains, including a human trafficking Web corpus containing over 100 million pages. The prototype includes a
GUI that was used by US law enforcement agencies to combat illicit activity. The research results were widely
disseminated in multiple publications in journals and conferences, and the software produced is publicly available on
Github under the MIT license.
15. SUBJECT TERMS

Knowledge Graphs, Information Extractions, Web Search, Domain-Specific, Users Interface 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
EDWARD DEPALMA 

a. REPORT
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

19b. TELEPHONE NUMBER (Include area code) 
N/A

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

88



Table Of Contents

1 SUMMARY 1

2 INTRODUCTION 1

3 METHODS, ASSUMPTIONS AND PROCEDURES 3
3.1 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1. Inferlink Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1.2. Rule-Based Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6
3.1.3. Improving The Precision Of Extractions . . . . . . . . . . . . . . . . . . . 10

3.2 Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1. Investigative Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2. Knowledge Graph Construction . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3. Cluster Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4. Knowledge Graph Indexing . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5. Indicator Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Investigative Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Image And Face Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 RESULTS AND DISCUSSION 57
4.1 Experience Building Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1. System Overview and User Experience . . . . . . . . . . . . . . . . . . . 60
4.1.2. Exploring the Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3. Evaluations and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.4. Users and Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.5. Domain Discovery Corpora . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.6. Evaluation of User Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.7. Evaluation of Knowledge Graph (KG) Quality . . . . . . . . . . . . . . . . 69
4.1.8. Qualitative Feedback and Analysis . . . . . . . . . . . . . . . . . . . . . . 71
4.1.9. User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

73

i

5 CONCLUSIONS 

LIST OF ACRONYMS          80



List of Figures
1 The unsupervised “template clustering” step in the Inferlink information extractor.

The top two clusters provide listings and category enumerations and are irrelevant
for either search or extraction. The bottom cluster contains ads from which struc-
tured attributes can be extracted and semantically typed in terms of investigative
schema attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5

2 Input sentences from the online sex advertisement domain. Named entities were
incorrectly extracted by pre-trained modules from SpaCy due to the unusual nature
of the domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6

3 (Underlaid) The rule specification dashboard. (Overlaid) Configuration options for
an atom that can be included in a larger rule template. . . . . . . . . . . . . . . . .   7

4 Sentences containing uncommon (but useful to experts) attributes such as phone
number and age that need to be extracted. . . . . . . . . . . . . . . . . . . . . . .   8

5 A high-level overview of the proposed information extraction approach . . . . . . . 11
6 An example illustrating the naive Random Indexing algorithmwith unigram atomic

units and a (2, 2)-context window as context . . . . . . . . . . . . . . . . . . . . . 13
7 An illustration of supervised contextual classification on an example annotation

(‘Phoenix’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8 Empirical run-time of the adapted random indexing algorithm on the corpora in

Table 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9 Effects of additional feature selection on the GT-Text-Name dataset (30% training

data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10 Visualizing city contextual classifier inputs (with colors indicating ground-truth

labels) using the t-SNE tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11 A fragment of the current investigative schema I. . . . . . . . . . . . . . . . . . . 24
12 Ontologies for indicator mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13 Easy to use interactive editor for defining indicator rules. . . . . . . . . . . . . . . 29
14 Precision-recall curves of the PV baseline (gensim) against Sim-ft (fasttext). Risky

and Outcall (omitted herein) are qualitatively similar to Movement, with Sim-ft
exhibiting a performance advantage. . . . . . . . . . . . . . . . . . . . . . . . . . 35

15 Example App Form To Generate SPARQL Query . . . . . . . . . . . . . . . . . . 43
16 Overview of the Columbia Image Similarity Search tool. . . . . . . . . . . . . . . 56
17 DIG search engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
18 A case-study illustrating complex investigative search in DIG. Starting from vague

details, a user is able to retrieve a set of highly specific ads that help her to narrow
down on suspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

19 Continuing from Figure 18, the user is able to use entity-centric search facilities in
DIG to collect a list of 117 ads, with details such as timelines and locations. These
numbers can be used to conduct an investigation on the ground. . . . . . . . . . . . 59

20 The DIG dashboard, with corresponding elements and actions. . . . . . . . . . . . 60
21 A form that allows the user to define/customize fields. . . . . . . . . . . . . . . . . 61
22 A form that allows the user to pose fine-grained, structured queries (Counterfeit

Electronics domain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ii



23 The search interface offered by DIG (Illegal Firearms Sales domain). . . . . . . . . 64
24 Entity-centric search (ECS) for the Illegal Firearms Sales domain in DIG. . . . . . 65
25 Provenance of glossary-based organization name extraction ‘square enix’ (Securi-

ties Fraud domain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
26 Document counts per TLD (Y-axis) against ranked list of TLDs (ordered by docu-

ment count on X-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
27 For all domains, a comparison of webpage count (x-axis) such that at least one value

per field (y-axis) was extracted from that website (green bar/long tail), against the
short tail/red bar wherein only Inferlink extractions are considered. . . . . . . . . . 70

iii



List of Tables
1 Overview of the knowledge graph construction (KGC) extraction technology onto-

logically guided by the investigative schema. . . . . . . . . . . . . . . . . . . . .   4
2 Token specifications supported by the rule editor. . . . . . . . . . . . . . . . . . .   9
3 The compound units implemented in the current prototype . . . . . . . . . . . . . 14
4 Four human trafficking corpora for which word representations are (independently)

learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Five ground-truth datasets on which the classifier and baselines are evaluated . . . 17
6 Stanford NER features that were used for re-training the model on our annotation sets 17
7 Comparative results of three systems on precision (P), recall (R) and F1-Measure

(F) when training percentage is 30. For the pre-trained baselines, we only report
the best results across all applicable models . . . . . . . . . . . . . . . . . . . . . 18

8 Comparative results of three systems when training percentage is 70 . . . . . . . . 19
9 A comparison of F1-Measure scores of our system (30% training data), with word

representations trained on different corpora . . . . . . . . . . . . . . . . . . . . . 20
10 A comparison of F1-Measure scores of our system (70% training data), with word

representations trained on different corpora . . . . . . . . . . . . . . . . . . . . . 20
11 Some representative examples of correct city extractions using the proposed method 22
12 Examples of semantic similarity using random indexing vectors from D-10K and

D-ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
13 Number of rules defined by domain experts per category. . . . . . . . . . . . . . . 32
14 Profile of the rules-set partition (part.) generated via the lightweight expert system

on the unlabeled corpus for each indicator (absolute counts in thousands (per-
centage)), and the manually labeled positive/negative indicators in the sampled
evaluation set (eval.). NA stands for Not Applicable. For space reasons, we omit
Outcall details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

15 F1-Measure scores for the evaluated approaches. . . . . . . . . . . . . . . . . . . 35
16 Performance of Pinpoint Systems with Ablation . . . . . . . . . . . . . . . . . . . 52
17 Point Fact Query MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
18 A condensed overview of our error analyses exercise. More detailed explanations

are provided in the text. The error count reports the number of questions on which
the error occurred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

19 Quantifying user effort in terms of total numbers of fields and glossaries per domain,
after the users had finished setting up their respective domains. . . . . . . . . . . . 69

20 Manually judged precision of field extractions stored in the knowledge graph for
each domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

iv



Listings
1 Example Email Rich Triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2 Example Indexed Email Rich Triple . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Example Benchmark SPARQL query . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 SPARQL Query Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 SPARQL Query Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 SPARQL Variable Type Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7 SPARQL Query Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8 SPARQL Query Expansion Units UNION . . . . . . . . . . . . . . . . . . . . . . 46
9 SPARQL to ES Query Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10 Compound SPARQL Clauses to ES . . . . . . . . . . . . . . . . . . . . . . . . . 47
11 SPARQL Triple Clause To ES Match Query . . . . . . . . . . . . . . . . . . . . . 48
12 SPARQL FILTER to ES Filter Query . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



1 SUMMARY
Developing scalable, semi-automatic approaches to derive insights from a domain-specific Web
corpus is a longstanding research problem in the knowledge discovery and web communities.
The problem is particularly challenging in illicit fields, such as human trafficking, where traditional
assumptions concerning information representation are frequently violated. In the Domain-Specific
Insight Graphs project (DIG), we developed technology to build end-to-end investigative knowledge
discovery and search systems, focused primarily on illicit Web domains. The technologies include
components for information extraction, semantic modeling and query execution, and was tested in
on a variety of real-world domains, including a human trafficking Web corpus containing over 100
million pages. The prototype includes a GUI that was used by US law enforcement agencies to
combat illicit activity. The research results were widely disseminated in multiple publications in
journals and conferences, and the software produced is publicly available on Github under the MIT
license.

2 INTRODUCTION
The DARPA MEMEX program was established with the intent of building domain-specific search
systems that could quickly generalize to an arbitrary domain. A domain in this context is a relatively
diffuse term, as there may not be an explicit ontology describing it. A class of domains that is of
interest to the MEMEX program is investigative in nature, whereby consumers of the technology
are investigators and field analysts who are investigating illicit activity believed to have a significant
Web footprint in terms of advertisements, transactions and reviews (or all of them).

In today’s digital era, most people rely on search engines like Google and Bing for their needs.
Like the smartphone, tablet and desktop, these engines are good examples of technology that
are optimized for the general populace, with commercially oriented goals. Historically, and even
presently, domains where building specialized technology for search and analytics are necessary
tend to have massive commercial or military implications. Many agencies at the state and local
levels, even in a developed country like the United States, cannot afford such proprietary, state-of-
the-art technology in the present resource-strapped environment.

The search systems that have been built under MEMEX are designed to adapt in a very general,
user-centric way to arbitrary domains by (1) taking sparse specifications of the domain from a user,
(2) using these specifications in interactive focused crawling systems to scrape webpages that are
likely relevant to fulfilling some subset of the user’s informational needs, and (3) extracting useful
structured information from the corpus of webpages and building an intuitive search and analytics
engine over this constructed ’knowledge base’. The process, expected to be iterative, is refined over
time as users invest more effort into the system.

Based on discussions with actual investigators, we can ’break down’ investigative search queries
into categories: lead generation and lead investigation. Taking Google as an analogy, lead genera-
tion is like clicking on the ’I feel lucky’ button, or looking at trending topics. Lead investigation,
which can be evaluated in more concrete ways, starts when the user already has a lead in hand. This
lead may come from a tip-off on the ground, a suspicious statement or arrest record, or a matter
of public record, like the name of a person who has recently gone missing. Lead investigation
questions can be classed into one of four categories (using DARPA and NIST terminology): point

Approved for Public Release; Distribution Unlimited. 
1



fact, cluster facet, cluster identification and cluster aggregate.
Although not obvious, the lead investigation questions do provide some intuition into why

generic search engines like Google are not adequate for satisfying such information needs (at least
not without significant engineering). Two problems, information obfuscation and ambiguity, are
respectively related to the quality of the information in the ads and to the difficulty of automating
a longstanding Artificial Intelligence (AI) problem called Information Extraction (IE). Concerning
the former, online sex ads are written with the intent of being indexed by certain attributes (mainly
location and the kind of sex service being advertised), but other attributes (phone number, social
media ids and addresses) are deliberately obfuscated in creative ways so that they are human (but
not machine) readable. For example, the following text fragment “AVAILABLE NOW! ?? - (1
two 1) six 5 six - 0 9 one 2” contains th phone number (121) 656-0912 that a human would be
able to recognize and dial, but an IE system (also, Google) would have a hard time extracting
and indexing in a database, unless it was extensively tuned or engineered. Similarly, ambiguity
arises when there is confusion about whether a word (e.g., Charlotte) links to the city in North
Carolina or a person. Humans use context to make this determination, and while there have been
significant developments in machine reading methods, overall accuracy is still quite low, especially
for ’difficult’ domains like human trafficking [12],[13].

Even without obfuscation and ambiguity, the cluster and aggregate questions illustrate another
kind of facility not offered by Google. These questions require a user to retrieve a set of related ads
e.g. via a shared phone number1 (for the cluster questions), and also to aggregate quantities across
the set. This is a task that involves both search and analytics currently not included in the Google
interface.

Unlike lead investigation questions, lead generation questions were significantly more contro-
versial, as users were divided on what makes for a useful (or more importantly, a not harmful) lead
generation question, and even on whether explicitly incorporating lead generation into a domain-
specific search system was warranted or the best use of resources. This was an eye-opening insight
that significantly changed the way we approached our efforts in the final year of the MEMEX
program (2017).

In the initial phase of the program, one of the task challenges that technical performers were
called upon to participate in was that of predicting whether a given set of scraped sex activity ads
(each set representing a ’case’) indicated some level of trafficking. It was believed that this was
a useful problem, and that an imputed ’risk score’ (similar to a credit score) for such a set could
be used to generate leads. Many investigators who were told about this task challenge felt that the
problemwas misguided, if not impossible to solve, for several reasons. One important reason is that
the ad often does not contain enough information for such predictions, and algorithms may end up
being biased in favor of certain ad characteristics (e.g., racy words in the text). Some investigators
also feel that they already have enough leads to investigate, and that they are not looking to generate
more leads. Others felt that they could not trust the outputs of a machine learning system without
some explanation.

This report describes Domain-Specific Insight Graphs (DIG), the technology developed at the
USC Information Sciences Institute to support the search capabilities described previously. DIG
is a complex ensemble of various adaptive technologies that is ultimately designed to help users
perform investigative search. The system was optimized for investigative querying in the online
sex trafficking domain, although it is currently also being extended to address search in arbitrary
domains. DIG includes:

Approved for Public Release; Distribution Unlimited. 
2



• A suite of IE technologies that use rules, heuristics and advanced machine learning to
automatically extract a variety of relevant structured attributes from webpages, including
phones, emails, names, ages, physical attributes, sex services, and locations. We refer to this
collective set of interlinked extractions as a knowledge graph.

• Indexing techniques for ensuring fast retrieval over both the knowledge graph and the text in
the webpages .

• A cached copy of every processed webpage, in case the webpage is taken offline on the live
Web (as it often is), and also to foster trust in, or verify, IE.

• Provenance data about which algorithm led to which extraction in the knowledge graph.

• Images and image similarity search based on deep neural network-based computer vision.

• Big Data architecture to support streaming ingestion of new ads.

• A user interface to enable investigators to search the knowledge graph and visualize it from
multiple perspectives.

3 METHODS, ASSUMPTIONS AND PROCEDURES

3.1 Information Extraction
Table 1 provides an overview of the extraction technology used in DIG. In this report, we discuss
the Inferlink tool, focused on extraction from short-tailed domains, the NLP rule editor focused on
long-tailed domains, and work to improve the precision of all extractions. The other algorithms
described in Table 1 are widely used in the natural language IE community; we provide relevant
references that guided the design of those algorithms. We note that, except for the Inferlink tool, the
semantic types of extractions output by the other algorithms are pre-determined. The readability
text extractor (RTE) is an off-the-shelf text scraper that takes HTML as input and outputs a text
sequence. Its hyperparameters can be tuned to yield either high recall or high precision1. The
remaining extractors individually process the high-precision and high-recall text output by RTE
and yield a set of extractions each with the corresponding metadata. Each extractor requires a
different level of manual effort. For example, the NLP rule-based extractor can use hand-crafted
rules that use NLP features (POS tags etc.) to extract street addresses from the text. Ideally, if large
quantities of training data had been available, a Conditional Random Field (CRF) could be used,
such as for eye-color and hair-color attributes. Unfortunately, street addresses are extremely sparse
and irregular in human trafficking data. On the other hand, off-the-shelf street address extractors
also yielded extremely noisy performance.

3.1.1. Inferlink Extractor

The Inferlink extractor is a wrapper-based semi-supervised tool that takes a collection of HTML
pages from a top-level Web domain as input [1], [42]. Wrappers are common in Web-based

1For the latter, the text may be much ‘cleaner’ but could potentially be missing useful sentences and paragraphs.

Approved for Public Release; Distribution Unlimited. 
3



Table 1: Overview of the knowledge graph construction (KGC) extraction technology ontologically
guided by the investigative schema.

Extraction Technology Investigative At-
tributes

Level of Effort/Engineer-
ing

Relevant
Refer-
ences

Inferlink (Template
clustering+wrapper-
induced rules)

All ‘structured’ at-
tributes

10-20 minutes trained ex-
pertise per Web domain
(e.g. backpage.com)

[42],
[35], [1]

Readability Text Extractor Text Hyperparameter tuning [3]
Conditional Random
Fields

Eye-color, Hair-color Labeled data, feature en-
gineering, hyperparameter
tuning

[47],
[55]

Dictionaries and Entity
Sets+contextual classifica-
tion using word embed-
ding features

Name, Location
(City, State, Coun-
try), Nationality,
Ethnicity, Service

Procuring dictionaries,
large text corpus, small set
of labeled annotations/at-
tribute

[53],
[17],
[30],
[32]

Regular Expressions and
Custom Programs

Email, Height,
Phone, Posting-date,
Price, Review-id,
Social-media-id,
Title, Weight

Programming regular ex-
pressions

[43],
[34]

NLP rule Street-address Crafting the rule [18], [8]

Approved for Public Release; Distribution Unlimited. 
4



information extraction systems. Inferlink is a wrapper-based tool that operates in several steps [1].
All steps can potentially be unsupervised, but for best performance, manual intervention from an
expert is required in the last stages.

Figure 1: The unsupervised “template clustering” step in the Inferlink information extractor. The
top two clusters provide listings and category enumerations and are irrelevant for either search or
extraction. The bottom cluster contains ads from which structured attributes can be extracted and
semantically typed in terms of investigative schema attributes.

In a first step, the extractor clusters the pages in an unsupervised fashion using structural
information such as the HTML templates. An example output from template clustering is illustrated
in Figure 1. Once the clusters are obtained, an expert familiar with the tool chooses the semantically
relevant cluster (In the figure, this would be the bottom cluster) and applies an unsupervised
wrapper to the cluster. By semantically relevant, we mean that pages in the cluster, though similar
structurally2, are not useful for the purposes of either KGC or search as they do not directly
describe escorts. The wrapper is unsupervised because it is able to use the similarities and
differences between pages in the cluster to extract ‘structured’ attributes. In the final step, which
may be manual or automatic, each attribute must be semantically typed in terms of the correct
attribute from the investigative schema. Because there are thousands of Web domains in the HT
subject domain, and the limited time accorded to the expert per domain, we only use the Inferlink
extractor on the largest Web domains. Semantic typing is manual, guaranteeing the precision of an
Inferlink extraction, when obtained for a given webpage.

2In that sense, the cluster is ‘correct’.

Approved for Public Release; Distribution Unlimited. 
5



The clustering is designed to be both robust and unsupervised; this is why users already see
the clusters (with sample pages) when they first open a TLD in Inferlink. Once a cluster is picked
by the user as being relevant, the wrapper algorithms in Inferlink extract structured elements from
each HTML page in the cluster, and show them to a user in a column layout, as illustrated in Figure
1. Other elements of user experience, including assigning field names to columns (denoted as the
semantic typing step) were described earlier. The final output of Inferlink processing (per TLD)
is a set of machine-processable rules that include automatically generated regular expressions that
identify the beginning and end of each extraction. These rules are executed on a server on every
webpage (from that TLD), including webpages not belonging to the initial training cluster that
the user selected and curated. Heuristics are used to identify incorrect extractions from ‘out of
cluster’ pages. An important advantage of the rule-based execution is that, once the rules are stored
on a server, they can be re-used across user sessions or even shared by different sets of users.
Rule execution is also computationally efficient: while the clustering and rule inference steps are
expensive (5 minutes/TLD), even complex Inferlink rules-sets are able to execute in milliseconds
per webpage. Inferlink continues to be actively maintained by a private company.

Figure 2: Input sentences from the online sex advertisement domain. Named entities were incor-
rectly extracted by pre-trained modules from SpaCy due to the unusual nature of the domain.

3.1.2. Rule-Based Extractor

An option for creating extractors for domain-specific entitties is for experts to look at examples
from the domain, and specify sets of rules that are both interpretable and that experts can ‘play’
with. Since the expert usually has no programming expertise, such rules must be specifiable in
an intuitive manner, and be amenable to example-based ‘trial and error’. An added benefit arises
when such rules can be combined with other extraction modules, such as a pre-trained machine
learning-based named entity recognizer, or a Semantic Web resource like GeoNames3.

In DIG we built a GUI-based rule specification system that allows users to write expressive
and intuitive rule-sets, including rules not currently allowable in NLP packages like SpaCy [4],
without any knowledge of either programming or regular expressions. A visualization of the
system dashboard is produced in Figure 3. To ensure fast, correct and scalable execution, the
system compiles each rule in the rule-set into a set of SpaCy rules that can be executed in the

3http://www.geonames.org/

Approved for Public Release; Distribution Unlimited. 
6



backend to produce sets of extractions from raw data. Additionally, we have integrated the rule
editor and compiler with the DIG architecture [33], [31], which permits (1) combining extractions
from the system with extractions from more advanced modules like Conditional Random Fields,
(2) recording extraction provenance, which allows users to view the impact of their specifications
on overall quality. Concerning real-world usage, the system has already been used for fulfilling a
variety of domain-specific KGC needs, including extracting attributes (e.g., phone numbers) in the
online sex ad domain (to assist investigators track down leads), securities fraud, illegal weapons
sales and ‘ordinary’ domains like museums.

Figure 3: (Underlaid) The rule specification dashboard. (Overlaid) Configuration options for an
atom that can be included in a larger rule template.

System and User Experience The example in Figure 2 illustrates one possible user experience
whereby the user wants to extract ‘common’ named entities like names or locations, but is unable

Approved for Public Release; Distribution Unlimited. 
7



Figure 4: Sentences containing uncommon (but useful to experts) attributes such as phone number
and age that need to be extracted.

to rely on standard packages like SpaCy or Stanford NER due to the unusual nature of the domain
(in this case, human trafficking). Instead, the user starts by looking at some example sentences,
and forming rule templates using the ‘template atoms’ (also called token specifications) shown
in Figure 3. For example, the topmost rule template, labeled self-explanatorily as ‘my name is
<proper-noun>’ is composed of four atoms. Each atom is highly configurable, and can simply
be constants (such as ‘name’), or NLP artefacts like particles or adverbs, or regular expression
artefacts like alphanumeric sequences (overlaid portion of Figure 3).

A second scenario arises when the attribute (and potentially, the domain) is uncommon in
terms of publicly available tools being able to extract them from raw data (Figure 4). Because
of the regular syntactic nature of attributes like telephone numbers or ages, as well as contextual
regularities in the surrounding text, users are often able to get good coverage by specifying rules.

More specifically, a rule-based extractor for an entity consists of a collection of rules. Each rule
targets extraction in a specific context with high precision. Multiple rules are used to extract an
entity in multiple contexts. The extractions of a collection of rules are the union of the extractions
of each rule, excluding extractions whose extent is completely contained within the extent of other
extractions.

The input to the rule extractor is a sequence of tokens. Each rule consists of a sequence of
token specifications. Each token specification defines a Boolean function f(token). A rule is said
to match a sequence of tokens if each token specification evaluates to true for each token in the
sequence. The extraction of a rule on a matched sequence of tokens is the set of tokens matched
by token specifications that have been marked as output tokens (orange border in Figure 3). By
default the output is formatted as a string by concatenating the output tokens separated by space.
Users can customize the output using a simple template language.

Token specifications can be marked as optional. When token specifications are optional, the
rule editor behaves as if two rules had been defined, one with the optional token and one without
the optional token. When a rule contains multiple optional tokens, the cross-product of all possible
rules is considered. The extractions of rules with optional consist of the union of all maximal
length rules in the cross-product.

The DIG rule editor is designed to extract entities defined using letters, numbers and symbols.
Examples include entities such as person, organization and locations, extracted in traditional NER
tools, as well as entities with specific syntax such as phone numbers and email addresses. The
default DIG tokenizer defines any non-alphanumeric character as a separate token. Users can also
customize the tokenizer. The five different token specifications currently supported by the system
are enumerated in Table 2.

Approved for Public Release; Distribution Unlimited. 
8



Table 2: Token specifications supported by the rule editor.

Token type Description
Word
tokens

match tokens consisting of a sequence of alphanumeric characters (see Figure 3).
The word-token specification can be defined explicitly (by listing specific tokens) and
implicitly (based on token characteristics) such as NLP features like POS tags and
lemmatization, membership in a vocabulary e.g., English word, and syntactic features
such as capitalization, length, prefix and suffix).

Number to-
kens

match tokens consisting of a sequence of digits (see Figure 3), and can also be defined
explicitly by listing specific numbers to match, or implicitly based on range and number
of digits.

Punctuation
tokens

select a subset of punctuation symbols.

Shape
tokens

match tokens consisting of a sequence of alphanumeric characters. Shapes can be
defined explicitly using sequences of characters “X”, “x” and “d”, where “X” matches
an upper-case letter, “x” matches a lower-case letter and “d” matches a digit. Shape
tokens can also be defined implicitly using part of speech tags, a prefix and a suffix.

Line-break
tokens

match tokens that break text into multiple lines and are defined by a minimum and
maximum number of line-break characters.

Implementation and Applications The rule extractor is implemented as an extension to the
SpaCy rule extractor, which offers similar, but simpler token specifications. Each DIG token
specification is mapped to a set of SpaCy token specifications that collectively match a superset of
the tokens that should be matched by the DIG token specification. Each DIG rule is implemented
by the collection of SpaCy rules resulting from the creation of a cross-product of the SpaCy token
specifications in the each collection. A post-processing step removes redundant matches for those
cases when the collection of SpaCy token specifications matches a superset of the tokens that
should be matched by the DIG token specification. For example, SpaCy does not support minimum
and maximum limits for number tokens. In this case, the SpaCy rule matches arbitrary numbers,
and the post-processing step removes matches for numbers outside the desired range. A further
post-processing step removes that are strict subsets of matches produced by other SpaCy rules in
the collection of all SpaCy rules generated from a single DIG rule.

The software implementing the DIG rule editor is available on GitHub. The processor4 and
user interface5 are both publicly available. The full system featured in this demonstration can also
be downloaded6. All software carries an MIT license.

Concerning real-world applications, the DIG rule editor has been used to define extractors
for a variety of entities, including phone numbers for most countries in Europe and North and
South America, email addresses, ages, person names, dates, massage parlor names, stock tickers,
addresses, social media handles, artist names, as well as a variety of specific extractors for specific
firearm classified ads and penny stock promotion web sites.

4https://github.com/usc-isi-i2/etk/blob/master/etk/spacy_extractors/customized_
extractor.py

5https://github.com/usc-isi-i2/spacy-ui
6https://github.com/usc-isi-i2/dig-etl-engine

Approved for Public Release; Distribution Unlimited. 
9



3.1.3. Improving The Precision Of Extractions

Extracting useful entities and attribute values from illicit domains such as human trafficking is a
challenging problemwith the potential for widespread social impact. Such domains employ atypical
language models, have ‘long tails’ and suffer from the problem of concept drift. We developed a
lightweight, feature-agnostic Information Extraction (IE) paradigm specifically designed for such
domains. Our approach uses raw, unlabeled text from an initial corpus, and a few (12-120)
seed annotations per domain-specific attribute, to learn robust IE models for unobserved pages
and websites. Empirically, we demonstrate that our approach can outperform feature-centric
Conditional Random Field baselines by over 18% F-Measure on five annotated sets of real-world
human trafficking datasets in both low-supervision and high-supervision settings. We also show
that our approach is demonstrably robust to concept drift, and can be efficiently bootstrapped even
in a serial computing environment.

As real-world illustrative examples, consider the text fragments ‘Hey gentleman im neWYOrk
and i’m looking for generous...’ and ‘AVAILABLE NOW! ?? - (4 two 4) six 5 two - 0 9 three 1 - 21’.
In the first instance, the correct extraction for a Name attribute is neWYOrk, while in the second
instance, the correct extraction for an Age attribute is 21. It is not obvious what features should be
engineered in a statistical learning-based IE system to achieve robust performance on such text.

To compound the problem, wrapper induction systems from theWeb IE literature cannot always
be applied in such domains, as many important attributes can only be found in text descriptions,
rather than template-based Web extractors that wrappers traditionally rely on. Constructing an IE
system that is robust to these problems is an important first step in delivering structured knowledge
bases to investigators and domain experts.

There are two main technical challenges that such domains present to IE systems. First, as
the brief examples above illustrate, feature engineering in such domains is difficult, mainly due
to the atypical (and varying) representation of information. Second, investigators and domain
experts require a lightweight system that can be quickly bootstrapped. Such a system must be able
to generalize from few (≈10-150) manual annotations, but be incremental from an engineering
perspective, especially since a given illicit Web page can quickly (i.e. within hours) become
obsolete in the real world, and the search for leads and information is always ongoing. In effect,
the system should be designed for streaming data.

Our information extraction approach that is able to address the challenges above, especially the
variance between Web pages and the small training set per attribute, by combining two sequential
techniques in a novel paradigm. The overall approach is illustrated in Figure 5. First, a high-recall
recognizer, which could range from an exhaustive Linked Data source like GeoNames (e.g. for
extracting locations) to a simple regular expression (e.g. for extracting ages), is applied to each
page in the corpus to derive a set of candidate annotations for an attribute per page. In the second
step, we train and apply a supervised feature-agnostic classification algorithm, based on learning
word representations from random projections, to classify each candidate as correct/incorrect for
its attribute.

Approach Figure 5 illustrates the architecture of our approach. The input is a Web corpus
containing relevant pages from the domain of interest, and high-recall recognizers typically adapted
from freely available Web resources like Github and GeoNames. In keeping with the goals of this
work, we do not assume that this initial corpus is static. That is, following an initial short set-up

Approved for Public Release; Distribution Unlimited. 
10



Figure 5: A high-level overview of the proposed information extraction approach

phase, more pages are expected to be added to the corpus in a streaming fashion. Given a set of
pre-defined attributes (e.g. City, Name, Age) and around 10-100 manually verified annotations for
each attribute, the goal is to learn an IE model that accurately extracts attribute values from each
page in the corpus without relying on expert feature engineering. Importantly, while the pages are
single-domain (e.g. human trafficking) they are multi-Web domain, meaning that the system must
not only handle pages from new websites as they are added to the corpus, but also concept drift in
the new pages compared to the initial corpus.

Preprocessing The first module in Figure 5 is an automated pre-processing algorithm that takes
as input a streaming set of HTML pages. In real-world illicit domains, the key information of
interest to investigators (e.g. names and ages) typically occurs either in the text or the title of the
page, not the template of the website. Even when the information occasionally occurs in a template,
it must be appropriately disambiguated to be useful7. Wrapper-based IE systems [36] are often
inapplicable as a result. As a first step in building a more suitable IE model, we scrape the text
from each HTML website by using a publicly available text extractor called the Readability Text
Extractor8 (RTE). Although multiple tools9 are available for text extraction from HTML [26], our
early trials showed that RTE is particularly suitable for noisyWeb domains, owing to its tuneability,
robustness and support for developers. We tune RTE to achieve high recall, thus ensuring that the
relevant text in the page is captured in the scraped text with high probability. Note that, because
of the varied structure of websites, such a setting also introduces noise in the scraped text (e.g.
wayward HTML tags). Furthermore, unlike natural language documents, scraped text can contain
many irrelevant numbers, Unicode and punctuation characters, and may not be regular. Because of
the presence of numerous tab and newline markers, there is no obvious natural language sentence

7For example, ‘Virginia’ in South Africa vs. ‘Virginia’ in the US.
8https://www.readability.com/developers/api
9An informal comparison may be accessed at https://www.diffbot.com/benefits/comparison/

Approved for Public Release; Distribution Unlimited. 
11



structure in the scraped text10. In the most general case, we found that RTE returned a set of strings,
with each string corresponding to a set of sentences.

To serialize the scraped text as a list of tokens, we use the word and sentence tokenizers from
the NLTK package on each RTE string output [8]. We apply the sentence tokenizer first, and to
each sentence returned (which often does not correspond to an actual sentence due to rampant use
of extraneous punctuation characters) by the sentence tokenizer, we apply the standard NLTK word
tokenizer. The final output of this process is a list of tokens. In the rest of this section, this list of
tokens is assumed as representing the HTML page from which the requisite attribute values need
to be extracted.

Deriving Word Representations In principle, given some annotated data, a sequence labeling
model like a Conditional Random Field (CRF) can be trained and applied on each block of scraped
text to extract values for each attribute [47], [22]. In practice, as we empirically demonstrate in
our evaluations, CRFs prove to be problematic for illicit domains. First, the size of the training
data available for each CRF is relatively small, and because of the nature of illicit domains,
methods like distant supervision or crowdsourcing cannot be used in an obvious timely manner
to elicit annotations from users. A second problem with CRFs, and other traditional machine
learning models, is the careful feature engineering that is required for good performance. With
small amounts of training data, good features are essential for generalization. In the case of illicit
domains, it is not always clear what features are appropriate for a given attribute. Even common
features like capitalization can be misleading, as there are many capitalized words in the text that
are not of interest (and vice versa).

To alleviate feature engineering and manual annotation effort, we leverage the entire raw corpus
in our model learning phase, rather than just the pages that have been annotated. Specifically, we
use an unsupervised algorithm to represent each word in the corpus in a low-dimensional vector
space. Several algorithms exist in the literature for deriving such representations, including neural
embedding algorithms such as Word2vec [48] and the algorithm by Bollegala et al. [11], as well
as simpler alternatives [61].

Given the dynamic nature of streaming illicit-domain data, and the numerous word represen-
tation learning algorithms in the literature, we adapted the random indexing (RI) algorithm for
deriving contextual word representations [61]. Random indexing methods mathematically rely on
the Johnson-Lindenstrauss Lemma, which states that if points in a vector space are of sufficiently
high dimension, then they may be projected into a suitable lower-dimensional space in a way which
approximately preserves the distances between the points.

The original random indexing algorithmwas designed for incremental dimensionality reduction
and text mining applications. We adapt this algorithm for learning word representations in illicit
domains. Before describing these adaptations, we define some key concepts below.

Definition 1: Given parameters d ∈ Z+ and r ∈ [0, 1], a context vector is defined as a
d−dimensional vector, of which exactly bdrc elements are randomly set to +1, exactly bdrc
elements are randomly set to −1 and the remaining d− 2bdrc elements are set to 0.

We denote the parameters d and r in the definition above as the dimension and sparsity ratio
parameters respectively.

10We also found sentence ambiguity in the actual text displayed on the browser-rendered website (in a few human
trafficking sample pages), due to the language models employed in these pages.

Approved for Public Release; Distribution Unlimited. 
12



Figure 6: An example illustrating the naive Random Indexing algorithm with unigram atomic units
and a (2, 2)-context window as context

Intuitively, a context vector is defined for every atomic unit in the corpus. Let us denote the
universe of atomic units as U , assumed to be a partially observed countably infinite set. In the
current scenario, every unigram (a single ‘token’) in the dataset is considered an atomic unit.
Extending the definition to also include higher-order ngrams is straightforward, but was found to be
unnecessary in our early empirical investigations. The universe is only partially observed because
of the incompleteness (i.e. streaming, dynamic nature) of the initial corpus.

The actual vector space representation of an atomic unit is derived by defining an appropriate
context for the unit. Formally, a context is an abstract notion that is used for assigning distributional
semantics to the atomic unit. The distributional semantics hypothesis (also called Firth’s axiom)
states that the semantics of an atomic unit (e.g. a word) is defined by the contexts in which it occurs
[41].

In this work, we only consider short contexts appropriate for noisy streaming data. In this vein,
we define the notion of a (u, v)-context window below:

Definition 2: Given a list t of atomic units and an integer position 0 < i ≤ |t|, a (u, v)-context
window is defined by the set S − t[i], where S is the set of atomic units inclusively spanning
positionsmax(i− u, 1) andmin(i+ v, |t|)

Using just these two definitions, a naive version of the RI algorithm is illustrated in Figure 6 for
the sentence ‘the cow jumped over the moon’, assuming a (2, 2)-context window and unigrams as
atomic units. For each new word encountered by the algorithm, a context vector (Definition 1) is
randomly generated, and the representation vector for the word is initialized to the 0 vector. Once
generated, the context vector for the word remains fixed, but the representation vector is updated
with each occurrence of the word.

The update happens as follows. Given the context of the word (ranging from a set of 2-4 words),
an aggregation is first performed on the corresponding context vectors. In Figure 6, for example,
the aggregation is an unweighted sum. Using the aggregated vector (denoted by the symbol ~a), we
update the representation vector using the equation below, with ~wi being the representation vector
derived after the ith occurrence of word w:

~wi+1 = ~wi + ~a (1)

In principle, using this simple algorithm, we could learn a vector space representation for every
atomic unit. One issue with a naive embedding of every atomic unit into a vector space is the
presence of rare atomic units. These are especially prevalent in illicit domains, not just in the form

Approved for Public Release; Distribution Unlimited. 
13



Table 3: The compound units implemented in the current prototype
high-idf-units Units occurring in fewer than

fraction θ (by default, 1%) of
initial corpus

pure-num-
units

Numerical units

alpha-num-
units

Alpha-numeric units that con-
tain at least one alphabet and
one number

pure-punct-
units

Units with only punctuation
symbols

alpha-punct-
units

Units that contain at least one
alphabet and one punctuation
character

nonascii-
unicode-units

Units that only contain non-
ASCII characters

of rare words, but also as sequences of Unicode characters, sequences of HTML tags, and numeric
units (e.g. phone numbers), each of which only occurs a few times (often, only once) in the corpus.

To address this issue, we define below the notion of a compound unit that is based on a
pre-specified condition.

Definition 3: Given a universeU of atomic units and a binary conditionR : U → {True, False},
the compound unit CR is defined as the largest subset of U such that R evaluates to True on every
member of CR.

Example: For ‘rare’ words, we could define the compound unit high-idf-units to contain all
atomic units that are below some document frequency threshold (e.g. 1%) in the corpus.

In our implemented prototype, we defined six mutually exclusive11 compound units, described
and enumerated in Table 3. We modify the naive RI algorithm by only learning a single vector for
each compound unit. Intuitively, each atomic unit w in a compound unit C is replaced by a special
dummy symbol wC ; hence, after algorithm execution, each atomic unit in C is represented by the
single vector ~wC .

Applying High-Recall Recognizers For a given attribute (e.g. City) and a given corpus, we
define a recognizer as a function that, if known, can be used to exactly determine the instances of
the attribute occurring in the corpus.

Definition 4: A recognizer RA for attribute A is a function that takes a list t of tokens and
positions i and j >= i as inputs, and returns True if the tokens contiguously spanning t[i] : t[j] are
instances of A, and False otherwise.

It is important to note that, per the definition above, a recognizer cannot annotate latent instances
that are not directly observed in the list of tokens.

Since the ‘ideal’ recognizer is not known, the broad goal of IE is to devise models that
approximate it (for a given attribute) with high accuracy. Accuracy is typically measured in terms

11That is, an intersection of any two compound units will always be the empty set.

Approved for Public Release; Distribution Unlimited. 
14



of precision and recall metrics. We formulate a two-pronged approach whereby, rather than develop
a single recognizer that has both high precision and recall (and requires considerable expertise to
design), we first obtain a list of candidate annotations that have high recall in expectation, and then
use supervised classification in a second step to improve precision of the candidate annotations.

More formally, letRA be denoted as an η-recall recognizer if the expected recall ofRA is at least
η. Due to the explosive growth in data, many resources on the Web can be used for bootstrapping
recognizers that are ‘high-recall’ in that η is in the range of 90-100%. The high-recall recognizers
currently used rely on knowledge bases (e.g. GeoNames) from Linked Open Data [7], dictionaries
from the Web and broad heuristics, such as regular expression extractors, found in public Github
repositories. In our experience, we found that even students with basic knowledge of GitHub
and Linked Open Data sources are able to construct such recognizers. One important reason
why constructing such recognizers is relatively hassle-free is because they are typically monotonic
i.e. new heuristics and annotation sources can be freely integrated, since we do not worry about
precision at this step.

We note that in some cases, domain knowledge alone is enough to guarantee 100% recall for
well-designed recognizers for certain attributes. In HT, this is true for location attributes like city
and state, since advertisements tend to state locations without obfuscation, and we use GeoNames,
an exhaustive knowledge base of locations, as our recognizer. Manual inspection of the ground-
truth data showed that the recall of utilized recognizers for attributes like Name and Age are also
high (in many cases, 100%). Thus, although 100% recall cannot be guaranteed for any recognizer,
it is still reasonable to assume that η is high.

A much more difficult problem is engineering a recognizer to simultaneously achieve high
recall and high precision. Even for recognizers based on curated knowledge bases like GeoNames,
many non-locations get annotated as locations. For example, the word ‘nice’ is a city in France, but
is also a commonly occurring adjective. Other common words like ‘for’, ‘hot’, ‘com’, ‘kim’ and
‘bella’ also occur in GeoNames as cities and would be annotated. Using a standard Named Entity
Recognition system does not always work because of the language modeling problem (e.g. missing
capitalization) in illicit domains. In the next section, we show how the context surrounding the
annotated word can be used to classify the annotation as correct or incorrect. We note that, because
the recognizers are high-recall, a successful classifier would yield both high precision and recall.

Supervised Contextual Classifier To address the precision problem, we train a classifier using
contextual features. Rather than rely on a domain expert to provide a set of hand-crafted features,
we derive a feature vector per candidate annotation using the notion of a context window (Definition
3.1.3.) and the word representation vectors. This process of supervised contextual classification is
illustrated in Figure 7.

Specifically, for each annotation (which could comprise multiple contiguous tokens e.g. ‘Salt
Lake City’ in the list of tokens representing the website) annotated by a recognizer, we consider
the tokens in the (u, v)-context window around the annotation. We aggregate the vectors of those
tokens into a single vector by performing an unweighted sum, followed by l2-normalization. We
use this aggregate vector as the contextual feature vector for that annotation. Note that, unlike
the representation learning phase, where the surrounding context vectors were aggregated into an
existing representation vector, the contextual feature vector is obtained by summing the actual
representation vectors.

Approved for Public Release; Distribution Unlimited. 
15



Figure 7: An illustration of supervised contextual classification on an example annotation
(‘Phoenix’)

Table 4: Four human trafficking corpora for which word representations are (independently) learned
Name Num. websites Total word count Unique word count
D-10K 10,000 2,351,036 1,030,469
D-50K 50,000 11,758,647 5,141,375
D-100K 100,000 23,536,935 10,277,732
D-ALL 184,132 43,342,278 18,940,260

For each attribute, a supervised machine learning classifier (e.g. random forest) is trained using
between 12-120 labeled annotations, and for new data, the remaining annotations can be classified
using the trained classifier. Although the number of dimensions in the feature vectors is quite low
compared to tf-idf vectors (hundreds vs. millions), a second round of dimensionality reduction
can be applied by using (either supervised or unsupervised) feature selection for further empirical
benefits.

Evaluations We train the word representations on four real-world human trafficking datasets of
increasing size, the details of which are provided in Table 4. Since we assume a ‘streaming’ setting,
each larger dataset in Table 4 is a strict superset of the smaller datasets. The largest dataset is itself
a subset of the overall human trafficking corpus that was scraped as part of research conducted in
the DARPA MEMEX program12.

Since ground-truth extractions for the corpus are unknown, we randomly sampled websites from
the overall corpus13, applied four high-recall recognizers, and for each annotated set, manually
verified whether the extractions were correct or incorrect for the corresponding attribute. The
details of this sampled ground-truth are captured in Table 5. Each annotation set is named using
the formatGT-{RawField}-{AnnotationAttribute}, where RawField can be either the HTML title or
the scraped text. and AnnotationAttribute is the attribute of interest for annotation purposes.

System: The overall system requires developing two components for each attribute: a high-recall
recognizer and a classifier for pruning annotations. We developed four high-recall recognizers,
namely GeoNames-Cities, GeoNames-States, RegEx-Ages and Dictionary-Names. The first two
of these relies on the freely available GeoNames14 dataset [69]; we use the entire dataset for our
experiments, which involves modeling each GeoNames dictionary as a trie, owing to its large

12http://www.darpa.mil/program/memex
13Hence, it is possible that there are websites in the ground-truth that are not part of the corpora in Table 4.
14http://www.geonames.org/

Approved for Public Release; Distribution Unlimited. 
16



Table 5: Five ground-truth datasets on which the classifier and baselines are evaluated
Name Pos. ann. Neg. ann. Recognizer Used
GT-Text-City 353 15,783 GeoNames-Cities
GT-Text-State 100 16,036 GeoNames-States
GT-Title-City 37 513 GeoNames-Cities
GT-Text-Name 162 14,337 Dictionary-Names
GT-Text-Age 116 14,306 RegEx-Ages

Table 6: Stanford NER features that were used for re-training the model on our annotation sets
useClassFeature=true useNext=true
useWord=true useSequences=true
useNGrams=true usePrevSequences=true
noMidNGrams=true maxLeft=1
useDisjunctive=true useTypeSeqs=true
maxNGramLeng=6 useTypeSeqs2=true
usePrev=true useTypeySequences=true
wordShape=chris2useLC

memory footprint. For extracting ages, we rely on simple regular expressions and heuristics that
were empirically verified to capture a broad set of age representations15. For the name attribute,
we gather freely available Name dictionaries on the Web, in multiple countries and languages, and
use the dictionaries16 in a case-insensitive recognition algorithm to locate names in the raw field
(i.e. text or title).

Baselines: Weuse different variants of the Stanford Named Entity Recognition system (NER) as
our baselines [22]. For the first set of baselines, we use two pre-trained models trained on different
English language corpora. Specifically, we use the 3-Class and 4-Class pre-trained models. We
use the LOCATION class label for determining city and state annotations, and the PERSON label
for name annotations. Unfortunately, there is no specific label corresponding to age annotations in
the pre-trained models; hence, we do not use the pre-trained models as age annotation baselines.

It is also possible to re-train the underlying NER system on a new dataset. For the second
set of baselines, therefore, we re-train the NER models by randomly sampling 30% and 70%
of each annotation set in Table 5 respectively, with the remaining annotations used for testing.
The features and values that were employed in the re-trained models are enumerated in Table
6. Further documentation on these feature settings may be found on the NERFeatureFactory
page17. All training and testing experiments were done in ten independent trials18. We use default
parameter settings, and report average results for each experimental run. Experimentation using

15The age extractors we used are also available in the Github repository accessed at https://github.com/
usc-isi-i2/dig-age-extractor

16For replication, the full set of dictionaries used may be accessed at https://github.com/usc-isi-i2/
dig-dictionaries/tree/master/person-names

17Documentation accessed at http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/
NERFeatureFactory.html

18When evaluating the pre-trained models, the training set is ignored and only the testing set is classified.

Approved for Public Release; Distribution Unlimited. 
17



Table 7: Comparative results of three systems on precision (P), recall (R) and F1-Measure (F) when
training percentage is 30. For the pre-trained baselines, we only report the best results across all
applicable models

Ground-truth
Dataset

Our System (P/R/F) Re-trained Baseline
(P/R/F)

Pre-trained Baseline
(P/R/F)

GT-Text-City 0.5207/0.5050/0.5116 0.9855/0.1965/0.3225 0.7206/0.7406/0.7299
GT-Text-State 0.7852/0.6887/0.7310 0.64/0.0598/0.1032 0.2602/0.8831/0.3993
GT-Title-City 0.5374/0.5524/0.5406 0.8633/0.1651/0.2685 0.8524/0.7341/0.7852
GT-Text-Name 0.7201/0.5850/0.6388 1/0.2103/0.3351 0/0/0
GT-Text-Age 0.8993/0.9156/0.9068 0.9102/0.7859/0.8412 N/A
Average 0.6925/0.6493/0.6658 0.8798/0.2835/0.3741 0.4583/0.5895/0.4786

other configurations, features and values is left for future studies.
Setup and Parameters: System parameters were set as follows. The number of dimensions

in Definition 3.1.3. was set at 200, and the sparsity ratio was set at 0.01. These parameters are
similar to those suggested in previous word representation papers; they were also found to yield
intuitive results on semantic similarity experiments. To avoid the problem of rare words, numbers,
punctuation and tags, we used the six compound unit classes earlier described in Table 3. In all
experiments where defining a context was required, we used symmetric (2, 2)-context windows;
using bigger windows was not found to offer much benefit. We trained a random forest model
with default hyperparameters (10 trees, with Gini Impurity as the split criterion) as the supervised
classifier, used supervised k-best feature selection with k set to 20, andwith the Analysis of Variance
(ANOVA) F-statistic between class label and feature used as the feature scoring function.

Because of the class skew in Table 5 (i.e. the ‘positive’ class is typically much smaller than
the ‘negative’ class) we oversampled the positive class for balanced training of the supervised
contextual classifier.

The metrics used for evaluating IE effectiveness are Precision, Recall and F1-measure.
In the interests of demonstrating a reasonably lightweight system, all experiments in this paper

were run on a serial iMac with a 4 GHz Intel core i7 processor and 32 GB RAM. All code (except
the Stanford NER code) was written in the Python programming language, and has been made
available on a public Github repository19 with documentation and examples. We used Python’s
Scikit-learn library (v0.18) for the machine learning components of the prototype.

Performance against baselines Table 7 illustrates system performance on Precision, Recall and
F1-Measure metrics against the re-trained and pre-trained baseline models, where the re-trained
model and our approach were trained on 30% of the annotations in Table 5. We used the word
representations derived from the D-ALL corpus. On average, the proposed system performs the
best on F1-Measure and recall metrics. The re-trained NER is the most precise system, but at the
cost of much less recall (<30%). The good performance of the pre-trained baseline on the City
attribute demonstrates the importance of having a large training corpus, even if the corpus is not
directly from the test domain. On the other hand, the complete failure of the pre-trained baseline
on the Name attribute illustrates the dangers of using out-of-domain training data. As noted earlier,
language models in illicit domains can significantly differ from natural language models; in fact,

19https://github.com/mayankkejriwal/fast-word-embeddings

Approved for Public Release; Distribution Unlimited. 
18



Table 8: Comparative results of three systems when training percentage is 70
Ground-truth
Dataset

Our System (P/R/F) Re-trained Baseline
(P/R/F)

Pre-trained Baseline
(P/R/F)

GT-Text-City 0.5633/0.6081/0.5841 0.9434/0.3637/0.5000 0.6893/0.7401/0.7128
GT-Text-State 0.7916/0.7269/0.7502 0.7833/0.2128/0.2971 0.1661/0.7830/0.2655
GT-Title-City 0.6403/0.6667/0.6437 0.9417/0.3333/0.4790 0.9133/0.6384/0.7289
GT-Text-Name 0.7174/0.6818/0.6960 1/0.3747/0.5140 0/0/0
GT-Text-Age 0.9252/0.9273/0.9251 0.9254/0.8454/0.8804 N/A
Average 0.7276/0.7222/0.7198 0.9188/0.4260/0.5341 0.4422/0.5404/0.4268

Figure 8: Empirical run-time of the adapted random indexing algorithm on the corpora in Table 4

names in human trafficking websites are often represented in a variety of misleading ways.
Recognizing that 30% training data may constitute a sample size too small to make reliable

judgments, we also tabulate the results in Table 8 when the training percentage is set at 70.
Performance improves for both the re-trained baseline and our system. Performance declines for
the pre-trained baseline, but this may be because of the sparseness of positive annotations in the
smaller test set.

We also note that performance is relatively well-balanced for our system; on all datasets and all
metrics, the system achieves scores greater than 50%. This suggests that our approach has a degree
of robustness that the CRFs are unable to achieve; we believe that this is a direct consequence of
using contextual word representation-based feature vectors.

Runtimes: We recorded the runtimes for learning word representations using the random
indexing algorithm described earlier on the four datasets in Table 4, and plot the runtimes in Figure
8 as a function of the total number of words in each corpus. In agreement with the expected
theoretical time-complexity of random indexing, the empirical run-time is linear in the number of
words, for fixed parameter settings. More importantly, the absolute times show that the algorithm
is extremely lightweight: on the D-ALL corpus, we are able to learn representations in under an
hour.

Wenote that these results do not employ any obvious parallelization or themulti-core capabilities
of the machine. The linear scaling properties of the algorithm show that it can be used even for
very large Web corpora. In future, we will investigate an implementation of the algorithm in a
distributed setting.

Robustness to corpus size and quality: One issue with using large corpora to derive word

Approved for Public Release; Distribution Unlimited. 
19



Table 9: A comparison of F1-Measure scores of our system (30% training data), with word
representations trained on different corpora

Ground-truth D-10K D-50K D-100K D-ALL
GT-Text-City 0.4980 0.5058 0.4909 0.5116
GT-Text-State 0.7362 0.7385 0.7526 0.7310
GT-Title-City 0.6148 0.5638 0.5061 0.5406
GT-Text-Name 0.6756 0.6881 0.6920 0.6388
GT-Text-Age 0.9387 0.9364 0.9171 0.9068
Average 0.6927 0.6865 0.6717 0.6658

Table 10: A comparison of F1-Measure scores of our system (70% training data), with word
representations trained on different corpora

Ground-truth D-10K D-50K D-100K D-ALL
GT-Text-City 0.5925 0.5781 0.5716 0.5841
GT-Text-State 0.7357 0.7641 0.7246 0.7502
GT-Title-City 0.6424 0.6428 0.6364 0.6437
GT-Text-Name 0.7665 0.7091 0.7333 0.6960
GT-Text-Age 0.9311 0.9634 0.9347 0.9251
Average 0.7336 0.7315 0.7201 0.7198

representations is concept drift. The D-ALL corpora, for example, contains tens of different Web
domains, even though they all pertain to human trafficking. An interesting empirical issue iswhether
a smaller corpus (e.g. D-10K or D-50K) contains enough data for the derived word representations
to converge to reasonable values. Not only would this alleviate initial training times, but it would
also partially compensate for concept drift, since it would be expected to contain fewer unique Web
domains.

Tables 9 and 10 show that such generalization is possible. The best F1-Measure performance,
in fact, is achieved for D-10K, although the average F1-Measures vary by a margin of less than 2%
on all cases. We cite this as further evidence of the robustness of the overall approach.

Effects of feature selection: Finally, we evaluate the effects of feature selection in Figure 9 on
the GT-Text-Name dataset, with training percentage set20 at 30. The results show that, although
performance is reasonably stable for a wide range of k, some feature selection is necessary for
better generalization.

Contributions The main contributions of this part of the work are: (1) a lightweight feature-
agnostic information extraction system for a highly heterogeneous, illicit domain like human traf-
ficking. Our approach is simple to implement, does not require extensive parameter tuning, infras-
tructure setup and is incremental with respect to the data, which makes it suitable for deployment
in streaming-corpus settings. (2) s good generalization even when only a small corpus is available
after the initial domain-discovery phase, and is robust to the problem of concept drift encountered in
large Web corpora. (3) We test our approach extensively on a real-world human trafficking corpus

20Results on the other datasets were qualitatively similar; we omit full reproductions herein.

Approved for Public Release; Distribution Unlimited. 
20



Figure 9: Effects of additional feature selection on the GT-Text-Name dataset (30% training data)

Figure 10: Visualizing city contextual classifier inputs (with colors indicating ground-truth labels)
using the t-SNE tool

Approved for Public Release; Distribution Unlimited. 
21



Table 11: Some representative examples of correct city extractions using the proposed method
. . . 1332 SOUTH 119TH STREET,OMAHA NE 68144 . . .
. . . Location: Bossier City/Shreveport . . .
. . . to service the areas of Salt Lake City Og-
den,Farmington,Centerville,Bountiful . . .
. . . 4th August 2015 in rochester ny, new york . . .
. . . willing to Travel ( Cali,Miami, New York, Memphis . . .
. . . More girls from Salt Lake City, UT . . .

containing hundreds of thousands of Web pages and millions of unique words, many of which
are rare and highly domain-specific. Evaluations show that our approach outperforms traditional
Named Entity Recognition baselines that require manual feature engineering. Comparisons against
CRF baselines based on the latest Stanford Named Entity Resolution system (including pre-trained
models as well as new models that we trained on human trafficking data) show that, on average,
across five ground-truth datasets, our approach outperforms the next best system on the recall met-
ric by about 6%, and on the F1-measure metric by almost 20% in low-supervision settings (30%
training data), and almost 20% on both metrics in high-supervision settings (70% training data).
Concerning efficiency, in a serial environment, we are able to derive word representations on a 43
million word corpus in under an hour. Degradation in average F1-Measure score achieved by the
system is less than 2% even when the underlying raw corpus expands by a factor of 18, showing
that the approach is reasonably robust to concept drift.

Some domains, for example, were found to have the same kind of structured format as the
second row of Table 11 (i.e. Location: followed by the actual locations), but many other domains
were far more heterogeneous.

The results illustrate the merits of unsupervised feature engineering and contextual supervision.
In principle, there is no reason why the word representation learning module in Figure 5 cannot be
replaced by a more adaptive algorithm like Word2vec [48]. We note again that, before applying
such algorithms, it is important to deal with the heterogeneity problem that arises from having
many different Web domains present in the corpus. While earlier results in this section (Tables 9
and 10) showed that random indexing is reasonably stable as more websites are added to the corpus,
we also verify this robustness qualitatively using a few domain-specific examples in Table 12. We
ran the qualitative experiment as follows: for each seed token (e.g. ‘tall’), we searched for the two
nearest neighbors in the semantic space induced by random indexing by applying cosine similarity,
using two different word representation datasets (D-10K and D-ALL). As the results in Table 12
show, the induced distributional semantics are stable; even when the nearest neighbors are different
(e.g. for ‘tall’), their semantics still tend to be similar.

Another important point implied by both the qualitative and quantitative results on D-10K is
that random indexing is able to generalize quickly even on small amounts of data. To the best of our
knowledge, it is currently an open question (theoretically and empirically), at the time of writing,
whether state-of-the-art neural embedding-based word representation learners can (1) generalize on
small quantities of data, especially in a single epoch (‘streaming data’) (2) adequately compensate
for concept drift with the same degree of robustness, and in the same lightweight manner, as the
random indexing method that we adapted and evaluated in this paper. A broader empirical study

Approved for Public Release; Distribution Unlimited. 
22



Table 12: Examples of semantic similarity using random indexing vectors from D-10K and D-ALL
Seed-token D-10K D-ALL
tall figure, attractive fit, cute
florida california, ohio california, texas
green blue, brown blue, brown
attractive fit, figure elegant, fit
open-minded playful, sweet passionate, playful

on this issue is warranted.
Concerning contextual supervision, we qualitatively visualize the inputs to the contextual city

classifier using the t-SNE tool [46]. We use the ground-truth labels to determine the color of each
point in the projected 2d space. The plot in Figure 10 shows that there is a reasonable separation
of labels; interestingly there are also ‘sub-clusters’ among the positively labeled points. Each
sub-cluster provides evidence for a similar context; the number of sub-clusters even in this small
sample of points again illustrates the heterogeneity in the underlying data.

A last issue thatwemention is the generalization of themethod tomore unconventional attributes
than the ones evaluated herein. In ongoing work, we have experimented with more domain-specific
attributes such as ethnicity (of escorts), and have achieved similar performance. In general, the
presented method is applicable whenever the context around the extraction is a suitable clue for
disambiguation.

3.2 Knowledge Graph
Our solution to the investigative search problem begins by constructing a knowledge graph from
the raw corpus of HTML pages, using a variety of information extraction and clustering modules
based on an underlying investigative schema [15]. We define a knowledge graph (KG) as a directed,
labeled, multi-relational graph where nodes represent entities, attribute values or entity clusters
(latent entities), and edges represent relationships.

Because of the imperfection of extraction and clusteringmodules, the constructedKG is typically
very noisy (a non-trivial subset of extracted attribute values is incorrect), large-scale (containing
tens of millions of nodes and edges), and is semi-structured (many attribute values are missing,
multi-valued and even textual).

3.2.1. Investigative Schema

To facilitate precise search capabilities and preclude errors in solutions to difficult problems such
as word sense disambiguation [63], we develop a controlled vocabulary of terms denoted herein
as an investigative schema I, represented as a labeled, directed, acyclic graph, with subclassOf,
attributeOf, hasValue and memberOf edges. Figure 11 illustrates the investigative schema used
in the current prototype. This schema was defined collaboratively with actual investigators and
domain experts, and contains four primary classes21, in addition to a set of primitively typed
semantic attributes22.

21Instances of these classes are considered either entities or latent entities (for Vendor) in our domain of discourse.
22That is, the type is either number, date or string.

Approved for Public Release; Distribution Unlimited. 
23



Figure 11: A fragment of the current investigative schema I.

We permit a semantic attribute to bemulti-valued (a bag), but each valuemust have the primitive
type of the attribute. Among the four classes, EscortAd and MassageParlorAd are referred to as
base classes, themselves sub-classes of the superclass Ad; Vendor is denoted as a cluster class, of
which an instance will always be a set of Ad instances (hence, the memberOf relation). Currently,
EscortAd andMassageParlorAd share semantic attributes and we do not distinguish between them
in our data, although in the post-processingmodule in Figure 5, an implemented supervisedmachine
learning classifier can be used to offer a probabilistic classification.

We define a single set of semantic attributes for the Ad subclasses, namely age, text-content,
email, eye-color, hair-color, height, location, name, nationality/ethnicity, phone, posting-date,
price, review-id, service, social-media-id, street-address, title, weight and multiple-providers23.
The Vendor cluster class has two attributes: seed-phone and seed-email, which are the respective
unions of the phones and emails corresponding to the ads that are members of a Vendor cluster
instance. The rationale for these attributes is that (1) phones and emails extracted from ads were
used for inferring the clusters, as subsequently described, and (2) investigators prefer querying for
cluster instances using phone and email facets.

More technically, the investigative schema is a constrained version of a shallow ontology, used
often in the Semantic Web for schema-rich knowledge graphs such as DBpedia and GeoNames
[40], [69]. The ontology defines a domain of discourse, and is critical for precisely capturing
domain assumptions. More importantly, the schema defined above is not only simple but designed
to be extensible: usually, real-world investigators want flexibility in the available set of semantic
attributes e.g. we are looking to add semantic attributes such as tattoo and drug use to the schema.

3.2.2. Knowledge Graph Construction

An important first step in achieving the goals illustrated in Figure 5 is knowledge graph con-
struction (KGC). KGC is an area of research in its own right [57], [19]; we only describe the
important elements herein. The online component of the system (the entity-centric query engine)
that is the technical focus of this work, is agnostic to the constructed knowledge graph (KG),
although the overall quality of the answers will (in the general case) depend on the KG. To abstract
implementation-specific details, we assume the availability of a battery of attributed information
extractors for each semantic attribute in I:

Definition 1: An attributed information extractor (a-IE) X is a 2-element tuple < f,M >,
where f , denoted as an information extractor, is a (many-many) mapping from an input string to a
set of primitively-typed values, andM is a non-empty extraction metadata dictionary of key-value

23A Boolean flag indicating whether multiple people will be offering the service.

Approved for Public Release; Distribution Unlimited. 
24



pairs.
In the literature, implementations of f includewrappers, text scrapers (for extracting text content

from raw HTML pages), regular expressions, dictionaries, entity sets and external knowledge bases
like GeoNames [69], [15]. While wrappers and text scrapers take the raw HTML content of a
webpage (represented as a single long string) as input, other IEs take the output(s) of text scrapers
as their inputs.

The metadata of an a-IE typically includes a succinct representation of expert confidence in
f . One compulsory attribute of an a-IE is a semantic type, which enables us to type each output
of f in terms of the attributes in the investigative schema I. A second compulsory attribute
that is extremely important for non-technical domain experts navigating the knowledge graph is
provenance. The simplest example of provenance is the original URL (and in many cases, the
cached webpage, which may not be online at the time of search.

Definition 2: Given an a-IEX =< f,M > and an investigative schema I, a semantic type is a
function mapping the output of f to a semantic attribute in I. The output of f is referred to as an
extracted semantic type.

Consider a Conditional Random Field (CRF)-based f for the hair-color semantic attribute.
f would take text as input and output a (possibly empty) set of hair colors (extracted se-
mantic types). Suppose also that, during training, the CRF parameters can be optimized
to deliver either high expected precision or high expected recall. Rather than choosing be-
tween the two, the KGC could have two a-IEs e.g. hair_color_high_precision=< f,M =
{[isHighPrecision, True], [semanticType, hair-color]} >; similarly, hair_color_high_recall
is defined, except with a differently trained f , and with isHighRecall rather than isHighPrecision.
Intuitively, the metadata allow us to use the a-IEs in a variety of ways in the query reformula-
tion algorithm. Note that the semantic types permit us to define KGC as a black box process
precisely because they explicitly connect elements between the actual schema of the KG (the
implementation-specific a-IEs) and I.

In DIG, we treat KGC as an independent ‘black box’ that takes as input a raw corpus and yields
a semi-structured knowledge graph; in the evaluations, we quantitatively compare the performance
of two independently constructed knowledge graphs using both DIG, and also the DeepDive system
[65], [51]. At the time of writing, the extractors listed in Table 1 are continuously being maintained
and updated [2]. It is important to note that the subsequently described search engine directly uses
the IE metadata to reformulate queries and make ranking decisions, allowing specific implementa-
tion details to be abstracted in that step. For instance, the metadata abstraction allowed the search
to be conducted over knowledge graphs (constructed using DIG and DeepDive respectively) with
two completely different extraction schemas.

3.2.3. Cluster Inference

Cluster inference is the process of deriving the latent entities (instances of the Vendor class in Figure
11) in the knowledge graph. The set of real-world cues that can be used to cluster human trafficking
entities is a highly contentious issue, and includes text similarity, use of Unicode motifs, and phone
and email co-occurrence data. While we use the last cue, any clustering algorithm can potentially
be used to identify vendor instances. This also explains the rationale behind the cluster attributes
(seed-phone and seed-email); given a ‘seed’ phone or email, we define the query-centric problem
of retrieving the ‘vendor’ instance associated with that seed as the set of ad entities satisfying

Approved for Public Release; Distribution Unlimited. 
25



the following conditions: the seed was explicitly extracted from at least one of the ads in the set,
and there is a co-occurrence path of phones and emails between any pair of ads in the set24. In
other words, every vendor instance represents a connected component of ad instances, with an edge
defined between two ads if they share phones or emails.

Naively using connected components as clusters is problematic for a number of reasons. First,
there are some extremely commonbut irrelevant phone numbers that showup in a non-trivial number
of pages. An example would be a customer service number from Verizon (or the ISP hosting the
site), extracted from the bottom of the HTML page. Second, the noisy extractions output by the
regular expression-based phone extractor are not independent. For example, a sequence of digits
(such as a zipcode followed by a set of prices) is more likely to be mistaken for a phone (by the
extractor) than an isolated age. Similar to the first problem, the second problem also leads to nodes
in the constructed phone network that result in extremely large connected components (by serving
as a ‘bridge’ between two connected components).

In a previous prototypical solution, we handled this problem bymanually blacklisting nodes that
had abnormally high degrees. In the current prototype, this step has been successfully automated
by using a random walk-based connected components algorithm. Connections mediated by ‘faulty’
nodes are typically extremely weak owing to their high edge degrees, allowing us to control the
formation of large connected components.

The result of information extraction and cluster inference is a multi-relational directed, labeled
graph, denoted henceforth as the knowledge graph (KG), with two types of nodes: Vendor nodes
and Ad (equivalently, entity) nodes. Every document that is processed by the extraction system is
assigned a unique identifier and becomes an entity node in the KG.

3.2.4. Knowledge Graph Indexing

For real-time execution of complex queries, the knowledge graph must be properly indexed in
an appropriate NoSQL (i.e. key-value) document store [27]. Specifically, each ad is considered
a document with multiple fields, with each field bijectively mapped to an a-IE. Since not every
ad is guaranteed to have an extracted semantic type (or may have multiple such extractions), the
documents are semi-structured i.e. will not have values for many fields in the general case. This
is because, both for purposes of achieving high recall during search as well as robust handling of
unexpected extraction outcomes, values are not necessarily from a controlled vocabulary or closed
set (e.g., a set of pre-determined hair colors, or a phone number guaranteed to have an eligible US
phone format). Given specific ‘analyzer’ instructions (the most important of which is the tokenizer
used for chunking strings into bags of tokens), suitable inverted indices can be constructed for
each such field, with the document id (the entity node) serves as the link between multiple field
indices. Given a query in its Domain-specific Query Language (DQL), a good NoSQL engine
like Elasticsearch or MongoDB makes judicious use of these inverted indices for fast retrieval and
ranking.

24An example of such a set for the seed phone p1 is a set containing three ads (say ad1, ad2, and ad3) that respectively
contain phones {p1, p2}, {p2, p3}, and {p3, p4}

Approved for Public Release; Distribution Unlimited. 
26



3.2.5. Indicator Mining

The growth, combined with the ease of sharing information on the Web, has also led to increased
illicit activity both on the Open and DarkWeb, an egregious example being human trafficking (HT)
[5], [68]. The DARPA MEMEX program, which funds research into domain-specific search, has
collected hundreds of millions of online sex advertisements, a significant (but unknown) number
of which are believed to be sex (and human) trafficking instances.

Flagging scraped content from webpages in such domains with activity tags or indicators,
denoted herein as the indicator mining problem, has an investigative and socially motivated purpose
not just in online human trafficking but several other domains that have also been studied inMEMEX,
including patent trolling, counterfeit electronic sales, illegal weapons sales and narcotics. In recent
years, some of these ‘illicit’ Web domains have been intensely studied by social and computer
scientists seeking to profile activity on the Dark Web [70], [72]; however, to the best of our
knowledge, flagging andmodelingWeb content with implicit semantic tags indicating illicit activity
has received considerably less attention. A good model for an indicator must incorporate several
non-trivial subtleties to be faithful to real-world observations.

Defined naively, an indicator is a flag, typically binary, but potentially multi-categorical, that is
suggestive of suspicious activity that would warrant investing more resources into investigating the
subject of the content being flagged.

In the case of the online sex advertisement domain, subjects are not only escorts (usually, the
victims of trafficking) but also perpetrator organizations like massage parlors, procurers, as well
as reviewers and clients. While the ideal motivation is to directly flag an online sex trafficking
document with a single human trafficking indicator, this is extremely problematic in practice,
especially without a proper field level investigation. A more attainable goal is to instead use
the mined indicators to guide further investigation. To distinguish trafficked escorts from non-
trafficked escorts, investigators seek signals that suggest (whether at present or in the future), for
example, that the subject exhibits movement between cities or provides risky services that were
highly correlated with trafficking activity in social science studies. The provenance of the signal
can be complex and depend on both ‘knowledge’ artifacts like named entities or relationships, but
also the text. For example, the sentence ‘Brand NEW to town and looking for New Fun Friends’
suggests movement, not because of an entity like ‘town’ or ‘friends’ but because of adjectives like
NEW. Correctly modeling and generalizing this notion is challenging both from a formal and an
inferential standpoint due to high diversity of content.

In this work, we investigated an indicator model and formalism for indicators by defining
ontologies and semantics that attempt to provide insight into the implicit semantics, and special
nature, of indicators. To express the richness of indicator provenance, ourmodel combines syntactic
artifacts developed in the Natural Language Processing community with more traditional domain
semantics. We implement our model in an end-to-end indicator mining approach called FlagIt
(Flexible and adaptive generation of Indicators from text). To reduce the burdens of manual
supervision and potential user bias, FlagIt combines a lightweight expert system with applied
research (both recent and classic) inminimally supervisedmachine learning, including unsupervised
text embeddings [28] and semi-supervised heuristic re-labeling [71], to achieve average F-Measure
scores slightly below 80%. FlagIt is simple and extensible, and scales to millions of sentences.

Approved for Public Release; Distribution Unlimited. 
27



Document Sentence

Girl

Town

Service

Word

Noun

Verb
Adjective

Indicator

MultiGirl

Movement

RiskyService

Incall

Outcall
POS_Tag

hasSentence

hasWord

hasIndicator

nextWord

denotes

hasPOS_Tag

Syntax Ontology
Indicator  Ontology

Domain Ontology

inference
problem

property

subclass

Figure 12: Ontologies for indicator mining.

Formalism We formalize the indicator mining problem using three ontologies (Figure 12). The
syntax ontology represents the syntactic structure of documents in the input corpus. We assume
each document is segmented into sentences, and words are labeled with part of speech (POS) tags,
a task that can be easily accomplished using widely available tools such as NLTK25 or spaCy26.

The domain ontology represents the entities of interest (the figure shows a subset of the classes
relevant in the human trafficking domain). Accurate information extraction from sex ads is difficult
as the language model used in these ads is unusual, so we use a simple domain ontology with
classes to represent the entities of interest. The ontology does not represent relationships among
these classes as relation extraction in this domain is extremely difficult. Instead, we assume that
relevant words in the corpus are labeled with the appropriate classes in the domain using the
denotes property. The labeling task can be easily accomplished by having domain experts create
term glossaries for each class, and using these glossaries to tag the words. For example, the domain
experts defined class Town using a glossary containing “town”, “area”, “place” and “city”.

The indicator ontology represents the indicators of interest. The problem addressed in this work
is the inference of the hasIndicator relationship between sentences and indicator classes.

The inference problem may be formalized using the Semantic Web Rule Language27 (SWRL)
by defining rules that relate the terms in the syntax and domain ontologies to terms in the indicator
ontology. The formalization would consist of multiple rules where each rule identifies a specific
pattern. Consider the following SWRL rule to infer the Movement indicator: clause (1) identifies
the word “new”, clause (2) identifies a preposition following the first word, clause (3) identifies a
word that denotes Town following the preposition, and clause (4) states that all words belong in a
sentence. When these conditions are met, the rule infers the Movement indicator for the sentence
(clause 5). This rule, would correctly tag sentences such as “Brand NEW to town and looking for
New Fun Friends”.

25http://www.nltk.org
26https://spacy.io
27https://www.w3.org/Submission/SWRL/

Approved for Public Release; Distribution Unlimited. 
28



Figure 13: Easy to use interactive editor for defining indicator rules.

Word(?w1) ∧ label(?w1, “new”)∧ (2)
Word(?w2) ∧ nextWord(?w1, ?w2) ∧ hasPOS_Tag(?w2,Preposition)∧ (3)

Word(?w3) ∧ nextWord(?w2, ?w3) ∧ denotes(?w3, Town)∧ (4)
Sentence(?s) ∧ hasWord(?s, ?w1) ∧ hasWord(?s, ?w2) ∧ hasWord(?s, ?w3) (5)

⇒ hasIndicator(?s,Movement) (6)

With additional rules, the indicator mining problemwould be formalized precisely, and a SWRL
reasoner could be used to produce a reference implementation.

In our work we implemented an equivalent baseline using a graphical user interface (Figure 13)
that enables domain experts to create rules with identical semantics to SWRL rules such as the one
listed above. Our evaluations show that this approach for formalizing the problem is useful, but
doesn’t always agree with annotations provided by domain experts. We show that combining the
rule-based approach with machine learning techniques yields a practical inferencing mechanism
for indicator mining with better agreement with expert annotations.

Approved for Public Release; Distribution Unlimited. 
29



Approach We construct the sentence corpus from Web resources that are known to contain high
levels of human trafficking (HT) activity. The sentences are obtained by executing a webpage
pre-preprocessing pipeline that was tuned to scale and generalize to a 54 GB HT corpus containing
webpages from numerous Web domains. First, we use the Readability Text Extractor28 (RTE)
to scrape descriptive content from each webpage in the corpus. We tuned RTE for high recall:
with high probability, all relevant sentences constituting the main content of the webpage are
extracted, but some irrelevant sentences (e.g., “taylor profile was posted 14 weeks 4 days ago”)
may also be extracted. Next, the output of RTE is segmented into a list of sentences by using
newlines and consecutive occurrences of three whitespace characters as delimiters. All sentences
were converted to lowercase and deduplicated before the minimally supervised machine learning
modules (e.g., the text embeddings) but not before executing the lightweight expert system, which
relies on capitalization and other text features to perform well.

Given a sentence from this corpus of segmented sentences, the indicator mining problem can
be modeled as multi-label text classification, assuming that representative training data and feature
functions are available. Unfortunately, we have no training data available for this task, and enormous
negative class skew (higher than 90% in many cases) in the task domain preempts random sampling
and labeling. Because indicator mining is an emerging problem in data mining, it is also not clear
what indicator-specific features will lead to good performance for a given indicator. FlagIt attempts
to address these challenges in a simple and lightweight manner, as subsequently described.

We implemented five indicator classifiers, namely incall, outcall, movement, risky and multi-
girl. Incall explicitly indicates that a client must visit an escort (conversely for outcall) at a specified
location. Movement indicates that the escort is visiting the locale (usually for short periods) from
a different previous locale, while risky indicates that the escort is willing to engage in risky sexual
activities (as determined by domain experts). Multi-girl (along withmovement) is highly correlated
with organized sex trafficking activity.

Lightweight Expert System Human trafficking is an ‘unusual’ domain in that it has features
and subtleties not well understood except by experienced domain experts. Such experts include
investigators with actual field experience, as well as social scientists who have studied the field
academically. While such users are capable of giving examples, and even expressing short rules
(with some offline training) using a fairly intuitive syntax, they are non-technical and are not well-
versed either in machine learning or in the use of NLP packages like spaCy or nltk. Given the short
time frame in which FlagIt29 had to be developed, as well as sparse personnel, an expert system
with many complex rules was neither desirable nor possible.

Instead, we developed a lightweight expert system (LES) that relies on (subsequently described)
shallow pattern matching rules, with each rule exclusively falling into one of four rule categories
depending on its predictive relationship to the indicator: positive (P), strong positive (Sp), negative
(N) and strong negative (Sn). Earlier, we showed a visualization of the actual rule editor that is used
for defining the rules; this section develops the technical formalism. The ‘strong’ qualifier is meant
to express user confidence, providing users a simple but effective way of expressing when they are
very sure about a rule, and when they are not. These categories are motivated by extensive research

28While available at the time of preprocessing, RTE has since been superseded by a new web scraping API called
Mercury: https://www.readability.com/

29End-to-end research and development on FlagIt, now in its final phase, was conducted in the last 5 months of the
MEMEX program.

Approved for Public Release; Distribution Unlimited. 
30



in cognitive science and crowdsourcing showing that asking users for fine-grained confidence
outputs (including probabilities) is rife with issues of labeling consistency.

We define a pattern matching rule as a finite sequence of pattern elements, where a pattern
element can either be a constant token (a finite sequence of Unicode characters) or a pattern
variable V . In keeping with the lightweight nature of the system, four kinds of pattern variables
are considered. We describe these variables below, followed by some representative examples.

Glossary Variable. Given a glossary G (a finite set of tokens), a glossary variable VG can take
exactly one token from G as its value. In some cases, glossaries are easily available from the Web
(e.g., a list of common English names) but in other cases, have to be specified either by the expert
or through entity set expansion and glossary mining [54]. For the indicators considered in this
paper, five glossaries are used for both incall and outcall, two glossaries each for movement and
risky, and four glossaries for multi-girl.

Regular Expression (RegEx). Pattern variables can also be encoded as regular expressions. For
speed and efficiency (and also noting that domain experts are non-technical), we limit expressivity
of regular expressions in FlagIt. The most commonly used RegEx in FlagIt was to check for
tokens possibly symbolizing names and geolocations by specifying capitalization and alphabetic
constraints.

NLP Tags. Despite being lightweight, the expert system can make use of tags, such as POS tags
and English dependency labels30, output by NLP packages like spaCy. As a subsequent example
illustrates for incall, dependency labels, such as an adjectival modifier tag, can be used to great
effect without overhead.

Named Entities. The LES can also use an expected named entity type as a pattern variable
specification. The variable is assigned the word, only if it is extracted as a named entity of that
type [49].

Example. Given a glossary place, containing residence terms and synonyms such as apartment
and studio, and another glossary priv containing words such as private and discreet, a simple but
effective Sp rule for incall is the sequence (Gpriv < −amod,Gplace), which would match a pattern
such as private apartment in the text. The< −amod specifies that the word must have an adjectival
modifier dependency tag. This example shows that finite combinations of pattern variables are also
possible.

In a slight abuse of notation, we use the symbols P, Sp, N and Sn to respectively refer to the
collections of pattern matching rules defined by domain experts. A rule R, when applied to a
sentence, yields True if at least one pattern is successfully matched in the sentence, said to be
covered by the rule, and False otherwise. Table 13 describes the number of rules per indicator in
each collection.

Because rules from multiple rule categories can cover a sentence, the notion of a rules-set
becomes necessary to enforce a partition of the corpus. The FlagIt LES supports seven rules-sets,
resulting in a 7-split partition: P OR Sp, N OR Sn, Sp AND N, Sn AND P, Sp AND Sn, P AND
N, and Null. The last is when no rule (from any of the four categories) yields True. OR in a rule
such as P OR Sp indicates that only a rule from P or Sp (or both) covers a sentence. AND in a rule
such as Sp AND N indicates that the sentence must be covered by a rule from Sp, as well as from
N. Where applicable, Sn takes precedence over N and Sp over P. For example, if a rules-set such as
(P AND Sp) AND Sn fires, it is considered equivalent to the rules-set Sp AND SN firing.

30See https://spacy.io/docs/api/annotation for a description.

Approved for Public Release; Distribution Unlimited. 
31



Table 13: Number of rules defined by domain experts per category.

Incall Outcall Movement Risky Multi-girl
P 5 14 37 21 9
N 6 4 7 2 0
Sp 3 3 21 1 0
Sn 7 10 40 5 11

Because of the specified precedence, the rules-sets described above are such that a sentence
will be covered by exactly one of them, yielding a partition over a sentence corpus. We illustrate
how such a partition can be used in a weakly supervised setting to obtain labeled data that can then
be used in a minimally supervised machine learning setting.

Furthermore, in addition to producing explainable outputs31, the LES also plays an important
role in training set (and by extension, evaluation set) construction by following aweakly supervised
random sampling scheme. Training set construction is an important problem that plagues many
real-world data mining applications that depend on training adaptive systems for good performance
[60]. In problems with enormous class skew, such as ours, simple random sampling is not effective.
A second problem is that sentences flagged with a positive indicator are often flagged due to a
combination of reasons, which makes acquiring a diverse training set an important requirement for
adequately representing the distribution of data.

We construct a small but diverse training set per indicator by randomly sampling labeling
budget/7 sentences from each of the seven rules-sets in the partition. In keeping with the minimal
supervision goals of this paper, labeling budget was restricted to a small number (140), meaning
that, in the typical case, 20 sentences were labeled by a user for each rule-set. The only exception is
when a rules-set did not cover 20 sentences, in which case we used a form of iterative, re-distributive
sampling whereby each sentence covered by that rules-set was labeled, and the rest of the budget
was divided between the remaining rules-sets that had more than 20 sentences32. In the worst case,
the scheme would be reduced to sampling all 140 sentences from the Null rules-set but this never
happened in practice for any of the five indicators in FlagIt.

Minimally SupervisedMachine Learning While a judicious execution of the lightweight expert
system can yield competitive results, as we illustrate below, performance can be significantly
improved by incorporating machine learning methods in the pipeline. State-of-the-art machine
learning is not minimally supervised, requiring immense labeling effort in the case of deep learning
architectures. Another form of manual effort is crafting viable sets of features.

Two options to considerably mitigate or even eliminate both labeling and feature crafting effort
are semi-supervised learning and unsupervised text embeddings respectively. Below, we describe
how both options can be used in conjunction with the lightweight expert system to improve the
performance of FlagIt with minimal user effort.

31The explanation is implicit and comes from documentation behind the rule that got fired in matching the pattern.
32The process is iterative because a rules-set may not now cover the new local labeling budget (by definition, greater

than 20).

Approved for Public Release; Distribution Unlimited. 
32



A recent system, fasttext [28], released by Facebook Research under an open license has proven
to be more successful than widely used models like paragraph2Vec [16], was integrated into FlagIt.
The fasttext model has several advantages that make it particularly suitable for the HT domain. In
particular, as the name suggests, it is fast by virtue of an optimizations employed in its codebase,
allowing rapid prototyping and exploration of embedding hyperparameters such as vector space
dimensionality. A second advantage is its ability to generalize to unseen sentences and words with
considerably more robustness than alternative document representation models.

Since the weakly supervised random sampling scheme described earlier for constructing the
evaluation set for each indicator is extremely small compared to the whole corpus, we posit that
semi-supervised learning can be used to leverage this body of unlabeled text to further improve the
results [71]. We integrate a simple, and classic semi-supervised scheme in FlagIt: first, we train
an initial (indicator-specific) classifier on the perfectly labeled training set, and use the classifier
to generate a positive label probability (for that indicator) for each unlabeled sentence in the
overall corpus. Next, we pick some percentage of unlabeled sentences from the ‘extreme’ ends of
the probability distribution and heuristically label these sentences to re-train the classifier. This
process can be iterated a certain constant number of steps, or till a convergence criterion is met.

Experiments FlagIt is designed to be both tunable and extensible to new indicators, and in
keeping with its secondary goal of being a broader experimental platform for indicator mining from
webpages, has several alternate algorithms, embeddings and baseline methods directly integrated
into it. In addition to characterizing the performance of FlagIt compared to several competitive
baselines, the evaluation goals in this section also include characterizing its generalization potential
by plotting indicator-specific learning curves on the evaluation data. Our choice of baselines
helps us to analyze the contributions of each of the individual components in FlagIt, including the
choice of unsupervised text embedding (fasttext), the use and limits of weak supervision, and the
performance gain achieved via semi-supervised learning.

Unlabeled Human Trafficking Corpus: The first version of FlagIt was executed on a 54 GB
online sex trafficking corpus crawled over the Web. The corpus is diverse: the total number of
unique URLs is 1,000,165 while the number of unique sentences is only 1,919,339, even though
webpages contain many more than 2 sentences. Thus, many sentences are repeated across ads.

The total number of uniquewords (vocabulary) across the sentences is 735,741, which illustrates
both that many words are repeated, and that there is a large number of low frequency terms, some
of which turn out to be important for the indicator mining problem (e.g., bbbjtcws, cbj33, facetime).
Overall, the document frequency of words exhibited a clear power-law (i.e. long tail) distribution.

Metrics and Evaluation Protocol: We construct the evaluation set using the method outlined
above. Details of the evaluation set are provided in Table 14. We use stratified sampling to split the
evaluation set into a training and test set in each experimental trial, with 65% used as the training
percentage (about 100 of the 140 sentences). We use the precision, recall and F1-Measuremetrics
to measure system effectiveness. With one exception (bag of words baseline), we compute the best
F1-Measure achieved for each of the baselines over five34 independent training/testing trials. We
report the average of these F1-Measures and plot precision-recall curves.

Baselines: We considered and implemented several baseline strategies to understand the effects

33The first two of these examples are short acronyms for certain sex services.
34Due to an implementation detail, bag of words is evaluated over ten trials.

Approved for Public Release; Distribution Unlimited. 
33



Table 14: Profile of the rules-set partition (part.) generated via the lightweight expert system
on the unlabeled corpus for each indicator (absolute counts in thousands (percentage)), and the
manually labeled positive/negative indicators in the sampled evaluation set (eval.). NA stands for
Not Applicable. For space reasons, we omit Outcall details.

Rules-set Incall Movement Risky Multi-girl
part. eval. part. eval. part. eval. part. eval.

P OR Sp 25(1.2) 19/1 5.8(0.3) 4/18 50.7(2.6) 25/5 .72(0.04) 21/9
N OR Sn 55(3.0) 5/15 69.9(3.6) 2/20 0(0) NA 505(26.2) 0/40
Sp AND N 3.4(0.2) 13/7 .42(0.02) 20/2 0(0) NA 0(0) NA
Sn AND P .47(0.02) 11/9 .23(0.01) 5/17 0.04(≈

0)
12/18 .90(0.05) 15/15

Sp AND Sn 0.06 (≈
0)

16/4 0.01(≈
0)

8/0 0(0) NA 0(0) NA

P AND N 10(0.6) 20/0 .92(0.05) 7/15 .18(0.01) NA 0(0) NA
Null 1820(95) 0/20 1840(96.0)0/22 1870(97.3)0/80 1410(73.7)1/39

of various FlagIt components:

• Group of Rules-Sets (GoRS): The GoRS baseline, implementable in SWRL, is the only
non-adaptive baseline we consider, and is the closest equivalent of a standalone, lightweight
but optimistically configured expert system. The baseline is implemented by further grouping
the rules-sets in Table 14 into a binary (rather than a 7-set) partition to predict the label of
a sentence based on which group it is covered by35. We consider five intuitive groupings,
including a precision-centric group (P OR Sp is solely assigned to the positive-label group,
while every other rules-set is in the negative-label group), a recall-centric group (Null and N
OR Sn are solely assigned to the negative-label group) and several midway alternatives.

• Bag of Words (BoW): We use the classic BoW baseline by using the entire corpus of 1.9
million sentences to compute IDF (Inverse Document Frequency) statistics, followed by k
nearest neighbors majority-vote classification, using cosine similarity on TF-IDF vectors in
the training set. We report results obtained over the best performing k (over the set {1,5,10})
for each indicator.

• Simple fasttext (Sim-ft): The simple fasttext baseline is identical to FlagIt in every way,
except that it does not apply semi-supervised learning. This baseline helps evaluate the
benefits of semi-supervised learning for each indicator.

• Paragraph2Vec (PV): The PV baseline was one of the first skip-gram neural network-based
document embedding models published in the research literature and has obtained state-of-
the-art results in the past [16]. Since PV is unsupervised, we apply it to all labeled and

35By virtue of being a partition, exactly one group will cover a sentence.

Approved for Public Release; Distribution Unlimited. 
34



Figure 14: Precision-recall curves of the PV baseline (gensim) against Sim-ft (fasttext). Risky and
Outcall (omitted herein) are qualitatively similar toMovement, with Sim-ft exhibiting a performance
advantage.

unlabeled sentences and use the sentence vectors in the training and test sets as feature
vectors.

Implementation and Setup: All text preprocessing, rules-set partitioning and representation
learning programs were executed on an Amazon EC2 r3.xlarge machine with 4 computing units
and 30.5GB memory. All other experiments, especially those concerning trials on the evaluation
set, were conducted locally. We implemented all our code in Python, and all packages used in
FlagIt are open-source. For the PV baseline [16], we use the implementation in the gensim package
. We use the spaCy package for implementing and executing the rules-sets in the lightweight expert
system. For the machine learning classifiers, we use Python’s scikit-learn library.

We configured fasttext to learn 20-dimensional vectors. For the PV baseline, we trained 12
vector space models over the following parameter combinations: {15, 20} for dimensionality (dim),
{2, 3, 4} for minimum word frequency (min_ count), and {40, 60} for number of iterations (iter).
Using a training split of the incall dataset for development, we picked the best three36 models
i.e. {dim:20, min_count:2, iter:40}, {dim:15, min_count:2, iter:40}, and {dim:20, min_count:4,
iter:60}. Concerning the trained machine learning classifier in all experiments except those involv-
ing BoW (which uses kNN), we consider both logistic regression and random forest classifiers, and
pick the one that performs best.

Table 15: F1-Measure scores for the evaluated approaches.

Incall Outcall Movement Risky Multi-girl
GoRS 0.79 0.76 0.64 0.77 0.73
BoW 0.75 0.78 0.70 0.67 0.65
WS-ft 0.76 0.71 0.50 0.41 0.41
Sim-ft 0.83 0.80 0.73 0.73 0.64
PV 0.77 0.80 0.64 0.70 0.58
FlagIt 0.85 0.89 0.77 0.79 0.65

36Primarily because of disk space limitations.

Approved for Public Release; Distribution Unlimited. 
35



Results Table 15 provides F-measure scores averaged over 5 (in the case of BoW, 10) random
trials. On four of the five cases, and also the average, FlagIt achieves the best F-Measure perfor-
mance; the only exception is multi-girl, where it is outperformed by GoRS, which emerged as the
next best baseline. We believe that the decrease in FlagIt’s performance on multi-girl may have
been due to the importance of numeric features in the text, which text embeddings cannot easily
understand or capture.

Concerning the good performance of GoRS over rival statistical approaches, we find that the
‘best’ group does not change much over the five indicators. For example, for four of the five
indicators, the recall-centric group works best, and for the fifth indicator, is second best by a narrow
margin. This finding also highlights one limitation often found in weak supervision approaches:
they tend to do better on recall than on precision. In the case of GoRS, recall was consistently
higher than precision.

Given the good performance of GoRS, we considered the following weak supervision exper-
iment: first, use the recall-centric group in GoRS to label every sentence in the unlabeled set as
positive or negative; then, train FlagIt on the fasttext feature vectors using the weakly supervised
labels, and test the resulting classifier using the entire evaluation set. The single point37 F1-Measure
scores obtained by this baseline (WS-fasttext) are illustrated in Table 15. Finally, comparing Sim-ft
with FlagIt in Table 15 we find that semi-supervised learning leads to consistent improvement by a
few percentage points. Further analysis on precision-recall results, not reproduced herein, showed
that it was precision that improved, usually by reducing the number of false positives.

Although we have framed the problem of mining indicators in inferential terms, a sobering fact
is that the interaction of indicators in the real world, and the extent of various indicators being
present in ads, is not fully understood. This is because large-scale research on this matter has been
necessarily limited by the lack of good data (especially with semantics) in the online sex ad domain.
The results in the previous section showed that (1) the (explainable) rules specified in GoRS are
almost as good as (non-explainable) machine learning, although it is expected that machine learning
performance could improve with more labeled data, (2) the absolute F1 performance of GoRS is
above 60%, and in many cases, above 75%. Together, these observations illustrate that it may be
worthwhile to conduct a computational social science (CSS) study on indicator correlations, with
several caveats in mind, the most important of which is that the rules are not perfect.

We conducted such a study using the lightweight expert system (LES) in FlagIt by recording
which category of rules (e.g., positive, strongly positive) were fired for each unique sentence
extracted from the 54 GB corpus, followed by a correlation analysis. As explained earlier, indicator
mining suffers from the class skew problem i.e. positive rules are never fired for the vast majority
of sentences. This can be problematic when computing standard correlations, since the negative
samples will skew the metric. Thus, research hypotheses must be framed carefully, and are usually
conditional on at least one indicator rule getting fired. For example, we used the data to answer
questions such as the following:

1. Which indicators co-occur most often with a (positively flagged) movement indicator?

2. When at least one of movement, incall, outcall, risky and multi-girl positive rules fire, what
are the cross- correlation coefficients in that sub-sample?

37Since the entire evaluation set is used for testing, the process is deterministic, unlike with the other baselines.

Approved for Public Release; Distribution Unlimited. 
36



3. Are risky activities correlated with movement, given that they are both believed to be corre-
lated with a human trafficking signal?

4. Are certain indicators more correlated with bigger cities than others?

In some cases, such as the last question, indicators have to be combined with explicitly extracted
entities like locations. Although any such findings must be treated with caution, especially without
support from a field-level sociological undertaking, we hope that the structure of the questions and
study presented herein still illustrate the promising benefits of modeling and semi-automatically
mining implicit semantic tags like indicators from large corpora in socially consequentially and
difficult domains like illicit sex advertising. In ongoing work, along with improving FlagIt and
using it for analysis, we are also extending it to automatically mine promising indicators in other
investigative domains, such as securities fraud.

Summary Evaluated on five diverse indicators against a range of competitive (adaptive and non-
adaptive) baselines, FlagIt outperforms the best baseline on the F1-Measuremetric by 2-13%on four
of the five indicators and is always the best of all adaptive baselines. Finally, we also demonstrate
the potential of FlagIt for conducting large-scale computational social science studies involving
indicators in the illicit sex ad domain. Although the study or its results is not the main focus of
this paper and we only briefly describe its structure, to the best of our knowledge, an indicator
correlation study of this scale (encompassing millions of sentences and hundreds of thousands
of webpages) has not been possible before in the online illicit sex ad domain, which provides a
proof-of-concept illustration that FlagIt can provide promising insights both to computational social
scientists and investigators.

3.3 Investigative Search
Interactingwith knowledge graphs (KGs) likeGoogleKnowledgeGraph [62],Microsoft Satori [58],
Freebase [10], DBpedia [9], and YAGO[64] has become a daily experience for the public through
tools like web search (Google, Bing) and personal assistants (Siri, Alexa). These KG interfaces fall
on a spectrum from keyword-based entity search to structured query languages to natural language
question and answer. Keyword search is eminently usable after users have been exposed to it
for almost two decades, but it lacks the expressiveness needed to achieve high precision results.
Structured query languages provide expressiveness but require training and their recall is brittle
in the face of even small ambiguities and differences in vocabulary. Natural language question
and answering is also very usable, but it is difficult to implement in practice and often falls back
to mapping to a structured query language. There’s still much room for improvement on query
precision and recall for all approaches along this spectrum.

These approaches’ precision and recall are further diminished in the face of noisy KGs. All
KGs have some noise, usually in the form of inaccurate, inconsistent, stale, or missing facts. KGs
built primarily using information extraction techniques, which are less than perfect, face noise of
another magnitude, in particular over novel domains where it can’t be compensated for or corrected
using outside sources. The last chance to address this noise is while evaluating queries. For
query strategies over these noisy KGs to achieve high precision and high recall, they must be
able to compensate for noise in novel ways, because the noise only aggravates keyword search’s
imprecision and structured query languages’ recall brittleness.

Approved for Public Release; Distribution Unlimited. 
37



To overcome the limitations of these two approaches: strict pattern matching in SPARQL[56]
and imprecise keyword search over a noisy KG, we propose methods for hybridizing their strengths
beyond existing entity search and structured search engines. The process starts with a hybrid KG
(HKG) that combines each entity’s triples, enriched with their extraction provenance, and the source
documents it was derived from. From there

• We create an entity-based search engine from an HKG by indexing each entity’s triples with
text of its source document in a NoSQL document store.

• We present a scheme for structured search to map triples to a set of indexes that represent the
product of predicates and categories that capture extraction provenance.

• We show how to combine andweight matches across different extraction provenance category
indexes to efficiently incorporatemeasures of relevance and confidence for extractionswithout
modifying the document store’s engine.

• We provide query relaxation, rewriting and expansion strategies for translating simple struc-
tured SPARQL queries in to the document store’s native syntax to create complex hybrid
structured and keyword search queries over these indexes.

We first present the desiderata of robust systems and query rewriting strategies and then present
details of our approach, including the strategies for rewriting queries and indexing the data in
Elasticsearch[13], theNoSQL storewe use in our implementation. Our evaluation uses a benchmark
developed to model questions a law enforcement analyst might ask a KG built from escort ads
crawled on the internet for the human trafficking domain. The benchmark is used in two ways.
First, we perform an ablation study to understand the compound effects of our strategies on query
performance in terms of Mean Average Precision (MAP), index size, index time, and query time.
Second, we show that our approach outperforms another similar hybrid approach and a learn to
rank approach, achieving a MAP of 85%.

Desiderata for Robust Systems Systems deploying robust strategies should share the following
desiderata at both index time and query time.

• Usability: A system should be immediately useful with minimal user configuration. It should
not require a software engineer to operate. Someone with appropriate domain knowledge
should be able to write queries without having to understand the strategies employed.

• Traceability: It should provide the user with the supporting decision context and query plan to
explain why documents were retrieved over others. A document’s rank without the ability to
drill down into how the score was calculated is insufficient. This is important when building
trust and reliability in a system, especially under uncertainty [24].

• Flexibility: As the system is applied to new domains, it faces new challenges. Few, if any,
strategies will fall into the winner takes all category across domains. Giving control over
strategies the system uses will allow users to overcome unforeseen limitations. The system
should support an extensible, pay as you go library of strategies, allowing users to add,
remove, enable and disable strategies as needed.

Approved for Public Release; Distribution Unlimited. 
38



Desiderata for Robust Strategies The strategies employed by a system for querying a noisy KG
should have one or more of the following properties.

• Robust to missing extractions: KGs built from information extraction techniques won’t per-
fectly extract all knowledge from its source material. Natural language processing efforts
like named entity recognition and other machine learning techniques for extracting informa-
tion face challenges when training data is hard to come by, language models are irregular,
information is obfuscated, or the knowledge is domain specific. The source material is still
a rich source of information at query time. Adding keyword search for matching against
both extracted entity labels (New York vs New York City) and the source document can help
bridge the gaps between information extraction, entity resolution and aligning search terms
against the KG. Introducing keyword search is not without its own set of challenges.

• Robust to over-constrained queries: KGs incorporating new information operate under the
openworld assumption. SPARQLqueries usually follow a closedworld assumption. As users
express all their information requirements in SPARQL, their queries can quickly become over-
constrained. Requiring matches satisfy all the information requirements under the closed
world assumption can exclude potential matches because the matching information wasn’t
extracted or keyword search fails. To improve the match recall, some requirements can be
relaxed. Instead of requiring the user to express the complexity of which requirements can
be relaxed and how, query strategies should automatically assist the user to reasonably relax
constraints to retrieve the best results possible. Users should also have control over the
relaxation. Unless expressly marked as not relaxable by the user, required clauses should be
relaxed to optional clauses. For all clauses in a query, a document should be a match if at least
one of those optional clauses is satisfied. Additional matching clauses should aggressively
contribute to the document’s score and rank.

• Robust to search term confusion: The greater specificity of structured query languages
allows for users to ascribe semantic meaning to values and their relationships limiting the
need for the system to infer the same. Introducing keyword search and ranking without
careful consideration can quickly defeat that specificity by matching against the document for
values that appear in the range of many predicates. Some clauses should not support keyword
search at all, such as numeric values like weight. Others, after applying to tokenization to
their constraints, should have additional stop words to avoid inappropriate partial matches
like emails for their domains, e.g. ’com’ ’org’, or should weight much higher exact term
matching.

• Robust to information irrelevance: Facts in the KG can be irrelevant to a query for many
reasons. Information extracted from boiler plate forms, e.g. headers and footers, around
the content of a web page are usually less relevant than the content. Take a blog post. The
mailing address of the company hosting the site found in the footer is less relevant than the
people, places, and things mentioned in the blog post. This means query strategies should
understand there is an implicit relevance hierarchy over the zones of the web page. The
information extracted is often of decreasing relevance from title, to body, to the rest of the
page, so structured and keyword matches should be weighted appropriately. Furthermore,
there is a hierarchy of relevance over the type of information, and a query strategy should

Approved for Public Release; Distribution Unlimited. 
39



weight it appropriately. Matches against hard identifiers like phone numbers, emails, and full
names should be scored higher than soft categorical identifiers like hair and eye color when
ranking results.

• Robust to poor quality extractions: Different information extraction techniques have different
precision and recall trade-offs and serve different roles. Some may be chosen for their
high recall and simplicity like dictionaries and regular expressions. Others are chosen for
their high precision, like spaCy rules and the Stanford NER, but take time to write or train.
When high precision, high confidence extractions are present, a query strategy should favor
them over lower precision, lower confidence extractions. Some high quality extractions
also include additional metadata like units or context. Query strategies should account for
alternate formulations and synonyms by performing query expansion and unit conversions to
increase a likelihood of a match.

A system that can implement a set of strategies that achieve these properties while maintaining
usability, traceability and flexibility should be able to overcome the noise found in a KG to rank
and retrieve documents with higher precision and recall while building sufficient trust in its users.

Approach Our approach is called Pinpoint. The three building blocks that make up Pinpoint
are: hybrid KGs (HKG), indexing strategies, and query reformulation strategies. To meet the
desiderata described above, Pinpoint takes as input a HKG, consisting of source documents and
triples enrichedwith extraction provenance information. It then specifies how tomap the documents
and triples according to their provenance to a set of indexes for efficient ranking and retrieval in a
NoSQL document store. Finally, it reformulates user queries written in SPARQL by automatically
performing query expansion, relaxation, hybridization and translation for execution against the
NoSQL document store.

Rich Triples and HKGs Pinpoint takes as input a HKG where triples are grouped by entity,
enriched with their extraction provenance information, and paired with the source documents they
were extracted from. We illustrate this for an example advertisement in JSON in Listing 1. The
JSON describes the provenance of a triple for an email mentioned in the advertisement. For an
advertisement, there can bemultiple emailsmentioned and each email can havemultiple provenance
records, one for each time it was extracted. The triple has a searchable label value and a key which
maps to an ID like a URI. For this email, they’re the same, but, for values like city names, they
can differ. Each provenance record captures its source, including the document ID, the segment or
zone of the document the information was found, i.e. title, body, and, optionally, any additional
context. The provenance record also captures the extraction method and a confidence score. Triple
provenance information can be captured many ways, i.e. reification, quads, w3c prov. This format
is designed for convenient storage in document stores.

Efficient Indexing of Rich Triples, HKGs Maintaining this extraction provenance is most im-
portant for strategies to limit the effects of irrelevant and/or poor quality extractions. It allows
Pinpoint to differentiate between facts derived from high recall and high precision extractors, rele-
vant web page body content and boilerplate, weighting them appropriately. To make sure Pinpoint

Approved for Public Release; Distribution Unlimited. 
40



can efficiently make these comparisons, it encodes the information by indexing them in multiple
indexes.

1 {"knowledge_graph":{
2 "email": [{
3 "confidence": 1,
4 "key": "websupport@eccie.net",
5 "value": "websupport@eccie.net",
6 "provenance": [
7 {
8 "source": {
9 "segment": "title",

10 "document_id": "ABCDEFGHIJK",
11 "context": {
12 "text": " Address : websupport@eccie.net ; mis",
13 "obfuscation": false
14 }
15 },
16 "confidence": { "extraction": 1.0 },
17 "method": "regex"}]}
18 ]}}

Listing 1: Example Email Rich Triple

In the previous email rich triple example, its provenance recorded that it was extracted by a
regular expression extractor. Regular expressions can have high precision, but low recall, especially
if the email deviates even slightly from the valid syntax for an email address. Since the provenance
also indicates the email was found in the title of the web page it was extracted from, it is more likely
to be relevant to this advertisement.

As the number of predicates and categories grows, however, it can lead to an expensive, sharp
increase in the number of indexes required. To help limit the number of predicates, Pinpoint supports
mapping synonyms and related predicates to the same set of indexes, trading some specificity in
the process. When configuring Pinpoint, we attempt to limit the number of segment and extractor
categories. In practice, we find only a fewmerit distinguishing. The segments, supported extractors,
and predicate mappings are all user configurable categories that must be set at indexing time. To
support graceful degradation of the system at run time, any unrecognized predicate in a user query
is mapped to a set of indexes created for the text segments.

In the JSON document in Listing 1 that represents our advertisement, the value for the extracted
email will be added to an indexable field named indexed.email.other_method.title.value.
The key will be indexed similarly under indexed.email.other_method.title.key, but with-
out tokenization to ensure Pinpoint can do an exact lookup. During tokenization, the email value
will also be subject to stop word removal, i.e, com, org. As described above, partial matches
against common, low information terms like these would otherwise confuse our structured search
approach by ranking irrelevant documents much higher. Even partial matches against structured
search clauses like emails and phone numbers are weighted heavily because they are powerful

Approved for Public Release; Distribution Unlimited. 
41



identifiers. The indexable subsection of the document that will be sent to the NoSQL document
store for the email looks like Listing 2

1 {
2 "indexed":{
3 "email": {
4 "other_method": {
5 "title": {
6 "key": "websupport@eccie.net",
7 "value": "websupport@eccie.net",
8 }
9 }

10 }
11 }

Listing 2: Example Indexed Email Rich Triple

The document stored in the search engine will also contain the section of the KG and raw prove-
nance information for the advertisement along with the entire source document. This information
will not be directly indexed but preserved for client applications to retrieve, display and reason
about. This has an added storage expense, but we’ve found it necessary to build trust in user facing
search applications.

Query Reformulation Pinpoint aims to increase precision and recall by reasoning about user
queries and making appropriate choices without extensive user input. To this end, for a balance
of usability of expressiveness, Pinpoint supports a subset of SPARQL instead of keyword search
or natural language question and answer. It also limits queries to match against trees instead of
the full graph, which is amenable to a form-driven UI as illustrated in Figure 15 and its indexing
scheme. Pinpoint does not enforce any particular schema. If the schema is unfamiliar to the user
or the user attempts to use predicates unknown to Pinpoint, Pinpoint gracefully degrades by falling
back to keyword search as user queries become less expressive.

For application developers, Pinpoint provides the flexibility of a pluggable architecture for
adding, removing, enabling, and disabling strategies. For traceability, Pinpoint also provides the
user with feedback, including the rewritten SPARQL query, the translated ES, and the relevant
matching clauses for each document, all with generated IDs for traversing back to the original
SPARQL query.

We will now discuss the strategies we implemented to rewrite SPARQL queries, translate them
into hybrid structured and free text queries, and then further rewrite and optimize them against the
indexes built for the KG. In Listing 3, we provide a sample query generate-able by the UI in Figure
15.

Approved for Public Release; Distribution Unlimited. 
42



Figure 15: Example App Form To Generate SPARQL Query

PREFIX qpr:<http://istresearch.com/qpr>
SELECT ?ad ?phone
WHERE
{
?ad a qpr:Ad ;

qpr:email ’xxx.yyy@outlook.com’ ;
qpr:price ’600’ ;
qpr:height ’67’ ;
qpr:street_address ’manhattan midtown east 33rd & 2nd ave’ ;
qpr:phone ?phone ;
qpr:content ?content .
FILTER CONTAINS(LCASE(?content), ’why settle for raggidy ann when

you can...’)
}

Listing 3: Example Benchmark SPARQL query

Preprocessing Queries Query rewriting begins with preprocessing the query’s SPARQL seman-
tics and constraints. Pseudo-code has been provided. Preprocessing is outlined in Listing 4. For
traceability, Pinpoint tags each clause and reformulation with a unique id, but that process has not
been documented for brevity.

Approved for Public Release; Distribution Unlimited. 
43



QueryPreprocess(Q, ontology, expandersByType , consistencyByType)
(s, w) := Q.select, Q.where
C := w.clauses
if queryRelaxationEnabled
C := QueryRelaxation(C)

varTypeMap := ComputeVarTypeMap(C, ontology , {})
C := QueryExpansion(C, varTypeMap , expandersByType)
C := QueryConsistency(C, varTypeMap , consistencyByType)
w.clauses = C

Listing 4: SPARQL Query Preprocessing

Pinpoint relaxes required clause constraints and filters by introducing OPTIONALs as shown in
Listing 5 to protect against over constrained SPARQL queries. The default behavior is to relax all
required constraints to maximize recall, but, in systems that need additional query expressiveness
and precision, this can be disabled. Intuitively, the scoring mechanism ranks documents higher
that match these required clauses by virtue of matching more clauses. As more clauses are
added, however, scoring becomes complex andmatchingmany non-essential clauses could outscore
matching just essential clauses. Giving users flexibility as they refine their searches is important to
avoid frustration.
QueryRelaxation(C)
C’ = ()
for c in C
if isOperator(c) and !isFilterNotExistsOperator(c)
c := QueryRelaxation(c)

if !isOptional(c)
c := OPTIONAL(c)

C’.push(c)
return C’

Listing 5: SPARQL Query Relaxation

After relaxing, Pinpoint maps variables to types in Listing 6. This can be derived from predicate
domain and ranges in the KG ontology, but also a user provided dictionary. It is done breadth first
so Pinpoint can type variables before recursing into FILTERs, sub graphs, and other parts of the
SPARQL query, SELECT, GROUP BY where type information may not be inferable.

Approved for Public Release; Distribution Unlimited. 
44



ComputeVarTypeMap(C, ontology , varTypeMap)
for c in C
if isTriple(c)
(s, p, o) := (c.subj, c.pred, c.obj)
if isVariable(s)
varTypeMap(s) := ontology.domain(p)

if isVariable(o)
varTypeMap(o) := ontology.range(p)

elif isOperator(c)
varTypeMap :+ ComputeVarTypeMap(c, ontology , varTypeMap)

return varTypeMap

Listing 6: SPARQL Variable Type Mapping

Based on the predicate range types in triple clauses and the variable types in FILTER operators,
Pinpoint applies a series of query expansions to object literal and FILTER argument constraints
as shown in 7. This includes, but is not limited to, user-provided dictionaries of synonyms and
unit conversions. This helps overcome the brittleness of SPARQL over an incomplete KG that is
missing extractions or is not aligned to the user’s query vocabulary. In the example query shown
in Listing 3, a height of 67 describes a person measured in inches, but not explicitly. In case the
knowledge graph extractors only produced facts containing height in centimeters, the system can
rewrite the query by introducing a UNION of the clauses as in Listing 8. Pinpoint also supports
applying user defined functions for cleaning up search terms with the QueryConsistency operation,
but the details are not important.

Parameterizing Queries Parameterizing queries occurs without rewriting the SPARQL explic-
itly. The parameters affect how a query is further translated and rewritten against the NoSQL
document store. These parameters allow the system to enable or disable strategies like differentiat-
ing between extractors, extraction zones, and the minimum number of optional clause matches for a
given query. By default, differentiating between extractors and zones is enabled and the minimum
number of optional clause matches is 1, unless a required clause is present, then it is 0.

Approved for Public Release; Distribution Unlimited. 
45



QueryExpansion(C, ontology , varTypeMap , expandersByType)
C’ = ()
for c in C
if isTriple(c)
(s, p, o) := (c.subj, c.pred, c.obj)
E := expandersByType()
expandedC := ()
for e in E
expandedC.pushAll(e.expand(s, p, o))

c := UNION(c ++ expandedC)
elif isOperator(c) and isInFilter(c) and isComparison(c)
(f, A) := (c.function, c.arguments)
expandedC := // function and operator specific reasoning that
relies on varTypeMap

c := OR(c ++ expandedC)
elif isOperator(c)
c := QueryExpansion(c, ontology, varTypeMap , expandersByType)

C’.push(c)
return C’

Listing 7: SPARQL Query Expansion

?ad a qpr:Ad ;
{
{ ?ad qpr:height ’67’ . }
UNION
{ ?ad qpr:height ’170 cm’ . }

}

Listing 8: SPARQL Query Expansion Units UNION

Generating Queries Generating the final queries involves three stages, mapping and weighting
clauses to indexes or fields, translating SPARQL into native NoSQL document store query syntax,
and rewriting the translated query to support hybrid structured and keyword search. For our
approach we chose Elasticsearch (ES), but analogous capabilities exist in other document stores
like Apache Solr. The strategies for mapping, weighting, and hybridizing queries are applicable to
the other engines as well. To be consistent on terminology in the section, an ES index is actually
a collection of inverted indexes called fields for a set of documents categorized by type. ES’s
structured search is implemented by matching clauses against one or more fields and combining
the set of documents in the search results from each field.

Approved for Public Release; Distribution Unlimited. 
46



// User defined or Pinpoint derived inputs available to all generation
steps

DATA := varTypeMap , predFieldMap , fieldWeightMap , predQueryMap ,
typePredMap

GenerateESQuery(Q)
w := Q.where
C := w.clauses
return SEARCH(GenerateESClauses(C))

Listing 9: SPARQL to ES Query Generation

GenerateESClauses(C)
(musts,mustNots,shoulds,filters):=((),(),(),())
for c in C:
if isFilter(c)
c = GenerateESFilter(c)
if isNotExistsFilter(c)
mustNots.push(c)

elif !isTextFilter(c)
filts.push(c)

elif isOptional(c)
shoulds.push(c)

else
musts.push(c)

else
if isTriple(c)
c = GenerateESClause(c)

else
c = GenerateESClauses(c)

isOptional(c)
shoulds.push(c)

else
musts.push(c)

if isUnion(C)
return DISMAX(shoulds)

msm := |musts| = 0 ? 1 : 0
return BOOL(musts,mustNots,shoulds,filters,msm)

Listing 10: Compound SPARQL Clauses to ES

After preprocessing, Pinpoint reformulates a SPARQL query as described in GenerateESQuery
in Listing 9. As input, it expects the query’s clauses have been mapped to a tree. For simplicity,
the pseudo code assumes each tree node is either a triple graph pattern clause, a filter clause, or a
SPARQL algebraic operator like UNION or FILTER which has children. Handling graph pattern
joins is out of the scope of this paper. Pinpoint expects the application developer has configured it
with a predicate to field map, a field to weight map, a predicate to ES query type map, and a type
to predicate map. The variable to type map is computed during preprocessing.

Pinpoint visits each clause in the WHERE, as outlined in the GenerateESClauses method in

Approved for Public Release; Distribution Unlimited. 
47



Listing 10, recursively rewriting them in a depth first manner. When it reaches a triple clause with
a literal object, it translates it into a match according to GenerateESClause in Listing 10. Pinpoint
starts by mapping the predicate to a set of fields that encode predicate, type, extractor, and zone
information. Pinpoint doesn’t task ES to take into account the extraction confidence or relevance
score when scoring queries, only weight according to these categories encoded into the field names.

Some predicates are additionally mapped to the text extracted from the source documents, but
predicates with numeric and date ranges are not. If the predicate or variable matches only against
the extracted text fields like title, description or content, like the FILTER CONTAINS clause
in Listing 3, those get an additional boost because those fields are not being relied on as a fall back
when structured fields don’t match.

Pinpoint then translates clauses by field to ES syntax. Most clauses are mapped to the ES
match query. Depending on specificity, Pinpoint can use ES’s match phrase functionality to
impose an order on the terms, like in the title, and score more heavily search terms in close
proximity in the body. For clauses with types like email that map to fields like indexed.-
email.other_method.title.key that index values without tokenization, ES implicitly treats
them as term queries, which match exactly, because ES applies the same (lack of) tokenization at
query time to search terms as indexed terms.
GenerateESClause(c, isTextFilter:=False)
(s, p, o) := (c.subj, c.pred, c.obj)
if isLiteral(c.obj)
M := ()
for f in predFieldMap(p)
w := fieldWeightMap(f)
q := predQueryMap(p)
terms := |o.tokenize()|
msm := |terms| > 5 ? |terms| / 2 + 1 : max(1, |terms| / 2)
if isMatch(q)
if isTextFilter
w := w * 5
m := MATCH(f, o, w, msm)

elif isMatchPhrase(q)
if isTextFilter
w := w * 10

m := MATCHPHRASE(f, o, w, msm)
M.push(m)

return DISMAX(M)
else
// optionally add EXISTS for fields to support binding variables
shoulds = ()
for f in predFieldMap(p)
shoulds.push(EXISTS(f))

return BOOL(shoulds)

Listing 11: SPARQL Triple Clause To ES Match Query

Pinpoint combines these match queries into one sub query for ES to evaluate. When translating
SPARQL to ES, Pinpoint must consider the ranking semantics. ES’s ranking semantics interpret

Approved for Public Release; Distribution Unlimited. 
48



should like you would keyword search: more is better. To achieve this, ES divides any should
match scores by the number of clauses. This makes reasoning about weighting fields complicated
because Pinpoint doesn’t map each predicate to the same number of should clauses. For example,
the street address clause in Listing 3 could be mapped to more than twenty fields, based on
city, state, address, extracted text, extractor type and zone, but the height clause is only
mapped to four extraction fields. Unless the street address constraint matches every field, it
will get penalized. The alternative is to use Lucene’s Disjunction Max query over the fields, so that
only the best match for a clause contributes its full score to the ranking. The case could be made
that a match against a fact derived many times by multiple extractors or in multiple zones should
boost the score, but this is accomplished in part by TF/IDF by the value appearing multiple times
in the document field according to ES. For simplicity, we just choose the best match.

Pinpoint translates FILTERs according to GenerateESFilter in Listing 12. There are two
considerations. If the filter operates on text, Pinpoint treats it likematching a constraint. If anywhere
in a filter, text is matched, Pinpoint must add the whole filter to should clauses. Otherwise the
match will not contribute to the document’s score, because ES doesn’t score bool filter clauses.
GenerateESFilter(F)
(musts,mustNots,filters,shoulds):=((),(),(),())
if isOperator(F)
for f in F
f = GenerateESFilter(f)
if isNotExistsFilter(f)
mustNots.push(f)

elif !containsTextFilter(f)
filters.push(f)

elif isOptional(f)
shoulds.push(f)

else
musts.push(f)

msm := |musts| = 0 ? 1 : 0
return BOOL(musts, filters, shoulds, should_nots , msm)

else
f := F
if isTextFilter(f)
v := findVar(f.arguments)
l := findLit(f.arguments)
p := typePredMap(varTypeMap(v))
c := GenerateESClause((nil, p, l), true)

else
c := GenerateESRangeQuery(f)

return c

Listing 12: SPARQL FILTER to ES Filter Query

After mapping the clauses to ES queries, the GenerateESClauses adds them to an ES bool,
unless it’s translating a UNION. Required clauses are added to the must of the bool, OPTIONAL
clauses to should, NOT EXISTS clauses to must not, and FILTER to filter, unless FILTER
has been relaxed to OPTIONAL. The default behavior for ES doesn’t preserve Boolean semantics

Approved for Public Release; Distribution Unlimited. 
49



precisely. It requires that for a document to match a bool query, ∀m∃s(m ∈ must ∧ s ∈
should ∧ satisfies(doc,m) ∧ satisfies(doc, s)). This translates to all required clauses must
match and, in addition, at least one optional clause must match. To ensure the semantics are
equivalent with SPARQL, the minimum should match option for the bool query should be set to 0.

Pinpoint must also consider the Boolean semantics and ranking semantics when translating
algebraic operators like UNION. Naively translating a SPARQL UNION into a bool query with
a should clause satisfies Boolean semantics. However, if we introduce a UNION during query
expansion and the document matches only the original inch height clause in Listing 8, the match
will only contribute half of its score (less if ES’s query coordination is enabled) and the document
would be penalized in its final ranking even though the clause was properly satisfied. To keep
weighting consistent, we use the Disjunction Max query so that only the best match contributes its
full score to the ranking.

Executing Queries The generated query is then sent to ES for evaluation. The top-n scored
documents are returned along with their query plan and highlighted matches structured and labeled
according to the original SPARQL query using the annotation capabilities of ES. It is not included
in the scope of this paper to describe how variables are bound to values in the documents.

Evaluation UseCases andMetrics: TheKGs built for evaluation consist of information extracted
from 90,000 webpages selected from web domains relevant to human trafficking. 101 point fact
queries were written in English by subject matter experts from DARPA MEMEX government and
NGO partners. These queries were then translated in to SPARQL by a a contractor in charge of the
evaluation. The webpages and queries are considered sensitive data and are not available outside
of the DARPA MEMEX program. For evaluation, a system is allowed to return up to 500 ranked
document IDs per query. The IDs are evaluated using Mean Average Precision (MAP) against
ground truth generated by subject matter experts as well.

Experimental Setup: The software used to build, index and query the KG is available on GitHub
and is written in Python. This includes a framework for extracting information from webpages and
Pinpoint. The document store used was an Elasticsearch 2.4.1 cluster of 5 machines with 32GB
of RAM for heap and 32 cores each. The 90,000 webpages were indexed using 5 shards without
replicas.

Internal Baselines: We will perform an ablation study over the query rewriting strategies and
indexing methods of our system, Pinpoint. We will demonstrate their efficacy by introducing them
iteratively, refining a baseline system to create the following new systems.

• STRICT: Strict SPARQL semantics, i.e. exact predicate term and filter matching, required
respected

• HYBRID: Relaxing strict SPARQL semantics and hybridizing literal matching with free text
search and scoring

• OPTIONAL: Relaxing strict SPARQL semantics and rewriting required predicates from
required to optional

• RELEVANCE: Weighting predicate value matches based on information content and rele-
vance (scoring identifiers like phone nos. and emails higher than hair or eye color)

Approved for Public Release; Distribution Unlimited. 
50



• ZONE: Indexing predicate values by extraction from the web page zone (i.e. title, body),
weighting matches separately

• EXTRACTOR: Indexing predicate values and weighting matches separately by which system
extracted the value (i.e. regex, spacy, landmark)

• EXPANSION: Relaxing strict literal matching for numeric values by allowing matches be-
tween ranges and measurement systems (metric vs. imperial)

The STRICT system approximates a SPARQL query engine. Predicate value matches do not
contribute to the document’s score in ranking, onlywhether an entity is included in the result set. For
ranking, it implements the SPARQL CONTAINS function similar to Virtuoso’s bif:contains, albeit
with Elasticsearch’s ranking of term matches. Each subsequently named system in the list adds the
appropriately named feature and builds on all features added to previous systems. EXPANSION
will correspond to the fully featured system under evaluation that is compared with the other teams.
For comparison, we will also present the additional overhead for indexing time, index size, and
query execution time required to support each feature.

Pinpoint Index Design: For the experiment, there were thirty different predicates we needed to
support for structured search. STRICT had an index for each predicate to match exactly by term.
HYBRID introduced an other index for free text matching against predicate values along with an
index for matching against the source document. ZONE also categorized and indexed the document
segments in four ways in descending relevance for each predicate:

• Title: the title of a web page.

• Landmark Description: the text of a web page based on rules derived by Landmark[6], a
regex-based tool that learns to identify semi-structured "landmarks" in web pages. Trained
by domain

• Strict Content: the text of a web page has extracted by the python Readability package with
the strict option

• Relaxed Content: the text of a web page has extracted by the python Readability package
with the relaxed option.

EXTRACTOR introduced indexing the KG according to the extractor, so we introduced three types
of extractor categories with corresponding indexes:

• Landmark: the same regex-based tool above applied to identified values associated with other
"landmarks" like those found in forms. A user must label the values output by the Landmark
rules with a semantic type. Trained by domain

• Other: A catch-all for extractors including ad hoc ones using dictionaries and hand written
regular expressions

After accounting for zones and extractor categories, the Pinpoint system created almost 400 indexes,
known as fields in Elasticsearch. The typical predicate has at most 24 indexes, computed by taking
the product of |zones| X |extractors| X |value, key|. Commonly, only eight of those indexes are

Approved for Public Release; Distribution Unlimited. 
51



created, because if no Landmark or spaCy extraction rules exist for the predicate, they aren’t
necessary. Some predicates, like those that map to text-only fields or web page top level domain,
have fewer. In practice, many of these indexes are still only sparsely populated and Elasticsearch
can efficiently combine matches across all of them. The overhead of creating and querying them
will be illustrated in the Pinpoint ablation study below.

Table 16: Performance of Pinpoint Systems with Ablation
STR. HYB. OPT. REL. ZONE EXT EXP.

MAP 0.21 0.37 0.74 0.76 0.79 0.81 0.85
Ex Time 58s 91s 197s 201s 376s 464s 486s

Pinpoint System Ablation Evaluation: Table 16 shows that the STRICT system is brittle and per-
forms poorly. The HYBRID system gains considerably over the STRICT system by matching data
missed by information extractors in content fields and allowing for partial predicate value matches.
Relaxing required predicates in OPTIONAL performs better by giving the system flexibility to
return documents that don’t match all constraints. Adding ZONE, RELEVANCE, EXTRACTOR,
and EXPANSION helps address structural, semantic, data quality, and similarity issues to achieve
our best result. This has overhead. ZONE and EXTRACTOR add the most to overhead because
they multiply the number of field indexes in Elasticsearch for each category introduced. At query
time, this also multiplies the number of fields the query must match against. OPTIONAL increases
the query evaluation the most because it rewrites and executes the query N times where N is the
number of predicates in the query.

External Baselines: For comparison, we have also included two other systems from the DARPA
MEMEXprogram that were submitted for evaluation. In the results section, Pinpoint corresponds to
the EXPANSION system. Team B applied similar structured search techniques using Elasticsearch.
Team C applied a learn to rank approach.

External System Evaluation:

Table 17: Point Fact Query MAP
Pinpoint Team B Team C

MAP 0.85 0.78 0.71

Table 17 shows our system outperformed all others on MAP, returning the relevant document
in the first position for 81 queries. In a post hoc analysis of the five questions where we failed
to return a relevant document, the crawled web pages either had a misspelled query term, were
missing relevant information in the body, or even lacked a body. For 16 queries, Pinpoint received
less than 1.0 MAP. 85% of queries were in the top 2 and and 91% were in the top 4.

The 101 point fact queries were completed in under 10 minutes. On average, the queries take 5
seconds. 89% of queries are executed within 10 seconds, however, which is within the guidelines
laid out in Nielsen’s Usability Engineering [50] for optimal user experiences.

Results The DIG search strategies are robust in particular to KGs built from noisy information
extractions derived from web pages with potentially irregular language models. All extractions
are represented in these KGs as rich triples which capture their extraction provenance. Pinpoint is
user configurable and has a pluggable interface for its strategies. It has been used to query KGs for

Approved for Public Release; Distribution Unlimited. 
52



many domains including human trafficking, illicit weapons, counterfeit electronics, patent trolls,
and research trends in material science and autonomous systems. Pinpoint has also been used to
index and serve a KG extracted from 100 million web pages. During an evaluation against other
systems designed to query a KG built for the human trafficking domain, Pinpoint outperformed
them all, achieving a MAP of 85%. As part of our evaluation we also performed an ablation study
that characterized the additional overhead associated with supporting Pinpoint’s index and query
strategies.

Error Analysis We did a careful error analyses of the point fact questions where the correct
entity was not retrieved as the top result. Table 18 provides a condensed breakdown of this
analysis, including counts and potential solutions that may be integrated into the next prototype.
More details are provided below. We note that, while some errors have relatively simple solutions
(e.g. implementing phonetic analyzers for name misspellings), others require more sophisticated
engineering of the schema functional and semantic strategies.

Importance of pseudo-identifiers: At least two error categories (1 and 6 in Table 18) involved
pseudo-identifier attributes like phone numbers and email addresses. The first category is an
extraction-centric problem because the queried phone number did not get extracted (even impre-
cisely) from the relevant page and further analysis showed that the phone number (in any format)
was not present in the extracted text. This rendered all strategies, including the keyword strategy,
ineffective. An inspection of the raw HTML content showed that the phone numbers in such pages
were cleverly hidden and got filtered out by the text extractors.

While improvements in obfuscation detection and higher-recall extractions are the ideal so-
lutions for this category of issues, it is unlikely that they will ever be achieved in the near-term,
especially given the illicit and ever-changing nature of the human trafficking domain. Instead,
a key lesson learned here is that, even with text extractors and scrapers, the raw HTML cannot
be discarded but may have to be retained (despite the native difficulties in storing and indexing
large HTML corpora), perhaps as part of backup infrastructure or in a secondary index, for robust
query-centric performance on the knowledge graph.

In contrast, error category 6 is not due to faults in the extraction but due to the entity-centric
search engine. Despite higher weights being assigned to pseudo-identifiers, the engine still made
mistakes in recognizing these as highly relevant, especiallywhen the query contained other attributes
that were rare enough to be recognized as significant by the NoSQL tf-idf-based indexer38. A
short-term solution to this problem is listed in the table, which is to continue improving weight
assignments for all attributes to achieve the best empirical tradeoff. However, a longer-term solution
is adaptive re-ranking on the client side, possibly with the help of user interaction.

Other related problems do not involve pseudo-identifiers but occur because a match on some
field was not given enough importance by the search engine. A particular instance is error category
3, when using tf-idf scoring with the bag-of-words representation of the text extraction was too
weak a signal to be useful. Given the simplicity and speed of tf-idf on the vast majority of queries
that used the text field, or even queries that did not use the text field but had to fall back on the
keyword strategy, we do not believe that abandoning the tf-idf for a more complex measure is the
correct solution. Instead, we are modifying the search to draw not only on unigram representations,
but also on bigram and higher-order n-gram bag-of-words representations. Similar to smoothing

38Because of the idf term, rare terms and extractions can sometimes have such unintended consequences.

Approved for Public Release; Distribution Unlimited. 
53



Table 18: A condensed overview of our error analyses exercise. More detailed explanations are
provided in the text. The error count reports the number of questions on which the error occurred.
Error
ID

Category of Error Example of occurrence Potential Solution(s) Error
Count

1 Missing pseudo-
hard identifiers
(phone, email) in
the ‘ground-truth’
answers

Searching for (but not find-
ing) an ad that contains the
phone 15102142367, has
ethnicity Asian and loca-
tion Reno

(1) Use raw HTML in
the search along with
text extractions; (2) im-
prove extractors to have
better recall

8

2 Spelling Differentia-
tion

Asheerah (in ad) vs.
Asheera (in query)

Phonetic analyzers on
Name extractions

2

3 Score due to bag-of-
words is too weak

Searching for (but not find-
ing) an ad that contains
the post date September 6
2016, the text string ‘Lacy
funsize’ in the title, and the
text string ‘Im available for
incall during the day’ in the
ad text

Higher-order bag of
words such as bigrams,
trigrams or phrase
matching

6

4 Difficult disambigua-
tions

What is the age provided
in the ad that contains the
name Cindy, with height 61
inches?

More robust normaliza-
tions

3

5 Systems-level prob-
lems

Text extractor did not return
anything

Some recourse to origi-
nal HTML document

4

6 Pseudo-identifier
match not weighted
highly enough

An age match ended up
with more weight than a
phone number match

Better weight assign-
ment strategies to
pseudo-identifiers

4

7 Difficult ad disam-
biguation (wrong but
closely related, thus
relevant)

Two escorts sharing a
phone; we return the
‘wrong’ one at the top

More post-processing 1

8 Multiple correct/rel-
evant answers

Multiple postings for an es-
cort

Not really an error but
entity resolution could
help with the evaluation

9

Approved for Public Release; Distribution Unlimited. 
54



models in the NLP literature, the search algorithm will assign higher scores to higher-order n-gram
matches for a given query term than to unigram-only matches.

Misspellings: Misspellings constitute a common class of problems in the search engine litera-
ture. Many solutions have been proposed, including n-grams and modeling-based solutions (e.g.,
indexing by explicitly modeling the noise introduced by mistakes like typing, OCR etc.). We noted
in our analysis (error category 2 in Table 18) that spelling errors almost always caused problems
in our engine when they occurred due to differing name representations in the actual query and
the document. For example, an investigator wants an ad that contains the name ‘Asheera’, when in
reality, the spelling (on the relevant ad) is ‘Asheerah’. Without significant tuning and engineering,
character n-grams are not a practical solution to this problem (even higher-order n-grams like
4-grams would result in indexing of commonly occurring phrases like ‘Ashe’). A more feasible
modeling based solution is alternate indexing of such fields. For example, Elasticsearch offers
custom analyzers and indexers for non-text data such as phonetic representations, geolocations, and
vectors. In particular, phonetic analyzers work well for the name field, as Asheera and Asheerah
have the same representation in various phonetic frameworks. Other better-known examples of
such phonetic equivalences include name pairs like Katheryn and Catherine, and John and Jon.

Disambiguation: Error categories 4, 7 and to a limited extent, 8, involve different categories
of disambiguation issues. An important case is unit disambiguation (e.g., height in inches vs. feet
and inches), which could have been resolved through normalization if the extractions were not
noisy. Unfortunately, it is very difficult to cover the space of all possible representations for a given
attribute without large amounts of manually annotated training data. A second option is to modify
the query itself to take into account various representations. For example, given that a height of 61
inches is being queried for (as illustrated in the table), we could potentially run 61 inches through a
transformation program that converts inches to various commonly used units (for height). Although
promising, writing such programs is still manually intensive; furthermore, because of strategies
like the keyword strategy we could end up introducing noise during the retrieval. A full empirical
study is required to map the cost-benefit tradeoff of this solution.

Error category 7 arises due to document-level ambiguity. For example, it is commonly known
that escorts in the sex trafficking world often share phone numbers and sometimes copy text from
each others’ ads with minor changes. Sometimes, it is difficult to distinguish the relevant ad from
a sufficiently similar wrong ad with the same pseudo-identifier, using the NoSQL index alone. We
are currently investigating finer-grained client-side re-ranking solutions to this problem.

Error category 8 is potentially not an error category per se but is still problematic for actual
users. The problem usually arises because there are multiple postings for an escort, typically with
different time stamps or slightly different locations (e.g. Miami vs. Fort Lauderdale). Taking
down (and subsequently re-posting) ads is also a common strategy employed by sex providers. It
is important to note that, while such ‘document sets’ do not cause problems for point fact queries
(assuming the set describes versions of the ad that was actually queried for), they can skew answers
significantly for aggregate queries. For this reason, and also to provide a better experience to
analysts in our GUI, we are investigating entity resolution solutions to deal with this problem [21].

3.4 Image And Face Search
Columbia University developed a large scale image and face search tool that was integrated in the
frontend tools developed by other partners including the DIG. This tool can find similar images

Approved for Public Release; Distribution Unlimited. 
55



based on visual content over large image repositories containing hundreds of millions of images.
The Columbia Image and Face Search tool is able to return visually similar and near duplicate

images and faces for any given query image. The tool uses deep learning based image features,
namely a deep model train to recognize the Sentibank concepts [12] which are Adjective-Noun
Pairs (ANPs) with strong correlation to visual sentiment and emotions. Thanks to these semantic
features, the content-based retrieval method is able to match human subjects based on hairstyle,
physical characteristic, dress, environment and pose. The face detection and recognition models
are from the DLib39 open source library. In order to handle the extremely large image database and
support fast search response, it exploits a quantization approach [29] that enables an approximate
search of the database in less than a second.

Figure 16: Overview of the Columbia Image Similarity Search tool.

The image similarity service (Figure 16) deployed in MEMEX currently indexes around 100
million images and 35 million faces of the human trafficking domain. It supports incremental
update and the indexed images are up-to-date within a few minutes. Querying a previously unseen
image takes about 2 seconds, of which about one second is for computing the image or face feature
and the rest for the search process.

The image similarity search (Figure 17) tool has been open sourced40 and was an important
component of both the DIG Search Engine and the Tellfinder application from Uncharted during
the MEMEX project. The image and face search tool is part of the MEMEX transition effort, and
continues to be used daily by law enforcement agents across the country to help the fight against
human trafficking online.

3.5 User Interface
Search in DIG is supported in a variety of ways. Users start by filling out some fields (or just free
text) on a search form. As DIG retrieves results, facets on the side get populated so that users get
a sense of how the data is distributed (e.g., if results indicate that many hits seem to be spatially
localized). Users can browse any document in the ranked list of documents, obtain provenance
for the extractions, open the cached webpage associated with each document, and click on the
document to see temporal and geospatial information. Users can continue exploring by directly

39https://github.com/davisking/dlib,http://dlib.net/
40https://github.com/ColumbiaDVMM/ColumbiaImageSearch

Approved for Public Release; Distribution Unlimited. 
56



Figure 17: DIG search engine.

manipulating facets (by clicking on the tick boxes next to a facet item) and thereby making the
search narrower or updating the original search form. We received direct feedback from users
that having flexible exploratory capabilities did much to foster trust in DIG, and the underlying AI
components. DIG does not require installation as it is hosted in the cloud and is accessible through
a browser.

DIG supports both faceted and entity-centric search, as Figures 18 and 19 illustrate. For
example, DIG can be used to jump-start an investigation starting from a vague, under-specified
search query. For example, a user searches for a hispanic escort in Chicago who is known to provide
certain sex services in her ads. By exploring a ranked list of ads retrieved by the system, along
with images, the user is able to drill down, in an entity-centric fashion, on important details like
phone numbers and emails that are promising avenues for field investigations. Acquiring such a list
without the help of the system would ordinarily have taken months of field level investigations and
online searches.

4 RESULTS AND DISCUSSION

4.1 Experience Building Applications
As research in machine learning and AI continues to progress, front-facing systems have become
steadily more complicated, expensive and limited to specific applications like business intelligence
(BI) [20], [52]. Democratizing technology is a complex issue that involves multiple stakeholders
with different sets of abilities [67], [66]. A particular user whose needs are very real, but who
is seldom addressed except in BI or military-specific situational awareness situations [38], is a
domain expert with extremely limited technical abilities. In particular, such users do not know how

Approved for Public Release; Distribution Unlimited. 
57



Figure 18: A case-study illustrating complex investigative search in DIG. Starting from vague
details, a user is able to retrieve a set of highly specific ads that help her to narrow down on
suspects.

to program, let alone cope with complex machine learning or deep learning algorithms, and cannot
satisfy their information needs through simple Google search for several subsequently described
reasons.

A real-world example of such a domain expert that we encountered in the securities fraud
domain is an employee from the Securities and Exchange Commission (SEC) who is attempting to
identify actionable cases of penny stock fraud [25]. Penny stock offerings in over-the-counter (OTC)
markets are frequently suspected of being fraudulent, but without specific evidence, usually in the
form of a false factual claim (that is admissible as evidence), their trading cannot be halted. With
thousands of penny stock offerings, investigators do not have the resources or time to investigate
all of them. One (technical) way to address this problem is to first crawl a corpus of relevant pages
from the Web describing the domain, a process alternately known in the Information Retrieval (IR)
literature as relevance modeling or domain discovery [39]. The latter term is more encompassing,
as it involves not just relevance modeling but the actual crawling of the data.

Approved for Public Release; Distribution Unlimited. 
58



Figure 19: Continuing from Figure 18, the user is able to use entity-centric search facilities in DIG
to collect a list of 117 ads, with details such as timelines and locations. These numbers can be used
to conduct an investigation on the ground.

Once such a corpus is obtained, an expert in information extraction and machine learning
would elicit opinions from the users on what fields (e.g., location, company, stock ticker symbol)
are important to the user for answering domain-specific questions, along with example extractions
per field. This sequence of knowledge graph construction (KGC) steps results in a graph-theoretic
representation of the data (a knowledge graph or KG) where nodes are entities and field values, and
the (directed, labeled) edges are relationships between entities, or assignments of field values to
entities [57], [19]. Since the KG is structured, it is amenable to aggregations, and to both keyword
and structured querying. With a good interface, for example, the domain expert can identify
all persons and organizations (usually shell companies) associated with a stock ticker symbol,
aggregate prices, or zero in on suspicious activity by searching for hyped-up phrases that indicate
fraud.

In this section, we present our experience using DIG with domain experts in five different
investigative domains, each of which involves significant technological potential. We describe the

Approved for Public Release; Distribution Unlimited. 
59



Figure 20: The DIG dashboard, with corresponding elements and actions.

dataflow and DIG components that allow users to construct and search knowledge graphs, and
thereby discover new and relevant knowledge by conducting data-driven analysis. We also present
qualitative and quantitative data collected from the five case studies to illustrate the real-world
potential of DIG in making an advanced set of knowledge discovery technologies accessible to
non-technical users. Using DIG, practicing, non-technical domain experts from the five case study
domains were able to build a personalized domain-specific search engine over corpora containing
more than a million raw webpages in 4-6 working hours.

4.1.1. System Overview and User Experience

The DIG action dashboard is illustrated in Figure 20. The input to the system is a corpus of
webpages that is assumed to have been crawled by a domain discovery system prior to the user
engaging with DIG.While domain discovery is, by nomeans, a solved research problem, significant
advances have been made in recent years (including deep crawls of specific top level domains or
TLDs like backpage.com) [14], [44], [45]. We make the loose assumption that a significant
fraction of this corpus is relevant, but that there may be many irrelevant pages also. The DIG
architecture is designed to be reasonably robust to such irrelevance, as we explain.

User experience in DIG can be separated into two phases. The first phase, domain setup and
curation, involves setting up the domain with the goal of answering a certain set of questions that
the user is interested in. This phase does not comprise a strictly linear set of steps, but can involve
several interleaved steps (Figure 20). At a high level, the user loads a sample of the corpus to explore,
followed by defining wrappers using the Inferlink tool, customize domain-specific fields, and add

Approved for Public Release; Distribution Unlimited. 
60



Figure 21: A form that allows the user to define/customize fields.

field-specific glossaries (if desired). Periodically, the user can crystallize a sequence of steps by
running extractions (akin to constructing the knowledge graph) and uploading the knowledge graph
to an index. Once the upload is complete, the user can ‘demo’ their effort by clicking on the Sample
DigApp button in the upper left corner in Figure 20 to explore the knowledge graph using a search
interface. The process is iterative: the user can always return to the dashboard to define or refine
more fields, define more wrappers with Inferlink, or input more glossaries.

The second phase is the ‘in-use’ phase, when the system is actually being used to satisfy
information retrieval needs. This phase tends to begin when the user is finished setting up the
domain, and is ready to deploy all changes on the full dataset (the entire corpus). In subsequent
sections, we describe the user experience and dataflow for both phases.

Setting up the Domain: The DIG system allows personalized setting up of a domain. Users
can define and customize their own fields, choose what extractions to retain from webpages (using
the Inferlink tool), add glossaries that might be available to them as investigators, and repeat the
process till they are satisfied with domain setup.

The DIG system allows users to define their own fields, and to customize the fields in several
ways that directly influence their use during the second phase (domain exploration). To define a
field, users click on the Fields tab (Figure 20), which provides them with an overview of fields
that are already defined (including pre-defined fields like location, detailed further below), and
also allows them to add their own fields. A ‘field form’ is illustrated in Figure 21. In addition to
customizing the appearance of a field by assigning it a color and icon, users can set the ‘importance’

Approved for Public Release; Distribution Unlimited. 
61



of the field for search (on a scale of 1-10), declare the field to represent an entity by selecting the
‘entity’ rather than the ‘text’ option in Show as Links (thereby supporting entity-centric search,
described in Exploring the Domain), and assign it a pre-defined extractor like a glossary.

A powerful, interactive extractor that uses wrapper technology [37], [23] to extract structured
elements from webpages is the Inferlink tool (described earlier). Inferlink operates in various steps.
For convenient formalism, let us define a top level domain or TLD (e.g., backpage.com) T as a set
{w1, . . . , wn}of webpages (e.g., backpage.com/chicago/1234). As a first step, Inferlink uses an
unsupervised template clustering algorithm to partition T into clusters, such that webpages in each
cluster are structurally similar to each other. To provide some real-world intuition, one cluster could
contain taxonomy webpages that contain lists of things, another cluster could contain webpages
describing forum posts, while a third cluster could contain webpages containing long text. Inferlink
presents the users with samples from these clusters, and allows users to select a ‘relevant’ cluster
for curation. At this point, users see an illustration like the one in Figure 1 wherein Inferlink has
extracted common structural elements from the webpages in the cluster and presents it to the users in
a column layout, with one row per webpage and one column per structured element that is common
to the webpages. Users can open a webpage by clicking on a link, delete a column, or assign it
to a field that has already been defined, as in the figure. In the literature, this step is also called
semantic typing of columns [59]. Users must separately type columns for each top level domain
(TLD), since different Web domains share different structures in the webpages they contain. We
also trained users to perform more advanced customizations with Inferlink in less than an hour of
example-based demonstrations. For example, users could choose to curate and semantically type
more than one cluster from a given TLD, if they felt it gave them added value over another cluster
from a less important TLD.

In addition to the Inferlink took, DIG offers extraction methods suitable for information ex-
traction from blocks of text or other content that is not delimited as structured HTML elements
i.e. delimited using HTML tags. To ease user effort, some generic extractors are pre-trained and
cannot be customized, but can be disabled. A good example is the location extractor, which extracts
the names of cities, states and countries, using a machine learning model that was trained offline.
However, DIG offers users the option to input a glossary (with incumbent options, such as whether
the glossary terms should be interpreted case sensitively or not) for a given field. This option was
popular with domain experts, as we describe in the Qualitative Feedback section. Although not
evaluated herein, the latest version of DIG also offers users an intuitive rule editor for expressing
and testing simple natural language rules or templates with extraction placeholders. For example,
a name extractor can be set up with a pattern recognition rule like ‘Hi, my name is [NAME]’.

4.1.2. Exploring the Domain

Once the domain has been set up, users begin the second phase, which involves exploring the
domain to get the answers they need, or even to generate new leads and questions (an important
concern in investigative domains where users are sometimes not sure quite what they are looking
for). We describe the main components of a typical user experience.

SpecifyingQueries: Keywords andMore: TheDIG system supports both basic keyword search,
as well as structured search wherein the user curating the domain can fill out values in a form
containing fields that she has declared (during domain setup) as being searchable (Figure 22).

Approved for Public Release; Distribution Unlimited. 
62



Figure 22: A form that allows the user to pose fine-grained, structured queries (Counterfeit
Electronics domain).

Approved for Public Release; Distribution Unlimited. 
63



Figure 23: The search interface offered by DIG (Illegal Firearms Sales domain).

As described in Algorithms and Technologies, the search engine in DIG uses an advanced set of
techniques from the IR literature to ensure that user intent is captured in a robust and high-recall
manner. The DIG system also supports entity-centric search, which is described shortly. While
keyword search is designed to be primarily exploratory, structured search allows a user to quickly
hone in on pages containing certain key details that the user has specified in the form. Since DIG
uses ranking and relevance scoring, satisfying more criteria on a form will lead to a page having
higher ranking, compared to another page that satisfies fewer criteria.

Facets: As shown in Figure 23, DIG supports faceted search and filtering on select fields (e.g.,
Model or Make in the figure41) that the user can specify during domain setup. In all of our case
studies, users made fairly intuitive choices: except for ‘free-form’ fields like text, descriptions or
comments, they favored faceting over non-faceting. In addition to allowing more informed search
and filtering, facets also help the user to see an overview of the search results. For example, in the
figure, one can deduce that (among the glock models) models 19 and 17 occur far more often in the
data than other models.

Entity-centric Search and Summarization: Entity-centric search (ECS) and summarization is
an important argument that distinguishes the domain exploration facilities ofDIG frommore generic
Google search. An example is illustrated in Figure 24 for the entity glock 26, which is presumably
a firearm model that an investigator in the Illegal Firearms Sales (IFS) domain is interested in

41Taken from the Illegal Firearms Sales (IFS) domain.

Approved for Public Release; Distribution Unlimited. 
64



Figure 24: Entity-centric search (ECS) for the Illegal Firearms Sales domain in DIG.

further investigating for suspicious transaction-related activity. The ECS dashboard summarizes
the information about this entity by providing a (1) timeline of occurrences, (2) locations extracted
from webpages from which the entity was extracted, (3) other entities co-occurring with the
entity (along with non co-occurrence information to enable intuitive significance comparisons),
(4) relevant pages related to that entity. Users can declare the extractions of any field to be
ECS-amenable by toggling the Show as Links option in the form in Figure 21.

Provenance: The user interface supports provenance both at the (coarse-grained) level of web-
pages and the (fine-grained) level of extractions. Concerning the latter, provenance information
is obtained by clicking on the green circle next to an extraction (see Figure 23), which brings
up the specific extraction method such as Inferlink, spaCy, glossary etc.(Figure 25), and in the
case of context-based extractors that use methods like word embeddings, the text surrounding the
extraction. Multiple provenances are illustrated, as shown in the figure, if applicable (e.g., glos-
sary extractions from text that originated in different structures in a webpage). We also support
webpage-level provenance by allowing the user to open the cached42 webpage in a new tab.

4.1.3. Evaluations and Case Studies

DIGwas evaluated by the DARPAMEMEXprogram in five different investigative domains, namely
securities (specifically, penny stock) fraud, illegal firearms sales, illicit shipments via USPS mail,

42It is important to show the cached, rather than the ‘live’ webpage (which can also be shown by clicking on the
pre-defined URL extraction that exists for every webpage in the corpus) since the webpage may have changed, or even
removed, since domain discovery.

Approved for Public Release; Distribution Unlimited. 
65



Figure 25: Provenance of glossary-based organization name extraction ‘square enix’ (Securities
Fraud domain).

narcotics and counterfeit electronics. Each of these domains is extremely specialized, but has
common characteristics that make it particularly amenable to analysis in DIG. When describing
each domain, we focus on the types of investigative questions domain experts are looking to answer.

Concerning the evaluation protocol, to keep the user study as unbiased as possible, DARPA,
NIST and a contracted private firm conducted all evaluations43 described herein and released a
select set of results both to inform future work, and to provide guidance on the current state and
usability of the system. Based on a number of factors, the most important of which was the
preference expressed by domain experts, not every result was released to our research group or can
be published in the open research literature. By necessity, therefore, some evaluations are more
detailed than others.

4.1.4. Users and Domains

The DIG system was evaluated by five pairs of users, each of which is affiliated with either a
federal agency or a national organization. The users are practicing experts in their respective
domains. Because they involve highly illicit activities, the domains described below may also
have a significant Dark Web presence, but in this paper, all data discussed, released, analyzed or
presented were crawled over the Open Web.

Concerning protocol, each pair of domain experts arrived on a separate day in the Washington
D.C. facility reserved by DARPA for these evaluations. A member from our research team trained
the users for 1-2 hours in navigating the system, setting up the domain and conducting search as we
have described it in this paper. Users were then left to set up their domains (Phase 1, as described
in System Overview and User Experience) in DIG. On a separate day (usually the next, but always
within the week), users conducted actual knowledge discovery and search (Phase 2) by using the
search interface for 2 hours. All feedback was collected by NIST and DARPA after Phase 2 had
concluded.

43The one exception is a posthoc evaluation of extraction quality that was conducted by researchers in our group.

Approved for Public Release; Distribution Unlimited. 
66



Securities Fraud (SF): Securities, particularly penny stock, fraud is a complex domain that
falls under the direct authority of the Securities and Exchange Commission (SEC) in the United
States. Penny stock fraud is unusual because much of the activity that accompanies fraudulent
behavior, including hype and promotional activity, is legally permitted. Many of the actual actors
involved may not be physically present in the US, but for regulatory reasons, ‘shell’ companies
fronting such activity for promotional and legal purposes, have to be registered in the US to trade
stocks legitimately in over-the-counter (OTC) exchanges. In addition to the longer term goal of
investigating, and gathering information on, such shell companies and the people involved in them,
investigators are also interested in taking preventive activity. This can happen when a penny stock
company is caught actively engaging in factually fraudulent hype (for example, a false claim that a
contract was just signed with a well-known customer firm), in which case trading can be halted or
even shut down44. The DIG system supports these goals by allowing users to aggregate information
(in the crawled corpus, which contains many Web domains) about suspicious penny stocks using
the ECS facilities, and also to zero in on bourgeoning promotional activity.

Illicit Shipments via USPS Mail (USPS): Unlike the securities fraud domain, illicit shipments
via USPS happen in the physical world but communications about the illicit shipment, particularly
tracking numbers, happen digitally in specific forums and typologies that investigators in this
domain understand well. Like the Narcotics domain, and unlike the other three domains, the USPS
domain is an ‘under the cloak’ domain about which investigators have not shared much information.
After training, however, these investigators were able to set up the domain and use it on their own
despite having no technical or programming abilities. While the actual search methodology, and the
questions that investigators were seeking to answer, are strictly confidential and cannot be revealed,
we were allowed to assess (and report on) user effort in setting up the domain, and subsequent KG
quality.

Illegal Firearms Sales (IFS): In the US, firearms sales are regulated in the sense that transactions
cannot be conductedwith arbitrary persons, or over arbitrary channels like the Internet. Investigators
in the IFS domain are interested in pinpointing activity that, either directly or indirectly, provides
evidence for illicit sales that leave some digital trace. The domain is similar to the SF domain (and
dissimilar to the CE domain, described below) for the important reason that investigators limit their
focus to domestic activities.

Counterfeit Electronics (CE): Despite what the name suggests, investigators in the counterfeit
electronics domain are interested, not in consumer electronics, but in microchips and FPGAs
that form the computational backbones of more complex ‘application’ devices. The FPGAs may
resemble an FPGA from a genuine contractor, but are fakes, and may have malicious modifications
at the hardware level. Certain countries, companies and devices are more relevant to this kind
of activity than others. We note that there is an obvious national security component to these
investigations, and just like with the other described domains, domain expertise plays a crucial role
both in setting up the domain, and in the knowledge discovery itself.

44This is why the step is preventive; trading is shut down before unwary investors ‘buy in’ and subsequently end up
losing their savings.

Approved for Public Release; Distribution Unlimited. 
67



Figure 26: Document counts per TLD (Y-axis) against ranked list of TLDs (ordered by document
count on X-axis).

Narcotics (N): Due to confidentiality constraints, there is little that we can reveal about the
narcotics domain, except the self-explanatory implication in the name itself. Like the other domains,
it is important to note the caveat that investigators are specifically interested in activity that has
some digital component that can guide further investigation. That is, it does not purport to cover
all narcotics activity. Among all five domains, this domain is featured most prominently in Dark
Web data.

4.1.5. Domain Discovery Corpora

Figure 26 characterizes the corpus for each domain. From the roughly power-law distributions
seen for most of the domains (near-linearity on log-log scale), despite their diversity, we note
that some TLDs in each distribution are much more heavily represented than others. In turn, this
immediately suggests why a tool such as Inferlink (that requires users to curate on a per-TLD basis)
could be useful. By focusing on the largest TLDs, users can end up curating a large fraction of
webpages. On the other hand, there is a significant long tail, which means that Inferlink (which
is best suited for the short tail or largest TLDs) cannot be the only solution for recall-friendly
knowledge discovery. Glossaries, as well as pre-defined extractions, are required to take up the
slack. There is a clear tradeoff between user effort and knowledge graph quality. In the evaluations
described subsequently, we measure both.

4.1.6. Evaluation of User Effort

Tasks and Materials: We evaluate user effort in setting up the domain in DIG in two different
ways. First, we evaluate the level of effort that was expended in each domain on using the Inferlink
tool to curate one or more relevant (as judged by the users) clusters of webpages. Since Inferlink
operates on a per-TLD (more specifically, a per-cluster per TLD), we refer to its extractions as short

Approved for Public Release; Distribution Unlimited. 
68



Table 19: Quantifying user effort in terms of total numbers of fields and glossaries per domain,
after the users had finished setting up their respective domains.

Domain Number of
Fields

Number of Glos-
saries

Examples (user-defined fields)

IFS 27 8 caliber_gauge, ffl_status
CE 21 6 PartNumber, Company
USPS 21 5 confirmations, Tracking_Number
N 43 5 used_bitcoin, vendor
SF 32 6 counsel, disclaimer

tail extractions. We plot the short tail against the long tail, by reporting the numbers of webpages
for both cases per field such that the webpage had at least one extraction (from Inferlink for the short
tail, and overall i.e. any extraction at all, for the long tail) for that field. Second, we evaluate the
level of user effort in defining the domain by reporting the total number of fields for each domain,
with some representative examples of fields that users defined from scratch. We also quantify the
number of glossaries used per domain, since qualitative feedback by users indicated that glossaries
were extremely popular in incentivizing users to set up custom fields.

Results: Figure 27 illustrates the distribution of the numbers of webpages with at least one
extraction (per field, as noted on the y-axis) both for the short and long tails. The figures illustrate
two interesting aspects quantifying the importance of expending effort in the Inferlink tool vs. more
all-encompassing methods like glossaries. In the IFS and SF domains, we find that Inferlink has
made significant fractional contributions to some fields (at the bottom of the y-axis) compared to
domains like Narcotics, where the long tail overwhelms Inferlink. On the other hand, we find that,
for some fields, only Inferlink has yielded any extractions at all. For example, in the CE domain,
fields like UserRole and Product had non-zero extraction numbers only because of Inferlink. In
posthoc qualitative feedback, users expressed that using Inferlink gave them a means of expending
effort with the confidence that the effort yields usable, interpretable results.

Results in Table 1 show that between 20-40 fields were retained (from the generic set of pre-
defined fields, like city or state) or defined by users. Some domains are much finer-grained than
others, an example being N. Users also made good use of the glossary facility, with the number of
glossaries (8) being the highest for the IFS domain.

4.1.7. Evaluation of Knowledge Graph (KG) Quality

Tasks andMaterials: The aim of this evaluation was to assess the quality of the KG; specifically,
the precision of the extractions for fields in the KG. We conduct this task by sampling 25 random
webpages per domain, and assigning each domain to an annotator from our research group. Each
extracted element (for each field) reported by DIG was given a 0/1 score for correctness. Each
annotator made this assessment by referring back to the original cached webpage to verify whether
the answer was correct. We report these precision metrics, along with the total numbers of

Approved for Public Release; Distribution Unlimited. 
69



Figure 27: For all domains, a comparison of webpage count (x-axis) such that at least one value
per field (y-axis) was extracted from that website (green bar/long tail), against the short tail/red bar
wherein only Inferlink extractions are considered.

Approved for Public Release; Distribution Unlimited. 
70



Table 20: Manually judged precision of field extractions stored in the knowledge graph for each
domain.

Domain Number of Extractions Correct Precision
IFS 168 125 74%
CE 85 75 89%
USPS 116 109 94%
N 211 156 74%
SF 67 48 72%

extractions evaluated for correctness, and comment on the results.

Results: Results in Table 20 show that DIG is able to achieve reasonable levels of precision for
the collective sets of extractions. For some domains, like CE and USPS, precision is close to (or
above) 90%, while for others it tends to be between 70-80%. While there is room for improvement,
these precision numbers show that, on average, there is considerably more signal than noise in
facets and extractions.

4.1.8. Qualitative Feedback and Analysis

Much feedback was elicited during the testing of DIG from users of all five domains. In the interests
of space, and the contributions that we claimed in the introductory section of this paper, we focus
on how DIG helped users obtain insights that are otherwise not achievable using generic search
technology like Google.

Insights beyondGoogle: In response to the questionDid the tool ever help you achieve an insight
that would have been otherwise difficult to identify without the tool? If so how? posed by NIST
evaluators, users had the following comments45:

[IFS] Yes, it allowed us to see possible connections to phone numbers, email addresses,
locations, etc. that could not necessarily be verified/discovered using Google or site-led searches
within Armslist, backpage, etc.

[CE] SAVES SO MUCH TIME. Aggregates data that would be searched using google.
Comments from SF users revealed, however, that the actual corpus crawled can sometimes be

an important bottleneck:
[SF] Conceptually, maybe it would, but for the use cases proposed by SEC, there were no

insights found; data extraction/crawling issues

Productivity: Users also felt that DIG improved their productivity and helped them to focus on
relevant information. In response to the question,Did the tool identify any new and relevant sources
of information that you had not found through other methods previously? If so what were they?
users had the following comments:

45Comments are not syntactically modified in any way

Approved for Public Release; Distribution Unlimited. 
71



[IFS] It was able to categorize postings by location which allowed us to focus our investigation.
[CE User 1] -Spartan6 xlinx (email addresses); -domain search and aggregation on email

addresses; -filling in relevant domain endings to match46
However, once again, the crawled data (provided to DIG by the domain discovery teams) was

noted to be an issue by both SF and CE User 2.
[SF] No ; index properly ; Investorshub was not indexed correctly – Some posts are crawled

and scraped correctly, most aren’t
[CE User 2] Was really unhappy with data that was pulled in by the tool. A better (more

efficient) domain discovery process...
The indexing problems with Investorhub were due to DIG improperly parsing web pages

containing posts. The pages in this web site contain lists with nested elements that the DIG tool
could not interpret correctly. Despite the comments by SF users, we note that they explicitly
indicated to us that they would like the system to be transitioned to their office, and that they would
like to keep using DIG to curate their domain and applying it in actual on-the-ground investigations.

Useful Features: Users were also asked the following: Were there any features within the tool
that stood out as particularly useful? Most users expressed that the glossary feature was very
useful, and ECS was also singled out by some; specific responses are noted below:

[CE] -Really liked the glossary feature; -Can have multiple domains; -Inferlink integration is
Really straightforward; -Status bar was helpful to know when a process is running vs. when it is
not; -subset of TLDs helpful

[SF] -Being able to ‘click’ on the entity; -documents that relate to an address; find relevant
information associated with a particular entity

4.1.9. User Study

Given the unusual nature of investigative search in illicit domains, we believe the evaluation and
user study protocol decided upon by DARPA and NIST played an important role. A total of
16 questions (6 lead generation, 6 lead investigation and 4 operationally relevant i.e. generated
in conjunction with the office of a state District Attorney based on its actual investigative needs
during that time) were used to evaluate the assistive potential of DIG. A second system, TellFinder,
which has a similar philosophy to DIG and has also been independently funded and developed
under MEMEX, was also evaluated. These questions (with annotated answers) were independently
derived by subject matter experts (SMEs) from a private research organization that had no part in
building DIG, and that has been actively involved in training investigators in using search systems
developed under MEMEX.

At the time of evaluation, DIG had indexed more than one hundred million sex ads collected
over a period of more than two years through focused crawling systems also developed under
MEMEX (by different teams). The purpose of the evaluation was not to collect a detailed set of
quantitative results that could be put through statistical significance testing, but to understand the
nature of investigative search itself, and the role that assistive systems like DIG and TellFinder
could play, both through their exploratory UX facilities as well as the advanced AIs that are used
to populate the knowledge base at scale. Fourteen users from multiple state and federal agencies

46While hard to interpret posthoc, we believe these indicate relevant information sets discovered by User 1.

Approved for Public Release; Distribution Unlimited. 
72



volunteered their time to participate in the study. The user study itself was delegated to NIST by
DARPA, with the stated evaluation goals being usefulness, usability and accuracy (compared to the
SME-annotated answers), along with subsequent data collection and analysis.

The developers of DIG and TellFinder each had about an hour to brief the domain experts in
small batches, illustrate key uses of the tool, and answer any questions they had. Following this
training phase, each user was given the option of working either remotely or onsite. A facilitator
from NIST took notes in the background without assisting or interfering in any way. A user was
given a limit of 30 minutes to generate answers for each of the 4 operationally relevant questions,
and 15 minutes for each other question. Except the facilitator, no one was present in the room
during tool use. The order of assigned questions per user was random, and each question was
exposed in turn i.e. right before the search session for that question commenced. Posthoc, the
accuracy of users’ answers was scored on a scale of 0-3, with the scale described in the sidebar.
We do not comment on other metrics in this case study, but the operational impact of DIG and
TellFinder (subsequently described) indicates significant uptake of both systems in the real world.

Feedback from investigative users shows that the system has potential for tackling some difficult
questions, with the quality of domain discovery and data acquisition proving to be an important
bottleneck that we are looking to address in future work. Most encouragingly, users (particularly
in the Securities Fraud domain) have explicitly indicated to us that they would like to keep using
the system, and would like the system to be transitioned to them.

The operational impact of both DIG and TellFinder has been widespread. Both are currently
being used, often in complementary ways, by more than 200 law enforcement agencies in the US,
specifically to combat sex trafficking. Outputs (particularly cached webpages, later taken offline)
from these tools have led to evidence formally presented in court to arraign a sex trafficker.

5 CONCLUSIONS
There is a need to democratize and personalize machine learning and search technologies as they
become ever more complicated, such that users and analysts in specific domains can interact with
these tools without sacrificing the benefits of years of domain expertise. The DIG project was
an effort funded under the DARPA MEMEX program to facilitate this high-level goal. User
experience while using DIG can be roughly separated into two phases: setting up the domain,
and conducting search. The DIG system does not require specifying vocabularies or making
ontological commitments in advance, and is not specialized for a single domain. More specifically,
in all five investigative domains where DIG was evaluated, users were able to build a personalized,
domain-specific search engine over corpora that contained hundred of thousands, and in some
cases, millions, of raw HTML webpages.

The software created in the DIG project is released publicly on Github (https://github.
com/usc-isi-i2/dig-etl-engine) using the MIT license. The repository provides the source
code , installation instructions, a user guide and sample projects.

In addition, standalone components that can be used separately are also released publicly on
Github:

• https://github.com/usc-isi-i2/etk: information extraction

• https://github.com/usc-isi-i2/rltk: reccord linkage

Approved for Public Release; Distribution Unlimited. 
73



• https://github.com/usc-isi-i2/dig-ui: user interface

• https://github.com/usc-isi-i2/dig-sandpaper: search engine

• https://github.com/inferlink/landmark-extractor: inferlink extractor

• https://github.com/ColumbiaDVMM/ColumbiaImageSearch: image and face search

Distribution Statement Further distribution only as directed by AFRL/RIEA, Rome NY 13441

Acknowledgements All data used in this research was provided by DARPA. This data is not
delivered as part of this contract.

The USC Information Sciences Institute thanks its subcontractors, Inferlink47, Next Century
Corporation48 and the Columbia University Digital Video and Multimedia Lab49 for their contri-
butions to DIG.

The Principal Investigator especially thanks his colleagues Mayank Kejriwal and Amandeep
Singh for their intellectual and programming contributions to the project, andDARPA for supporting
the project.

In addition, many members of the Center on Knowledge Graphs at USC ISI50 contributed
to the project, including researchers Craig Knoblock, Anoop Kumar and Linhong Zhu; research
programmers Yixiang Yao, Dipsy Kapoor, CraigMilo Rogers, Runqi Shao, Dongyu Li and Andrew
G. Philpot; Ph.D. students Majid Ghasemi-Gol and Jason Slepicka; and Master students Suresh
Alse, Rajagopal Bojanapalli, Vinay Dandin, Akshay Ramesh Dani, Jiayuan Ding, Lidia Ferreira,
Muthu Rajendran R. Gurumoorthy, Anika Jain, Patricia JimÃľnez, Rahul Kapoor, Qian Liang,
Qingyuandi Lin, Yike Liu, Sanmukh Lodha, Pulkit Manocha, Shrikanth Narayanan, Ankita Nar-
gundkar, Subessware S K, Dhvanan Shah, Kaushal Shah, Preetam Shingavi, Sanjay Singh, Ashish
Bharadwaj Srinivasa, Lingzhe Teng, Shreya Venkatesh and Chengye Yin.

References
[1] Inferlink r&d capabilities. http://www.inferlink.com/our-work#
research-capabilities-section. Accessed: 2017-04-28.

[2] Isi extraction toolkit repository. https://github.com/usc-isi-i2/etk. Accessed: 2017-
04-29.

[3] Readability text extractor. https://www.readability.com/. Accessed: 2017-04-28.

[4] spacy natural language package. https://spacy.io/, 2017. Accessed: 2017-09-19.

[5] Alvari, H., Shakarian, P., and Snyder, J. K. A non-parametric learning approach to
identify online human trafficking. In Intelligence and Security Informatics (ISI), 2016 IEEE
Conference on (2016), IEEE, pp. 133–138.

47http://www.inferlink.com
48https://nextcentury.com
49https://www.ee.columbia.edu/~sfchang/
50http://usc-isi-i2.github.io/home/

Approved for Public Release; Distribution Unlimited. 
74



[6] Amanatullah, B. Landmark extractor. https://github.com/inferlink/extraction,
2016.

[7] Bauer, F., and Kaltenböck, M. Linked open data: The essentials. Edition mono/-
monochrom, Vienna (2011).

[8] Bird, S. Nltk: the natural language toolkit. InProceedings of the COLING/ACL on Interactive
presentation sessions (2006), Association for Computational Linguistics, pp. 69–72.

[9] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hell-
mann, S. Dbpedia-a crystallization point for the web of data. Web Semantics: science,
services and agents on the world wide web 7, 3 (2009), 154–165.

[10] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. Freebase: a col-
laboratively created graph database for structuring human knowledge. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data (2008), AcM,
pp. 1247–1250.

[11] Bollegala, D., Maehara, T., and Kawarabayashi, K.-i. Embedding semantic relations
into word representations. arXiv preprint arXiv:1505.00161 (2015).

[12] Borth, D., Ji, R., Chen, T., Breuel, T., and Chang, S.-F. Large-scale visual sentiment on-
tology and detectors using adjective noun pairs. In Proceedings of the 21st ACM International
Conference on Multimedia (New York, NY, USA, 2013), MM ’13, ACM, pp. 223–232.

[13] BV, E. Elasticsearch. https://github.com/elastic/elasticsearch, 2016.

[14] Chakrabarti, S. Mining the Web: Discovering knowledge from hypertext data. Elsevier,
2002.

[15] Chang, C.-H., Kayed, M., Girgis, M. R., and Shaalan, K. F. A survey of web information
extraction systems. IEEE transactions on knowledge and data engineering 18, 10 (2006),
1411–1428.

[16] Dai, A. M., Olah, C., and Le, Q. V. Document embedding with paragraph vectors. arXiv
preprint arXiv:1507.07998 (2015).

[17] Dalvi, B. B., Cohen, W. W., and Callan, J. Websets: Extracting sets of entities from the
web using unsupervised information extraction. In Proceedings of the fifth ACM international
conference on Web search and data mining (2012), ACM, pp. 243–252.

[18] Doan, A., Ramakrishnan, R., and Vaithyanathan, S. Managing information extraction:
state of the art and research directions. InProceedings of the 2006ACMSIGMOD international
conference on Management of data (2006), ACM, pp. 799–800.

[19] Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T.,
Sun, S., and Zhang, W. Knowledge vault: A web-scale approach to probabilistic knowledge
fusion. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining (2014), ACM, pp. 601–610.

Approved for Public Release; Distribution Unlimited. 
75



[20] Elbashir, M. Z., Collier, P. A., and Davern, M. J. Measuring the effects of business intel-
ligence systems: The relationship between business process and organizational performance.
International Journal of Accounting Information Systems 9, 3 (2008), 135–153.

[21] Ferraram, A., Nikolov, A., and Scharffe, F. Data linking for the semantic web. Semantic
Web: Ontology and Knowledge Base Enabled Tools, Services, and Applications (2013), 169.

[22] Finkel, J. R., Grenager, T., and Manning, C. Incorporating non-local information into
information extraction systems by gibbs sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics (2005), Association for Computational
Linguistics, pp. 363–370.

[23] Flesca, S., Manco, G., Masciari, E., Rende, E., and Tagarelli, A. Webwrapper induction:
a brief survey. AI communications 17, 2 (2004), 57–61.

[24] Freitas, A., Curry, E., Oliveira, J. G., and O’Riain, S. Querying heterogeneous datasets
on the linked data web: challenges, approaches, and trends. IEEE Internet Computing 16, 1
(2012), 24–33.

[25] Goldstein, J. I., Ramshaw, P. D., and Ackerson, S. B. An investment masquerade: A
descriptive overview of penny stock fraud and the federal securities laws. The Business
Lawyer (1992), 773–835.

[26] Gupta, S., Kaiser, G., Neistadt, D., and Grimm, P. Dom-based content extraction of html
documents. In Proceedings of the 12th international conference on World Wide Web (2003),
ACM, pp. 207–214.

[27] Han, J., Haihong, E., Le, G., and Du, J. Survey on nosql database. In Pervasive computing
and applications (ICPCA), 2011 6th international conference on (2011), IEEE, pp. 363–366.

[28] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016).

[29] Kalantidis, Y., and Avrithis, Y. Locally optimized product quantization for approximate
nearest neighbor search. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2014), pp. 2321–2328.

[30] Kapoor, R., Kejriwal, M., and Szekely, P. Using contexts and constraints for improved
geotagging of human trafficking webpages. arXiv preprint arXiv:1704.05569 (2017).

[31] Kapoor, R., Kejriwal, M., and Szekely, P. Using contexts and constraints for improved
geotagging of human trafficking webpages. In Proceedings of the Fourth International ACM
Workshop on Managing and Mining Enriched Geo-Spatial Data (2017), ACM, p. 3.

[32] Kejriwal, M., and Szekely, P. Information extraction in illicit web domains. In Proceedings
of the 26th International Conference on World Wide Web (2017), International World Wide
Web Conferences Steering Committee, pp. 997–1006.

Approved for Public Release; Distribution Unlimited. 
76



[33] Kejriwal, M., and Szekely, P. Information extraction in illicit web domains. In Proceedings
of the 26th International Conference on World Wide Web (2017), International World Wide
Web Conferences Steering Committee, pp. 997–1006.

[34] Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F., Vaithyanathan, S., and Zhu, H.
Systemt: a system for declarative information extraction. ACM SIGMOD Record 37, 4
(2009), 7–13.

[35] Kushmerick, N. Wrapper induction for information extraction. PhD thesis, University of
Washington, 1997.

[36] Kushmerick, N. Wrapper induction for information extraction. PhD thesis, University of
Washington, 1997.

[37] Kushmerick, N., Weld, D. S., and Doorenbos, R. Wrapper induction for information
extraction.

[38] Lakkaraju, K., Yurcik, W., and Lee, A. J. Nvisionip: netflow visualizations of system state
for security situational awareness. InProceedings of the 2004 ACMworkshop on Visualization
and data mining for computer security (2004), ACM, pp. 65–72.

[39] Lavrenko, V., Allan, J., DeGuzman, E., LaFlamme, D., Pollard, V., and Thomas, S.
Relevance models for topic detection and tracking. In Proceedings of the second international
conference on Human Language Technology Research (2002), Morgan Kaufmann Publishers
Inc., pp. 115–121.

[40] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hell-
mann, S., Morsey, M., Van Kleef, P., Auer, S., et al. Dbpedia–a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web 6, 2 (2015), 167–195.

[41] Lenci, A. Distributional semantics in linguistic and cognitive research. Italian journal of
linguistics 20, 1 (2008), 1–31.

[42] Lerman, K., Minton, S., and Knoblock, C. A. Wrapper maintenance: A machine learning
approach. J. Artif. Intell. Res.(JAIR) 18 (2003), 149–181.

[43] Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., and Jagadish, H. Regular
expression learning for information extraction. InProceedings of the Conference on Empirical
Methods in Natural Language Processing (2008), Association for Computational Linguistics,
pp. 21–30.

[44] Liu, L., Peng, T., and Zuo, W. Topical web crawling for domain-specific resource discov-
ery enhanced by selectively using link-context. International Arab Journal of Information
Technology (IAJIT) 12, 2 (2015).

[45] Lopez, L. A., Duerr, R., and Khalsa, S. J. S. Optimizing apache nutch for domain specific
crawling at large scale. In Big Data (Big Data), 2015 IEEE International Conference on
(2015), IEEE, pp. 1967–1971.

Approved for Public Release; Distribution Unlimited. 
77



[46] Maaten, L. v. d., and Hinton, G. Visualizing data using t-sne. Journal of Machine Learning
Research 9, Nov (2008), 2579–2605.

[47] McCallum, A., and Li, W. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003-Volume 4 (2003), Association
for Computational Linguistics, pp. 188–191.

[48] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information
processing systems (2013), pp. 3111–3119.

[49] Nadeau, D., and Sekine, S. A survey of named entity recognition and classification.
Lingvisticae Investigationes 30, 1 (2007), 3–26.

[50] Nielsen, J. Usability engineering. Elsevier, 1994.

[51] Niu, F., Zhang, C., Ré, C., and Shavlik, J. W. Deepdive: Web-scale knowledge-base
construction using statistical learning and inference. VLDS 12 (2012), 25–28.

[52] Olszak, C. M., and Ziemba, E. Approach to building and implementing business intelligence
systems. Interdisciplinary Journal of Information, Knowledge & Management 2 (2007).

[53] Pantel, P., Crestan, E., Borkovsky, A., Popescu, A.-M., and Vyas, V. Web-scale dis-
tributional similarity and entity set expansion. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 2-Volume 2 (2009), Associa-
tion for Computational Linguistics, pp. 938–947.

[54] Pantel, P., Crestan, E., Borkovsky, A., Popescu, A.-M., and Vyas, V. Web-scale dis-
tributional similarity and entity set expansion. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 2-Volume 2 (2009), Associa-
tion for Computational Linguistics, pp. 938–947.

[55] Peng, F., and McCallum, A. Information extraction from research papers using conditional
random fields. Information processing & management 42, 4 (2006), 963–979.

[56] Prud, E., Seaborne, A., et al. Sparql query language for rdf.

[57] Pujara, J., Miao, H., Getoor, L., and Cohen, W. W. Knowledge graph identification.

[58] Qian, R. Understand your world with bing, Mar 2013.

[59] Ramnandan, S. K., Mittal, A., Knoblock, C. A., and Szekely, P. Assigning semantic
labels to data sources. In European Semantic Web Conference (2015), Springer, pp. 403–417.

[60] Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., and Ré, C. Data programming: Creating
large training sets, quickly. In Advances in Neural Information Processing Systems (2016),
pp. 3567–3575.

Approved for Public Release; Distribution Unlimited. 
78



[61] Sahlgren, M. An introduction to random indexing. In Methods and applications of se-
mantic indexing workshop at the 7th international conference on terminology and knowledge
engineering, TKE (2005), vol. 5.

[62] Singhal, A. Introducing the knowledge graph: things, not strings. Official google blog
(2012).

[63] Stevenson, M., and Wilks, Y. Word sense disambiguation. The Oxford Handbook of Comp.
Linguistics (2003), 249–265.

[64] Suchanek, F. M., Kasneci, G., and Weikum, G. Yago: a core of semantic knowledge. In
Proceedings of the 16th international conference on World Wide Web (2007), ACM, pp. 697–
706.

[65] Szekely, P., Knoblock, C. A., Slepicka, J., Philpot, A., Singh, A., Yin, C., Kapoor,
D., Natarajan, P., Marcu, D., Knight, K., et al. Building and using a knowledge graph
to combat human trafficking. In International Semantic Web Conference (2015), Springer,
pp. 205–221.

[66] Tanenbaum, J. G., Williams, A. M., Desjardins, A., and Tanenbaum, K. Democratizing
technology: pleasure, utility and expressiveness in diy and maker practice. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (2013), ACM, pp. 2603–
2612.

[67] Veak, T. J. Democratizing technology: Andrew Feenberg’s critical theory of technology.
Suny Press, 2012.

[68] Wheaton, E. M., Schauer, E. J., and Galli, T. V. Economics of human trafficking.
International Migration 48, 4 (2010), 114–141.

[69] Wick, M., and Boutreux, C. Geonames. GeoNames Geographical Database (2011).

[70] Xu, J., and Chen, H. The topology of dark networks. Communications of the ACM 51, 10
(2008), 58–65.

[71] Zhu, X. Semi-supervised learning literature survey.

[72] Zulkarnine, A. T., Frank, R., Monk, B., Mitchell, J., and Davies, G. Surfacing collab-
orated networks in dark web to find illicit and criminal content. In Intelligence and Security
Informatics (ISI), 2016 IEEE Conference on (2016), IEEE, pp. 109–114.

Approved for Public Release; Distribution Unlimited. 
79



List of Acronyms

BoW Bag of Words

CE Counterfeit Electronics

CRF Conditional Random Field

DIG Domain Specific Insight Graphs

DQL Domain Specific Query Language

ECS Entity Centric Search

HKG Hybrid Knowledge Graph

HT Human Trafficking

IE Information Extraction

IFS Illegal Firearm Sales

KG knowledge graph

KGC Knowledge Graph Construction

LES Lightweight Expert System

MAP Mean Average Precision

NER Named Entity Recognition

NLP Natural Language Processing

NLTK Natural Language Toolkit

OCR Optical Character Recognition

OTC Over the Counter

POS Part of Speech

RI Random Indexing

RTE Readability Text Extractor

SWRL Semantic Web Rule Language

TLD Top Level Domain

Approved for Public Release; Distribution Unlimited. 
80




