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Final Report
Towards an Algorithm for Fast Matrix Multiplication

Background:

The multiplication of two matrices is one of the most fundamental operations in linear algebra
and in computational mathematics at large. The costs for the multiplication of two dense n X n
matrices is O(n?) operations. As such, it forms a bottle neck in many fields ranging from classical
applications in scientific computing to recent areas such as Big Data. It is known that reducing
the complexity for matrix multiplication would correspondingly also allow one to reduce the com-
plexity of many other procedures in numerical mathematics, such as Gaussian elimination, LU
decomposition, computing the determinant or the inverse of a matrix [1, 2]. Matrix multiplication
is also used as a subroutine in a plethora of computational problems that, on the face of it, have
nothing to do with matrices.

There are numerous algorithms for the fast multiplication of structured matrices (Toeplitz,
Hankel, sparse, ...). However, in many areas and especially in applications related to Artificial
Intelligence and to massive datasets, we have to deal with dense and essentially unstructured ma-
trices. One breakthrough was Strassen’s algorithm which can multiply two n X n matrices in
O(n'°52(M) = O(n?87) operations [6]. Several variations and improvements of Strassen’s algo-
rithm have been proposed in recent years. The most well known is the Coppersmith-Winograd
algorithm, which reduces the cost of matrix multiplication to O(n?37®) operations [5]. Yet, due to
the large constant involved, the Coppersmith-Winograd algorithm (or any of its recent modifica-
tions) is hardly ever used in practice as the improvement only becomes somewhat noticeable for
very large matrices. For n < 10° the current record is just about O(n*7®).

Goals:

The main goal of this STIR project was to study the validity of an hitherto unexplored idea towards
carrying out fast matrix multiplication in O(n? log n) operations. The significance of having such
a fast algorithm for matrix multiplication at our disposal is dramatic. It would revolutionize much
of computational mathematics, since it impacts a wide range of algorithms and applications, and is
thus particularly relevant for very large scale computations. An O(n?logn) algorithm for matrix
multiplication could have an impact on science and technology of the 21st century that is com-
parable to the enormous impact of the Fast Fourier Transform (FFT) on the 20th century. The
potential payoffs for aiding the Army to accomplish its mission are many, including new informa-
tion technology capabilities, improved methods for signal- and image processing, as well as better
data mining tools for massive, complex data sets.

Key ideas of proposed research:

In this project the PI considered a new approach to fast matrix multiplication based on a careful
synthesis of group theoretic techniques proposed by Cohn and Umans [4, 3] with novel methods
for specific structured matrix structures.

A main limitation of the group-theoretic approach is that it is not able to capture certain struc-
tural properties of those matrices arising as elements of the group algebra. To illustrate this issue
via an example, assume that an irreducible representation leads to an m X m matrix M. Since this
matrix M would not be further reducible by assumption, the computational cost of multiplying M
with another m x m matrix in general would be of order m?3. However for the sake of the argument,



let us assume for the moment that M is, say, of the form M = DC, where D is a diagonal matrix
and C is a circulant matrix'. Note that this structure is no contradiction to the assumption of irre-
ducibility. Then this special property of M, since irreducible in the group-theoretic sense, would
go unnoticed by the general group-theoretical approach and the cost from a purely group-theoretic
viewpoint for multiplying two matrices of this form would be O(n?). Yet, it is easy to see that one
could multiply such an M with an arbitrary m x m matrix in O(n?logn) operations. There are
many other important examples of matrix structures that give rise to fast algorithms but would go
unnoticed by a group-theoretic approach, such as e.g. Vandermonde matrices or Cauchy matrices.

There are several finite groups that could prove useful for our agena. One of the most promising
one is the finite Heisenberg group H,,, which is defined as follows: For k,[ € C" we define the
translation operator T', the modulation operator M and the phase operator Z by

Tif(m)=fm—k),  Mf(m)=e"""f(m),  Zf(m)=e""f(m), (1)

respectively, where translation is understood in a periodic sense. We have the commutation rela-
tions
MT, = Z T M, 2

hence T}, and M; commute if only if & - [ is a multiple of n. The Heisenberg group H,, is generated
by the objects Ty, M;, Z,.

It is easy to verify that the matrices {7} }}~;, { M}, form an orthonormal basis for all n x
n matrices. Proceeding from the group formed by (7%, M, Z) to the set formed by (7%, M;)
corresponds essentially to factoring out the center of H. Hence we can express any matrix A €

(CnX’n as
A= "alk, )T M,,
k l

for appropriate and uniquely defined coefficients a(k, ). A few calculations reveal that the coeffi-
cients a(k, ) can be computed via n FFTs of length n, i.e., with a total complexity of O(n?logn)
operations. We furthermore emphasize that there is a bijective correspondence between A and a.

Consider two n x n matrices A and B with symbols a and b, respectively. We can express the
product of the two matrices AB as

AB = a(k,)TiM; > b(K )T My = > " a(k, Db(K, 1)e*™ /" Ty My
k,l kU kil KV

— Z (Z m o k’,] . l)€27ri(m—k)l/n>/_an.
m,j
3)

We define the twisted convolution afb of two two-dimensional arrays {a(k, )}, {b(k’,l')} € C**™

by
(agb)(m, j) ZZ (k,D)b(m — k, j — 1)e*™im=hi/n 4)

'Tt is worth noting that circulant matrices form a group, but matrices that are products of diagonal matrices and
circulant matrices do not.



where the indexing is understood in a periodic manner. Thus, with a change of variables we can
rewrite (3) as
C=AB=> c(k, )T} My,

lym

where ¢ = apb is the symbol of C. Using (4) we can rewrite matrix-matrix multiplication of two
unstructured matrices as structured matrix-vector multiplication of an n? x n? matrix B with a
vector « of length n?, given by

Ba, 5)

where |
Brywy = bk — K1 —1')e2mik=k)V/n ©

In other words, computing the multiplication of the two n X n matrices A, B is equivalent to
computing the matrix-vector product Ba of the n? x n? matrix B with the length-n? vector .

The structure of B is a mixture of block-circulant with block-Vandermonde. While fast algo-
rithms are known for each individual structure, it is as of today not clear yet—and has been one
of the key tasks of this project—how to develop a fast algorithm for the particular structure under-
lying B to enable fast matrix-vector multiplication. It is essential here to note that the size of B
is n? x n?, thus we need an algorithm for matrix-vector multiplication that is almost linear in the
matrix dimension, such as e.g., log-linear in n2. Only then would this translate into an algorithm
for multiplying A and B with a cost of O(n?logn).

We stress again that the initial matrices A and B are arbitrary and not structured at all. The
structure we discussed before emerges only by embedding the matrix multiplication into a larger
space - albeit at the cost of increasing the dimension. The potential benefits are that we may gain
enough structure to not just compensate for the increase in dimensions, but actually reduce the
overall computational costs.

Results:

An essential insight of this project was that one can bring to bear recent breakthrough results by
Lek-Heng Lim and collaborators [8]. In their seminal work, the authors investigated how the cele-
brated Cohn-Umans method may be used for bilinear operations such as structured matrix-vector
multiplication, which is exactly the bilinear operation we are interested in. The authors further
relate it to Strassen’s tensor rank approach, the traditional framework for investigating bilinear
complexity. The key point here is that the authors succeed in relating the bilinear complexity of
(structured) matrix-vector multiplication to the border rank of the corresponding structure tensor.
More precisely, the strucure tensor is defined as follows:

Definition 1. Let 8 : U x V. — W be a bilinear map. Then there exists a unique tensor jig €
U* x V* such that for any given (u,v) € U x V we have

5(“? U) = Mﬁ(ua v, ) cW.
We call 15 the structure tensor of the bilinear map 3.

We already know, due to Strassen’s Algorithm and its improvements, that the complexitiy of
matrix-matrix multiplication is O(n*%°7). Hence, the cost of a structured matrix-vector multipli-
cation of the form outlined in (5),(6) must also be at most O(n*#°7) (and hopefully less!). Thus,



a promising road map towards fast algorithms for matrix-matrix multiplication can now be formed
by combining our approach in (5),(6) with the border rank techniques of Lim [8].
The next questions we need to address to pursue the main goal of this project are therefore:

1. Can we prove that the border rank of the structure tensor p3 of matrix-vector multiplication
is O(n*89™) (or even lower)? And which algebra do we need to represent the matrix B in,
so that such a proof becomes possible?

2. If we succeed in item (1), can we then further reduce the border rank to O(n?logn)? Which
algebra do we need to choose for this purpose?

The main obstacle we face is that we need to find a proper algebra in which to express un-
structured matrix-matrix multiplication as structured matrix-vector multiplication and determine
its border rank. So far we have not succeeded and the mathematical tools currently available in
bilinear algebra and not yet specialized and sophisticated enough for this purpose. Some potential
algebras may be Clifford algebras and those related to extraspecial groups. We plan to investigate
these in our future work.

A rather surprising insight of this project, that is not directly related to the main goal of this
research but likely very useful, is the following: Our investigations of proper, efficient embeddings
for fast matrix-matrix multiplication gave us the insight that somewhat related ideas may be useful
in specific applications, where computational devices are rather limited in terms of computation
power, memory, and battery supply. One such scenario arises when one tries to run deep learning
algorithms for image classification on very small devices, such as very lightweight drones or small
stand-alone devices as they may arise in the future Internet-of-Things.

By first projecting the measured data on a properly chosen subspace, one can dramatically
reduce the size of the data, and thus the memory requirements, computational cost, and battery
demands. The key here is that we can approximate the optimal projection provided by principal
component analysis via certain structured matrices and that these matrices can be implemented in
hardware. Thus, the projection can be integrated in the hardware of the sensor, thereby paving the
way for marrying two cutting-edge techniques: compressive sensing and deep learning. We are
currently investigating this very promising direction. Preliminary results will be reported in [7].
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