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1 SUMMARY 

Advancements to a general-purpose computational framework are described for solving 
constrained nonlinear optimal control problems.  The framework consists of the following 
three modules, which operate synergistically to improve the accuracy and computational 
efficiency that can be achieved when solving constrained optimal control problems. The 
first module is a new class of efficient discretization methods called hp-adaptive Gaussian 
quadrature methods that transcribe the continuous optimal control problem to a finite-
dimensional nonlinear optimization problem. The hp-adaptive methods have the feature 
that both the degree of the polynomial approximation and the number of mesh intervals 
can be adjusted to improve the accuracy in the approximation of the solution to the optimal 
control problem. The second module is a new approach to nonlinear optimization that 
employs conjugate gradient-based methods with a dual active set method to efficiently 
solve the non-linear optimization problem associated with the hp-adaptive method.  The 
third module is a novel approach to algorithmic differentiation that produces an efficient 
derivative source code through a method that combines operator overloading with source 
transformation. The algorithmic differentiation provides the most accurate derivative 
possible for use with the gradient-based nonlinear optimization method. Each module in 
the framework is described, and results are shown that demonstrate the effectiveness of 
the approach. The advancements described in this report include a new hp-adaptive 
mesh refinement method, a benchmarking study that provides comparisons between 
various hp-adaptive mesh refinement methods that have been developed in support of 
this framework, the demonstration of the framework on a high-speed ascent and entry 
problems, and further advancements to the optimization algorithms and convergence 
theory of the hp-adaptive methods. 
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2 INTRODUCTION 

Over the past two decades, the breadth of applications of optimal control has increased 
tremendously. While previously the subject of optimal control was considered applicable 
only in engineering, today optimal control is used not only in all branches of engineering 
(chemical, mechanical, electrical, biomedical, and aerospace), but also is used in 
application domains such as medicine, economics, and epidemiology. Because the 
specific problems that arise in these application areas can be quite complex and have no 
analytic solutions, it has become increasingly important to develop numerical methods 
that are capable of solving complex optimal control problems. 

Without loss of generality, consider an optimal control problem in the so-called Bolza form 

[1]. The objective is to determine the state, 𝑦(𝑡) ∈ ℝ𝑛, the control 𝑢(𝑡) ∈ ℝ𝑚, the initial 
time, 𝑡0 ∈ ℝ, and the terminal time, 𝑡𝑓 ∈ ℝ, that minimize the objective functional 

 

𝐽 = ℳ(𝑦(𝑡0), 𝑡0, 𝑦(𝑡𝑓), 𝑡𝑓) + ∫ ℒ(𝑦(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓
𝑡0

 (1) 

 

subject to the dynamic constraint 

 

�̇�(𝑡) = 𝑓(𝑦(𝑡), 𝑢(𝑡), 𝑡) (2) 

 

the path constraint 

 

𝑐(𝑦(𝑡), 𝑢(𝑡), 𝑡) ≤ 0 (3) 

 

and the boundary condition 

 

𝑏(𝑦(𝑡0), 𝑡0, 𝑦(𝑡𝑓), 𝑡𝑓) = 0 (4) 

 

where 

 

ℳ:ℝ𝑛 ×ℝ × ℝ𝑛 ×ℝ → ℝ
ℒ:ℝ𝑛 × ℝ𝑚 → ℝ

𝑓:ℝ𝑛 × ℝ𝑚 ×ℝ → ℝ𝑛

𝑐:ℝ𝑛 × ℝ𝑚 × ℝ → ℝ𝑝

𝑏:ℝ𝑛 × ℝ ×ℝ𝑛 × ℝ → ℝ𝑞
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The Bolza optimal control problem given in Equations (1) through (4) gives rise to the 
following first-order calculus of variations [2–4] conditions: 

�̇� =
𝜕ℋ

𝜕𝜆
(5) 

�̇� = −
𝜕ℋ

𝜕𝑦
(6) 

𝑢∗ = arg min
𝑢∈𝒰

ℋ (7) 

The transversality conditions are given by 

𝜆(𝑡0) = −
𝜕ℳ

𝜕𝑦(𝑡0)
+ 𝑣𝑇

𝜕𝑏

𝜕𝑦(𝑡0)
, 𝜆(𝑡𝑓) =

𝜕ℳ

𝜕𝑦(𝑡𝑓)
− 𝑣𝑇

𝜕𝑏

𝜕𝑦(𝑡𝑓)
(8) 

ℋ(𝑡0) =
𝜕ℳ

𝜕𝑡0
− 𝑣𝑇

𝜕𝑏

𝜕𝑡0
, ℋ(𝑡𝑓) = −

𝜕ℳ

𝜕𝑡𝑓
+ 𝑣𝑇

𝜕𝑏

𝜕𝑡𝑓
(9) 

𝜇𝑗(𝑡) = 0 𝑤ℎ𝑒𝑛 𝑐𝑗(𝑦, 𝑢, 𝑡) < 0, 𝑗 = 1,⋯ , 𝑝

𝜇𝑗(𝑡) ≤ 0 𝑤ℎ𝑒𝑛 𝑐𝑗(𝑦, 𝑢, 𝑡) = 0, 𝑗 = 1,⋯ , 𝑝
(10) 

where 𝜆(𝑡) ∈ ℝ𝑛 is the adjoint or costate, µ(𝑡) is the path constraint multiplier, 

 ℋ(𝑦, 𝜆, 𝜇, 𝑢, 𝑡) = ℒ + 𝜆𝑇𝑓 − 𝜇𝑇𝑐 is the control Hamiltonian, 𝜈 is the Lagrange multiplier 
associated with the boundary conditions, and 𝒰 is the admissible control set. Equations 
(5) and (6) form what is classically known as a Hamiltonian system [2, 3]. Equation (7) is
known as Pontryagin’s Minimum Principle (PMP) [5] and is used to determine the optimal
control as a function of the state and costate. The conditions in Equation (8) are called
transversality conditions [2, 3, 6] on the boundary values of the costate, while the
conditions given in Equation (10) are the complementary slackness conditions [7–9] on
the path constraints. The Hamiltonian system, together with the original boundary
conditions, the costate transversality conditions, and complementary slackness
conditions, forms a Hamiltonian boundary-value problem (HBVP) [2, 3, 10]. Any solution
(𝑦(𝑡), 𝜆(𝑡), 𝑢(𝑡), µ(𝑡), 𝜈) to the HBVP is called an extremal solution.

2.1 Numerical Methods Used in Optimal Control 

Most optimal control problems of practical interest must be solved numerically because 
analytic solutions generally cannot be determined. Excellent surveys of numerical 
methods for optimal control can be found in References [11] and [12], while a survey of 
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vehicular optimal control can be found in Reference [13]. Numerical methods for optimal 
control are divided based on the actual problem being solved and the method used to 
simulate the dynamics. The two different options for problems being solved are either the 
first-order necessary conditions that arise from variational calculus or an approximation 
of the optimal control problem itself. A method that attempts to find a solution to the first-
order necessary conditions arising from variational calculus is called an indirect method, 
while a method that attempts to solve an approximation of the optimal control problem 
itself is called a direct method. An indirect method essentially solves a multiple-point 
boundary-value problem where the boundary conditions at either end are only partially 
known. A direct method transcribes the optimal control problem to a finite-dimensional 
nonlinear optimization problem; this nonlinear optimization problem is then solved 
numerically. 

Once a solution approach has been chosen, the differential-algebraic equations 
associated with the problem being solved are simulated numerically using one of two 
types of simulation methods. In explicit simulation, the dynamics are integrated using a 
time-marching approach where the solution at a given time step is obtained from the 
solution of the dynamics at one or more previous time steps. This process of time-
marching is then repeated by making progressively better approximations to the unknown 
boundary conditions until the known boundary conditions are satisfied. In implicit 
simulation, the solutions at all integration time steps, along with the boundary conditions, 
are obtained simultaneously without any notion of “time.” Thus, the dynamics associated 
with an indirect method or a direct method can be simulated using either implicit or explicit 
simulation. While in the context of optimal control, direct methods solve an optimization 
problem, both indirect methods and direct methods have been developed more generally 
for the solution of a general boundary-value problem (that is, not specifically for an optimal 
control problem) of the form 

�̇� = 𝑓(𝑦(𝑡), 𝑡), 𝑏(𝑦(𝑡0), 𝑡0, 𝑦(𝑡𝑓), 𝑡𝑓) = 0 (11) 

where neither the initial conditions 𝑦(𝑡0) nor the terminal conditions 𝑦(𝑡𝑓) are in general

completely known. As a result, (11) must be solved while seeking simultaneously to any 

missing components of 𝑦(𝑡0) and/or 𝑦(𝑡𝑓).

2.1.1 Explicit Simulation (Time-Marching) 

In explicit simulation, typically performed by time-marching, the solution of the differential 
equation at a future time step is obtained using the solution at current and/or previous 
time steps. The most basic explicit simulation method is the shooting method [14]. In 
shooting, an initial guess is made of the unknown boundary conditions at one end of the 
interval. Using this guess, together with the known conditions at that endpoint, the 
differential equation in Equation (11) is integrated across the time interval of interest using 
a well-known time-marching method (for example, Euler or Runge-Kutta). Upon reaching 

the opposite end of the time interval [𝑡0,  𝑡𝑓], the boundary conditions in Equation (11) are 

evaluated and an assessment is made as to how to update the unknown boundary 
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conditions. The process of integrating the dynamics and updating the unknown conditions 
is repeated until the boundary conditions on Equation (11) are satisfied to within a 
specified accuracy tolerance. 

The standard shooting method can present numerical difficulties due to instabilities in the 
dynamics. In order to overcome this difficulty, the multiple-shooting method [15] was 

developed. In a multiple-shooting method, the time interval [𝑡0,  𝑡𝑓] is divided into 𝐾 

subintervals 𝑆𝑘=[𝑡𝑘−1,  𝑡𝑘], where  𝑡𝑘 =  𝑡𝑓 and ⋃ 𝑆𝑘=[𝑡0,  𝑡𝑓]
𝐾
𝑘=1 . The shooting method is 

then applied over each subinterval [𝑡𝑘−1,  𝑡𝑘] with the initial value of 𝑦(𝑡𝑘−1), 𝑘 = 2,⋯ ,𝐾
unknown. In order to enforce continuity, the conditions 𝑦(𝑡𝑘

−) = 𝑦(𝑡𝑘
+), 𝑘 = 1,⋯ ,𝐾 − 1

must be recognized. These continuity conditions result in a vector-valued root-finding 
problem, where it is desired to satisfy the boundary conditions in Equation (11) in 
combination with 

𝑦(𝑡𝑘
−) − 𝑦(𝑡𝑘

+) = 0, 𝑘 = 1,⋯ , 𝐾 − 1

Despite being of higher dimension, the multiple-shooting method represents an 
improvement over the standard shooting method, because the shorter integration 
intervals reduce the sensitivity to errors of the unknown terminal conditions. 

2.1.2 Implicit Simulation (Collocation) 

In implicit simulation, the boundary-value problem of Equation (11) is again solved by 

dividing the solution interval [𝑡0,  𝑡𝑓] into mesh intervals 𝑆𝑘=[𝑡𝑘−1,  𝑡𝑘]; 𝑘 = 1,⋯ ,𝐾, where

 𝑡𝑘 =  𝑡𝑓 and ⋃ 𝑆𝑘=[𝑡0,  𝑡𝑓]
𝐾
𝑘=1 . In each mesh interval 𝑆𝑘= the function 𝑦(𝑡) is approximated 

in terms of a set of basis functions 𝜓𝑗
(𝑘)(𝑡), that is

𝑦(𝑘)(𝑡) ≈ 𝑌(𝑘)(𝑡) =∑𝑐𝑗
(𝑘)𝜓𝑗

(𝑘)(𝑡)

𝐽

𝑗=1

(12) 

This parameterization is used to integrate Equation (11) from 𝑡𝑘−1 to one or more stage 
times 𝑡𝑖𝑘 ∈ 𝑆𝑘; 𝑖 = 1,⋯ , 𝐼, where 𝑡𝑘−1 < 𝑡1𝑘 < 𝑡2𝑘 < ⋯ < 𝑡(𝑖−1),𝑘 < 𝑡𝐼𝑘 = 𝑡𝑘 for all 𝑖 ∈

 [1,⋯ , 𝐼] as follows 

𝑌(𝑡𝑖𝑘) = 𝑌(𝑡𝑘−1) + ∫ 𝑓(𝑌(𝜏), 𝜏)
𝑡𝑖𝑘
𝑡𝑘−1

𝑑𝜏, (𝑖 = 1,⋯ , 𝐼) (13)
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The integrals given in Equation (13) are then replaced by quadrature approximations of 
the form 

𝑌𝑖𝑘 = 𝑌𝑘−1 +∑𝐴𝑖𝑗
(𝑘)

𝐼

𝑗=1

𝑓(𝑌𝑗𝑘 , 𝑡𝑗𝑘), (𝑖 = 1,⋯ , 𝐼) 

(14) 

where 𝑌𝑗𝑘; 𝑗 = 1,⋯ , 𝐼 are the values of the function approximation 𝑌(𝑡) at the stage points 

𝑡𝑗𝑘; 𝑗 = 1,⋯ , 𝐼 and 𝐴𝑖𝑗
(𝑘)

; 𝑖, 𝑗 = 1,⋯ , 𝐼 is the integration matrix associated with the particular 

integration (quadrature) rule that is used to integrate the dynamics in mesh interval 𝑆𝑘. 
Equation (14) can then be rearranged in the form 

𝑌𝑖𝑘 − 𝑌𝑘−1 −∑𝐴𝑖𝑗
(𝑘)

𝐼

𝑗=1

𝑓(𝑌𝑗𝑘, 𝑡𝑗𝑘) = 0, (𝑖 = 1,⋯ , 𝐼) 

(15) 

which are called defect conditions that must be satisfied at all stage times in each mesh 
interval. In addition, assuming that the solution is continuous, continuity conditions 
𝑦(𝑡𝑘

−) = 𝑦(𝑡𝑘
+) must be satisfied at every mesh interval interface. The goal then is to solve

for the coefficients 𝑐𝑗
(𝑘)

 in each mesh interval. As opposed to the seemingly similar explicit

simulation method and multiple shooting, in implicit simulation, all of defect equations are 
found simultaneously by solving a large-scale algebraic system of the form 𝐹(𝑧)  =  0. 
Implicit simulation is often referred to as collocation, because the defect conditions in 
Equation (15) make the value of the function at each stage point equal to the quadrature 
approximation of the dynamics at those points. 

2.1.3 Indirect Methods 

The first-order necessary conditions given in Equations (5) through (10) constitute a two-
point boundary-value problem. This boundary-value problem can be solved using either 
explicit or implicit simulation as described above. A typical explicit simulation method 
would be indirect shooting or indirect multiple-shooting, while a typical simultaneous 
indirect method would be indirect collocation. In an indirect shooting method [14], an initial 
guess is made for the unknown boundary conditions at one boundary. Using this guess, 
together with the known initial conditions, the Hamiltonian system in Equations (5) and 
(6) is integrated to the other boundary (that is, either forward from 𝑡0 to 𝑡𝑓or backward

from 𝑡𝑓 to 𝑡0) using a time marching method. Upon reaching 𝑡𝑓, the terminal conditions 

obtained from the numerical integration are compared to the known terminal conditions 
given in Equations (4) and (8). If the integrated terminal conditions differ from the known 
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terminal conditions by more than a specified tolerance, the unknown initial conditions are 
adjusted and the process is repeated until the difference between the integrated terminal 
conditions and the required terminal conditions is less than some specified threshold. 
While the simplicity of simple shooting is appealing, this technique suffers from significant 
numerical difficulties due to ill-conditioning. The shooting method poses particularly poor 
characteristics when the optimal control problem is hypersensitive [16–20] (that is, when 
time interval of interest is long in comparison with the time-scales of the Hamiltonian 
system in a neighborhood of the optimal solution). In an indirect collocation method, the 
state and costate can be parametrized using piecewise polynomials, as shown in 
Equation (12). The collocation procedure leads to a large-scale root-finding problem 
𝐹(𝑧)  =  0, where the vector of unknown coefficients 𝑧 consists of the coefficients of the 
piecewise polynomial. This system of nonlinear equations is then solved using an 
appropriate root-finding technique. 

 

2.1.4 Direct Methods 

The most basic direct explicit simulation method for solving optimal control problems is 
the direct shooting method. The control is parameterized as 

 

𝑢(𝑡) = 𝑈(𝑡) ≈∑𝛼𝑖𝜓𝑖(𝑡)

𝑚

𝑖=1

 

 (16) 

 

in which 𝜓𝑖(𝑡), (𝑖 = 1,⋯ ,𝑚) are preassigned basis functions and 𝛼𝑖, (𝑖 = 1,⋯ ,𝑚) are the 
parameters to be determined by optimization. The dynamics are then satisfied by 
integrating the differential equations using a time-marching integration method. Similarly, 
the cost function of Equation (1) is determined using a quadrature approximation that is 
consistent with the numerical integrator used to solve the differential equations. The NLP 
that arises from direct shooting then minimizes the cost subject to any path and interior-
point constraints. 

Direct shooting suffers from issues similar to those associated with indirect shooting in 
that instabilities arise due to the long time interval over which the time marching method 
is applied. Thus, in a manner similar to that for indirect methods, an alternate direct explicit 
simulation method is the direct multiple-shooting method. In this case, the time interval 

[𝑡0,  𝑡𝑓] is divided into 𝐾 subintervals. The aforementioned direct shooting method is then 

used over each subinterval [𝑡𝑘−1,  𝑡𝑘] with the values of the state at the beginning of each 
subinterval and the unknown coefficients in the control parameterization being unknowns 
in the optimization. In order to enforce continuity, the following conditions are enforced at 
the interface of each subinterval: 

 

𝑦(𝑡𝑘
−) − 𝑦(𝑡𝑘

+) = 0, (𝑘 = 1,⋯ ,𝐾 − 1) (17) 
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The continuity conditions of Equation (17) result in vector root-finding problem where it is 
desired to drive the values of the difference 𝑦(𝑡𝑘

−) − 𝑦(𝑡𝑘
+) to zero. It is seen that the direct 

multiple-shooting method increases the size of the optimization problem because the 
values of the state at the beginning of each subinterval are parameters in the optimization. 
Despite the increased size of the problem due to these extra variables, the direct multiple-
shooting method is an improvement over the standard direct shooting method because 
the sensitivity to errors in the unknown initial conditions is reduced because integration is 
performed over significantly smaller time intervals. 

 

2.1.5 Direct Collocation Methods 

Over the past two decades implicit simulation direct collocation methods have become 
the de facto standard for the numerical solution of optimal control problems. A direct 
collocation method is an implicit simulation approach, where both the state and control 
are parameterized in terms of basis functions (generally piecewise polynomials) for 
implicit simulation. In the context of optimal control, fixed-order integration methods such 
as Runge-Kutta and Hermite-Simpson methods [21–28] have been employed. In direct 
collocation methods, the following nonlinear programming problem (NLP) arises from the 
approximation of the optimal control problem: 

 

min𝐹(𝑧)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  {
𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥,

𝑔(𝑧) ≤ 0.
  

 

As a rule, this NLP is large, containing tens or even hundreds of thousands of variables 
and constraints. The key feature of these problems, which makes them tractable, is the 
fact that the NLP is sparse. A variety of well-known NLP solvers such as SNOPT [29, 30], 
IPOPT, and [31] have been developed specifically for solving large sparse NLPs. In a 
typical fixed-order collocation method, such as a Runge-Kutta method, accuracy is 
improved by increasing the number of mesh intervals. A limitation of a fixed-order method 
is that, for complex problems, the only way to achieve convergence of the true optimal 
solution is to increase significantly the size of the mesh. 

 

3 GENERAL METHODOLOGY (METHODS, ASSUMPTIONS, AND PROCEDURES) 

The goal of this research is to advance a novel general-purpose computational framework 
for solving constrained nonlinear optimal control problems and to demonstrate the 
effectiveness of the framework on a problem of interest in high-speed ascent and entry. 
The first module is that of hp-adaptive Gaussian quadrature orthogonal collocation mesh 
refinement [32–45]. Earlier work conceived the idea of an hp-adaptive mesh refinement 
method, and some methods were developed during that early work. The advancement in 
this research is the development of a new mesh refinement method that provides 
accurate detection of discontinuities in solutions of optimal control problems using jump 
function approximations [46]. The second module of the module of the framework is the 
development of advanced optimization techniques for solving the sparse nonlinear 



DISTRIBUTION A  
9 

programming problem that arises from the hp-adaptive discretization. Specifically, the hp-
adaptive Gaussian quadrature collocation leads to a highly sparse nonlinear 
programming problem (NLP). The approach developed in this research is to develop new 
conjugate gradient methods that are able to quickly and accurately solve this sparse NLP. 
A key feature of this new approach is that it is possible to obtain solutions using only first 
derivatives for problems where previously only second derivative methods would work.  

Being able to solve such problems using only first derivative reduces significantly the 
number of function evaluations required, thus, making it significantly more capable of 
rapidly solving a constrained optimal control problem. In the limited memory conjugate 
gradient algorithm, a basis for the subspace containing the recent prior iterates is stored. 
Whenever the solution at any iteration becomes trapped, a special subspace iteration is 
performed to obtain a descent direction orthogonal to the current subspace. Such an 
approach allows for rapid convergence because the iteration is able to escape the 
subspace in which it is trapped. As a result, not only is the conjugate gradient method 
much faster than previous methods, it is significantly more robust because it will continue 
to iterate when other algorithms fail outright. In this research algorithms that are capable 
of minimizing a mathematical programming problem with a nonlinear objective function 
subject to linear constraints are developed. The third module of this framework is the 
accurate and efficient generation of analytic derivatives for use with the new optimization 
techniques.  

In this research a new algorithmic differentiation method is developed that generates 
derivative source code using a combined source transformation and operator overloading 
approach. The approach is found to generate highly efficient code that computes the 
derivative to machine precision accuracy. Furthermore, the algorithmic differentiation 
method developed in this research can be applied recursively to generate derivatives of 
any order. The three prongs of the framework are combined into a software testbed that 
enables testing the various modules independently and together.  

The results of this research indicate that the combination of the hp-adaptive Gaussian 
quadrature orthogonal collocation methods together with advanced nonlinear 
programming methods and accurate and efficient derivative generation techniques 
greatly expand the range of optimal control problems that can be solved, thus enabling 
current-generation and next-generation applications that may arise in a wide variety of 
applications, including space and atmospheric flight mission planning, chemical process 
control, medical applications, and economics. A schematic of how the modules of the 
framework operate together is shown in Figure 1. The remainder of this report describes 
the advancements made to the framework shown in Figure 1. 
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Figure 1. Three modules of optimal control framework. 

4 OVERVIEW OF TECHNICAL RESULTS 

The technical results provided in this report are divided into the following sections: 

1. Formulation and Discretization of Continuous Optimal Control Problem.

2. New Mesh Refinement Method Employing Jump Function Approximations.

3. Performance Comparison of Various Mesh Refinement Methods.

4. Advancements in Nonlinear Optimization.

5. Application of Framework to Relevant High-Speed Ascent and Entry Problem.

Each of these various aspects of the research are now described. 
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4.1 Transformed Continuous Optimal Control Problem 

Consider now the following change of independent variable: 

 

𝑡 ≡ 𝑡(𝜏, 𝑡0, 𝑡𝑓) =
𝑡𝑓 − 𝑡0

2
𝜏 +

𝑡𝑓+ 𝑡0

2
 (18) 

 

The Bolza optimal control problem given in Equations. (1) through (4) can then be 

described as follows. Determine the state 𝑦(𝜏) ∈ ℝ𝑛𝑦 and the control 𝑢(𝜏) ∈ ℝ𝑛𝑢 on the 
domain 𝜏 ∈ [−1,+1], the initial time, 𝑡0, and the terminal time 𝑡𝑓 that minimize the cost 

functional 

 

𝒥 = ℳ(𝑦(−1),  𝑡0, 𝑦(+1), 𝑡𝑓) +
𝑡𝑓 − 𝑡0

2
∫ ℒ
+1

−1
(𝑦(𝜏), 𝑢(𝜏), 𝑡(𝜏, 𝑡0, 𝑡𝑓)) 𝑑𝜏 (19) 

 

subject to the dynamic constraints 

 

𝑑𝑦

𝑑𝜏
=

𝑡𝑓−𝑡0

2
𝑎 (𝑦(𝜏), 𝑢(𝜏), 𝑡(𝜏, 𝑡0, 𝑡𝑓)) (20) 

 

the inequality path constraints 

 

𝑐 (𝑦(𝜏), 𝑢(𝜏), 𝑡(𝜏, 𝑡0, 𝑡𝑓)) ≤ 0 (21) 

 

and the boundary conditions 

 

𝑏(𝑦(−1), 𝑡0, 𝑦(+1), 𝑡𝑓) = 0 (22) 

 

4.1.1 Partitioning of Bolza Optimal Control Problem into a Mesh 

In the hp discretization, the domain 𝜏 ∈ [−1,+1] is partitioned into a mesh consisting of 

𝐾 mesh intervals 𝑆𝑘 = [𝑇𝑘−1, 𝑇𝑘], 𝑘 =  1,⋯ , 𝐾, where −1 =  𝑇0  <  𝑇1  <  ⋯  <  𝑇𝐾 =  +1. 

The mesh intervals have the property that ⋃ 𝑆𝑘 = [−1, +1]
𝐾
𝑘=1 . Let 𝑦(𝑘)(𝜏) and 𝑢(𝑘)(𝜏) be 

the state and control in 𝑆𝑘. The Bolza optimal control problem of Equations (19) through 
(22) can then be rewritten as follows.  
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Minimize the cost functional 

 

𝒥 = ℳ(𝑦(1)(−1),  𝑡0,  𝑦
(𝐾)(+1), 𝑡𝑓) +

𝑡𝑓  −  𝑡0

2
∑∫ ℒ

𝑇𝑘

𝑇𝑘−1

(𝑦(𝑘)(𝜏), 𝑢(𝑘)(𝜏), 𝑡(𝜏, 𝑡0, 𝑡𝑓)) 𝑑𝜏

𝐾

𝑘=1

 

 (23) 

 

subject to the dynamic constraints 

 

𝑑𝑦𝑘(𝜏)

𝑑𝜏
=

𝑡𝑓−𝑡0

2
𝑎 (𝑦(𝑘)(𝜏), 𝑢(𝑘)(𝜏), 𝑡(𝜏, 𝑡0, 𝑡𝑓)) , (𝑘 = 1,⋯ , 𝐾) (24) 

 

the path constraints 

 

𝑐 (𝑦(𝑘)(𝜏), 𝑢(𝑘)(𝜏), 𝑡(𝜏, 𝑡0, 𝑡𝑓)) ≤ 0, (𝑘 = 1,⋯ , 𝐾) (25) 

 

and the boundary conditions 

 

𝑏(𝑦(1)(−1), 𝑡0, 𝑦
(𝐾)(+1), 𝑡𝑓) = 0 (26) 

 

Because the state must be continuous at each interior mesh point, it is required that the 
condition 𝑦(𝑇𝑘

−) = 𝑦(𝑇𝑘
+), (𝑘 = 1,⋯ ,𝐾 − 1) be satisfied at the interior mesh points 

(𝑇1,⋯ , 𝑇𝐾−1). 

 

4.1.2 hp-Adaptive Legendre-Gauss-Radau Collocation 

The multiple-interval form of the continuous-time Bolza optimal control problem 
discretized using collocation at Legendre-Gauss-Radau (LGR) points [36–39, 43]. In the 
LGR collocation method, the state of the continuous-time Bolza optimal control problem 

is approximated in 𝑆𝑘, 𝑘 ∈ [1,⋯ ,𝐾], as 

 

𝑦(𝑘)(𝜏) ≈ 𝑌(𝑘)(𝜏) = ∑ 𝑌𝑗
(𝑘)ℓ𝑗

(𝑘)(𝜏), ℓ𝑗
(𝑘)(𝜏) = ∏

𝜏 − 𝜏𝑙
(𝑘)

𝜏𝑗
(𝑘) − 𝜏𝑙

(𝑘)

𝑁𝑘+1

𝑙=1
𝑙≠𝑗

𝑁𝑘+1

𝑗=1

 

 (27) 
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where 𝜏 ∈ [−1,+1], ℓ𝑗
(𝑘)(𝜏), 𝑗 = 1,⋯ ,𝑁𝑘+1, is a basis of Lagrange polynomials, 

(𝜏1
(𝑘), ⋯ , 𝜏𝑁𝑘

(𝑘)) are the Legendre-Gauss-Radau (LGR) [47] collocation points in 𝑆𝑘 =

[𝑇𝑘−1, 𝑇𝑘], and 𝜏𝑁𝑘+1
(𝑘) = 𝑇𝑘 is a noncollocated point. Differentiating 𝑌(𝑘)(𝜏) in Equation (27) 

with respect to 𝜏 gives 

 

𝑑𝑌(𝑘)(𝜏)

𝑑𝜏
= ∑ 𝑌𝑗

(𝑘)
𝑑ℓ𝑗

(𝑘)(𝜏)

𝑑𝜏

𝑁𝑘+1

𝑗=1

 

 (28) 

 

The dynamics are then approximated at the 𝑁𝑘 LGR points in mesh interval 𝑘 ∈ [1,⋯ , 𝐾] 
as 

 

∑ 𝐷𝑖𝑗
(𝑘)𝑌𝑗

(𝑘) =
𝑡𝑓 − 𝑡0

2
𝑎 (𝑌𝑖

(𝑘), 𝑈𝑖
(𝑘), 𝑡(𝜏𝑖

(𝑘), 𝑡0, 𝑡𝑓))

𝑁𝑘+1

𝑗=1

, (𝑖 = 1,⋯ ,𝑁𝑘) 

 (29) 

 

where 

 

𝐷𝑖𝑗
(𝑘) =

𝑑ℓ𝑗
(𝑘)
(𝜏𝑖
(𝑘)
)

𝑑𝜏
, (𝑖 = 1,⋯ ,𝑁𝑘, 𝑗 = 1,⋯ ,𝑁𝑘 + 1)  

 

are the elements of the 𝑁𝑘  ×  (𝑁𝑘  +  1) Legendre-Gauss-Radau differentiation matrix 

[36] in mesh interval 𝑆𝑘, 𝑘 ∈  [1, . . . , 𝐾]. The LGR discretization then leads to the following 
nonlinear programming problem (NLP). Minimize the LGR quadrature approximation to 
the cost functional 

 

𝒥 ≈ ℳ(𝑌1
(1), 𝑡0, 𝑌𝑁

𝐾+1

(𝐾) , 𝑡𝑓) +∑∑
𝑡𝑓 − 𝑡0

2

𝑁𝑘

𝑗=1

𝜔𝑗
(𝑘)ℒ (𝑌𝑗

(𝑘), 𝑈𝑗
(𝑘), 𝑡(𝜏𝑗

(𝑘), 𝑡0, 𝑡𝑓))

𝐾

𝑘=1

 

 (30) 
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subject to the collocation equations 

 

∑ 𝐷𝑖𝑗
(𝑘)𝑌𝑗

(𝑘) −
𝑡𝑓 − 𝑡0

2
𝑎 (𝑌𝑖

(𝑘), 𝑈𝑖
(𝑘), 𝑡(𝜏𝑖

(𝑘), 𝑡0, 𝑡𝑓)) = 0, (𝑖 = 1,⋯ ,𝑁𝑘)

𝑁𝑘+1

𝑗=1

 

 (31) 

 

the discretized path constraints 

 

𝑐 (𝑌𝑖
(𝑘), 𝑈𝑖

(𝑘), 𝑡(𝜏𝑖
(𝑘), 𝑡0, 𝑡𝑓)) ≤ 0, (𝑖 = 1,⋯ ,𝑁𝑘) (32) 

 

and the discretized boundary conditions 

 

𝑏 (𝑌1
(1), 𝑡0, 𝑌𝑁

𝐾+1

(𝐾) , 𝑡𝑓) = 0 (33) 

 

It is noted that the continuity in the state at the interior mesh points (𝑇1, ⋯ , 𝑇𝐾−1) is 
enforced via the condition 

 

𝑌𝑁
𝑘+1

(𝑘) = 𝑌1
(𝑘+1), (𝑘 = 1,⋯ ,𝐾 − 1) (34) 

 

Computationally, the constraint of Equation (34) is eliminated from the problem by using 

the same variable for both 𝑌𝑁
𝑘+1

(𝑘)
 and 𝑌1

(𝑘+1)
. 

 

4.1.3 Sparse Structure of NLP Arising from LGR Collocation 

The nonlinear programming problem (NLP) arising from the Legendre-Gauss-Radau 
collocation has a particular sparse structure that makes it efficient to solve. The sparse 
structure is seen in three different parts. First, a schematic of the composite Radau 

differentiation matrix 𝐷 is shown in Figure 2 where it is seen that 𝐷 has a block structure 
with nonzero elements in the row-column indices  

(∑
𝑘 − 1
𝑙 = 1

 𝑁𝑙 + 1,⋯ , ∑
𝑘

𝑙 = 1
𝑁𝑙 ,  ∑

𝑘 − 1
𝑙 = 1

𝑁𝑙 + 1,⋯ , ∑
𝑘

𝑙 = 1
𝑁𝑙 + 1 ), where for every mesh 

interval 𝑘 ∈  [1,⋯ , 𝐾] the nonzero elements are defined by the LGR differentiation matrix. 
The second part of the sparse structure is seen in the NLP Jacobian shown in Figure 3.  
First, it is seen that the vast majority of the elements in the Jacobian are zero. The 
remaining (nonzero) elements appear in well-defined location in the Jacobian, making it 
possible to clearly identify the sparse structure. Finally, Figure 4 shows the sparse 
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structure of the NLP Hessian, which would be used if the NLP was solved using a full 
Newton NLP solver. It is interesting to see that the Hessian is even sparser than the 
Jacobian. The overall structure of the Jacobian and the Hessian leads to a highly sparse 
NLP that can be solved efficiently using sparse nonlinear optimization techniques. 

 

 

 

Figure 2. Structure of composite Radau pseudospectral differentiation matrix 

where the mesh consists of 𝑲 mesh intervals. 

 

 

 

Figure 3. General Jacobian sparsity pattern for RPM. 
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Figure 4. General Hessian sparsity pattern for RPM. 

 

 

4.1.4 Approximation of Solution Error 

In this section, the approach of Ref. [48] for estimating the relative error in the solution on 
a given mesh is reviewed. The relative error approximation derived in Ref. [48] is obtained 
by comparing two approximations to the state, one with higher accuracy. The key idea is 
that for a problem whose solution is smooth, an increase in the number of LGR points 
should yield a state that more accurately satisfies the dynamics. Hence, the difference 
between the solution associated with the original set of LGR points, and the 
approximation associated with the increased number of LGR points should yield an 
approximation of the error in the state. 

Assume that the NLP of Equations (30) through (33) corresponding to the discretized 

Bolza optimal control problem has been solved on a mesh 𝑆𝑘 = [𝑇𝑘−1, 𝑇𝑘], 𝑘 = 1,⋯, with 
𝑁𝑘 LGR points in mesh interval 𝑆𝑘. Suppose that the objective is to approximate the error 

in the state at a set of 𝑀𝑘 = 𝑁𝑘 + 1 LGR points (�̂�1
(𝑘)
, . . . , �̂�𝑀𝑘

(𝑘)
), where �̂�1

(𝑘)
=  𝜏1

(𝑘)
= 𝑇𝑘−1, 

and that �̂�𝑀𝑘+1
(𝑘)

= 𝑇𝑘. Suppose further that the values of the state approximation at the 

points (�̂�1
(𝑘)
, . . . , �̂�𝑀𝑘

(𝑘)
) are denoted (𝑦(�̂�1

(𝑘)
), . . . , 𝑦(�̂�𝑀𝑘

(𝑘)
)). Next, let the control be 

approximated in 𝑆𝑘 using the Lagrange interpolating polynomial  

 

𝑈(𝑘)(𝜏) =∑𝑈𝑗
(𝑘)
ℓ̂𝑗
(𝑘)(𝜏)

𝑁𝑘

𝑗=1

, ℓ̂𝑗
(𝑘)(𝜏) =∏

𝜏 − 𝜏𝑙
(𝑘)

𝜏𝑗
(𝑘)
− 𝜏𝑙

(𝑘)

𝑁𝑘

𝑙=1
𝑙≠𝑗

 

 (35) 
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and let the control approximation at �̂�𝑖
(𝑘)

 be denoted 𝑢(�̂�1
(𝑘)
), 1 ≤ 𝑖 ≤ 𝑀𝑘. The value of the

right-hand side of the dynamics at (𝑌(�̂�𝑖
(𝑘)
), 𝑈(�̂�𝑖

(𝑘)
), �̂�𝑖

(𝑘)
) is used to construct an improved

approximation of the state. Let �̂�(𝑘) be a polynomial of degree at most 𝑀𝑘 that is defined

on the interval 𝑆𝑘. If the derivative of �̂�(𝑘) matches the dynamics at each of the Radau 

quadrature points �̂�𝑖
(𝑘)
, 1 ≤ 𝑖 ≤ 𝑀𝑘, we then have

�̂�(𝑘)(�̂�𝑗
(𝑘)
) = 𝑌(𝑘)(𝑇𝑘−1) +

𝑡𝑓 − 𝑡0

2
∑𝐼𝑗𝑙

(𝑘)

𝑀𝑘

𝑙=1

𝑎 (𝑌(𝑘)(�̂�𝑙
(𝑘)), 𝑈(𝑘)(�̂�𝑙

(𝑘)), 𝑡(�̂�𝑙
(𝑘), 𝑡0, 𝑡𝑓)) ,

𝑗 = 2,⋯ ,𝑀𝑘 + 1, 
(36) 

where 𝐼𝑗𝑙
(𝑘), 𝑗, 𝑙 = 1,⋯ ,𝑀𝑘, is the 𝑀𝑘 ×𝑀𝑘  LGR integration matrix corresponding to the

LGR points defined by (�̂�1
(𝑘), ⋯ , �̂�𝑀𝑘

(𝑘)).  Using the values 𝑦(�̂�𝑙
(𝑘)) and �̂�(�̂�𝑙

(𝑘)), l = 1,⋯ ,𝑀𝑘 +

1 , the absolute and relative errors in the 𝑖𝑡ℎ  component of the state at (�̂�1
(𝑘), ⋯ , �̂�𝑀𝑘+1

(𝑘) )

are then defined, respectively, as 

𝐸𝑖
(𝑘)(�̂�𝑙

(𝑘)) = |�̂�𝑖
(𝑘)(�̂�𝑙

(𝑘)) − 𝑌𝑖
(𝑘)(�̂�𝑙

(𝑘))|,

𝑒𝑖
(𝑘)
(�̂�𝑙

(𝑘)
) =

𝐸𝑖
(𝑘)
(�̂�𝑙
(𝑘)
)

1+ max
𝑗∈[1,⋯,𝑁𝑘+1]

𝑘∈[1,⋯,𝐾]

|𝑌𝑖
(𝑘)
(𝜏𝑗
(𝑘)
)|
, [
𝑙 = 1,⋯ ,𝑀𝑘 + 1
𝑖 = 1,⋯ , 𝑛𝑦

] (37) 

The maximum relative error in 𝑆𝑘 is then defined as 

ℯ𝑚𝑎𝑥
(𝑘) = max

𝑖∈[1,⋯,𝑛𝑦]

𝑙∈[1,⋯,𝑀𝑘+1]

ℯ𝑖
(𝑘)(�̂�𝑙

(𝑘)) (38) 

4.2 hp-Adaptive Mesh Refinement Using Jump Function Approximations 

Optimal control problems often have nonsmooth solutions. Such discontinuities may arise 
in the form of jump discontinuities in the control (for example, an optimal control problem 
whose optimal control has a bang-bang structure) or discontinuities in the derivative of 
the state and/or the control. In order to improve the accuracy of a numerical solution to 
an optimal control problem whose solution is nonsmooth, the locations of such 
discontinuities need to be determined accurately. 
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This paper focuses on the development of a mesh refinement method, which accurately 
locates jump discontinuities in the control when solving an optimal control problem using 
a direct collocation method. The method developed in this paper employs a jump function 
approximation to identify the locations of control discontinuities. The jump function 
approximation is generated using the approximation of the control obtained at the 
collocation points on a given mesh for which the optimal control problem is approximated. 
The jump function approximation is then used to develop an iterative mesh refinement 
method where, on each mesh refinement iteration, the mesh is modified using the 
estimates of the locations of the discontinuities. The remainder of this section provides 
the mathematical background that serves as the basis of the method. 

 

4.2.1 Motivation for New Mesh Refinement Method 

Optimal control problems often have nonsmooth solutions. Such discontinuities may arise 
in the form of jump discontinuities in the control (for example, an optimal control problem 
whose optimal control has a bang-bang structure) or discontinuities in the derivative of 
the state and/or the control. In order to improve the accuracy of a numerical solution to 
an optimal control problem whose solution is nonsmooth, the locations of such 
discontinuities need to be determined accurately. 

This paper focuses on the development of a mesh refinement method which accurately 
locates jump discontinuities in the control when solving an optimal control problem using 
a direct collocation method. The method developed in this paper employs a jump function 
approximation to identify the locations of control discontinuities. The jump function 
approximation is generated using the approximation of the control obtained at the 
collocation points on a given mesh for which the optimal control problem is approximated. 
The jump function approximation is then used to develop an iterative mesh refinement 
method where, on each mesh refinement iteration, the mesh is modified using the 
estimates of the locations of the discontinuities. The remainder of this section provides 
the mathematical background that serves as the basis of the method. 

 

4.2.2 Jump Functions 

Let 𝑓(𝑡) be an arbitrary function defined on 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. The jump function, 𝑓𝑗(𝑡), that 

arises from 𝑓(𝑡) is defined as 

 

𝑓𝑗(𝑡) = lim
𝜏→𝑡+

𝑓(𝜏) − lim
𝜏→𝑡−

𝑓(𝜏) ∀𝑡 ∈ (𝑡0, 𝑡𝑓) (39) 

 

From Equation (39) it is seen that a jump function, 𝑓𝑗(𝑡), of an underlying function, 𝑓(𝑡), 

is zero everywhere except at locations where the original function, 𝑓(𝑡), has jump 
discontinuities. Moreover, at the jump locations of 𝑓(𝑡), 𝑓𝑗(𝑡) takes on the value that 

equals the amount of the jump discontinuity itself. Using the definition of a jump function, 
the jump discontinuities can be located by observing where 𝑓𝑗(𝑡) is nonzero. 
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4.2.3 Approximation of Jump Functions 

Now while in principle a jump function can be obtained using Equation (39), in practice 
the underlying function is not known because the solution is known only on a time series 
of data where the time points are the collocation points on the mesh for which the 
approximation of the solution to the optimal control problem was obtained. Thus, Equation 
(39) must be approximated using this time series of data. A possible way to approximate 
a jump function is by using a Fourier series approximation of 𝑓(𝑡). If the Fourier series 

approximation of a 2𝐿 periodic function, denoted 𝑓(𝑡), is written as 

 

𝑓(𝑡) ≈ 𝑓(𝑡) = 𝑎0 +∑[𝑎𝑘 cos (
𝑘𝜋

𝐿
𝑡) + 𝑏𝑘 sin (

𝑘𝜋

𝐿
𝑡)]

𝑁

𝑘=1

 

 (40) 

 

then the jump function approximation, denoted 𝑓𝑗(𝑡), has the same 2𝐿 period and is 

defined as 

 

𝑓𝑗(𝑡) ≈ 𝑓𝑗(𝑡) = 𝑎0 +∑𝜎(𝑘/𝑁) [𝑎𝑘 sin (
𝑘𝜋

𝐿
𝑡) − 𝑏𝑘 cos (

𝑘𝜋

𝐿
𝑡)]

𝑁

𝑘=1

 

 (41) 

 

where 𝑎𝑘 and 𝑏𝑘 are the same Fourier coefficients of Equation (40) and 𝜎(𝑘/𝑁) are 
concentration factors [49]. Concentration factors arise from the earlier work of Lukács [50, 
51] where it was shown that the conjugate Fourier series 

 

𝑓(𝑡) = ∑[𝑎𝑘 sin (
𝑘𝜋

𝐿
𝑡) − 𝑏𝑘 cos (

𝑘𝜋

𝐿
𝑡)]

𝑁

𝑘=1

 

 (42) 

 

converges to the jump function when multiplied by −𝜋/ log𝑁 as 𝑁 → ∞. A wider class of 
so-called "concentration factors" share the same convergence property when applied to 
the Fourier conjugate sum as written in Equation (41) [49]. Furthermore, these 
concentration factors accelerate convergence to the actual jump function, thereby making 
the jump function approximation computationally tractable because fewer terms in the 
series are required in order to obtain an accurate approximation of the jump function.  
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In this research, the following concentration factor is employed: 

 

𝜎𝑘,𝑁
𝐺 = −

𝜋

𝑆𝑖(𝜋)
sin (

𝜋𝑘

𝑁
) , 𝑆𝑖(𝜋) = ∫

sin 𝑡

𝑡
𝑑𝑡 ≈ 1.85194

𝜋

0
 (43) 

 

where Equation (43) is called the Gibbs concentration factor [49]. 

While obtaining the Fourier coefficients needed in Equation (41) can be done in many 
ways, it is important that an even Fourier approximation be used as opposed to a standard 
or odd Fourier approximation. The reasoning for needing an even Fourier approximation 
is due to the nature of the periodic behavior the standard, odd, and even Fourier 
approximations imply. Specifically, consider the numerical approximation of the solution 
to an optimal control problem on a given mesh where the solution data lies on the time 
interval 𝑡 ∈ [𝑡0, 𝑡𝑓 ].  A standard Fourier approximation of the form in Equation (40) will 

result in the Fourier approximation of the control having a period 𝑇 = 2𝐿 = 𝑡𝑓 − 𝑡0. Due to 

this periodicity, artificial jumps may be present at the endpoints as illustrated in Figure 6. 

The same issue arises when using the odd Fourier approximation, 𝑓𝑜𝑑𝑑(𝑡), which is 
defined as 

 

𝑓𝑜𝑑𝑑(𝑡) = ∑𝑏𝑘 sin (
𝑘𝜋

𝐿
𝑡)

𝑁

𝑘=1

 

 (44) 

 

except now the period 𝑇 = 2𝐿 = 2(𝑡𝑓 − 𝑡0). It is noted, however, that an even Fourier 

approximation, denoted 𝑓𝑒𝑣𝑒𝑛(𝑡) and defined as 

 

𝑓𝑒𝑣𝑒𝑛(𝑡) = 𝑎0 +∑𝑎𝑘 cos (
𝑘𝜋

𝐿
𝑡)

𝑁

𝑘=1

 

 (45) 

 

has the same period as the odd approximation but does not pose the risk of creating 
artificial jumps at 𝑡0 or 𝑡𝑓. An even Fourier series approximation does not produce artificial 

jumps at the endpoints because the value of the function approximation at the start of any 
period is equal to the value of the function approximation at the end of the previous period.  
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In order to see the behavior of a standard, odd, and even Fourier series approximation of 
a jump function, consider the following function: 

 

𝑓(𝑡) = {
0, 0 ≤ 𝑡 < 2
1, 2 ≤ 𝑡 < 4
−1, 4 ≤ 𝑡 ≤ 6

 (46) 

 

The jump function 𝑓𝑗(𝑡) arising from the function 𝑓(𝑡) defined in Equation (46) is given as 

 

𝑓𝑗(𝑡) = {
1, 𝑡 = 2
−2, 𝑡 = 4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (47) 

 

Figure 5 images (a) and (b) show, respectively, the functions 𝑓(𝑡) and 𝑓𝑗(𝑡) defined in 

Equations (46) and (47). Next, Figure 6a shows the standard, odd, and even Fourier 
series approximations of the function 𝑓(𝑡) defined in Equation (46), while Figure 6b shows 

the standard, odd, and even Fourier series approximations of the jump function 𝑓𝑗(𝑡)  

defined in Equation (47). It can be seen from Figure 6a that all three Fourier 
approximations provide a good approximation of 𝑓(𝑡). On the other hand, Figure 6b 
shows that the standard and odd Fourier approximations of the jump function 𝑓𝑗(𝑡) defined 

in Equation (47) produce artificial jumps at 𝑡 =  𝑡0 and 𝑡 =  𝑡𝑓, while artificial jumps are 

not produced by the even Fourier approximation of 𝑓𝑗(𝑡). Because the even Fourier series 

approximation of a jump function does not produce artificial jumps, even Fourier 
approximations will be employed in the remainder of this paper to obtain the Fourier 
coefficients needed in the approximation of a jump function. Finally, for convenience, from 

this point forth the notation 𝑓(𝑡) will be used to denote an even Fourier series 
approximation. 
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Figure 5. Example function, 𝒇(𝒕), defined in Equation (46) alongside jump 
function, 𝒇𝒋(𝒕), defined in Equation 47. 

 

 

Given that an even Fourier series approximation does not create artificial jumps when 
approximating a jump function, suppose now the jump function 𝑓𝑗(𝑡) given Equation (47) 

is approximated using an even 𝑁-term Fourier series, and let this jump function 

approximation be denoted 𝑓𝑗(𝑡). Figure 5 shows the jump function approximation 𝑓𝑗(𝑡) for 

𝑁 =  {10, 20, 40}, where it is seen that the jump function approximation approaches the 

true jump function as 𝑁 increases. Furthermore, the locations of the maxima and minima 
of the jump function approximation lie in close proximity, respectively, to the locations of 
the discontinuities of the actual function 𝑓(𝑡), and the values of the jump function 
approximation at these extremal points are in close proximity to the actual jump in the 
original function. It is also seen that the extrema in the jump function approximation tend 
to stay in the same location when a jump discontinuity is present, regardless of the value 

of 𝑁. Therefore, locating the maxima and minima in a jump function approximation can 
be used as a good estimate of the location of jump discontinuities of a function 𝑓(𝑡). 
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Figure 6. Standard, odd, and even Fourier approximations of 𝒇(𝒕) and their 

associated jump function approximations. Note that �̂�𝒋(𝒕) has no artificial jumps 

at the endpoints for the even approximation. 

 

 

4.2.4 Even Fourier Series Approximation of Jump Functions Using Unevenly 
Spaced Data 

In the example that was studied in Section 4.2.3, the underlying function, 𝑓(𝑡), was 
known. As a result, it was possible to obtain the Fourier coefficients of the jump function, 
𝑓𝑗(𝑡), of 𝑓(𝑡), analytically. Note, however, that the solution obtained by solving the NLP 

that arises from the transcription of an optimal control problem via collocation leads to an 
approximation of the state and control at discrete (sampled) data points. Moreover, this 
discrete approximation is obtained at points that are not evenly spaced. Thus, any jump 
function approximation that would be used to determine the locations of discontinuities in 
the solution must be obtained using this discrete data. In this paper, an even Fourier 
approximation of unevenly spaced data that lies on 𝑡 ∈ [𝑡0, 𝑡𝑓 ] is obtained as follows. 

First, the unevenly spaced data is interpolated to 𝑁 + 1 evenly spaced points on the time 
interval 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Second, these interpolated data points are reflected about 𝑡𝑓 

(excluding the points at 𝑡0 and 𝑡𝑓) to create a sampling of an even function with period 

2(𝑡𝑓 − 𝑡0). The Fast Fourier Transform (FFT) is then utilized to calculate the first 𝑁 Fourier 

coefficients (excluding 𝑎0) of the even Fourier approximation of the data on the period 

2(𝑡𝑓 − 𝑡0). The choice of 𝑁 is somewhat arbitrary so long as the resulting Fourier 

approximation reasonably describes the original set of unevenly spaced data. Figure 8 
images (a) and (b) show, respectively, the even Fourier series approximations of 

unevenly spaced data alongside the corresponding jump function approximations for 𝑁 =
 {10, 20, 40}. 
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Figure 7. 𝑵-term approximation of jump function 𝒇𝒋(𝒕) given in Equation (47) 

using 𝑵 =  {𝟏𝟎, 𝟐𝟎, 𝟒𝟎}. Note that the coefficients used in the jump function 
approximation correspond to an even Fourier approximation of funciton 𝒇(𝒕) 

defined in Equation (46). 

Examining Figure 8, it is seen that the jump function approximation obtained using 
unevenly spaced data has similar features to the jump function approximation obtained 
in Figure 8 where the function 𝑓(𝑡) is known. Specifically, the global extrema of the jump 
function approximation shown in Figure 8 obtained using unevenly spaced data 
correspond closely with the locations of the discontinuities in the sampled function as is 
the case in Figure 8 where the function 𝑓(𝑡) is known. Moreover, these extrema locations 

do not tend to vary as 𝑁 is increased. However, it is observed that the values of these 
extrema tend to decrease as 𝑁 is increased. The decrease is due to the linear 
interpolation step when calculating the even Fourier series coefficients using the 
approach described previously. Despite this new drawback, these extreme points of each 
jump function approximation remain good estimates for the locations of jumps in the 
underlying function of the unevenly sampled data. The extrema of a jump function 

approximation 𝑓𝑗(𝑡) is obtained by determining the zeros of the derivative of 𝑓𝑗(𝑡), where

the derivative of 𝑓𝑗(𝑡) is given as

𝑑𝑓𝑗(𝑡)

𝑑𝑡
= ∑𝜎

𝑁

𝑘=1

(
𝑘

𝑁
)
𝑘𝜋

𝐿
[𝑎𝑘 cos (

𝑘𝜋

𝐿
𝑡) + 𝑏𝑘 sin (

𝑘𝜋

𝐿
𝑡)] 

(48)
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Figure 8. 𝑵-term Fourier and jump function approximations of unevenly spaced 
data for 𝑵 =  {𝟏𝟎, 𝟐𝟎, 𝟒𝟎}. 

 

 

4.2.5 Mesh Refinement Method with Discontinuity Detection 

The mesh refinement method used in this paper combines the hp-adaptive scheme of 
Ref. 45 with the approach described in Section 4.2.1 for approximating jump functions. 
This discussion is restricted to detecting discontinuities and does not provide a discussion 
of the mesh refinement method of Ref. 45. 

Suppose that the NLP of Equations (30) through (33) arising from the LGR collocation 
method is solved on a mesh that has either been supplied (that is, an initial mesh) or a 
mesh that has been computed using a mesh refinement method (for example, the hp-
adaptive method of Ref. 45). After solving the NLP on the initial mesh, the error is 
approximated using the error approximation method given in Section 4.1.4. For each 
mesh interval on the mesh where the maximum relative error tolerance, ∈, is exceeded, 
the following discontinuity detection procedure is employed. First, for each component of 
the control, a jump function approximation is constructed using an even Fourier series 
approximation as described in Section 4.2.1. The global extrema of these jump function 
approximations are determined and are used as the basis for determining the existence 
of jump discontinuity. When a discontinuity is detected, the current mesh is refined by 
bracketing the discontinuity with three new mesh points (one at the estimated 
discontinuity location and two more surrounding the estimated discontinuity location). 
When no discontinuity is detected, the hp mesh refinement method of Ref. 45 is 
employed. The result of refining each mesh interval in the aforementioned manner leads 
to a new mesh. The optimal control problem is then approximated on this new mesh using 
the LGR collocation method given in Section 4.1.2 and the NLP of Equations (30) through 
(33) is solved. The process of constructing a new mesh using the hp-adaptive method of 
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Ref. 45 together with the aforementioned discontinuity detection method is repeated until 

the relative error tolerance ∈ is satisfied on every mesh interval. 

 

4.2.5.1 Method for Obtaining Fourier Coefficients 

Assume that at least one mesh interval exists on the current mesh for which the estimated 

relative error of the solution is larger than the relative error tolerance, ∈. Fourier 
coefficients corresponding to an even Fourier series approximation must then be 
calculated so that the jump function of each control component may be approximated. 
The necessary Fourier coefficients are generated from the set of estimated values of the 
control at the collocation points obtained by solving the NLP of Equations (30) through 

(33) on mesh 𝑀. The number of data points used to approximate the jump function can 
range from the data on a single mesh interval to the data on the entire mesh. It is desirable 
to use as many of the collocation points in the Fourier approximation as possible, because 

computing one set of Fourier coefficients for all 𝐾 of the mesh intervals will be faster than 
producing 𝐾 sets of Fourier coefficients with one set for each interval. Note, however, that 
the mesh fraction (ratio of the mesh interval time span to the total time span of the mesh) 
of individual mesh intervals may be widely different. Large differences between the mesh 
fractions cause the collocation data to be concentrated in some areas of the mesh and 
sparse in others, and such unevenly spaced data can result in a poor Fourier series 
approximation. 

In this research, a grouping algorithm is developed such that mesh intervals are grouped 

together according to their mesh fractions. A group, 𝐺𝑔, is defined as a set of adjacent 
mesh intervals for which the following condition holds: 

 

𝑇𝑘−𝑇𝑘−1

max
𝑗∈{𝐾𝑔+1,⋯,𝐾𝑔+𝑘𝑔}

(𝑇𝑗−𝑇𝑗−1)
≥ 𝜌1, ∀𝑘 ∈ {𝐾𝑔 + 1,⋯ , 𝐾𝑔 + 𝑘𝑔} (49) 

 

where 

 

𝐾𝑔 =∑𝑘𝑖 , 𝑔 = 1,⋯ , 𝐺

𝑔−1

𝑖=1

 

  

 

and 𝜌1 ∈  [0, 1] is a user-defined threshold, kg are the number of mesh intervals in group 

𝐺𝑔, 𝐺 is the number of groups, ∑ 𝑘𝑖 = K𝐺
𝑖=1  , and ⋃ 𝐺𝑔 = {𝑆1, . . . , 𝑆𝐾}

𝐺
𝑔=1 . 

Mesh intervals are grouped in the following manner. We start with one group containing 
all of the mesh intervals in the current mesh (𝐺1  =  {𝑆1, . . . , 𝑆𝐾 }). If one or more of its 

members does not satisfy Equation (49),  𝐺1  is split into 𝐺 new groups,  𝐺1   =
  {𝑆1, . . . , 𝑆𝑘1 }, 𝐺2   =  {𝑆𝑘1 + 1, . . . , 𝑆𝑘1 + 𝑘2 }, 𝐺𝐺   =  {𝑆𝐾𝐺 + 1, . . . , 𝑆𝐾 }. Each new group 
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contains kg adjacent mesh intervals, which either all satisfy or all do not satisfy Equation 
(49). Each of the new groups undergoes the same division process until Equation (49) is 
satisfied by all mesh intervals in each group. 

In this research, 𝜌1  =  0.05. Adjusting 𝜌1 to be larger or smaller will effectaffect how many 
groups are created as well as the degree to which mesh interval’s mesh fractions can 

vary within a group. For example, 𝜌1 = 1 would cause each mesh interval to be assigned 
to its own distinct group if that particular mesh interval is not identical in length to its 

neighbors. Alternatively,  𝜌1 = 0.01  results in each group containing mesh intervals with 
corresponding mesh fractions which are no more than two orders of magnitude apart. 

After grouping is complete, we can produce an accurate even Fourier series 
approximation for any particular group. The data used in the Fourier approximation for a 

particular group, 𝐺𝐺, are the estimated control values at each of the collocation points 
corresponding to each mesh interval in the group as well as the endpoint of the final mesh 

interval in the group. The data is linearly interpolated to 𝑁 + 1 evenly spaced points 
spanning [𝑇𝐾𝑔,  𝑇𝐾𝑔 + 𝑘𝑔]. The evenly spaced points (excluding the first and last points at 

𝑇𝐾𝑔 and  𝑇𝐾𝑔 + 𝑘𝑔) are mirrored about  𝑇𝐾𝑔 + 𝑘𝑔 to create a sampling of an even function 

with period 2( 𝑇𝐾𝑔 + 𝑘𝑔−𝑇𝐾𝑔). The Fast Fourier Transform is then utilized to calculate the 

first 𝑁  Fourier coefficients of the even approximation (𝑎𝑛   =  𝑎1, . . . ,  𝑎𝑁  , 𝑏𝑛   =  0). The 
choice of 𝑁 is somewhat arbitrary so long as the resulting Fourier approximation 
reasonably describes the control solution. Here, 𝑁 is equal to the number of collocation 
points used in the even Fourier series approximation for the current group. 

 

4.2.5.2 Method for Locating and Verifying Discontinuity Locations 

Assume now that all of the mesh intervals on the current mesh have been divided into 

groups. Assume further that the maximum relative error tolerance, ∈, is exceeded on a 
particular mesh interval, 𝑆𝑘, within a particular group, 𝐺𝑔. Assume once more that the first 

𝑁 Fourier coefficients of the even Fourier series approximation to the group’s control 
collocation data have been calculated for each component of the control. The location of 

any existing jump discontinuity within 𝑆𝑘 must be identified for each control component. 

As a preliminary test, a jump in a particular control component, u, is deemed likely when 

the following criteria is met.  There are two points, 𝑢𝑖
𝑘 and 𝑢𝑖−1

𝑘 , on the current mesh 

interval 𝑆𝑘 in current group 𝐺𝑔 that have the highest magnitude linear slope between them. 

The reasoning behind choosing 𝑢𝑖
𝑘 and 𝑢𝑖−1

𝑘  in this manner is due to the fact that the 

absolute value of the slope between two points on opposite sides of a jump discontinuity 
approaches infinity in the limit as those two points approach the discontinuity location 

from either side. Therefore, 𝑢𝑖
𝑘 and 𝑢𝑖−1

𝑘  are the most likely candidates to contain a jump 
discontinuity between them.  
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They have a relative difference 

 

∆𝑟=
𝑢𝑖
𝑘−𝑢𝑖−1

𝑘

( max
𝑘∈{𝐾𝑔+1,⋯,𝐾𝑔+𝑘𝑔},𝑖∈𝑘

(𝑢𝑖
𝑘))−( min

𝑘∈{𝐾𝑔+1,⋯,𝐾𝑔+𝑘𝑔},𝑖∈𝑘
(𝑢𝑖
𝑘))

 (50) 

 

where 𝑢𝑖
𝑘 is inclusive of the endpoint of the interval 𝑢𝑖

𝑘 = 𝑢𝑖
𝑘+1. Note that division by zero 

in Equation (50) is possible only if 𝑢𝑖
𝑘 is constant for all 𝑖 ∈ 𝑘, 𝑘 ∈  {𝐾𝑔 +  1, . . . , 𝐾𝑔 +  𝑘𝑔}. 

In such a case, no jump discontinuity is likely. Therefore, we stop searching for jump 
discontinuities in that particular control component before the division by zero can occur. 
In all other cases, if the absolute value of ∆𝑟 exceeds a user-set threshold 𝜌2  ∈  [0, 1], 
then the search for a jump discontinuity in that particular control component is continued. 

The threshold applied to ∆𝑟 in this research is 𝜌2 = 0.1. Raising the value of 𝜌2 helps limit 
the search for jump discontinuities to larger, more easily distinguishable jumps. The 
threshold also assists in avoiding unnecessary calculations when there are either no jump 
discontinuities or the jumps are too small to detect accurately. 

Assuming that ∆𝑟≥ 𝜌2 for a particular control component, the location of the jump 
discontinuity and the value of the jump must be estimated. Earlier, in Section 6.1, it was 
shown that the location of the maximum or minimum of the jump function approximation, 

𝑓𝑗(𝑡), of Equation (41) can be a good approximation for the location and value of the jump 

in 𝑓(𝑡). We now seek to obtain an extremum of the control component’s jump function 
approximation, denoted as �̂�𝑗(𝑡),  within the current mesh interval. 

An extremum of �̂�𝑗(𝑡) can be found by implementing Newton’s method to find a zero for 

its derivative 
𝑑

𝑑𝑡
�̂�𝑗(𝑡). We use the midpoint between the times corresponding to 𝑢𝑖

𝑘 and 

𝑢𝑖−1
𝑘  (the same points used to calculate ∆𝑟 in Equation 50) as our initial guess. Once a 

zero of 
𝑑

𝑑𝑡
�̂�𝑗(𝑡) is obtained, the second derivative of the jump function approximation 

𝑑2

𝑑𝑡2
�̂�𝑗(𝑡) is used to verify that the concavity matches the jump, because we should 

converge to a local max if the jump is positive and a local min if the jump is negative. The 

process of locating an extremum of 
𝑑

𝑑𝑡
�̂�𝑗(𝑡) is done twice; once using all 𝑁 Fourier 

coefficients, and once more using the first 𝑁 (rounded up to the nearest integer) 
coefficients. The values and locations of each extremum are stored for further analysis. 

In the case where we are unable to converge to an extremum within 𝑆𝑘 and with the 
correct concavity, the search for a jump discontinuity is ceased for that particular control 
component. 

An example of locating an extremum of �̂�𝑗(𝑡) is depicted in Figure 9 along with 

visualizations for the first and second derivatives of �̂�𝑗(𝑡). As can be seen, the initial guess 

is quite close to the extremal point of �̂�𝑗(𝑡), which results in rapid convergence. 

Let �̂�𝑗,𝑁(𝑡) denote �̂�𝑗(𝑡) when 𝑁 terms are used in the approximation. Assume now that 

we have located two respective extrema for �̂�𝑗,𝑁(𝑡) and �̂�
𝑗,
𝑁

2

(𝑡). Let the locations of each 
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extremum be denoted 𝑡𝑁
∗  and 𝑡𝑁

2

∗ . Three final criteria must be met in order to declare 𝑡𝑁
∗  a 

jump discontinuity location. The first criterion is 

 

|𝑢𝑗(𝑡𝑁
∗ )|

( max
𝑘∈{𝐾𝑔+1,⋯,𝐾𝑔+𝑘𝑔},𝑖∈𝑘

(𝑢𝑖
𝑘))−( min

𝑘∈{𝐾𝑔+1,⋯,𝐾𝑔+𝑘𝑔},𝑖∈𝑘
(𝑢𝑖
𝑘))

≥ 𝜌2 (51) 

 

where 𝜌2 is the same threshold used previously on ∆𝑟. 

The second and third criteria are used to verify that the jump function approximation is 
reliable. They are expressed, respectively, as 

 

|𝑢𝑗,𝑁(𝑡𝑁
∗ )−𝑢

𝑗,
𝑁
2

(𝑡𝑁
2

∗ )|

|𝑢𝑗,𝑁(𝑡𝑁
∗ )|

≥ 𝜌3 (52) 

 

and 

 

|𝑡𝑁
∗ −𝑡𝑁

2

∗ |

𝑇𝐾𝑔+𝑘𝑔
−𝑇𝐾𝑔

≥ 𝜌4 (53) 

 

where 𝑇𝐾𝑔 and 𝑇𝐾𝑔+𝑘𝑔  are the endpoints of the current group and 𝜌3 and 𝜌4 are user-

defined thresholds. In this research, 𝜌3 =  0.5 and 𝜌2 =  0.02. If the criteria of Equation 

(51) through (53) are all satisfied, then 𝑡𝑁
∗  is considered a reliable estimate for the location 

of a jump discontinuity in the current control component under investigation. 

 

4.2.5.3 Mesh Refinement Actions 

Assume now that a discontinuity has been detected on mesh interval 𝑆𝑘 and its location 

identified to be 𝑡𝑁
∗ . The mesh interval is refined by splitting the mesh at 𝑡𝑁

∗  and at two 
adjacent points 𝑡𝑁

∗ + ∆𝑡 and 𝑡𝑁
∗ − ∆𝑡. The choice for ∆𝑡 should be some function which 

scales with the length of the mesh interval (𝑇𝑘 − 𝑇𝑘−1). In this research, we choose 

 

∆𝑡 =
1.2

𝑁𝑘(𝑇𝑘 − 𝑇𝑘−1

(

 
 
2

|�̂�𝑗,𝑁(𝑡𝑁
∗ ) − �̂�

𝑗,
𝑁
2
(𝑡𝑁

2

∗ )|

|�̂�𝑗,𝑁(𝑡𝑁
∗ )|

+ 1

)

 
 

 

 



DISTRIBUTION A  
30 

The adjacent mesh point located at (𝑡𝑁
∗ + ∆𝑡 is omitted from the new mesh if (𝑡𝑁

∗ + ∆𝑡 ≥
𝑇𝑘. Similarly, the adjacent mesh point at (𝑡𝑁

∗ − ∆𝑡 is omitted from the new mesh if 
(𝑡𝑁
∗ − ∆𝑡 ≤ 𝑇𝑘−1. Should two separate discontinuities be identified on the same interval 

and their respective bracketing mesh points overlap, the overlapping mesh points are 
omitted from the new mesh and the midpoint between the two discontinuities is used 
instead. 

On subsequent mesh iterations, the following caveat is used to keep the number of mesh 
intervals small (and thereby the size of the NLP as well). If a mesh interval that is known 

to contain a discontinuity, identified on the previous mesh 𝑀− 1, does not meet the mesh 
error tolerance on the current mesh 𝑀, and that mesh interval is identified as having a 
discontinuity again; shrink the three original bracketing mesh points on mesh 𝑀 around 
the new estimated discontinuity location and add one collocation point to the adjacent 
mesh intervals whose mesh fractions grow as their neighbor’s mesh fraction shrinks. 
Recycling mesh points in this manner rather than creating three new mesh points each 
time a discontinuity is re-identified helps limit the growth of the NLP. 

 

4.2.6 Mesh Refinement Algorithm 

A summary of our mesh refinement algorithm appears below. The hp-adaptive scheme 
of Ref. 45 provides the shell to which our discontinuity detection algorithm is added. The 

mesh number is denoted by 𝑀 and is incremented by one with each loop of the algorithm. 

𝑀 also corresponds to the number of mesh refinement iterations, because 𝑀 is initialized 
at 0. This algorithm terminates when either the error tolerance is satisfied in Step 5 or 

when 𝑀 reaches a prescribed limit 𝑀𝑚𝑎𝑥. 

Mesh Refinement with Discontinuity Detection 

Step 1:  Set 𝑀 = 0 and supply initial mesh, 𝑆 = ⋃ 𝑆𝑘 = [−1,+1]
𝐾
𝑘 , 𝑤ℎ𝑒𝑟𝑒 ⋂ 𝑆𝑘 = ∅

𝐾
𝑘  

Step 2:  Solve Radau collocation NLP of Equations (30) through (33) on mesh 𝑀. 

Step 3:  Group adjacent mesh intervals such that Equation (49) is satisfied for each 

group 𝐺. 

Step 4:  Compute scaled error 𝑒𝑚𝑎𝑥
(𝑘)

 in 𝑆𝑘, 𝑘 = 1,⋯ ,𝐾, using Equation (38). 

Step 5:  If 𝑒𝑚𝑎𝑥
(𝑘)

≤∈ for all 𝑘 ∈ [1,⋯ ,𝐾] or 𝑀 > 𝑀𝑚𝑎𝑥, then quit. Otherwise, proceed to 

Step 6. 

Step 6:  For every mesh interval 𝑆𝑘, 𝑘 ∈ [1,⋯ ,𝐾], 

(a) if 𝑒𝑚𝑎𝑥
(𝑘)

≤∈, locate any jump discontinuities in the control components on 𝑆𝑘 

and bracket them using the method of Section 6.5. If no discontinuities are 

found, refine using ℎ or 𝑝 as normal. 

(b) if 𝑒𝑚𝑎𝑥
(𝑘)

≤∈, determine if the mesh size can be reduced using the method of 

Ref. 45 

Step 7:  Increment 𝑀 by one and return to Step 2. 
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4.2.7 Results and Discussion 

The following example problems from the open literature are used to test the performance 
of the algorithm described in Section 4.2.6 when compared with the base algorithm of 
Ref. 45, which does not actively search for jump discontinuity locations. All solutions to 
the example problems contain jump discontinuities in at least one component of the 
control. All computation times (CPU times) shown are based on an average time obtained 
by solving each problem ten times. 

The computations were performed using a MacBook Pro with a 2.8 GHz Intel Core i7 
processor and 16 GB of RAM. 

 

4.2.7.1 Minimum Control Effort Landing on the Moon 

Consider the following optimal control problem. Minimize the objective functional 

 

min 𝐽 = ∫ 𝑢(𝑡)𝑑𝑡
𝑡𝑓
0

 (54) 

 

subject to the dynamic constraints and boundary conditions 

 

ℎ̇(𝑡) = 𝑣(𝑡), (ℎ(0), ℎ(𝑡𝑓)) = (10,0)

�̇�(𝑡) = −𝑔 + 𝑢(𝑡), (𝑣(0), 𝑣(𝑡𝑓)) = (−2,0) 
 (55) 

 

and the control inequality constraint 

 

0 ≤ 𝑢(𝑡) ≤ 3 (56) 

 

where (ℎ(𝑡), 𝑣(𝑡))  ∈  𝑅2 is the state, 𝑢(𝑡) ∈ ℝ is control, and 𝑔 is a constant.  The optimal 
control problem given in Equations (54) through (56) was solved using a mesh refinement 

relative error tolerance ∈= 10−6. It is known that the solution to the optimal control 
problem defined in Equations (54) through (56) has a bang-bang optimal control with a 

single control discontinuity at 𝑡 ≈  1.41 where the control switches from its minimum 
allowable value to its maximum allowable value. The control solution is shown in Figure 
10. The mesh histories using the hp-adaptive method of Ref. 45 without and with the 
discontinuity method developed in this paper are shown in Figure 11, while the 
corresponding final mesh characteristics and CPU times are shown in Table 1. 

When discontinuity detection is applied, the problem solves on the second mesh, needing 
only a single mesh refinement iteration. Without discontinuity detection, however, the 
interval containing the discontinuity is cut into thirds on the first mesh refinement iteration, 
then consecutively halved twice on the second and third iterations of mesh refinement 
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before the mesh error tolerance, ∈, is satisfied. Although the method of Ref. 45 does a 
good job of dividing only the nonsmooth mesh interval on each mesh refinement iteration, 
it divides in an evenly spaced manner without regard to the location of the discontinuity. 
As a result, as opposed to locating the discontinuity and dividing the interval using the 
method of Section 4.2.5.3, extra mesh refinement iterations are required. Moreover, as 
seen in Table 1, both the final mesh and the required CPU time without discontinuity 
detection are larger than the final mesh and the CPU time required with discontinuity 
detection. 

 

 

Table 1. Final Mesh Characteristics for and Computation Times for Example 6.7.1. 

 Without Discontinuity Detection With Discontinuity Detection 

Number of Meshes 4 2 

Number of Mesh Intervals 7 6 

Number of Collocation Points 23 22 

CPU Time 0.253 0.154 

 

 

4.2.7.2 Minimum Time Reorientation of a Robot Arm 

Consider the following optimal control problem. Minimize the objective functional 

 

min 𝐽 = 𝑡𝑓 (57) 

 

subject to the dynamic constraints 

 

�̇�1(𝑡) = 𝑥2(𝑡),

�̇�2(𝑡) = 𝑢1(𝑡)/𝐿,

�̇�3(𝑡) = 𝑥4(𝑡),

�̇�4(𝑡) = 𝑢2(𝑡)/𝐼𝜃,

�̇�5(𝑡) = 𝑥6(𝑡),

�̇�6(𝑡) = 𝑢3(𝑡)/𝐼∅,

(𝑥1(0), 𝑥1(𝑡𝑓)) = (9/2,0)

(𝑥2(0), 𝑥2(𝑡𝑓)) = (0,0)

(𝑥3(0), 𝑥3(𝑡𝑓)) = (0,2𝜋/3)

(𝑥4(0), 𝑥4(𝑡𝑓)) = (0,0)

(𝑥5(0), 𝑥5(𝑡𝑓)) = (𝜋/4, 𝜋/4)

(𝑥6(0), 𝑥6(𝑡𝑓)) = (0,0)

 (58) 
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1 

and the control inequality constraints 

 

|𝑢𝑖(𝑡)| ≤ 1, (𝑖 = 1,2,3) (59) 

 

where (𝑥1(𝑡),  𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡),  𝑥6(𝑡)) ∈ ℝ
6 is the state, (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)) ∈ ℝ

3  

is the control, 𝐼𝜙 = ((𝐿 − 𝑥1(𝑡))
3  +  𝑥1

3 (𝑡))/3, and 𝐼𝜃 = 𝐼𝜙 𝑠𝑖𝑛
2(𝑥5(𝑡)).  The optimal 

control problem given in Equations (57) through (59) was solved using a mesh refinement 

relative error tolerance ∈= 10−8. It is known that each component of the optimal control 
for the example given by Equations (57) through (59) has a bang-bang structure with a 
total of five control discontinuities located at 𝑡 ≈  {2.28, 2.80, 4.57, 6.35, 6.86}. The control 
solution for the example given by Equations (57) through (59) is shown in Figure 12. The 
mesh histories using the hp-adaptive method of Ref. 45 without and with the discontinuity 
method developed in this paper are shown in Figure 13, while the corresponding final 
mesh characteristics and computation times are shown in Table 2. 

 

 

Table 2. Final Mesh Characteristics and Computation Times for Example 6.7.2. 

 Without Discontinuity Detection With Discontinuity Detection 

Number of Meshes 7 4 

Number of Mesh Intervals 33 22 

Number of Collocation Points 182 118 

CPU Time 1.780 0.909 

 

 

The discontinuity detection algorithm of this paper was able to successfully detect all five 
jump discontinuities on the first mesh refinement iteration. As can be seen in Figure 13(b), 
the mesh point triplets that bracket each discontinuity are successfully reassigned with 
each mesh refinement iteration. The reassignment of discontinuity bracketing mesh 
points has the visual effect of each mesh point triplet shrinking around the discontinuity 
location with each successive mesh refinement iteration. Reassigning mesh points in this 
manner has the desirable effect of keeping the number of mesh intervals on each new 
mesh smaller than it would have been had the mesh points not been reassigned. Table 
2 indicates a more efficient use of mesh points and collocation points as well as a faster 
convergence to the solution when comparing the algorithm of this paper to the algorithm 
without jump discontinuity detection. In fact, the average computation time is nearly 
halved. 
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4.2.8 Conclusions 

A mesh refinement method for optimal control has been developed that can detect jump 
discontinuities in control components. A jump function was defined and a method for 
approximating a jump function using an even Fourier series approximation was 
developed. The locations of discontinuities in the solution of an optimal control problem 
were then approximated by locating the extrema of the jump function approximation. A 
mesh refinement method was then described that employed discontinuity detection 
together with a previously developed adaptive mesh refinement method. The mesh was 
refined by bracketing the locations of jump discontinuities. The method was applied to 
two example, and the results indicate that a smaller final mesh size, fewer mesh 
refinement iterations, and less computation time were needed to solve the optimal control 
problem using collocation by including the discontinuity detection method when compared 
with excluding the discontinuity detection method. 
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Figure 9. Example of the mesh algorithm being implemented to find the maximum 
of the jump function on the current mesh interval. The red circles correspond to 
the initial guess, and the green circles correspond to the maximum of the jump 
function. Convergence to the maximum was achieved using Newton’s method. 

Note that the x-axis is labeled "group fraction," which corresponds to the ratio of 

Tk  − Tk−1 over Tkg   − Tk1−1. 
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Figure 10. Control solution for Example 6.7.1. 

 

 

 

Figure 11. Mesh histories using hp-adaptive method of Ref. 45 without and with 
discontinuity detection for Example 6.7.1. 
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Figure 12. Control solution for Example 6.7.2. 
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Figure 13. Mesh histories using hp-adaptive method of Ref. 45 without and with 
discontinuity detection for Example 6.7.2. 

4.3 Performance of Various hp-Adaptive Methods 

This section provides a summary of the performance of various hp-adaptive mesh 
refinement methods that have been developed over the past several years. The 
performance summary provides a way to better understand the behavior of the various 
hp-adaptive methods. Each mesh refinement method that is part of this summary employs 
a different approach to decide how to refine the mesh at each mesh refinement iteration. 
An overview of the approach used in each method is described and is followed by a 
comparison of the performance of the different methods. It is noted that the method of 
Ref. [46] is not included in the performance comparisons because this method is still 
being finalized. 

4.3.1 Methods Used in Performance Analysis of hp-Adaptive Methods 

The following four methods are used as part of the hp-adaptive performance summary. 
First, the hp-adaptive method of Ref. [41] estimates the curvature of the solution in the 

mesh interval. If 𝑒
(k) 

𝑚𝑎𝑥
 is smaller in each mesh interval than the relative error accuracy 

tolerance, ∈, then no additional action is required. If 𝑒
(k) 

𝑚𝑎𝑥
>∈, one of two actions may 

take place: increase the approximating polynomial degree in the mesh interval or divide 

the mesh interval. For intervals where 𝑒
(k) 

𝑚𝑎𝑥
>∈, a criteria is used to determine whether 

the interval needs more collocation points or should be divided into subintervals. The 
criteria in this method is based on the ratio of the maximum and mean curvature of the 
state in each interval. If the ratio is greater than or equal to the user-specified threshold, 

𝑟𝑚𝑎𝑥, the mesh interval is divided. If the ratio is less than 𝑟𝑚𝑎𝑥, the degree of the 
approximating polynomial is increased. 
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Next, the hp-adaptive method of Ref. [43] is a 𝑝, then ℎ method. The polynomial degree 

is increased until the maximum degree is reached; then, the interval is divided. If 𝑒
(k) 

𝑚𝑎𝑥
 is 

smaller in each mesh interval than the relative error accuracy tolerance, ∈, then no 

additional action is required. If 𝑒
(k) 

𝑚𝑎𝑥
>∈, one of two actions may take place: increase the 

approximating polynomial degree in the mesh interval or divide the mesh interval and 
decrease the approximation polynomial degree. First, the method tries to add collocation 
points in the mesh to increase the approximating polynomial degree. The number of 

points added, 𝑃𝑞, is dependent on the current number of collocation points, 𝑁𝑞, 𝑒
(k) 

𝑚𝑎𝑥
, and 

∈. If 𝑁𝑞 + 𝑃𝑞 ≤ 𝑁𝑚𝑎𝑥, then the points are added. If 𝑁𝑞 + 𝑃𝑞 > 𝑁𝑚𝑎𝑥, then the mesh interval 

is divided. The number of collocation points wanted to approximate the polynomial in one 
mesh interval, 𝑁𝑞 + 𝑃𝑞, is split evenly over the subintervals such that the number of 

collocation points in each subinterval is 𝑁𝑚𝑖𝑛. 

Next, the hp-adaptive method of Ref. [44] estimates the smoothness of the solution in the 

mesh interval. If 𝑒
(k) 

𝑚𝑎𝑥
 is smaller in each mesh interval than the relative error accuracy 

tolerance, ∈, then no additional action is required. If the mesh iteration has 𝑒
(k) 

𝑚𝑎𝑥
>∈ in 

any mesh interval, one of two actions may take place in each mesh interval: collocation 
points are added to the mesh interval (increasing the approximating polynomial degree) 

or the mesh interval is divided. If mesh interval has 𝑒
(k) 

𝑚𝑎𝑥
≤ ∈, the mesh size is reduced 

or maintained. For intervals where 𝑒
(k) 

𝑚𝑎𝑥
>∈, a criteria is used to determine whether the 

interval needs more collocation points or should be divided into subintervals. The criteria 
in this method is based on the ratio of current and previous meshes’ local maxima of the 
second derivative of the state on the interior of the mesh interval. If the ratio is greater 

than or equal to the user-specified threshold, �̅�, for any of the state components, the 
mesh interval is divided. Each subinterval has the same number of collocation points as 
the previous interval before being divided. If the ratio is less than the threshold for all state 
components, the degree of the approximating polynomial is increased by adding 

collocation points. If 𝑒
(k) 

𝑚𝑎𝑥
≤ ∈ in a mesh interval, the mesh size can be reduced or 

maintained. First, the method looks to reduce the degree of the approximating polynomial 
in each mesh interval. Using a power series representation of the polynomial 
approximation, negligible terms are found and used to determine the reduction in the 
degree of the approximating polynomial. After determining the polynomial degree in each 
mesh interval, adjacent mesh intervals can be merged. Merging of mesh intervals occurs 
when the polynomial degree of adjacent intervals is the same and the maximum relative 

error in the difference of the polynomials is smaller than ∈ where ∈ is the mesh refinement 
accuracy tolerance. 

Next, the hp-adaptive method of Ref. [45] follows closely with the hp-adaptive method of 
Ref. [44]. The major differences in methodology are the criteria for determining whether 
a mesh interval is smooth or nonsmooth and the method for determining the number of 
collocation points and subintervals to add to a mesh interval. The hp-adaptive method of 
Ref. [44] uses the absolute value of the ratio of current and previous interior local maxima 
of the second derivative of the state while the hp-adaptive method of Ref. [45] uses the 
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decay rate of the Legendre polynomial coefficients. Otherwise, the selection decision 
process is the same as the hp-adaptive method of Ref. [44]. 

 

4.3.2 Examples 

Each example problem includes the problem statement, GPOPS-II setup, results, 
including the state and control solutions, summary of key computational characteristics, 
and mesh refinement histories, and a discussion of the results. In order to produce 
statistically relevant results, each example problem was run 20 times with each mesh 
refinement method. All results shown in this paper were obtained using MATLAB optimal 
control software GPOPS-II [48] using the NLP solver IPOPT [52]. The required first and 
second derivatives required by IPOPT were computed using the built-in sparse first and 
second finite-differencing method. All computations were performed on a 3.5 GHz Intel 
Core Xeon E5-2637V4 Dell Precision Tower 7910 running Linux with 192GB RAM and 
MATLAB R2017b. 

 

4.3.3 Brachistochrone Problem 

Minimize the cost functional: 

 

𝐽 = 𝑡𝑓 

 

subject to dynamic constraints 

 

�̇� = 𝑣 sin 𝑢
�̇� = 𝑣 cos 𝑢
�̇� = 𝑔 cos 𝑢

 

 

and boundary constraints 

 

𝑥(0) = 0, 𝑥(𝑡𝑓) = 2

𝑦(0) = 0, 𝑦(𝑡𝑓) = 2

𝑣(0) = 0, 𝑣(𝑡𝑓) = 𝐹𝑟𝑒𝑒
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4.3.3.1 GPOPS-II Setup 

setup details:  

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’  

scales 

+- method = ’none’ 

method = ’RPM-Differentiation’  

mesh 

+- tolerance = 1.000000e-08 

+- max iterations = 50 

+- colpointsmin = 3 

+- colpointsmax = 20  

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = mumps 

+- tolerance = 1.000000e-07 

+- max iterations = 2000  

display level = 0 

 

4.3.3.2 Results 

 

 

Table 3. Key performance measures for the brachistochrone problem. 
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4.3.3.3 Discussion 

The solution to this classic control problem when plotted in the x-y plane is the shape of 
a cycloid, which is smooth over all mesh intervals with no rapid changes, as seen in Figure 
14. Due to the smoothness of the states and control, all of the mesh refinement methods 
are able to solve the problem with similar mesh sizes and within one mesh iteration of 
one another. The hp-adaptive method of Ref. [45] has the fastest time due to only having 
to refine the mesh once. The hp-adaptive method of Ref. [44] performed the worst, likely 
due to the addition of extra collocation points in comparison to the other methods. 

 

 

 

Figure 14. Problem state and control solution. 
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Figure 15. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 
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Figure 16. Mesh maximum relative error for each mesh. 

 

 

4.3.4 Bryson-Denham Problem 

Minimize the cost functional 

 

𝐽 =
1

2
∫ 𝑢2𝑑𝑡
1

0

 

 

subject to the dynamic constraints 

 

�̇� = 𝑣
�̇� = 𝑢

 

 

the boundary conditions 

 

𝑥(0) = 𝑥(1) = 0
𝑣(0) = −𝑣(1) = 1

 

 

and the state inequality path constraint 

 

𝑥 ≤ 𝑙 
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4.3.4.1 GPOPS-II Setup 

setup details: derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’  

scales 

+- method = ’none’ 

method = ’RPM-Differentiation’  

mesh 

+- tolerance = 1.000000e-08 

+- max iterations = 20 

+- colpointsmin = 3 

+- colpointsmax = 20 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-10 

+- max iterations = 2000  

display level = 0 

 

4.3.4.2 Results 

 

 

Table 4. Key performance measures for the bryson denham problem. 
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4.3.4.3 Discussion 

Figure 17(c) shows two discontinuities in the first derivative of the control at approximately 
0.333 and 0.667 seconds. Each mesh refinement’s actions around this discontinuity can 
be seen in Figure 18. Each mesh refinement method is able to take refinement action 
near the discontinuities on the first mesh refinement, seen in Figure 18; however, because 
no mesh refinement method identifies the position of the discontinuity, the intervals where 
the discontinuities exist are either divided into equal subintervals or the polynomial degree 
of the interval is increased without dividing the interval. The hp-adaptive methods of Ref. 
[41] and Ref. [45] divide the mesh around the discontinuities, while the hp-adaptive 
methods of Ref. [43] and Ref. [44] increase the degree of the approximating polynomial. 
The hp-adaptive method of Ref. [44] is slightly faster than the hp-adaptive method of Ref. 
[41] due to the ability to reduce the mesh size on adjacent mesh intervals. The hp-
adaptive method of Ref. [43] never divides the mesh intervals, able to approximate the 
derivative change in the control by just increasing the degree of the approximating 
polynomial. However, this takes more mesh iterations than the other methods, leading to 
the slowest cpu time, because the surrounding mesh intervals are not merged like the hp-
adaptive method of Ref. [44]. 
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Figure 17. Problem state and control solution. 
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Figure 18. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 
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Figure 19. Mesh maximum relative error for each mesh. 
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4.3.5 Bryson Minimum Time-To-Climb Problem 

Minimize the cost functional: 

 

𝐽 = 𝑡𝑓 

 

subject to the dynamic constraints 

 

ℎ̇ = sin 𝛾

�̇� =
𝑇 cos 𝑎 − 𝐷

𝑚
−
𝜇 sin 𝛾

𝑟2

�̇� =
𝑇 sin 𝑎 + 𝐿

𝑚𝑣
+ cos 𝛾 (

𝑣

𝑟
−

𝜇

𝑣𝑟2
)

�̇� =
−𝑇

𝑔0𝐼𝑠𝑝

 

 

and the boundary conditions 

 

ℎ(0) = 0
𝑣(0) = 129.314
𝛾(0) = 0 𝑑𝑒𝑔

𝑚(0) = 19050.864 𝑘𝑔

ℎ(𝑡𝑓) = 19994.88 𝑚

𝑣(𝑡𝑓) = 295.092 𝑚 𝑠−1

𝛾(𝑡𝑓) = 0 𝑑𝑒𝑔

𝑚(𝑡𝑓) = 𝐹𝑟𝑒𝑒

 

 

and the control inequality constraint 

 

−𝜋

4
≤ 𝛼 ≤

𝜋

4
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4.3.5.1 GPOPS-II Setup 

setup details:  

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’  

scales 

+- method = ’automatic-bounds’  

method = ’RPM-Differentiation’ 

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 25 

+- colpointsmin = 3 

+- colpointsmax = 20  

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-07 

+- max iterations = 2000  

display level = 0 

 

4.3.5.2 Results 

 

 

Table 5. Key performance measures for the Bryson minimum time to climb 
problem. 
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4.3.5.3 Discussion 

This problem has a discontinuity in the first derivative of the control, seen in Figure 20(e). 
Figure 21 shows how each mesh refinement method handles this type of discontinuity. 
The two mesh refinement methods of Ref. [44] and Ref. [45] solve the problem the fastest 
in four mesh iterations, as seen in Table 5. The hp-adaptive method of Ref. [44] first 
increases the polynomial degree before splitting the mesh intervals, which leads to a 
slightly faster cpu time than the hp-adaptive method of Ref. [45]. The hp-adaptive method 
of Ref. [41] has over thirty more mesh intervals than all the other methods because it is 
first an h method. Having significantly more mesh intervals than the other methods leads 
to the slowest cpu time. The hp-adaptive method of Ref. [43] uses the fewest amount of 
collocation points. However, this method is first a p method. Due to the method’s 
algorithm, it adds collocation points before dividing mesh intervals. This addition of 
collocation points before dividing the mesh intervals at the location of the discontinuity 
leads to a longer computational time. 

 

 



DISTRIBUTION A  
53 

 

Figure 20. Problem state and control solution. 
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Figure 21. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 

 

 

 

Figure 22. Mesh maximum relative error for each mesh. 
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4.3.6 Dynamic Soaring Problem 

Minimize the cost functional: 

 

𝐽 = 7𝛽 

 

subject to the dynamic constraints 

 

�̇� = 𝑣 cos 𝛾 sin𝜓 +𝑊𝑥
�̇� = 𝑣 cos 𝛾 cos𝜓
�̇� = 𝑣 sin 𝛾

𝑚�̇� = −𝐷 −𝑚𝑔 sin 𝛾 − 𝑚�̇�𝑥 cos 𝛾 sin𝜓

𝑚𝑣�̇� = 𝐿 cos 𝜎 − 𝑚𝑔 cos 𝛾 + 𝑚�̇�𝑥 sin 𝛾 sin𝜓

𝑚𝑣 cos 𝛾�̇� =𝑚�̇�𝑥 cos𝜓

 

 

and the boundary conditions 

 

𝑥(0) = 𝑥(𝑡𝑓) = 0

𝑦(0) = 𝑦(𝑡𝑓) = 0

𝑧(0) = 𝑧(𝑡𝑓) = 0

𝑣(0) = 𝑣(𝑡𝑓) = 100

𝛾(0) = 𝛾(𝑡𝑓) = 0

𝜓(𝑡𝑓) = 𝜓(0) − 2𝜋

 

 

where 

 

�̇�𝑥 = 𝛽𝑣 sin Υ 
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4.3.6.1 GPOPS-II Setup 

setup details:  

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’automatic-bounds’ 

method = ’RPM-Differentiation’  

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 20 

+- colpointsmin = 3 

+- colpointsmax = 10 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-07 

+- max iterations = 2000 

display level = 0 

 

4.3.6.2 Results Discussion 

Figure 24(a) shows two discontinuities in the first derivative of the control. Figure 25 
shows the mesh refinement history for each method. The hp-adaptive methods of Ref. 
[44] and Ref. [45] solve in three mesh refinement iterations by adding mesh points around 
the discontinuities. They have similar mesh sizes and solve in similar computational 
times. The hp-adaptive method of Ref. [41] solves in four mesh refinements but with a 
larger mesh size: thirty more mesh intervals and fifty more collocation points. The hp-
adaptive method of Ref. [43] has one fewer mesh intervals than the hp-adaptive methods 
of Ref. [44] and Ref. [45] and over ten fewer collocation points. However, the hp-adaptive 
method of Ref. [43] is slower than the hp-adaptive methods of Ref. [44] and Ref. [45]. 
While the hp-adaptive method of Ref. [43] adds mesh intervals near the discontinuities, it 
does not identify the discontinuity. The hp-adaptive method of Ref. [44] is able to bracket 
and add mesh intervals around the discontinuities in its final mesh iteration, which allows 
it to solve the problem in one less iteration than the hp-adaptive method of Ref. [43]. 
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Table 6. Key performance measures for the dynamic soaring problem. 
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Figure 23. Problem state solution. 
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Figure 24. Problem control solution. 

 

 

 

Figure 25. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 
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Figure 26. Mesh maximum relative error for each mesh. 

 

 

4.3.7 Hypersensitive Problem 

Minimize the cost functional: 

 

𝐽 =
1

2
∫ 𝑥2 + 𝑢2 𝑑𝑡
𝑡𝑓

0

 

 

subject to the dynamic constraints 

 

�̇� = −𝑥3 + 𝑢 

 

and the boundary conditions 

 

𝑥(0) = 1.5

𝑥(𝑡𝑓) = 1

𝑡𝑓 = 10000
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4.3.7.1 GPOPS-II Setup 

setup details:  

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’none’ 

method = ’RPM-Differentiation’ 

mesh 

+- tolerance = 1.000000e-07 

+- max iterations = 50 

+- colpointsmin = 3 

+- colpointsmax = 20 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-10 

+- max iterations = 2000 

display level = 0 

 

 

 

Figure 27. Problem state and control solution. 
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4.3.7.2 Results Discussion 

The non-zero portions of the state and control solution to the hypersensitive problem lie 
on the intervals [0, 10] and [9990, 10000] respectively, seen in Figure 28. When compared 
to the entire problem domain on [0, 10000], the two non-zero state/control intervals each 
represent only   1 of the entire domain. Considering that the initial mesh has ten mesh 

intervals which each span 
1

2
 of the entire problem domain, the hypersensitive problem is 

an excellent problem to test each mesh refinement method’s capability to quickly and 
efficiently allocate collocation points in regions of interest (where the state and control are 
nonzero and changing with time). The top performers for this problem are the hp-adaptive 
methods of Ref. [44] and Ref. [45] due to their more efficient allocation of grid points near 
the initial and final time, as well as their ability to minimize the number of unnecessary 
grid points in the middle portion of the mesh (where both the state and control remain 
zero). The hp-adaptive method of Ref. [45] clocks in faster than the hp-adaptive method 
of Ref. [44] despite taking one more mesh refinement iteration. The faster computation 
time of the hp-adaptive method of Ref. [45] appears to be correlated with its smaller final 
mesh size (fewer mesh intervals and collocation points), which indicates that the 
corresponding NLP’s being solved on each new mesh were generally smaller in size and 
more computationally tractable. The hp-adaptive methods of Ref. [41] and Ref. [43] had 
the largest final mesh sizes due to their inability to merge mesh intervals or decrease the 
polynomial degree on mesh intervals. The hp-adaptive method of Ref. [43] had a smaller 
final mesh size compared to the hp-adaptive method of Ref. [41] but took three more 
mesh refinement iterations to converge to the solution, resulting in the hp-adaptive 

method of Ref. [43] having the slowest CPU time out of the four methods. Therefore, ℎ 

refinement is the preferred choice over 𝑝 refinement in a problem like hypersensitive 
where extremely small domain mesh intervals are needed in precise locations to 
accurately capture the solution. 
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Figure 28. Close-up of state and control solution. 

 

 

Table 7. Key performance measures for the hypersensitive problem. 
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Figure 29. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 

 

 

 

Figure 30. Mesh maximum relative error for each mesh. 
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4.3.8 Moon Lander Problem 

Minimize the cost functional: 

 

𝐽 = ∫ 𝑢 𝑑𝑡
𝑡𝑓

0

 

 

subject to the dynamic constraints 

 

ℎ̇ = 𝑣
�̇� = −𝑔 + 𝑢

 

 

and the boundary conditions 

 

ℎ(0) = 10, ℎ(𝑡𝑓) = 0

𝑣(0) = −2, 𝑣(𝑡𝑓) = 0 
 

 

4.3.8.1 GPOPS-II Setup 

setup details: 

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies =’sparseNaN’ 

scales 

+- method = ’none’ 

method = ’RPM-Differentiation’ 

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 20 

+- colpointsmin = 3 

+- colpointsmax = 20 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = mumps 

+- tolerance = 1.000000e-07 

+- max iterations = 2000 

display level = 0 
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Figure 31. Problem state and control solution. 

 

 

Table 8. Key performance measures for the moon lander problem. 
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4.3.8.2 Results Discussion 

Although simple in its problem statement, the Moon Lander problem is deceivingly difficult 
for all four of the mesh refinement methods to solve efficiently. A single discontinuity in 
the solution for the control causes a discontinuity in the second state component 
derivative. Such non-smooth behavior on a particular mesh interval is difficult to 
approximate with a smooth polynomial approximation for the state. Therefore, the 
difficulty in solving this problem efficiently lies in splitting the mesh exactly at the 
discontinuity point so that the piecewise polynomial nature of the solution can be 
approximated using piecewise polynomials with the correct switch point. 

The hp-adaptive method of Ref. [41] was most efficient in terms of the number of mesh 
refinement iterations needed to converge to the solution. However, the hp-adaptive 
method of Ref. [41] was least efficient in its allocation of collocation points to achieve 
solution accuracy, resulting in the largest final mesh size and one of the slowest 
computation times. The hp-adaptive methods of Ref. [44] and Ref. [45] had the most 
efficient use of collocation points in their final mesh, because of their ability to merge 
mesh intervals. Oddly enough, the hp-adaptive method of Ref. [43] was able to meet the 
mesh maximum relative error tolerance without ever splitting the mesh, but it took three 
iterations of mesh refinement to do so. Overall, the computation times of all four methods 
are comparable with one another, and the hp-adaptive method of Ref. [44] came out 
slightly faster than the rest. 
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Figure 32. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 

 

 

 

Figure 33. Mesh maximum relative error for each mesh. 
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4.3.9 Orbit-Raising Problem 

Minimize the cost functional: 

 

𝐽 = −𝑟(𝑡𝑓) 

 

subject to the dynamic constraints 

 

�̇� = 𝑣𝑟

�̇� =
𝑣𝜃
𝑟

�̇�𝑟 =
𝑣𝜃

2

𝑟
−
𝜇

𝑟2
+ 𝑎𝑢1

𝑣�̇� =
𝑣𝑟𝑣𝜃
𝑟

+ 𝑎𝑢2

 

 

the boundary conditions 

 

𝑟(0) = 1 𝑟(𝑡𝑓) = 𝐹𝑟𝑒𝑒

𝜃(0) = 0 𝜃(𝑡𝑓) = 𝐹𝑟𝑒𝑒

𝑣𝑟(0) = 0

𝑣𝜃(0) = 1

𝑣𝑟(𝑡𝑓) = 0

𝑣𝜃(𝑡𝑓) = √
𝜇

𝑟(𝑡𝑓)

 

 

and the control equality constraint 

 

𝑢1
2 + 𝑢2

2 = 1 

 

where 

 

𝑎 =
𝑇

𝑚0+�̇�𝑡

𝑇 = 0.1405
𝑚0 = 1

�̇� = 0.0749
𝜇 = 1
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4.3.9.1 GPOPS-II Setup 

setup details: 

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’automatic-hybrid’ 

method = ’RPM-Differentiation’ 

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 25 

+- colpointsmin = 3 

+- colpointsmax = 10 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = mumps 

+- tolerance = 1.000000e-07 

+- max iterations = 2000  

display level = 0 

 

4.3.9.2 Results Discussion 

The solution to the orbit-raising problem is smooth and well-behaved for the state. 
However, the control experiences rapid changes in its first component as well as the first 
derivative of its second component near the halfway point of the maneuver, as seen in 
Figure 34. The simplicity of the solution is reflected in the performances of the mesh 
refinement methods. All four methods (excluding the hp-adaptive method of Ref. [41]) 
converged to the solution by simply increasing the polynomial approximation degree in 
the middle mesh intervals where the state and control change most rapidly. In the case 
of the hp-adaptive methods of Ref. [43] and Ref. [44], only one mesh refinement iteration 
was needed to achieve the desired solution accuracy. All four methods have comparable 
CPU times, but the hp-adaptive methods of Ref. [43] and Ref. [44] were slightly faster 
than the rest, because they used one fewer mesh refinement iteration, as seen in Table 
9. 
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Table 9. Key performance measures for the orbit raising problem. 
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Figure 34. Problem state and control solution. 



DISTRIBUTION A 
73 

Figure 35. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 
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Figure 36. Mesh maximum relative error for each mesh. 

 

 

4.3.10 Minimum-Time Reorientation of an Asymmetric Rigid Body 

Minimize the cost functional: 

 

𝐽 = 𝑡𝑓 

 

subject to the dynamic constraints 

 

�̇�1 =
1

2
(𝜔1𝑞4 − 𝜔2𝑞3 + 𝜔3𝑞2)

𝑞2̇ =
1

2
(𝜔1𝑞3 + 𝜔2𝑞4 − 𝜔3𝑞1)

�̇�3 =
1

2
(−𝜔1𝑞2 + 𝜔2𝑞1 + 𝜔3𝑞4)

�̇�1 =
𝑢1
𝐼𝑥
− (

𝐼𝑧 − 𝐼𝑦

𝐼𝑥
)𝜔2𝜔3

�̇�2 =
𝑢2
𝐼𝑦
− (

𝐼𝑥 − 𝐼𝑧
𝐼𝑦

)𝜔1𝜔3

�̇�3 =
𝑢3
𝐼𝑧
− (

𝐼𝑦 − 𝐼𝑥

𝐼𝑧
)𝜔1𝜔2
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and the boundary conditions 

 

𝑞1(0) = 0, 𝑞1(𝑡𝑓) = sin (0.5
150𝜋

180
)

𝑞2(0) = 0, 𝑞2(𝑡𝑓) = 0

𝑞3(0) = 0, 𝑞3(𝑡𝑓) = 0

𝜔1(0) = 0, 𝜔1(𝑡𝑓) = 0

𝜔2(0) = 0, 𝜔2(𝑡𝑓) = 0

𝜔3(0) = 0, 𝜔3(𝑡𝑓) = 0

 

 

and the path constraint 

 

𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 = 1 

 

where 

 

𝐼𝑥 = 5621
𝐼𝑦 = 4547

𝐼𝑧 = 2364
 

 

Note that the control consists of {𝑞4, 𝑢1, 𝑢2, 𝑢3}, where 𝑞4 corresponds to the scalar part of 
the quaternion 𝑞 =  {𝑞1, 𝑞2, 𝑞3, 𝑞4}. 
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4.3.10.1 GPOPS-II Setup 

setup details:  

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’none’ 

method = ’RPM-Integration’ 

mesh 

+- tolerance = 1.000000e-08 

+- max iterations = 25 

+- colpointsmin = 3 

+- colpointsmax = 10  

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-07 

+- max iterations = 2000 

display level = 0 

 

4.3.10.2 Results Discussion 

Five discontinuities in the components of the control cause five discontinuities in the first 
derivatives of the state components, as seen in Figures 37 and 38. All four mesh 
refinement methods spent the majority of their time refining the mesh intervals that 
contained the nonsmooth solution behavior. No matter which method was used, the mesh 
histories of each method, shown in Figure 39, show that mesh points tended to 
concentrate near the discontinuity locations as the intervals containing the discontinuities 
were split into smaller and smaller mesh intervals. Surprisingly, on the first two mesh 
refinement iterations, the hp-adaptive method of Ref. [43] behaved more like an h method 
than the hp-adaptive method of Ref. [41]. However, the unusual behavior for the hp-
adaptive method of Ref. [43] resulted in it achieving the fastest computation time out of 
all four methods. The hp-adaptive method of Ref. [44] used the fewest number of 
refinement iterations to converge to the solution but was slower than the hp-adaptive 
methods of Ref. [43] and Ref. [45] due to its large mesh size. 
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Table 10. Key performance measures for the reorientation problem. 
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Figure 37. Problem state solution. 
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Figure 38. Problem control solution. 
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Figure 39. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 

Figure 40. Mesh maximum relative error for each mesh. 
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4.3.11 Maximum Cross Range Reusable Launch Vehicle Entry 

Minimize the cost functional: 

 

𝐽 = −𝜙(𝑡𝑓) 

 

subject to the dynamic constraints 

 

�̇� = 𝑣 sin 𝛾

�̇� =
𝑣 cos 𝛾 sin𝜓

𝑟 cos𝜙

�̇� =
𝑣 cos 𝛾 cos𝜓

𝑟

�̇� = −
𝐷

𝑚
𝑔 sin 𝛾

�̇� =
𝐿 cos 𝜎

𝑚𝑣
− (

𝑔

𝑣
−
𝑣

𝑟
) cos 𝛾

�̇� =
𝐿 sin 𝜎

𝑚𝑣 cos 𝛾
+
𝑣 cos 𝛾 sin𝜓 tan𝜙

𝑟

 

 

and the boundary conditions 

 

𝑟(0) = 79248 + 𝑅ℯ , 𝑟(𝑡𝑓) = 24384 + 𝑅ℯ𝑚

𝜃(0) = 0 𝑑𝑒𝑔, 𝜃(𝑡𝑓) = 𝐹𝑟𝑒𝑒

𝜙(0) = 0 𝑑𝑒𝑔, 𝜙(𝑡𝑓) = 𝐹𝑟𝑒𝑒

𝑣(0) = 7802.88, 𝑣(𝑡𝑓) = 762 𝑚 𝑠
−1

𝛾(0) = −1 𝑑𝑒𝑔, 𝛾(𝑡𝑓) = −5 𝑑𝑒𝑔

𝜓(0) = 90 𝑑𝑒𝑔, 𝜓(𝑡𝑓) = 𝐹𝑟𝑒𝑒
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where 

 

𝑔 =
𝜇

𝑟2

𝐷 = 0.5𝑝𝑣2𝑆𝐶𝐷
𝐿 = 0.5𝑝𝑣2𝑆𝐶𝐿

𝜌 = 𝜌0𝑒𝑥𝑝 (−
𝑟 − 𝑅ℯ
𝐻

)

𝐶𝐷 = 𝑐𝑑(1) + 𝑐𝑑(2)𝑎 + 𝑐𝑑(3)𝑎
2

𝐶𝐿 = 𝑐𝑙(1)+𝑐𝑙(2)𝑎

 

 

Important auxiliary data for this problem is contained in Table 11. 

 

 

Table 11. Auxiliary data for the rlvEntry problem. 
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4.3.11.1 GPOPS-II Setup 

setup details: 

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’automatic-bounds’ 

method = ’RPM-Integration’ 

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 20 

+- colpointsmin = 3 

+- colpointsmax = 20 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-07 

+- max iterations = 2000 

display level = 0 

 

 

Table 12. Key performance measures for the rlv entry problem. 
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4.3.11.2 Results Discussion 

Both the state and control have smooth solutions; however, state components 1, 4, 5, 
and 6, as well as control component 1 all display oscillatory behavior (to varying degrees) 
which dampen out as the trajectory progresses. In addition, state component 5 and 
control component 1 dip down and back up rapidly at the end of the maneuver. Due to 
the smooth nature of the solution, the hp-adaptive method of Ref. [43] excelled over the 
other methods by using its p refinement approach. The hp-adaptive method of Ref. [43] 
did not split a single interval, converged in the fewest number of mesh refinement 
iterations, had the smallest final mesh size, and achieved the fastest cpu time as a result.  
The other three methods took one more refinement iteration than the hp-adaptive method 
of Ref. [43] and had many more mesh intervals and collocation points in their final mesh. 
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Figure 41. Problem state solution. 
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Figure 42. Problem control solution. 

 

 

 

Figure 43. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 
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Figure 44. Mesh maximum relative error for each mesh. 

4.3.12 Minimum-Time Reorientation of a Robot Arm 

Minimize the cost functional: 

𝐽 = 𝑡𝑓 

subject to the dynamic constraints 

�̇�1 = 𝑥2, �̇�2 =
𝑢1
𝐿

�̇�3 = 𝑥4, �̇�4 =
𝑢2
𝐼𝜃

�̇�5 = 𝑥6, �̇�6 =
𝑢3
𝐼𝜙
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and the boundary conditions 

 

𝑥1(0) =
9

2
,  𝑥1(𝑡𝑓) =

9

2
𝑥2(0) = 0,  𝑥2(𝑡𝑓) = 0

𝑥3(0) =,  𝑥3(𝑡𝑓) =
2𝜋

3
𝑥4(0) =,  𝑥4(𝑡𝑓) = 0

𝑥5(0) =,  𝑥5(𝑡𝑓) =
𝜋

4
𝑥6(0) =,  𝑥6(𝑡𝑓) = 0

 

 

and the control inequality constraints 

 

−1 ≤ 𝑢𝑖 ≤ 1, (𝑖 = 1,2,3) 

 

where 

 

𝐼𝜙 =
(𝐿 − 𝑥1)

3 + 𝑥1
3

3
𝐼𝜃 = 𝐼𝜙 sin

2(𝑥5)

𝐿 = 5
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4.3.12.1 GPOPS-II Setup 

setup details: 

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’automatic-guess’ 

method = ’RPM-Differentiation’ 

mesh 

+- tolerance = 1.000000e-08 

+- max iterations = 20 

+- colpointsmin = 3 

+- colpointsmax = 20 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-09 

+- max iterations = 2000 

display level = 0 

 

4.3.12.2 Results Discussion 

The robot arm problem has a bang-bang solution for each of the control components as 
seen in Figure 46. A total of five discontinuities in the control cause corresponding 
discontinuities in the state derivative, seen in Figure 45. In between discontinuity points, 
the state solution is smooth and relatively simple in its behavior. Therefore, the key to 
solving the robot arm problem efficiently lies in splitting the mesh at the five discontinuity 
locations. None of the methods is capable of estimating the discontinuity locations and 
taking targeted h refinement action at those locations. Instead, when using h refinement 
on a particular mesh interval, the original interval is evenly split into new intervals. 
Repeated application of evenly splitting intervals that contain a discontinuity results in 
mesh points concentrating around the discontinuity locations. The hp-adaptive method of 
Ref. [41] achieved the fastest computation time, illustrating the efficiency of h refinement 
for intervals which contain a discontinuity. The hp-adaptive methods of Ref. [44] and Ref. 
[45] were close behind the hp-adaptive method of Ref. [41] in their computation times, 
primarily using h-refinement as well on the nonsmooth mesh intervals. In contrast to the 
other methods, the hp-adaptive method of Ref. [43] utilized p refinement on most of its 
mesh refinement iterations. Showcasing what can go wrong in a p method approach, the 
hp-adaptive method of Ref. [43] took more than ten more mesh refinement iterations to 
achieve solution accuracy, and it was the slowest in terms of computation time as well. 
However, the hp-adaptive method of Ref. [43] did manage to use the fewest number of 
collocation points in its final mesh. 
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Table 13. Key performance measures for the robot arm problem. 
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Figure 45. Problem state solution. 
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Figure 46. Problem control solution. 
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Figure 47. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 

 

 

 

Figure 48. Mesh maximum relative error for each mesh. 
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4.3.13 Seywald Minimum Time-to-Climb 

Minimize the cost functional: 

 

𝐽 = 𝑡𝑓 

 

subject to the dynamic constraints 

 

ℎ̇ = 𝑣 sin 𝛾

�̇� =
𝑇 − 𝐷

𝑚
− 𝑔 sin 𝛾

�̇� = 𝑔
𝑢 − cos 𝛾

𝑣

 

 

the boundary conditions 

 

ℎ(0) = 0, ℎ(𝑡𝑓) = 19995 𝑚

𝑣(0) = 129.314, 𝑣(𝑡𝑓) = 295.092 𝑚 𝑠−1

𝛾(0) = 0 𝑑𝑒𝑔, 𝛾(𝑡𝑓) = 0 𝑑𝑒𝑔 

 

 

and the inequality path constraint 

 

ℎ ≥ 0 
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4.3.13.1 GPOPS-II Setup 

setup details: 

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’none’ 

method = ’RPM-Differentiation’ 

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 25 

+- colpointsmin = 4 

+- colpointsmax = 10 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-07 

+- max iterations = 2000 

display level = 0 

 

 

Table 14. Key performance measures for the seywald minimum time to climb 
problem. 
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4.3.13.2 Results Discussion 

There is one key solution characteristic in this problem; there is one discontinuity in the 
first derivative of the control as seen in Figure 49. The hp-adaptive methods of Ref. [41] 
and Ref. [45] both solve the seywald minimum time-to-climb problem in three mesh 
refinement iterations; however, the hp-adaptive method of Ref. [45] solves slightly faster 
than the hp-adaptive method of Ref. [41]. This is due to the smaller mesh size, where the 
hp-adaptive method of Ref. [45] added collocation points instead of adding mesh intervals 
like the hp-adaptive method of Ref. [41], a primarily h method. The hp-adaptive method 
of Ref. [43] uses its collocation points most efficiently, using fewer points than the other 
methods. However, it takes the longest to solve because it takes longer for the method to 
divide the interval into enough subintervals to bracket the discontinuity. 

 

 

 

Figure 49. Problem state and control solution. 

 



DISTRIBUTION A  
97 

 

Figure 50. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 

 

 

 

Figure 51. Mesh maximum relative error for each mesh. 
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4.3.14 Space Station Attitude Reorientation 

Minimize the cost functional: 

 

𝐽 =
1

2
∫ 𝑢𝑇𝑢 𝑑𝑡
𝑡𝑓

0

 

 

subject to the dynamic constraints 

 

�̇� = 𝐽−1{𝑇𝑔𝑔(𝑟) − 𝜔 × [𝐽𝜔 + ℎ] − 𝑢}

�̇� =
1

2
[𝑟𝑟𝑇 + 𝐼 + 𝑟⊗][𝜔 − 𝜔(𝑟)]

ℎ̇ = 𝑢

 

 

and the boundary conditions 

 

𝜔(0) = 0, ℎ(𝑡𝑓) = 19994.88 𝑚

𝑟(0) = 129.314, 𝑣(𝑡𝑓) = 295.092 𝑚 𝑠−1

ℎ(0) = 0, 𝛾(𝑡𝑓) = 0 

𝑡𝑓 = 1800

 

 

and the control inequality constraint 

 

‖ℎ‖2 ≤ ℎ𝑚𝑎𝑥 
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4.3.14.1 GPOPS-II Setup 

setup details: 

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’automatic-bounds’ 

method = ’RPM-Integration’ 

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 25 

+- colpointsmin = 4 

+- colpointsmax = 20 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = ma57 

+- tolerance = 1.000000e-07 

+- max iterations = 2000 

display level = 0 
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Figure 52. Problem state solution. 
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Figure 53. Problem state and control solution. 
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Table 15. Key performance measures for the space station problem. 

 

 

 

4.3.14.2 Results Discussion 

The solution of this problem is smooth, as seen in Figures 52 and 53. Therefore, a p 
method will be ideal. The hp-adaptive methods of Ref. [43] and Ref. [44] both solve the 
space shuttle problem in one mesh refinement. Both methods have similar mesh sizes 
and computational time; however, the hp-adaptive method of Ref. [44] is slightly faster 
than the hp-adaptive method of Ref. [43] even though the hp-adaptive method of Ref. [43] 
has fewer collocation points. The hp-adaptive methods of Ref. [41] and Ref. [45] solve 
the problem in two mesh refinements. They have similar mesh sizes and computational 
times. The difference in computational times for each method, seen in Table 15 as less 
than one second, is not significant due to the lack of key solution characteristics that might 
present difficulty in solving the problem. 
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Figure 54. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 

 

 

 

Figure 55. Mesh maximum relative error for each mesh. 
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4.3.15 Tuberculosis 

4.3.15.1 Problem Statement 

Minimize the cost functional: 

 

𝐽 = ∫ (𝐿2 + 𝐼2 +
1

2
𝐵1𝑢1

2 + 𝐵2𝑢2
2)𝑑𝑡

𝑡𝑓

0

 

 

subject to the dynamic constraints 

 

�̇� = Λ − 𝛽1𝑆
𝐼1
𝑁
− 𝛽∗𝑆

𝐼2
𝑁
− 𝜇𝑆

�̇�1 = 𝛽1𝑆
𝐼1
𝑁
− (𝜇 + 𝑘1)𝐿1 − 𝑢1𝑟1𝐿1 + (1 − 𝑢2)𝑝𝑟2𝐼1 + 𝛽2𝑇

𝐼1
𝑁
− 𝛽∗𝐿1

𝐼2
𝑁

𝐼1̇ = 𝑘1𝐿1 − (𝜇 + 𝑑1)𝐼1 − 𝑟2𝐼1

�̇�2 = (1 − 𝑢2)𝑞𝑟2𝐼1 − (𝜇 + 𝑘2)𝐿2 + 𝛽
∗(𝑆 + 𝐿1 + 𝑇)

𝐼2
𝑁

𝐼2̇ = 𝑘2𝐿2 − (𝜇 + 𝑑2)𝐼2

�̇� = 𝑢1𝑟1𝐿1 + 𝑢2(𝑝 + 𝑞)𝑟2𝐼1 − 𝛽2𝑇
𝐼1
𝑁
− 𝛽∗𝑇

𝐼2
𝑁
− 𝜇𝑇

 

 

the boundary conditions 

 

𝑆(0) = 19000
𝐿1(0) = 9000

𝐿2(0) = 500

𝐼1(0) = 1000

𝐼2(0) = 250

𝑇(0) = 250

 

 

and the state equality path constraint 

 

𝑆 + 𝐿1 + 𝐼1 + 𝐿2 + 𝐼2 + 𝑇 − 𝑁 = 0 
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4.3.15.2 GPOPS-II Setup 

setup details: 

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’automatic-bounds’ 

method = ’RPM-Integration’ 

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 10 

+- colpointsmin = 3 

+- colpointsmax = 20  

initial mesh characteristics 

+- Phase 1 

* fraction = [0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = mumps 

+- tolerance = 1.000000e-07 

+- max iterations = 2000 

display level = 0 

 

4.3.15.3 Results Discussion 

Figure 57 shows the three discontinuities in the first derivative of the control. Each mesh 
refinement’s actions around these discontinuities can be seen in Figure 58. The hp-
adaptive method of Ref. [44] solves the tuberculosis problem in two mesh refinement 
iterations. The hp-adaptive method of Ref. [43] has the smallest mesh size, takes four 
mesh iterations, and ranks third in computational time. This is due to being a primarily p 
method. The hp-adaptive methods of Ref. [44] and Ref. [45] divide the mesh intervals 
when the hp-adaptive method of Ref. [43] increases the degree of the approximating 
polynomial in the mesh interval that contains the discontinuity. While this leads to the hp-
adaptive method of Ref. [43] having a smaller mesh size, the two other methods are able 
to converge to a solution quicker. 
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Table 16. Key performance measures for the tuberculosis problem. 
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Figure 56 Problem state solution. 
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Figure 57. Problem control solution. 

Figure 58. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 
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Figure 59. Mesh maximum relative error for each mesh. 

 

 

4.3.16 Tumor Anti-Angiogenesis 

Minimize the cost functional: 

 

𝐽 = 𝑝(𝑡𝑓) 

 

Subject to the dynamic constraints 

 

�̇� = −(𝜍𝑝) log (
𝑝

𝑞
)

�̇� = 𝑞(𝑏 − 𝜇 − 𝑑𝑝2/3 − 𝐺𝑢)
 

 

the boundary conditions 

 

𝑝(0) = 0.5 (
𝑏 − 𝜇

𝑑
)

3
2

𝑞(0) = 0.25 (
𝑏 − 𝜇

𝑑
)

3
2
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the integral constraint 

 

∫ 𝑢(𝑡)
𝑡𝑓

0

𝑑𝑡 ≤ 15 

 

and the control inequality constraint 

 

0 ≤ 𝑢(𝑡) ≤ 75 

 

where 

 

𝜍 = 0.084 𝑑𝑎𝑦−1 

 

4.3.16.1 GPOPS-II Setup 

setup details: 

derivatives 

+- supplier = ’sparseCD’ 

+- derivative level = ’second’ 

+- dependencies = ’sparseNaN’ 

scales 

+- method = ’none’ 

method = ’RPM-Differentiation’ 

mesh 

+- tolerance = 1.000000e-06 

+- max iterations = 25 

+- colpointsmin = 3 

+- colpointsmax = 10 

initial mesh characteristics 

+- Phase 1 

* fraction = [1 1 1 1 1 1 1 1 1 1]/10 

* colpoints = [4 4 4 4 4 4 4 4 4 4] 

nlp 

+- solver = ipopt 

+- linear solver = mumps 

+- tolerance = 1.000000e-07 

+- max iterations = 2000 

display level = 0 
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4.3.16.2 Results Discussion 

The tumor anti-angiogenesis problem is a bit unusual, because the solution IPOPT yields 
on intermediate meshes do not always reflect the behavior of the actual solution to the 
problem. 

 

 

 

Figure 60. Problem state and control solution. 
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Nonetheless, it is an important problem, because it demonstrates the behavior of each 
mesh refinement method when less-than-perfect information is available from the NLP 
solution. Figure 60 shows a single discontinuity in both the control and the state derivative, 
which defines the key features of this problem. All four mesh refinement methods 
concentrate mesh points around the discontinuity location as the mesh refinements 
progress towards convergence, as seen in Figure 61. In particular, the hp-adaptive 
method of Ref. [41] concentrated mesh points around the discontinuity location much 
faster than the other methods and stands out as the fastest method for this problem. The 
hp-adaptive method of Ref. [41] used the least number of mesh refinement iterations, but 
had the largest final mesh size.  The hp-adaptive methods of Ref. [43], Ref.   [44], and 
Ref. [45] had similar (but slower) computation times when compared to the hp-adaptive 
method of Ref. [41], but they also had the most efficient usage of collocation points of the 
four methods. Finally, the hp-adaptive method of Ref. [45] took an unusually large number 
of mesh refinement iterations to converge to the solution, making it the slowest method 
overall. 

 

 

Table 17. Key performance measures for the tumor anti-angiogenesis problem. 
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Figure 61. Mesh refinement history for each method. Note that the blue circles 
and black dots represent mesh points and collocation points, respectively. 

 

 

 

Figure 62. Mesh maximum relative error for each mesh. 
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4.3.17 Summary of Results 

In Section 7.2, the relative performances of each mesh refinement method were 
discussed on a problem-by-problem basis. Here, general trends and recurring behaviors 
of the mesh refinement methods are explored. The origins of common features that arise 
in the solutions of the example problems in Section 4.3.2 are investigated as well. A few 
qualitative statements can be made regarding the final mesh size obtained using each of 
the methods. First, the hp-adaptive method of Ref. [41] generally had the largest final 
mesh size and the hp-adaptive method of Ref. [43] generally had the smallest final mesh 
size. Since the hp-adaptive method of Ref. [43] is primarily a p refinement method and 
the hp-adaptive method of Ref. [41] is primarily an h refinement method, this appears to 
indicate that p refinement tends to lead to a more efficient use of collocation points and 
mesh intervals. Another insight is the effectiveness of reducing the final mesh size by 
merging mesh intervals and lowering the polynomial approximation degree on intervals 
that already meet the maximum mesh relative error tolerance. Both the hp-adaptive 
methods of Ref. [44] and Ref. [45] actively seek to reduce the mesh size, and the impact 
is quite noticeable on problems like the hypersensitive problem. The computational 
performance of each method was largely problem-dependent, and each method had at 
least one problem where it converged to the solution the fastest. However, both of the hp-
adaptive methods of Ref. [44] and Ref. [45] performed well in a wide breadth of problems 
(with the hp-adaptive method of Ref. [44] performing best overall) when compared with 
the other methods, and their final cpu times were typically on par with or better than those 
of the hp-adaptive methods of Ref. [43] or Ref. [41]. One exception is the tumor anti-
angiogenesis problem, where the hp-adaptive method of Ref. [45] took an unusually large 
number of refinement iterations relative to the others in order to converge to a solution, 
thereby yielding a slow final computation time compared to the other methods. Gains in 
computational efficiency in each method appear to be a balancing act between keeping 
the mesh size on each iteration small (and therefore limit the growth in size of the NLP) 
and converging to the solution in the fewest number of iterations (keeping the number of 
NLPs that need to be solved small). Most important in the mesh size/number of 
refinements balancing act is converging to the solution in the fewest number of iterations, 
because the extra time needed to solve an extra NLP is generally greater than the time 
penalty incurred by solving a slightly larger NLP (but one less total number of NLPs 
solved). In fact, most of the example problems had the same method achieve the fastest 
computation time and the fewest number of mesh refinements used. Notable exceptions 
include the hypersensitive, moon lander, and minimum-time reorientation problems 
where the fastest computation time was achieved by the method with the second smallest 
number of mesh refinement iterations, but which had a smaller number of collocation 
points than the method that took the fewest number of mesh refinement iterations. On the 
Bryson-Denham, orbit-raising, and maximum cross range reusable launch vehicle entry 
problems, the hp-adaptive methods of Ref. [43] and Ref. [44] achieved the fastest 
convergence time, as well as the fewest number of mesh refinement iterations while using 
the smallest number of collocation points.  In particular, the hp-adaptive method of Ref. 
[43] did so on the orbit-raising and maximum cross range reusable launch vehicle entry 
problems, which both have smooth solutions for the state (no discontinuities in any state 
component derivative or higher order derivative). The hp-adaptive method of Ref. [43] 
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appears to excel at solving problems with smooth solutions, but the method tends to get 
stuck repetitively p refining and then splitting on problems that contain discontinuities. 

Discontinuities are a bane to mesh refinement methods generally, and arise quite 
frequently when solving optimal control problems. In fact, two common solution features 
that arise in nine out of the fourteen example problems investigated in this report are 
discontinuities in the control or control derivative. Discontinuities in the control caused 
corresponding discontinuities in the state first derivative, whereas discontinuities in the 
control derivative tended to cause discontinuities in the higher order derivatives of the 
state. Nonsmooth behavior in the state is not well approximated by a smooth polynomial 
approximation. For this reason, methods such as the hp-adaptive method of Ref. [43] 
(which tend to utilize p refinement on mesh intervals containing a nonsmooth state) tend 
to perform poorly when compared with methods that utilize h refinement on non-smooth 
intervals (assuming those methods are correctly able to identify the non-smooth interval). 
However, none of the four mesh refinement methods are capable of directly locating 
discontinuities. Therefore, each method’s h refinement approach is to split a particular 
mesh interval into evenly spaced parts rather than split directly at the discontinuity point 
(if it exists). Many h refinements may be needed before the piecewise smooth behavior 
of the state solution is well approximated by appropriately placed piecewise polynomials, 
causing mesh points to accrue near the discontinuity location(s). An accumulation of 
mesh points near a discontinuity is undesirable, because (theoretically) the solution could 
be approximated by splitting only once at the exact discontinuity location, thereby using 
a much smaller mesh to solve the problem to the same accuracy. Several factors can 
alert oneself to the possibility of a control discontinuity or control derivative discontinuity 
arising in the solution. Pontryagin’s Minimum Principle states 

𝑢∗ = 𝑎𝑟𝑔min
𝑢𝜖𝒰

ℋ(𝑥∗, 𝑢, 𝜆∗) (60) 

where {𝑥∗, 𝑢∗, 𝜆∗} are the optimal state, control, and costate respectively, ℋ = ℒ + 𝜆𝑇𝑎 is 
the Hamiltonian, and 𝒰 is the feasible set of solutions for the control. In the particular case 
where the Hamiltonian is linear in one or more control component(s), the Hamiltonian is 

minimized when 𝑢∗ takes on its maximum or minimum feasible value depending on 
whether the coefficient in front of it is negative or positive (ignoring the case where the 
coefficient is zero). Therefore, the control solution structure for problems that have a 
Hamiltonian which is linear in one or more control components is oftentimes bang-bang. 
Observing the moon lander, minimum-time reorientation, robot arm, and tumor anti-

angiogenesis problems, it is seen that the dynamics, 𝑎, and corresponding Hamiltonian 
were all linear in the control components that had bang-bang solution structures. 

Another observed characteristic of the non-smooth control solutions is that the 
discontinuity points come paired with a switch on/off the bounds of the state, control, or 
path constraint. In the Bryson Denham, Bryson minimum time-to-climb, and Seywald 
minimum time-to-climb problems, the switching point where a state component transitions 
on or off of its upper or lower bounds is precisely located where the control first derivative 
discontinuity lies. Similarly, the tuberculosis problem has control derivative discontinuities 



DISTRIBUTION A  
116 

where the control components transition on or off of one of its bounds, and the dynamic 
soaring problem has first derivative control discontinuities precisely where the path 
constraint transitions between active and inactive. 

The prevalence of nonsmooth solutions to optimal control problems, as well as their 
negative effects on the performances of the mesh refinement methods discussed in this 
report calls for more research into methods for properly handling discontinuities when 
refining the mesh. Future mesh refinement methods must be able to precisely and 
accurately locate discontinuities in the control and control derivative so that targeted h 
refinement action can be taken to mitigate the effect of the discontinuity on solution 
accuracy. Combining a method such as the hp-adaptive method of Ref. [43] (which 
currently tends to perform well on problems with smooth solutions) with an h refinement 
at discontinuities algorithm has the potential to produce a "smart" mesh refinement 
algorithm. Such an algorithm would gain the benefit of convergence speed and small 
mesh size on smooth segments by using the hp-adaptive method of Ref. [43], but would 
not be hindered (or at least less hindered) by the presence of discontinuities in the 
solution. The hp-adaptive methods of Ref. [44] and Ref. [45] attempt such an approach 
(which may be the reason they tend to perform well on most of the example problems 
within this report), but both methods split non-smooth mesh intervals into evenly spaced 
sub-intervals rather than splitting the mesh directly at the discontinuity point. 

 

4.3.18 Conclusions 

Four mesh refinement methods used within the software GPOPS-II have been tested on 
a battery of problems to benchmark their performance and to identify key problem 
characteristics that influence the behaviors of each mesh refinement method. The hp-
adaptive method of Ref. [43] tended to use collocation points most efficiently, obtaining 
the smallest final mesh size on many of the test problems. On the other hand, the hp-
adaptive method of Ref. [41] frequently converged to the solution with the largest number 
of collocation points and/or mesh intervals. Both the hp-adaptive methods of Ref. [44] and 
Ref. [45] were effective in obtaining fast computation times and small final mesh sizes on 
the widest array of problems. It was observed that the hp-adaptive method of Ref. [43] 
tended to work best on problems with smooth solutions, and that the presence of 
discontinuities in the control or control derivative caused this method in particular to be 
hindered more than the rest. Non-smooth solution behavior and its root causes were 
discussed, and ideas for future mesh refinement methods that could handle 
discontinuities were discussed. 

 

4.4 Application to High-Speed Ascent and Entry 

The advancements of the computational framework for optimal control are now applied 
to a high-speed ascent and entry optimal control problem. The problem of Low-Earth Orbit 
(LEO) ascent and entry mission design has reemerged since the decommissioning of the 
U.S. Space Shuttle. A particular problem of interest is one where an entire mission, from 
launch to landing, is solved. Such a problem consists of powered ascent phases, a 
powered de-orbit phase, and unpowered entry phases. The primary focus during ascent 
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is to minimize the fuel consumed (that is, maximize the payload to orbit) while a key 
consideration during entry is to maximize the time elapsed after de-orbit. Because each 
of these regimes of flight has distinctly different physical characteristics, determining 
complete ascent-entry mission plans is a computational challenge. Due to the importance 
of optimizing the motion during ascent and entry, such problems are posed as multiple-
phase optimal control problems. Because of the complexity of such problems (nonlinear 
dynamics, phases of flight with different physical characteristics), they must be solved 
numerically. The problem of interest here is a combined ascent-entry optimal mission 
planning and is posed as a multiple-phase optimal control problem consisting of powered 
ascent phases, a powered de-orbit phase, and unpowered entry phases. The goal is to 
maximize a combination of the payload to orbit and the time elapsed since atmospheric 
entry after reaching orbit. The multiple-phase optimal control problem is solved using a 
Legendre-Gauss-Radau collocation method. The results provide insight into the structure 
of solutions for a mission that consists of a combination of ascent and entry phases and 
demonstrate the computational efficiency and accuracy of Legendre-Gauss-Radau 
collocation. 

 

4.4.1 Ascent-Entry Optimal Mission Planning Problem 

In this study, we consider an atmospheric flight vehicle that subtends both ascent and 
entry phases of flight. The goal is to steer the vehicle from an initial state that corresponds 
to the time at which the solid rocket motor has been jettisoned to a final TAEM state. In 
other words, to determine the state and control that steers the vehicle from the initial state 
to the terminal state while minimizing an objective function that is a linear combination of 
the payload mass and the time elapsed since atmospheric entry. The mission planning 
problem is divided into ascent phases consisting of a main engine burn that terminates at 
Main Engine Cutoff (MECO), a series of two Orbital Maneuvering System (OMS) burns 
that terminates at the operational orbit, a de-orbit burn followed by a free fall that 
terminates at atmospheric entry, and an atmospheric entry phase that terminates at the 
aforementioned TAEM condition. The remainder of this section provides the equations of 
motion, the specific vehicle model parameters, boundary conditions, path constraints, and 
phase sequencing that defines the mission. 

 

4.4.2 Equations of Motion 

The vehicle under consideration in this study is modeled as a point mass in motion over 
a spherical rotating Earth. The equations of motion for such a vehicle are modeled in 
spherical coordinates as [53]  
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�̇� = 𝑣 sin 𝛾

�̇� =
𝑣 cos𝛾 cos𝜓

𝑟 cos𝜙

�̇� =
𝑣 cos𝛾 sin𝜓

𝑟

�̇� =
𝐹𝑇

𝑚
− 𝑔 sin 𝛾 + 𝜔2𝑟 cos𝜙 (sin 𝛾 cos(𝜙) − cos 𝛾 sin𝜙 sin𝜓)

𝑣�̇� =
𝐹𝑁

𝑚
𝑤1 − 𝑔 cos 𝛾 +

𝑣2

𝑟
cos 𝛾 + 2𝜔𝑣 cos𝜙 cos𝜓 + 𝜔2𝑟 cos𝜙 (cos 𝛾 cos𝜙 + sin 𝛾 sin𝜙 sin𝜓)

𝑣�̇� =
𝐹𝑁

𝑚cos𝛾
𝑤2 −

𝑣2

𝑟
cos 𝛾 cos𝜓 tan𝜙 + 2𝜔𝑣(tan𝛾 cos𝜙 sin𝜓−sin𝜙) −

𝜔2𝑟

cos𝛾
sin𝜙 cos𝜙 cos𝜓

�̇� = −
𝑇

𝑔0𝐼𝑠𝑝

 (61) 

 

where 𝑟 is the geocentric radius, 𝜃 is the Earth-relative longitude, 𝜙 is the geocentric 

latitude, 𝑣 is the Earth-relative speed, 𝛾 is the Earth-relative flight path angle, 𝜓 is the 

heading angle (measured from due East), 𝑔 = 𝜇/𝑟2 is the gravitational acceleration, 𝑔0 is 
the sea-level gravitational acceleration, and 𝐼sp is the engine specific impulse. The 

tangential and normal forces of the combined aerodynamic and propulsive forces, 𝐹𝑇 and 

𝐹𝑁, respectively, are given as 

 

𝐹𝑇 = 𝑇 cos ∈ −𝐷
𝐹𝑁 = 𝑇 sin ∈ +𝐿

 (62) 

 

where 𝑇 is the thrust, 𝐷 is the drag, 𝐿 is the lift (where it is noted that 𝑇 is zero during non- 
powered phases), and ∈ is the thrust angle of attack. The lift and drag forces are given 
as 

 

𝐿 =
1

2
𝑝𝑣2𝐶𝐿𝑆

𝐷 =
1

2
𝑝𝑣2𝐶𝐷𝑆

 (63) 

 

where 𝜌 is the atmospheric density, 𝑆 is the vehicle reference area, and 𝐶𝐿 and 𝐶𝐷 are the 
coefficients of lift and drag, respectively. Models for the lift and drag coefficients were 
taken from Ref. 54 for the ascent portion of the mission, and from Ref. 21 for the reentry 
portion of the mission. For both ascent and entry the control is parameterized using the 

variables 𝛼, 𝑤1, and 𝑤2 where 𝛼 is the angle of attack, 𝑤1 = cos 𝜎, and 𝑤2 = sin 𝜎 (where 
𝜎 is the bank angle). Because 𝜎 is replaced in favor of (𝑤1, 𝑤2), the path constraint 

 

𝑤1
2 + 𝑤2

2 = 1 (64) 
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is imposed in order to ensure that (𝑤1, 𝑤2) is a unit vector, and it is noted that 

 

𝜎 = tan−1(𝑤2, 𝑤1) (65) 

 

where tan−1(. , . ) is the four-quadrant inverse tangent. It is noted for this study that ∈= 𝑎. 
Furthermore, the pressure, 𝑝, the density, 𝜌, and the speed of sound were obtained from 
a linear interpolation of the 1962 US Standard Atmosphere model [55]. The physical 
constants used in this study are listed in Table 20. Refer to Refs. 54 and 21 for lift, drag, 
and heating coefficients. Finally, it is noted that, when convenient, the abbreviation 𝑥(𝑡) 
will be used to denote the state, (𝑟(𝑡), 𝜃(𝑡), 𝜙(𝑡), 𝑣(𝑡), 𝛾(𝑡), 𝜓(𝑡),𝑚(𝑡)), while the 
abbreviation 𝑢(𝑡) will be used to denote the control (𝛼(𝑡), 𝑤1(𝑡), 𝑤2(𝑡)) (or, equivalently, 

(𝛼(𝑡), 𝜎(𝑡)), where 𝜎(𝑡) is computed using Eq. 65). 

 

 

Table 18. Constants. 

 

 

 

4.4.3 Propulsion Model 

The propulsion model used is a phase-dependent quantity. During the main engine burn 
(which consists of three main engines burning simultaneously) the thrust is given as [54] 

 

𝑇 = 3(𝐾𝐹𝑣𝑎𝑐
𝑚 − 𝐴ℯ

𝑚𝑝) (66) 
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where 𝐾 is the throttle setting, 𝐹𝑣𝑎𝑐
𝑚  is the vacuum thrust of a single main engine, 𝐴ℯ

𝑚 is the 
area at the nozzle exit for one main engine, and 𝑝 is the ambient atmospheric pressure. 
The throttle setting is adjusted so that the maximum sensed acceleration does not exceed 
3g0 [54]. During the OMS burn, the propulsive force is given as 

 

𝑇 = 2𝐹𝑣𝑎𝑐
0  (67) 

 

where 𝐹𝑣𝑎𝑐
0  is the propulsive force from one OMS engine and it is assumed that the total 

thrust is produced by two OMS engines operating at full throttle (𝐾 =  1). 

 

 

4.4.4 Phases of Flight and Event Sequence 

The following two missions are considered in this study. These missions are labeled 
Mission 1 and Mission 2.  Mission 1 consists of four ascent phases.  Mission 1 starts at a 
point where the solid rocket motors are jettisoned and terminates when the operational 
orbit is achieved. Mission 2 consists of eight phases. The first four phases of Mission 2 
are the same as those of Mission 1, while the final four phases of Mission 2 consist of de-
orbit and atmospheric entry phases. The de-orbit and entry portions of Mission 2 start at 
the operational orbit and terminate at the TAEM interface condition. In this section, each 
ascent and entry phase is described. Missions 1 and 2 are then constructed from the 
appropriate phases. The description of the different phases includes path constraints 
enforced during a phase and event constraints that are enforced at phase boundaries. 
Boundary and linkage conditions are discussed at the end of this section. 

 

4.4.4.1 Phase 1: Second Stage to Main Engine Cutoff 

The simulation of the flight starts the instant after the solid rocket motors are jettisoned 
and terminates at MECO when the external tank is jettisoned. The dynamic model for this 
phase is that given in Eq. (61) and uses the vehicle model given in Ref. 54. It is noted 
that the parameterization given in Eq. (61) is different from that of Ref. 54 in that Ref. 54 
employs Earth-Centered Inertial (ECI) Cartesian coordinates and includes the gravity 

perturbations 𝐽2, 𝐽3, and 𝐽4, while this study employs Earth-relative spherical coordinates 

with a spherical gravity model (that is, in this study 𝐽2, 𝐽3, and 𝐽4 are ignored). Furthermore, 
in this study, altitude is calculated assuming the Earth is perfectly spherical instead of 
oblate. Because thrust is produced by three main engines, the propulsion model used in 
this phase is given by Eq. (66). Next, the aerodynamic model follows the trigonometric 
model described in Ref. 54, while a linear interpolation of the 1962 US Standard 
Atmosphere [55] is used for the pressure, the density, and the speed of sound. 

Furthermore, the conditions for MECO are expressed in terms of the state component 𝑟, 
the inertial speed, the inertial flight path angle, and the cosine of the orbital inclination. 

The constraint on the radius is imposed as a simple bound on 𝑟, while the remaining 
MECO conditions are imposed on the inertial speed, the inertial flight path angle, and the 
cosine of the orbital inclination. 
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4.4.4.2 Phase 2: First OMS Burn 

The second phase of flight starts the instant after MECO when the external tank is 
jettisoned. Aerodynamic forces are considered negligible in this phase and, thus, the lift 
and drag are eliminated from Eq. (61). Both OMS engines are used during the first OMS 
burn and, thus, thrust is characterized Eq. (67). The equality path constraint of Eq. (64) 
is enforced during this phase as well. 

 

4.4.4.3 Phase 3: Coasting Towards Final Orbit 

Phase 3 is an unpowered exo-atmospheric phase that starts the instant that the first OMS 
burn is completed. Therefore, the lift, drag, and propulsive forces are zero and are 
eliminated from Eq. (61) in this phase. Finally, it is noted that this phase is uncontrolled. 

 

4.4.4.4 Phase 4: Second OMS Burn 

Phase 4 starts with the OMS engines burning a second time to achieve the final orbit 
conditions. Once again, because both OMS engines are used, the thrust is modeled using 
Eq. (67), while the lift and drag are ignored. Finally, the conditions for achieving the 
operational orbit are set using the same parameters as those used to describe the MECO 

conditions. Namely, 𝑟 is a boundary condition, and the inertial speed, inertial flight path 
angle, and cosine of the orbital inclination are an event constraint. The values for the 
event constraint are computed from the state component values at the end of this phase. 

 

4.4.4.5 Phase 5: Final Orbit Coasting Period 

Phase 5 begins immediately after the desired payload orbit is achieved and the payload 

has been deployed. The OMS engines are inactive during this phase, thus 𝑇 is eliminated 
in this phase. Aerodynamic forces are assumed to be negligible during this phase and 
are ignored. In addition, control is absent during this phase. 

 

4.4.4.6 Phase 6: Entry OMS Burn 

Phase 6 starts with a third OMS burn to de-orbit the vehicle so that it enters the Earth’s 
atmosphere. To simplify the problem slightly, the direction of the burn is opposite the 
direction of the Earth relative velocity vector. Thus, the control is held constant at the 

values 𝛼 =  180 𝑑𝑒𝑔,  𝑤1  =  1, and 𝑤2  =  0 during the entirety of the phase. Because the 
control is constant in this phase, the path constraint of Eq. (64) is omitted. 

 

4.4.4.7 Phase 7: Coasting to Entry 

Phase 7 starts immediately after the entry OMS burn is complete. The shuttle falls towards 
Earth until the entry conditions are met. During this time, no engines are active and, thus, 
the thrust is eliminated from Eq. (61). In addition, aerodynamic forces are still considered 
negligible during the entirety of the phase. The control is also absent during the phase. 
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4.4.4.8 Phase 8: Entry to Terminal Area Energy Management Condition 

Phase 8 starts at atmospheric entry. No thrust is used during this phase, thus 𝑇 is 
eliminated from Eq. (61). Instead, the vehicle behaves like a glider, and the vehicle is 
controlled using aerodynamic forces. The models used for this phase are taken from Ref. 
21. In particular, atmospheric entry is considered with and without a constraint on the
heating rate. When a heating rate constraint is imposed, the model for the heating rate

(in MW·𝑚−2    ) is given as [21]

𝑞 = 𝑞𝑎𝑞𝑟 (68) 

where 

𝑞𝑎 = 𝑐0 + 𝑐1�̂� + 𝑐2�̂�
2 + 𝑐3�̂�

3 (69) 

𝑞𝑟 = 339.8062√𝜌(0.0001𝑣)
3.07 (70) 

The re-entry conditions and TAEM conditions are similar to those used in Ref. 21 as well. 
Because the control is present during this phase, the path constraint of Eq. (64) is active. 
Furthermore, the heating path constraint is applied as 

0 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥 (71) 

where 𝑞𝑚𝑎𝑥 is a user-defined variable, and 𝑞 is the aerodynamic heating on the wing 
leading edge as defined in [21]. In this study, entry is considered both with and without 

this heating constraint. When no heating constraint is desired 𝑞𝑚𝑎𝑥 = ∞. 

4.4.4.9 Boundary Conditions and Linkage Conditions 

The boundary conditions are described in terms of five sets. Namely, the initial, MECO, 
operational orbit, entry, and TAEM conditions. Note that the MECO and operational orbit 

conditions are split up into a boundary condition on 𝑟, and an event constraint on the 
inertial speed, inertial flight path angle, and the cosine of the orbital inclination. Table 21 
summarizes the boundary conditions used in this study. Furthermore, linkage conditions 
of the form 

𝑥𝑝+1(𝑡𝑗) − 𝑥
𝑝(𝑡𝑗) = 0 (72)
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where 𝑥 is the state and 0 is the zero vector, are imposed between phases (where 𝑝 is 
the phase number). These ensure that the state is continuous from one phase to another. 
Two exceptions are when the external tank is dropped at the end of Phase 1 and when 
the payload is dropped at the end of Phase 4. In the first case, the zero entry in Eq. 72 

corresponding to the state component 𝑚 is replaced with the negative of the mass of the 
external tank. In the second case, the mass of the payload is unknown at the start of the 
problem. Therefore, the linkage condition for the mass state component is expressed as 

a bounded value between 0 and −∞. Finally, in order to prevent any individual phase 
from occurring in zero time, a minimum elapsed time of two seconds is imposed as 

 

∆𝑡𝑚𝑖𝑛 ≤ 𝑡𝑗+1 − 𝑡𝑗 ≤ ∞ (73) 

 

where, arbitrarily, ∆𝑡𝑚𝑖𝑛 = 2 𝑠 

 

 

Table 19. Boundary Conditions. 

 

 

 

4.4.5 Optimal Control Problem 

This study focuses on maximizing the weight of a payload being sent orbit for two 
missions using the shuttle as an example launch vehicle. The following constrained 
nonlinear optimal control problem arises for Mission 1 (where we recall that Mission 1 
terminates when the vehicle achieves its operational orbit). Determine the state 𝑥(·) and 
the control 𝑢(·) that minimize the cost functional 

 

𝐽 = −𝑚(𝑡𝑓) (74) 

 

where 𝑚(𝑡𝑓) is the final mass of the shuttle (including its payload), subject to the dynamic 

constraints of Eq. (61), the boundary conditions of Table 21, and the appropriate path and 
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event constraints. It is noted that minimizing the negative of the shuttle’s final mass has 
the same effect as maximizing the payload mass being sent to orbit. 

A slightly different constrained nonlinear optimal control problem arises for Mission 2. 
Determine the trajectory (𝑟(𝑡), 𝜃(𝑡), 𝜙(𝑡), 𝑣(𝑡), 𝛾(𝑡), 𝜓(𝑡)) and the control (𝛼(𝑡), 𝜎(𝑡)) that 
minimize the cost functional 

 

𝐽 = 𝑊(𝑚(𝑡5) − 𝑚(𝑡4)) + 𝑡7 − 𝑡8 (75) 

 

where 𝑊 is a scaling factor (for the purposes of this study, 𝑊 = 2), 𝑚(𝑡5) − 𝑚(𝑡4) is the 
negative of the payload mass and 𝑡7 − 𝑡8 is the negative elapsed time during phase 8 
(entry), subject to the dynamic constraints of Eq. (61), and the boundary conditions of 
Table 21, and the appropriate path and event constraints. In the case where an entry 
heating constraint is imposed, the additional path constraint of Eq. (68) is also enforced. 

Note that the addition of 𝑡7 − 𝑡8 is necessary, because there are many entry trajectories 
that satisfy the conditions above and minimize a cost functional that is dependent only on 
the weight of the payload. This addition has the effect of singling out a trajectory which 
also maximizes the amount of time spent in entry. Furthermore, this yields useful 
information, as the solution will indicate the earliest possible time the entry maneuver 
could begin. 

 

4.4.5.1 Numerical Solutions of Mission 1 and Mission 2 Optimal Control Problems 

Missions 1 and 2, as described above, were solved using the MATLAB optimal control 

software 𝔾ℙ𝕆ℙ𝕊 − 𝕀𝕀 [48]. 𝔾ℙ𝕆ℙ𝕊 − 𝕀𝕀 employs variable-order Legendre-Gauss-Radau 
(LGR) collocation where the optimal control problem is transcribed to a large sparse 
nonlinear programming problem (NLP). The NLP arising from the LGR transcription was 
solved using the NLP solver IPOPT [56] where the derivatives required by the NLP solver 
are obtained using sparse finite-difference approximations using the method developed 
in Ref. 57. The Mission 1 and Mission 2 planning problems were solved with a mesh 

refinement accuracy tolerance of 10−4, and an NLP solver tolerance of 10−4. For both 
missions the initial mesh in each phase consisted of ten evenly spaced mesh intervals 
and four collocation points per mesh interval were used in each phase. All computations 
performed in this study were performed using a MacBook Pro with a 2.8 GHz Intel Core 
i7 processor and 16 GB of RAM. 
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4.4.5.2 Results and Discussion 

Both missions were solved using the following conditions, where appropriate. Initial 
conditions were adapted from Ref. 54: 

 

𝑟(𝑡0) = 6.424613588 × 10
6 𝑚, 𝑉(𝑡0) = 1384.7 𝑚 𝑠

−1

𝜃(𝑡0) = −120.74 𝑑𝑒𝑔, 𝛾(𝑡0) = 26.409 𝑑𝑒𝑔

𝜙(𝑡0) =, 𝜓(𝑡0) = 259 𝑑𝑒𝑔

𝑚(𝑡0) =, 𝑡0 = 126.1 𝑠

 (76) 

 

Conditions for MECO were also adapted from Ref. 54: 

 

𝑟(𝑡1) = 6.483730100 × 106 𝑚

𝑣𝐼(𝑡1) = 7734.0 𝑚 𝑠
−1

𝛾𝐼(𝑡1) = 0.65 𝑑𝑒𝑔

𝑖(𝑡1) = 98 𝑑𝑒𝑔

 (77) 

 

where 𝑣𝐼 and 𝛾𝐼 are the inertial speed and inertial flight path angle, respectively. A 98 deg 
inclined circular operational orbit at an altitude of 203.720 km was chosen and is 
described as 

 

𝑟(𝑡4) = 6.581886000 × 10
6 𝑚

𝑣𝐼(𝑡4) = √
𝜇

𝑟(𝑡4)
𝑚 𝑠−1

𝛾𝐼(𝑡4) = 0 𝑑𝑒𝑔

𝑖(𝑡4) = 98 𝑑𝑒𝑔

 (78) 

 

Next, the entry conditions were adapted from Ref. 21 and are given as 

 

𝑟(𝑡7) = 6.457414000 × 10
6 𝑚

𝑣(𝑡7) = 7802.9 𝑚 𝑠
−1  (79) 

 

Finally, the TAEM interface is described in Ref. 21 as 

 

𝑟(𝑡8) = 6.402550000 × 10
6 𝑚, 𝑉(𝑡8) = 762 𝑚 𝑠

−1

𝜃(𝑡8) = 121.5 𝑑𝑒𝑔, 𝛾(𝑡8) = −5 𝑑𝑒𝑔

𝜙(𝑡8) = 35.3 𝑑𝑒𝑔

 (80) 
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where the additional geocentric latitude and longitude requirements were added so that 
Mission 2 ends approximately 110 km NW of the Vandenburg Air Force Base landing 
strip. 

The results of this study are divided into sections for Mission 1 and Mission 2. Key 
features of the optimal trajectory are discussed in each section, and computational 
characteristics are explored. A comparison of trajectories with and without an additional 
heating constraint during the final entry phase is presented for Mission 2. 

 

4.4.5.3 Key Features of Mission 1 

The components of the state and control for Mission 1 are shown in Figures 63 and 64, 
respectively. The optimal final mass (including payload) obtained was 109784 kg, and the 

total duration of the ascent is approximately 2548 seconds. MECO occurs at 𝑡 = 489.9 s, 
and the two OMS burns last approximately 284 s and 66 s, respectively. Along the optimal 
path, the largest increase in speed is obtained during Phase 1. In particular, it is observed 
that Phase 1 consists of an initial rapid climb followed by a slight reduction in altitude 
while the speed continues to increase. Phases 2 through 4 then consist of two relatively 
short OMS burns (Phases 2 and 4) with a longer coasting period in Phase 3. The long 
coast enables the vehicle to ascend to the operational orbit altitude and enables 
circularization of the orbit in Phase 4 (the second OMS burn). 

The control indicates the vehicle starts the mission upside down with its nose performing 
a single, slow "nod" maneuver during Phase 1. The two OMS burns each occur at roughly 
constant angle of attack and bank angle, indicating the thrust direction relative to the 
velocity is essentially constant throughout the OMS burn. It is noted that the values for 
the angle of attack and bank angle were arbitrarily chosen to be zero during Phase 3 
where the shuttle is coasting. 

The results obtained for Phase 1 are close to those obtained in Ref. 54 from which Phase 
1 was adapted. In Ref. 54, the optimal MECO time is approximately 490.0 s with a final 
mass of 142246 kg. In this study, MECO occurs at 489.9 s with a final shuttle mass of 
142347 kg. The slight difference is due to the fact that in this study a spherical Earth 
model is used while Ref. 54 uses an oblate Earth model. 

Table 20 summarizes the performance of 𝔾ℙ𝕆ℙ𝕊 − 𝕀𝕀 when solving Mission 1. In 
particular, Table 20 shows the total time taken to solve Mission 1 alongside the 
performance of the hp-adaptive mesh refinement. Note that the mesh relative error 

tolerance was set to 10−4 and the NLP tolerance was set to 10−4. A default initial mesh 
was used with each phase divided into ten evenly spaced mesh intervals with four 
collocation points in each interval. 
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Table 20. Mission 1 Computational Characteristics. 

 

 

 

 

Figure 63. Mission 1: Components of the State. 



DISTRIBUTION A  
128 

 

Figure 64. Mission 1: Components of the Control. 

 

 

 

Figure 65. Mission 1: sensed acceleration during phase 1. 
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4.4.5.4 Key Features of Mission 2 

The solution to Mission 2 without a heating rate constraint is shown in Figures 66 and 67, 
while the solution to Mission 2 with a heating rate constraint is shown in Figures 68 and 
69. In the case where no heating rate constraint is imposed, the optimal trajectory yields
a payload mass of approximately 11230 kg, while the solution with a maximum allowable

heating rate of 0.795 MW·𝑚−2 was 11476 kg. While it may seem contradictory that the
payload mass is slightly larger when the heating rate constraint is imposed, it is important
to remember that the objective functional for Mission 2 is a combination of payload mass
and time elapsed since atmospheric entry. As a result, the goal is not solely to maximize
the payload mass, and a tradeoff exists between the payload mass and the time elapsed
since atmospheric entry. This tradeoff is seen by observing that the reentry phase of
Mission 2 lasts (2814 s) when no heating rate constraint is imposed and lasts (2210 s)
when the heating rate is constrained.

It is interesting to observe that the ascent portion of Mission 2 is essentially the same as 
the ascent portion of Mission 1. During the descent of Mission 2, the most interesting 
features occur during Phase 8 (atmospheric entry). Specifically, it is seen that the entry 
begins with a high angle of attack followed by a rapid decrease to an angle of attack of 
roughly 20 deg. The initial angle of attack is large in order to extend time of flight during 

entry. After the point where 𝛼 = 20 deg, the angle of attack remains essentially constant 
for the remainder of the entry, experiencing only minor fluctuations. Next, when no heating 
rate constraint is imposed, the vehicle subtends large oscillations in altitude and flight 
path angle. On the other hand, when a heating constraint is imposed, the oscillations 
during entry are reduced significantly. 

Although Mission 2 is a different problem from the entry problem given in Ref. 21, it is 
seen that the results for Phase 8 of Mission 2 are similar to those obtained in Ref. 21. 
Although the objective in Ref. 21 is to maximize the cross range, the solution in Ref. 21 
shows a similar oscillatory behavior in altitude and flight path angle as the solution 
obtained in this study when no heating rate constraint is imposed. Finally, similar to the 
solution found in Ref. 21, the oscillations in the altitude and the flight path angle diminish 
when the heating rate is constrained. 

Tables 23 and 24 summarize the total time taken to solve the problem and the mesh 

characteristics of the solution. Note that the mesh relative error tolerance was set to 10−4 
and the NLP tolerance was set to 10−4 for both cases. A default initial mesh was used 
with each phase divided into ten evenly spaced mesh intervals with four collocation points 
in each interval. Notice in Phases 1–7 (where the solution behavior is relatively smooth) 
the initial mesh intervals and collocation points remained relatively unchanged or were 
reduced. Phase 8 had a significant increase in the number of mesh intervals and number 
of collocation points, but this is understandable since the solution is highly oscillatory in 
this phase. 
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Table 21. Mission 2 (𝒒𝒎𝒂𝒙 = ∞) Computational Characteristics. 

 

 

 

Table 22. Mission 2 (𝒒𝒎𝒂𝒙 = 𝟎. 𝟕𝟗𝟓 𝐌𝐖 𝐦
−𝟐𝐬−𝟏) Computational Characteristics. 
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Figure 66.Mission 2 (No Heating Constraint): Components of the State. 
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Figure 67. Mission 2 (No Heating Constraint): Components of the Control. 
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Figure 68. Mission 2 (Heating Constraint Active): Components of the State. 
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Figure 69. Mission 2 (Heating Constraint Active): Components of the Control. 

 

 

 

Figure 70.Heating vs. Time. 

 

 

4.4.6 Conclusions 

A combined ascent-entry optimal mission planning has been considered. The mission 
planning problem was posed as a multiple-phase optimal control problem consisting of 
powered ascent phases, a powered de-orbit phase, and unpowered entry phases. The 
goal was to maximize a combination of the payload to orbit and the time elapsed since 
atmospheric entry after reaching orbit. The multiple-phase optimal control problem was 
solved using a Legendre-Gauss-Radau collocation method. The results provide insight 
into the structure of solutions for a mission that consists of a combination of ascent and 
entry phases and demonstrate the computational efficiency and accuracy of Legendre-
Gauss-Radau collocation.  
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APPENDIX 

4.4.7 Limits on Variables 

 

 

Table 23. Variable Lower and Upper Bounds (Phase 1). 

 

 

 

Table 24. Variable Lower and Upper Bounds (Phase 2). 

 

 

 



DISTRIBUTION A  
136 

Table 25. Variable Lower and Upper Bounds (Phase 3). 

 

 

 

Table 26. Variable Lower and Upper Bounds (Phase 4). 

 

 

 

Table 27. Variable Lower and Upper Bounds (Phase 5). 
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Table 28. Variable Lower and Upper Bounds (Phase 6). 

 

 

 

Table 29. Variable Lower and Upper Bounds (Phase 7). 

 

 

 

Table 30. Variable Lower and Upper Bounds (Phase 8). 
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4.4.8 Initial Guess 

Table 33 contains the values used to generate the initial guess. Entries with "-" indicate 
there is no control present in either adjacent phase. 

 

 

Table 31. Initial Guess Values. 

 

 

 

4.5 Advances in Optimization Algorithms and Convergence Theory 

An active set algorithm PASA was developed for solving general nonlinear optimization 
problems with polyhedral constraints. Phase 1 of the algorithm is the gradient projection 
method, while Phase 2 is any algorithm for solving a linearly constrained optimization 
problem. Rules were developed for branching between the two phases. Global 
convergence to a stationary point was established, while asymptotically PASA performs 
only Phase 2 when either a nondegeneracy assumption holds or the active constraints 
are linearly independent and a strong second-order sufficient optimality condition holds. 

The target optimization problem has the form 

 

min{𝑓(𝑥): 𝑥 ∈ Ω}, 𝑤ℎ𝑒𝑟𝑒 Ω = {𝑥 ∈ ℝ𝑛: 𝐴𝑥 ≤ 𝑏} (81) 

 

Here 𝑓 is a real-valued, continuously differentiable function, 𝐴 ∈ ℝ𝑚×𝑛,𝑏 ∈ ℝ𝑚, and the 
polyhedron Ω are assumed to be nonempty. PASA has two phases: Phase one is the 
gradient projection algorithm, while phase two is any algorithm for solving a linearly 
constrained optimization problem over a face of the polyhedron. The gradient projection 
algorithm of phase one is robust in the sense that it converges to a stationary point under 
mild assumptions, but the convergence rate is often linear at best. When optimizing over 
a face of the polyhedron in Phase 2, the convergence is accelerated through the use of 
a superlinearly convergent algorithm based on conjugate gradients, a quasi-Newton 
update, or a Newton iteration. It is shown that the asymptotic convergence rate of PASA 
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coincides with the convergence rate of the scheme used to solve the linearly constrained 
problem of Phase 2. 

The gradient projection algorithm (GPA) used in PASA is shown in Figure 71. It takes a 
step along the negative gradient, computes the projection  

 

𝑃Ω(𝑥) = 𝑎𝑟𝑔min{‖𝑥 − 𝑦‖: 𝑦 ∈ Ω} (82) 

 

onto the polyhedron, and then performs a line search along the line segment connecting 

the projection point to the iterate 𝑥𝑘 to obtain the next iterate 𝑥𝑘+1. 

 

 

 

Figure 71. Gradient projection algorithm. 

 

 

The linearly constrained optimizer (LCO) in Phase 2 is any algorithm that satisfies the 
following three conditions: 

 

F1. 𝑥𝑘 ∈ Ω and 𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘) for each 𝑘. 

F2. 𝐴(𝑥𝑘) ⊂ 𝐴(𝑥𝑘+1) for each 𝑘, where 𝐴(𝑥) = {𝑖: (𝐴𝑥 − 𝑏)𝑖 = 0} 

F3. 𝐴(𝑥𝑗+1) = 𝐴(𝑥𝑗) for 𝑗 ≥ 𝑘, then lim
𝑗→∞

inf ℯ(𝑥𝑗) = 0 
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Here, 𝑒 measures the distance to a stationary point on a face of the polyhedron 
corresponding to the active constraints; 𝑒 vanishes only at a stationary point on the 
current face of the polyhedron. Besides the local error measure 𝑒, the algorithm also 

employs the global stationarity measure 𝐸 given by 

 

𝐸(𝑥) = ‖𝑃Ω(𝑥 − 𝑔(𝑥))‖ 

 

𝐸 vanishes only at a stationary point for the optimization problem. 

A simplified version of PASA appears in Figure 72. Assuming 𝜃 =  1, the idea of the 
algorithm is to use Phase 1 (gradient projection algorithm) until the global error 𝐸 is 

smaller than the local error 𝑒. Then switch to Phase 2 (linear constrained optimizer), which 

continues until the local error 𝑒 is smaller than the global error 𝐸. 

 

 

 

Figure 72. PASA Algorithm. 

 

 

The paper [58] establishes strong convergence properties for PASA. For example, it is 

shown that PASA with ∈=  0 either terminates in a finite number of iterations at a 
stationary point, or the global error tends to zero: 

 

lim
𝑘→∞

inf E(𝑥𝑘) = 0 

 

Moreover, at nondegenerate stationary points where the multipliers for active constraints 
do not vanish, only Phase 2 (the superlinearly convergent algorithm) is executed 
asymptotically. Essentially, this implies that the algorithm converges as fast as the 
algorithm used to solve the linearly constrained optimization problem. 

Another result, similar to the result for nondegenerate stationary points, is the following: 

Theorem: If PASA with ∈=  0 generates an infinite sequence of iterates converging to a 
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local minimizer 𝑥∗ where the active constraint gradients are linearly independent and the 
strong second-order sufficient optimality condition holds, and if 𝑓 is twice continuously 
differentiable near 𝑥∗, then within a finite number of iterations, only Phase 2 (LCO) is 
executed. 

To assess the behavior of the PASA in practice, a specific implementation was developed 
in which the projection algorithm PPROJ of [59] was used to implement the gradient 
projection method, the line search was implemented using the non-monotone techniques 
in [60], and the conjugate gradient algorithm CG_DESCENT [61] was used for the linear 
constrained optimizer. The two phases of PASA, unconstrained optimization and gradient 
projection, are tightly coupled since the projection used in the gradient projection 
algorithm became a preconditioner in the conjugate gradient algorithm to keep the iterates 
on the current face of the polyhedron. 

A test set was solved that consisted of all the test problems in the CUTE library [62] that 
possess a nonlinear objective and both linear equality and inequality constraints. The 
problem dimensions extended up to 7564. For comparison, we solved this same test set 
using the well- established IPOPT algorithm [63] (Version 3.11) in the COIN-OR library. 
Since PASA currently does not utilize Hessian information, IPOPT was run in two different 
modes. In the quasi-Newton mode, IPOPT does not utilize Hessian information; instead, 
gradients are used to build a Hessian approximation. In its default mode, IPOPT 
evaluates the Hessian of the objective in each iteration, and then solves a symmetric 
linear system using the direct factorization method provided in Harwell subroutine MA57. 

Figure 73 shows the performance profile for PASA in comparison with IPOPT. In a 

performance profile, the vertical axis gives the fraction 𝑃 of problems for which any given 
method is within a factor 𝜏 of the best time.  The top curve is the method that solved the 
most problems in a time that was within a factor 𝜏 of the best time. The percentage of the 
test problems for which a method is fastest is given on the left axis of the plot. The right 
side of the plot gives the percentage of the test problems that were successfully solved 
by each of the methods. In essence, the right side is a measure of an algorithm’s 
robustness. 
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Figure 73. Running time performance for the CUTE test set. 

 

 

As seen in Figure 73, PASA is much faster than IPOPT in either mode.  The default mode 
for IPOPT based on Hessian information performed much better than the gradient-based 
quasi-Newton approach for this test set. In this test set, IPOPT with Hessian information 
failed to solve four out of the 56 problems for a failure rate of 7% (either an error message 
was generated stating that “restoration failed” or the code thought that the problem had 
been solved, but the solution was very inaccurate with 0 or 1 correct digits). In the quasi-
Newton mode, there were five cases where restoration failed and two additional cases 
where the solution was very inaccurate. In contrast, PASA was able to solve all the 
problems in the test set to the specified six-digit error tolerance. A MATLAB interface has 
been developed that enables the use of PASA in conjunction with the optimal control 
software GPOPS-II. 

Besides the development of an optimization algorithm, we have developed a theoretical 
convergence analysis for the hp-adaptive algorithm implemented in GPOP-II. The 
convergence analysis complements our practical experience with the algorithm by 
providing a strong theoretical foundation. 

We assume that the control problem is written in the form  

 

Minimize 𝐶(𝑥(1)) 

Subject to �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡) ∈ 𝒰, 𝑡 ∈ Ω,  

𝑥(−1) = 𝑥0, (𝑥, 𝑢) ∈ 𝐶
1(Ω;ℝ𝑛) × 𝐶0(Ω;ℝ𝑚) (83) 

 

where Ω = [−1, 1], the control constraint set 𝒰 ⊂ ℝ𝑚 is closed and convex with nonempty 
interior, the  state 𝑥(𝑡) ∈ ℝ𝑛, �̇� denotes  the  derivative of 𝑥 with respect  to  𝑡, 𝑥0 is  the 

initial condition which we assume is given, 𝑓:ℝ𝑛 × ℝ𝑚 → ℝ𝑛, 𝐶:ℝ𝑛 → ℝ, 𝐶𝑙(Ω;ℝ𝑛) 
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denotes the space of 𝑙 times continuously differentiable functions mapping Ω to ℝ𝑛. It is 
assumed that 𝑓 and 𝐶 are at least continuous. 

The first paper [64] analyzes collocation schemes of the following form: Let 𝑃𝑁 denote the 

space of polynomials of degree at most 𝑁, let 𝑃𝑁 denote the n-fold Cartesian product 𝑃𝑁 ×
⋯× 𝑃𝑁 , and let 𝜏𝑖, 1 ≤ 𝑖 ≤ 𝑁, denote 𝑁 Gauss collocation points on the interval [−1, 1]. 
We analyzed the discretization of (81) given by 

Minimize 𝐶(𝑥(1)) 

Subject to �̇�(𝜏𝑖) = 𝑓(𝑥(𝜏𝑖), 𝑢𝑖), 𝑢𝑖 ∈ 𝒰, 1 ≤ 𝑖 ≤ 𝑁, 

𝑥(−1) = 𝑥0, 𝑥 ∈ 𝑃𝑁
𝑛 (84) 

The first-order optimality conditions (Pontryagin minimum principle) for the continuous 

control problem (83) are equivalent to the existence of 𝜆∗ such that 

�̇�∗(𝑡) = −∇𝑥𝐻(𝑥
∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡))

𝜆∗(1) = ∇C(𝑥∗(1))

𝑁𝑢(𝑢
∗(𝑡)) ∋ −∇𝑢𝐻(𝑥

∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡))

for all 𝑡 ∈ Ω, where 𝐻 is the Hamiltonian defined by 𝐻(𝑥, 𝑢, 𝜆) = 𝜆𝑇𝑓(𝑥, 𝑢), 𝛻 denotes 

gradient, and 𝑁𝑢 is the normal cone. It is shown in [64] that the first-order optimality 
conditions (Karush-Kuhn-Tucker conditions) for the discrete problem (84) are equivalent 

to the existence of 𝜆 ∈ 𝑃𝑁
𝑛 such that

�̇�(𝜏𝑖) = −∇𝑥𝐻(𝑥(𝜏𝑖), 𝑢𝑖𝜆(𝜏𝑖)), 1 ≤ 𝑖 ≤ 𝑁

𝜆(1) = ∇C(𝑥(1))

𝑁𝑢(𝑢𝑖) ∋ −∇𝑢𝐻(𝑥(𝜏𝑖), 𝑢𝑖𝜆(𝜏𝑖)), 1 ≤ 𝑖 ≤ 𝑁

By comparing the discrete and continuous first-order optimality conditions, the following 
exponential convergence result is developed in [64]. 

Theorem. Suppose (𝑥∗,  𝑢∗) is a local minimizer for the continuous problem (81) with 
(𝑥∗,  𝜆∗) ∈ ℋ𝜂(Ω;ℝ𝑛) for some 𝜂 ≥  2. Then for 𝑁 sufficiently large, the discrete problem 

(84) has a local minimizer 𝑥𝑁 ∈ 𝑃𝑁
𝑛 and 𝑢 ∈ ℝ𝑚𝑁, and an associated multiplier 𝜆𝑁 ∈ 𝑃𝑁

𝑛

satisfying the KKT conditions; moreover, there exists a constant 𝑐 independent of 𝑁 and
𝜂 such that
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max{‖𝑋𝑁 − 𝑋∗‖∞, ‖𝑈
𝑁 − 𝑈∗‖∞, ‖Λ

𝑁 − Λ∗‖∞}

≤ (
𝑐

𝑁
)
𝑝−3 2⁄

(‖𝑥∗‖ℋ𝑝(Ω;ℝ𝑛) + ‖𝜆
∗‖ℋ𝑝(Ω;ℝ𝑛)) , 𝑝: = min{𝜂, 𝑁 + 1} 

 

where the 𝑁 and ∗ superscripts in the error bound refer to the discrete and continuous 

variables respectively evaluated at the Gauss collocation points, and ℋ𝑃 denotes a 

Sobolev space of order 𝑝. 

In a numerical example for which the exact solution of (83) is known, we plot the log of 

the error versus the polynomial degree 𝑁 in a log scale and obtain nearly straight lines, 
as shown in Figure 74, in agreement with the theorem. 

 

 

 

Figure 74. Logarithm of sup-norm error in state, control, and costate versus 
polynomial degree. 

 

 

The second convergence theory paper [65] analyzes the actual hp-collocation scheme 
used in GPOPS-II. In this approach, explained earlier in this report, the time interval, 
which is now assumed to be Ω0  =  [0, 1], is partitioned into 𝐾 mesh intervals. For 

simplicity, we consider a uniform mesh of width ℎ =  1/𝐾. The continuous control problem 
is then reformulated as a series of 𝐾 control problems, each on the interval Ω = [−1,1]: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑥𝐾(1))

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �̇�𝑘(𝜏) = ℎ𝑓(𝑥𝑘(𝜏), 𝑢𝑘(𝜏)), 𝑢𝑘(𝜏) ∈ 𝒰, 𝜏 ∈ Ω,

 𝑥𝑘(−1) = 𝑥𝑘−1(1), 1 ≤ 𝑘 ≤ 𝐾,

(𝑥𝑘, 𝑢𝑘)  ∈ 𝐶
1(Ω) × 𝐶0(Ω)

  

}
 
 

 
 

 (85) 
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Let 𝑃𝑁 denote the space of polynomials of degree at most N defined on the interval Ω, 
and let 𝑃𝑁

𝑛 denote the n-fold Cartesian product 𝑃𝑁 ×⋯× 𝑃𝑁. The hp-collocation scheme 
corresponding to (85) is as follows: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑥𝐾(1))

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �̇�𝑘(𝜏𝑖) = ℎ𝑓(𝑥𝑘(𝜏𝑖), 𝑢𝑘𝑖), 1 ≤ 𝑖 ≤ 𝑁, 𝑢𝑘𝑖 ∈ 𝒰

 𝑥𝑘(−1) = 𝑥𝑘−1(1), 1 ≤ 𝑘 ≤ 𝐾, 𝑥𝑘 ∈ 𝒫𝑁
𝑛

} (86) 

 

To achieve continuity of the state variable continuous across the mesh points, it is more 
convenient to employ the Radau collocation points rather than the Gauss points. 
However, the Radau points are more difficult to analyze than the Gauss points due to the 
lack of symmetry. The first-order optimality conditions for (86) reduce to the following: 

There exists 𝜆𝑘 ∈ 𝑃𝑁−1
𝑛 , 1 ≤  𝑘 ≤  𝐾, such that 

 

�̇�𝑘(𝜏𝑖) = −ℎ∇𝑥
𝐻(𝑥𝑘(𝜏𝑖), 𝑢𝑘𝑖, 𝜆𝑘(𝜏𝑖)), 1 ≤ 𝑖 < 𝑁,

�̇�𝑘(1) = −ℎ∇𝑥
𝐻(𝑥𝑘(1), 𝑢𝑘𝑁 , 𝜆𝑘(1)) + (𝜆𝑘(1) − 𝜆𝑘+1(−1))/𝜔𝑁

𝑤ℎ𝑒𝑟𝑒 𝜆𝐾+1(−1):= ∇𝐶(𝑥𝐾(1))

𝑁𝒰(𝑢𝑘𝑖) ∋ −∇𝑢
𝐻(𝑥𝑘(𝜏𝑖), 𝑢𝑘𝑖 , 𝜆𝑘(𝜏𝑖)), 1 ≤ 𝑖 < 𝑁

 

 

The convergence result established for the hp-collocation scheme was the following: 
Theorem. If (𝑥∗,  𝑢∗) is a local minimizer for the continuous problem (81) with 𝑥∗ and 𝜆∗ ∈
𝒫ℋ𝜂(Ω0) for some 𝜂 ≥  2, then for 𝑁 sufficiently large or for ℎ sufficiently small with 𝑁 ≥
 2, the discrete  problem has a local minimizer and associated multiplier satisfying the 
KKT conditions, and we have 

 

max{‖𝑋𝑁 − 𝑋∗‖∞, ‖𝑈
𝑁 − 𝑈∗‖∞, ‖Λ

𝑁 − Λ∗‖∞}

≤ ℎ𝑝−1 (
𝑐

𝑁
)
𝑝−1

|𝑥∗|𝒫ℋ𝑝(Ω0) + ℎ
𝑞−1 (

𝑐

𝑁
)
𝑞−1.5

|𝜆∗|𝒫ℋ𝑞(Ω0)
 

 

where 𝑝 =  𝑚𝑖𝑛(𝜂, 𝑁 +  1), 𝑞 =  𝑚𝑖𝑛(𝜂, 𝑁 ), and 𝑐 is independent of ℎ, 𝑁, and 𝜂. 

Thus the convergence speed is again exponentially fast relative to the degree of the 
polynomials used on each interval, while the error also decreases at polynomial speed 

relative to width ℎ of the mesh intervals. 
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6 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

𝐴𝑒 Nozzle Exit Area, m2 

𝐷 Drag, N 

𝐹𝑁 Normal Component of Aerodynamic and Propulsive Forces, N 

𝐹𝑇 Tangential Component of Aerodynamic and Propulsive Forces, N 

𝐹𝑣𝑎𝑐 Vacuum Thrust, N 

𝑔 Acceleration Due to Earth Gravity, m·s−2 

𝑔𝑒 Sea Level Acceleration Due to Earth Gravity, m·s−2 

𝐻 Density Scale Height, m 

ℎ Altitude, m 

𝑖 Inclination, rad or deg 

𝐼𝑠𝑝 Vacuum Specific Impulse, s 

𝐾 Throttle Setting 

𝐿 Lift, N 

𝑚 Mass, kg 

𝑚𝐸𝑇 Empty Mass of the External Tank, kg 

𝑟 Magnitude of the Position Vector, m 

𝑅𝑒 Radius of the Earth, m 

𝑆 Aerodynamic Reference Area, m2 

𝑇 Thrust, N 

𝑉 Earth Relative Speed, m·s−1 

𝑊 Scaling Factor 

𝛼 Angle of Attack, rad or deg 

𝛾 Flight Path Angle, rad or deg 

𝜃 Longitude, rad or deg 

µ𝑒 Earth Gravitational Parameter, m3·s−2 

𝜌 Density, kg·m-3 

𝜌0 Sea Level Atmospheric Density, kg·m-3 

𝜎 Bank Angle, rad or deg 

𝜑 Geocentric Latitude, rad or deg 

𝜓 Heading, rad or deg 

𝜔 Earth Rotation Rate, rad·s-1 or deg s-1 



DISTRIBUTION A 
152 

LEO Low Earth Orbit 

ME Main Engine 

MECO Main Engine Cut-Off 

NLP Nonlinear Programming Problem 

OMS Orbital Maneuvering System 

TAEM Terminal Area Energy Management 
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