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ABSTRACT 

The ability to find email addresses on digital storage media and deduce the 
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algorithm that constructs networks based on the byte-offset proximity between digital 

artifacts. The main objective of this study is to test this new algorithm and refine 

techniques for classification with a goal of automating steps in the process of 

constructing social networks. To achieve this, we build an 11 terabyte dataset of drive 

images, construct networks from them, and assign these networks to the categories 

“useful” or “not useful” according to whether we believe them to contain information 

relevant to the actual social network of the device owner. We then interview device 

owners to determine ground truth, which we use to evaluate our analysis. We succeed in 

correctly categorizing networks with a recall of 0.9166, precision of 0.6316 and F-score 

of 0.7643. Our results show that our algorithm is successful in outputting data useful for 

the construction of the user's social networks. 
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CHAPTER 1:
Introduction

With the increasing prevalence of digital technologies, more aspects of a person’s daily
life are captured in digital form. This digital data provides a trove of potentially useful
evidence for investigators [1]. Forensic analysts from both law enforcement and intelligence
communities face the task of sifting through this vast amount of digital data and uncovering
information relevant to their investigations [1]. The quantity of data requiring analysis can
cause delays of weeks and even months at data forensics laboratories [1]. Many times, a
key element to an investigation is the social network of the person being investigated—that
is the network of friends, coworkers, and other associates that the individual communicates
with.

Unfortunately, reconstructing an individual’s social network from digital evidence is labor
intensive. A forensic analyst must examine a large amount of data and determine the
relevance of each piece of information or artifact. One method for potentially accelerating
this process is bulk analysis. Bulk analysis is a technique used to extract select forensic
artifacts from secondary storage devices operating directly at the disk sector level and
searching for artifacts in the raw binary data, without reference to higher-level structures
such as files or file system metadata [2]. The advantage of using bulk analysis is increased
speed and thoroughness, but the downside can be a high percentage of useless or unwanted
artifacts. Since most extracted artifacts are not useful to the analyst, an automated process
that distinguishes between useful and useless digital forensic artifacts will save time during
analysis. Once artifacts are extracted, the analyst must use them to deduce the target’s social
network—a process which requires considerable time and effort. In order to automate this
task, our research focuses one type of digital forensic artifact: the email address.

Email addresses can be of great significance when reconstructing a participant’s social
network. They provide information about who the drive owner is communicating with and
the frequency of the communications. Unfortunately, not all email addresses are helpful.
There are many ways an email address or a string of characters that resembles an email
address can be present on the drive and have no correlation to the communications of the
user. For example, software installations and cached websites contain email addresses that
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are unrelated to the user’s personal contacts or associates. Even when a forensic analyst is
specifically examining email artifacts, the dataset can be large and contain an abundance of
email addresses that are not in the user’s social network.

1.1 Motivation
The motivation for our research is the reduction of time that a forensic analyst has to spend
manually examining data to find email addresses that directly contribute to developing a
user’s social network. Building an accurate social network from information on a user’s
drive is a multistage process that requires human interaction on almost every stage. The
intent of our research is to improve current methods used to process data and to reduce
useless data, referred to as “noise,” that a forensic analyst needs to examine. To achieve this
goal, we are testing a new algorithm for identifying connections between email addresses
found on the participant’s drive. The research question this thesis seeks to answer is the
following:

Does our new algorithm for constructing social networks improve our ability to correctly
model user communication patterns?

Previous research has shown the physical proximity of email addresses on secondary storage
media is sufficient to establish possible social networks on the participant’s device [3], [4].
Our work continues the previous research conducted by Green [3] and Allen [4]. They
made advancements toward reducing noise captured during artifact extraction and toward
the ultimate goal of automatically constructing the participant’s social networks. The
algorithm they tested defines a fixed byte window and constructs graphs with links between
email addresses that fall within that window. Green’s analysis indicates that using measures
of centrality assist in identifying important nodes and close associates. Allen was able to
extract summary attributes from the same graphs of email addresses to classify them into
the categories “useful” and “not useful.” Although the sample size was smaller than desired,
their results warranted further research on a larger data set.

Due to a limitation in the version of friend.py Green and Allen used, email addresses
appearing at the end of long sequences were linked to each other but not to addresses at
the beginning of the sequence. The network was distorted in these cases and addresses in
the same email headers were not equally correlated. The new algorithm we are testing will
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attempt to resolve this problem by treating the window as a “timeout” value that refreshes
every time it locates a new email address. The algorithm will link all email addresses
within the window and will continue to link the email addresses until the timeout ends. This
produces a more accurate graph.

1.2 Contributions
To evaluate the effectiveness of our algorithm, we collected a new, larger data set and
conducted interviews to determine ground truth for each drive. This created an 11 terabyte
corpus of drives with ground truth. In our experiment, we attempted to model the partici-
pant’s communication patterns using Gephi to visualize the output from bulk_extractor and
our new algorithm. For each drive collected, we analyzed the resulting graphs using con-
cepts such as node count, edge count, modularity class, k-core, and degree. We attempted to
determine the email address of the drive owner as well as whether each subgraph contained
useful information about the drive owner’s social network. We used the ground truth ob-
tained during the interviews to validate our assessment of the subgraphs and determine the
effectiveness of our process. We were able to successfully identify subgraphs that contained
the participant’s social network with a recall of 0.9677, precision of 0.6316, and F-score of
0.7643.

During our research, we identified a bug in bulk_extractor. Correcting this will reduce
noise in the email.txt feature file by 24%. In addition, we found that some of the subgraphs
contained a small amount of useful data buried in a large amount of noise, and we developed
a methodology for separating out these “hybrid” graphs using community detection. Finally
we identified several similar subgraphs that were found on different drives. We established
identifying characteristics of these common graphs and created a taxonomy of graphs that
can be used for future work building a classifier.

1.3 Thesis Structure
Our thesis is presented in the following order. Chapter 2 presents technical background
information on forensic and visualization techniques as well as currently used tools. Chapter
3 describes related work in the areas of social network analysis, email analysis, and bulk
data analysis. Chapter 4 presents our methodology and experiment design for creating
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social network graphs. Chapter 5 describes our analysis and results from our experiment.
In Chapter 6 we present our conclusion and propose areas for future work.
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CHAPTER 2:
Technical Background

This chapter introduces the concepts and tools that we used throughout our experiment. The
concepts covered in this chapter come from digital forensics, network science, and graph
theory.

We begin by providing a description of how andwhy email addresses are stored on secondary
storage devices. Several tools we use originate from work in digital forensics. We explain
the functionality of these tools and how we used them to process the data. We then proceed
to network science and graph theory sections: these provide useful definitions and basic
information that aids in understanding graphing and visualization of the social networks.
Finally, we describe the measures of performance we used to evaluate the success of our
experiment.

2.1 Email Addresses on Secondary Storage
Email addresses show up on secondary storage for a variety of reasons. We outline several
possible sources of email addresses, including: web browsers, application installation,
Microsoft Word documents containing email addresses, and strings that appear to have the
same format as email addresses, such as references to portable network graphics (PNG) file
names in applications. For example, web browsers cache websites under user’s profiles and
often an email address is used to log into a website which is stored in a file. In Figure 2.1, we
follow the path from user level to the block device to show how email addresses are stored
with different applications. In this section, we will describe properties of email addresses,
the operating system file structure, and secondary storage devices which explain how we
found the email addresses on secondary storage.
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Figure 2.1. Example of ways email addresses are stored on secondary storage
devices by applications. The figure describes Windows, Mac OS X, and Unix-
based operating systems.

2.2 Email Properties
Understanding the variousways email addresses are used alongwith the associated protocols
is important for explaining why a given email address is present on a secondary storage
device. Not every email address found on a drive belongs to a person in the drive owner’s
social network. Website caches, software installation, and virtual machines store email
addresses in files which are stored on secondary storage. Email addresses from these
sources offer little or no value when attempting to recreate the owner’s social network.

The two main ways a user might access their email are through an email client that stores
email content to disk for offline editing or through a web based email service. Each of
these methods interact with the computer’s storage device in different ways. The primary
difference is that a web based email client requires the user to connect through the Internet
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to access an email or compose a new email. In the case of local email client, a constant
internet connection is not required to read messages or compose new email.

Email Protocols
Email protocols contain two components, one to retrieve incoming mail and one to send
outgoing mail. There are different protocols used with email servers to transmit data to the
client. The type of protocol used can affect how much data is stored on the local hard drive.
Therefore, the email protocols have an impact on our research.

Post Office Protocol 3 (POP3) allows clients to download email data from the server and
store it on the local machine. The individual mail client determines how to store the data
on the local machine. With the POP3 protocol, only new email is stored on the server and
once it is downloaded by the client, the server usually does not maintain any record of the
email [5]. Other email functions, such as email organization and contact lists, are handled
by the client. POP3 is most appropriate for clients that lack or do not have a persistent
Internet connection.

Internet Message Access Protocol (IMAP) acts more like a remote file server because it
allows clients to download new email, as well as organize and store data on the server. When
the connection is made to the server, the client synchronizes its data with the server [6]. For
an email to be read, the data must be downloaded and stored on the client’s device [6].

Simple Mail Transport Protocol (SMTP) is a protocol used to send new mail from the client
to a mail server where they will be stored. It is typically used with either POP3 or IMAP to
complete the email exchange process.

2.2.1 Client Based Email
Client based email is a piece of software that is installed on the user’s local computer and
creates a user interface for reading, writing, and other email functions. The entire user
interface as well as the email, contact lists, and calendars are stored on the local drive. This
allows the user to read, write, and manipulate data while offline and provide a local back up
for information on the server. The client uses standard protocols, described previously, to
retrieve and send email to and from the mail server when an Internet connection is available.
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Three commonly used client based email programs are Outlook, Thunderbird, and OS X
Mail.

2.2.2 Web-based Email
Web-based email applications are hosted on remote servers. This type of email interface
is accessed through a web browser. There is no required download or installation on your
local computer to use web-based email. Some commonly used web-based email providers
are Gmail, Yahoo, and Outlook. Many client-based email providers such as Outlook also
provide web-based access. Typically, most of the email data is stored on the remote mail
servers. However, there are some instances where email data can be stored on the local
drive.

In the case of Microsoft Outlook, the user can download files called Personal Storage Table
(.pst) or Offline Outlook Data File (.ost) as a means of saving their email to their local
drive. Additionally, if a process (web-based email) is running on the computer it will use
local memory. If another process requires that memory, data from the email process will be
swapped to the drive. This data likely contains email addresses. In addition, website user
names such as email addresses are commonly stored by web browsers.

2.3 Operating System’s File Structure
When conducting digital forensics on a raw drive image an analyst does not always have
the luxury of knowing what operating system is installed. The type of operating system is
useful to know because each operating system uses a unique method to store and retrieve
data from a storage device. We are using tools that bypass the file system and are able
to extract data regardless of the operating system installed. As shown in Figure 2.1, the
file system is a part of the process of storing email addresses on secondary storage. The
operating system’s file structure or file system is useful for displaying the files, folders, and
directories to the user. Files and folders become useful during our experiment when we
need to know where email addresses are extracted from on the drive. Our data set consists
primarily of Windows operating systems and Mac OS X operating systems.
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File Storage and Deletion
The file system stores key information about the data that makes up each file stored on the
drive. Along with other information, it contains the name, size, and exact location where
the data associated with the file is stored on the drive. The data for a file could be stored
together or in consecutive sectors. However, practical application sometimes requires data
to be stored in several fragments on the drive, a condition known as “file fragmentation.”
The file system keeps track of where the sectors are that contain data for each file.

In most file systems, when a file is deleted by a user, the data is not actually erased from the
drive. The reference to the file is simply removed from the file system and that space on the
storage drive is now available to hold new data. All of the data that was previously stored
in that location remains and can be read through data forensics tools.

Windows File Systems
Microsoft Windows uses two main file systems, FAT (File Allocation Table) and NTFS
(New Technology File System). FAT is the older, legacy file system which uses a table of
files and a linked list to connect the sectors. NTFS uses a master file table and stores many
additional file properties. It uses a wider range of values as references so it can support
high capacity storage devices.

Mac OS File Systems
The Mac operating system is based on Unix and has many similarities. The Mac operating
system a uses Hierarchical File System (HFS+) The basic function is the same; however
the Catalog file, rather than the Master File Table tracks which sectors are used,and the
Attribute File stores the file attributes. In 2017, Apple introduced a new file system called
Apple File System (APFS) which is optimized for solid state drives [7].

2.4 Properties of Storage Devices
Data storage devices have evolved significantly over the last hundred years. The size of
devices has decreased while the storage capacity has increased drastically. The modern
devices we use today find their origins in punch cards, paper tape, and magnetic tape. Each
of these technologies changed the current thought about data storage and was a dominant
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mechanism to store data for decades but was still extremely slow compared to today’s
standards. Advances such as core memory and magnetic disks paved the way for our
modern data storage devices.

A modern computer uses two methods to store data. Data storage that is located extremely
close to the processor and used for random access by the processor is called memory.
Memory is typically volatile, meaning the data is stored only when power is applied to the
device, and therefore is not a good choice for persistence. The non-volatile storage that is
located further from the processor is called secondary storage which persist when power
is removed. Our experiment used data from secondary storage devices. The two most
prevalent types of secondary storage used today are magnetic hard drives and solid state
drives.

2.4.1 Magnetic Hard Drives
Magnetic hard drives get their name because they are literally a rigid disk, called a platter,
that is coated with magnetic material. The platter spins at over 7000 RPM and an actuator
arm moves a magnetic head over the platter, allowing data to be stored on the surface of
the platter [8]. The head magnetizes a microscopic section of the platter to record data.
Since each square centimeter on the platter holds 31 billion bits, it is important to have an
organized method to know where the data is stored on the platter [8].

During manufacturing, each platter is made with thousands of tiny concentric tracks on the
surface and each track is divided into equal sectors [8]. This system allows data blocks that
are recorded to the disk surface to be assigned an identification number called a Logical
Block Address (LBA) which corresponds to a head number, cylinder number, and sector
number [8]. This numbering system is used to locate the data stored on the disk. Although
the amount of data that can be stored on the same size platter has increased with advances in
technology and changes have been made to facilitate faster data transfer, the basic function
of the magnetic hard drive remains the same.

2.4.2 Solid State Drives
On the surface, solid state drives (SSDs) are effectively integrated circuits and memory
chips. The lack of moving parts increases the read / write speed. The complexity of SSDs
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lie in their operation, not the physical components. SSDs read and write data to a non-
volatile memory called NAND flash memory [9]. One reason for the drastically increased
read / write speed is the drive’s built in controller which manages addressing and computing
shortcuts for data throughput [9]. There is another key difference about the operation of
the solid state drives: their read and write operations work on many bytes at once. Data
is arranged into blocks and each block is divided into pages. Hutchinson [9] explains that
because of its design, an entire block must be written or erased at the same time.

The TRIM command allows the file system to communicate with the controller to clean
up unused blocks, for the purpose of optimizing write speed. Hutchinson explains that
this is required because the NAND flash memory cannot be overwritten during the write
process [9]. The page must be empty (all 1s) in order to allow data to be written to the
page [9]. The function of the TRIM command is to automatically delete (make all 1s)
the contents in a page when the user or operating system deletes the corresponding file.
The downside to SSDs is that they can support only a limited number of writes to each
individual page cell before it can no longer physically store a zero charge and therefore
becomes useless. Implementation of the TRIM command helps to reduce the number of
unnecessary read / writes and therefore prolong useful life of the SSD.

2.5 Forensic Tools for Analysis
We used forensic analysis tools and techniques to image the secondary storage devices, and
produce the raw forensic image we needed to conduct our experiment. The technique we
used is outlined in Section 4. Each tool plays a role in overcoming the variety of operating
systems and configurations we encountered during collection of the participants’ drives. In
this section, we explain each tool’s functionality and briefly give the reason for use in our
research. Because we use a bootable USB drive with Ubuntu operating system to bypass
the different operating systems and file systems on the participants’ drives, we were able to
use the same tools and techniques on every drive we encounter. The drive imaging tool we
use is a command line version of Forensic Took Kit (FTK) Imager.

FTK Imager
FTK Imager is a digital forensics tool that can create a raw forensic image of a drive. FTK
Imager stores an image in several formats, to include raw format (dd), EnCase format, or
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SMART’s file format [10]. The format that we chose for the participant drives was the .E01
format from EnCase. The options for FTK Imager allows for output to a single file or output
to several smaller files depending on which commands are given on the command line. The
command line tool provides additional functionality for compression of the files, with “0”
being using no compression to “9” using the most compression. We split the images into
15 gigabyte files during the imaging process.

bulk_extractor
Once we acquire the forensic image using FTK Imager, we used a open source tool called
bulk_extractor. The computer forensic tool, bulk_extractor, “operates on disk images, files
or a directory of files, and extracts useful information without parsing the file system or file
system structures” [11]. bulk_extractor is capable of parsing several formats such as PDFs,
RARs, URLs and JPEGs. It is capable of running multi-threaded and has many options for
customizing its behavior. The output that we used in our experiment resides in the feature
file named “email.txt”, which contains the offset of the email addresses on the drive, the
email addresses, and a “context” field showing the contents of the bytes on either side of
each address.

friend.py
After we extracted the email feature file from the images we ran the algorithm friend.py. The
code for friend.py is listed in Appendix A. The algorithm friend.py produces an output that
is in GEXF (Graph Exchange XML Format). GEXF is “a language for describing complex
networks structures, their associated data and dynamics” [12]. An additional format we
used with the output of friend.py is the Graphml format, which is another format based on
XML.

The algorithm friend.py takes as input a path to a directory or a text file with a list of
multiple directories containing the output from bulk_extractor. It also requires a path to a
directory on the command line to output the results from friend.py. Some of the arguments
that can be processed on the command line by friend.py are:

• Window size - the default is 128-bytes but size can be 256-bytes
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• Big-subgraphs - subgraphs are separated by the largest connected components and
this selects how many components will be written to separate files. The default is ten.

• Fixed Window - The default is set to false to produce a sliding window based on the
window size

The algorithm, friend.py, saves the nodes and edges to dictionaries. Using the window
size of 128-bytes, friend.py will store any two nodes within the sliding window into a pair,
making an edge between the nodes. The window will stay open and continue to link the
nodes until there is a window-length space without an email address, closing the window.
As friend.py moves through the bulk_extractor output and finds another email address a
new window will start and link the nodes within that window. An additional function in
friend.py is to apply a weight to pairs of nodes that are seen more than once. For example
in Figure 2.2 node a@mail .com and node c@mail .com have two different occurrences, so
a weight of two is applied. In Figure 2.3, the edge between node a and node c is thicker
indicating multiple occurrences.

Figure 2.2. friend.py showing a 128-byte window. Source: [13].

Figure 2.3. Graph resulting from 2.2 based on a 128-byte window.
Source: [13].
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identify_filenames.py
A tool that comes with bulk_extractor is a Python script called identify_filename.py that
produces the path or context around an email address. Using identify_filename.py with
the email.txt feature file from bulk_extractor and the image of the drive adds annotations
to the email.txt file which provides the location in the file system and the md5 hash of
the file where each email address was located. The tool identify_filename.py was used to
understand the location of “not useful” email addresses on the drive (see Section 5.3.2).

2.6 Network Science and Graph Theory
Network Science is a field that has emerged within the twenty-first century. As described
by Barabasi [14], Network Science looks at complex networks, such as, cellular networks,
neural networks, social networks, or power grids. Analysis of complex networks, such
as social networks, uses the characteristics of the networks and graph theory to better
understand the networks. In our experiment we used several techniques from graph theory
to analyze, visualize, and compare graphs.

The start of graph theory dates back to 1736, proving its usefulness in solving questions
involving bridge crossings [15]. The first problems in graph theory showed the importance
and usefulness of modeling data by using a graph and visualization. In this section, we
explain some key concepts we used to evaluate our graphs and how graph theory concepts
help us to identify useful information in our experiment.

2.6.1 Graph Attributes
The definition of a graph is the following: “A Graph G is an ordered pair of finite disjoint
sets (N, E) such that E is a subset of the set N × N of unordered pairs of N . The set N is
the set of [nodes] and E is the set of edges. If G is a graph, then N = N(G) is the node set
of G, and E = E(G) is the edge set. An edge {x, y} is said to join the nodes x and y and
is denoted by xy. Thus xy and yx means exactly the same edge; the nodes x and y are the
end nodes of this edge” [16]. We will use the term node to refer to each email address that
exists on the graph. A node can also be referred to as a vertex.

In Figure 2.4, the nodes are labeled n1 through n9 and the edges are labeled e1 through
e9. A connected graphs means that all of the nodes have edges that are adjacent to each
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other, such that G contains a u − v path for every pair of u, v of vertices of G [17]. Another
important characterization we use is the concept of components in a graph. Components
assist in making graphs more manageable to analyze by breaking the graph into sections
of connected graphs. The graph G may have several components that are not connected
to each other. In Figure 2.4, we show a graph G with three components or subgraphs, H,
J, and K . In our experiment, these components or subgraphs are individually analyzed to
assist with graphs with high node and edge counts.

An edge that occurs between nodes x and y is counted as a weight of one. If the edge
occurs multiple times between nodes x and y, the weight increases incrementally by the
occurrence of the edge. In the Figure 2.4, edge e6 has a weight of one since the edge occurs
one time. If the edge between the nodes n5 and n6 occur again, the weight would be two
for the edge e6. Weight is visually represented by a thicker line compared to edges with
smaller weights. An example of weight is shown in Figure 2.3 between node a and c.

Figure 2.4. Graph G and its components named H, J, and K

2.6.2 Isomorphic Graphs
Isomorphic graphs are graphs that have the same structure, meaning they are the same
graphs but look different visually [17]. In Figure 2.5, we show two graphs that look
different but would be identical if the nodes were in a different layout. These graphs are
small examples in comparison to the graphs in this experiment. However, understanding if
a graph is isomorphic is useful for categorization of the graph.

15



Figure 2.5. Isomorphic Graph Examples. Adapted from: [17].

2.6.3 Node Characterizations
We take into account two characteristics initially when analyzing each subgraph: size and
order. The number of nodes of a graph is referred to as the order of G and the number of
edges is referred to as the size [17]. In Figure 2.4, graph J has an order of 2 and a size of 1.
Order and size are important to understanding other concepts such as degree of the nodes or
weight of the edges in a graph. We also use a number of attributes that are specific to each
node in the graph. These include degree, eigenvector centrality, modularity and k-core.

Degree
The degree of a node is the number of edges that are incident to the node, which is annotated
as degGv [17]. In Figure 2.4, the degree of node n7 in graph K is 2, while the degree of n1 is
3. We find that supplementing the information that the degree captures with the eigenvector
centrality of a node is useful in identifying important nodes in the network.

Eigenvector Centrality
While the degree of a node captures the number of neighbors a node has, eigenvector
centrality of a node is the value the node receives based on its neighbor’s importance or
influence in the network. We use this measurement to decide who the drive owner could be
most closely associated with in a subgraph. To understand eigenvector centrality, consider
an adjacencymatrix to represent the graph. An adjacencymatrix is a nxn symmetric matrix,
where n is the number of nodes in the network [18]. If there is an edge between two nodes
i and j, then the element ai, j in the adjacency matrix is 1 otherwise it is 0, shown as:
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Ai j =


1, if there is an edge between nodes i and j

0, otherwise.
(2.1)

Nodes with high degrees in a social network commonly have more influence in that local
neighborhood of the network. Using degree, weight of the connections between the nodes
and the understanding that the connections are not equal we can arrive at eigenvector
centrality [18]. The centrality of a node i, denoted as xi, will allow for “making xi

proportional to the average of the centralities of i’s network neighbors

xi =
1
λ

n∑
j=1

Ai j x j, (2.2)

where λ is a constant [18]”.

Modularity
Modularity in a graph measures the quality of a partition of a graph [19]. A high modularity
in a graph means that fragmentation into communities is possible, where a community
refers to a collection of nodes in which there are dense connections between the nodes in the
same community, and fewer connections between the communities. The algorithm we use
implemented in Gephi is described in Section 2.7. It was first proposed in “Fast unfolding
of communities in large networks” by Blondel et al. (see Section 3.4.2). Blondel et al.
describes the formula for modularity as:

Q =
1

2m

∑
i j

[Ai j −
ki k j

2m
]δ(ci, c j), (2.3)

“where Ai j represents the weight of the edge between i and j, ki =
∑

j Ai j is the sum of the
weights of the edges attached to vertex i, ci is the community to which vertex i is assigned,
the δ-function δ(u, v) is 1 if u = v, and 0, and m = 1

2
∑

i j Ai j” [19]. The modularity is is a
value between −1 and 1. The algorithm repeats two steps iterating through the nodes until
all the nodes belong to a community where the maximum modularity for that community
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is reached. Finding communities within a graph helps us visualize the clusters within the
graphs.

k-core
The k-core of a network is the part of the network in which every node has a minimum
degree of k. For example, if a node represents a person and an edge represents friendship,
nodes in the k-core have at least k other friends in that part of the network [20]. k-core is
useful in reducing noise in the graph and making the useful email addresses visible.

2.7 Visualization Tool and Analysis
Gephi is an open-source tool we used to visualize subgraphs from participants’ drives during
the experiments. Gephi is visualization and exploration software for graphs and networks
that allows for manipulation of the data to identify structures and patterns [21]. Algorithms
built into Gephi allowed us to use for multiple metrics and layouts to best visualize our
data. In particular, we used k-core to filter the graph (see Section 2.6.3) and modularity
to partition the subgraph (see Section 2.6.3). Gephi is also capable of importing plugins
to facilitate specialized manipulation and filtering of the dataset [22]. The user interface is
shown in Figure 2.6.
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Figure 2.6. A graph in Gephi showing multiple modularity classes distin-
guished by different colors. The appearance and layout functions are found
on the left of the graph. The statistics and filtering functions are found on
the right of the graph.

2.8 Measure of Performance
The primary methods we use to measure performance are precision, recall, F-score and the
confusion matrices. To derive these metrics, we first calculate counts of true positives, false
positives, false negatives and true negatives. These counts provide initial insight into the
effectiveness of our method. In our experiment, having high false positives would mean
the methodology used is over classifying subgraphs as “useful.” If we have high false
negatives, we are missing subgraphs that are “useful.” The counts provide the ability to
build a confusion matrix and calculate precision, recall and F-score.

2.8.1 Confusion Matrix
The confusion matrix, or classification matrix, is built using the counts of true positives,
false positives, false negatives and true negatives. In our experiment, we use a two-class
confusion matrix, shown in Table 2.1.
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Table 2.1. Example of Confusion Matrix

Predicted

Actual
Useful Not Useful

Useful True Positive False Negative
Not Useful False Positive True Negative

2.8.2 Recall, Precision and F-Score
Recall is defined as the proportion of positive cases that are predicted positive. It is also
referred to as sensitivity or the true positive rate. The higher the false negatives, the lower
the recall score and the lower the false negatives the better the recall will be for the method
being measured. The formula for recall is as follows:

Recall =
TruePositives

TruePositives + FalseNegatives
. (2.4)

Precision is the proportion of predicted positive cases that are actually positives. It is also
referred to as the positive predicted value [23]. The formula for precision is as follows:

Precision =
TruePositives

TruePositives + FalsePositives
. (2.5)

The F-score represents the harmonic mean of the precision and recall. The formula for
F-score is as follows:

FScore = 2 ×
precision × recall
precision + recall

. (2.6)
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CHAPTER 3:
Related Work

In this chapter, we review work discussing the methods and tools used in the analysis of
bulk data, email addresses, and social networks, as well as graph classification techniques.
Our research builds on and continues the work of two Naval Postgraduate School students.

3.1 The Forensic Process and the Volume Problem
The digital forensics process involves more than just finding the data. There are many
tools available to accomplish this task. Since the output from these tools will commonly
be used as evidence to present in court, it often must meet certain legal requirements for
admissibility [24]. There are numerous process models used to conduct digital forensic in-
vestigations [25]. The digital forensic process has evolved as technology has advanced. The
Abstract Digital Forensics Model [26], Enhanced Digital Investigation Process Model [27],
Forensics Process Model [28], Investigative Process Model [29] represent a few iterations
during the growth of the field.

Each of these models emphasizes different approaches. In 2002, Reith et al. [26] present
an Abstract Digital Forensics Model. They define common steps used in other forensics
models and produce an abstract model that can be used independent of a particular technol-
ogy. The Enhanced Digital Investigation Process Model, presented by Baryamureeba and
Tushabe [27] in 2004, uses five phases to redefine the progression of the forensic process.
Their goal is to improve the methodology and approach to the investigations and increase
criminal convictions on computer related crimes. In 2006, Petroni et al. [28] introduce
the Forensics Process Model which provides an extensible framework that makes volatile
memory forensic analysis more practical. The Investigative Process Model, introduced by
Freiling and Schwittay in 2007, places emphasis on the scientific approach and the careful
handling of digital evidence [29]. In 2012, Kohn et al. introduce the standardized Digital
Forensic Process Model to assist in digital investigations [25]. Because our research is
based on data gathered for investigative purposes vice the presentation of trial evidence, we
will focus on the analysis phase as described in many of these models. The analysis phase
includes identifying relationships between data fragments, determining the significance of
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the information, and arriving at proper conclusions [30].

Regardless of the model used to approach the digital forensic process, the common problem
that must be addressed is the shear volume of data [31]. Andrzejewski [31] discusses the
rapid growth in storage capacity and the problems it poses for digital forensic analysts. He
proposes a method using open source software to distribute the analysis of the raw forensic
images [31]. His work can assist with the volume problem and we believe automating steps
in the forensic process will assist in processing the huge amount of data in a timely manner.

3.2 Forensic Data Analysis Tools
Digital forensics can provide investigators with accurate, relevant information in a timely
manner. This, however, is not always an easy task. Two major obstacles are technological
obsolescence and manpower constraints [32]. The rapid rate at which technology is advanc-
ing has turned some forensic tools into obsolete relics and Garfinkel [32] argues that the
lack of formal standardization will make digital forensics substantially less effective. These
two obstacles are connected based on the fact that new technological advances in digital
forensics requires personnel to understand the technology. Furthermore, with the increase
of the volume of data requires manpower to analyze the data. Individual file extraction
and analysis is a common forensic practice due largely to the vast array of digital storage
mediums, file systems, and formats in use [2]. This burdensome process requires a large
amount of analyst time and can create a backlog of data awaiting analysis [1]. In some cases,
a forensic analyst can mount a hard drive to their computer and use a standard operating
system to view allocated files. This is the simplest method of digital forensics but not the
desired approach due to possible alteration of evidence and the time it takes to conduct
analysis. The obstacles presented in the digital forensic field could be reduced by using
current tools to process the forensics data.

During the analysis process, forensics analysis use tools based on what needs to be investi-
gated. Carrier [33] uses abstraction layer theory to analyze forensic tools and propose a set
of requirements for forensic analysis tools. As discussed in the previous section, the various
frameworks outline methods for memory forensics dealing with volatile and non-volatile
forensic data. Our research focused on non-volatile data using a method independent of the
operating system. Operating systems use different file systems which could complicate the
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forensic process based on the tools used [34]. In analyzing these files, specialized forensic
software and additional tools are required if the operating system is unknown or if the
analyst is looking for unallocated files [33]. The solution we implement to standardize our
process across all operating systems was bulk data analysis.

Several bulk data tools exist to extract data for forensic analysis, such as Encase, Forensic
Toolkit, and The Sleuth Kit. All three of these are capable of parsing the most commonly
used file systems. Encase has been widely used by police departments around the US for
decades [35]. It makes a bit stream mirror image of the drive and offers an integrated set of
forensic tools to analyze the data [35]. Forensic Toolkit (FTK) provides law enforcement
and corporations an integrated kit of tools capable of reading, acquisition, decryption,
analysis and reporting of digital evidence [36]. We utilize FTK Imager to create raw images
of the participant drives while leaving the underlying data undisturbed. The Sleuth Kit
(TSK) is an open source software with 21 very powerful Linux based tools [36]. A benefit
of TSK being open source is the peer review and scrutiny it has undergone, which allows it
to inherit certain security principles [36].

3.2.1 Bulk Data Analysis
Bulk data analysis can be used as an initial step to determine if the media contains valuable
intelligence data [2]. Bulk data extraction attempts to ignore the interfaces rather than
parse them by working at the block device level. The block device is shown in Figure 2.1,
showing each level from applications to storage. Using bulk data extraction techniques
allows prioritization for deeper analysis and results inmore significant information generated
during a given amount of analyst time [2]. However, bulk data extraction produces higher
levels of noise within the data. Bulk data analysis finds significant features of specific types
of data that an analyst would be looking for, such as email addresses, credit card numbers,
and search terms [2]. Garfinkel [2] introduces the bulk_extractor tool and shows how it is
more effective in gathering high-value forensic features than current tools. Discerning the
value of the information contained on a drive dramatically increases efficiency and allows
an analyst to focus on the valuable data.
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3.2.2 Sifting Through the Data
During a digital forensic investigation, there is a good chance that much of the data on a hard
drive undergoing analysis is not useful [37]. Some data is just "uninteresting" if it provides
no information about the owner [37]. The task of finding the desired data and discarding
the uninteresting data can be manually tedious. If automatically identifying interesting data
is difficult or impossible, getting rid of data that is known to be uninteresting allows for
more efficient use of time spent analyzing data that has the possibility of producing valuable
information [37]. Rowe’s work compares numerous automated methods of identifying
uninteresting files and showed successful results [37].

3.3 Email Analysis
Personal hard drives and other storage media can be a trove of useful data during an
investigation. Rowe et al. [38] point out that people may be guarded about the information
they share on social media sites but there is little concern about the information being stored
during routine computer use. Key pieces of data, such as email addresses, can be easily
retrieved by searching the drive and these can be discovered regardless of the operating
system used [38]. Developing social networks based on email addresses is made possible
due to email’s availability and frequent use.

There is a variety of email forensic tools available to an analyst. Each one may be bet-
ter suited for a specific task. Five commonly used open source tools are MailXaminer,
Add4Mail, Digital Forensic Framework, eMailTrackerPro, and Paraben E-Mail Exam-
iner [39]. Each of these tools have varying capabilities and uses metadata to examine the
content of the email files that are located on a hard drive. Our approach instead focuses
on the physical location of the email address stored on the drive and not the email content.
This is a result of the bulk analysis approach we use to extract email addresses.

Bulk_extractor finds features such as email addresses on storage media without using file
system structures. However, the raw output is a list of tuples containing the byte offset,
email address, and context field. Further analysis is required to identify important addresses
or social connections. There are several ways in which connections between specific email
addresses can be made. Rowe et al. [38], discusses how the placement of the email
address on the drive, matching words, email address structure, and numerous occurrences
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of different email addresses located in close proximity to one another give an examiner the
ability to determine the strength of the connection between the email addresses [38]. We
use visualization software to further analyze the bulk_extractor output.

3.3.1 Email Evidence
Various types of forensic evidence is left on a users drive during the process of sending
an email [40]. Even if the email has been deleted from the mail service and the "trash" is
emptied forensic evidence is often still present on the drive. This is due to just the pointer to
the data being deleted with no change to the data in storage. Although email transmission
follows standard protocols, local email storage depends largely on the email client [40].
Boucher and Kuange [40] discuss two ways a user accesses email. First is through an email
client system which operates using software on the user’s computer. The second is through
a browser-based email system which operates through a connection with an email server.
Forensic evidence is left behind from both systems [40].

It is common for an individual to have more than one email address. This will present a
challenge for the construction of the user’s social network unless these email aliases are
resolved to the actual user. Bird et al., ran into this issue during their analysis of email
coordination and communication between open source software developers [41]. They
used header data and an automated clustering process to group similar email addresses
together and then manually processed those results [41]. Their clustering algorithm used
five similarity measures to calculate an overall similarity score. If the score exceeded an
empirically set threshold, the aliases would be clustered [41]. However, their method for
determining aliases of the same user is only effective if the aliases contain similar features.
We address this issue by requesting alias resolution information directly from the device
owner during our interview process.

3.3.2 Visualization
Visualization tools help address the volume problem by providing analysts with a repre-
sentation of the data that highlights important artifacts and accelerates the examination
process. After removing the uninteresting addresses, there are different ways to visualize
email networks. Measuring the dissimilarity between the email addresses proved to be key
in visualizing connections [38]. Rowe et al. [38] use dissimilarities to correlate distance
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and then look for email addresses that clustered together. Different factors used by Rowe et
al. [38] to explore dissimilarity are as follows:

• Dissimilarity of the words in the email addresses,
• Magnitude of the difference in offsets,
• Email addresses located in different files,
• Email addresses located in different messages.

Rowe et al. [38] also use similarities between different drives to draw on tens of thousands
of data points and provide additional reliability. This generated a graphical representation
of a social network based on the email addresses. This paper showed that email addresses
alone, without the contents of the email, could be used to build a reliable social network for
the user of the drive [38]. Green [3], discussed in Section 3.6.1, used byte-offset between
digital artifacts on the storage media to establish links that represented communications
between users.

3.4 Social Networks Analysis
A frequent goal of forensic analysts is to understand the social network of the device
owner. This requires the ability to piece together digital artifacts to construct a model of the
owner’s social interactions. Social network analysis has been used since the 1930’s when
Jacob Levy Moreno developed sociometry [42]. He merged the social network analysis
of the time with mathematical models and graphic imagery [43]. Contemporary social
network analysis requires the ability to reconstruct complex relationships because users
can represent themselves with different email aliases and through numerous social media
channels. Fortunately, network science and graph theory offer many useful techniques for
inferring and working with social network data. In particular, our work relies on degree of
a node, Eigenvector centrality (defined in2.6), and community detection algorithms. We
also make use of several different layout algorithms to present the data.

3.4.1 Inferring Social Networks from Email Data
Multiple studies have demonstrated the feasibility of constructing meaningful social net-
works from email corpora. Perhaps the best known examples use the Enron corpus, a
collection of nearly half a million emails from 158 employees over a period of 3.5 years. [44]
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In their 2005 paper on the Enron Email Corpus, Diesner, Frantz, and Carley analyze the pat-
terns of communication by the Enron employees during the company’s collapse [44]. They
sorted and classified the emails to build the communication structure between employees
based on their rank and positions. Diesner Frantz, and Carley attempted to understand the
structure of the communication networks in Enron as the crisis unfolded and they examined
patterns of senders versus receivers as well as comparing the email to the organizational
structure [44].

The authors extracted several attributes from a database containing the corpus to graph
the communication structure using DyNetML, an XML-based markup designed for social
network data [44]. They placed edges to represent email correspondence between Enron
employees and weighted the edges based on frequency. They analyzed the density, between-
ness centrality, and degree centrality of the resulting graph to identify important agents in
the network. They concluded that patterns and volume of communication changed during
the crisis, leading to a break in traditional and formal emails between employees of different
rank within the company.

Chapanond et al. used graph theory and spectral analysis to compare the Enron email data
and Rensselaer Polytechnic Institute (RPI) email data [45]. They create communities and
model the communication structure. The authors only use the “To" and “From" fields of the
Enron data set, which covers 19 months and contains 150 employees email logs. The RPI
email data set has 1681 vertices compared to Enron with 150 vertices. The metrics used
were degree distribution, diameter, average distance, average distance ratio, compactness,
clustering coefficient, betweenness, relative interconnectivity, and relative closeness [45].

The results suggest the two organizations have different structures. The Enron email graph
follows the power law and the largest component of the graph contains 62% of the vertices.
Visualization of the Enron graph shows differences in communication when related to pay
structure within the organization. Although both the analysis and work by Diesner el al.
successfully demonstrated the ability infer social networks from email data and allowed
the authors to arrive at new insights about the corresponding social interactions, their
process requires intensive manual analysis that is unlikely to scale to large investigations. In
addition, they rely heavily on email header data to build their model; attempts to automate
would therefore require recovering and parsing these headers.
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3.4.2 Communities in Large Networks
One way to break down larger networks to analyze them, is to consider the network at
the community structure level, where communities are groups of nodes that are more
interconnected than interconnected to the other communities. Blondel et al. [19] developed
the Louvain method that uses modularity optimization to construct large networks (see
Section 2.6.3). The algorithm used is executed in two phases. First, each node is assigned
a community. Then the algorithm iterates over all nodes. For each, it considers every
neighboring community and decides whether the community would be stronger with that
node. If the modularity increases, the new node joins the community. If the modularity
does not increase, the node remains in separate a community. This process is repeated until
there are no longer any modifications to the exiting partition of nodes into communities.
The second phase of the algorithm builds the networks out of the communities identified
in the first phase and repeats the process but now the modularity depends on communities
merging (rather than a node merging into a community).

The advantages of the algorithm include unsupervised operation which is fast and easy to
implement. The disadvantage is that it is not a deterministic algorithm, so the community
detection generally produces different communities. During testing, the algorithm was
applied to large networks. The speed of computation and modularity were compared to the
results from three other algorithms. This validated algorithm is implemented in Gephi to
assist visualization of the graphs nodes in our research.

3.5 Classification Techniques
The automation of secondary storage analysis relies on an accurate classification of graphs.
That is, given a graph, analytical tools must be able to determine whether or not it is likely
to be relevant to a forensic investigation. Machine-learning approaches to this problem
typically rely on the ability to represent the objects being classified as a vector of features.
Fortunately, graph theory offers a wide variety of potential features that can be calculated
from the graph. These features can be used to enhance visualizations of a social network or
help in classification of graphs with machine learning techniques.
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3.5.1 Graph Fingerprints
Noting the difficulty of comparing unlabeled graphs with millions of nodes and edges, Bon-
ner et al. [46] outlines a feature extraction approach called Graph FingerPrint Comparison
(GFPC). This method compares large graphs that are topologically similar by extracting
local and global level features [46]. To compare graphs, the GFPC approach begins by
building a “fingerprint” from the local and global features extracted from the graph. To
improve efficiency, node-level features are summarized using common statistical measures.
Once the fingerprints are created, the authors perform similarity calculation using Canberra
distance. However, since the fingerprints are essentially equivalent to feature vectors, they
may also make a viable input for a machine-learning classifier.

3.5.2 Support Vector Machine Use on Email Data
Standard machine learning tools, such as support vector machines, have the potential to
contribute to the automation of a variety of challenging forensic analysis tasks. Liu and
Lee [47] demonstrate the effectiveness of SVM classifiers to conduct sentiment analysis
the Enron Email Corpus. Their framework compares three different labeling methods,
which include SentiWordNet labeling, k-means labeling, and Polarity labeling. They also
test five different classifiers: SVM, Naïve Bayes, Logistic Regression, Decision Tree, and
OneR [47]. After analysis of the labeling and classifiers, they propose using k-means
clustering and SVM classification.

Labeling was required to provide the classification algorithms a set of validated ground-
truth data to train against. Liu and Lee chose use k-means clustering, an unsupervised
learning approach, to accelerate the labeling process. After clustering the emails, they
apply sentiment labels to the clusters. These are then used to train their SVM classifier [47].
They tested their framework on the Enron email corpus.

Using a confusion matrix, they classified the labels as positive, negative, or neutral. They
also measured the performance of the SVM classifier with respect to precision, recall, f-
score, and accuracy (see Section 2.8.2). They found that SVM had the highest performance
curve which indicated it was the best method for classification. We note that the success of
the authors’ approach depends on the availability of a relevant dataset of significant size. The
absence of a similar dataset with contemporary machines for digital forensics contributed

29



to this motivation of this research. Moreover, while the authors’ goal of sentiment analysis
requires only 3 types of labels, classification of email networks is considerably more
complex. Both a robust taxonomy and reliable ground-truth labels are needed for the future
development of machine-learning classifiers.

3.6 Constructing SocialNetworks fromSecondary Storage
Two prior Naval Postgraduate students, Janina Green and Gregory Allen, made advance-
ments toward reducing noise and extracting the device user’s social networks. The algorithm
they test defines a fixed byte window and constructed graphs of email addresses with links
between addresses that fall within that window.

3.6.1 Constructing social networks from secondary storage with bulk
analysis tools

Green [3] develops a method based on the byte-offset between digital artifacts on the
storage media. The byte-offset approach was shown to establish links between users that
represented communications [3]. Her analysis indicates that using measures of centrality
assists in identifying important nodes and close associates. This information was used to
create useful graphs which assisted in establishing the social network of the owner.

Green [3] uses three groups of drives for her analysis. She has two data corpora and ten
collected drives from volunteers. Green’s [3] approach is to analyze the drives, create
graphs, and separate them based on usefulness. She conducts interviews and gets feedback
on her results. Green [3] successfully uses automated steps to produce information valuable
for an analyst building the user’s social network.

3.6.2 Constructing and classifying email networks from raw forensic
images

Allen [4] conducts several experiments using the same drives in Green’s work. He classifies
graphs of email addresses into the categories “useful” and “not useful”. He uses Naïve
Bayes, classification tree, logical regression, and support vectormachines (SVM) tomeasure
the data.
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In the first experiment Allen uses all of the graphs and attributes in his data set to classify
the graphs “useful” and “not useful”. In the second experiment, evaluated the effect of
altering the maximum distance (in bytes) between email addresses that are linked in the
network that the algorithm constructs. His third experiment used a selected set of attributes
of the graph.

The attributes he finds useful are “density, average neighbor degree, Pearson coefficient,
transitivity, highest betweenness centrality, maximal matching (divided by number of
edges), maximal matching, number of nodes, degree distribution, and degree distribu-
tion value“ [4]. In his last experiment, Allen categorizes graphs into classes based on the
type of email address.

Allen concludes that using the graph’s topological structure, he could classify the graph’s
usefulness. The second experiment shows that using a 128-byte window performed better
in correctly classifying the graphs. He identifies the top attributes to accurately classify the
graphs. Allen identifies that using a labeling scheme better categorized networks to assist
machine learning algorithms [4].

In our experiments, we build on the previous work of Green and Allen by identifying user
communication patterns using a new algorithm and labeling a data set that could be used to
train a classifier.
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CHAPTER 4:
Methodology

Our experiment centered around analyzing the proximity of email addresses on secondary
storage devices using the algorithm, friend.py. To perform this analysis, we first built a
dataset of drive images collected from a pool of volunteers consisting of Naval Postgraduate
School students, faculty, and friends. Then, using some of the successful techniques from
previous Naval Postgraduate School thesis students, Green and Allen (see Section 3.6), we
created a new methodology to determine the social network of the drive owners.

4.1 Identifying User Communication Patterns
In this section, we give an overview of the tools and methods used in our process, from
collecting the raw forensic images and extracting email address to classification of graphs
and evaluation of our analysis. In addition, we discuss the new algorithm friend.py and the
process we use to visualize the subgraphs created in this experiment. Figure 4.1 is a visual
representation of methodology. The steps in our methodology are:

1. Collect secondary storage devices from participants and create a raw forensic image.
2. Record general metadata about each drive and the email activity of the participant.
3. Process images using two tools: bulk_extractor and friend.py.
4. Use Gephi to run statistics and layout on each subgraph from the participant drives.
5. Classify the subgraphs as “useful” or “not useful” with respect to information the

graph contributes regarding the participant’s social network.
6. Conduct interviews with the participants to find ground truth.
7. Inspect subgraphs or drives that require further analysis.
8. Measure effectiveness of our approach by comparing our labeling to ground truth

interviews.
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Figure 4.1. Methodology for the Experiment: Identifying User Communica-
tion Patterns. Gephi icon sourced from: [48]

4.2 Drive Collection and Email Address Extraction
To acquire drive images of our participants’ machines, we used a bootable USB drive
running the Ubuntu operating system. By operating from this external drive we were able
to bypass the different operating systems and file structures on the participants’ computers.
Using the same operating system for imaging each drive allowed us to use a standard
procedure each time and not interact with the file system or operating system on participant
drives. We performed image acquisition using FTK Imager (see Section 2.5), which creates
a raw forensic image and copies it to an external drive. An example of the FTK Imager
command we use on a drive is:

ftkimager <src device> “<dst device>” �e01 �frag 15G �compress 9

The command takes the source device and copies the image to the destination device using
.E01 format. The image is fragmented into 15GiB sections and compressed with the highest
compression FTK Imager offers. Once the image is created, we run bulk_extractor to extract
the email addresses and the offsets on the image. The command we used in bulk_extractor
is:

bulk_extractor -o <output dst> -E email -j 4 <file_name>.E01

We executed the command against all .E01 files created by FTK Imager. This bulk_extractor
command produces several reports. The output that was relevant to our experiment is the
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text file email.txt. Email.txt contains all email address found on the drive, as well as the
byte offset where they were found on the secondary storage device, and a context field
showing the content of the bytes on either side of the address. The next step was to run
the new algorithm, friend.py (see Section 2.5 for description or see Appendix A for Python
code). The output from friend.py contains 11 GEXF files to be analyzed in Gephi, and a
summary text file. Of these 11 files, one contains the entire graph produced by the friend.py
algorithm, and the other 10 consist of the 10 largest connected components (by node count),
each saved to a separate GEXF file. We use the top 10 components or what we refer to as
subgraphs for our analysis. The command we used for friend.py is:

friend.py -p <bulk_extractor input> -o <output_directory>/

4.3 Analysis of Subgraphs
In preparation for analysis and participant interviews, we used Gephi to conduct the follow-
ing steps on each of the 450 subgraphs:

1. Calculate the following statistics on the subgraph: average degree, modularity, and
eigenvector centrality

2. Color the nodes and edges by community
3. Run the Fruchterman Reingold layout function (only if the total node count is below

approximately 2, 000 nodes on the subgraph)
4. Locate the node with the highest degree
5. Locate the node with an eigenvector centrality of 1.0 to identify the most important

email address in the subgraph
6. Classify the graph as “useful” or “not useful” based on visual inspection and statistics.

4.3.1 Setting up Graphs in Gephi
The Fruchterman Reingold layout function assists in visualization of graphs in Gephi. We
apply this algorithm prior to labeling each subgraph “useful” or “not useful”. The algorithm
relocates the nodes and edges to meet a defined list of criteria. Which consists of evenly
distributing vertices, minimizing the edge crossings, making the edges uniform in length,
and conforming to the frame [49]. This algorithm has the benefit of making clusters within
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subgraphs easier to see, as well as clearly showing the nodes and vertices. Subgraphs
over approximately 2, 000 nodes require additional steps prior to running the Fruchterman
Reingold layout function due to computation time the algorithm requires. The additional
steps for subgraphs with high node counts are described in Section 4.3.2.

After calculating average degree and eigenvector centrality, we used Gephi’s “data lab”
view to look for the node with the highest eigenvector centrality and the highest degree.
This metric is a tool we used to identify if the subgraph was “useful” and to identify the
drive owner.

During the participant interview, we usedmodularity classes and k-core filtering to highlight
important features of graphs with high node counts.We use additional steps to filter graphs
with high node counts usingmodularity classes and k-core during the participant interviews.
Using modularity class filtering, we could discern if the communities accurately clustered
social networks into groups that made sense to the participant. We explain this in more
detail in the next sections. In Figure 4.2, we show a high node and edge count that requires
filtering.
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Figure 4.2. Disk11c1 has 10, 937 nodes with 355, 567 edges. Subgraphs
of this size create computational issues running the Fruchterman Reingold
layout in Gephi.
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4.3.2 Filtering with Communities
We used themodularity classes or communities for filtering data in two different ways. First,
we used the community filter to identify the “useful” subgraphs prior to the ground truth
interviews. Second, during the interviews, we use modularity class to highlight the structure
of subgraphs with high node counts to allow the participants to visualize the connections
represented by the subgraph. If the participant identified a community as “useful,” wewould
create a new workspace in Gephi for that community. This allowed us to further analyze it
outside of the original subgraph. Calculating average degree, modularity, and eigenvector
centrality on the community would further cluster the subgraph into new sub-communities
and revealing more detailed structure within the original community. We applied new
modularity class colors to the community and continued analysis with potentially fewer
“not useful” email addresses in the participant’s useful community. Figure 4.3, shows one
community (purple) exported from the graph shown in Figure 4.2. After calculating the
degree, modularity, and eigenvector centrality on the exported community, we show new
sub-communities in Figure 4.4.
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Figure 4.3. The community from the subgraph shown in Figure 4.2 that has
the drive owner’s primary email address is exported to a new work space.
The export reduced the nodes to 4, 265 and the edges to 12, 222.
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Figure 4.4. The subgraph shows what one community from disk11c1 looks
like after running degree, modularity, and eigenvector centrality to refine the
subgraph for analysis.
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4.3.3 Filtering with k-core
After filtering by community, we used k-core (see Section 2.6.3) to remove nodes in the
sub-community. This assisted in bringing out the social network in a subgraph with noise.
An example of the type of nodes the k-core filter assisted in removing from the subgraph is
message-id email addresses, such asKAJSDOFU-ADFS-OWEKLNF-ASERJASLDF@GMAIL.COM.
These email addresses commonly had a degree of one and would be removed when the k-
core filter was set to two. On large node count subgraphs, we use the k-core and modularity
class filtering together to pull out the useful email addresses or clusters of email addresses.
In Figure 4.4, we still show a large number of the message-id email addresses in Gephi.
The k-core reduces the noise on Disk11c1 giving us the social network of the drive owner
in Figure 4.5.
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Drive 
Owner

Figure 4.5. Disk11c1 subgraph after filtering with modularity class and k-
core to reduce noise and visualize the social network. Each modularity class
represents different social groups of the drive owner. The communities iden-
tified different time periods for the drive owner’s social network.

4.4 Subgraph Labeling: “Useful” or “Not Useful”
We looked for common attributes on each subgraph to label the subgraph “useful” or “not
useful”. The following attributes assisted us in labeling each subgraph “useful” or “not
useful” :
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• Highest degree,
• Eigenvector centrality closest to 1.0,
• The same node with highest degree and eigenvector centrality,
• Type of domain of the email address,
• Names of common software found in the subgraph,
• Websites in email address across entire subgraph,
• Domain ending in “.pn”,
• Completely connected subgraph containing common domain name.

We labeled almost all the subgraphs within our data set using just one attribute. However,
labeling subgraphs with a high number of nodes required the use of multiple attributes
simultaneously. Applying labels to each subgraph prior to attaining ground truth during
the interviews was an important part of assessing the algorithm friend.py. We labeled a
subgraph “useful” if it could be used to build the participant’s social network, meaning it
included someone they had emailed or who had emailed them. A “not useful” subgraph does
not contain any email addresses that were used for communication by the participant. An
example of a “not useful” subgraph is one that contains email addresses from the installation
of software. If the subgraph was ”not useful” we would continue to analyze the subgraph
and apply a more detailed category label (see Section 4.4.2 below).

4.4.1 Inferring Labels from Attributes
The degree and the eigenvector centrality of each node provided a starting point for the
analysis of each subgraph. If the same node has the highest degree and eigenvector centrality
we concluded that node was the drive owner. We also evaluated the types of domains
common within the subgraph. If we saw the same domain on each email address within a
subgraph and it was not familiar, we conducted further research to identify the domain. An
example would be if all of the domains end in a common software package. It would be
labeled as “not useful” and we would annotate the name of the software. For any subgraph
we labeled “not useful”, we attempted to identify a common characteristic in the email
addresses and recorded a more detailed category for that subgraph.
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4.4.2 Subgraph Categories
Once the subgraph is labeled “not useful”, we further analyzed it and assigned it to one of
several categories. The category names are selected by a common domain or based on the
directory path for the email addresses on the drive. A subgraph is given a name if it is seen
more than once in the data set. The categories and associated description for the experiment
are:

Table 4.1. Categories of Subgraphs in Experiment

Subgraph Label Description
Cert A subgraph containing “@dot.ca.gov” for all nodes in the subgraph.
Contoso A fully connected subgraph with the domain of “@contoso.com” for all the nodes.
Eldos A subgraph containing “@eldos.com” for all nodes in the subgraph.
Documents Completely connected subgraphs from email addresses found in Word or Excel documents.
Graphics A subgraph containing “.pn” or “.jp” domain which are PNG files and JPEG files.
Libsamplerate A subgraph containing an audio converter C shared library files with nodes ending in “.so” domain.
Libsndfile A subgraph containing a reading and writing audio file C shared library with nodes ending in “.so” domain.
Microsoft A subgraph containing Microsoft Office Contact list found in a file in the installation folder.
Social A subgraph of the social network of participant.
Software A subgraph of installed software including, Python, Debian, Apache, and other well-known software vendors.
Theora A subgraph containing video compression and video CODEC software with the common word “theora” for the node labels.
Travel A subgraph containing hotel, airlines, and other travel agency email addresses for node labels.
Unknown A subgraph that does not have greater than one occurrence in the data set or does not fit into other categories.
VM A subgraph containing node labels associated with installation of virtual machines.
Websites A subgraph with node labels from cached websites or with a common domain for websites.
Whatsapp A subgraph with node labels ending in “whatsapp” which is an instant messenger and VoIP software.

4.5 Participant Interviews
The participant interviews consisted of asking 12 institutional review board (IRB) approved
questions (listed in Appendix B). Each participant was presentedwith all ten subgraphs from
their drive and asked to determine whether they were “useful” or “not useful”, depending
on whether they contained information pertaining to their social network. After identifying
the “useful” subgraphs, the participants were asked if they recognized the email addresses
of people with whom they use email to communicate and if their relationships with these
people were accurately represented in the structure of the subgraph. That is, we asked if they
could discerned if the clusters or pairs of email accurately reflected their social network.
The expected response for these questions would be “yes” or “no” to simply identify, at a
subgraph level, the usefulness of the subgraph.

Additionally, we asked the participants questions pertaining to their computer type, operat-
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ing system, email provider, and email activity. Data points we wanted to track, such as if
the hard drive was solid state or magnetic, are important to document for comparison when
analyzing subgraphs. Another important data point we tracked was how the participants
access their email. This documents key differences with respect to email access, such as the
use of an email client installed on their computer, as opposed to browser-based email access.
Participants were also asked to share if they were the only user of the computer or if they
shared the computer, since this could affect identification of “useful” subgraphs. During
the interview we noted any unusual subgraphs and allowed the participants to discuss what
they thought they were. This led to identifying numerous subgraphs that required follow up
analysis.

4.6 Additional Analysis on Subgraphs
To gain additional insight into subgraphs that required further analysis either during the
initial set up or post-participant interviews, we used identify_filename.py (see Section 2.5).
This tool provides the file or location that the email address was extracted from, which
helped us to better understand subgraphs containing unusual or unexplained addresses.
We used this method to find the associated program or file these address were extracted
from and to explain why it was present in the data set. The command we used to run
identify_filename.py is:

identify_filename.py -image <path to image> �featurefiles email.txt

<path to feature file> <path for output>

This command adds annotations to the original email.txt file indicating the file name, if any,
that is associated by the file system with the byte offset where the email address was found.
After annotation was completed, we used the Unix command line utility grep to retrieve
this information from the email.txt files. We then used computers with the same operating
system to validate the results. For example, this procedure allowed us to find the file that
contained the email addresses making up the “Microsoft” subgraph. Since Microsoft Office
was installed on more than one computer we could verify that the the subgraph came from
the same file in each case.
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4.7 Measure of Performance for the Experiment
The measure of performance for the experiment is based on the quantity of correctly labeled
subgraphs. The number of subgraphs that are “useful” that we correctly labeled “useful”
prior to the ground truth interviews are counted as true positives. The number of subgraphs
that are “not useful” that we correctly labeled “not useful” are counted as true negatives.
Similarly, the subgraphs that are “useful” but labeled “not useful” are counted as false
negatives, and the subgraphs that are “not useful” but labeled “useful” are counted as false
positives. We report these counts in a confusion matrix (see Section 2.8.1). Additionally
we calculated recall, precision, and F-score.
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CHAPTER 5:
Analysis and Results

This chapter summarizes the analysis and results from our experiment. We start by de-
scribing the dataset used to conduct the experiment, and highlight trends in the metadata
we collected describing the hardware and software used by the study participants. We then
present metrics (precision, recall and F-Score) evaluating our ability to separate “useful”
and “not useful” subgraphs using the analytical process described in Chapter 4. Subse-
quently, we give a detailed analysis of patterns in subgraphs that contribute to the taxonomy
of graph categories we developed. Finally, we identify subgraphs that were unexpected or
required additional analysis.

5.1 Aggregated Statistics on Participant Drives
We gathered information about the hardware and software components from each drive.
The dataset consists of 51 secondary storage devices with 48 different participants. We
were unable to use six drives due to errors that occurred during the acquisition process
which reduced our dataset to 45 drives with 42 unique participants. We analyzed a total of
450 subgraphs from the 45 drives (10 from each drive).

5.1.1 Hardware Statistics
For each storage device we acquired, we recorded the age and manufacturer of the computer
containing the device, the size of hard drive, and the type of hard drive (i.e. solid state or
spinning disk). There are 27 magnetic drives and 18 solid state drives in our dataset. We
initially hypothesized that the type of hard drive would be correlated with in the number of
email addresses discovered on the drive, due to the fact that SSD on systems implementing
the trim command aggressively clear out unallocated space. However, in practice we
observed no such trend. The sizes of the drives ranged from 120 to 250 gigabytes for
solid state drives, and 130 gigabytes to one terabyte for magnetic drives. The computers
in our experiment were, on average, 2.73 years old. The newest computer was one month
old and the oldest computer in our experiment was eight years old. The manufacturer of
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the computer was documented and is listed in Appendix C, along with all other recorded
information on the drives.

5.1.2 Software Statistics
In the initial collection and during the interview process, we recorded the type of operating
system installed on the computer, the type of email client, the method used to access email,
how often the participant accessed email, and whether there were multiple unique users of
the computer. The types of operating systems in our dataset are listed in Appendix C. We
gathered this information prior to imaging the secondary storage devices but we also found
that we could identify patterns in the subgraphs that would indicate whether the computer
was running OSX or Windows. Further analysis on the impact of operating systems on
social networks reconstruction may be worth investigating in future work. Many of the
subgraphs on a computer with the OSX operating system had high node counts on the first
few subgraphs and had several graphs containing the domain ending in “pn”. The “pn”
subgraph will be discussed in more detail in Section 5.3.2. We considered high node counts
for a subgraph to be over 8, 000 nodes.

The participants were asked if they used an installed email client or accessed email through a
web browser. If anOutlook clientwas installed on a computer, the noise found in the “useful”
subgraph is generally higher than noise found in the useful subgraphs of participants who use
a web browser for email. The increased noise on the “useful” subgraphs requires additional
filtering of the subgraph. If the participant used Apple mail, we could identify this activity
by Apple’s use of email aliases. An example of Apple’s aliasing is <username>@mac.com,
<username>@cloud.com or <username>@me.com. Each of these email addresses are
separate in the subgraph but connected to the participant’s social network in different
communities. The aliasing caused confusion when trying to identify the drive owners since
the communications are split between the aliases. The participants commonly use both the
client installed on their computer and web-based access methods. A complete list of email
providers is listed in Appendix C.

Participants were asked how often they accessed email: daily, weekly, or monthly. The
participants overwhelmingly check email daily. Out of 45 participants, 37 stated they check
their email daily, five check email weekly, and three check email monthly. Finally, we had
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11 participants that shared their computers with family or friends. This lead to partially
unknown clusters of email addresses or subgraphs that some drive owners could not identify
during the interview. However, in some of the cases, the drive owner could recognize the
domain or email address of the other user and could classify it as the other user’s social
network. Overall, the the data collected from participants about their drives and email
activity was useful in understanding how to process the data and in explaining similar
subgraphs.

An additional question that we asked participants pertained to the use of VMs on their
device. After analysis of the subgraphs we used identify_filename.py and found the email
addresses were located in the VM files. We asked participants during the interviews if they
used VMs and found that these subgraphs were found on devices of participants that used
VMs. The use of virtual machines are recorded in Appendix C.

5.2 Effectiveness of ourMethod for Identifying User Com-
munication Patterns

In this section, we compare the results of our process for labeling the subgraphs and
the ground truth obtained during interviews to measure our ability to correctly label the
subgraphs from the output of friend.py. Out of the 45 drives we analyzed during experiment,
we found “useful” subgraphs on 44 drives. During the initial setup and analysis of the
subgraphs, we correctly labeled 413 of the 450 subgraphs. We were able to successfully
identify subgraphs that contained the participant’s social network with a recall of 0.9677,
precision of 0.6316, and F-score of 0.7643. The confusion matrix given in Table 5.1 shows
a detailed breakdown of our predictions as compared with ground truth.

Table 5.1. Confusion Matrix showing the comparison of our subgraphs pre-
dicting labels to the ground truth categories determined during interviews.

Predicted

Actual

Useful Not Useful
∑

Useful 60 2 62
Not Useful 35 353 388∑

95 355 450
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Out of the 35 false positives shown in Table 5.1, all 35 were subgraphs that we concluded
were user address books, which led us to categorize them as useful. However, during
the ground truth interview the participants could not identify them as part of the social
network. Therefore, these subgraphs are “not useful”. A major factor contributing to this
labeling error is that these subgraphs typically contained common domain names, such as,
“Gmail.com” or “Yahoo.com.”

The two subgraphs we labeled “not useful” that turned out to be “useful” were subgraphs
we placed in the categories “VM” (Virtual Machine) and “Website.” These two subgraphs
are false negatives, meaning that in the ground truth interviews, the participant stated they
were “useful” subgraphs. The reason our methodology mislabeled one of these subgraphs
as “VM” during our initial analysis was its high node count, a common feature of subgraphs
that were extracted from virtual machines. In addition, the subgraph contained many
email addresses with common domains, and shared several other features typical of “VM”
subgraphs (see Section 5.3.2). Similarly, the subgraph mislabeled as “Websites” contained
several common domains that led us to label it as a “not useful” subgraph.

5.3 Characteristics of Common Subgraph Categories
In this section we describe “useful” subgraphs (categorized as social networks) and various
categories of “not useful” subgraphs we identified on several different devices. The “not
useful” subgraphs include software installations, C library shared objects, and PNG files.
We also discuss the removal of noise from the social network subgraphs and the few
instances when a “not useful” subgraph is embedded in a “useful” subgraph.

All of the participants but one could recognize email addresses in at least one subgraph
from their drive. Thirty eight of the participants could identify why email addresses were
clustered in their “useful” subgraph. When the clusteringwas identified during the interview,
the participants could further label the clusters as family, work, friends, or possibly a time
period in their life.

The identification of “useful” subgraphs followed themethodology described in Section 4.4.
Commonly on a “useful” subgraph, the degree and eigenvector centrality identified the
owner of the drive. The owner of the drive would have the highest degree and an eigenvector
centrality score of 1.0 or close to 1.0. Visually, this would put the drive owner at the center
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of the subgraph after we ran the Fruchterman Reingold layout in Gephi, shown in Figure 5.1
and in Figure 5.2. Another common feature of social networks was the clustering of groups
of email addresses with a common domain or social group. An example showing color
coded clustering of a participant’s social network with clear separation between social
groups using modularity classes is in Figure 5.1.

Drive Owner

Spouse

Uncle
Son

Apple Mail
Aliasing

Second User 
on Computer

Second User

Drive Owner
Work Email

Drive Owners 
Work Associates

Drive Owners 
Friends and Family

Figure 5.1. Disk02c7 showing an unfiltered subgraph with clustering of
different social groups in the participant’s social network. The different colors
of nodes and edges represent different modularity classes, which clustered
different social groups. The layout is Fruchterman Reingold.
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Drive Owner

Figure 5.2. Disk04c2 showing an unfiltered subgraph with clustering of
different social groups in the participant’s social network. The different colors
of nodes and edges represent different modularity classes which corresponded
to different social groups. The layout is Fruchterman Reingold.

5.3.1 Useful Subgraphs Containing Noise
Noise, in our experiment, is defined as the unwanted email addresses in the “useful” subgraph
that mask email addresses in the social network. Examples of noise in subgraphs consisted
of email addresses representing distribution lists and a “not useful”subgraph embedded in
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the “useful” subgraph. We encountered both of these types of noise during the experiment.
We describe each in detail below.

In addition, we propose a noise-removal method that relies on filtering by modularity class
since each class is a cluster of related emails. The same method to remove the noise is
implemented on each subgraph we identified having noise, such as distribution lists or
embedded “not useful” subgraphs. After the communities are identified and numbered by
modularity class , that modularity class is filtered out of the subgraph.

Distribution Lists
A distribution list is a common way for a single user to send the same email to many
recipients without manually sending the same email multiple times. The distribution lists
found in our dataset are related to communications from organizations the participants are
associated with, such as the Naval Postgraduate School and various military organization
groups.
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Figure 5.3. The social network of disk03c1 demonstrates a subgraph con-
taining several distribution lists the drive owner was a part of at NPS. These
are obscuring the clusters containing useful communications. The layout
used for this subgraph is Fruchterman Reingold.

Examples of the noise added by distribution lists are shown in Figure 5.3, Figure 5.5, and
Figure 5.4. In Figure 5.3 we show the social network found on disk03c1 and in Figure 5.5
we show the filtered subgraph with distribution clusters removed. In Figure 5.4, we show
the distribution list clusters from the disk03c1 subgraph.

In these subgraphs, the different color clustered groups represent different distribution
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lists the drive owner was a part of at the Naval Postgraduate School and other military
organizations. The distribution clusters create large amount of noise within a subgraph
obscuring useful email communications. The method we used to remove this noise, once
the participant identified the distribution lists, was filtering out the distribution lists by
removing all the nodes in the modularity class identified by the user. This approach
commonly exposed the useful social network.

Figure 5.4. The distribution lists in the disk03c1 subgraph without the two
useful clusters of the drive owners social network. This graph shows the
noise that was removed to reveal the useful communications. It contains are
2, 188 nodes and 57, 647 edges out of the total 22, 311 nodes and 1, 823, 655
edges shown in Figure 5.3. The layout is Fruchterman Reingold.
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Co-Advisor Drive Owner
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Figure 5.5. The social network found on disk03c1 using filtering with mod-
ularity class. The two modularity classes in the subgraph contain the drive
owner’s email addresses. Other labels applied in the figure are of individuals
the drive owner communicated with frequently. The Fruchterman Reingold
layout is used on this subgraph.

Embedded “Not Useful” Subgraph
We characterize a component of a useful subgraph as an embedded “not useful” subgraph
when it comprises a “not useful” subgraph that we have encountered separately in our
dataset. An example of this is the subgraph we categorized as the “travel” subgraph. This
set of nodes and edges appeared three times in our dataset as a separate subgraph, and
in each of these occurrences it was not adjacent to an email address of the participant.
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However, two other times it was located in the “useful” subgraph of the participant. The
“travel” subgraph added approximately 580 nodes and 165, 000 edges of noise to a “useful”
subgraph. The “travel” subgraph is another case where filtering a whole modularity class
assisted in minimizing noise in the subgraph containing the social network.

In Figure 5.6, Figure 5.7, and Figure 5.8, we show how removing the embedded “not
useful” subgraph reduces the number of nodes and edges that needed to be analyzed. In
both cases, the embedded subgraph was connected to the rest of the subgraph by only two
email addresses, each of which is identified in Figure 5.6.
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Email Address 
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Figure 5.6. The social network found on disk32c2 showing clusters of com-
munication by the drive owner. The clusters include personal and professional
email communications. The highlighted box in the figure is showing noise, or
“not useful” nodes and edges. The layout used for this figure is Fruchterman
Reingold.This subgraph contains 5, 220 nodes and 316, 885 edges.

There are two different nodes that connect the drive owner to the “travel” modularity classes
(see Section 5.3.2 for further discussion on the “travel” subgraph) shown in Figure 5.7 and
then in Figure 5.5.
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Figure 5.7. The extracted modularity classes showing the “travel” subgraph
embedded in the “useful” subgraph. The layout used after we exported
the two modularity classes is Fruchterman Reingold. We also used a label
adjustment function to make the email addresses visible. There are 584
nodes and 163, 934 edges in this “not useful” portion of disk31c1 subgraph.
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Drive
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Figure 5.8. The social network without the “travel” portion of the subgraph.
After removing the noise, this subgraph has 3, 232 nodes and 150, 498 edges.
The layout is Fruchterman Reingold.

5.3.2 “Not Useful” Subgraphs
The majority of the subgraphs are not useful for identifying social networks on a drive.
However, it is important to classify these subgraphs into categories to provide test and
training data that could be used in future work to build a machine-learning classifier.
Frequently, software installations on the participant’s computer create their own subgraph
on the drive. Because of this behavior, we identified several subgraphs that occurred on
multiple drives. We verified the software package or location of the email addresses on the
drives using identify_filename.py.
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In this subsection, we characterize common “not useful” subgraphs and explain why we
concluded the subgraphs are “not useful” for building the participant’s social network.

Graphics Subgraphs
We labeled the most common “not useful” subgraph “graphics.” This subgraph contained
the file names of Portable Network Graphics (PNG) files and JPEG files. An example of the
PNG file name format was <name>@2x.png, following a common convention for naming
graphics files that need to be stored at multiple resolutions for compatibility with different
display settings.

We found that bulk_extractor truncates the last letter and mistakes these file names for email
addresses using the .pn top-level domain, a relatively uncommon country-code top-level
domain assigned to the Pitcairn Islands. As a result, these file names with the final “g”
omitted were added to the email.txt file.

We used identify_filename.py (see Section 2.5) to find the location of the file names and
verified the files were images used in applications. The context field in email.txt verified
that the character after “pn” was the letter “g.” Modifying bulk_extractor to check if the
characters “pn” are followed by a “g” would provide output with less noise.

In our experiment, this bug created 102 “not useful” subgraphs. The 102 subgraphs added
33, 912 nodes and 1, 105, 342 edges of noise to our dataset. The “graphics” subgraphs
all look slightly different but contain the same “.pn” at the end of the node labels. Two
examples of the “graphics” subgraphs are shown in Figure 5.9.
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Figure 5.9. “Graphics” subgraphs of PNG file names using Fruchterman
Reingold layout. The subgraph to the left, with Arrow_Gray node labels,
is an completely connected subgraph. The graph to the right shows two
modularity classes created by Gephi’s modularity statistics function. Both
graphs represent icons used by an application on the drive.

Virtual Machines Subgraphs
A question we verified with participants after looking at their subgraphs was if they used
virtual machines (VM) on their computer. Twenty seven users stated they used some
variation of virtual machines on their computers.

We found 27 corresponding subgraphs that contained email addresses associatedwith virtual
machines stored on the drives. We categorized these as “VM” subgraphs. The number of
nodes in these subgraphs ranged from 8,000 to 15,000 nodes. On drives where a VM was
present, the “VM” subgraph had the highest node count. The presence of the following
email addresses, associated with either the highest degree or highest eigenvector centrality,
was a strong indicator that the subgraph was derived from a virtual machine:
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• ubuntu-devel-discuss@lists-unbuntu.com
• <name>@thewrittenword.com
• <name>@twinsun.com

Another characteristic of the “VM” subgraph was clusters of email addresses with the
domains listed below. For example, one cluster might contain several <name>@redhat.org
addresses, and another might contain several <name>@debian.org email addresses. If the
address with the highest degree and eigenvector centrality was one of the addresses listed
above, we would check for these clusters of emails from the following domains:

• <name>@debian.org
• <name>@redhat.org
• <name>@ubuntu.com
• <name>@gnome.org

During the interview, the participants used the search function in Gephi to manually verify
there were no useful email addresses in the “VM ” subgraph. Out of the 27 VM subgraphs,
there were three instances in which the participant found useful email addresses in the
subgraph. In these cases the subgraph was labeled “useful” and also categorized as the
“VM” subgraph. Filtering by modularity class, we were able to visualize the participant’s
social network by removing the “VM” clusters. This situation occurred in cases where the
participant would access their email from inside the VM.

Microsoft Office Subgraphs
The installation of Microsoft Office created a subgraph on the drive. We identified the
“Microsoft” subgraph on 22 drives. The subgraph contains 277 nodes, 6, 971 edges, and
has an average degree of 50.3321. The email addresses in the “Microsoft” subgraph are
found at the following path:

Program Files (x86)/Microsoft Office/root/Office16/mset7db.kic

The mset7db.kic file is a database file. Using Microsoft Access, we verified the email
addresses in this subgraph were stored in the mset7db.kic file.
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Figure 5.10. Microsoft Office installation from disk01c1 using Fruchterman
Reingold layout. There are six modularity classes in this subgraph represented
by different colors.

Libraries: Libsamplerate and Libsndfile Subgraphs
The “libsamplerate” subgraph is in the dataset two times and “libsndfile” subgraph is
in the dataset 17 times. The library “libsamplerate” converts audio from one sample
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rate to another [50]. The library “libsndfile” is “a C library for reading and writing files
containing sampled sounds through one standard library interface” [51]. The “.so” extension
is used for C and C++ shared libraries [52]. Similar to the PNG file names, “.so” is a top
level domain for the country of Somalia, which causes bulk_extractor to mistake it for an
email address. Correcting this bug would remove these addresses prior to the subgraph
construction process.
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Figure 5.11. “Libsamplerate” and “Libsndfile” sugbraphs are completely con-
nected. The Fruchterman Reingold layout was used to produce these graphs.

Travel Subgraphs
The subgraph we categorized as “travel” contained several email addresses of airlines,
hotels, and entertainment companies associated with travel or events, such as Expedia,
Avis, US Airways, and Ticketmaster. We see this subgraph five times in our dataset —
three times as a separate subgraph and twice as an “embedded subgraph inside a “useful”
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subgraph. As mentioned earlier in the section, the “travel” nodes and edges cause the actual
social network subgraph of the participant to be filled with noise and require additional
analysis. The location of the subgraph’s email addresses on the drive is:
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Figure 5.12. The “travel” subgraph on disk08. All of the clusters in this sub-
graph connect to orders@eventbrite.com. The orange cluster contains dif-
ferent domains for orders@eventbrite connecting to orders@eventbrite.com.
This subgraph is similar to the extracted nodes and edges from disk31c2 in
Figure 5.7.
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The “Cert” Subgraph
The “cert” subgraph is an example of a “not useful” subgraph. Using identify_filename.py
to find the location of these email addresses shows that they are stored in the file msg_43.txt,
a test file associated with the Python email module, which is designed for creating, parsing
and sending email addresses using Python. These email addresses all have the format
“xxxxxxxxx@dot.ca.gov” and are part of the list of recipients in the message included in
the test file.

xxxxxxxxxxxx@dot.ca.gov

xxxx@dot.ca.gov

xxxxxxx@dot.ca.gov

xxxxxxxxxxx@dot.ca.gov

xxxxxxxxx@dot.ca.gov

xxxxxx@dot.ca.gov

xxx@dot.ca.gov

xxxxxxxxxxxxx@dot.ca.gov

xxxxxxxxxx@dot.ca.gov

xxxxxxxxxxxxxxxx@dot.ca.gov

xxxxxxxx@dot.ca.gov

xxxxxxxxxxxxxxxxxx@dot.ca.gov

xxxxxxxxxxxxxxx@dot.ca.gov

Figure 5.13. “Cert” subgraph is a completely connected subgraph. These
email addresses are found in a text file on the drive.
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Email Addresses in File
In our experiment, we found several completely connected subgraphs that resulted from
email addresses found in Microsoft Excel spreadsheets. We found the spreadsheets that
emails were stored in using identify_filename.py. When email addresses are found in
documents, the nodes in these subgraphs are completely connected because all of the email
addresses are within the 128-byte window used by friend.py.

5.4 Unusual Results
During the experiment, we encountered a few drives that required additional analysis.
We initially used identify_filename.py to assist in answering questions derived from the
participant interviews. Three participants’ social networks contained a portion of their name
in the local part of several email addresses which the user did not recognize Explaining the
presence of these email addresses required finding where the addresses were stored on the
drive. Another unexplained outcome in a subgraph was the pattern of email addresses in a
“chain” in the participant’s social network.

5.4.1 Portion of Drive Owner Name as Email Address
In the a subgraph that consisted of email addresses containing a portion of the participant’s
name, the format of the email address was <name of participant>@<several different
domains or websites>. For example, if the normal log in to a website was johndoe, the
email address would show up as doe@<some_website.com>. We would commonly expect
to see johndoe@<some_website.com> and not just a portion of the name. During the
interviews, the participant verified that their email addresses contained numbers or other
letters that were not found in the subgraph. After using identify_filename.py, we found the
email addresses to be stored with cached websites. The name in the email address is from
the name of the profile the participant uses and not their email address. The email addresses
are stored on the drive at:

Users/<name>/AppData/Local/Microsoft/Windows/WebCache/WebCacheV01.dat
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5.4.2 AutoComplete in Microsoft
Several subgraphs contained an extended series of nodes connected in a chain. An example
of this behavior is found in Figure 5.15. In the figure, the nodes around the outside of the
subgraph are chained together. After seeing this behavior occur in more than one subgraph,
we used identify_filename.py to find the location of the email addresses. The purpose
of this file is to store names used by the AutoComplete and name checking features in
Microsoft [53].The email addresses are located under the profile of the user at:

$/AppData/Local/Microsoft/Outlook/RoamCache/Stream

\_autocomple\_<list of numbers and letters>.dat$

We initially used the FruchtermanReingold layout shown in Figure 5.14. However, we found
the Force Atlas 2 layout better represented the behavior of the Microsoft AutoComplete lists
when visualized in Gephi. This layout is shown in Figure 5.15.
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Drive 
Owner 

Figure 5.14. Microsoft AutoComplete Name List on disk09c6 using the
Fruchterman Reingold layout. Of the three modularity classes shown, the
orange cluster contains the drive owner. The green and purple clusters are
chained together but visualizing this chain of email addresses is difficult with
this layout.
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Drive
Owner

Figure 5.15. Microsoft AutoComplete Name List on disk09c6 using the
Force Atlas 2 layout. Of the modularity classes shown, the orange cluster
contains the drive owner. The green and purple clusters are chained together
and contain email addresses found in the Microsoft Outlook folder discussed
above.

Extremely Large Subgraph
One subgraph created was over two gigabytes in size. In comparison, the majority of the
GEXF files are kilobytes in size. We found this was a file containing email addresses from
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an organizational directory of the National Parks Service. The subgraph has 12, 668 nodes
and 75, 948, 507 edges with an average degree of 11, 990. The large file size prevented
visualization with Gephi. We analyzed the GEXF file through a text editor during the
interview. This file and others found on the same drive are examples of email addresses
found in a document, which produces “not useful” subgraphs.
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CHAPTER 6:
Conclusion and Future Work

This final chapter presents our conclusions. We will answer the question posed in our initial
chapter and present some suggestions for future work.

6.1 Conclusion
The motivation behind our work was to reduce the time a forensic analyst has to spend
manually examining data to find email addresses that directly contribute to developing the
user’s social network. Automating steps in this process will allow the analyst to focus on
the data that is most relevant to building the social network. Our research addresses this
motivating factor by testing a new algorithm for identifying connections between email
addresses found on the user’s drive.

6.1.1 Identifying User Communication Patterns
Does our new algorithm for constructing social networks improve our ability to correctly
model user communication patterns?

Yes. In order to adequately test our new algorithm, we built an 11 terabyte dataset (over
five times larger than that which was used to test the previous algorithm). We successfully
acquired and analyzed 45 participant drives. Using our graph-labeling methodology, we
achieved a recall of 0.9677, precision of 0.6316, and F-score of 0.7643. We were also able
to identify specific groups within the user’s social network. These included college, work,
sports, family, friends, and business associates.

6.1.2 Proposed Improvements to Bulk Extractor
As noted in Chapter 5, bulk_extractor’s email.txt feature file provides numerous artifacts
that are not email addresses but were formatted in a similar manner. A very common
artifact that was mischaracterized as an email address was an image file (.png). The
bulk_extractor program would leave the “g” off and list what it thought was an email
address as “example.pn”. These false email addresses accounted for 102 out of 450 graphs.
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If bulk_extractor was updated to exclude files that contained the .png suffix, there would be
much less noise and fewer “not useful” graphs. Another improvement would be to prevent
the creation of a separate email address in the feature file when the only difference is the
case of the characters. This would reduce noise, would create additional edges for current
nodes and could potentially affect the modularity class communities.

6.2 Future Work
While our research provided an answer to our question and contributed to our goal of
automation, there are several areas for further research and development. These include
comparing the impact of solid state storage versus magnetic spinning disks, applying this
method to other devices and artifacts beyond email addresses, and automatic classification
and testing with SVMs.

6.2.1 Solid State Drive and Magnetic Hard Drive Comparison
Based on our research and understanding of SSD operation, there should be less recoverable
data on the SSD. However, our research did not show any noticeable difference in the data
recovered. This suggests the need for additional testing in a controlled environment to
compare data recovery between the two types of drives.

6.2.2 Extending the Other Devices Types and Applications
Our results were conducted solely on hard drives from laptop computers. Since communi-
cation trends have expanded to various applications on more portable devices, future work
with cell phones and tablets would be beneficial. We encountered graphs associated with
other communication applications such as Whatsapp however, these type of applications
are much more prevalent on cell phones.

6.2.3 Classification with Support Vector Machines
During classification of the subgraphs, we looked in to fingerprinting the subgraphs to better
classify the subgraphs into categories for use with SVMs. We found that subgraphs with
the same node count, same edge count, and were completely connected, would classify
the same even though they are not isomorphic. The algorithm we researched was GFP.py

74



(see Section 3.5.1 to create a fingerprint of each graph and using Canberra distance (see
Section 3.5.1 to calculate how similar the subgraphs are to each other. The feature vectors
in GFP.py do not take into account the weight of the edges in the subgraph. We discovered
examples of this in our data set. Adding weights to the functions in the GFP algorithm
would differentiate between graphs that have the same node and edge count. This future
work could improve classification of the subgraphs for use with SVMs.

During the process of manually labeling our subgraphs, we looked into graph “finger-
printing” techniques as a method of efficiently identifying structural similarities between
subgraphs. The algorithm we researched was Graph Fingerprint Comparison, or GFPC
(see Section 3.5.1). This algorithm creates a fingerprint of each graph and uses Canberra
distance (see Section 3.5.1) to calculate the similarity between subgraphs. Because fin-
gerprints are represented as feature vectors, we hypothesized that they could be used to
train a support vector machine classifier. However, in their current implementation, graph
fingerprints do not take into account the weight of the edges in the subgraph. As a result,
we found that completely connected subgraphs with the same node count and same edge
count would be treated as identical even when they were not isomorphic. We discovered
examples of this in our dataset. This problem could be addressed by modifying the features
used to create the graph prints so they incorporate edge weight. This work could potentially
contribute to the creation of an effective SVM classifier that automatically identifies useful
graphs.
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APPENDIX A:
Friend.py

#!/usr/bin/env python3

# Program: friend.py

# Author: Michael McCarrin <mrmccarr@nps.edu>

# Description: Produce graphs from bulk_extractor features.

import networkx as nx

import sys

import os

import argparse

import timeit

import collections

from concurrent.futures import ProcessPoolExecutor, as_completed

from os.path import join, basename, normpath

def ingest_feature(be_dir, feature_file):

list_dict = {}

aliases = {}

email_file = join(be_dir, feature_file)

with open(email_file, "rb") as f:

for l in f:

try:

line = l.decode("utf-8")

except:

print("Line contains invalid utf-8; skipping")

if line[0] == "#":

continue

raw_offset, raw_alias, remainder = line.split("\t", 2)
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alias = raw_alias.replace("\\x00","")

aliases[alias] = {’context’: remainder}

if raw_offset.isdigit():

root = "top"

offset = int(raw_offset)

else:

complex_offset = raw_offset.split("-")

root = "-".join(complex_offset[:-1])

offset = int(complex_offset[-1])

if root not in list_dict:

list_dict[root] = [(offset, alias)]

else:

list_dict[root].append((offset,alias))

for l in list_dict.values():

l.sort()

return aliases, list_dict

def nx_weighted_edge_list(edge_dict):

w_edges = []

for p, w in edge_dict.items():

w_edges.append((p[0], p[1], {"weight":w}))

return w_edges

def fixed_find_edges(feature_data, win_size=256):

node_q = collections.deque()

edges = collections.defaultdict(int)

for l in feature_data.values():

node_q.clear()

for offset, alias in l:
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while (node_q and (node_q[0][0] < offset - win_size)):

node_q.popleft()

for n in node_q:

pair = tuple(sorted([alias, n[1]]))

if pair[0] != pair[1]:

edges[pair] += 1

node_q.append((offset, alias))

weighted_edges = nx_weighted_edge_list(edges)

return edges, weighted_edges

def stretchy_find_edges(feature_data, win_size=256):

node_q = collections.deque()

edges = collections.defaultdict(int)

for feature_list in feature_data.values():

node_q.clear()

for offset, alias in feature_list:

while (node_q and (node_q[-1][0] < offset - win_size)):

node_q.popleft()

for n in node_q:

pair = tuple(sorted([alias, n[1]]))

if pair[0] != pair[1]:

edges[pair] += 1

node_q.append((offset, alias))

weighted_edges = nx_weighted_edge_list(edges)

return edges, weighted_edges
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def make_gephi(V, E):

G = nx.Graph()

G.add_nodes_from(V)

G.add_edges_from(E)

return G

def find_big_connected_components(G, num=5):

n = nx.number_of_nodes(G)

con_comps = list(sorted(nx.connected_component_subgraphs(G),

key=len, reverse=True))

return con_comps[:num]

class Summary:

def __init__(self, path):

self.lines = []

self.path = path

def print_last_n(self, n=0):

index = 0 if n == 0 else len(self.lines) - n

for l in self.lines[index:]: print(l)

def write(self):

with open(self.path, "w") as f:

for l in self.lines: print(l, file=f)

def add(self, line):

self.lines.append(line)

def get_dirs(dir_list):

dirs = []

with open(dir_list, "r") as d:

for line in d:

dirs.append(line.strip().rstrip(os.sep))

return dirs
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def process_many(in_dirs, num_jobs, outdir, args):

out_dirs = [join(outdir, basename(subdir)) for subdir in in_dirs]

arguments = zip(in_dirs, out_dirs, [args]*num_jobs, [True]*num_jobs)

with ProcessPoolExecutor() as executor:

executor.map(process_one, arguments)

def process_one(arguments):

be_dir, out_dir, args, multi_mode = arguments

bar = "="*80

win_size = args.win_size

loners = args.keep_loners

big_subs = args.big_subgraphs

feature_file = args.feature_file

if args.fixed_window:

find_edges = fixed_find_edges

else:

find_edges = stretchy_find_edges

#For GEXF Files

gname = basename(normpath(be_dir)) + "_" + str(win_size) + ".gexf"

#For Graphml Files

#gname = basename(normpath(be_dir)) + "_" + str(win_size) + ".graphml"

sumfile = basename(normpath(be_dir)) + "_" + str(win_size) + "_summary.txt"

if not os.path.exists(out_dir):

os.makedirs(out_dir)

sumpath = join(out_dir, sumfile)

gpath = join(out_dir, gname)

summary = Summary(sumpath)

summary.add("Friend summary for command line invocation:")

81



summary.add(" ".join(sys.argv))

summary.add(bar)

summary.add("Using Window Size: {}".format(win_size))

summary.add("Writing graphs to: {}".format(gpath))

summary.add(bar)

if not multi_mode: summary.print_last_n()

start = timeit.default_timer()

nodes, feature_data = ingest_feature(be_dir, feature_file)

ingest_time = timeit.default_timer()

summary.add("Ingested in {} seconds".format(ingest_time - start))

if not multi_mode: summary.print_last_n(1)

edges, weighted_edges = find_edges(feature_data, win_size)

edge_time = timeit.default_timer()

summary.add("All neighbors linked in {} seconds".format(edge_time - ingest_time))

if not multi_mode: summary.print_last_n(1)

if not loners:

friends = {}

for e in edges.keys():

friends[e[0]] = nodes[e[0]]

friends[e[1]] = nodes[e[1]]

nodes = friends

G = make_gephi(nodes.items(),weighted_edges)

#GEXF Output

nx.write_gexf(G, gpath)

#Graphml Output

#nx.write_graphml(G, gpath)

end = timeit.default_timer()

summary.add("Finished in {} seconds".format(end - start))

if not multi_mode: summary.print_last_n(1)
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summary.add(bar)

summary.add("Summary Statistics for Whole Graph:")

summary.add(bar)

summary.add(nx.info(G))

if big_subs:

subgraph_start = timeit.default_timer()

i = 1

summary.add("Looking for the top {} subgraphs".format(big_subs))

if not multi_mode: summary.print_last_n(1)

major_subs = find_big_connected_components(G, big_subs)

subgraph_end = timeit.default_timer()

subgraph_time = subgraph_end - subgraph_start

summary.add("Found {} big subgraphs in {} seconds.".format(len(major_subs)

, subgraph_time))

if not multi_mode: summary.print_last_n(1)

for g in major_subs:

summary.add(bar)

summary.add("Summary Statistics for subgraph {}:".format(i))

summary.add(bar)

summary.add(nx.info(g))

#GEXF

gname = basename(normpath(be_dir)) + "_" + str(win_size) +

"sub" + str(i) + ".gexf"

#Graphml

#gname = basename(normpath(be_dir)) + "_" + str(win_size) +

"sub" + str(i) + ".graphml"

out = join(out_dir, gname)

#GEXF

nx.write_gexf(g, out)

#Graphml

nx.write_graphml(g, out)
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i += 1

summary.write()

if multi_mode:

print(".", end="")

sys.stdout.flush()

else:

print("Check {} for a summary of the results.".format(sumpath))

if __name__=="__main__":

parser = argparse.ArgumentParser(description=’Discover networks

in bulk extractor email.txt output.’)

group = parser.add_mutually_exclusive_group(required=True)

group.add_argument(’be_results_path’, nargs=’?’,

help="Path to bulk_extractor output files. Required unless

running with the -p option.")

parser.add_argument(’-o’, ’--output-path’, required=True,

help="Sets the directory where befriend should store its output (required).")

parser.add_argument(’-w’, ’--win-size’, type=int, default=128,

help=’Optionally sets the window size in bytes. Default is 128.’)

parser.add_argument(’-f’, ’--feature-file’, default="email.txt",

help=’Sets the bulk_extractor feature file to be used for analysis.

The default is email.txt.

Any other value is experimental.’)

parser.add_argument(’-F’, ’--fixed_window’, action=’store_true’, default=False,

help=’Only link addresses found within the distance defined by win_size.

This was the old default behavior.

This is probably not what you want, so it is not recommended
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to use this option unless you want to reproduce legacy behavior.’)

parser.add_argument(’-k’, ’--keep-loners’, action=’store_true’, default=False,

help=’Keep all nodes, even those with no edges to other nodes.’)

parser.add_argument(’-m’, ’--big-subgraphs’, metavar=’N’, type=int, default=10,

help=’Save a separate gexf file for the top N largest connected

components of the graph. Default is 10.’)

group.add_argument(’-p’, ’--parallel’, dest="dir_list",

help=’Specify name of a file containing a list of bulk extractor

output directories and process these in parallel.

An output directory will be created for each as a subdirectory

of the output path.’)

args = parser.parse_args()

if args.dir_list:

multi_start = timeit.default_timer()

in_dirs = get_dirs(args.dir_list)

num_jobs = len(in_dirs)

process_many(in_dirs, num_jobs, args.output_path, args)

very_end = timeit.default_timer()

print()

print("Completed {} jobs in {} seconds.".format(num_jobs, very_end - multi_start))

else:

process_one((args.be_results_path, args.output_path, args, False))
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APPENDIX B:
Ground Truth Interview Questions for Drive Owners

The interview questions listed in this appendix are approved IRB questions used in
Green’s [3] thesis. However, we modified some of the questions with IRB approval.

Ground Truth Interview Questions for Drive Owners

Questions The following are questions which were asked during exit-interviews with those
who volunteered their storage media:

1. Youwill be presented with a spreadsheet of email addresses and images of several graphs.
For each graph, indicate whether you recognize the email addresses in the subgraph.

2. If you recognize an email addresses, are these addresses of a people with whom you
communicate by email?

3. In general, does the graph accurately describe the relationship between the correspondents
listed?

4. If the graph is clustered into different groups, are you able to discern a reason for the
clustering (for example, different groups may represent coworkers, family, friends, etc.)?

5. Why do you believe that these email addresses were collected as pairs? Are these emails
often on the same address lines for emails or some other situation such as used for log on
purposes or all located within the same webpage?

6. What operating system do you use (e.g. Windows 7, Windows 8, OSX 10.7, etc.)?

7. Is your drive solid state drive?

8. What email client do you use (Outlook, Outlook Express, Apple Mail, Web-based email,
other (please describe))? If you use multiple clients (for example if you use Outlook for
official email and Gmail for personal email), please list all of them and approximate the
percent of time used on each.
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9. How long have you used this computer?

10. Have there been any prior users / owners of this computer? Do you share the computer
with anyone else?

11. How often do you communicate by email (daily / weekly / monthly)?

12. Is there anything else you would like to add? For example, if the analysis you were
presented with is incorrect, do you have an explanation about what went wrong?
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APPENDIX C:
Aggregated Hardware and Software Components of

Data Set

Table C.1

Disk
Name

Brand of
Computer

Drive
Type

Size of
Drive

Age of
Drive(yrs)

Operating
System

Email
Provider

Email
Access
Method

Shared
Computer

Communication
Frequency

VM
Software

Disk 01 Dell HHD 1 TB 6 Windows 10
Gmail
Outlook

Webmail No 3 months Yes

Disk 02 MAC HHD 500 GB 4 OSX Gmail Webmail Yes Daily No

Disk 03 MAC SSD 250 GB 1 OSX
Gmail
Outlook

Webmail
Client

No Daily Yes

Disk 04 HP HHD 500 GB 3 Windows 8
Gmail
Outlook
Yahoo

Webmail
Client

No Daily Yes

Disk 05
Drive
only

SSD 112 GB 2.5 Windows 7
Gmail
Hotmail

Webmail No Daily Yes

Disk 06 HP HHD 130 GB 3.7 Windows 7 Gmail Webmail No Weekly No

Disk 07 MAC SSD 120 GB 2.3 OSX
Gmail
Outlook
Hotmail

Webmail No Daily Yes

Disk 08 MAC SSD 120 GB 1 OSX
Gmail
Outlook

Webmail
Client

No Daily Yes

Disk 09 Surface SSD 250 GB 0.9 Windows 10
Gmail
Outlook

Webmail Yes Daily Yes

Disk 11 MAC HHD 465 GB 5 OSX
Gmail
Outlook
Apple

Webmail
Client

Yes Daily Yes

Disk 12 Surface SSD 128 GB 1 Windows 10
Gmail
Outlook

Webmail
Client

No Daily Yes

Disk 13 HP HHD 465 GB 4 Windows 10
Gmail
Outlook

Webmail
Client

Yes Daily Yes

Disk 14
Toshiba
Satellite

HHD 750 GB 2 Windows 10
Gmail
Outlook
Yahoo

Webmail No Daily No

Disk 15
Lenovo
580

HHD 1 TB 4.2 Windows 10
Gmail
Outlook

Webmail No Daily No

Disk 16 Dell HHD 1 TB 2 Windows 10
Gmail
Yahoo

Webmail Yes Weekly No

Disk 17 Acer HHD 220 GB 4 Windows 7
Gmail
Yahoo
College

Webmail No Daily No

Disk 18 Mac HHD 500 GB 4 OSX
Gmail
Outlook

Webmail Yes Weekly No

Disk 20 Mac HHD 500 GB 2 OSX
Gmail
Outlook

Webmail No Daily No

Disk 21 Razer Blade SSD 477 GB 1 Windows 10
Gmail
Outlook
Hotmail

Webmail
Client

No Daily Yes

Disk 22 HP Pavillion HHD 465 GB 0.1 Windows 10 Outlook Webmail No Monthly No

Disk 23 Surface SSD 240 GB 1.6 Windows 10
Outlook
Yahoo

Webmail No Daily Yes

Disk 24 MacPro SSD 128 GB 2.7 OSX

Gmail
Outlook
Hotmail
Apple

Webmail
Client

No Daily Yes
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Table C.1

Disk
Name

Brand of
Computer

Drive
Type

Size of
Drive

Age of
Drive(yrs)

Operating
System

Email
Provider

Email
Access
Method

Shared
Computer

Communication
Frequency

VM
Software

Disk 26 Mac Pro HHD 500 GB 8 OSX
Gmail
Outlook
Yahoo

Webmail Yes Daily Yes

Disk 27 Hard drive HHD 1 TB 5 Windows 10
Yahoo
Hotmail
Verizon

Webmail Yes Weekly No

Disk 28 ASUS HHD 932 GB 0.4 Windows 7
Gmail
Outlook

Webmail
Client

Yes Daily Yes

Disk 30 surface SSD 115 GB 0.9 Windows 10
Gmail
Outlook

Webmail No Daily Yes

Disk 31 MacAir SSD 115 GB 1.7 OSX
Gmail
Outlook
Apple

Webmail
Client

No Daily Yes

Disk 32 HP SSD 240 GB 0.7 Windows 10
Gmail
Outlook

Webmail No Daily Yes

Disk 33 Dell HHD 120 GB 3 Windows 10
Gmail
Outlook

Webmail Yes Daily No

Disk 34 Alienware HHD 930 GB 3 Windows 10
Gmail
Outlook

Webmail
Client

No Daily Yes

Disk 35 Alienware SSD 400 GB 3 Ubuntu 16.05
Gmail
Outlook

Webmail
Client

No Daily Yes

Disk 36 Lenovo 320 HHD 932 GB 0.5 Windows 10 Outlook
Webmail
Client

No Daily Yes

Disk 37 Mac HHD 700 GB 8 OSX

Gmail
Outlook
Yahoo
Apple

Webmail
Client

No Daily Yes

Disk 38 Dell HHD 930 GB 2 Windows 10
Gmail
Outlook
Yahoo

Webmail Yes Monthly No

Disk 39 Surface SSD 240 GB 1 Windows 10
Gmail
Outlook

Webmail No Weekly Yes

Disk 42 Mac SSD 400 GB 1.5 OSX
Gmail
Outlook

Webmail
Client

No Daily Yes

Disk 43 Mac HHD 466 GB 5 OSX
Gmail
Yahoo
Apple

Webmail
Client

Yes Daily Yes

Disk 44 Mac SSD 932 GB 2 OSX
Gmail
Outlook

Webmail
Client

No Daily Yes

Disk 45 Dell SSD 1 TB 0.9 Windows 10
Gmail
Outlook

Webmail
Client

No Daily Yes

Disk 46 Razer SSD 940 GB 0.3 Windows 10
Gmail
Outlook

Webmail No Weekly Yes

Disk 47 Acer HHD 477 GB 1 Windows 10
Gmail
Outlook

Webmail No Daily No

Disk 48 Dell HHD 932 GB 2.7 Windows 10
Gmail
Outlook

Webmail
Client

No Daily No

Disk 49 MacPro HHD 500 GB 7.4 OSX
Gmail
Outlook
Yahoo

Webmail No Daily No

Disk 50 Asus HHD 300 GB 5 Windows 7 Gmail Webmail No Daily Yes

Disk 51 Lenovo HHD 932 GB 0.9 Windows 8
Gmail
Outlook

Webmail
Client

Yes Daily No
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APPENDIX D:
“Useful” versus “Not Useful” Subgraphs

This table is showing useful subgraphs and not useful subgraphs on each participant drive.
“Useful” subgraphs are identified with a “yes” and “not useful” subgraphs are identified
with a “no”.

Table D.1

disk C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
disk01 No Yes No No No No No No No No
disk02 No No No No No Yes Yes No No No
disk03 Yes No No No No No No No No No
disk04 No Yes No No No No No No No No
disk05 No Yes No No No No No No No No
disk06 Yes Yes Yes No No No No No No No
disk07 No Yes No No No No No No No No
disk08 No Yes No No No No No No No No
disk09 No Yes No No No Yes No No No No
disk11 Yes No No No No No No No No No
disk12 No Yes No No No No No No No No
disk13 No Yes No No No No Not No No No
disk14 No Yes No Yes Yes No No No No No
disk15 Yes Yes No Yes Yes Yes No No No No
disk16 No No Yes No No No No No No No
disk17 No No Yes No No No No No Yes No
disk18 Yes No No No No No No No No No
disk20 Yes No No No No No No No No No
disk21 No Yes No No No No No No No No
disk22 No No No No No No No No No Yes
disk23 No Yes No No No No No No No No
disk24 Yes No No No No No No No No No
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Table D.1 continued from previous page
disk C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
disk26 No Yes No Yes No No Yes No No No
disk27 No No Yes No No No No No No No
disk28 No Yes No No No No No No No No
disk30 No Yes No No No No No No No No
disk31 No Yes No Yes No No No No No No
disk32 No No No Yes No No No No No No
disk33 Yes No No No No No No No No No
disk34 Yes Yes No No No No No No No No
disk35 Yes No No No No No No No No No
disk36 No Yes No No No No No No No No
disk37 Yes No No No No No No No No No
disk38 Yes No No No No No No No No No
disk39 No No No No No No No No No No
disk42 Yes No No No No No No No No No
disk43 Yes No No No No No No No No No
disk44 No Yes No No No No No No No No
disk45 No No Yes No No No No No No No
disk46 Yes No No No No No No No No No
disk47 No No Yes Yes Yes No No No No No
disk48 Yes No No No No No No No No No
disk49 Yes No No No No No No No No No
disk50 Yes No No No No No No No No No
disk51 Yes No No No No No No No No No
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