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Spectroscopy - Air Force Office of Scientific Research Young

Investigator Award (FA9550-15-1-0204)

L. Robert Baker

Department of Chemistry and Biochemistry
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1 Executive Summary
The environmental consequences of continued fossil fuel consumption, as well as the economic uncertainty of
hydrocarbon sources are strong motivations for developing catalysts capable of reducing CO2 to a high-energy-
density fuel or other value-added products. Selectively converting CO2 to fuels requires control of electron 
motion at a catalyst surface. Detailed understanding of electron dynamics at surfaces of heterogeneous catalysts
can inform relevant design parameters for next generation materials with high efficiency for CO2 reduction to 
valuable products. Unfortunately, there is a shortage of spectroscopic probes capable of following these charge 
transfer processes with element specificity, ultrafast time resolution, and surface sensitivity.

To enable the study of surface electron dynamics, we have recently designed and constructed an ultrafast soft 
X-ray and extreme ultraviolet (XUV) light source based on high harmonic generation (HHG). Using this light 
source, we have shown that XUV reflection–absorption (RA) spectroscopy combines the benefits of X-ray 
absorption, such as element and oxidation state specificity, with surface sensitivity and ultrafast time resolution, 
having a probe depth of only a few nm and an instrument response less than 100 fs. Addtionally, by operating in a 
grazing angle reflectivity, XUV RA spectroscopy is independent of the sample thickness. This provides a major 
advantage over traditional transmission experiments where the sample thickness is limited to ∼100 nm. Since 
catalytic properties of metal oxides change with thickness, it is imperative to study the electron dynamics
of actual functional materials that show highest catalytic activity and selectivity toward CO2 reduction.

Using these unique capabilities, we have measured electron dynamics in two closely related materials, α-
Fe2O3 and CuFeO2 to reveal the origin of their different catalytic properties. We show that α-Fe2O3 suffers from
carrier self-trapping (i.e. small polaron formation) at the surface which limits its efficiency as a photocatalyst.
Specifically, we show that the lattice expansion during small polaron formation occurs on the identical time scale
as surface trapping, strongly suggesting that lattice destortion represents the probable driving force for sub-ps
electron localization to the surface of α-Fe2O3. On the contrary, CuFeO2 is an active and selective catalyst
for CO2 reduction. We find that the higher photocurrent in this material compared to Fe2O3 is correlated
with ultrafast hole thermalization from O 2p to Cu 3d states which leads to spatial charge separation in this
layered crystal lattice, which cannot occur in Fe2O3. While the electron dynamics between the two materials are
nearly identical, the hole in CuFeO2 delocalizes across a strongly hybridized Cu-O valence band. This ultrafast
spatial charge separation, which is unique to the layered delafossite crystal structure, provides an important
design parameter for controlling catalyst performance for CO2 reduction based on the material’s underlying
photophysics.
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2 Developing XUV Reflection-Absorption Spectroscopy (XUV-RA)
To enable the study of electron dynamics in relevant catalytic materials, we have constructed an ultrafast grazing
angle soft X-ray and extreme ultraviolet (XUV) light source based on high harmonic generation (HHG).2 A
diagram of the table-top spectrometer is shown in Figure 1.

Figure 1: Overview of the XUV-RA spectrometer. Semi-infinite gas cell (40 cm) is used for HHG. Residual
driving field is removed with an Al filter. Toroidal mirror is used to focus the XUV radiation onto the sample
after which it is spectrally dispersed onto a CCD camera by a spherical grating. The 400 nm pump beam is
generated by frequency doubling the 800 nm fundamental.

Figure 2 presents the spectral profile produced by HHG in Ne gas using an 800 nm beam with 2 mJ pulse
energy and 35 fs pulse width. To produce an XUV probe spectrum containing both even and odd harmonics, a
400 nm symmetry breaking field of low pulse energy (45 µJ) is overlapped with the 800 nm driving field in the
gas cell. This allows for generation of a continuous XUV spectrum to use as an analog to white light in optical
spectroscopy. Reflected XUV harmonics from Si and Fe2O3 are shown in Figure 2A and 2B, respectively.

Figure 2: XUV harmonic spectrum generated in Ne gas as measured after reflectance from a Si mirror (A) and
from a Fe2O3 sample (B).

As shown in Figure 3 XUV-RA spectra are very different from those measured in transmission for the
same material.2;1 Therefore, it is necessary to understand the origin of the difference in XUV-RA lineshapes
compared to transmission experiments to obtain the same chemically rich information available in a traditional
absorption experiment. We have developed a semi-empirical method to simulate XUV-RA spectra from their
known transmission analogues.

This simulation method reveals the physical origin of the distinct lineshapes measured by XUV-RA spec-
troscopy. In contrast to transmission experiments which are dominated by the imaginary part of the refractive
index (k), reflection experiments additionally probe the real part of the refractive index, n. To simulate a
reflection-absorption spectrum, we begin by 1) simulating a ground-state absorption spectrum using charge
transfer multiplet code, 2) derive from it the imaginary part of the refractive index using classical electromag-
netic theory, 3) obtain the real part of the refractive index via the Kramers-Kronig transformation, and 4)
use the Fresnel coefficient corrected for non-resonant surface scattering (Debye-Waller factor) to derive the RA
spectrum.

To demonstrate the element specificity as well as the accuracy of the simulation method, we have collected
and simulated RA spectra of several first row transition metal oxides, including TiO2, Cr2O3, Fe2O3, and NiO as
shown in Figure 4 A, B, C, and D, respectively. As shown, the resonance position of the M2,3-edge transitions
(3p → 3d) increases with atomic number. This is because the binding energy of the 3p orbital scales with
effective nuclear charge from left to the right across the periodic table. In contrast to the 3p core orbitals, the
binding energy of 3d valence orbitals is less influenced by nuclear charge due to screening by core electrons. As
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Figure 3: Normalized static spectrum of Fe2O3 as measured by Reflection-Absorption (red) and transmission
(black) experiments.

a result, the 3p → 3d transition energy increases with atomic number along the series TiO2, Cr2O3, Fe2O3,
and NiO, giving rise to the element specificity of core-hole spectroscopy, which is preserved in the XUV-RA
measurements shown here.

Figure 4: Simulated (black) and experimental (color) static XUV-RA spectra of (A) TiO2, (B) Cr2O3, (C)
polycrystalline Fe2O3 and (D) NiO. The error bars on the experimental spectra are the standard deviation
associated with each data point.

The predicted probe depth of a grazing angle reflectance measurement based on the attenuation length of
the transmitted XUV field is only a few nm for the metal oxides shown here. To experimentally validate this
predicted probe depth, we have collected ground state RA spectra of TiO2 thin films at various thicknesses.
The resonant intensity at the Ti M2,3-edge has been plotted as a function of the TiO2 film thickness (see purple
squares in Figure 5). The XUV-RA intensity at the Ti M2,3-edge increases with TiO2 film thickness as long as
the thickness is less than the probe depth of the measurement. However, when the film thickness exceeds the
measured probe depth, no further signal enhancement is observed.

XPS measurements have also been collected for each film thickness. From XPS it is possible to determine
the atomic fraction of Ti and Si by taking a ratio of the Ti 3d and the Si 2p XPS lines and correcting for the
atomic sensitivity factors. Plotting this fraction as a function of film thickness and fitting to an exponential
rise reveals the probe depth of this XPS measurement, where the Ti atomic fraction approaches 100% as the
TiO2 film thickness exceeds the XPS probe depth. This probe depth is found to be 2.8 nm as shown by the
best fit to the green circles in Figure 5. This value closely matches the known surface sensitivity for XPS based
on tabulated values for the inelastic mean free path of the Ti 3p and Si 2p photoelectrons. Comparing the
XUV-RA intensity with the Ti atomic fraction determined by XPS shows that the XUV-RA probe depth for
these samples is similar within error to the probe depth of XPS which is considered one of the primary tools
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for surface sensitive electronic structure characterization.

Figure 5: The experimentally determined probe depth for XUV-RA spectroscopy and XPS. Fitting an expo-
nential rise to the XPS data points yields a probe depth of 2.8 nm (shown by the black line).

3 Surface Electron Dynamics of Catalytic Materials Probed by XUV-
RA Spectroscopy

CuFeO2 and Fe2O3 are closely related earth-abundant photocatalysts with band gaps ideally suited for solar light
harvesting. However, photo-electrochemical properties differ significantly between these two materials: Fe2O3
is a water oxidation catalyst, which suffers from poor conversion, while CuFeO2 is photocathode with activity
for both H2 evolution and CO2 reduction. We have recently demonstrated that CuFeO2 shows selectivity for
CO2 conversion to the C2 product, acetate, under photoelectrochemical conditions.5

Using XUV-RA spectroscopy, we have investigated the ultrafast electron and hole dynamics in the photo-
catalytic metal oxides, Fe2O3 and CuFeO2.3

Figure 6: (A) The experimental contour plot for Fe2O3 up to 5 ps post-excitation. (B) Fe2O3 after photoexci-
tation at 400 nm depicting the spectral evolution up to 10 ps post-excitation.

Figure 6A shows the XUV spectral evolution of Fe2O3 for time delays up to 5 ps following photoexcitation
with a 400 nm pump pulse. Select transient spectra are shown in Figure 6B. The transient spectra of photoex-
cited Fe2O3 are characterized at early times by a ground state bleach centered at 54 eV formed within the 85
fs instrument response function of the XUV spectrometer. This bleach subsequently undergoes a hypsochromic
shift to 55.5 eV, and is accompanied by the growth of an excited state absorption feature centered at 52 eV. The
hypsochromic shift of the ground state bleach and the rise of excited state absorption both evolve with a single
correlated time constant of 640 fs. The observed bleach corresponds to the loss of Fe3+ while the excited state
absorption at slightly lower energy is an indication of the formation of Fe2+. The fast hypsochromic shift of the
ground state bleach feature is the result of lattice expansion during electron self-trapping, and we have assigned
these kinetics to surface electron trapping and small polaron formation at the catalyst surface.4 Additionally,
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we show that the observed small polaron formation rate is independent of surface defects by performing detailed
kinetic analyses on poly- as well as single crystalline Fe2O3 substrates, as shown in Figure 7.

Figure 7: Comparison of transient electron dynamics for polycrystalline (top) and single crystalline (bottom)
Fe2O3.

The measured surface roughness of the polycrystalline sample is an order of magnitude greater than for the
single crystal substrate, however, We find that the spectral evolution and the small polaron formation rates are
identical within error, confirming that the surface electron trapping is not mediated by surface defects. Rather,
we hypothesize that the lattice expansion associated with small polaron formation represents a likely driving
force for surface electron trapping in Fe2O3. Additional experimental and theoretical studies are underway to
confirm this hypothesis and to understand the role of nuclear motion to mediate the transport properties of
electrons at interfaces.

By performing spectroscopic XUV-RA measurements on the promising CO2 conversion catalyst, CuFeO2,
we demonstrate that it is possible to track electrons and holes independently in the Fe 3d, Cu 3d, and O 2p
states comprising the band structure of this semiconducting metal oxide. Figure 8A shows the spectral evolution
of CuFeO2 up to 100 ps post-excitation. The spectrum can be divided into three distinct regions: 1) The O L1

edge (blue) extending from 40-47 eV, 2) Fe M2,3 edge (red) centered at 54 eV, and 3) Cu M2,3 edge (green) in
the high energy region above 63 eV. Nearly identical kinetics are observed at the Fe M2,3 edge between CuFeO2
and Fe2O3. Additionally, Figure 8B compares the transient spectrum at the Fe M2,3-edge obtained at 1 ps for
CuFeO2, Fe2O3, and a simulated Fe2+ charge transfer excited state based on a ligand field multiplet calculation.
The excellent match indicates that in CuFeO2, photoexcitation results in localization of the excited electron to
the Fe 3d conduction band states similar to Fe2O3. A weak excited state absorption feature is also observed in
Fe2O3 (Figure 6B) at ∼44 eV, corresponding to O L1-edge absorption by the valence band hole.

In contrast to Fe2O3, CuFeO2 shows the rise of strong positive absorption extending broadly at the low and
high energy regions of the spectrum. This represents strong absorption by the valence band hole at the O L1

and Cu M2,3-edges, respectively. Figure 8C shows that the response in these spectral ranges is correlated in
time and delayed relative to the signal at the Fe M2,3-edge.

This shows that following an O 2p → Fe 3d charge transfer excitation, hole thermalization to the valence
band edge is best described as electron transfer from the higher lying Cu 3d states to backfill holes in the lower
lying O 2p states.

Despite similar electron dynamics in Fe2O3 and CuFeO2, only CuFeO2 shows cathodic photocurrent (Figure
9A). These measurements suggest that this may be largely a result of ultrafast (500 fs) hole thermalization, in
which the hole transfers from O 2p to strongly hybridized Cu 3d valence band states leading to spatial charge
separation within the layered CuFeO2 delafossite lattice (Figure 9B). The fast hole delocalization observed
in CuFeO2 would tend to weaken the exciton binding energy, which may explain the reason that cathodic
photocurrent is observed in this material but not in Fe2O3.

4 Conclusion
We have developed transient XUV Reflection-Absoprtion spectroscopy to elucidate surface carrier dynamics of
catalytically relevant metal oxides used for the reduction of CO2 into fuels. We have demonstrated that XUV
Reflection–Absorption spectroscopy combines the benefits of X-ray absorption, such as element and oxidation
state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm
and an instrument response time less than 100 fs. We have highlighted a number of recent examples showing

5DISTRIBUTION A: Distribution approved for public release.



Figure 8: (A) Transient XUV-RA spectra of CuFeO2 for a series of time delays. (B) Comparison of the XUV
transient spectrum at the Fe M2,3-edge obtained 1 ps following photoexcitation for CuFeO2 and Fe2O3 along
with the result of a ligand field multiplet simulation depicting the expected transient spectrum. (C) Kinetic
traces showing the transient response at the Fe M2,3-edge, the Cu M2,3-edge, and the O L1-edge. Traces have
been normalized and plotted as positive ∆OD for clarity. Representative standard errors based on replicate
measurements are shown for the Cu M2,3-edge.

Figure 9: (A) Linear sweep voltammograms for CuFeO2 (red) and Fe2O3 (black) under cathodic potentials from
+0.6 to 0.0 V vs RHE in 0.1 M aqueous NaHCO3 during illumination with a chopped light source. (B) atomic
level structure of the CuFeO2.

the utility of XUV reflection-absorption. These include measurement of ultrafast surface electron trapping and
small polaron formation in hematite as well as the ability to independently measure electron and hole dynamics
in a CO2 reduction photocatalyst, CuFeO2, by transient spectroscopy at the metal M2,3 and O L1-edges,
respectively. Based on our results, we anticipate that XUV Reflection-Absorption spectroscopy will continue to
contribute to a detailed understanding of surface electron dynamics in relevant materials, where ultrafast time
resolution and chemical state specificity are required to elucidate the mechanisms of charge transfer and energy
conversion at surfaces.
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