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Abstract

This study is the result of a year long effort to assess how to meet the Army’s requirements for off-road agility
over the next several decades. The resulting recommendations are in the areas of control, sensing and perception, and
energy. These recommendations include a wide range of topics, including information-based control, collaborative
active sensing, dedicated computing elements designed for perception and control, model-based control in model-free
and data-driven settings, and energy harvesting.

1 Introduction

The U.S. Army has a need for high levels of mobility on the ground, away from roads and other support infrastructure.
The goal of this study is to assess opportunities that could transform ground-based platforms in terms of both speed and
agility, in scenarios ranging from teleoperation to fully autonomous execution. But what defines agility? Certainly
some examples of agility bring to mind fast motion. Efficiency also would seem to play a role, since motion with
limitless power is rare. But other factors play a role as well, including correct perception for motion, where sensing is
integrated into decision making sufficiently quickly to make time critical decisions. Lastly, agility would sometimes
seem to depend on correct long-term reasoning about physical cause and effect; for instance, parkour athletes have to
make many interdependent decisions before a reasonable plan can be settled upon, and then enact that plan in time
constrained settings. This study aims to identify research activities that will bring agility to advanced systems that
need to be deployed in unstructured environments.

Our recommendations are in four categories of research, though these categories should be interpreted as deeply
intertwined—they are separable now, but in many regards one of our main conclusions is that these areas need to
become inseparable over time. These delineations are Control, Sensing and Perception, and Energy.

We additionally attempt to discuss how agility might change at different scales (e.g., vehicle scale, human
scale, and “small” scale—by which we mean a variety of scales smaller than those on the order of mammals). What
sort of principles of motion, decision-making, and design can be expected to translate well between these different
scales? Moreover, at these scales, what examples can be exploited for design principles?

Terrestrial animals can swerve, jump, climb, turn and stop abruptly. Their remarkable stability and maneuver-
ability provide an attractive paradigm for engineered robotic vehicles. However, robotic vehicles remain no match to
their biological counterparts in agility and ability to deal with variable environmental conditions. What will it take to
develop robotic vehicles as stealthy as a fox? Or a robotic flyer as agile as a hummingbird? Or a swarm of robots
that collaborate together as a colony of ants, a flock of birds or a school of fish? And in these cases, is agility an
attribute of individuals or of the group as a whole? The outstanding issues preventing transition of these capabilities to
robotic applications are at once technological and scientific. Technological advances in smart materials and mechan-
ical actuators and sensors are imperative for the development of future generations of autonomous and agile robots.
Concurrently, there is a need for basic scientific research to accompany these technological advances and allow them
to be successfully incorporated in the design and development of agile robotic vehicles. And although we may use
biological observations as evidence that agility is possible, we also recognize that many agile technologies will not
mimic the biology that motivates them.

Before moving on to the main section of this document, we note that there are two important ideas missing
from the discussion. First, agility for very large vehicles—those on the order of tens of meters, such as long-haul
trucks and larger—is ignored. Although one might argue that the energetic requirements for rapidly accelerating such
large systems may make “agility” for such systems impractical, it is primarily the case that we simply did not make
any progress thinking about that scale. Secondly, we do not consider human-in-the-loop issues, nor do we consider
any of the associated psychological factors that may come into play when a person is interacting with an agile system.
These considerations are undoubtedly extremely important, but for the purposes of this study we focus on autonomous
agility, understanding that many of the recommendations here may play a role in human-machine agility.



Figure 1: Examples of agile and scalable behavior in animals at various length scales. Top row: many-legged locomotion, flying, swimming and
galloping modes of locomotion in biological organisms. Bottom row: behavior of same organisms at the collective level.

Our recommendations may be summarized as follows. First, in the area of control, we recommend that new
theoretical foundations for control be developed that enable flexible response to a continually-evolving environment.
We consider several versions of this idea, including information-theoretic control techniques, goal-oriented princi-
ples of motion and decision-making, and the impact that changes in computing hardware may have. The overarch-
ing theme, however, is more general—that controlled response to state needs to reformulated from scratch to deal
with variable-morphology, variable-environment systems, rather than simply “adding” onto the optimization-based,
linearization-based understanding of control that has dominated the past half century. Second, in the area of sensing
and perception, we recommend that cooperative active sensing using ambient environmental signals should be pur-
sued. The specific example we discuss is the use of bluetooth and wifi signals to map the interior of buildings, but the
broader picture is that relatively incapable, isolated systems may radically improve their situational understanding by
cooperatively exploiting ambient signals. We also argue that robotics and autonomy have matured to a level where it
should be possible to create dedicated computation for sensing and actuation closed-loop computation. In this section,
we additionally advocate for automating the data-to-control-response pipeline, specifically using recently developed
techniques in model-based control for model-free systems. Third, we end with a discussion of energy in the context
of energy harvesting and micron-scale systems. In many regards, profound changes in energy storage and manage-
ment are simultaneously the most important issues for terrestrial agility and the area for which our recommendations
are least concrete. Nevertheless, we argue that identifying situations where energy harvesting can be used will have
important consequences, specifically in the case of long time horizons or very small scales.

2 Actuation and motor control

Locomotion is one of the most basic behaviors of organisms, yet even the simplest motions often require the coordina-
tion of nervous, sensory and motor systems with the external environment. A central problem in biolocomotion, and
motor control in general, is understanding how these systems are coordinated to achieve a locomotory task. Which
aspects of coordination are “passive” and which aspects require “active” control? A large body of evidence shows
that animals accomplish a variety of motor tasks reliably and repeatedly but with large variability on the level of the
individual degrees of freedom. Trial-to-trial variability in individual degrees of freedom is on average larger than
variability at the task level. These observations are fundamentally incompatible with the mainstream control paradigm
that enforces precise control of each variable and degree-of-freedom to achieve a “desired trajectory.” (There are ex-
ceptions to control goals being specified through the use of a desired trajectory—e.g., energetically-specified goals
(1,2, 3L 4, 56} [7] and thermodynamically-specified [8] [0} [10, [11]—but these represent a tiny minority of approaches
in control.) Supporting and allowing trial-to-trial variability suggests that one should focus on using only goal-directed
corrections and explicitly allowing variability that does not interfere with the goal. Therefore, there is a need to build
a mathematical framework that allows the development of design rules and control strategies that use actuation only
when and where it is necessary. Below we will discuss several examples of what such a framework might look like. But
we first point out differing principles of control—focusing on geometric, optimality-based, and information-theoretic



formulations—that provide much of the history relevant to control synthesis.

Geometric Mechanics as a Description of Physics-Based Control and Rigid MOtionT

Actuation. Bio-inspired locomotion is based on the interaction of in- L

ternal or “shape”-related degrees-of-freedom with the surrounding envi- B Net
ocomotion 1

ronment. On of the successes in control has been in the development of
geometry-based methods for control; these have provided a unified frame-

rescribed anc
work for studying locomotory systems at a wide range of length scales. it shape
Roughly speaking, the configuration space can be decomposed, using tools /"'U_‘;""f’it’l
from reduction and symmetry, into shape variables and variables associ- e
ated with the net locomotion. Locomotion gaits can be produced by pre- Shape Space

scribing different paths in the shape space [12, [13} 14} 1516, [17]. How-
ever, ignoring the shape dynamics comes at a price. It assumes control of
all shape variables and does not provide freedom or flexibility in actuation.

To be able to explain, evaluate and emulate the remarkable agility
of biological systems under variable environmental conditions, this framework needs to be expanded to allow the
shape space to be decomposed into actively-controlled variables and passively-responding flexible elements. The
choice of the actuated variables depends on the specific task (e.g., rapid maneuvers versus periodic locomotion) and
environmental conditions. This view allows for “redundancy” in actuation, similar to the redundancy in biological
systems, in the sense that, out of the available shape variables, multiple combinations of active and passive elements
might produce the same desired output, albeit at different energies, speeds, and stability properties; thus the need
for actuation strategies that optimize the system’s performance in terms of, not only efficiency, but also stability and
agility.

Figure 2: Geometric picture underlying undula-
tory locomotion.

Optimality and the Minimal-Intervention Principle. Optimality-based control synthesis [18 |19, 20} 21} 22| 23|
24] are among the most used control synthesis techniques, partially because of their tractability in the case of linear
systems [25]]. However, as pointed out above, sometimes an optimality-based principle can over specify the control ap-
proach. The minimal intervention principle—of which there are many variants—provides an alternative. Qualitatively,
the minimal intervention principle can be stated as follows: deviations in individual variables are corrected only when
they interfere with the task performance [26]]. This approach relies on the intrinsic physics of the system and requires
active control only if and when needed. The research question is to decide when and where control is needed. Such
decisions obviously depend on the system itself and its environment. The challenge here is to develop strategies that
allow the “control” to follow the physics. Some versions of the minimal intervention principle have extremely helpful
computational properties; for instance, in [27], framing the minimal intervention problem as finding the next action
that best improves the long-time horizon behavior relative to a nominal choice of control (often the zero control) leads
to an analytic solution for arbitrary nonlinear piecewise continuous systems. Moreover, the resulting control coincides
with the optimal solutions, but at much less computational cost. The key point is that reframing control questions
could lead to dramatic computational savings, scalability, and other factors contributing to real-time capabilities; the
minimal intervention principle appears to have many desirable characteristics as a principle of motion.

Moreover, minimal intervention is sometimes a more “natural” problem specification. For instance, minimal
intervention is particularly relevant in light of the recent development in soft robotics [28| [29] which provide a new
paradigm for robotics and actuation where complete control over all degrees of freedom is not feasible. Alternatively,
rehabilitation devices may only want to intervene when safety is at stake, to ensure that a subject is as responsible as
possible for his or her own movement [30]].

Applications should suggest even more dramatic reframing of the control problem—for instance, what should
the control problem be when there is no model, but there is plenty of data? In this case, it is important to explore data-
driven versus model-based control and finite versus infinite dimensional representations of a robotic system. Learning
algorithms based on artificial neural nets could provide an efficient, model-independent framework for versatile motion
design and planning [31}[32]]. We will discuss this particular issue more in Section [3]

Variable Geometry Systems. An application that seems both natural and challenging for current formulations of
control is that of variable geometry systems. We define variable geometry systems to be those that can change their
morphological structure as part of their locomotion strategy. For instance, robots that can transition between legged



and wheeled locomotion have variable geometry, with two possible geometries to choose from. Other systems could,
of course, have more choices of morphology, all the way to a continuum of choices. The question, then, is how should
one control such a system, both in terms of the physical inputs and in terms of the morphological choices?

Variable geometry systems have two distinct classes of decision variables, and as a result we identify three
scenarios or modes of operation. In the first operational mode, there is a change in the geometry while the control
(such as steering and throttle) remain constant. In the second operational mode there is the dual situation in which the
geometry remains fixed but control commands have to be optimized. The third operational mode is the scenario where
geometry and control commands have to be simultaneously optimized. There are already control-oriented tools for all
three of these operational modes: methods in hybrid control [33| 34] approach the problem as a scheduling problem
while minimizing an objective function, methods in information theoretic control capture the changes in geometry
and structure through information measures [335]], and direct optimization methods can approach the problem through
integer-constrained optimization [36]]. All these methods suffer from scalability issues, slow computation time, and
sensitivity to the fidelity of the model.

Terrestrial agility, enabled by variable geometry designs, will need to have these problems solved, with concrete
algorithms that can act on both the internal geometry of the vehicle as well as control actions. Stochastic control
methods that rely on information theoretic measures could provide one way to derive this controllers, so here we
include discussion of this area specifically as well as some of its near-term goals. Then, at the end of this section, we
provide our perspective on a longer-term research agenda.

Information Theoretic Formulations of Control. The information theoretic formulation of control is very general,
applicable to both differentiable and nondifferentiable system, both in their dynamics and their objectives—and as a
result can model systems with variable geometry. Stochastic control is a representative special case and can be used
as a first step for computationally practical approaches. Numerical methods for stochastic control using sampling
have been extensively studied [37, 38} |39} 40]]; however, most of the these approaches suffer from scalability issues.
Recently new methods have been developed that overcome the issue of scalability by computing optimal control
policies using forward sampling and adaptive importance sampling. These methods rely on the connection between
information theoretic dualities between free energy and relative entropy, path integrals and the dynamics programming
principle [41}142}143]1441145,146,147,148,149,150, 1511 152]]. Resulting algorithms such as the Model Predictive Path integral
control are able to steer terrestrial vehicles such us the GT AutoRally car in an aggressive fashion [53} 54].

However, there are open challenges that emerge in the area of terrestrial agility and would have to be addressed
before these methods could be applied to real vehicles in real operating environments. These near-term challenges are
not only related to the information theoretic formulation of stochastic control, but are relevant to alternative formula-
tions as well.

e High Dimensionality and Scalability: The first challenge is related to the dimensionality of the decision vari-
ables especially the ones related to the internal geometry of the terrestrial vehicle. Optimization tools for high
dimensional optimization problems and tools used for training neural networks for deep learning are of potential
interest as well.

e Optimization in Multiple Time/Spatial Scales and Hierarchies: The second challenge is related to the time scale
of optimization. It is possible that the two types of decision variable have to be optimized in different time
scales. This means that iterative optimization algorithms have to be developed for optimization that alternates
between different time scales. On this front, elements on stochastic calculus for importance sampling for multi-
scale diffusion processes will be important in cases where optimization is performed via sampling [35} 156].
Multi-scale diffusion processes can be used to create hierarchies for decision making under uncertainty and
planning. Hierarchical decision making using a information theoretic formulation has the potential to create
a computational framework that can unify high level reasoning and voluntary decision making with low level
reactive reflexive control.

e Multiple Models and Hybrid Stochastic Control: Depending on the properties of the terrain the state space dy-
namics of the vehicle may rapidly change, potentially discontinuously so. This rapid change may not be captured
by the stochastic representation of the problem statement. In this case multiple state space representations will
be required to capture the entire spectrum of the of the dynamics of the terrestrial vehicle. Hybrid representations
and multiple models [57] should be used in cases where terrestrial vehicles have variable geometry or variable
environment (e.g., short-flight or amphibious capabilities). The aforementioned algorithms should be reactive,




adaptive, stochastic and able to handle different possibilities and scenarios in forward planning. It almost goes
without saying that this is an ambitious goal, but it is nevertheless one that is likely solvable within the scope of
current state-of-the-art techniques.

More ambitious goals in control techniques include the following.

Policy-Based Stochastic Control Using Tensor Train Decompositions. A classical approach to solving stochastic con-
trol problems is to use Markov Chain Model Carlo approximation methods [37]. The key ingredient of this method is
that it relies on the generation of a grid in the state space and solution of the Bellman equation on this grid by forcing
the so-called consistency condition to hold. One of the major limitations of this class of methods has been the lack
of scalability and its sensitivity to regularity of the state space grid. Recent developments in the area of tensor train
decomposition and compressed sensing [S8), 59] seem to alleviate the issue of scalability to some degree by solving
the Bellman equation in a lower dimensional representation of the initial problem formulation. The framework is
system-specific and requires the representation of dynamics as products of functions of each dimension of the state
space. These approaches are used for tasks that involve stabilization or tracking. Application of the aforementioned
computational methodologies to terrestrial vehicles will require work on incorporating hybrid stochastic dynamics,
multiple model-based stochastic control and multi-scale dynamics.

Stochastic Control Using Linearization. In the third class of stochastic control methods algorithms, such as differential
dynamic programming (DDP), approximate the HIB PDE locally along nominal trajectories. Specifically, the DDP
algorithm back propagates the value function along a trajectory using local quadratic approximations of the cost, value
function, and system dynamics evaluated on the nominal trajectory. Locally optimal open- and closed-loop control
policies are then computed based on the quadratically approximated value function [60]. The same basic principles
were used to develop iterative linear quadratic regulators [61} 162]. The stochastic differential dynamic programming
(S-DDP) algorithm considers stochastic system dynamics with additive control- and state-dependent noise and finds
optimal open- and closed-loop control policies to minimize the expectation of a given cost [63}161]. Unlike sampling
based methods, the S-DDP algorithm’s performance is significantly affected by its ability to propagate the considered
system’s configuration and accuracy of the linearization of the resultant stochastic discrete dynamics. Therefore future
research on stochastic control methods using linearization should include the development of integrators that encode
mechanical information. For instance, variational integrators constrain (or strongly enforce) the conservation of fun-
damental mechanical quantities such as momentum, energy, the symplectic form (related to volume preservation for
stochastic processes), and geometric constraints [64} 65} |66]]. These numerical methods can also be linearized, pro-
viding a mechanically-relevant linearization for purpose of control [67]. The key point is that advances in numerical
can directly impact practical control systems, particular ones that depend on forward simulation of the mechanics and
backwards simulation of the sensitivity.

Moreover, uncertainty potentially can be represented explicitly in the form of stochastic differential equations
or by using deterministic representations such generalized Polynomial Chaos (gPC) theory and Guassian Process (GP)
regression. (It is important to emphasize that deterministic representation of uncertainty come with the drawback of
increasing the dimensionality of the initial stochastic representation.) Therefore these representations expand the state
space dimensions and make the application of trajectory optimization methods challenging.

There exist important questions related to uncertainty representation and the way that this representation can

be incorporated within linearization-based stochastic control methods. The choice of uncertainty representation will
result in different mathematical tools for useful linearization and variational integration. For example, in the case of
stochastic differential equations, investment should be made in the development of variational integrators for general-
ized models of stochasticity that go beyond diffusion processes, motivated by the fact that real mechanical uncertainty
is almost never of the form of a diffusion process. In the case of polynomial chaos representation, research should be
steered towards the development of scalable variational integrators. More generally, uncertainty quantification that is
both computable and anticipates the synthesis of control is essential in the near term.
Infinite Dimensional Representations: Many vehicle designs could include continuum-based designs, rather than rely-
ing on rigid parts. In the case of infinite dimensional representations, there are challenges related to whether there exist
computational algorithms for control and how scalable or real time these algorithms could be. Infinite dimensional
representations of dynamical systems such as partial differential equations could be used in case of high fidelity mor-
phing/variable geometry representations. In the literature of control theory, control of PDE is also known under the
name of distributed control. Work in the area of distributed control involves the generalization of the two principles of
optimality namely Pontryagin’s Maximum Principle and Dynamic Programming principles [68, [69].

There is a great potential for distributed control algorithms within the area of terrestrial agility for vehicles that
have morphing capabilities which go beyond multi-body physics. On the theoretical side, there is existing work on



optimal control of PDEs however most of this work is at the level of existence and uniqueness of solutions and less
on the computational and algorithmic side. Motivated by the need to create highly agile terrestrial vehicles there are
many opportunities related to the development of computational algorithms for real time shaping and morphing. The
major difficulty for this research will be on the scalability and real time requirements of the computation. One possible
way towards making progress on that front is to ask the question which types of algorithms scale for simpler finite
dimensional representations of systems in robotics and autonomy and then proceed with work towards generalizing or
lifting these algorithms so that they are applicable to infinite dimensional representations.

In the robotics and learning communities there is a consensus that certain classes of optimal control methods are
scalable. These classes include Policy Gradient or Policy Search methods [[70L 71} 72,73\ {74} 75,176} |51]], model-based
trajectory optimization methods such as Differential Dynamic Programming [60] and its variations [77, [78}, [79} 63|
80, |81} [82]], and stochastic control methods using sampling [53| 54} |48l [83]]. Future efforts towards the development
of scalable, real time algorithms for morphing in terrestrial vehicles should include the [ifting of these classes of
methods to the infinite dimensional spaces. Some prior work on the control of stochastic PDEs using the exponential
transformation of the value function already exists however the algorithmic and computational aspects of this work
are completely unexplored [|84} 85 [86].

2.1 Hardware for Control Computation

Recent advances in the area of stochastic control and machine learning have shown that parallelism is a key ingredient
for state of art algorithms to meet the real time requirements of autonomous systems operating in dynamic environ-
ments. From the decision making point of view, parallelism supports the computation of reactive stochastic controllers.
From the machine learning and perception point of view, parallelism allowed researchers to train multiple layers of
deep neural networks and help them to investigate the best architectures for a given task. There are different solutions
that support parallelization. Parallelization can be achieved in software using high end-low power GPUs but it can also
be performed in hardware using different technologies such as FPGAs and neuromorphic computation.

Within the context of terrestrial agility and autonomy, it is essential to have hardware that supports paralleliza-
tion for real time decision making and learning while maintaining low power consumption. The FPGA technology
could be seen as an intermediate step towards the development of completely neuromorphic hardware that promises
computation with very low power consumption. FPGA technology has been used in many application within auton-
omy but mostly for subtasks such as image and signal processing, vision and filtering. FPGAs have been used in high
speed trading and Monte Carlo simulation in the financial and banking sector however the trading models used are low
dimensional-typically scalar [87] and rather simple in terms of nonlinearities. One of the questions here is whether
this technology can be used to perform real time decision making for high speed navigation of terrestrial vehicles with
variable geometry.

Neuromorphic technology relies on a new micro-device (called memristors) and promises high speed compu-
tation under low power consumption [88} 89, 90,91} |92]. Memristor devices are inspired by spiking neurons and the
energetic efficiency of biological neural networks. One the fundamental questions is whether this technology can be
used for forward sampling in hardware of thousand of trajectories in stochastic control or for representing in hard-
ware deep neural networks architectures and performing online real time training. Future terrestrial vehicles should be
equipped with neuromorphic chips [93]] for implementing decision making, learning and sensing in an energetically
efficient way. Moreover, control architectures will need to take these computational capabilities into account.

2.2 Long Term Recommendations

We recommend investment in control advances that generalize geometric methods to situations where variability of
approach is built into the mathematical representation of the control problem. Flexibility of the control synthesis with
respect to strategy is essential, and will require relaxing some of the assumptions associated with classical methods
in control while adding new axioms of motion. Integrating information-driven metrics into control synthesis at an
intrinsic level—rather than estimation or linear process models—should be prioritized. This new theory would include
advantages of geometric, stochastic, miniminal-intervention methods, but would presumably not look like any one of
them; it would be more than simply modifying previously existing theories.

A key point is that control theory likely needs to be reformulated based on a new set of requirements, require-
ments that no longer treat the “trajectory” as the most primitive description of the goal, requirements that build in
assumptions about computation, sensing and perception, and requirements that reflect needs for flexibility and adapt-



ability. Rather than simply modifying existing theoretical foundations, these foundations should look quite different
from the ones we see now.

Most importantly, developing theoretical tools that lead to a simplification of computation and implementation
for control is an important goal to pursue [94]. Currently, each new requirement (e.g., the inclusion of stochastic terms
in the statement of a model) leads to increasing computational complexity and sophistication of implementation (e.g.,
stochastic control requires either solving partial differential equations or evaluation of large numbers of sample paths).
However, it seems unlikely that each new requirement (e.g., incorporating uncertainty into decisions) should lead to
dramatic increases in complexity. Instead, what is needed is something like the original Kalman filter insight—that
filtering problems with slightly more structure than the Wiener process assumptions can be solved with dramatically
simpler computations and implementations.

3 Sensing, Data, and Perception

In this section we discuss sensing and perception, and specifically how these might change dramatically as a result
of, and contribute to, advanced forms of agility. Moreover, how should agility be impacted by the ubiquity of data?
Again, we look to biology for some guidance.

Organisms leverage a wide variety of sensory modalities, such as vision, olfaction or flow sensing, in order
to respond to changes in their environment. To deploy robotic vehicles in unknown terrains, they must be able to
rely on online sensory systems to identify and decipher the important features of their environment. Sensing of
environmental cues consists of four complex and interdependent components: (i) the signal or environmental cue to
be sensed or detected, (ii) the type and layout of the sensory system used to measure the signal, (iii) the decoding
algorithms that analyze the sensory measurements and decipher the signal, and (iv) the decisions that are made to
obtain favorable signals. Lastly, in the case of multiple sensory modalities, there is a need for strategies to integrate
the sensory information from various sources. Each of these topics is the subject of intensive research in specific
model systems, for example, vision in fruit flies [95] 96, 97]], hydrodynamic sensing in marine animals [98] |99 [100,
101} 102} [103]], chemical sensing in insects and zooplankton [104, [105} [106, [107, [108], et cetera. However, so far,
there is no framework that enables the seamless integration of the knowledge developed in these various disciplines,
nor is there a systematic way to predict how they affect each other. Nevertheless, some of these observations point
to new opportunities in sensing that would have been impossible—or at least impractical—even a few years ago. We
start this discussion with an example of sensing using ambient communication signals.

Sensing and Perception with on-board communication signals. Can agile platforms use on-board transceivers
and the associated generated signals for sensing and perception in uncertain environments? This, for instance, could
enable through-wall sensing, which is not possible with traditional on-board sensors such as laser scanners. More
importantly, for small micron-scale platforms, carrying advanced imaging/vision systems may not be possible. Can
they then use MEMS-based RF radios for sensing and perception on very small platforms? MEMS-based RF radios
creates the potential for micro-miniaturization of radios, which can provide a viable option for micron-scale platforms.

Traditionally, sensing and imaging with electromagnetic waves is achieved at frequencies such as 10'® Hz
(e.g., x-ray), while sensing and perception with everyday RF signals, such as WiFi and Bluetooth, is much more rare,
despite the fact that these signals also permeate walls and other obstacles. Let X represent the vector of the stacked up
voxel values of the 3D unknown space that the platforms are interested in reconstructing by using RF transmissions.
X can be a binary vector, with each element representing the presence or absence—the occupancy—of an object in
the corresponding voxel. Equivalently, X (7) can represent the material property of the corresponding voxel, or any
other feature of interest, so long as the RF signals in question are sensitive to that feature—that RF signals contain
information about the feature. Let y = f(X,T) + n represent the vector of the RF-based measurements collected
by the platforms, with 7" denoting a matrix whose i" column is the way-points of the trajectory of the i robot, and
n representing measurement noise. Function f depends on the specifics of the RF-based measurements (e.g., signal
strength, transmission delay, phase, et cetera). The platforms are then interested in estimating the value of X, given

!For instance, imagine if control theory were, from its infancy, developed assuming that a deep learning network was the source of prediction,
rather than an ordinary differential equation. Such a control approach would have very different characteristics than those currently in use—most
obviously, time would not necessarily play a fundamental role in the description of a system. Indeed, even the notion of a vector space would be only
distally relevant to such a theory. Instead, the entire theory would hinge on features (potentially spatiotemporally defined) and their descriptions.
We are not advocating for such a theory specifically, but are advocating that major advances in agility will require such a level of theoretical
reorganization.



the measurement y. Furthermore, they are interested in designing 7', i.e., their trajectories, in an online and adaptive
manner, based on an online estimation of X, and under resource constraints. Fortunately, there is a large literature on
search, information maximization, and volume coverage (e.g., [10L [11]) that can be adapted
to this scenario. Nevertheless, applications such as cooperative robotic imaging using low frequency RF signals have
substantial challenges.

Underlying Challenges: There are key fundamental challenges preventing us from robotic imaging at these lower
frequencies. First, several propagation phenomena, such as scattering off of objects not on the direct line of sight,
are largely negligible at x-ray frequencies, while they cannot be neglected at WiFi frequencies. This then requires a
more advanced wave interaction model to represent f, which can make solving the imaging problem computation-
ally infeasible, especially on very small platforms. Second, the problem can quickly become considerably under-
determined. For instance, consider the simple case that a linear wave approximation suffices to represent f. We then
have y = A(T)X + n. However, the number of the measurements collected by the agile platforms is typically much
smaller than the size of the unknown space due to resource constraints. This results in a considerably under-determined
system and severe ambiguity in estimating X .

We then ask: Can utilizing mobile platforms, co-optimizing the path planning and RF sensing, and novel signal
processing have the potential to get around some of the aforementioned challenges? Consider mobility as an example.
With mobile platforms, we have the possibility of optimizing the positioning of transmitting/receiving antennas (i.e.,
designing the matrix 7"). This can create unprecedented possibilities for sensing (and perception) with RF signals.
For instance, the platforms can potentially create a very large virtual antenna, with a desired beam pattern of interest,
which can best serve their particular sensing and perception task. In other words, there is a rich space to explore at the
intersection of mobility and RF-based sensor design for cooperative perception on small platforms.

On the other hand, recent advances in signal processing such as sparse signal processing [114} [T15] allow
us to get around the under-determined nature the occupancy sensing problem by utilizing sparse representations of
the signal of interest. Suppose that X has a sparse representation in another domain, i.e., it can be represented as a
linear combination of a small set of vectors: X = ®x, where x is sparse. Let U(T) = A(T) x ®. Sparse signal
processing allows us to sample a signal of interest in a compressed manner, thus getting around the seemingly large-
size of the unknown space. The underlying principle of it is the fact that “most” signals are compressible to a smaller
space, which is the basis for the success of compression methods. And while sparse processing uses sparsity after
data has been collected, sparse sensing attempts to exploit sparsity beforehand by reconstructing a signal with very
sparse samples. Recent work has shown that this is possible under certain conditions, e.g., when matrix U satisfies
the Restricted Isometry Condition (RIC) [116]]. Most systems do not automatically satisfy the RIC condition, which
leads to the question: Can agile platforms then take advantage of their mobility to successively design 7" such that ¥
satisfies the RIC condition?

In summary, there is a rich unexplored space at the intersection of agility, RF sensing, and signal processing,
which has the potential to enable agile platforms, especially micron-scale platforms, with perception capabilities,
under resource constraints and through walls. Fig. [3]shows our preliminary result along these lines where two vehicles
produced this 3D image of the area shown in the right figure, based on an approach that builds on the aforementioned
principles [T17].

3D binary ground-truth image
Area of Interest - Top View of the unknown area to be imaged Our 3D image of the area,
(296 m x 2.96m x 0.4 m) based on 3.84 % measurements

Figure 3: 3D robotic imaging through walls with on-board WiFi signals.

Near-Term Important Questions:



1. What are the characteristics of the robotic paths that would satisfy the RIC condition for perception on small
platforms?

2. Can agile platforms utilize the underlying localized properties that govern the design of most spaces for percep-
tion with limited resources? For instance, we can model the 3D space of interest as a Markov Random Field
(MREF) in order to model the spatial dependencies among local neighbors. Using the MRF model, we can then
use the Hammersley-Clifford Theorem, for instance, to express the probability distribution of the voxel values in
terms of local dependencies, which creates possibilities for solving the perception problem through graph-based
propagation approaches.

3. How can MEMS RF sensing and perception enable advanced sensing in otherwise inaccessible areas? Can
MEMS RF sensors communicate with each other and form a chain of reliable communications and situational
understanding inside an inaccessible building. Can combining such sensors with external mobile vehicles pro-
vide higher resolution estimates of the interior of a building?

Throughout this discussion of cooperative, RF-based sensing, agility of mobile systems plays an important
role—how can the mobile systems be automated so that they are efficiently responsive to both the question that needs
answering—e.g., estimate the geometry of the interior of a building—and to data as it is acquired—e.g., the RF signals
themselves and the probability distribution over the voxel states describing the building’s interior geometry. Hence,
agility for such a cooperative system is not necessarily intrinsically connected to the agility of individual platforms.
Instead, agility is the responsiveness of the entire group to the task. This characterization of agility in the context
of cooperative systems is applicable to other cooperative tasks as well. As we learn how to integrate sensory and
actuation systems into coherent wholes, subsystems will need to actively cooperate, explicitly exploiting each other in
pursuit of a task.

Integrated Sensory and Actuation Systems. The development of versatile and robust bio-inspired robotic vehicles,
whether terrestrial, aerial or underwater, requires integrated sensory and actuation systems that work collaboratively to
achieve the operational demands on locomotion and manipulation. Such collaboration between sensing and actuation
requires the two or more systems to actively and passively modulate their elements in both space and time. Both live
organisms and man-made autonomous vehicles such as robots, self-driving cars and deep-ocean AUVs, have finite
computational resources; they must therefore multitask and develop schemes to dynamically allocate resources to dif-
ferent tasks, such as multi-sensory acquisition and integration, locomotion planning and motor control. Moreover,
organisms often employ strategies for navigation in complex uncertain environments that involve switching between
egocentric and geocentric schemes.

Egocentric versus geocentric navigation strategies: Egocentric navigation refers to when an organism or robot uses in-
nate or pre-acquired information to move along a path without any realtime feedback. Basically, this scheme executes
an actuation strategy with no realtime sensory information or with a strategy that anticipates environmental variabil-
ity. This strategy requires memory and information storage and can be efficient, but can succeed only in a constant
environment. In geocentric navigation, the organism or robot constantly probes its location relative to environmental
cues and adjusts its strategy in real time. This strategy requires continuous course corrections and is often slow, but
can cope with fluctuating environments. Accurate yet efficient navigation in a variable environment requires switching
between these two strategies or blending the two strategies continuously. A key ingredient lies in understanding and
optimizing the switching parameters and their dependence on the natural environment.

So how should blending the balance between egocentric and geocentric—or, alternately, between model-based
and data-based, or even intrinsic and extrinsic—reasoning be determined? Ultimately, this comes down to managing
complexity—how computationally intensive an approach is—while maintaining robustness. But complexity is relative
and one implementation of a given idea may be very computationally intensive while another is not. As an example,
under what conditions can a sophisticated control policy and its dependence on sensors be simplified all the way down
so that no computation is required at all? This idea, which we reference as Cyber-free Autonomous Systems, provides
a kind of bound on how much can be achieved through model-based design, while also making clear the role that data,
and reconfigurable computing, might play.

Cyber-free Autonomous Systems: An interesting question related to sparsity arises in model-based control: if a control
policy—thought of as a set of voxels in a high dimensional state space—happens to be sparse, how can one exploit its



sparsity? And if a control policy is very sparse, is computation required at all? Specifically, do robotic systems need
computing in the form of reconfigurable signal processing? What level of complexity is really needed for reliable
control, and can that control be pushed away from the CPU and towards the “nervous system” of an autonomous
system? For instance, can flight control in a complex fluid be pushed entirely into hardware accelerators embedded
into a machine?

As an example, we took the spring-loaded inverted pendulum (SLIP) model (studied extensively in the loco-
motion community [118} 119} (120, [121]]) and automatically extracted a finite-state machine (FSM) representation of
the control approach. We did this using the techniques in [[122], where an optimal control technique is used to compute
an approximation of the policy at a particular state and compression techniques are used to avoid excessive evaluation
of the control. The resulting FSM for SLIP locomotion involves only a five state FSM that could be easily embedded
in dedicated hardware (e.g., an FPGA or a hardware accelerator). Moreover, the logic of the finite state machine could
potentially be directly encoded in the mechanism of locomotion itself (e.g., mechanical ratchets), though this would
require yet another computational process to map potential finite state machines to potential physical designs.

The only failures for the example occur when the state is outside of the states of the FSM; these can be
corrected by offloading control computation to a CPU. This latter point is critical; the key role that reconfigurable
computing plays in this example is as a backstop to the dedicate, simple processing. So computation itself can be
thought of as a resource to be dynamically allocated to a control process—something similar to “attention” in animals.
Automating this characteristic so that deeply embedded processes can be generally responsible for system behavior—
while computationally-intensive capabilities can be recruited as needed—would provide one way to investigate the
trade-offs between intrinsic, model-based capabilities and extrinsic, data-based capabilities.

Moreover, there is a variation of cyber-free systems that should be considered that further blurs the distinction
between computational control and physically-embedded control. In the event that an FPGA or hardware accelerator
is being used, it is entirely possible that the occasional recruitment of computation for a task would naturally lead to
rewriting the FPGA code, on comparatively slow time intervals. Self-coding systems that adapt their control policies,
while managing complexity, in response to environmental changes, mechanical changes, et cetera, would lead to
continuous communication between the slowly-varying intrinsic dynamics and the sparse (in time) use of explicit
computation. As an example of a theoretical setting in which this idea is well posed, we next discuss some recent
advances in the use of Koopman operators [123]] for control.

Active Learning and Spectral Methods. Data-driven methods are good at describing dynamics in an information-
rich setting. Hence, we can expect they could be applied to vehicles running when there is substantial data acquisition
opportunity. The same methods are less effective for control synthesis and for human-in-the-loop (HITL) systems, par-
tially because a system must be pushed away from equilibrium before data about it can be expected to be meaningful.
(The reasons for this essentially come down to the fact that at equilibria information is low—for instance as measured
via Fisher information—so long as the equilibria is stable.) As vehicles are in environments that are increasingly
poorly understood, we can expect that controlled response to data-driven representations of highly dynamic processes
will be important.

Spectral methods, and Koopman operators [123]] in particular, have recently become of substantial interest again
in the dynamics community. Roughly speaking, spectral methods replace a finite dimensional ordinary differential
equation (typically nonlinear) that depends on and maps the state at one time to the state at a later time with an
infinite dimensional linear operator KC (called a Koopman operator) that maps functions of the state at one time to
functions of the state at a later time. If an ordinary differential equation is in the (x,y) plane, the Koopman operator
K will map functions of (z,y) to functions of (z,y), and these functions can come from any function space over
(x,) (e.g., polynomials, Fourier, et cetera). For example, functions could include z,y, zy, z + y,2"y3, and the
linear operator KC takes one set of values of these functions and returns a new set of values of these functions, thereby
implicitly updating the state itself. Although moving from a finite dimensional setting to an infinite dimensional setting
does create computational challenges, the linear representation of the system evolution enables one to generate data-
driven models without prior assumptions about the dynamics by examining the spectrum of the data. Specifically, the
linear operator can be approximated by a finite set of eigenvalues and eigenfunctions, making the approximation of /C
reasonably easy to compute for a finite choice of basis functions.

The advantages to terrestrial agility in this context are substantial. If a model of a mechanical system interact-
ing with its environment can be constructed directly in terms of data, many of the subtle complexities associated with
terramechanics could be avoided. The fine-scale differences between different types of granular media would cease to
be a major problem for the control, because the modeling would be based on what the vehicle actually does in response
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to control inputs rather than focusing on low-level physics-based models. In this context, one could focus entirely on
whether or not the model was actionable—that is, whether or not changes in the model lead to changes in control deci-
sions. The challenges in using a data-driven model are many, as discussed below, but the foundation of using data to
directly obtain actionable models would enable online systems to depend on the data they are accumulating instead of
models developed in environmentally benign circumstances.

Operationalizing Spectral Methods for Online Control of Unmodeled Systems: Little work has been done using Koop-
man operators for control. One option is to compute linear quadratric controllers in the infinite dimensional space,
though that does not necessarily make the problem more tractable. Computing LQ controllers in high dimensions is
complicated by computing Riccati equations in high dimensions. Moreover, the interpretation of the basis functions
becomes nonobvious, not least because linear systems with linear quadratic cost always have global optima, and the
state-based nonlinear problem does not. Another possibility is to use the Koopman representation to reconstruct a
nonlinear state-dependent ordinary differential equation, and synthesize control for that using nonlinear optimal con-
trol. A third possibility is to reconstruct analytic physics-based models—for example, models that treat mechanical
symmetries as constraints on the data-driven process—directly from the spectrum. For instance, if the underlying
system generating data has Hamiltonian structure, one can directly compute the Hamiltonian from the Koopman rep-
resentation. From the Hamiltonian, one gets a deterministic model in the form of a discrete time deterministic system
(through the discrete-time Legendre transform); this model satisfies all the symmetries that the Hamiltonian imposes
(e.g., conservation laws, constraints). In each of these approaches, the quality of the data will play an important role
in the quality of the resulting control.

Exploration For Data-Driven Representations: The Koopman formalism (and other related formalisms for data-driven
processes) rely on collecting measurements that are informative but not too destructive to the system. For example,
controlled exploration that destabilizes a system would be unacceptable for most engineered systems. Measurements
all taken at dynamic equilibrium are unlikely to contain much, if any, information about dynamic structure. Measure-
ments taken too far outside of normal operating conditions can create spurious effects and create artificial computation
burdens. Balancing these, through formally integrating spectral information needs into routine control, is an important
part of maintaining a model during operation. How should one do this?

To investigate, we did an example of Koopman-based control, using a Sphero robot—a sphere with a kinematic
vehicle inside it to drive the sphere forward—to drive on the floor [[124]]. Our approach followed the second approach
listed above—we first compute K and then map that back to a nonlinear state-space representation where classical
model-predictive control techniques can be employed. The robot has an outer sphere and inner kinematic device, so
the geometry is very sophisticated. Nevertheless, we started by modeling the Sphero as a double integrator system
(% = uy, 9§ = ug) in the (x, y) plane, which at low velocity is reasonable. The reference trajectory was parameterized
to be sufficiently aggressive to excite the systems internal nonlinearities that cannot be captured completely by the
minimal state representation. Then, with a human in the loop, the Sphero was driven at higher speeds to collect
data to compute K. The resulting controller, based on K, demonstrates that at low speeds, the extra information in
K does not impact the control very much—the system is too close to the equilibrium where the control is already
performing well. But as the trails involve driving at faster speeds, the control starts to exploit the extra information
about nonlinearity in the state-space reconstruction based on /C, resulting in several factors of error improvement. A
downside of this approach is that we cannot interpret the resulting nonlinear system—its nonlinearities arise partially
due to the geometry of the robot, partially due to the physics of the robot, and partially due to nonlinearities in the
contact physics between the robot and the floor. (This is where the mechanics-based approach listed above could be
pivotal.) But the upside is that we see real improvement in control performance with minimal intervention and no
explicit modeling effort, while being constrained to real-time operation.

With this example in mind, several questions that one can ask (and hopefully answer) include the following.
How should a data-driven system acquire data, ignoring at least momentarily optimizing the details of how that data
is processed? At what point does the data become actionable—that is, under what conditions can a data-driven model
be trusted sufficiently to start incorporating model updates into decisions? And how can these models be related to
meaningful physical models, exploiting what we do know (e.g., continuity in time, entropy increases, symmetries
of motion, energetic passivity of frictional surface interactions, et cetera) while allowing the data to illuminate what
we do not know (e.g., details of nonlinear models, dimensions of underlying state space, manifold structure)? These
questions are not specific to the Koopman formalism—any data-driven process will eventually have to come to terms
with them in one way or another.
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3.1 Long Term Recommendations

Based on the above discussions, we have several recommendations for long-term investment.

1. Identify cooperation-dependent tasks—such as those discussed above using RF sensing—and develop cooper-
ative, distributed systems for those tasks. Integrate multiple scales of devices (e.g., MEMS-RF devices and
mobile units) into cooperative sensing tasks.

2. Develop a mechanically constrained, data-driven approach to control, using mechanical information to constrain
data-driven processes and information measures appropriate for parameter-fee processes to drive exploration
based on those measures. Use these approaches to develop active self-learning systems, that constantly probe
their internal models while executing missions.

3. Develop both a theory and practical implementation for cyber-free systems. Part of this could be developing the
capacity for computing extremely sparse control policies (e.g., [122]), where only a handful of states in a finite
state machine approximate the policy.

4 Energy

The previous two sections implicitly assume that terrestrial systems have access to unlimited energy, or at least great
quantities of it. We consider here two opportunities for enhancing agility while managing energy, beyond the typical
approaches of trying to design efficient systems with efficient control systems. Specifically, we consider here how we
can take advantage of spatial and temporal scales to harvest environmental energy.

4.1 Battery-Free Agile Systems:

Energy drainage is one of the major challenges for the autonomous operation of unmanned vehicles. A battery of a
typical ground vehicle, such as a Pioneer robot, lasts around 30 minutes, which can be disruptive to many, perhaps
most, practical robotic operations. We ask whether a vehicle can re-charge on the field using existing signals in
its environment? While the idea of solar-powered vehicles has been explored, the feasibility of recharging with the
existing RF signals in the environment is unclear. Examples of such signals would include those emitted by nearby
TV or radio stations, those emitted by other unmanned systems, or those emitted by remote human operators. RF
signals are ubiquitous these days and can provide a promising additional source for robotic field charging. Therefore,
the main question is if, when, and at what scale it is possible to do such a charging?

New results have recently demonstrated the possibility of wireless charging in very short distances. For in-
stance, [[125] has designed a high-efficiency circuit to convert the ambient RF signals to DC current, which is then
used to power temperature and humidity meters. Despite relatively little work in this area, however, the idea of using
existing RF signals for charging is fairly unexplored at the time being. Here, we are further interested in unmanned
vehicles, which presents more challenges than charging a non-mobile platform. Nevertheless, unmanned vehicles have
several advantages. First, they can potentially be very small. Second, depending on their mission, they can potentially
execute a mission over a long time horizon.

Questions:

1. Can an unmanned vehicle utilize RF signals for powering up its onboard units? How much is fundamentally
possible? How far and how strong should the transmitted signal be? What can such harvested energy power
up? For instance, can this generated energy be used for communication? Can this generated energy be used for
sensing?

2. What does this enable for small-size agile systems, such as cell-size agile platforms? These platforms need
little energy to sense or communicate as each has limited capabilities. With the advances in MEMS technology,
micro-miniaturization of radio transceivers is becoming a possibility [[126]]. What possibilities would this then
present for the small-size agile platforms in terms of energy harvesting?

3. While the progress on wireless energy harvesting relies heavily on the advances in circuit design, agility can
play a key role in how mobile platforms best take advantage of this harvesting technology. Specifically, the
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performance of wireless harvesting relies on two key factors: 1) the strength of the available electric field
(induced by a nearby transmission), and 2) harvesting potential of the receiver on the platform, which is directly
related to the state-of-the-art in circuit design. Consider the first factor. Then, how can a number of platforms,
each with a small transmission power, path plan to optimum positions and optimally beamform to generate a
strong enough field for a receiving platform to harvest energy? Beamforming is a cooperative communication
technique where a number of antennas optimally design their transmission phase to arrive in phase at the receiver,
thereby increasing the received signal power considerably. Then, in the context of a number of mobile agile
units, how can they best position themselves to optimize the generated beam pattern cooperatively, for the
purpose of energy harvesting?

4.2 Micron-Scale Agile Systems

As the RF energy harvesting discussion suggests, there may be energetic advantages possible for cell-sized autonomous
systems; small systems may simply be in a better position to exploit energy harvesting techniques. However, to be
useful, one would need meaningful, mission-relevant autonomy at such a scale, and likely need to achieve that au-
tonomy without substantial on-board computation. Imagine cell-sized mechanical devices with minimal computation
(expressed in terms of actions on bits), minimal actuation (e.g., electrostatic adhesion), and minimal sensing (e.g.,
gross compass readings). What sensing ranges could such a system have (e.g., inches to thousands of miles)? What
could it sense/collect (e.g., chemical agent samples, radioactivity)? How could such a device be powered (e.g., thermal
resonators and diodes [[127]], RF signals as discussed above)? Moreover, what would it mean for a micron-scale system
to be agile? And what purpose would such a system serve? For instance, could a collection of motes gain access to a
facility, take a distributed picture of its interior, and exit again?

There is no power-based locomotion that can be expected to enable distances multiple order of magnitude
larger than the length scale of the locomotor; exploitation of environmental energy sources will be necessary. For
instance, chemical adhesion provides relatively low energy control authority. Very small devices could therefore use
macro-scale hosts—people, animals, vehicles—for transportation. Moreover, the control goal at these small scales
would not be for a particular autonomous device to meet mission criteria; instead, statistical notions of success across
all the collection of systems would suffice—we do not need all of the devices to achieve a goal if a sufficient number
do.

As an example, consider Fig. This simulation has macro-scale agents that are moving randomly in the
environment, moving in and out of an enclosed space through a doorway. Moreover, there are autonomous systems
with sensing in the form of detection of nearby passing agents and an internal compass. Moreover, they are equipped
with the ability to adhere to the agents. With a very simple rule applied to the sensory data computed in a manner
similar to the SLIP model mentioned earlier in Section [3| the simulated agents are able to enter the enclosed space,
using only the environmental energy (in the form of macro-scale agents moving) for transport.
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Figure 4: Three snapshots of simple autonomous systems (red dots) using passerby agents (circles) to locomote to a
location (blue x) in a confined space by turning on and off their adhesion control authority.

The example in Fig. []is a cartoon of a bigger idea—how can we design extremely simple systems, with simple

input-output relationships encodable directly in the physics of the device, to achieve a mission? This will require
“algorithmic materials”—materials that implicitly compute and implement responses to state—and the computational
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ability to design them. This latter point, that design challenges become increasingly central to many of the questions
considered in this study, is a primary point in the long term recommendations we make here.

4.3 Long Term Recommendations

Energy harvesting would enable persistent presence in adversarial conditions, and investing in energy harvesting tech-
niques that target ambient sources such as ubiquitous RF signals and naturally-occurring thermal fluctuations could
provide consistent power sources for autonomous systems. Particularly at small scales, this capability would require
the ability to match mission needs to physical capabilities (e.g., the molecular machinery available enable cell-sized
systems). Developing computational methods that enable the design of such cyber-free systems would radically re-
shape what autonomy looks like at these scales.

5 Conclusion

This study considers three main areas of investment for improving agility: control technology, sensing and perception,
and energy. Some of the recommendations are reasonably obvious if technologically challenging—developing new
control techniques to manage uncertainty, cooperative strategies for sensing, and energy harvesting techniques are
all seen in current, mainstream research. However, some of the recommendations are of a more radical nature. We
argue that control approaches may need to be fundamentally reformulated from scratch to address the multi-faceted
requirements that terrestrial agility may generate. We argue that computational synthesis techniques for “cyber-free”
approaches to control may be critical to offloading most agility-related control to dedicated processing. Indeed, ex-
tremely small systems may be the only systems capable of exploiting energy harvesting, but would require such a
cyber-free approach to their control. Lastly, both macro- and micro-scale systems are unlikely to have high quality
physics-based models, and therefore the ability to seamlessly integrate data-based techniques into control and per-
ception; data-based control will then require active exploration, subject to safety and mission constraints. The main
message of this study is that there are multiple areas of research that could have dramatic impact on practically de-
ployed systems. Many of these are not currently well represented in the literature, suggesting future areas of investment
and work.
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