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Scientific Progress and Accomplishments 

Zenghu Chang 

1. Statement of the problem studied

Few-cycle, mJ-level, and carrier-envelope phase (CEP) stable lasers in the short-wavelength 

infrared to mid-wavelength infrared are of significant interest to the ultrafast community. One of 

such interests is to produce isolated soft/hard X-ray attosecond pulses with shorter pulse duration 

and sufficient photon flux. So far, isolated extreme ultraviolet (XUV) attosecond pulses as short as 

67 as have been achieved in high harmonic generation (HHG) pumped by spectrally-broadened 

Ti:Sapphire lasers [1]. Recent development of few-cycle and high-energy driving lasers with center 

wavelengths varying from 1.6 µm to 2.1 µm has already enabled the generation of the attosecond 

soft X-ray pulses in the water-window region (280 to 530 eV) [2–4]. In order to further extend 

the HHG cutoff photon energy and thus produce shorter attosecond pulses, the development of high-

energy few- cycle pulses further into the mid-infrared (mid-IR) region is in demand because of 

the quadratic scaling of the ponderomotive energy with driving wavelength [5, 6]. In addition, such 

mid-IR laser sources are ideal tools for the study of HHG in solids [7], incoherent hard X-ray 

generation [8], acceleration of electrons in dielectric structures and plasma [9–11], breakdown of 

dipole approximation [12], filamentation in air [13], rotational and vi- brational dynamics of 

molecules [14], time-resolved imaging of molecular structures [15], and strong-field science in 

plasmonic systems [16]. 

Currently, most few-cycle long-wavelength lasers are centered around 2 µm or below [17–

25], which are mainly achieved by using either optical parametric chirped pulse amplification 

(OPCPA) or dual-chirped optical parametric amplification (DC-OPA) [26, 27] pumped by 

picosecond lasers. Most of those lasers are seeded via intra-pulse difference frequency generation 

(DFG) [17–19, 21, 22, 24, 25]. Intra-pulse DFG [28–30] has several advantages: more than one 

octave super broad phase matching bandwidth, no jitter between the pump and the signal, and 

passive stable CEP for the idler since the pump and the signal are within a same pulse. In addition, 

it would be much desirable to obtain µJ-level DFG energy, which would reduce amplification 

stages, unfavorable nonlinear processes and superfluorescence in either OPCPA or DC-OPA. Rapid 

progress has been made on the generation of short- pulse mid-IR laser sources above 3 µm [31–35]. 

However, the spectral bandwidth has not reached near one octave, which limits the pulse duration to 

multi-cycle. Near-octave spanning few-cycle pulses near or above 3 µm have not been enabled partly 

due to lack of broadband seed pulses.  

There are two objectives in the research enabled by equipment purchased by the DURIP funds. 

First, generation of > 5 µJ pulse spanning from 1.8 to 4.2 µm by utilizing cascaded second-order 

nonlinear processes, which are initiated by intra-pulse DFG in a BiB3O6 (BIBO) crystal and 

simultaneously amplified in the same BIBO by optical parametric amplification (OPA). Second, 

development of a scheme achieve mJ level two-cycle pulses covering 2.4-4.0 µm with a DC-OPA in 

MgO-doped LiNbO3 (or KNbO3).  In addition, explore the feasibility of producing mJ, sub-cycle 

4- 12 µm pulses with an OPCPA in ZnGeP2 (ZGP). We aim to seed both systems with the 5 µJ, 

1.8 to 4.2 µm pulses.  



2. Summary of the most important results
2.1 Generation of 1.8 to 4.2 µm mid-infrared pulses for seeding DC-OPA and OPCPA 

The experimental setup is 

shown in Fig. 1. Nanojoule-level 
oscillator pulses (730-830 nm) are 

stretched to 360 ps in an Offner- 

type stretcher ings before the pulse 

energy is boosted to 4 mJ by a 

home- made 14-pass Ti:Sapphire 

amplifier system, out of which 2.6 

mJ is compressed to 2.2 mJ, 30 fs by 

a transmission grating pair and is 

then sent to a hollow-core fiber 

(HCF) filled with 30 psi neon for white light generation (WLG). The transmission gratings are 

purchased using the ARO DURIP funds.  

The white light is compressed to ∼7 fs using seven pairs of chirped mirrors combined with 

fused silica compensating plates, after which about 700 µJ energy is usable for experiments. The 

uncoated BIBO crystal, which has a phase matching angle θ = 10.3◦ in XZ plane, was placed about 

30 cm away from an f=0.5 m concave mirror. The beam after BIBO was collimated with another 

f=0.5 m concave mirror. The measured two continuum spectra were shown in Fig. 2. In the 

continuum, the 0.5-0.95 µm spectrum was from the original WLG pulse, which was involved in 

the DFG process. The 0.95-1.8 µm spectrum was the signal generated from the second nonlinear 

process–OPA. The 1.8-4.2 µm spectrum in Fig. 2 (a) or the 1.8-3.5 µm spectrum in Fig. 2 (b) was 

from the DFG process, which was further amplified by the OPA process. The reduced bandwidth 

in the 0.8-mm BIBO crystal is due to increased group velocity mismatch during the nonlinear 

processes. A 6.8 µJ pulse covering 1.8-4.2 µm was obtained in a 0.4-mm crystal, compared with a 

12.6 µJ pulse covering 1.8-3.5 µm in a 0.8-mm BIBO crystal.  

The continuum spectra were generated in cascaded second-order nonlinear processes. The 

mid-IR pulses are expected to have passive stable carrier envelop phase (CEP), which can be used 

to seed either a CPA or an OPCPA for achieving high-energy few-cycle mid-infrared pulses 

Fig. 2. Measured output spectrum from (a) 0.4 mm and (b) 0.8 mm BIBO crystals with the polarization parallel to 
the o axis of BIBO crystals, which includes a small portion of HCF spectrum (0.5-0.95 µm), the idler spectrum (1.8-
4.2 µm) from DFG, and the new signal spectrum (0.95-1.8 µm) generated in the OPA process when the DFG pulse is 
amplified. 

Fig. 1. Experimental setup for the generation of multi-octave 
spectrum via cascaded second-order nonlinear processes, i.e., DFG 
and OPA in a single BIBO crystal. 



2.2 Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses 

We developed a scheme for not only generating mJ-level, CEP-stable 4–12 μm pulses 

through optical parametric chirped pulse amplification (OPCPA), but also compressing such 

pulses to sub-cycle duration through indirect pulse shaping. The μJ-level super broadband 

spectrum, which covers 1.8–4.2 μm generated by difference frequency generation (DFG) in a 

BIBO crystal, is used to seed the signal for generating 4–12 μm pulses in an OPCPA pumped by 

a 2 μm narrowband laser source.   The 4–12 μm optical parametric bandwidth is achieved by 

tailoring the phase matching of ZGP. The second-order phase of high-energy 4–12 μm pulses can 

be compensated by using NaCl, which has a very small n2 and a high damage threshold; the 

higher-order phase can be compensated indirectly by controlling the signal phase with a 

commercially available acousto-optic programmable dispersive filter (AOPDF).  

We simulated the 

amplification of 4–12 μm idler 

pulses by an OPCPA in ZGP 

pumped by a 2 μm picosecond 

Ho:YLF laser. The approach we 

proposed is shown in Fig. 3(a). It 

can not only generate and amplify 

a broader bandwidth (4–12 μm) 

but also compress such broadband 

pulses to the near transform limit. 

The high-energy 2 μm from a DC-

OPA can seed directly a multipass 

Ho:YLF CPA, avoiding a 

regenerative amplifier that would 

complicate the synchronization 

between the pump and the idler in 

the 4–12 μm OPCPA.  

The simulation results are shown in Fig. 3(b, c). The input pump centered at 2 μm has a 

pulse duration (FWHM, transform-limited) of 10 ps and a peak intensity of 20 GW/cm2. The 

input idler pulses are stretched to 6.3 ps from 4 μm to 12 μm with a peak intensity of 

4.4 MW/cm2. The input pump-to-idler energy ratio is 104. The type I phase matching angle of 

ZGP is 53°. It can be seen from Fig. 3 that the amplified idler spectrum spans from 4 μm to 

12 μm. The conversion efficiency from the pump to the idler is 13.2% (gain: 1317). The 

compression of 4–12 μm can be achieved by indirect pulse shaping in the idler pulse generation 

process. The phase of the generated positively chirped 4–12 μm pulse can be coarsely controlled 

by a NaCl crystal and finely controlled indirectly by controlling the phase of the 2.4–4.0 μm 

signal pulse using a commercial AOPDF. It is much more favorable to use a short ZGP crystal 

in the 4–12 μm OPCPA pumped by a 2 μm pump source, which can be achieved by using a 

short pump pulse at a few picosecond and a high-energy input idler around or above μJ level. 

Suppose the input idler energy is around 1 μJ, the output idler energy would be 71 mJ with a 

600 mJ pump, and the pump-to-idler conversion efficiency would be 11.9%, giving 2.9 TW 

peak power with a 24.4 fs (FWHM) pulse duration.  

Fig. 3 (a) Proof-of-principle schematic setup for amplifying 4–

12 μm idler pulses by OPCPA in a 0.7-mm ZGP pumped by a 

2 μm Ho:YLF laser; simulation results: (b) input (red) and output 

(blue) idler spectra & (c) calculated transform-limited pulse 

duration (FWHM) of the output idler: 22.1 fs. 
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