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AFIT-ENY-MS-18-M-286 

Abstract 

Refractory metal borides, commonly referred to as Ultra High Temperature 

Ceramics (UHTCs), exhibit a number of unique properties, such as extremely high 

melting temperature and hardness, chemical stability, high electrical and thermal 

conductivity and corrosion resistance. It has been demonstrated that the addition of SiC 

improves the oxidation resistance of ZrB2- and HfB2-based UHTCs above 1200°C by 

modifying the composition of the oxide scale. Addition of SiC retards the oxidation rate 

of ZrB2 and HfB2 by forming a protective layer of borosilicate glass. Creep deformation 

is one of the critical criterion for structural application of ceramics at elevated 

temperatures. Compression creep of HfB2-20 vol% SiC was studied at 1500°C in air at 

stresses ranging from -50 to -200 MPa. Primary and secondary creep regimes were 

observed in all tests. Minimum creep rates were measured. Post-test examination of 

material microstructure with SEM was employed to characterize the evolution of oxide 

scale with time. Additional analysis using EDS and XRD revealed the elemental and 

crystallographic makeup of the oxide scale and provided evidence that supports the 

assumed creep mechanism, grain boundary sliding. Comparison of the results of this 

effort with those from prior work indicate that sustained compressive stress has little 

effect on the growth rate of oxide scale. Likewise, oxidation appears to have negligible 

influence on steady-state creep rates.  
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CREEP OF HAFNIUM DIBORIDE -20 VOL% SILICON CARBIDE 

AT 1500 °C IN AIR 
 

I. INTRODUCTION AND BACKGROUND 
  

Refractory metal borides, commonly referred to as Ultra High Temperature 

Ceramics (UHTCs), exhibit a number of unique properties, such as extremely high 

melting temperature and hardness, chemical stability, high electrical and thermal 

conductivity and corrosion resistance. It has been demonstrated that the addition of SiC 

improves the oxidation resistance of ZrB2- and HfB2-based UHTCs above 1200°C by 

modifying the composition of the oxide scale. Addition of SiC retards the oxidation rate 

of ZrB2 and HfB2 by forming a protective layer of borosilicate glass. The addition of 

silicon carbide to a boride-based UHTC (e.g., hafnium-diboride) classifies the material as 

a ceramic matrix composite (CMC) and enables the material to significantly reduce 

oxidation rates at elevated temperature in an operational environment (exposed to 

oxygen). A detailed explanation of ceramics, UHTCs, oxidation and creep is essential in 

order to properly interpret prior research in this field.     

 

1.1 Ceramics 

 

Ceramics are inorganic, nonmetallic solids that are typically manufactured 

through high-temperature processing. Ceramic materials possess unique mechanical, 

thermal, electrical and chemical characteristics which make them desirable for a wide 

variety of applications [1, 2]. Structurally, ceramics are usually strong and brittle. 

However, they also exhibit excellent thermal and electrical insulation and corrosion 

resistance properties. Atomic bonding within ceramic materials can be either ionic, 

covalent or, most commonly, a combination of the two [3]. The significant variance in 
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bonding type and material composition enables ceramics to define a class of materials 

with a wide range of material properties and characteristics.  

Generally, ceramics can be divided into two categories: traditional and 

engineering. Traditional ceramics are derived from common, naturally occurring raw 

materials such as clay and quartz sand; they are typically used in pottery and construction 

materials. Evidence suggests that humans have been utilizing traditional ceramics since at 

least 24,000 BC [4]. Engineering ceramics, the focus of this study, are developed through 

highly controlled, advanced manufacturing methods to achieve particular chemical 

compositions and material properties.   

Engineering ceramics are often utilized for their high strength and resistance to 

corrosion, particularly at high temperatures. However, ceramics are difficult to 

manufacture. They are typically brittle and thus, subject to catastrophic failure with little 

notice (strain or elongation) [1, 5]. Due to their brittle nature, the slightest number of 

defects present in a ceramic material can lead to crack initiation and propagation under 

stress, leading to unpredictable, catastrophic failure. Unlike tougher materials, like 

metals, which exhibit identifiable signs prior to fracture (i.e., yielding or elongation), 

ceramics fracture with little to no identifiable warning signs. Poor fracture toughness, and 

therefore unpredictable failure modes, is one of the primary reasons ceramics are not 

more commonly utilized across industry as structural materials in applications in which 

safety is critical [1]. 

 Engineering ceramics intended for use in high stress environments must be 

processed carefully to ensure high purity and eliminate as many internal defects as 

possible to reduce the risk of failure [1]. Unfortunately, extensive processing is expensive 



3 

 

and even the most technologically advanced material synthesis procedures cannot 

eliminate all internal defects within a monolithic ceramic material. Therefore, the risk of 

unpredictable catastrophic failure of an engineering ceramic cannot be entirely eliminated 

through processing alone.  

 

 

1.2 Ultra-High Temperature Ceramics (UHTCs) 

 

 

Ultra-high temperature ceramics are a subset of engineering ceramics with very 

high melting temperatures. They are able to operate at sustained temperatures between 

1900-2500 °C without losing substantial structural integrity [6-12]. As of 2007 there were 

only 15 known materials in the world with melting temperature above 3000 °C [7] as 

shown in Figure 1. 

 
Figure 1. Melting temperatures of various materials, reproduced from Bowen 

[13], with permission from [7]. 
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As shown in Figure 1, UHTCs are typically transition-metal based borides, carbides, 

nitrides or oxides. They exhibit melting temperatures in excess of 3000 °C, very high 

hardness, chemical stability, electrical and thermal conductivity, and oxidation resistance 

[7-12, 14-19].   

Additives can be added to ceramics to improve more than just strength or fracture 

toughness. This research focuses on the effect of additives which alter creep and 

oxidation behavior within a ceramic, particularly the addition of silicon carbide (SiC) 

particles to the ultra-high temperature ceramic, hafnium-diboride (HfB2).  Kaufman and 

Clougherty identified HfB2 as one of the most oxidation resistant materials for high 

temperature applications and proposed that the addition of SiC might further improve 

oxidation resistance [20]. Bargeron, Winder, and DeGregoria confirmed that SiC 

provides increased oxidation resistance when added to boride-based ceramics through the 

formation, at high temperatures, of a borosilicate glass oxygen diffusion barrier on the 

surface, limiting oxidation into the substrate [21, 22, 23].   

DeGregoria has also shown that the addition of SiC particles to HfB2 significantly 

alters the creep behavior of the ceramic at high temperatures. Notably, the addition of 

certain proportions of SiC to a HfB2 matrix enables the HfB2-SiC composite to deform 

significantly more than either of the individual constituents [23].  DeGregoria found that 

the addition of SiC significantly reduced the grain size of the HfB2, more readily enabling 

grain boundary sliding and thus, allowing greater deformation under load. Eventually, as 

more SiC is added to the ceramic matrix, individual SiC grains begin to touch one 

another, forming a web-like network of SiC within the material. Once this network forms 

within the matrix, SiC begins to dominate the overall composite deformation. Figure 2 
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illustrates how the creep rates of pure HfB2, and SiC are significantly lower than those of 

HfB2-SiC composite with certain amounts of SiC. The rise in creep rate is due to the 

reduction in HfB2 grain size caused by the introduction of SiC into the HfB2 matrix. The 

subsequent decrease in creep rate is explained through percolation theory. Percolation 

theory postulates that additives create networks of point-to-point contacts within the 

parent material. When enough contacts occur, generally due to increased volume fraction 

of the additive, networks form which can greatly increase creep resistance of the 

composite [24].  The curve in Figure 2 provides a visual representation of percolation 

theory through the creep rate of a HfB2 ceramic with increased SiC content. Creep rate 

starts off at a value for pure HfB2 then increases as grain size decreases due to the initial 

introduction of the SiC additive. As the volume fraction of SiC increases, a network of 

SiC contacts forms within HfB2-SiC and drives down the composite’s creep rate, 

eventually reaching a value exhibited by SiC. 

 

Figure 2. Creep rate of HfB2 vs. SiC content, reproduced from DeGregoria [23]. 
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1.3 Creep 

While the ultra-high melting temperature capability of UHTCs is promising, the 

ceramic must also retain strength, toughness and creep resistance at the use temperatures. 

Creep deformation represents one of the critical criterion for structural application of 

ceramics at elevated temperatures. 

Creep is the progressive deformation of a material under constant load [25]. In a 

standard creep test, a specimen is loaded to a desired tensile or compressive load. Then 

the load is held constant for a desired duration and deformation (or strain) is measured. 

The strain-time data collected during the test are plotted on a creep strain vs. time 

diagram, where creep regimes are identified. Primary creep regime is characterized by a 

decreasing strain rate. Primary creep is associated with changes in the material structure 

(e.g., grain size, dislocation structure, etc.) or with the redistribution of stresses. Of 

particular interest is the secondary or the steady-state creep regime characterized by a 

constant strain rate. In this regime, creep is viewed as the deformation of an invariant 

microstructure. Tertiary creep, characterized by an increasing strain rate, is associated 

with the initiation of the failure processes. Steady-state creep in polycrystals can proceed 

by dislocation mechanisms and by diffusional mechanisms. The diffusion can occur 

through the grains (Nabarro-Herring creep) as well as along grain boundaries (Coble 

creep). For a large number of creep mechanisms the steady-state creep rate can be 

expressed by Equation 1.  
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Equation 1. Governing equation for steady-state creep rate [26]. 

 

 

Equation 1 identifies a number of variables that affect the steady-state creep rate. 

The primary failure mode of ceramics under constant loading at high temperatures has 

been found to be grain boundary sliding [2], [27]. It can therefore be assumed that the 

failure mode of the UHTC specimens in this work will be controlled by grain boundary 

sliding. Appropriate UHTC compounds can be selected to minimize the variables that 

contribute to grain boundary sliding (grain size, dislocation diffusion and defect 

concentration) to help focus test efforts [1, 27].  The test material in this study was 

designed to possess equiaxed grains, with a random crystallographic orientation.   

 

1.4  Oxidation 

 Oxidation is a chemical reaction, in which a substrate reacts with oxygen to form 

an oxide. In order for the oxide to form, the substrate must be reduced. In the case of a 

surface reaction, an oxide layer will form on the surface of the substrate. The oxide layer 

will limit further oxidation of the substrate beneath it provided the oxide layer is dense 

enough to prevent oxygen diffusion. While a thin oxide layer might improve properties of 



8 

 

a metal at low temperatures (i.e. environmental protection and increased hardness) it can 

be devastating to a material operating across large temperature variations. The oxide 

layer on the surface and the substrate (UHTC in this work) likely have different 

coefficients of thermal expansions. Under large changes in temperature (thermal shock), 

the oxide layer may separate or crack away from the substrate, re-exposing the substrate 

to the oxygen rich environment [21]. This cycle continues, leading to accelerated 

oxidation rates, substrate loss and eventual material failure [28]. 

The addition of SiC to HfB2 has been shown to reduce oxidation in the substrate 

by reacting with oxygen at the surface to form a glass layer. The amorphous glass layer 

fills in any cracks that form within the substrate, preventing further oxidation and 

shielding the substrate from further structural damage [29]. Recently Parthasarathy et al. 

modeled oxidation kinetics in SiC-containing HfB2 and ZrB2 at temperatures ranging 

from 1200 to 2200 °C [30]. Model predictions agree well with limited experimental 

results in literature, including the results of baseline oxidation tests reported by 

DeGregoria [23]. A schematic representation of the Parthasarathy model for metal 

diborides with a SiC additive is given in Figure 3, where chemical reactions taking place 

during oxidation at elevated temperatures are also defined. Note the presence of the oxide 

layer (MeO2) between the substrate (MeB2) and the borosilicate (B2O3-SiO2) glass on the 

surface. The borosilicate glass disperses throughout the oxide scale, filling in cracks and 

voids, encapsulating the substrate and effectively creating an oxide barrier. 
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Figure 3: Model of an oxidized metal diboride with SiC copyright © 2011, The 

American Ceramic Society, Journal of the American Ceramic Society, used with 

permission [30]. 

 

 

Figure 4 shows microstructure of HfB2-20%SiC heat treated at 1800°C [31]. 

Several regions can be readily seen in the SEM image in Figure 4. Region I, on the 

surface of the specimen, is a borosilicate glass layer. Region II shows the presence of 

hafnia (HfO2) with borosilicate glass (B2O3-SiO2) filling in voids. Region IV shows 

presence of hafnia with Si-O-C inclusions and some borosilicate glass. The regions 

included in the Parathasarathy’s model (Figure 3) agree with the experimental findings 

seen in the SEM image.  
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Figure 4. Oxidation of HfB2-20% SiC at 1800°C (I: SiO2, II: SiO2 filled HfO2, 

IV: HfO2 with Si-O-C inclusions), reproduced from [31] with permission. 

 

 

1.5 Previous Research 

 

Early experiments with UHTCs dating back to the 1970s focused primarily on 

ZrB2-based ceramics. While it is recognized that experimental evaluation of mechanical 

properties and behavior of UHTCs is of critical importance, little has been reported on 

the mechanical behavior of UHTCs at elevated temperatures. Most studies that reported 

high-temperature mechanical properties for the diborides reported strength measurements 

obtained in four-point bending (three-point bending in some cases) at elevated 

temperatures. Notably, only a limited number of studies of the creep behavior of UHTCs 

have been reported in literature to-date. In most of these studies, creep rates were not 

measured directly but were estimated from flexure tests using strength of materials based 

calculations.  

 An ongoing research effort at AFIT aims to: (1) characterize and analyze high-

temperature creep deformation, (2) identify controlling creep mechanisms of UHTCs at 

temperatures up to 1700°C, and (3) investigate an interaction between oxidation and 
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compression creep of UHTCs at temperatures up to 1700°C.  Recent research efforts at 

AFIT successfully developed, constructed and validated a specialized facility for 

mechanical testing of small UHTC specimens in air and in argon at 1500-1700 °C [13, 

22, 23]. Furthermore, a method to perform compression creep tests of small HfB2 

specimens in air and in argon at 1500-1700 °C was developed and validated [13, 22, 23]. 

A brief summary of mechanical testing efforts found in the literature for HfB2 and ZnB2 

is presented in Table 1. 

  

Table 1: Summary of high-temperature creep tests on HfB2 and ZnB2, adapted from 

Bowen [13]. 

 

Author Year Material 
Mechanical Test 

Method 
Temp (°C) 

Stress 
(MPa) 

Additives 

Bowen 2017 HfB2 Uniaxial Compression 1500 75 to 100 0 to 30% SiC 

DeGregoria 2015 HfB2 Uniaxial Compression 1500 25 to 75 0 to 30% SiC 

Winder 2015 HfB2 Uniaxial Compression 1500 25 to 100 0 to 20% SiC 

Gangireddy 2013 ZrB2 Flexural 1700-2200 20 to 50 30% SiC 

Bird 2011 ZrB2 Flexural 1400-1820 16 to 97 20% SiC 

Guo 2011 ZrB2 Flexural 1500-1600 19 30% SiC 

Talmy 2008 ZrB2 Flexural 1200-1500 30 to 180 0 to 50% SiC 

Melendez-
Martinez 

2001 ZrB2 Uniaxial Compression 1400-1600 47 to 472 0, 4% Ni 

Kats 1981 ZrB2 Flexural 1700-2420 5 to 30 0 to 100% ZrC 

Spivak 1973 ZrB2 Flexural 2052-2291 5 to 196 0 to 100% ZrN 

Rhodes 1970 Both Both 800-1800 172 0, 20% SiC 

 

The AFIT specialized test facility integrates a servo-controlled testing machine 

(MTS model 810) equipped with hydraulic, water-cooled wedge grips, a custom built 

furnace resistance-heated by two MoSi2 heating elements and a MELLEN PS400 

temperature controller. An MTS Flex Test 40 digital controller is used for input signal 

generation and data collection. Accurate strain measurement is accomplished with an 

MTS uniaxial, high-temperature, low-contact force extensometer equipped with two 

sapphire extension rods that reach into the furnace and are in direct contact with the test 
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specimens. Two high purity single-crystal yttrium aluminum garnet (YAG, Y3Al5O12) 

pushrods of 10-mm diameter are used to apply compressive stress to the specimen in the 

furnace hot zone. The pushrods are mounted in custom-built stainless steel fixtures, 

which are gripped in upper and lower water-cooled hydraulic wedge grips.  

While developing the AFIT test facility Winder [22] observed a thermo-chemical 

interaction occurring between the HfB2 test specimen and the SX YAG pushrods at 

1500°C in air. Winder determined that single crystal YAG was not stable in the presence 

of HfB2 at 1500°C in air. She proposed that single crystal YAG reacted with B2O3 gas 

formed during oxidation of HfB2 and was reduced into YAM, AlBO2 (g) and YBO2 (g). 

The gases were adsorbed onto the HfO2 scale; thus, forming various Y- and Al- 

containing deposits. Surface properties of the HfO2 scale determined the nature and 

composition of the surface deposits. Winder also found that placing chemically stable 

aluminum oxide (alumina, Al2O3) spacers between the HfB2 test specimen and the single 

crystal YAG rods eliminated undesirable chemical reactions [22]. Based on these 

findings, the AFIT test method was modified to include alumina (Al2O3) spacers between 

the HfB2 test specimen and the single crystal YAG pushrods.  

DeGregoria [23] investigated oxidation of HfB2 and HfB2–20% SiC at 1500°C in 

air for up to 90 h. DeGregoria also designed an experiment to assess the effects of 

compressive stress on oxidation of HfB2-based UHTCs and successfully investigated the 

oxidation behavior of HfB2-20% SiC under compressive stress (50 MPa) at 1500°C in 

air. Results revealed no significant effect of compressive stress (50 MPa) on oxidation of 

HfB2-20% SiC. DeGregoria also discovered that the aluminum oxide spacers failed 

prematurely in tests where compressive loads exceeded 50 MPa [23]. Bowen was tasked 
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to explore a more resilient alternative to the aluminum oxide spacers so that creep tests 

could be accomplished at higher compressive loads.  Bowen replaced the aluminum 

oxide crystal spacers (comprised of a randomly oriented, polycrystalline structure) with 

arbitrarily oriented, single crystal aluminum oxide spacers (aka. sapphire). Sapphire 

spacers with a random crystallographic orientation were shown to perform well. 

Compression creep tests could now be performed at 1500 °C with significantly higher 

compressive loads. Bowen was able to perform successful tests up to 100 MPa. 

Additionally, considerably longer test durations were now possible at lower stress levels 

[13]. This research builds on the lessons learned from Winder, DeGregoria and Bowen to 

perform creep tests of HfB2-SiC at 1500°C at higher compressive loads and to achieve 

longer test durations. A more detailed description of the test set-up will be provided in 

Chapter II.   

 DeGregoria [23] conducted baseline oxidation tests of HfB2-SiC coupons at 1500 

°C in a controlled, air environment using a box furnace. Twelve coupons of each HfB2 

and HfB2-20% SiC were exposed under zero stress at 1500°C in air for up to 90 h. The 

HfB2 samples, devoid of the borosilicate glassy diffusion barrier afforded by the addition 

of SiC particles, oxidized completely within 6 hours at 1500 °C. The experimental results 

obtained for the HfB2-20% SiC samples are summarized in Figure 5 [23].  
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Figure 5. Oxide scale thickness vs time for HfB2-20% SiC at 1500°C in air, experimental 

data from DeGregoria [23], model data from Parthasarathy et al. [30] 

 

Experimental results obtained by DeGregoria [23] were compared with the 

predictions of the oxidation model proposed by Parthasarathy et al [30]. As shown in 

Figure 5, model predictions agreed well with the experimental data. DeGregoria also 

designed an experiment to assess effects of compressive stress on oxidation of HfB2-

based UHTCs at 1500°C. He investigated the oxidation behavior of HfB2-20% SiC under 

compressive stress of 50 MPa at 1500°C in air. Sustained compressive stress of 50 MPa 

was found to have no significant effect on oxidation of HfB2-20% SiC compared to 

experimental results for the baseline, unstressed specimen. However, the question 

remained whether oxidation behavior of HfB2-20% SiC would be affected by sustained 

compressive stresses exceeding 50 MPa. 

This research effort aims to examine compressive creep of HfB2-20% SiC under 

compressive stresses exceeding 50 MPa for up to 20 h. Following creep test, specimens 



15 

 

will be sectioned and examined under SEM to elucidate the evolution of oxide scale 

under compressive stress with time. The results of this work will be compared with those 

of baseline oxidation tests under zero load reported by DeGregoria. We will determine 

whether a relationship exists between compressive stress and oxidation rates of HfB2-20% 

SiC at 1500 °C in air. While previous research has shown that the addition of SiC has 

significant effects on oxidation and on creep behavior of HfB2, this research will attempt 

to determine if there is an interaction between oxidation and creep.  

In this work we will determine the minimum creep rates of HfB2- 20% SiC at 

1500°C in air. These results can be readily compared to the minimum creep rates of 

HfB2- 20% SiC at 1500°C in an inert environment found by DeGregoria. Using the same 

AFIT experimental setup, test method, and test specimens from the same billet, facilitates 

a direct comparison between the results of current work and those reported previously by 

DeGregoria.  

 In this work we aim to determine: 

i.) Minimum creep rates of HfB2-20% SiC in air at 1500°C for various 

compressive creep stresses.  

ii.) Effect of sustained compressive loading (compressive creep) on oxidation rate.  

iii.) Effect of oxidation on minimum creep rate. 

iv.) Effect of sustained compressive loading on preferred grain orientation. 

 The concepts described in this chapter provide a framework for understanding the 

background and purpose of this research. This research attempts to characterize the 

material properties of a specific UHTC, hafnium diboride (HfB2), a material potentially 

capable of replacing traditional structural materials in ultra-high temperature applications.  
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 A detailed description of the test material, experimental facility and test methods 

used in this work is provided in Chapter II. 

 

 

II. RESEARCH METHODOLOGY 

 

The AFIT specialized test facility was designed, built and validated by Winder 

[22]. Subsequently, both the experimental setup and the test methods were further 

improved by DeGregoria [23] and Bowen [13]. This chapter provides a brief description 

of the research material, experimental facility, test methods and procedures, and post-test 

analysis equipment and techniques used in this work. A detailed review of the general 

UHTC research methodology developed at AFIT is provided by DeGregoria [23]. 

 

2.1 Research Materials 

The HfB2-20 vol% SiC material used in this work was fabricated at the Air Force 

Research Laboratory’s (AFRL) Materials and Manufacturing Directorate using 

commercially available HfB2 (Cerac, Milwaukee Wisconsin) and SiC (Reade Advanced 

Materials, East Providence Rhode Island) powders. The HfB2 powder had a purity of 

99.5% and a mean particle size of 4.6 μm.  The SiC powder was α-phase, 99.9% pure, 

with particle sizes between 0.03 μm and 3 μm. A Si3N4 grinding media in isopropanol 

was used to pre-mill the HfB2 powder for 60 h, resulting in an average particle size of 1.3 

μm. To process the HfB2-20 vol% SiC bulk material, the appropriate amount of SiC 

powder by volume was added and the mixture was milled with Si3N4 for 18 h, followed 

by stirring, drying at room temperature, and dry milling for another 18 h. The mixture 

was sifted through an 80-mesh screen. 100 g of the mixture was loaded into a 40-mm 



17 

 

graphite die coated with BN and lined with graphite foil. The mixture was sintered using 

the spark plasma sintering (SPS) process with a heating and cooling rate of 50°C/min and 

a maximum temperature of 2100°C.  The hold time at 2100°C was 10 min.  A pressure of 

40 MPa was applied during heating to 1600°C and held throughout the remainder of the 

sintering cycle.  The pressure was released to 4 MPa during cool-down to 450°C. Near 

full density was achieved for HfB2-20 vol% SiC. A detailed description of the material 

processing is given elsewhere [31, 32]. Note that the material tested in this research was 

from the same batch as that investigated by DeGregoria [23] and Bowen [13].  

The sintered HfB2-20 vol% SiC pucks were cut into test samples utilizing electric 

discharge machining.  The nominal dimensions of the test specimens were 6.5 mm x 6.5 

mm x 19 mm (see Figure 6). Note the two grooves machined on one side of the test 

specimen for placement of extensometer rods. After machining, all sample surfaces were 

polished to a 45-μm finish using diamond slurry to remove surface flaws. DeGregoria 

[23] sectioned representative as-machined scraps of HfB2-20 vol% SiC and analyzed 

these samples using scanning electron microscopy (SEM) and energy dispersive x-ray 

spectroscopy (EDS) to determine the depth of damage and contamination from the 

machining process. Based on this analysis, the polishing depth for HfB2-20 vol% SiC was 

set at 100 μm.  
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Figure 6. Test specimen geometry, reproduced from Bowen [13]. 

 

 

 

2.2 Experimental Arrangements 

 The test facility was designed to test small UHTC specimens in compression at 

temperatures of up to 1700°C in air or in argon. A detailed description of the test facility 

is provided by Winder [22] and DeGregoria [23]. A detailed description of lessons 

learned regarding alumina and sapphire spacers is provided by Bowen [13]. A brief 

summary of the experimental setup is offered below. The main components of the test 

setup are shown in Figure 7a. 

AFIT specialized test facility includes:  

• A Model 810 MTS testing machine (load capacity: 25 kN) 

• A uniaxial load cell   

• A custom built furnace with two MoSi2 heating elements  

• A Eurotherm 3504 temperature controller 
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• A MTS model 632.53E-14 axial high temperature extensometer with custom 

sapphire extension rods  

• A FlexTest 40 Digital Controller for command signal generation and data 

acquisition 

• A model NESLAB RTE 7 recirculation chiller used to keep the MTS wedge grips 

cool during test 

• Cooling fans  
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(a) 

 
(b) 

 

Figure 7: (a) Experimental setup, (b) specimen mounted in the experimental 

facility and ready for testing, reproduced from DeGregoria [23]. 
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Figure 7b shows a test specimen mounted in the experimental facility and ready 

for testing. A schematic of the method developed at AFIT for testing small HfB2 

specimens in compression is shown in Figure 8. The test method employs: custom grip 

fixtures, single crystal YAG push rods, sapphire spacers and Pt foil between single 

crystal YAG pushrods and sapphire spacers. Note that the portion of the YAG rod 

inserted into the custom holder is also wrapped in copper foil to cushion the brittle YAG 

from the metal holder and to ensure an even, snug fit. The custom holders contain 

setscrews and spring loaded washers that tighten the holder onto the YAG rod while 

allowing enough flexibility to prevent fracture of the YAG rod due to thermal expansion. 

A detailed description of the custom holders is provided by Bowen [13]. The YAG rod is 

separated from the test specimen by platinum foil and sapphire spacers. The sapphire 

spacers are used to prevent thermo-chemical interaction between YAG and HfB2. The 

platinum foil prevents bonding between the YAG rod and sapphire spacers. The chisel-

shaped ends of the extensometer rods are placed in direct contact with the test specimen 

using the grooves cut into the HfB2 test specimen. Such arrangement ensures direct 

contact strain measurement with the MTS high-temperature extensometer. Direct contact 

strain measurement permits an accurate evaluation of creep rate. The direct strain 

measurement is one of the advantages of the AFIT test method over flexural testing [22]. 
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Figure 8: Schematic of the method for testing small HfB2 specimens in 

compression, adapted from DeGregoria [23]. 

 

The nature of the prescribed load train requires precise alignment to ensure proper 

load transfer to the specimen and to avoid instability, uneven loading and premature test 

failure. To assist with alignment, a custom alignment tool designed by Bowen is utilized, 

ensuring that YAG rods, sapphire spacers and the test specimen are properly installed 

[13]. Figure 9 shows how proper alignment is achieved with the use of the alignment 

tool.  

Sapphire Spacers 

Foil 
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Figure 9. Custom load train alignment tool, open (left) and closed (right), 

reproduced from Bowen [13]. 

 

2.3 Test Procedure 

 The test procedure used in this work was developed and successfully employed by 

DeGregoria and later improved upon by Bowen [23, 13]. The test procedure was adapted 

slightly to meet the current test objectives by altering the creep load and test duration. A 

detailed account of the full test procedures is given in Appendix B.  

 Prior to testing, it was necessary to calibrate temperature to ensure the specimens 

were exposed to the desired 1500°C during test. The furnace temperature controller uses 

a non-contacting B-type thermocouple exposed to the ambient environment in the 

vicinity of the test specimen. During the calibration procedure, the test specimen is 

mounted in the load train and kept under zero load. A thermocouple probe is inserted into 

the test chamber to measure the temperature of the specimen. The temperature setting on 

the controller is gradually increased until the specimen temperature reaches the target test 

temperature of 1500°C±5°C. The calibration process was repeated 10 times to confirm 

the controller setting. Multiple furnace set points were explored between 1500° C and 

1540° C. Ultimately, a set point of 1510° C was selected as the optimum setting to 

achieve a specimen temperature of 1500°C±5°C. The ±5°C temperature variation was 

deemed negligible as it represents less than 1% of the test temperature. During all tests, a 
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specimen was heated to test temperature at a rate of 0.5°C/min and held at 1500° C for 1 

h prior to loading.  

 The MTS configuration file initially developed by DeGregoria and later modified 

by Bowen was used in this work [23, 13]. The configuration file, “Temperature.cfg”, is 

listed in the test procedure detailed in Appendix B. The following data was recorded for 

the entire duration of each test: time (s), strain (m/m), displacement (mm), force (N), 

force command (N), temperature (° C) and temperature command (° C). For each test, 

specimens were loaded to the creep stress at a rate of 0.5 MPa/s and unloaded to zero 

load at the same rate at the completion of the creep test.   

 

2.4 Microstructural Examination Procedure 

 Once high temperature creep tests were accomplished, each specimen was 

examined under an optical microscope and SEM to evaluate the oxide scale. Preliminary 

inspection under the optical microscope provided a baseline for SEM examination and 

insight into the general condition of the specimen surface. The optical microscope used 

for this research was a Zeiss Discovery V12 with SteREO and AxioVision software 

(AxioVs40 V 4.8.2.0). Once the optical microscopy was complete, each sample was 

prepared for either SEM or XRD examination. Some specimens exhibiting interesting 

surface deposits were subject to XRD analysis prior to SEM examination. Note that XRD 

analysis required minimal specimen preparation. A Rigaku Ultima IV X-Ray 

Diffractometer was used to perform XRD analysis. The open source Rietveld refinement 

program, MAUD was used to determine phase fractions from the x-Ray diffraction 

patterns.  
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2.4.1 Sample Preparation for Examination under SEM 

 

 The basic specimen preparation steps for examination under SEM include 

mounting, sectioning, polishing and the application of a surface treatment to avoid 

surface charging effects (which can provide a poor quality image). Specimens were 

mounted using a two-stage epoxy resin to ensure the brittle oxide scale on the specimen 

surface remained intact for examination. The epoxy consisted of two parts EpoThin 2 

Epoxy Resin (20-3440-128) to one part EpoThin 2 Epoxy Hardener (20-3442-064). The 

mixture was stirred to ensure even mixing and to prevent air bubbles from forming. The 

specimens were then placed into a 1-in diameter mold coated with a releasing agent and 

the epoxy resin was poured into the mold. The mounted specimens were then placed 

under partial vacuum for 10 min to eliminate air bubbles in the epoxy and left overnight 

to cure.  

 Once the mounted specimens were fully cured, they were labeled then sectioned 

using a Buehler IsoMetTM 1000 saw. The samples were sectioned along the plane normal 

to the specimen longitudinal axis to reveal the cross section. Due to the brittle nature of 

the HfB2-SiC specimens, gentle pressure was used during cutting to avoid fracture. A low 

concentration diamond blade was used at 275 RPM with a force of approximately 150g.  

 Samples were polished by hand using successively course diamond slurries on 

Piano DGD or VerduTex polishing cloths until a surface finish of 0.25 μm was reached. 

Each specimen required slightly different polishing steps depending on the depth of 

scratches introduced during cutting. Typical polishing steps are listed in Table 2. After 

each step in Table 2, the mounted specimen was inspected using an optical microscope to 

ensure even, uniform polishing and subsequently rinsed in an ultrasonic alcohol bath to 
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remove any residual debris. Following rinse, the samples were blown dry using nitrogen 

gas prior to moving on to the next polishing step.  

  

Table 2: Polishing steps.  

 

  
Surface Grit Size  Time 

Spin 
Type 

Base 
Speed 

Pressure (Estimate- 
Induced by Hand) 

1 
Piano 

DGD 
35 μm 

5 min or until planar 

and diamond saw 

marks are 

eliminated 

Contra 150 rpm 10 lbs  

2 
Piano 

DGD 
15 μm 5:00 min Contra 150 rpm 10 lbs  

3 VerduTex 9 μm 5:00 min Contra 150 rpm 10 lbs  

4 VerduTex 6 μm 5:00 min  Contra 150 rpm 10 lbs  

5 VerduTex 3 μm 3:00 min  Contra 150 rpm 10 lbs  

6 VerduTex 1 μm 3:00 min  Contra 150 rpm 10 lbs  

7 VerduTex 0.25 μm 3:00 min  Contra 150 rpm 10 lbs  

 

 

 Once the specimens were polished to a 0.25 μm finish, both copper tape and a 

conductive coating were installed onto the sample to prevent surface charging during 

SEM examination. During SEM inspection, the specimen is irradiated with electrons. If 

the specimen fails to adequately conduct the bombarding electrons away from its surface, 

the subsequent electron buildup deteriorates the SEM image quality. The conductive 

coating and copper tape provide a path for electrons to dissipate away from the specimen 

surface, enabling higher quality imaging. The conductive coating was iridium based and 

was applied using a Vacuum Desk IV sputter coating machine. Once the copper tape and 

iridium sputter coat was applied, sample preparation was complete. Figure 10 shows a 

specimen fully prepared for SEM imaging.  
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Figure 10. Specimen HfB2-20%SiC-6 prepared for SEM examination.  

 

2.4.2 Microstructural Examination of Specimen with SEM and XRD 

 

A primary research objective was to evaluate the oxide scale formed on the 

specimen under sustained compressive stress at 1500°C in air. Examination of the oxide 

scale formed on HfB2-20% SiC specimens tested in creep will provide insight into the 

interaction between creep and oxidation processes. DeGregoria [23] reported 

measurements of the oxide scale thickness obtained for HfB2-20% SiC specimens in 

baseline oxidation tests under zero stress at 1500°C in air. Comparison of the oxide scale 

thickness measurements obtained under compressive stress in this work to those obtained 

by DeGregoria in baseline oxidation tests is of particular interest. Hence, an effort was 

made to ensure consistency in the oxide scale measurement methods used in this work 

with the methods used by DeGregoria.    

SEM imaging was used due to the high resolution achieved at the magnification 

required to accurately measure oxide scale thickness. All SEM images were generated 

using FEI Quanta 650 SEM (AFRL/RX). Images were captured such that the entire oxide 

scale was shown in the micrograph. For each specimen, up to 24 images were taken 

around the perimeter of the sample to ensure that a comprehensive representation of the 

oxide scale was recorded. SEM can only provide gray scale imagery of the specimen 
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surface. Therefore, composition analysis was performed on each sample to confirm the 

elemental composition of the oxide scale.  Composition analysis was accomplished via 

energy-dispersive X-ray spectroscopy (EDS) using an FEI Quanta 650 with an EDAX 

Octane Super 60mm2 detector at AFRL/RX.  

General test procedures and setup were developed by Winder, DeGregoria and 

Bowen as described previously [22, 23, 13]. However, the minor modifications made 

during this effort led to the discovery of new information. Through analysis of the data 

collected, conclusions can be made regarding (i) whether creep loading has an impact on 

oxidation rate and (ii) whether oxidation has an effect on the creep rate of HfB2-20% SiC 

at 1500 °C in air.  
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III. RESULTS AND ANALYSIS 

Seven compressive creep tests were performed in this work using the 

methodology detailed in chapter II. Table 3 provides a summary of testing conditions. 

   

Table 3: Summary of compression creep tests performed at 1500 °C in air. 

Specimen 
Composition 

(% by Volume) 

Compressive 

Stress (MPa) 

Test 

Duration (h) 

Reason for Test 

Termination 

HfB2-20SiC-4 20% SiC 150 8.05 Spacer/ YAG Rod Failure 

HfB2-20SiC-5 20% SiC 100 10 Run Out 

HfB2-20SiC-6 20% SiC 75 10 Run Out 

HfB2-20SiC-9 20% SiC 150 6.03 Spacer Failure 

HfB2-20SiC-10 20% SiC 50 20 Run Out 

HfB2-20SiC-11 20% SiC 75 18 Spacer/ YAG Rod Failure 

HfB2-20SiC-12 20% SiC 200 0 Spacer Failure on Load-up 

 

3.1 Compression Creep Tests - Summary and Analysis 

 As mentioned in section 1.5, the replacement of alumina spacers with sapphire 

spacers within the load train enabled testing at higher compressive stresses for longer 

durations. As indicated in Table 3, four of the seven tests performed were terminated 

prematurely due to either spacer or YAG rod failure. Figure 11 shows the damage 

incurred on the upper sapphire spacers and upper YAG rod following a test performed at 

150 MPa in air at 1500°for 8.05 h.   

 
 

Figure 11. Failed YAG rods and sapphire spacers used in a creep test of specimen HfB2-

20SiC-4 performed at 150 MPa for 8.05 hours.  

UPPER LOWER 
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 As seen in Figure 11, both spacers located between the upper YAG pushrod and 

the test specimen failed catastrophically. The upper YAG rod also failed near the base in 

contact with the spacers, with cracks propagating to the portion encapsulated by the 

custom grip. In tests where both YAG rod and spacer failed, it is not possible to 

determine which component failed first. However, prior work indicates that spacer failure 

likely occurred first. While four tests ended due to spacer or YAG rod failure, these tests 

were performed with higher stress levels than those accomplished in prior work. 

Furthermore, longer test durations were achieved.  The use of sapphire spacers in place of 

alumina spacers undoubtedly permits creep testing at higher compressive creep stresses 

for longer durations, validating Bowen’s work. 

 This effort focused on HfB2-SiC specimens containing 20% SiC in order to more 

readily compare results with those obtained by DeGregoria in baseline oxidation tests for 

HfB2-20% SiC specimens. Test results obtained in the current effort are plotted in Figure 

12 together with those reported by DeGregoria [23] and Winder [22] for HfB2-20% SiC 

specimens.  

 

Figure 12. Compressive creep stress vs. creep test duration performed for HfB2-20% SiC 

at 1500°C in air. Data from [22] and [23] is included for comparison.  
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 As illustrated in Figure 12, longer test durations were achieved at compressive 

stresses of 50, 75, and 100 MPa in this work than in previous research efforts. Compared 

to prior work, test durations for compressive creep stresses up to 75 MPa increased by at 

least 74% and up to 600%. Additionally, two successful creep tests were performed at 

150 MPa. At higher compressive stress levels, the specimen is expected to reach steady 

state-creep more rapidly. Then the steady-state creep rate can be determined.  

 The creep strain vs. time curves produced during this effort are shown in Figure 

13. Two tests were performed at each 75 and 150 MPa. As expected, the two creep strain 

curves obtained at 75 MPa overlap. The same observation can be made for the two creep 

strain curves obtained at 150 MPa. As expected, compressive creep strain rates increase 

with increasing compressive creep stresses.  

 
Figure 13. Compressive creep strain vs. time curves obtained for HfB2- 20% SiC 

specimens at 1500°C in air. 
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   The creep curves in Figure 13 exhibit primary and secondary (or steady-state) 

creep regimes. Minimum creep rate was determined in all tests. The minimum creep rate 

is found by calculating the slope of the linear portion of the creep curve. Higher 

compressive creep strains and longer test durations achieved in this work ensure that the 

steady-state creep regime is in fact reached, which was not always the case in prior tests 

of much shorter duration. See, for example, Figure 14, where the compressive creep 

curve obtained for HfB2- 20% SiC at 75 MPa at 1500°C in air in this work is compared to 

that obtained by DeGregoria [23] for HfB2- 20% SiC at 75 MPa at 1500°C in argon. The 

striking dissimilarity between the two data sets in Figure 14 is the duration of the tests. 

The test in air ran for 10 h while the test in argon was terminated after 3 h due to spacer 

failure. Results in Figure 14 demonstrate that the steady-state creep was reached during 

the 10-h test performed at 1500 °C in air, but not during the 3-h test performed at 1500°C 

in argon. While the minimum creep rate could be calculated for both tests, only the 10-h 

test provided sufficient data to determine the steady-state creep rate. Note that the 

minimum creep rate determined for the 3-h test performed in argon was 3.09 x 10-7 s-1 

while the 10-h test in air yielded a lower steady-state creep rate of 1.34 x 10-7 s-1. Results 

in Figure 14 also reveal that nearly identical data were produced during the first 3 h of 

creep in both air and argon tests. Hence it is likely that had the test in argon been allowed 

to proceed to reach steady-state creep, a steady-state creep rate close to 1.34 x 10-7 s-1 

would have been produced.  
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Figure 14. Creep curves obtained for HfB2-20% SiC at 75 MPa in air and in argon. Data 

in argon from DeGregoria [23]. Note the importance of test duration for ensuring that 

steady-state creep has been reached. 

  

 Table 4 summarizes the steady state creep rates calculated for each test conducted 

at 1500°C in air during the current effort.  

 

Table 4. Steady state creep rates obtained for HfB2-20% SiC in compression creep tests 

performed at 1500° C in air. 

 

Specimen 
Compressive 

Stress (MPa) 
Test Duration (h) Steady-State Creep Rate (s-1) 

HfB2-20SiC-10 50 20 2.87 x10-8 

HfB2-20SiC-6 75 10 1.34 x10-7 

HfB2-20SiC-11 75 18 3.85 x10-8 

HfB2-20SiC-5 100 10 1.23x10-7 

HfB2-20SiC-9 150 6.03 2.91 x10-7 

HfB2-20SiC-4 150 8.05 2.66 x10-7 
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 Steady-state creep rate as a function of the applied compressive stress for HfB2-

20% SiC at 1500°C in air is shown Figure 15, where the results obtained by DeGregoria 

[23] at 1500°C in argon are included for comparison. Note that the same test equipment 

and test method were used in this work and in the prior effort [23]. Furthermore, the 

HfB2-20% SiC test material came the same batch, thus ensuring that material with the 

same grain size was tested in both efforts. Note that for the longer-term tests performed in 

air during this effort, the steady-state creep regime was achieved. Hence the minimum 

creep rate is the steady-state creep rate. However, because the steady-state creep regime 

was not always reached in tests of shorter duration performed in argon, only the 

minimum creep rate could be calculated. The minimum creep rate can be greater than or 

equal to the steady-state creep rate.  

 Notably, the minimum creep rates obtained in argon at compressive stresses of 50 

and 75 MPa are higher than those obtained in air for the same compressive creep stresses. 

Recall that tests performed in argon at 50 and 75 MPa were terminated after 5.3 and 3 h, 

respectively. The steady-state creep regime was not reached in these tests. Hence only the 

minimum creep rate could be determined. Conversely the tests performed in air continued 

for 20 h at 50 MPa, and for 10 and 18 h at 75 MPa. In these tests, the steady-state creep 

regime was reached and the steady-state creep rate was determined. By definition of the 

creep regimes, the minimum creep rate is always greater than or equal to the steady-state 

creep rate. Hence the minimum creep rates obtained in argon are higher than the steady-

state creep rates obtained in air. We believe that similar steady-state creep rates would be 

obtained in air and in argon if creep tests of longer duration were accomplished in argon. 
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Given the relatively limited data in argon, further testing in argon would be required to 

reach a definitive conclusion.  

 

 
 

Figure 15. Minimum creep rate vs compressive stress for HfB2- 20% SiC at 1500°C in air 

and in argon. Data in argon from DeGregoria [23]. 

 

As expected, the minimum creep rate increases with increasing compressive creep stress. 

Fitting the experimental results (obtained in either air or argon) in Figure 15 with a 

temperature-independent Norton-Bailey equation of the form: 

𝜀̇ = Aσn
 

yields the stress exponents, n = 2.0 in air and n = 1.8 in argon. Note that the stress 

exponents obtained in air are close to those obtained in argon. 
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 Microstructural examination of the tested specimens presented in the following 

section reveals that the largest oxide scale thickness obtained in this work is 

approximately 100 μm. Assuming that an oxide scale has zero load-bearing capacity, the 

presence of a 100-μm thick oxide scale reduces the load-bearing cross-sectional area of 

the test specimen from 6.5 mm x 6.5 mm to 6.1 mm x 6.1 mm. A compressive load 

applied to produce the creep stress of 75 MPa at the start of the test will cause the stress 

to increase to ~85 MPa as the 100-μm thick oxide scale forms and the load-bearing cross-

sectional area is reduced. A progressively increasing stress would result in increasing 

creep rates. Again, performing creep tests of longer duration at 1500°C in argon would 

provide greater insight into the effect of oxidation on creep rates.   

 

3.2 Oxidation of HfB2-20 % SiC Under Compressive Stress at 1500°C in Air 

 The post-test microstructure of all specimens tested in this work was examined 

using an optical microscope in order to elucidate the surface features. Optical 

micrographs are shown in Appendix A. Following optical microscopy, specimens were 

mounted, sectioned and polished for SEM and EDS analysis as described in chapter II. 

Twenty four SEM images were taken at regular intervals around the perimeter of each 

sectioned specimen in order to capture oxide scale thickness. Then an average oxide scale 

thickness was calculated for each specimen. Winder and DeGregoria noted that oxidation 

behavior was markedly different near the corners of tested HfB2 specimens [22, 23]. 

Therefore, in this work, measurements were not taken within 1 mm of the corners to 

ensure that the anomalous scale growth near the edges did not affect the average oxide 

scale calculation. Figure 16 presents a typical SEM image used for measuring oxide scale 

thickness in this work.  
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Figure 16. A typical SEM image used to measure the oxide scale thickness. Specimen 

HfB2-20SiC-5, creep stress = 100 MPa, test duration = 10 h. 

 

 The SEM micrograph in Figure 16 shows three distinct regions: the HfB2-20%SiC 

parent material on the left, a lighter grey, hafnium oxide layer in the middle, and a dark 

grey, borosilicate glassy region on the right. To ensure the direct comparison with the 

results from prior work, the oxide scale was measured using the methodology employed 

by Winder, DeGregoria and Bowen [22, 23, 13]. In this work, the oxide scale thickness 

measurement includes borosilicate glass, hafnium oxide, and SiC-depleted regions when 

present. For each specimen 190-260 scale thickness measurements were taken and an 

average value of the scale thickness was calculated. The average values of the oxide scale 

thicknesses values found in this work are summarized in Table 5. Note that creep test 

duration (time under sustained compressive load) provided in Table 5 does not include a 

1-h soak at 1500°C prior to load up or a 1- to 2-h cool down period following test 

termination.  
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Table 5. Summary of Oxide Scale Thickness of HfB2-20%SiC Specimens Tested in 

Compression Creep at 1500°C in Air 

 

 
 

 Figure 17 represents the results of an EDS line scan performed on the specimen 

HfB2-20SiC-5 shown in Figure 16. Recall that specimen HfB2-20SiC-5 was subjected to 

compressive stress of 100 MPa for 10 h at 1500°C in air. The EDS analysis confirms the 

elemental composition of the three different regions formed during the creep test. 

 

Figure 17. EDS line scan of specimen HfB2-20SiC-5 (creep stress = 100 MPa, test 

duration = 10 h.) 

Specimen
Creep Stress 

(Mpa)

Creep 

Duration (h)

Average Oxide Scale 

Thickness (μm)

Standard 

Deviation

Number of 

Measurements

Min Thickness 

(μm)

Max Thickness 

(μm)

HfB2-20SiC-10 50 20 97 27.52 231 29.86 172.61

HfB2-20SiC-6 75 10 65.99 18.35 239 18.97 102.37

HfB2-20SiC-11 75 18 82.85 34.84 190 28.03 150.36

HfB2-20SiC-5 100 10 89.83 21.35 260 50.92 168.15

HfB2-20SiC-9 150 6.11 57.33 13.19 239 28.06 94.86

HfB2-20SiC-4 150 11.7 100.36 22.71 239 40.14 214.01
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The intensity of the peaks in Figure 17 reflects the presence of each element in the test 

specimen. Three distinct regions (I, II and III) can be readily identified in Figure 17: 

region I - HfB2-SiC, region II - HfO2 and B2O3-SiO2 filling the voids, and region III -  

B2O3-SiO2. It is recognized that boron is difficult to detect with EDS due to its light 

atomic weight, therefore the EDS analysis was limited to detecting the levels of the 

remaining elements: carbon, oxygen, silicon and hafnium. The EDS results indicate that 

region I contains primarily Hf, Si, and C with minimal levels of O, as expected. The 

composition of this region is consistent with that of an untested HfB2-20%SiC specimen. 

Region II is comprised primarily of hafnium and oxygen, consistent with the expectations 

of HfO2. Region II also shows depleted levels of silicon. Depletion of silicon in region II 

is consistent with the chemical reactions taking placed during oxidation of the HfB2-

20%SiC specimen per Parthasarathy et al (see Figure 3). Silicon is leached from the 

oxide layer to form the borosilicate glass on the surface of the specimen. Notably, region 

III contains elevated levels of silicon and carbon and virtually no hafnium, indicating that 

this region is comprised primarily of borosilicate glass (B2O3+SiO2). Overall, the EDS 

analysis confirms that the material tested in this work exhibits the same oxidation 

behavior as that reported previously by Winder, DeGregoria and Bowen. Furthermore, 

the regions I, II, and III formed during oxidation under sustained compressive stress in 

this work agree with those postulated in the oxidation model by Parthasarathy et al [30].  

 The average oxide scale thickness calculated in this work was plotted vs. time in 

Figure 18, where the results obtained by DeGregoria [23] under zero load and under 

compressive stress of 50 MPa are included for comparison. The experimental results in 
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Figure 18 are also compared to the predictions of the oxidation model by Parthasarathy et 

al [30] for HfB2-20% SiC. Note that the oxidation model does not account for the 

material being subjected to sustained stress.  

  

Figure 18. Average oxide scale thickness vs. time for HfB2-20% SiC at 1500°C in air. 

Results at 0 MPa (baseline oxidation) and at 50 MPa (stressed oxidation) from 

DeGregoria [23]. Experimental results are compared with predictions of the oxidation 

model by Parthasarathy et al [30].  

 

 

 The results of baseline oxidation tests and stressed oxidation tests reported by 

DeGregoria agree well with the predictions of the Parthasarathy oxidation model. The 

results of current work compare reasonably well with those obtained by DeGregoria. 

Note that two data points (corresponding to 100 MPa and 150 MPa) somewhat exceed the 

predictions of the oxidation model. However, the discrepancy is likely due to data scatter. 

Furthermore, note that these two data points lie within 3 standard deviations of the 

baseline oxidation results reported by DeGregoria. 
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 The results in Figure 18 suggest that sustained compressive stress (50-150 MPa) 

does not significantly affect the oxidation rate of HfB2-20% SiC at 1500°C in air. The 

same conclusion was reached by DeGregoria [23]. It appears that there is no interaction 

between creep and oxidation processes for the stresses and durations tested.  

 

3.2.1 Analysis of Surface Deposits  

 

 During post-test examination under optical microscope, interesting scale 

formations were observed on the surface of several specimen. The following features 

were noted: (i) apparent bubble bursts, (ii) white, scaly deposits where the sapphire 

extensometer rods or the sapphire spacers were in contact with the specimen, and (iii) 

slight brown discoloration. Similar features were observed and reported by Winder [22], 

DeGregoris [23], and Bowen [13]. In addition, three visually dissimilar scales formed on 

the surface of three of the test specimen. Figure 19 shows the three different types of 

scale formed on the surface of specimen HfB2-20SiC-9.  

 
 

Figure 19: Post-test optical micrograph of HfB2-20SiC-9 specimen showing three 

different types of scale formation: (i) a large white spot, apparently formed after a 

borosilicate bubble burst while at elevated temperature,( ii) a darker scale covering the 

upper region and (iii) a lighter scale covering the majority of the surface. The red square 

indicates the region selected for SEM and EDS analysis. 

 

 

 While it’s unknown why different types of scale formed on the surface of the 

specimen, EDS and XRD analysis provided insight into the elemental makeup and 

crystallographic structure of each scale type. The region enclosed by red square in Figure 
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19 includes the three types of scale formed on the surface of the specimen HfB2-20SiC-9. 

This region was selected for the SEM examination (see Figure 20) and the EDS analysis. 

Figure 21 shows higher magnification images of each type of scale formation.  

  

Figure 20. An SEM micrograph of specimen HfB2-20SiC-9 showing 3 different types of 

scale formation: (i) a large white spot from Figure 19 assumed to have formed after a 

borosilicate bubble burst, (ii) a darker tinted scale covering the upper region of the 

specimen surface from Figure 19, and (iii) a lighter tinted scale covering the majority of 

the specimen surface from Figure 19.  

 

 

 
(i) 
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(ii)      (iii) 

Figure 21. Higher magnification images of the three areas outlined in red in Figure 20: (i) 

Area 1, part of the large white spot from Figure 19 assumed to have formed after a 

borosilicate glass bubble burst, (ii) Area 2, a darker tinted scale covering the upper region 

of the specimen surface in Figure 19, and (iii) Area 3, a lighter tinted scale covering the 

majority of the specimen surface in Figure 19. 

    

 The EDS spot analysis was performed on Areas 1-3 shown in Figures 20 and 21 to 

determine the elemental composition of each type of scale.  Results obtained for Area 1 

are shown in Figure 22. Figure 21(i) shows overall microstructure of Area 1. We note a 

well ordered, crystalline structure containing multiple, small voids. Visibly missing in 

this region is the expected amorphous borosilicate glass which, at 1500°C, typically acts 

as a liquid flowing across the surface, filling in cracks and voids.  As seen in Figure 22, 

the EDS analysis of this region detected significant amounts of hafnium and oxygen only, 

indicating the presence of HfO2. Interestingly, silicon is missing entirely from this region, 

which likely contributes to the lack of borosilicate glass on the surface. Considering Area 

1 appears to be located within the remains of a bubble-burst region, it’s possible that the 

liquid glass was dispelled from this region after a bubble burst, redepositing the glass 

around the perimeter of the region. It’s assumed that bubbles are formed under the liquid 

glass as gasses, through a series of chemical reactions described by Parthasarathy [30], 
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then escape from the oxide scale and find their way to the surface. Once a sufficient 

amount of gas has coalesced under the glassy layer, a bubble forms and eventually bursts, 

exposing a small area of the oxide layer to the environment.   

 

 

Figure 22. Area 1 EDS analysis indicating that hafnium and oxygen are the most 

prominent elements present in this region. Note that silicon was not detected in this 

region. 

 

 EDS analysis for Area 2 is shown in Figure 23.  

 

Figure 23. Area 2. EDS analysis indicating that silicon and oxygen are the most 

prominent elements present in this region. Note hafnium was not detected in this region. 
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 Figure 21(ii) shows overall microstructure of Area 2. We observe a predominantly 

dark tinted, amorphous region interlaced with thin bands of lighter tinted, crystalline 

material. As expected, the EDS analysis in Figure 23 shows the presence of silicon and 

oxygen. Given that the EDS equipment used in this work was unable to detect boron, it is 

most likely that the visibly amorphous material is borosilicate glass (B2O3+SiO2). It’s 

unknown whether the thin bands of crystalline material shown in Figure 21(ii) are 

comprised of SiC or if the EDS detector wasn’t able to resolve the presence of hafnium. 

Based on the examination and the EDS analysis we conclude that the surface of Area 2 is 

dominated by an amorphous silicate glass. 

 The EDS analysis for Area 3 is shown in Figure 24. 

 

 

Figure 24: Area 3 EDS analysis indicating the presence of silicon, hafnia and oxygen in 

this region.  

 

 Figure 21(iii) shows overall microstructure of Area 3. We note a lighter tinted 

crystalline material covering the majority of the surface with a darker tinted, amorphous 

material filling in cracks and voids. The EDS analysis summarized in Figure 24 indicates 

the presence of silicon, carbon, hafnium and oxygen. It is most likely that the white 
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crystalline phase is comprised of hafnia (HfO2) while the dark, amorphous material is 

comprised of borosilicate glass (B2O3+SiO2).   

 The EDS analysis (Figures 22-24) confirmed the presence of Si, C, Hf, and O on 

the specimen surface and dispelled any theories that additional elements contributed in 

the formation of these three different types of scales. Area 1 was comprised primarily of 

pure hafnia. The darker scale in Area 2 was comprised primarily of borosilicate glass. 

The lighter colored scale in Area 3 was comprised primarily of hafnia with borosilicate 

glass filling in cracks and voids. Additional EDS analysis was performed on specimen 

HfB2-20SiC-6 and results were virtually identical to the results presented above. The 

EDS analysis of specimen HfB2-20SiC-6 is summarized in Appendix D. The XRD 

analysis was also performed to characterize the crystalline structures of the different 

types of scales formed on the surface of specimens HfB2-20SiC-6 and HfB2-20SiC-9. 

The results of the XRD analysis are presented in Appendix C.  

 

3.3 Effect of Compressive Stress on Preferred Grain Orientation of HfB2-20% SiC  

at 1500°C 

 

 A secondary objective of this work was to assess whether sustained compressive 

stress had an effect on preferred grain orientation of the test specimen. The as-processed 

material had equiaxed grains distributed in a random orientation. The material was 

processed at AFRL/RX and was delivered to AFIT in the form of a puck. Test specimen 

were cut from the puck using EDM. DeGregoria found that as long as the test specimens 

are cut from the center portion of the puck, grain size and orientation remain consistent, 

and unaffected by bulk diffusion or deformation induced near the edges of the pucks. 

Because the virgin test specimens had a randomly distributed grain orientation, the XRD 
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analysis of a specimen subjected to sustained compressive stress can reveal whether a 

preferred grain orientation was induced during compression creep test. Recent findings 

reported in literature indicate that the prevalent creep mechanism occurring in HfB2-SiC 

under uniaxial loading is grain boundary sliding. The specimens tested in this work 

produced compressive creep strains reaching 1.2%. If this strain was a result of grain 

boundary sliding and not bulk diffusion, the XRD analysis should show that no preferred 

orientation was induced through compression creep testing.   

 XRD analysis is able to determine whether a preferred orientation exists within a 

sample by comparing relative peak height or area obtained from a 2Ɵ scan with the 

expected relative intensity from a standard of the same material with no preferred 

orientation. The open source XRD analysis software is then used to perform additional 

analysis to determine the direction of preferred orientation and to generate a unit-less 

variable known as multiples of random distribution (MRD) which indicates the relative 

amount of preferred grain orientation within the sample. The MRD scale ranges from 1 to 

infinity. An MRD value of 1 indicates that the ratio of peak intensities measured within 

the sample align perfectly with the known standard of a randomly distributed grain 

orientation. Conversely, an MRD score of infinity represents a perfectly oriented crystal 

structure or single crystal. In order to determine whether constant compressive loading 

induced a preferred grain orientation, both an untested specimen (HfB2-20SiC-15) and a 

tested specimen (HfB2-20SiC-9) were subject to XRD analysis. Specimen HfB2-20SiC-

15 was manufactured in the same lot as all the other tested specimens in this work and 

should provide consistent results to any other untested HfB2-20%SiC specimen. 

Specimen HfB2-20SiC-9 was chosen to represent the tested specimens because it was 
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exposed to the highest compressive load and produced significant strain during testing. 

Recall specimen HfB2-20SiC-9 was subject to 150 MPa for a duration of 6.03 hours and 

experienced approximately 1% strain prior to test termination. If any of the tested 

specimens in this work had a preferred orientation induced by sustained loading, analysis 

of specimen HfB2-20SiC-9 should provide an indication. Table 6 provides the MRD 

values calculated for both the untested and tested specimens. XRD analysis was 

performed on 3 separate, mutually orthogonal sides of each specimen to ensure 

completeness. The subscripts in the MRDxxx labels within Table 6 indicate miller indices, 

the crystallographic planes the measured preferred orientation is aligned with. For 

example, side 1 of the untested specimen has an MRD value of 1.13, oriented with the 

110 plane. Appendix C shows the pole diagrams generated to ascertain the MRD values 

and miller indices.  

 

Table 6. MRD values for an untested specimen and a tested specimen of HfB2-20%SiC. 

The tested specimen was subject to a sustained compressive stress of 150 MPa for 6.03 h 

in air at 1500°C  

 

  
Untested Specimen Tested Specimen 

HfB2-20SiC-15 HfB2-20SiC-9 

Side 1   MRD110 1.13 MRD110 1.14 

Side 2   MRD002 1.12 MRD002 1.16 

Side 3  MRD200 1.14 MRD110 1.15 

 

 The MRD values calculated for the untested specimen indicate there was a slight 

orientation induced from the manufacturing process. While the MRD values for the tested 

specimen are slightly higher than the values for the untested specimen, the small disparity 

indicates that no significant preferred orientation was caused by sustained compressive 

loading. The small differences in MRD values may simply be a result of variance in the 
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manufacturing process. These results cannot conclusively prove that the controlling creep 

mechanism during compressive testing was grain boundary sliding. However, it can be 

said with confidence that sustained compressive loading of HfB2-20% SiC at 1500°C in 

does not significantly alter the preferred grain orientation for compressive stresses up to 

150 MPa.  
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IV. CONCLUSIONS 

 The series of creep tests performed in this work were of significant importance 

due to higher compressive stresses and longer test durations compared to those achieved 

in prior work. Determination of the steady-state creep rate is critical to identifying creep 

mechanisms operating in the material. To determine the steady-state creep rate, the 

duration of creep test must be sufficiently long to ensure that the steady-state (or 

secondary) creep regime has been reached. When a creep test is terminated early it may 

not be clear whether the steady-state creep regime has been achieved. In that case only 

the minimum creep rate can be determined, which is by definition greater than or equal to 

the steady-state creep rate. Performing creep tests at higher compressive stresses 

broadens the range of applied stresses for which the steady-state creep rate is determined 

and thereby provides better insight into the controlling creep mechanisms. Additionally, 

the sought-after steady-state creep regime is typically reached sooner in tests performed 

with higher applied stress levels.  

 Creep strain vs. time curves obtained in this work compare favorably with those 

generated in previous work by DeGregoria [23] and Winder [22] for HfB2-20% SiC 

specimens. Due to longer duration of the tests performed in this work, it was possible to 

determine the steady-state creep rates rather than the minimum creep rates as was 

frequently the case in prior efforts. Notably, the steady-state creep rates determined in 

this work were lower than minimum creep rates found in prior work. Yet the steady-state 

creep rates obtained for HfB2-20%SiC at 1500°C in air in this effort were comparable to 

the minimum creep rates obtained by DeGregoria in short-duration tests performed at 

1500°C in argon. The difference between the two sets of creep rates was negligible, 
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suggesting that the presence of an oxidizing environment does not have a significant 

effect on creep of HfB2-20% SiC at 1500°C. Further testing at higher creep stresses and 

for longer durations in both air and argon is recommended in order to gain more 

confidence regarding the effect of an oxidizing environment on creep of HfB2-SiC 

UHTCs.  

 Average oxide scale thickness values measured in this work are consistent with 

those obtained by DeGregoria [23] during baseline (zero load) oxidation tests and in 50 

MPa compressive creep tests. In addition, the oxide scale growth in HfB2-20% SiC was 

characterized in terms of the Parathasarathy oxidation model. The model was employed 

to predict the evolution of the oxide scale with time at 1500°C in air. The Parathasarathy 

oxidation model does not account for the presence of the sustained compressive load. Yet 

the model predictions compared well with the experimental results produced in this work. 

Hence we conclude that the presence of the sustained compressive load does not have a 

significant effect on the oxidation of HfB2-20% SiC. Baseline oxidation tests at zero load 

of HfB2-10% and HfB2-30% SiC compositions are recommended. Further creep testing at 

higher stresses and for longer durations (exceeding 10 hours) of HfB2-10%, HfB2-20%, 

and HfB2-30% SiC compositions at 1500°C in air are also recommended. The results of 

such tests would provide important insight into the possible interaction between creep 

and oxidation processed for the HfB2-SiC UHTCs.  

 EDS and XRD analysis of oxide scale of dissimilar appearance confirmed that 

silicon, oxygen, hafnium, carbon and boron were responsible for the formation of all 

scales. The different appearance of surface scales is attributed to different amounts of 

amorphous borosilicate glass.  
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 Lastly, XRD analysis of a tested specimen and an untested specimen provided 

insight into whether sustained compressive loading induces a preferred grain orientation. 

Analysis showed that a specimen subjected to compressive stress of 150 MPa for 6.03 h 

did not exhibit a significant change in preferred grain orientation compared to an untested 

specimen. Future efforts may consider examining the same specimen prior to and after 

creep testing for more consistent results. Additionally, higher compressive loads and 

longer durations would provide more conclusive results regarding whether a preferred 

orientation is induced under sustained compressive stress.   
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Appendix A: Micrographs 

Optical Micrographs 

 
Figure 25. Post-test optical micrographs of specimen HfB2-20%SiC-4 subject to 150 MPa 

for 8.05 hours. Test was terminated for spacer and YAG rod failure. Note presence of 

crystalline sapphire from spacers fused to the top and face of the specimen. 

 

 
Figure 26. Post-test optical micrographs of specimen HfB2-20%SiC-5 subject to 100 MPa 

for 10 hours. Test ran to planned duration with no complications. Note presence of 

crystalline sapphire from extensometer rods fused into the grooves cut into the face of the 

specimen. 
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Figure 27. Post-test optical micrographs of specimen HfB2-20%SiC-6 subject to 75 MPa 

for 10 hours. Test ran to planned duration with no complications. Note presence of 

apparent bubble burst formations. It is unknown why some specimens exhibit these 

bubble bursts and others do not. Also not the presence of the two visually dissimilar 

oxide scale formed on two of the sides of this specimen. 

 

 

 
Figure 28. Post-test optical micrographs of specimen HfB2-20%SiC-9 subject to 150 MPa 

for 6.03 hours. Test was terminated due to spacer failure. Note that the material was 

cracked at one corner. It is assumed that the spacer failure resulted in this damage. Also 

note the presence of bubble burst formations and dissimilar oxide scales. 
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Figure 29. Post-test optical micrographs of specimen HfB2-20%SiC-10 subject to 50 MPa 

for 20 hours. Test ran to planned duration with no complications. Note the presence of 

crystalline sapphire remnants from the sapphire extensometer rods in the grooves cut into 

the face of the specimen. Also not presence of bubble burst formations.  

 

 

 
Figure 30. Post-test optical micrographs of specimen HfB2-20%SiC-11 subject to 75 MPa 

for 18 hours. Test was terminated due to spacer and YAG rod failure. The specimen was 

sheared down the middle. It is assumed that this was caused by catastrophic failure of the 

sapphire spacer and YAG rod. Creep data shows sudden failure, not tertiary creep.  
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Figure 31. Post-test optical micrographs of specimen HfB2-20%SiC-12 subject to 200 

MPa for 0 hours. Test failed during loadup prior to reaching 200 MPa. The oxide scale 

that has developed to this point is due to the 1 hour temperature soak prior to load up and 

the 1-2 hour cool down period. EDS confirms that the noticeable brownish hue is due to 

the presence of alumina. After failure, the specimen was displaced from its normal 

position within the load train and came to rest on its face on the bottom of the alumina 

furnace. The face in contact with the alumina surface developed this brown scale. It’s 

believed that the grey smudge present in the third photo is due to amorphous glass 

bumping against something in the furnace as the specimen came dislodged from its 

standard position. Note the specimen is cracked in several places. It’s believed this was 

caused by spacer or YAG rod failure.  

 

 

 
Figure 32. Post-test optical micrographs of specimen HfB2-20%SiC-5 subject to 100 MPa 

for 10 hours. Notice the uneven, glassy scallops that develop across the surface of the 

specimen. Light colored oxide scale is visible beneath the glossy, glass surface. 

 
  



57 

 

SEM Micrographs 

 
Figure 33. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 
Figure 34. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 35. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 
 

 
Figure 36. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 37. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 38. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 39. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 40. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 41. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 42. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 43. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 44. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 45. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 46. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 47. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 48. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 49. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 50. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 51. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 52. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 



67 

 

 
Figure 53. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 54. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 55. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 

 

 

 
Figure 56. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. 
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Figure 57. SEM Micrograph of HfB2-20%SiC-4 oxide scale. Test ran at 150 MPa for 

8.05 hours at 1500°C in air. Note that the thickness of the oxide scale (light grey) is 

directly related to the thickness of the glassy deposit on the surface. The thicker the 

glassy layer, the thinner the oxide scale. This represents how borosilicate glass is an 

effective oxidation barrier for the HfB2-20% SiC substrate. 

 

 
Figure 58. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 59. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 60. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 61. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 62. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 63. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 64. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 65. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 66. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 67. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 68. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 69. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 
Figure 70. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 71. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 
Figure 72. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 73. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 
Figure 74. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 



78 

 

 
Figure 75. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 
Figure 76. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 77. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 
Figure 78. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 79. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 80. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 81. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 82. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 83. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 84. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 
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Figure 85. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 86. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. Note presence of air bubbles under glass scale. Also notice 

negligible corner effects on oxidation thickness. Corner effects are much more prevalent 

for 0% SiC specimen according to Bowen and DeGregoria. 
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Figure 87. SEM Micrograph of HfB2-20%SiC-5 oxide scale. Test ran at 100 MPa for 10 

hours at 1500°C in air. Also notice negligible corner effects on oxidation thickness. 

Corner effects are much more prevalent for 0% SiC specimen according to Bowen and 

DeGregoria. 

 

 
Figure 88. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 89. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 90. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 91. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 92. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 93. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 94. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 



88 

 

 
Figure 95. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 96. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 



89 

 

 
Figure 97. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 98. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 99. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 100. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 101. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 102. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 103. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 104. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 105. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 106. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 107. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 108. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 109. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 110. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 
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Figure 111. SEM Micrograph of HfB2-20%SiC-6 oxide scale. Test ran at 75 MPa for 10 

hours at 1500°C in air. 

 

 

 
Figure 112. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 113. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 114. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 115. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 116. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 117. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 118. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 119. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 120. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 121. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 122. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 123. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 124. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 125. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 126. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 127. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 128. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 129. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 130. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 131. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 132. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 133. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 134. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 
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Figure 135. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. 

 

 

 
Figure 136. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. Note the white hafnia scale with amorphous borosilicate 

glass filling in cracks and voids. 
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Figure 137. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. Note the white hafnia scale with amorphous borosilicate 

glass filling in cracks and voids. 

 

 

 
Figure 138. SEM Micrograph of HfB2-20%SiC-9 oxide scale. Test ran at 150 MPa for 

6.03 hours at 1500°C in air. Note large regions of dark, amorphous borosilicate glassy 

areas intermixed with crystalline hafnia scale. 
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Figure 139. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 
Figure 140. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 141. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 142. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 143. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 144. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 145. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 146. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 147. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 148. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 149. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 150. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 151. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 152. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 



117 

 

 
Figure 153. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 154. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 155. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 156. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 157. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 158. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 159. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 160. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 161. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 

 

 

 
Figure 162. SEM Micrograph of HfB2-20%SiC-10 oxide scale. Test ran at 50 MPa for 20 

hours at 1500°C in air. 
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Figure 163. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 164. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 
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Figure 165. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 166. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 
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Figure 167. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 168. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 
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Figure 169. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 170. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 



126 

 

 
Figure 171. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 172. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 
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Figure 173. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 174. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 
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Figure 175. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 176. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 
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Figure 177. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 178. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 
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Figure 179. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 180. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 



131 

 

 
Figure 181. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 182. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 
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Figure 183. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 184. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. The intergranular fracture surface exhibits virtually no 

oxide scale. 
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Figure 185. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. The intergranular fracture surface exhibits virtually no 

oxide scale. 

 

 

 
Figure 186. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. The intergranular fracture surface exhibits virtually no 

oxide scale. The crack running into the sample was induced during sectioning. 
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Figure 187. SEM Micrograph of HfB2-20%SiC-11 oxide scale. Test ran at 75 MPa for 18 

hours at 1500°C in air. 

 

 

 
Figure 188. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. Note the fracture appears to originate from the interface 

with the sapphire spacer remnants fused to the top of the specimen. 
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Figure 189. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. Note the fracture appears to originate from the interface 

with the sapphire spacer remnants fused to the top of the specimen. 

 

 

 
Figure 190. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. Note the fracture surface appears to be uneven. 
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Figure 191. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. Note the fracture appears to originate from the interface 

with the sapphire spacer remnants fused to the top of the specimen. 

 

 

 
Figure 192. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. Note the fracture appears to originate from the interface 

with the sapphire spacer remnants fused to the top of the specimen. 
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Figure 193. SEM Micrograph of HfB2-20%SiC-11 fracture surface. Test ran at 75 MPa 

for 18 hours at 1500°C in air. Note the rightmost portion of the image shows the glassy 

surface. Directly under the glassy surface is thin oxide layer followed by unpolished, 

HfB2-20% SiC. 

 

 

 
Figure 194. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Figure 195. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 

 

 

 
Figure 196. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Figure 197. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 

 

 

 
Figure 198. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Figure 199. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 

 

 

 
Figure 200. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Figure 201. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 

 

 

 
Figure 202. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Figure 203. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 

 

 

 
Figure 204. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Figure 205. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 

 

 

 
Figure 206. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Figure 207. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 

 

 

 
Figure 208. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Figure 209. SEM Micrograph of HfB2-20%SiC-12 oxide scale. Test failed during load up 

to 200 MPa. Specimen was subjected to 1500°C under 10 MPa for approximately 1 hour. 
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Appendix B: Test Procedures 

 

Pre-Test 

 

Specimen: 

 

- Select specimen, new/refurbished YAG rods, new/refurbished sapphire 

extensometer rods, new sapphire spacers, temperature and stress for test 

 

- Weigh, measure (caliper), and photo specimen. Take repeated measurements for 

completeness.   

 

- Calculate load required for desired stress 

MTS Station 

 

- If MTS Station Manager needs to be opened, select “Temperature.cfg” and desired 

Parameters 

 

- Select “New Specimen” on MTS Station Manager, enter specimen name, and hit 

<ENTER> 

 

- Reset and edit procedure Creep.000 (load, temp, displacement limit detector values) 

and Save. Note: compressive loads are negative values. Set limit detector values to range 

from 9 mm  -3 mm. 

 

- Check to ensure heating element leads are clear of metal-to-metal contact with the 

furnace and that the braids are securely connected (do not over tighten) 

 

- Power on standalone hydraulic pump, Eurotherm controller, grip hydraulic power. Grip 

pressure should read about 2000 psi. 

 

- Ensure manual command is disabled. 

 

- Clear MTS Station Manager limit detectors, reset/override if needed, and start 

hydraulics (low then high) 

 

- Start function generator (1 Hz, 5 mm sine wave) to warm up hydraulics/ MTS  

 

- Stop function generator after a minimum of 30 minutes 

 

Load Train Assembly: 

 

- Clean specimen, sapphire spacers and YAG rods with acetone, ethanol or pure alcohol. 

Ensure mating interfaces are clear from any debris/ particulates. 

 

- Assemble custom YAG holder with silver plated screws and spring washers 
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- Wrap steel shims around alignment rod 

 

- Insert alignment rod into custom holder, finger tighten setscrews so rod is snug 

 

- Insert assembly into MTS grips with 5mm separation between custom holder and 

MTS grip with both holders touching rear L-brackets, close top grip 

 

- In displacement control, zero force via MTS interface, switch to force control with 0 

lbf command, close bottom grip 

 

- Ensure alignment rod is still free to move (i.e. not loaded) 

 

- Return to displacement control, raise top crosshead, remove alignment rod 

 

- Insert copper foil into slit at base of both custom holders 

 

- Shim the YAG rods with enough copper foil to wrap one time around and insert 

into custom grips; secure set screws with hex key until finger tight 

 

- Bring YAG rods together to verify alignment; repeat alignment procedure if not 

Aligned 

 

- In displacement control, zero force 

 

- Lower bottom crosshead, place wrap-around soft insulation through bottom YAG 

rod, raise crosshead 

 

- Cut 2 pieces of Pt foil to size of a sapphire spacer 

 

- Load one side of 3D printed alignment tool: Pt foil, 2 sapphire spacers, test 

specimen, 2 sapphire spacers, Pt foil 

 

- Using other side of 3D printed tool bring YAG rods together so they are almost to 

the spacer cutouts. 

 

- Carefully insert loaded half of alignment tool such that the YAG rods fit into their 

respective cutouts. 

 

- Place other half of alignment tool on the exposed side, encasing load train with 

alignment tool. 

 

- Holding the tool together, raise lower crosshead in 0.1mm increments until -10lbf is 

Reached 

 

- Switch to force control and command -50lbf 
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-  (Optional) Switch to displacement control, remove alignment tool, switch back to force 

control.  

 

- Carefully remove alignment tool to verify everything within the load path is aligned. 

 

- If adjustments are required rotate load train assembly using alignment tool; this 

may be accomplished at -50lbf but could require restarting 

 

- Verify alignment; repeat alignment procedure if not aligned; zero displacement 

 

- Set values for displacement limit detectors on MTS Station Manager, and activate 

for Station Power Off (+9/-3 mm) 

 

- Replace extensometer rods (use fresh rods every time) 

 

- Test extensometer on specimen; adjust rods as necessary; rods must be as centered 

in window as possible 

 

- Zero strain; remove extensometer. Zero displacement and place blocks under lower ram. 

 

Insulation: 

 

- Slide furnace forward and secure; insert pie piece 

 

- Place insulation around bottom YAG rod, between wrap around and furnace, to 

plug lower hole 

 

- Wrap up wrap around soft insulation; secure with weight bar 

 

- Place top soft insulation; secure with weights 

 

- Support bottom of wrap around soft insulation with braces (metal ruler, wrenches) 

 

- (Optional)  Place side soft insulation 

 

- Place extensometer; verify strain reading should be near zero with appropriate noise 

levels (<1%); zero strain 

 

- Insert argon feeding tubes (even if testing in air), secure with tape to extensometer 

mounting brace 

 

Heat: 

 

- Turn on coolant to grips; ensure chiller is filled with distilled water 
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- Turn on heating element cooling fans and cooling air for extensometer 

 

- Start procedure “Creep.000” (starts heat up and displays “Start”, “End”, and 

“ABORT” test buttons) 

 

- Record lab temperature, relative humidity, and anytime the temperature goes into or 

out of limits 

 

- When furnace begins to glow, visually verify the specimen and extensometer are in 

good position 

 

- After reaching target temperature, wait for 1 hour of temperature soak 

- Verify temperature and strain readings are steady before proceeding with Load 

Load: 

 

- Verify good thermal strain; verify temperature and strain are stable and within 

Limits 

 

- Select “Start Test” button (loads up to desired load) 

 

During Test: 

 

- Check to ensure extensometer is clear of obstacles and is in grooves on specimen 

(use welding goggles) 

 

- Check temperature, strain, displacement, and force values 

 

- Check to ensure displacement is not too close to limit detector values 

 

- Record strain, displacement, argon pressures, and time 

 

Post Test: 

 

- “End Test” button (commands -50 lbf and 0°C) 

 

- Let cool naturally until 100°C (opening early can shock the YAG and crack them) 

 

- Remove argon feeding tubes, extensometer, top and side soft insulations; raise 

topside of wrap around insulation 

 

- Remove pie piece; photo specimen; “Release Specimen” button, switch to 

displacement control 

 

- Lower bottom crosshead in 0.1 mm intervals until there’s clearance to remove 

Specimen 
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- Remove, photo, and secure specimen 

 

- Power down grip coolant, hydraulics on MTS Station Manager, Eurotherm 

Controller 

 

- Remove bottom supports and wrap around insulation 

 

- Push back furnace and secure 

 

- Remove top and bottom custom grips and power down hydraulics for grips 

 

- Power down standalone hydraulic pump 

 

- Remove YAG rods from custom holders and turn in for repair if reparable 

 

- Copy and analyze data from MTS computer 

 

- Weigh and measure specimen; assess oxide scale and thickness 
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Appendix C: XRD Analysis 

 

 Figures X-X show XRD results and optical micrograph references for specimen 

HfB2-20SiC-6 which exhibited dissimilar scale formations. This data was to be used in 

conjunction with EDS results presented in Chapter IV to examine the various types of 

oxide scales formed on the specimen’s surface during testing. XRD analysis is able to 

provide information regarding the crystallographic structure of each type of oxide scale 

present. The XRD equipment used was a Rigaku Ultima IV X-Ray Diffractometer. 

Analysis was performed through the Rietveld refinement program MAUD to determine 

phase fractions from the X-ray diffraction patterns.  

 

(i)   (ii)  

 

Figure 210. Post-test optical micrographs of specimen HfB2-20SiC-6 showing (i) a 

visually uniform oxide scale and (i) visually dissimilar oxide scales.  
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Figure 211. XRD results from a scan of the visually uniform oxide scale formation of 

specimen HfB2-20SiC, represented by Figure 210(i). Known crystallographic formations 

are labeled above their respective intensity peaks. ‘m-HfB2’ represents monoclinic hafnia.  

‘c-HfB2’ represents cubic hafnia. An unidentified crystallographic structure (labeled as 

‘unknown’) was detected however, standard analysis methods could not identify the 

structure given the elements known to be present within the scale. 

 

 

 
Figure 212. XRD results from a scan of the visually dissimilar oxide scale formations of 

specimen HfB2-20SiC, represented by Figure 210(ii). Known crystallographic formations 

are labeled above their respective intensity peaks. ‘m-HfB2’ represents monoclinic hafnia.  

‘c-HfB2’ represents cubic hafnia. An unidentified crystallographic structure (labeled as 

‘unknown’) was detected however, standard analysis methods could not identify the 

structure given the elements known to be present within the scale. 
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 The uniform scale and the dissimilar scale appear to contain the same basic 

crystallographic structures within their respective oxide scales. While peaks are present at 

the same 2Ɵ intervals for both figures, the relative intensities between the peaks are 

clearly different. This indicates that while the same crystallographic structures are present 

on the surface of these two side of specimen HfB2-20SiC-6, they occur in different ratios.  

 Figures 213-216 show pole figures for both untested specimen HfB2-20SiC-15 

and tested specimen HfB2-20SiC-9. Three orthogonal faces were scanned for each 

specimen and XRD analysis was performed to determine whether a preferred grain 

orientation was present within the specimen. Recall from the discussion in Chapter III, an 

MRD value of 1 represents a completely random grain orientation while an MRD value 

of infinity represents a perfectly oriented crystal (i.e. a single crystal). Figure 217 shows 

the 3 sides chosen for analysis for both specimen. Both specimen were polished to a 

surface finish of 45 μm for consistency. Specimen HfB2-20SiC-15 was scanned in the 

original configuration from manufacture, dimensions: 6.5 x 6.5 x 19 mm. Since specimen 

HfB2-20SiC-9 had undergone testing, it was necessary to remove the oxide scale to scan 

the grain structure under the surface. Therefore, specimen HfB2-20SiC-9 was sectioned 

via a low concentration diamond blade and polished to the desired surface finish, final 

dimensions: 3 x 3 x 7 mm.  

 
Figure 217. Representative of the 3 orthogonal sides scanned for each specimen to 

determine preferred grain orientation. 
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 The pole figures in Figures 213-216 represent the degree of preferred grain 

orientation and preferred grain direction present within the specimens. Miller indices 001, 

100, 101, and 110 were selected for representation in these figures because these planes 

indicated the highest MRD values detected. Table 6 in Chapter IV provides the MRD 

values and preferred grain orientation for each specimen. The pole figures below are 

plotted on an MRD spectrum ranging from either 0.8-1.2 or 0.0-2.0. The spectrum from 

0.8-1.2 was chosen so that a preferred grain orientation could be detected. For example, 

in Figure 213, of the pole figures associated with specimen HfB2-20SiC-15, side 1, the 

001 plane provides the highest MRD value in the center ring (indicated by presence of 

dark red coloration). Although slight preferred orientations are discernable at a narrow 

MRD scale of 0.8-1.2, this range is so close to an MRD scale of 1, that any detected 

preferred orientation would still be considered slight. For context, Figures 215 and 216 

show the same data plotted on pole figures with MRD scales ranging from 0.0-2.0. In 

these figures, preferred orientations are barely identifiable. Given that the MRD scale 

ranges from one to infinity, these figures represent how slight a preferred orientation is 

present in these specimens.  
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Figure 213. Pole figures for untested specimen HfB2-20SiC-15. MRD scale: 0.8-1.2. 

Dark red coloration indicates the presence of a preferred orientation. For any side, the 

darkest red within the centermost ring of an individual pole figure indicates the miller 

index associated with the direction of preferred orientation.  

 

 

  
 

Figure 214. Pole figures for specimen HfB2-20SiC-9 subject to 150 MPa for 6.03 hours. 

MRD scale: 0.8-1.2. Dark red coloration indicates the presence of a preferred orientation. 

For any side, the darkest red within the centermost ring of an individual pole figure 

indicates the miller index associated with the direction of preferred orientation.  
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Figure 215. Pole figures for untested specimen HfB2-20SiC-15. MRD scale: 0.0-2.0. This 

scale shows a hardly identifiable orientation at a slightly larger scale. When compared to 

the full MRD scale of 1-∞, the degree of preferred orientation in this specimen is quite 

small.  

 

 

 
Figure 216. Pole figures for specimen HfB2-20SiC-9. MRD scale: 0.0-2.0. This scale 

shows a hardly identifiable orientation at a slightly larger scale. When compared to the 

full MRD scale of 1-∞, the degree of preferred orientation in this specimen is quite small.  
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Appendix D: EDS Analysis 

 

 
Figure 218. EDS line scan of the oxide scale of specimen HfB2-20SiC-5. Elemental 

analysis shows varying amounts of carbon, oxygen, hafnium and silicon through different 

regions of the specimen. This line scan data is the same as in Figure 17 in Chapter III, the 

concentration of various elements have simply been overlaid onto the same figure.  

 

 

 
Figure 219. EDS line scan of the oxide scale of specimen HfB2-20SiC-5. Elemental 

analysis shows varying amounts of carbon, oxygen, hafnium and silicon through different 

regions of the specimen. This line scan data was taken from a separate area of the 

specimen than the data in Figure 17. Analysis of this area provided the same conclusions 

as those detailed in Chapter III.  
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Figure 220. EDS line scan of the oxide scale of specimen HfB2-20SiC-5. Elemental 

analysis shows varying amounts of carbon, oxygen, hafnium and silicon through different 

regions of the specimen. This line scan data was taken from the same area as Figure 219. 

Analysis of this area provided the same conclusions as those detailed in Chapter III.  

 

 

 

 

 

 

 

 

 
 HfB2 HfO2 Borosilicate 

(Glass) 
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 EDS analysis of the oxide scale of specimen HfB2-20SiC-6 was performed in a 

similar manner to the analysis detailed in Chapter IV for specimen HfB2-20SiC-9. As 

evidenced by the optical micrographs in Appendix A, Specimen HfB2-20SiC-6 exhibited 

at least three visually dissimilar oxide scales on its surface during testing. This work 

examined the elemental composition of these three dissimilar oxide areas. Figure 221 

shows an SEM image of a region on the surface of specimen HfB2-20SiC-6 exhibiting 

dissimilar oxide scale formations. The red squares indicate areas scanned and analyzed 

by EDS. EDS analysis of specimen HfB2-20SiC-6 provided the same results as the EDS 

analysis of specimen HfB2-20SiC-9 discussed in Chapter III. Results for Area 4 were 

corrupted and not included in this discussion. 

 

 
Figure 221. SEM micrograph of the oxide scale of specimen HfB2-20SiC-6 showing the 

presence of three distinct regions of oxide scale. This region is the focus of the EDS 

analysis discussed herein. 
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Figure 222. SEM image of the oxide scale of specimen HfB2-20SiC-6 showing the 

presence of three distinct regions of oxide scale. A darker region interspersed with lighter 

colored veins (Areas 1 and 2), a lighter region (Areas 3 and 4) and a smooth, dark area 

(Area 5). The red squares represent areas scanned with EDS for elemental analysis.  

 
 
 

 
Figure 223. EDS analysis of Area 1 (as indicated in Figure 222) of specimen HfB2-

20SiC-6. Analysis indicates the presence of silicon, hafnium and oxygen. Given the 

presence of these elements, it is most likely that the dark, amorphous material in Figure 

221 is borosilicate glass (B2O3+SiO2) and the lighter crystalline material is hafnia (HfO2). 
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Figure 224. EDS analysis of Area 2 (as indicated in Figure 222) of specimen HfB2-

20SiC-6. Analysis indicates the presence of silicon, hafnium and oxygen. Given the 

presence of these elements, it is most likely that the dark, amorphous material in Figure 

221 is borosilicate glass (B2O3+SiO2) and the lighter crystalline material is hafnia (HfO2). 

 

 
Figure 225. EDS analysis of Area 3 (as indicated in Figure 222) of specimen HfB2-

20SiC-6. Analysis indicates the presence of silicon, hafnium, oxygen and carbon. Given 

the presence of these elements, it is most likely that lighter crystalline material in Figure 

221 is hafnia (HfO2) and there is a dispersion of borosilicate glass filling in cracks and 

voids. 

 

 
Figure 226. EDS analysis of Area 5 (as indicated in Figure 222) of specimen HfB2-

20SiC-6. Analysis indicates the presence of silicon, oxygen and carbon. Given the 

presence of these elements and the processes known to have taken place during testing, it 

is most likely that the dark, amorphous material in Figure 221 is borosilicate glass 

(B2O3+SiO2).  

 



162 

 

 

 Optical micrographs in Appendix A show that specimen HfB2-20SiC-12 exhibited 

a unique reddish hue following testing. Both Winder and Bowen observed similar 

discoloration in their testing. Composition analysis of Winder and Bowen revealed the 

presence of aluminum deposits on the surface, responsible for the discoloration. Similar 

EDS analysis was performed on specimen HfB2-20SiC-12 with identical results. The 

presence of aluminum was responsible for the discoloration. Aluminum deposits most 

likely occurred after the test for HfB2-20SiC-12 failed due to spacer failure and the 

specimen came to rest against the alumina furnace for approximately 2 hours as the 

furnace cooled from 1500°C. Figures 227-234 show results of EDS analysis of specimen 

HfB2-20SiC-12. 

 
Figure 227. Post-test SEM micrograph of specimen HfB2-20SiC-12 showing a region of 

the external surface of the specimen exhibiting a reddish discoloration. This region was 

the focus of EDS compositional analysis.  
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Figure 228. Post-test SEM micrograph of specimen HfB2-20SiC-12 showing the same 

area as Figure 227, a region of the external surface of the specimen exhibiting a reddish 

discoloration. This region was the focus of EDS compositional analysis. Red squares and 

colored bullseyes indicate the areas scanned for analysis.   

 
 

 
Figure 229. EDS analysis of Area 1 (as indicated in Figure 228) of specimen HfB2-

20SiC-12. Analysis indicates the presence of silicon, oxygen, hafnium, carbon and 

aluminum. Aluminum is the only unexpected element present and is likely the cause of 

the reddish discoloration. 
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Figure 230. EDS analysis of Area 2 (as indicated in Figure 228) of specimen HfB2-

20SiC-12. Analysis indicates the presence of silicon, oxygen, hafnium, carbon and 

aluminum. Aluminum is the only unexpected element present and is likely the cause of 

the reddish discoloration. 

 

 
Figure 231. EDS analysis of Area 3 (as indicated in Figure 228) of specimen HfB2-

20SiC-12. Analysis indicates the presence of silicon, oxygen, hafnium, carbon and 

aluminum. Aluminum is the only unexpected element present and is likely the cause of 

the reddish discoloration. 

 

 
Figure 232. EDS analysis of Spot 1 (as indicated in Figure 228) of specimen HfB2-

20SiC-12. Analysis indicates the presence of silicon, oxygen, and iridium. This area was 

not exhibiting discoloration and aluminum is not present. A thin coating of iridium was 

used to coat the specimen to prevent surface charging in the SEM.  
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Figure 233. EDS analysis of Area 4 (as indicated in Figure 228) of specimen HfB2-

20SiC-12. Analysis indicates the presence of silicon, oxygen, and hafnium. This area was 

not exhibiting discoloration and aluminum is not present.  

 
 

 
Figure 234. EDS analysis of Spot 2 (as indicated in Figure 228) of specimen HfB2-

20SiC-12. Analysis indicates the presence of silicon, oxygen, hafnium, carbon and 

aluminum. Aluminum is the only unexpected element present and is likely the cause of 

the reddish discoloration. 
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