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Abstract

The United States Air Force (USAF) makes officer accession and promotion decisions

annually. Optimal manpower planning of the commissioned officer corps is vital to

ensuring a well-balanced manpower system. A manpower system that is neither

over-manned nor under-manned is desirable as it is most cost effective. The Air

Force Officer Manpower Planning Problem (AFO-MPP) is introduced, which models

officer accessions, promotions, and the uncertainty in retention rates. The objective

for the AFO-MPP is to identify the policy for accession and promotion decisions

that minimizes expected total discounted cost of maintaining the required number of

officers in the system over an infinite time horizon. The AFO-MPP is formulated as

an infinite-horizon Markov decision problem, and a policy is found using approximate

dynamic programming. A least-squares temporal differencing (LSTD) algorithm is

employed to determine the best approximate policies. Six computational experiments

are conducted with varying retention rates and officer manning starting conditions.

The policies determined by the LSTD algorithm are compared to the benchmark

policy, which is the policy currently practiced by the USAF. Results indicate that

when the manpower system is in a starting state with on-target numbers of officers

per rank, the ADP policy outperforms the benchmark policy. When the starting

state is unbalanced, with more officers in junior ranking positions, the benchmark

policy outperforms the ADP policy. When the starting state is unbalanced, with

more officers in senior ranking positions, there is not statistical difference between

the ADP and benchmark policy. In this starting state, ADP policy has smaller

variance, indicating the ADP policy is more dependable than the benchmark policy.
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APPROXIMATE DYNAMIC PROGRAMMING

FOR THE UNITED STATES AIR FORCE OFFICER

MANPOWER PLANNING PROBLEM

I. Introduction

1.1 Problem Background

The United States Air Force (USAF) provides national security capabilities in air,

space, and cyberspace. A well-manned force is vital to carrying out its various mis-

sions. To maintain a competent and appropriately sized force, the USAF must attract

and retain talented personnel [10]. This research seeks to improve policies regarding

the management of the commissioned officer corps to support mission readiness.

Management of the commissioned officer corps is a manpower planning problem.

In general, a manpower planning problem is determining the number of personnel,

with specific skill sets, to best meet future operational requirements [18]. The USAF,

along with its sister services, faces many challenges in manpower planning that a

civilian organization does not. The most prominent challenge is the closed nature

of the military. A closed manpower system is one in which new members can only

join the organization at the lowest level. For the USAF, entrance for officers is only

available at the rank of second lieutenant, or the O-1 grade. The only exceptions are in

the medical, dental, and law fields. There are ten ranks (with corresponding grades)

in the officer corps, starting at a second lieutenant (O-1) and ending at a general

(O-10). A new general cannot be hired from outside the system; the individual can

only be hired from the lieutenant general (O-9) pool. The hierarchical nature of the
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system is beneficial in ensuring uniformity of culture, which improves management

[16], but creates difficulties in manpower planning.

Manpower planning must find a balance in meeting both short term and long term

needs. Decisions made for the short term may have impacts that will not be realized

for, potentially, 20 years to come. Currently, manpower planning is conducted by

comparing historical attrition rates to current requirements for each Air Force Spe-

cialty Code (AFSC). An AFSC is an alphanumeric label for a specific career field

within the USAF. Career groups (i.e., sets of career fields) include operations, logis-

tics, support, medical, legal or chaplain, acquisition or finance, special investigation,

special duty, and reporting [12]. Once the “optimal” number of officers is determined

for each accession year group, a “sustainment line” is created for each AFSC. The

sustainment line is used by manpower planning decision makers to determine how

many Airmen are needed for each year group to sustain the career field over 30 years

[35].

The USAF must not only aim to recruit the right number of talented people, but to

keep those people. While the USAF is creating a more professional and technologically

fluent force, the skill sets developed are making service-members more desirable to the

private sector [16]. A balance must be found in recruitment and sustainment through

promotion to avoid a system that does not have enough personnel or one that has too

many. To manage the system, the USAF currently utilizes bonuses and reduction-

in-force (RIF) mechanisms to maintain or reduce its size, respectively. These policy

mechanisms cause career field managers to make constant and costly adjustments to

the changes.

Manpower planning is a complex process wherein decisions must be made even

though there is much uncertainty surrounding the decisions. In this study, a model

is formulated to address the uncertainties in manpower planning. It will also provide
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insight concerning policies for USAF officer accession and sustainment. The research

presented in this thesis addresses the following questions: (1) can the current man-

power policy, with respect to accession and promotion, be improved? and (2) what

is the impact of retention on manpower policy and the attendant costs? The Air

Force Officer Manpower Planning Problem (AFO-MPP), developed by Bradshaw [8],

is extended to study this important issue.

A Markov decision process (MDP) is constructed to model the AFO-MPP. An

MDP models sequential decision making under uncertainty. It is comprised of decision

epochs (or points in time), system states, available actions, state and action dependent

immediate rewards or costs, and state and action dependent transition probabilities

[33]. At each decision epoch, the decision maker (DM) chooses an action based on the

system state. The result of the decision can provide the DM with a reward, and the

system evolves to the next state. As this process continues, a sequence of rewards or

costs is obtained. The objective is to maximize (minimize) expected total discounted

reward (cost). A policy is attained that provides the DM a prescription for making

decisions in the future [33].

In recent years, MDPs have become popular for solving manpower planning prob-

lems [27]. In a general Markov manpower planning model, a relationship between

stock and flow (i.e., movement) of manpower is described over their variation in dis-

crete time. Control over the system is typically accomplished through recruitment

into the system or by varying rates of promotion [27].

In the AFO-MPP, the MDP has yearly decision epochs due to the yearly man-

power authorization decisions made by Congress within the Department of Defense’s

(DoD) Future Years Defense Program [11]. The system states are defined by the

number of officers in the system for each valid AFPC, rank, and commissioned years

of service (CYOS) grouping. The two decision components include: (1) determining
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the number of officers to commission and bring into the system and (2) determining

the number of officers to promote. Costs are based on the under-manned or over-

manned status of each AFSC-rank combination. Finally, the transition probabilities

reflect the uncertain number of officers remaining in the system after a decision is

made. That is, they model the inherent stochasticity of retention rates (i.e., officers

staying in the system). The objective is to minimize the expected total discounted

under-manned and over-manned costs. The decision rule (i.e., manpower policy) in-

dicates the number of officers to commission and the number of officers to promote

for the appropriate AFSC-rank-CYOS combinations given the state of the manpower

system.

Determining a stationary policy for realistically sized problems is computationally

intractable. In order to address this “curse of dimensionality” [30], an approximate

dynamic programming (ADP) algorithm is designed, developed, and tested to attain

high-quality manpower planning policies relative to current practice. A design of ex-

periment (DOE) is conducted to determine which ADP algorithm parameter settings

produce the highest solution quality. Policies are sought that improve upon currently

practiced USAF manpower planning policies.

1.2 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 presents a detailed

background of the sustainment problem, manpower planning models, and related op-

erations research techniques. Chapter 3 describes the MDP model of the AFO-MPP

and the ADP algorithm utilized to solve the model. Chapter 4 gives the computa-

tional experiments to evaluate quality of solutions attained by the ADP algorithm,

as compared to currently practiced manpower policies. Chapter 5 concludes with a

summary of the results and recommendations for future research.

4



II. Literature Review

The goal of manpower planning (MP) is to ensure “that the right people are

available at the right places at the right time to execute corporate [Air Force] plans

with the highest levels of quality,” [24]. Various operations research (OR) techniques

are applied to solve MP problems. In this chapter, prior research utilizing such

techniques is reviewed. The focus, however, is on Markov decision processes (MDPs)

and approximate dynamic programming (ADP). The development and application

of MDPs to model many, smaller discrete stochastic problems is well documented

[33, 43, 44, 45]. Unfortunately, as the size of the system increases, the ability to solve

an MDP becomes computationally intractable. Thus, ADP techniques are applied

to solve the MDP, as they can produce high-quality, implementable solutions [30].

Due to the relative newness of ADP, there are limited examples of previous work on

solving MP problems. Instead, similar resource allocation problems are documented.

2.1 Operations Research to Solve Manpower Planning Problems

Wang [41] proposes the Training Force Sustainment Model (TFSM) for the Aus-

tralian Army and reviews OR techniques typically applied to MP problems to inform

development of his model. The OR techniques include MDPs, simulation, optimiza-

tion, and system dynamics. The intention of the review is to reach beyond military

MP. However, the specific characteristics of the military are discussed. For example,

the military is closed in nature. That is, the military only recruits to fill the lowest

rank and must fill higher ranks utilizing internal promotions. Also, the military uti-

lizes both a push-flow and a pull-flow policy. A push-flow policy fills positions based

on requirements such as an officer fulfilling a time requirement. A pull-flow policy fills

positions through recruitment or promotion only when a position is available [41].
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Simulation.

Simulation is a model of the real-world to imitate system behavior to approxi-

mate key characteristics or behaviors through the collection of statistics under given

conditions [3]. The following papers serve as examples of MP research found in the

literature that employ simulation. Onggo et al. [29] simulate the consequences of

appraisal-system rules of promotion for the European Commission. The simulation

model was created by the authors to demonstrate the likely consequences of various

scenarios, not to produce predictions. This framework allowed comparison between

the existing system and options for changing into a new system.

Blosch and Antony [7] combine computer simulation with experimental design to

analyze the Royal Navy’s manpower planning system. Simplified models are first

built when developing simulations. The simplified model tests the major mechanism

under study. Complex models are then gradually created to add the required level

of accuracy on an agreed benchmark [7]. The strategic objectives for the Royal

Navy include having accurate MP (i.e., ensure the Royal Navy has the right mix of

specialties and grades to perform operational and support tasks required), effectively

deploying manpower, managing careers, and giving advice to ministers.

Manpower planning is not limited to determining recruitment and promotion lev-

els. Tang et al. [40] simulate manpower planning policies to facilitate cogent tactical

and operational decisions concerning service territory size estimation and staffing level

selection for after-sales field service (i.e., customer service). Mean response time, mean

travel time, and max customer service representative utilization were estimated from

the simulation runs to help evaluate the system design from different perspectives.
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Optimization.

In general, optimization is concerned with finding the maxima (minima) of a real

function from an allowable set of variables within a given problem [42]. Workman

[46] develops a linear programming model to plan the generation of an indigenous

security force over an unknown, infinite horizon. The Security Force Generation

Model (SFGM) combines the growth of the enlisted and officer corps into one model,

plans for growth over an infinite horizon, provides a variable-time planning horizon,

and models the growth of the security force through recruitment, a legacy force,

and enlisted accessions. Monthly and annual promotion rates are provided along

with recruitment goals and accessions from the enlisted force. Data from the Afghan

National Army is utilized.

Often, the objective of manpower planning models is to minimize the cost during

recruitment and promotion periods. Cost is due to changes in the system. In Nirmala

and Jeeva [28], the authors use dynamic programming through the Wagner-Whitin

model to generate optimal recruitment and promotion schedules by minimizing the

cost. Recruitment and promotion cohort sizes were assumed known and fixed; under-

staffing was not allowed; two grades were considered; and all costs were known.

Wu [47] proposes a fuzzy linear programming model for manpower allocation

within a matrix organization. A matrix organization, or project, forms project teams

within a line-staff organization. A project combines human and nonhuman resources

to achieve a specific purpose and is assigned to a department. The management

divisions seek to minimize costs under a limited manpower and project budget. The

author’s problem was modeled using fuzzy linear programming and solved with a

two-phase approach. Phase one utilizes a max-min operator and phase two utilizes

an average operator.

Companies seek to avoid high job turnover rates and want to prevent brain-drain
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of manpower [38]. To avoid this, predicting occupational life expectancy or mean

residual life of those leaving is essential. In Sohn et al. [38], a random effects Weibull

regression model is created to forecast these components. Both individual and non-

individual characteristics are represented in the uncertainty. The authors test three

hypotheses concerning turnover and potential reasons for turnover in Korean industry.

Organizations that do not operate on the typical 8-hour work schedule face de-

mand fluctuations and find difficulty in optimizing the size and shape of their work-

force. The United States Postal Service (USPS) main processing and distribution

centers (P&DCs) face just this problem. Bard et al. [4] investigate the USPS P&DCs’

demand fluctuations and workforce size and shape in two parts. First, they use his-

torical data to analyze the demand distribution. Second, they develop and analyze

a stochastic integer programming model to investigate potential end-of-month effects

in demand. Full-time regular employees, part-time regular employees, and part-time

flexible employees must meet the demand for a representative week during the year.

The demand is deterministic and specified at fixed time increments over the baseline

week. The authors were able to find a savings of about 4% by solving a two-stage

recourse problem.

A multi-category workforce planning problem is addressed by Zhu and Sherali

[48]. Functional areas located at different service centers, along with office space

and recruitment capacity constraints, are modeled with fluctuating and uncertain

workforce demand. A deterministic model is developed to accommodate fluctuations

in expected demand. To address demand uncertainty, a two-stage stochastic process

is proposed. The first stage makes recruiting and allocating decisions and the second

stage reassigns workforce demand. This two-stage mixed-integer program is solved

with a Benders’ decomposition-based algorithm to minimize total costs.

The Army Medical Department (AMEDD) has a large number of medical spe-
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cialties, making determining the number of hires and promotions for each specialty a

complex task [5]. The authors introduce an objective force model (OFM), a determin-

istic, mixed-integer linear weighted goal-programming model to optimize manpower

planning for AMEDD’s medical specialist corp. Current practice is a manual ap-

proach that takes months to complete. The OFM uses discrete-event simulation to

verify and validate the results of the deterministic model. The computational effort

is reduced to seconds.

System Dynamics.

System dynamics (SD) takes a holistic approach in investigating complex dynamic

behaviors of systems by analyzing structures and interactions of feedback loops, and

time delays between actions and effects [41]. An et al. [2] create a workforce supply

chain model by viewing project management as demand and viewing human resource

management as supply. An SD modeling technique (i.e., systems thinking) is applied

to find the causality relationships and feedback loops in the workforce supply chain.

Two stocks (projects) are evaluated: proposed project and ongoing project. The input

for the system is the inflow for the proposed project. The output is the execution rate.

The decision rules are the number of people that should be hired during each period

and how to handle skill evolution. Three feedback loops are captured in the model:

a request rate, a corrected rate based on appeared skill gap, and an incorporated

quantity of stock hired. The authors incorporate computer simulation to execute the

SD model.

2.2 Markov Decision Processes

Markov chain theory is used to investigate dynamic behaviors of a system in a

discrete time stochastic process wherein the evolution of the system, over time, is de-
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scribed by random variables [41]. Modeling MP to represent the stocks and flows of

manpower lends naturally to the use of MDPs. A general representation of a discrete

time Markov manpower system (MMS) is studied at discrete time epochs, consists

of a finite number of grades, j, and the number of members in each grade is repre-

sented by a stochastic random variable, nj. The transition probabilities represent the

member moving to the next grade, through either promotion or reversion, or staying

in the same grade [27]. Nilkantan and Roghavendra [27] make the distinction that

while each individual may have their own unique probabilities of promotion, rever-

sion, and remaining stationary, the behavior of the whole grade can be represented

by the average behavior patterns of all individuals. The general MMS also models

the number of recruits to each grade. The authors extend the general MMS model

through control aspects in a hierarchical organization utilizing proportionality poli-

cies. The proportionality policies balance recruitment at every level but the entering

level, with promotions at every level. The attainability, short term control, maintain-

ability, and long term control were also discussed. The models incorporated with the

proportionality restrictions are referred to as f -systems and f -models.

Nicholls [26] utilizes an MMS to analyze a graduate school in Australia’s Doctor

of Business Administration (DBA) program. The program was relatively new and

needed information on expected success rates and expected first time passage to aid

determination of supervisor workload. This system was viewed from both a short-term

and long-term perspective. Candidates exit the system through an absorption state,

either withdrawal or graduation. Data on 23 candidates was utilized to approximate

the transition probabilities. The Markov chain was simplified due to the school’s

ability to have part time students and the closed nature of the system. In this

situation, the closed nature of the system refers to the ability of a student to only

enter the program in the first year.
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Gans and Zhou [17] examine an employee staffing problem within a service orga-

nization. An MDP is created to capture the stochastic nature of employee learning

and employee turnover. Three planning strategies are considered. The first strategy

developed is for the long-term, high-level staffing problem. The second strategy looks

at the medium-term, or mid-level workforce scheduling problem that uses Material

Requirements Planning (MRP). The third strategy is for low-level work assignments

that are viewed moment-by-moment. A telephone call center is described and mod-

eled as a discrete-time, continuous-state space discounted MDP. The state variable

represents the number of people at varying levels on the learning curve (i.e, gaining

experience and speed through experience in handling calls). The MDP is solved via

value iteration. The authors find that a hire-up-to policy is optimal under convexity,

and a myopic policy is optimal otherwise.

The study by Dimitriou et al. [15] was motivated by the Greek debt reduction in

2012 and employed the Multivariate Non-Homogeneous Markov System (MNHMS).

The MNHMS describes a manpower system through both horizontal and vertical

mobility. The stocks (i.e., categories or departmental divisions) help determine the

external recruiting and internal transfers of the system. Internal transfers are broken

into intermobility, transitioning employees horizontally from one department to an-

other, and intramobility, transitioning employees in the same department from one

class to another. Fuzzy goal programming is utilized to model cost and reach the

desired manpower structure.

Markov manpower systems tend to have the underlying assumption that they are

time homogeneous and aperiodic. Gerontidis [20] provides a treatment to periodic

Markov chains, specifically, periodicity in recruitment distribution and wastage prob-

abilities. The parameters and recurrence equations describe the relative structures

across time and the evolution of the expected grade.
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Guerry [22] examines the problem of heterogeneity in a manpower system concern-

ing both observable and unobservable variables. The author introduces a two-step

procedure. The first step addresses homogeneous groups in terms of their transition

probabilities and observable heterogeneity, such as age or gender. The second step

considers heterogeneity in terms of unobservable sources and utilizes the mover-stayer

principle. Movers are characterized by higher promotion probabilities and, therefore,

have faster career growth. Stayers change their grade less frequently, if at all. A hid-

den Markov model is introduced to take into account the specifics of a manpower sys-

tem and both the observable and latent sources of heterogeneity. A Markov-switching

model is also used to model the phenomena of wastage and promotion flows.

In Blosch and Cantala [6], Markovian assignment rules are specified in terms of

agents receiving objects. Both homogeneous and heterogeneous societies are analyzed.

In the heterogeneous societies, agents are charactered by a pair (e.g., age and produc-

tivity). The four natural assignments considered are the seniority rule, the rank rule,

the uniform rule, and the replacement rule. In the seniority rule, the older agents

receive the object. In the rank rule, object j is assigned to the agent with object

j − 1. In the uniform rule, agents have equal probability in attaining the object.

Finally, the replacement rule assigns an object to the entering agent. The transition

probability matrices are computed over assignments generated by assignment rules.

Dimitriou and Tsantas [14] discuss the Generalized Augmented Mobility Model

(GAMM). The GAMM is a Markov chain MP model that incorporates the use of train-

ing courses for existing employees to aid promotion, a preparation class for potential

recruits outside of the organization, and the possibility that those same recruits could

leave the preparation course before being hired. The manpower system is made up

of an internal and external system. Internally, there are grades and training courses

modeled by a non-homogeneous Markov chain. Externally, there is the preparation
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class.

The military must plan for manpower to meet current commitments but must

also fulfill future political and military goals [18]. Gass [18] places individuals in

descriptors, or classes. Under such large personnel systems, such as the military, it

is difficult to track each person individually. Instead, it is convenient to place each

person in a mutually exclusive class. The flows of personnel from one class to another

are described through transition rates. These rates are used to forecast the next

period of personnel inventories if given the correct initial class inventory.

The Army Manpower Long-Range Planning System (MLRPS) projects the United

States Army strength for 20 years to develop long-range manpower plans using

Markov chain-based approaches [19]. Gass et al. [19] break the problem into three

subsystems: the data processing subsystem, the flow model subsystem, and the opti-

mization subsystem. In the data processing subsystem, data is collected to generate

historical and projected rates. The rates become the input for the flow subsystem that

uses a Markov chain model to project the flow of the initial force over a 20-year time

horizon. The output of the Markov chain is the input to the optimization subsystem.

Škulj et al. [37] utilize Markov chain models to aid in attainability and main-

tainability of manpower in the Slovenian armed forces. The authors’ transition prob-

abilities modeled recruitment into Slovenian military segments. They divided the

Slovenian population into 126 segments: six general or non-military and 120 mili-

tary based on their administrative title. The authors quickly identify the difficulty in

solving the MDP model due to the large size and numerous possible transitions. The

authors found all the possible transitions to be challenging to implement in such a

large model. The next section discusses the use of approximate dynamic programming

as a method for solving large-scale MDPs.
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2.3 Approximate Dynamic Programming

When a dynamic program is computationally intractable, approximate dynamic

programming (ADP) can be used to solve the so called “curses of dimensionality” [30].

Dimensionality difficulties can occur in the state space, outcome space, and/or action

space. Any combination of these only makes the problem more difficult. Thus, the

techniques applied in ADP can attain approximate solutions to problems that have

state, outcome, or action variables with millions of dimensions. ADP algorithms have

been shown to produce quality solutions, at times within one percent of optimal. The

algorithms utilize Monte Carlo simulation to sample random outcomes in both the

state and action spaces in order to determine the value of the outcome.

When using approximation techniques, a balance between computational effi-

ciency and the performance of the resulting policy must be taken into consideration

[31]. Further, the architecture of the approximation may aid in overcoming com-

putational challenges. A specially structured approximation architecture could ease

the challenges. For example, linear and separable concave architectures have been

successfully applied to a variety of problems in transportation operations [31].

Song and Huang [39] use the successive convex approximation method (SCAM)

to solve a multistage stochastic MP problem. They utilize a piecewise linear and

convex function to approximate the value function. The authors seek to plan for the

transferring, hiring, or firing of employees among different branches of an organization

with uncertain workforce demand and turnover. The authors were able to solve the

MP problem within 0.02% of the optimal solution, on average.

ADP algorithms and techniques have been applied to Air Force Officer Manpower

Planning Problem (AFO-MPP) through the works of Hoecherl et al. [23] and Brad-

shaw [8]. Hoecherl et al. develop two ADP algorithms to consider accessions and

promotion decisions for multiple AFSCs, officer grades, and year groups. First, the
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authors apply least-squares approximate policy iteration (LSAPI) to determine ap-

proximate policies. The algorithm employs a modified version of the Bellman equation

based on the post-decision state variable. Second, an approximate value iteration al-

gorithm, a variant of the concave adaptive value estimation algorithm, is developed

to identify an improved policy for the current USAF officer sustainment system [21].

In Bradshaw [8], a single AFSC and accessions-only decisions are considered. Here,

an LSAPI is also used to attain solutions. Two MP problem instances are created to

compare to the performance of the ADP technique to a benchmark policy.

Due to the relative newness of ADP, there are limited examples of previous work

on solving MP problems. The following examples are similar resource allocation

problems. Ahner and Parson [1] consider the optimal allocation of weapons to a

collection of targets. The objective is to maximize the reward for destroying the

targets. The problem has two stages. In the first stage, targets are known. In

the second stage, targets arrive in a random distribution. The authors utilize a

solution approach for the dynamic weapon target assignment (DWTA) problem that

involves Monte Carlo sampling to solve the DWTA. The authors were able to solve

to optimality using the approximation.

Rettke et al. [34] formulate an MDP to examine a military medical evacuation

(MEDEVAC) dispatching problem. The ADP approximate policy iteration algorith-

mic strategy of least squares temporal differences (LSTD) is utilized. A representative

planning scenario is created to compare the ADP policy to the myopic policy. The

ADP policy performs up to 31% better than the myopic. Similarly, Davis et al.

[13] sought to optimize a defensive response to a missile attack using LSTD. The

four instances tested indicate that the ADP policy uses minimal computation effort

and achieves a 7.74% optimality gap over the computationally heavy MDP optimal

solution.
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Schneider National, the largest truckload motor carrier in the United States, in

collaboration with CASTLE Laboratory at Princeton University, develop a model to

answer a myriad of questions concerning hiring, estimating work rule changes, man-

aging drivers, and experimenting with new routes [36]. The model seeks to optimize

decisions over time regarding driver allocation to varying loads with different load

characteristics. A state of the resource is defined by an attribute vector that is com-

prised of attributes such as location, domicile, capacity type (i.e., a team of drivers,

a solo driver, or an independent contractor), and others. The loads are also assigned

attributes that aided in determining costs. Each decision indicates whether the truck

should be moved with a load or moved empty with anticipation that the new loca-

tion will yield a greater contribution. The problem is solved by breaking it into two

time stages. A pre-decision state is computed depending on the post-decision state.

Further, the authors perform an ADP double-pass algorithm in which they simu-

late decisions forward in time without updating the value functions; the derivative is

then computed in a backward pass. Schneider required the authors’ model to match

historical data within a specified range. The results closely matched historical data

[36].

Using data from Canadian military airlift operations, Powell et al. [32] examine

the impact of uncertain customer demands and aircraft failure on cost. Myopic policy

decisions are first analyzed and then compared to results obtained through ADP. A

myopic policy is the most elementary policy that does not use forecasted information

or any direct representation of decisions in the future [30]. The authors utilize ADP

to produce robust decisions that are less sensitive to uncertainty. They are able show

that their robust decisions perform better than the myopic policy by reducing the

value of advance information.
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III. Methodology

3.1 Problem Statement

The Air Force Officer Manpower Planning Problem (AFO-MPP) from Bradshaw

[8] is extended to include officer promotion decisions. The decisions concerning how

many officers to hire and how many officers to promote must be made sequentially

over time and under uncertainty. The system level uncertainty results from individual

officer retention outcomes - officers may elect to remain in the system or to exit the

system by separating or retiring. Since current manpower decisions affect the state

and cost of the personnel system in the future, the impact of current hiring and

promotion decisions on the future state of the system must be considered. As such, a

Markov decision process (MDP) model of the AFO-MPP is formulated. The objective

of the MDP is to identify the manpower policy (i.e., hiring and promotion decisions

as a function of the state of the personnel system) that minimizes the expected total

discounted cost of maintaining the required number of officers in the system over an

infinite horizon.

For the formulation of the AFO-MPP as an MDP, the state space indicates the

number of officers in the system within a specific Air Force specialty code (AFSC),

rank, and commissioned years of service (CYOS) combination. The tuple of AFSC-

rank-CYOS is chosen for the state space to reflect the career field, the military pay

grade, and the number of years officers have been in the system. The state space is

limited by only considering officers of the grades O-1 through O-6. General officers,

grades O-7 through O-10, are not considered due to their unique promotion system.

The action space captures how many officers to bring into the system, or how many

O-1 officers to access, and how many officers to promote from one rank to the next.

Officers accessed or promoted at time period t are assumed ready for duty at that
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time. The accession process is simplified because officers can be commissioned at

different points throughout the year due to varying commissioning sources. Similarly,

the promotion process is simplified because officers can be promoted during promotion

boards that take place throughout the year. Officers that are neither assessed nor

promoted will be transitioned from one time period to the next, taking into account

the random retention rates of officers throughout the time period. The retention rates

of officers with different AFSCO-rank-CYOS attributes may differ. The event timing

diagram in Figure 1 displays the transition of officers through the AFO-MPP MDP

model, utilizing notation that will be introduced in the subsequent section.

Figure 1. Event Timing Diagram for AFO-MPP

The costs for the AFO-MPP are due to over-manning and under-manning within

the system. The military must plan for manpower to meet current requirements, but

must also fulfill future requirements [18]. When the requirements are not met, a cost

is incurred. The objective of the MDP is to select a manpower policy that minimizes

expected total discounted cost. A manpower policy is a decision rule that indicates

how many officers to access into the USAF and how many officers to promote given
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the current state of the system. The AFO-MPP is formulated as a discrete-time,

discrete-state MDP.

3.2 MDP Formulation

The MDP model for the AFO-MPP is described as follows:

Decision Epochs

Decisions are made annually about the hiring of new officers into the system and

promoting of officers to the next rank. The set of decision epochs is denoted as follows:

T = {0, 1, 2, . . .}. (1)

The epochs are the points in time at which decisions are made. In this case, the

accession and promotion decisions are made at the beginning of the year.

State Space

The state space of the system is comprised of the number of officers with selected

AFSC, rank, and CYOS attribute combinations. For this thesis, we propose an

aggregate officer replacement model wherein we express the AFSC, rank, and CYOS

of the officer. Let

a ∈ SAFSC = AFSC of an officer,

where SAFSC = {1, 2, . . . , A}, A <∞, denotes the set of AFSCs. Let

r ∈ Srank = rank of an officer,
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where Srank = {1, 2, . . . , 6} denotes the set of ranks, representing officer ranks O-1

through O-6. Let

y ∈ SCY OS = CYOS of an officer,

where SCY OS = {1, 2, . . . , 29} denotes the set of CYOS. It is possible for an officer to

enter the system with enlisted years of service. For the purpose of this thesis, only

commissioned service is considered.

The set S contains the full scope of possible combinations of AFSC a, rank r and

CYOS y. Let

(a, r, y) ∈ S = set of all possible officer AFSC-rank-CYOS attribute combinations,

where S = SAFSC × Srank × SCY OS. Not all combinations are feasible due to the

hierarchical nature of the system. For example, an O-1 would not have 25 CYOS.

Figure 2 indicates the feasible combinations.

Figure 2. Feasible rank-CYOS combinations

The state of the system is determined by the number of officers in AFSC a, of

rank r, and with CYOS y, ∀ (a, r, y) ∈ S. Let

Stary = the number of officers at time t of AFSC a, rank r, and CYOS y. (2)

Note that Stary ∈ N0, ∀ (a, r, y) ∈ S cannot take on negative values because of the
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nature of the personnel system. The pre-decision state is a vector denoted as

St = (Stary)(a,r,y)∈S .

Action Sets

The action at time t indicates the number of officers to be commissioned into

AFSC a at rank r = 1 and the number of officers to be promoted from AFSC a, rank

r, and CYOS y. Let

xt = (xaccesst , xpromotet ) (3)

where

xaccesst = (xaccessta )a∈SAFSC

and

xaccessta ∈ N0,

is the number of officers commissioned into AFSC a at rank r = 1 at time t. Officers

entering the USAF at rank O-1 (i.e., no prior experience) are considered to have zero

CYOS. Let

xpromotet = (xpromotetary )(a,r,y)∈Spromote ,

where

Spromote = ∪a∈SAFSC

{
(a, 1, 1), (a, 2, 3), (a, 3, 9), (a, 4, 14), (a, 5, 19)

}
⊆ S

and

xpromotetary ∈ {0, 1, . . . , Stary}
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is the number of officers promoted from AFSC a, rank r, and CYOS y to AFSC a,

rank r + 1, and CYOS y + 1, effective at time t+ 1.

Transition Probabilities

Attributes AFSC a, rank r, and CYOS y all influence the probability of retention

of a USAF officer. Let

ψary = the probability an officer with attribute tuple (a, r, y) ∈ S

will be retained in the system (i.e., does not separate or retire).

The probability of retention may differ for each AFSC-rank-CYOS combination.

Ŝt+1,ary is a random variable following a binomial distribution with parameters Stary

and ψary. Stated simply, the number of officers with attribute combination (a, r, y)

remaining in the system at time t+ 1 depends on the number in the system at time

t.

The number of officers of AFSC a, rank r, and CYOS y available at time t + 1,

St+1,ary, results from the number of officers of AFSC a, rank r, and CYOS y−1 in the

system at time t, St,a,r,y−1; the number of new officers accessed at time t, xaccesst ; the

number of officers of AFSC a, rank r, and CYOS y − 1 that retain during the time

interval (t, t + 1), Ŝt+1,a,r,y−1; and officer promotions, xpromotet . Officer promotions

occur only during specific promotion windows (as indicated by Spromote). Refer to

Figure 2 to visualize promotion windows.

Retention, accessions, and promotions are modeled via the following transition
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function:

St+1,ary =



Ŝt+1,ary(x
promote
t,a,r−1,y−1;ψa,r−1,y−1) if (a, r − 1, y − 1) ∈ Spromote

Ŝt+1,ary(Star,y−1;ψta,r,y−1) if (a, r, y − 1) ∈ S \ Spromote

xaccessta if (a, r, y) = (a, 1, 1)

Ŝt+1,ary(Sta,r,y−1 − xpromotet,a,r,y−1;ψa,r,y−1) if otherwise.

(4)

The first case denotes officers within a promotion window who will either promote

and retain in the system or leave the system. The second case denotes officers not

in a promotion window. The third case denotes newly accessed officers. The fourth

case denotes officers who are within the promotion window but do not promote. The

transition of officers in the AFO-MPP can be written in the following system dynamics

form:

St+1 = SM(St, xt, Ŝt+1).

Costs

The cost for the AFO-MPP is due to over-manning and under-manning within

the personnel system. The military must plan for manpower to meet current require-

ments, but must also fulfill future requirements as well [18]. When the requirements

are not met, a cost is incurred. To model the requirements, a value S̄ar is speci-

fied that indicates the number of officers required for each AFSC a and rank r. Let

coar > 0 denote the cost of an over-manned rank and cuar > 0 denote the cost of an

under-manned rank for each AFSC a and rank r. The over-manned cost function for
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each AFSC a and rank r combination is

Oar(St, xt) =


coar

(
max{(xta +

∑
y∈SCY OS Stary)− S̄ar, 0}

)
if r = 1,

coar

(
max{(

∑
y∈SCY OS Stary)− S̄ar, 0}

)
if r > 1.

(5)

There is a separate cost function for O-1 officer surplus because officers accessed

during time period t must be included. Officers of ranks O-2 through O-6 are modeled

the same. The under-manned cost function for each AFSC a and rank r combination

is

Uar(St, xt) =


cuar

(
max{(S̄ar − (xta +

∑
y∈SCY OS Stary), 0}

)
if r = 1,

cuar

(
max{S̄ar − (

∑
y∈SCY OS Stary), 0}

)
if r > 1.

(6)

Again, there is a separate cost function for O-1 officer shortages because officers

accessed during time period t must be included. Officers of ranks O-2 through O-6

are modeled the same. Thus, a single period cost function for the AFO-MPP is the

sum of the over-manned and under-manned costs. Utilizing Equations 5 and 6, the

cost function is

C(St, xt) =
∑

(a,r)∈SAFSC×Srank

Oar(St, xt) + Uar(St, xt). (7)

Objective Function

Having described all components of the MDP model, through Equations 1, 2, 3,

4, and 7, the objective for the AFO-MPP can be formulated as:

min
π∈Π

E
{ ∞∑

t=0

γtC(St, xt)

}
. (8)

Identifying a policy π ∈ Π that minimizes the expected total discounted cost is the

goal of this thesis. The cost is discounted through use of γ. The optimal policy
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provides the number of second lieutenants to hire and the number of officers of grade

O-2 through O-6 to promote in each rank during each time period that would be the

least costly. Solving Bellman’s equation provides the optimal policy:

V (St) = min
xt

(
C(St, xt) + γE

{
V (SM(St, xt, Ŝt+1))|S0

})
.

3.3 Approximate Dynamic Programming Algorithms

Approximate Policy Iteration

Due to its high dimensionality, the AFO-MPP is solved using an ADP technique.

ADP provides a mechanism to approximate the value function without having to

enumerate the state space and compute the value of each state-action pair. Monte

Carlo simulations are employed in ADP algorithms to sample the random outcomes

in the state and action spaces and determine the value of these outcomes. If a

sufficiently large state space is sampled, some ADP algorithms are shown to converge

to optimality [30]. The use of Monte Carlo simulation alleviates the need to solve for

the value of each state-action pair. Utilization of the post-decision state convention

can reduce the computational complexity in ADP algorithms [30]. The post-decision

state, Sxt , considers the state of the system immediately prior to the revelation of

exogenous changes to the system, allowing the expectation to be computed outside

of the minimization operator. Bellman’s equation is represented as follows when the

post-decision state is incorporated:

V x(Sxt−1) = E
{

min
x
C(St, x) + γV x(Sxt )|Sxt−1

}
. (9)

Approximate policy iteration (API) is an ADP algorithmic strategy that evaluates

the values associated with states and outcomes for a fixed policy, or set of actions, for
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an MDP problem. API’s benefit is the ease with which values of policies are found

[30]. The policy iteratively updates based on the the observed values of the fixed

policy. API with parametric modeling and linear basis functions allow linear regres-

sion techniques to be applied to estimate a parameter vector θ to fit a value function

approximation using the selected basis functions. The value function approxima-

tion utilized in the AFO-MPP API implementation leverages the post-decision state

variable convention and is denoted below:

V̄ x(Sxt ) =
∑
f∈F

θfφf (S
x
t ) = θ>φ(Sxt ), (10)

where
(
φf (S

x
t )
)
f∈F

is the set of basis functions for the post-decision state. Substi-

tuting this equation into Bellman’s equation gives the foundation for least squares

value function approximation:

θTφ(Sxt−1) = E
{
C(St, X

π(St|θ)) + γθ>φ(Sxt )|Sxt−1

}
(11)

where Xπ is the policy function for the MDP model.

Inner Minimization Problem

Even with the dimensionality reduction attained by using the post-decision state

variable, the optimality equation remains computationally intractable due to the high

dimensionality of the feasible action space. To determine the policy function, as given

by Xπ, an inner minimization problem (IMP) is formulated and solved to determine

which action, xt, should be taken. The IMP is first defined as a non-linear integer

program.
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Xπ(S|θ) = argmin
x

∑
a∈SAFSC

[∣∣∣xaccess + Sa,1,1 + Sa,1,2 − S̄a,1
∣∣∣]+ γ

∑
f∈F

θfφf

s.t. xpromotea,1,1 ≤ Sa,1,1,∀a ∈ SAFSC

xpromotea,2,3 ≤ Sa,2,3,∀a ∈ SAFSC

xpromotea,3,9 ≤ Sa,3,9,∀a ∈ SAFSC

xpromotea,4,15 ≤ Sa,4,15,∀a ∈ SAFSC

xpromotea,5,19 ≤ Sa,5,19,∀a ∈ SAFSC

xaccessa ∈ N0, ∀ a ∈ SAFSC

xpromotea,r,y ∈ N0, ∀ (a, r, y) ∈ Spromote

The t subscript is dropped for notational simplicity. To obtain a tractable approach,

the following five linear basis functions are developed. Moreover, only one AFSC

is considered to simplify exposition of the approach. The basis functions φf , f =

1, 2, . . . , 5, are defined as:

φ1 =
∣∣∣ψa,1,1xpromotea,1,1 + ψa,2,2Sa,2,2 + ψa,2,3(Sa,2,3 − xpromotea,2,3 )− S̄a,2

∣∣∣,
φ2 =

∣∣∣ψa,2,3xpromotea,2,2 +
8∑
y=4

ψa,3,ySa,3,y + ψa,3,9(Sa,3,9 − xpromotea,3,9 )− S̄a,3
∣∣∣,

φ3 =
∣∣∣ψa,3,9xpromotea,3,9 +

13∑
y=10

ψa,4,ySa,4,y + ψa,4,14(Sa,4,14 − xpromotea,4,14 )− S̄a,4
∣∣∣,

φ4 =
∣∣∣ψa,4,14x

promote
a,4,14 +

18∑
y=15

ψa,5,ySa,5,y + ψa,5,19(Sa,5,19 − xpromotea,5,19 )− S̄a,5
∣∣∣,

φ5 =
∣∣∣ψa,5,19x

promote
a,5,19 +

28∑
y=20

ψa,6,ySa,6,y − S̄a,6
∣∣∣.
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The post-decision state is implicit in the formulation of the basis functions (i.e.,

SM,x(St, xt) = Sa,r,y − xpromotea,r,y ∀(a, r, y) ∈ Spromote\(a, 1, 1)). The basis functions de-

fine the number of officers under and over the target value of officers, S̄a,r, for each

AFSC a ∈ SAFSC and rank r, r = 2, 3, . . . , 6. For example, φ1 is the number of second

lieutenants promoting to first lieutenant, the number of first lieutenants remaining

first lieutenant, and removes the number of first lieutenants promoting to captain.

The absolute value of the officers remaining in the first lieutenant rank, minus the

target value, determines the number of officers under or over.

The IMP is then transformed from a non-linear integer program into a linear in-

teger program by replacing each absolute value with a new decision variable, z.
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Xπ(S|θ) = argmin
z,x

z1+γ
(
θ1z2 + θ2z3 + θ3z4 + θ4z5 + θ5z6

)
s.t. z1 ≥ ±xaccess + Sa,1,1 + Sa,1,2 − S̄a,1

z2 ≥ ±γθ1(ψa,1,1x
promote
a,1,1 + ψa,2,2Sa,2,2 + ψa,2,3(Sa,2,3 − xpromotea,2,3 )− S̄a,2)

z3 ≥ ±γθ2(ψa,2,3x
promote
a,2,2 +

8∑
y=4

ψa,3,ySa,3,y + ψa,3,9(Sa,3,9 − xpromotea,3,9 )− S̄a,3)

z4 ≥ ±γθ3(ψa,3,9x
promote
a,3,9 +

13∑
y=10

ψa,4,ySa,4,y + ψa,4,14(Sa,4,14 − xpromotea,4,14 )− S̄a,4)

z5 ≥ ±γθ4(ψa,4,14x
promote
a,4,14 +

18∑
y=15

ψa,5,ySa,5,y + ψa,5,19(Sa,5,19 − xpromotea,5,19 )− S̄a,5)

z6 ≥ ±γθ5(ψa,5,19x
promote
a,5,19 +

28∑
y=20

ψa,6,ySa,6,y − S̄a,6)

xpromotea,1,1 ≤ Sa,1,1

xpromotea,2,3 ≤ Sa,2,3

xpromotea,3,9 ≤ Sa,3,9

xpromotea,4,15 ≤ Sa,4,15

xpromotea,5,19 ≤ Sa,5,19

xaccessa ∈ N0,∀ a ∈ SAFSC

xpromotea,r,y ∈ N0, ∀ (a, r, y) ∈ Spromote

zi ≥ 0, i = 1, 2, . . . , 6 (12)

Least Squares Temporal Differences

The least squares temporal differencing algorithm is an on-policy algorithm that

minimizes the sum of the temporal differences, or Bellman’s error, for approximating

the estimation of the true value function [30]. Minimizing Bellman’s error minimizes
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the difference between the approximation of the value function and the observed value

of the approximations. The estimator for the least squares Bellman error minimization

is as follows:

θ̂ = [(Φt−1 − γΦt)
>(Φt−1 − γΦt)]

−1(Φt−1 − γΦt)
>Ct, (13)

where Φt−1 is a matrix of basis function evaluations for the sampled post-decision

states, Φt is a matrix of basis function evaluations for the sampled post-decision

states in the next period, and Ct is a vector of observed costs of the period in each

iteration. θ is smoothed, allowing algorithm convergence to slow [30], utilizing gen-

eralized harmonic smoothing. The formula for smoothing is is as follows:

a

a+ n− 1
. (14)

Bradtke and Barto [9] first introduced LSTD. A variant, utilizing value function ap-

proximations around post-decision states, as recommended by Powell [30], is outlined

in Algorithm 1.
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Algorithm 1 API Algorithm

1: Step 0: Initialize θ0.
2: Step 1:
3: for n=1 to N (Policy Improvement Loop)
4: Step 2:
5: for m=1 to M (Policy Evaluation Loop)
6: Generate a random post-decision state, Sxt−1,m.
7: Record basis function evaluation φ(Sxt−1,m).
8: Simulate transition to next epoch, obtain a pre-decision state, St,m.
9: Determine decision x = Xπ(St,m|θn−1) by solving inner minimization prob-

lem (IMP).
10: Compute post-decision state Sxt,m.
11: Record cost C(St,m, xt).
12: Record basis function evaluation φ(Sxt,m)
13: end for
14: End
15: Update θn using Equation 13 and Equation 14.
16: end for
17: Return Xπ(St|θN) and θN .
18: End

A Latin hypercube sampling (LHS) technique is used to generate the random

sample of post-decision states for Step 2 of Algorithm 1. A benefit in using LHS is

that it allows for uniform sampling across all dimensions.
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IV. Computational Results

This chapter applies the approximate dynamic programming (ADP) techniques

outlined in Chapter 3 to the U.S. Air Force officer manpower planning problem (AFO-

MPP). ADP algorithm features are investigated to determine the impact on solution

quality. An experimental design is conducted in MATLAB to determine which fea-

tures produce the most superior results as compared to the benchmark policy. Six

scenarios for the AFO-MPP are investigated. An experimental design is executed for

each scenario to test the performance of the ADP algorithm against the benchmark

policy and determine the computational effort required.

Benchmark Policy.

The United States Air Force (USAF) currently determines accession rates utilizing

retention rates in comparison to the desired force end strength. The goal is to access

a number of officers every year, over a thirty year time horizon, to maintain the

desired end strength. If the current state of the system is under-manned, the number

of officers needed to maintain end strength, plus the gap in force, are accessed. For

example, consider a situation wherein the desired end strength is 650 officers and

the retention rates indicate that 28 officers should be accessed every year for thirty

years to maintain the force. If the current state of the system has 610 officers, 40

additional officers should be accessed, for a total of 68 officers. If the current state

of the system is over-manned, just the number of officers needed to maintain end

strength are accessed. For example, if the current state of the system has 660 officers,

only the 28 officers needed to maintain a 650 end strength force are accessed.
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Experimental Design.

A set of experiments is constructed to evaluate the proposed ADP algorithm’s

solution quality and computational effort by studying the impact of systematically

varying different features of the ADP algorithm and certain Markov decision process

(MDP) parameters [25]. The policy resulting from the ADP algorithm is assessed

based on its improvement over a benchmark policy for the AFO-MPP. The benchmark

policy is defined based on information provided by Headquarters Air Force (HAF-A1)

on the 61A Career Field. The response variable for the design of experiments is the

mean total discounted cost of the ADP policy and the mean total discounted cost

of the benchmark policy. The half-width for the mean cost is reported at the 95%

confidence level. The computation times for the ADP algorithm are recorded to

measure the computational effort needed to perform the ADP algorithm.

Four algorithmic features for the AFO-MPP are investigated. A fifth feature, the

utilization of instrumental variables, or solely employing the Bellman error minimiza-

tion, was screened out from the final design. The presence of instrumental variables

increases the cost of the ADP policy in all situations as compared to the cost with-

out the use of instrumental variables. The first algorithmic feature considered is the

number of policy improvement (outer) loops (N), set to 25 and 50. The second fea-

ture considered is the number of policy evaluation (inner) loops (M), set to 1,000

and 5,000. The third feature considered is a regularization parameter (η), set at 10

and 100. The final feature examined is the parameter for the generalized harmonic

smoothing function, a, found in Equation 14. The low factor setting for a is a = 1

to study how simple harmonic smoothing affects the response. The high factor set-

ting for a is a = 10. This allows the algorithm convergence to slow [30]. Table 1

summarizes the algorithmic features and their levels.

A 24 full factorial design with five replicates is implemented. One replicate can
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Table 1. Design Factor Settings

Factor Low High
Policy Improvement (N) 25 50
Policy Evaluation (M) 1000 5000
Regularization (η) 10 100
Harmonic Smoothing (a) 1 10

be seen in Table 2. All terms are free from aliasing. This design investigates the

four selected features in five replicates, for a total of 80 runs. When applying this

experimental design, the ADP policy is created by calculating the θ coefficients for

the basis functions from the implementation of the ADP algorithm. Each of the 80

runs resulted in a different θ coefficient vector. Once obtained, the θ coefficients are

utilized to conduct a simulation for both the ADP policy and the benchmark policy

over a 30 year horizon for 30 replications per treatment to obtain the statistics of

the response variables. Common random numbers (CRN) were utilized to reduce

variance.

Table 2. Full Factorial Replicate

N M η a
25 1000 10 1
25 1000 10 10
25 1000 100 1
25 1000 100 10
25 5000 10 1
25 5000 10 10
25 5000 100 1
25 5000 100 10
50 1000 10 1
50 1000 10 10
50 1000 100 1
50 1000 100 10
50 5000 10 1
50 5000 10 10
50 5000 100 1
50 5000 100 10
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Experimental Results.

The different scenarios tested can be found in Table 3. The retention rates of

15 different commissioning sources were averaged and used to define ψary for three

of the scenarios. The average retention rate was then decreased by 4.5%, and this

modified (i.e., “deflated”) retention rate was used to define ψary for the remaining

three scenarios. The starting state of the system is also investigated. In Scenarios 1

and 2, the initial number of officers in each rank is equal to the target requirement

for that rank. For example, if S̄a,2,y = 200, there are 200 captains in the starting

state. These starting states are considered “on target.” Also investigated were the

cases where there are more junior officers in the starting state than senior officers

(“bottom heavy”) and where there are more senior officers in the starting state than

junior officers (“top heavy”).

Table 3. Scenarios

Scenario Retention Rate Starting State
1 Average On Target
2 Deflated On Target
3 Average Bottom Heavy
4 Deflated Bottom Heavy
5 Average Top Heavy
6 Deflated Top Heavy
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For each scenario, the best θ is used to determine the performance of the ADP

algorithm as measured by the mean cost and its 95% confidence interval. These results

are compared to the 95% confidence interval for the benchmark policy. Refer to Table

4 for the results. In Scenarios 1 and 2, the ADP policy performs significantly better

than the benchmark policy. In Scenarios 3 and 4, the benchmark policy performs

significantly better than the ADP policy. In Scenarios 5 and 6, neither policy performs

significantly better than the other. However, it should be noted that the confidence

interval for the ADP policy is tighter in all scenarios, suggesting the ADP policy to

be more dependable than the benchmark.

Table 4. LSTD Results: Quality of Solution with the Best θ

Scenario
Algorithm Parameters

(N , M , η, a)
ADP

95% CI
Benchmark

95% CI
1 25, 5000, 10, 10 66.72± 0.52 121.38± 10.24
2 50, 1000, 100, 10 88.69± 0.29 158.29± 10.30
3 50, 1000, 10, 10 181.48± 0.29 127.88± 14.40
4 50, 1000, 10, 1 191.39± 0.50 163.44± 9.85
5 50, 1000, 100, 10 147.58± 0.21 148.22± 24.97
6 50, 5000, 100, 10 161.13± 0.25 177.35± 16.80

Table 5 refers to how robust the ADP algorithm is in each scenario. The five

runs indicate the average cost of thirty iterations of five different θ-vectors. The

best overall mean cost is reported with the corresponding algorithm parameters. It

should be noted that the best mean found in Table 4 may have different algorithm

features than those presented in Table 5. In fact, only Scenario 6 contains the overall

minimum cost and the minimum averaged cost.
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Table 5. LSTD Results: Robustness of Solutions

Scenario
Algorithm
Parameters

(N , M , η, a)
Run 1 Run 2 Run 3 Run 4 Run 5 Mean

Standard
Deviation

1 50, 5000, 100, 10 77.36 66.80 66.91 66.83 67.02 68.99 4.68
2 50, 1000, 100, 10 92.79 92.81 92.47 92.71 88.69 91.90 1.80
3 25, 1000, 100, 1 202.85 203.38 181.96 181.74 181.68 190.32 11.68
4 50, 5000, 10, 10 211.90 191.48 191.55 211.88 211.68 203.70 11.12
5 50, 5000, 10, 1 156.17 155.63 155.51 155.88 155.65 155.77 0.26
6 50, 5000, 100, 10 161.60 161.47 161.13 161.33 161.61 161.43 0.20

Meta-Analysis on Algorithmic Features.

The four ADP LSTD algorithm parameters, policy improvement (N), policy eval-

uation (M), regularization (η), and harmonic smoothing (a), were tested for signif-

icance when determining the computational time it took to determine the θ-vectors

for average retention, the computational time it took to determine the θ-vectors for

deflated retention, and the cost for each of the six scenarios.

Table 6 summarizes the parameters that significantly impacted the cost per sce-

nario. In Scenario 1, the harmonic smoothing a parameter and the interaction be-

tween the policy improvement, N , regularization, η, and harmonic smoothing pa-

rameters were significant at the 95% confidence interval. Refer to the table to see

which parameters and interactions become significant at the 90% confidence inter-

val. Scenario 2 did not contain any parameters of significance at the 95% confidence

level. However, at the 90% confidence level, the interaction between the policy im-

provement and the harmonic smoothing parameters becomes significant. In Scenario

3, the interaction of the policy improvement, regularization, and harmonic smooth-

ing parameters were significant. In Scenario 4, the interaction of the regularization

and harmonic smoothing parameters was significant. In Scenario 5, the harmonic

smoothing and the interaction between the policy improvement, regularization, and

harmonic smoothing parameters were significant. Finally, in Scenario 6, the policy

37



evaluation, M , the interaction between policy improvement and regularization, and

the interaction between the regularization and harmonic smoothing parameters were

significant.

Table 6. LSTD Results: Parameter P-Values

Term Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
N 0.798 0.194 0.832 0.762 0.294 0.134
M 0.164 0.309 †0.084 0.997 0.886 ?0.033
η 0.198 0.102 0.182 0.831 0.162 0.584
a ?0.022 0.228 0.205 0.538 ?0.006 0.278
N ·M 0.458 0.324 0.430 †0.092 0.380 0.138
N · η 0.393 0.227 0.732 0.505 0.450 ?0.002
N · a †0.063 †0.063 †0.059 0.872 †0.055 0.539
M · η 0.788 0.197 0.687 0.831 0.766 0.120
M · a 0.193 0.249 0.271 0.170 0.211 0.377
η · a 0.804 0.250 0.732 ?0.016 0.255 ?0.001
N ·M · η †0.059 0.522 0.386 0.183 0.597 0.884
N ·M · a 0.222 0.177 0.178 0.558 0.179 0.530
N · η · a ?0.017 0.171 ?0.042 0.698 ?0.023 0.916
M · η · a 0.426 0.155 0.346 0.673 0.731 0.704
N ·M · η · a 0.175 0.658 0.821 0.980 0.987 0.945

? denotes statistical significance at the 95% confidence level
† denotes statistical significance at the 90% confidence level

Scenario 1.

The ADP policy has the best performance in Scenario 1 when compared to both

the benchmark and all other scenarios. It is likely that the promotion decisions in

the ADP policy cause it to outperform the benchmark. The benchmark policy has

deterministic promotion rates based only on rank, whereas the ADP policy utilizes

an inner minimization problem (IMP), as found in Equation 12.

The most robust θ was with algorithmic features of N = 50,M = 5, 000, η = 100,

and a = 10. The best minimal average cost can be seen in Run 2. The standard

deviation of the five runs is 4.68. To improve the policy further, exploring the algo-

rithmic parameters N , a, and η, could increase policy performance and decrease the
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average cost found in Table 4.

Scenario 2.

In Scenario 2, the ADP policy still outperforms the benchmark policy. The cost,

however, does increase as compared to Scenario 1. It is likely that the deflated

retention rates impact the cost. The most robust θ was with algorithmic features

of N = 50,M = 1, 000, η = 100, and a = 10. None of the algorithmic parameters

have statistical significance at the 95% confidence level, and only the interaction of

N and η are statistically significant at the 90% confidence level. This indicates that

the parameter levels chosen do not accurately capture the variance in the results.

To improve the policy, the experiment should be run at different algorithmic feature

levels.

Scenario 3.

Scenario 3 investigates the cases when there are more junior officers (i.e., second

lieutenants, first lieutenants, and captains) in the starting state than senior officers

(i.e., majors, lieutenants colonels, and colonels) and the average retention rate is

utilized. The average minimal cost more than doubles from the on target/average

case in Scenario 1. Also, the benchmark policy outperforms the ADP policy with

statistical significance. The basis functions utilized for this ADP policy capture the

absolute value of officers either over or under the targeted value. Exploring the

number of officers in each rank or adding value to higher ranking officers in the basis

function could improve overall ADP policy output.

The most robust θ was with algorithmic features of N = 25,M = 1, 000, η = 100,

and a = 1. The best minimal average cost can be seen in Run 5. The standard

deviation of the five runs is 11.68. The standard deviation is larger than what was
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found in Scenarios 1 and 2. This is likely due to inadequate selection of the ba-

sis functions and the increased inherent variance of the retention random variables.

While exploring the algorithmic parameters of N , M , a, and η could increase policy

performance and decrease the average cost found in Table 4, it would likely not be

enough to outperform the benchmark.

Scenario 4.

Similarly to Scenario 3, Scenario 4 investigates the starting state where there

are more junior officers than senior officers. However, the deflated retention rate is

now utilized. As with Scenario 2, the ADP policy performs worse with the deflated

retention rates as compared to the average retention rates utilized in Scenario 3. Here,

the benchmark policy outperforms the ADP policy with statistical significance.

The most robust θ was with algorithmic features of N = 50,M = 5, 000, η = 10,

and a = 10. The best minimal average cost can be seen in Run 2. The standard

deviation of the five runs is 11.12. Again, this is higher than the standard deviations

found in Scenarios 1 and 2. While exploring the algorithmic parameters of N , M , a,

and η could increase policy performance and decrease the average cost found in Table

4, it would likely not be enough to outperform the benchmark. The selection of basis

functions should be further explored.

Scenario 5.

Scenario 5 investigates the cases when there are more senior officers (i.e., majors,

lieutenants colonels, and colonels) in the starting state than junior officers (i.e., second

lieutenants, first lieutenants, and captains) and the average retention rate is utilized.

The average minimal cost improves as compared to Scenarios 3 and 4, but it does

not statistically outperform the benchmark policy. However, it should be noted that
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the variance in the ADP policy is much smaller than the variance in the benchmark

policy, proving it to be a more reliable policy.

The most robust θ was with algorithmic features of N = 50,M = 5, 000, η = 10,

and a = 1. The best minimal average cost can be seen in Run 3. The standard

deviation of the five runs is 0.26. This standard deviation is smaller than those

seen in all previous scenarios. Exploring the algorithmic features of N , a, and η could

increase policy performance and decrease the average cost found in Table 4. The basis

functions suggested in Scenario 3 should be explored for this scenario to determine if

it could perform over the benchmark policy with statistical significance.

Scenario 6.

Similarly to Scenario 5, Scenario 6 investigates the cases when there are more

senior officers in the starting state than junior officers. However, the deflated retention

rate is now utilized. As with Scenarios 2 and 4, the ADP policy performs worse

with the deflated retention rates as compared to the average retention rates utilized

in Scenario 5. The ADP policy does not outperform the benchmark policy with

statistical significance. However, it should be noted that the variance in the ADP

policy is much smaller than the variance in the benchmark policy, proving it to be a

more reliable policy.

The most robust θ was with algorithmic features of N = 50,M = 5, 000, η = 100,

and a = 10. The best minimal average cost can be seen in Run 3. Scenario 6 has

the best standard deviation across all scenarios with a value of 0.20. Exploring the

algorithmic features of N , M , a, and η could increase the policy performance and

decrease the average cost found in Table 4. The basis functions suggested in Scenario

3 should be explored for this scenario to determine if they could outperform the

benchmark policy with statistical significance.
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V. Conclusions

5.1 Conclusions

This thesis seeks to advance the work done by Bradshaw [8] on the United States

Air Force Officer Manpower Planning Problem (AFO-MPP). The AFO-MPP models

officer accessions, promotions, and the uncertainty of retention rates. The objective

for the AFO-MPP is to identify the policy for accession and promotion decisions that

minimizes the expected total discounted cost of maintaining the required number of

officers in the manpower system over an infinite time horizon. The AFO-MPP is

formulated as an infinite-horizon Markov decision problem (MDP), and a policy is

found using approximate dynamic programming. A least-squares temporal differenc-

ing (LSTD) algorithm is employed to determine the best approximate policies. Six

computational experiments are conducted with varying retention rates and officer

manning starting conditions.

In Scenarios 1 and 2, the ADP policy outperforms the benchmark policy (i.e.,

current United States Air Force policy) with statistical significance. In Scenarios 3

and 4, the benchmark policy outperforms the ADP policy. In Scenarios 5 and 6, there

is no statistical significance between the ADP and benchmark policies. However, the

variance in the ADP policy is smaller, indicating a more reliable system as compared

to the benchmark. The higher average costs found in Scenarios 3-6 indicate that the

basis functions selected were not appropriate for these cases.

In general, it appears the algorithmic parameters chosen (i.e., policy improvement

N , policy evaluation M , regularization η, and harmonic smoothing a), were appropri-

ate. Each scenario, other than Scenario 2, has parameter and parameter interaction

statistical significance at the 95% confidence level. At the 90% confidence level, all

scenarios indicate parameter and parameter interaction statistical significance.
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5.2 Future Work

The work of this thesis expands the preliminary work of the AFO-MPP. Future

work should take this expansion of the AFO-MPP and refine the LSTD algorithm,

through use of different basis functions, to improve performance for Scenarios 3-6.

Further, applying an alternate ADP technique and algorithm, such as least squares

policy evaluation (LSPE), could provide an improved ADP policy as compared to the

benchmark.

A more precise indication of the benchmark policy could also lead to a better

comparison against the ADP policy proposed. The benchmark policy was modeled

after speaking to appropriate personnel analysts. However, the benchmark policy

could have added complexity that was not captured due to unfamiliarity with the

system.

This work only explored a single Air Force Specialty Code (AFSC) but is capable

of looking at multiple AFSCs. It is not uncommon for officers to switch fields during

their career. Exploring the cross-flow of officers between AFSCs would add realism

and an additional decision for the ADP policy utilized.

Finally, the algorithmic parameters of the LSTD algorithm should be further

investigated. The parameters used were found to be significant, but the values used

may not have been the best choices. By exploring different parameter values, a better

performing ADP policy could be found.
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