

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

 Technical Report

1230

Leveraging Intel SGX Technology to
Protect Security-Sensitive Applications

J.M. Sobchuk
S.R. O’Melia

D.M. Utin
R.I. Khazan

29 January 2018

This material is based upon work supported by the
Department of the Air Force under Air Force Contract No.

FA8721-05-C-0002 and/or FA8702-15-D-0001.

Approved for public release: distribution unlimited.

This report is the result of studies performed at Lincoln Laboratory, a federally funded research and
development center operated by Massachusetts Institute of Technology. This material is based on
work supported by the Department of the Air Force under Air Force Contract No. FA8721-05-C-0002
and/or FA8702-15-D-0001. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the Department
of the Air Force.

© 2018 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb
2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-
7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the
U.S. Government may violate any copyrights that exist in this work.

Intel and Xeon are registered trademarks of Intel Corporation in the U.S. and/or elsewhere.
Rust is a registered trademark of the Mozilla Foundation in the U.S. and/or elsewhere.
Windows is a registered trademark of Microsoft in the U.S. and/or elsewhere.
Linux is a registered trademark of Linus Torvalds in the U.S. and/or elsewhere.
Ubuntu is a registered trademark of Canonical Ltd. in the U..S and/or elsewhere.
Arm and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the U.S. and/or elsewhere.
OpenSSL is a registered trademark of the OpenSSL Software Foundation in the U.S. and/or elsewhere.
Github is a registered trademark of Github, Inc. in the U.S. and/or elsewhere.
Apache is a registered trademark of the Apache Software Foundation in the U.S. and/or elsewhere

Leveraging Intel SGX Technology to Protect Security-Sensitive Applications

J.M. Sobchuk

S.R. O’Melia

D.M. Utin

R.I. Khazan

Group 53

29 January 2018

Massachusetts Institute of Technology
Lincoln Laboratory

Technical Report 1230

Lexington Massachusetts

Approved for public release: distribution unlimited.

This page intentionally left blank.

iii

ABSTRACT

This report explains the basic process by which Intel Software Guard Extensions (SGX) can be
leveraged into an existing codebase to protect a security-sensitive application. Intel SGX provides user-
level applications with hardware-enforced confidentiality and integrity protections. These protections apply
to all three phases of the operational data lifecycle: at rest, in use, and in transit. SGX shrinks the trusted
computing base (and therefore the attack surface) of the application to only the hardware on the CPU chip
and the portion of the application’s software that is executed within the protected enclave. The SGX SDK
enables relatively straightforward integration into existing C/C++ codebases while still ensuring program
support for legacy and non-Intel platforms.

This page intentionally left blank.

v

ACKNOWLEDGMENTS

The authors would like to thank Walt Bastow, Kosta Feldman, Seth Toplosky, and Mark Yeager of
MIT Lincoln Laboratory for their contributions to the project on which the SGX implementation methods
described in this paper were put into practice.

This page intentionally left blank.

vii

TABLE OF CONTENTS

 Page

 ABSTRACT iii

 ACKNOWLEDGMENTS v

 LIST OF ILLUSTRATIONS ix

 LIST OF TABLES xi

1. INTRODUCTION 1

1.1 The need for hardware protections 1
1.2 What is SGX? 1
1.3 Benefits 2
1.4 Caveats 4

2. ARCHITECTING PROGRAM INTO SENSITIVE AND NON-SENSITIVE PARTS 5

3. PROJECT SETUP AND ASSUMPTIONS 7

3.1 Development environment 7
3.2 Installing the SDK 7
3.3 Terminology 7

4. SGX IMPLEMENTATION 9

4.1 Building with SGX 9
4.2 Modify application and enclave code 12

5. PROTECTING SENSITIVE DATA 15

5.1 Sealing 15
5.2 Remote Attestation 15

6. OPTIMIZATIONS 17

6.1 Shim layer 17
6.2 Dual code paths 17
6.3 Code refactoring 18

viii

TABLE OF CONTENTS
(Continued)

 Page

6.4 Macro definitions 18
6.5 Error handling 18

7. RELATED WORK 21

7.1 Arm TrustZone and AMD Secure Processor 21
7.2 Intel TXT 21
7.3 Crypto libraries in SGX 21
7.4 Intel KPT 21

8. CONCLUSION 23

 REFERENCES 25

ix

LIST OF ILLUSTRATIONS

 Figure Page
 No.

1 Attack surface of a security-sensitive application without SGX enclaves (left) and
with SGX enclaves (right). 3

2 Snippet of basic SGX settings defined at the beginning of the Makefile provided in
the SDK’s SampleEnclave project. 9

3 Setting linker flags for the application. 10
4 Example flags used for enclave compilation. 10
5 Example of an encryption function prototype and its ecall counterpart defined in

the EDL file. 11
6 Partial code to demonstrate call to sgx_create_enclave(). 13
7 The key material for this encryption function is stored in a C++ vector. To pass it

through the enclave boundary, it is converted to a buffer within the application and then
manually copied back into a vector defined within protected enclave memory. 13

8 Example of the data unsealing process. 15
9 The API for the security-sensitive code is the same whether the “legacy” or

“SGX-enabled” version of the program is built. 17
10 If the USING_SGX macro is defined, the application code includes the shim layer’s

header file; otherwise it includes the header of the actual security-sensitive code. 18
11 Exception throwing and catching can be emulated across the enclave boundary by

setting a flag variable within the enclave when an error is caught and checking that
flag once the ecall returns to the application. 19

This page intentionally left blank.

xi

LIST OF TABLES

 Table Page
 No.

1 Comparison of Hardware-Based Security Technologies 22

This page intentionally left blank.

1

1. INTRODUCTION

1.1 THE NEED FOR HARDWARE PROTECTIONS

As cloud computing and other remote execution technologies become more widespread, service
providers are increasingly running their programs on machines over which they have no physical control.
If these programs involve the storage, processing, or transportation of sensitive data, the need arises to
protect that data from being read or altered on untrusted machines. For example, stored user authentication
information needs to be kept secure from a curious cloud service provider, digital rights management keys
must not be leaked to an EULA-bending end user, and employee records must be resistant to a vulnerable
node on a distributed platform. Intel SGX fulfills this necessity by providing hardware-backed protections
to security-sensitive applications vulnerable to disclosure or modification by privileged software and
hardware.

1.2 WHAT IS SGX?

1.2.1 Threat model

Intel SGX’s threat model encompasses both software- and hardware-capable adversaries. It protects
against unprivileged software, which has the ability to execute Ring 3 instructions and access memory that
is mapped to it by the OS. It also protects against system-level and startup software, which can manage task
scheduling and processor execution mode, access any visible memory on the platform, interface with
hardware devices directly, and even control the initial system state. To address adversaries with direct
access to internal hardware, SGX’s hardware checks and memory encryption prevent memory snooping
and bus tapping attacks.

However, side channel attacks against SGX-enabled programs are explicitly out-of-scope; it is the
responsibility of the programmer to write safe code. For example, if a program executing with SGX
protections includes sensitive data-dependent memory accesses such as in [1], an attacker can force cache
misses in order to measure memory access time by the program and derive the sensitive data.

1.2.2 Enclave

Intel SGX is a set of hardware and CPU instructions that provides user-level (Ring 3) applications
with hardware-enforced confidentiality and integrity protections. SGX allows developers to partition their
applications into hardware-protected secure containers referred to as enclaves. An SGX enclave is an
isolated container within the running application’s address space. Code that executes within an enclave is
tamper-resistant, and any sensitive data that is generated within or provisioned to an enclave is protected
from snooping or disclosure outside the enclave. SGX is available starting in Intel’s 6th generation of CPUs,
codenamed Skylake.

Enclave code is compiled as a shared-object library appended with an RSA-signed certificate. The
certificate contains data such as the enclave measurement and application author ID for integrity and
authenticity purposes, ensuring that any enclave loaded into memory and executed is genuine and has not
been modified by anyone other than its author.

2

1.2.3 Hardware keys

The SGX hardware requires persistent keys in order to deliver its promised functionality. Two CPU-
unique symmetric keys are burned into the processor hardware at manufacture time: the root provisioning
key, which is retained by Intel, and the root seal key, which is only known by the CPU onto which it is
burned. [2] The root provisioning key is used to derive additional keys during enclave provisioning and
attestation in order to demonstrate that the enclave is running on genuine SGX hardware. The root seal key
derives keys to cryptographically seal data to the hardware and enclave instance. All other persistent keys
in the system are derived from one or both of these keys when necessary.

1.2.4 Memory protection

Enclave memory is protected from the rest of the system using two mechanisms: hardware-enforced
checks prevent enclave memory from being read or modified by non-enclave code within the CPU (in
SRAM), while the hardware-based SGX Memory Encryption Engine (MEE) encrypts and authenticates all
enclave memory before writing it to the (untrusted) system’s main memory (DRAM). The MEE performs
this encryption/decryption and authentication/verification of DRAM using hardware-based cryptographic
keys that are randomly generated at power-on time, separate from the system’s persistent hardware keys.
[3]

1.3 BENEFITS

1.3.1 Protection from higher privilege levels

The primary security benefit that Intel SGX provides is the protection of enclave code and data from
higher privilege levels, including the OS, virtual machine monitor (VMM), and even the hardware. In a
traditional computing environment, a security-sensitive application that must maintain the confidentiality
and integrity of its execution and data would need to trust that the OS, VMM, and hardware also maintain
those security properties. If any of those entities snoop on the application and modify its code or data, the
confidentiality and integrity of the application are broken. Likewise, if a user-level malicious application
running on the same machine is able to exploit a vulnerability in the OS, escalate its privilege, or otherwise
break isolation between itself and the security-sensitive application, the confidentiality and integrity are
compromised once again. With SGX, the only entities that the application needs to trust are the CPU
hardware and the code that is executing within the secure enclave. Therefore, as long as the application is
running an enclave and handles its sensitive data securely, its sensitive data storage and processing remains
confidentiality and integrity protected, even if it is running on a machine that has been compromised with
privileged malware.

1.3.2 Shrinking of TCB and attack surface

Secure execution within an SGX enclave entails a massive reduction of the application’s trusted
computing base (TCB) and therefore its attack surface. Instead of taking steps to harden the hardware,
VMM, OS, and entire application, with SGX, only the CPU hardware and the application code running
within an enclave needs to be trusted and can be considered as part of the application’s attack surface.

3

Figure 1. Attack surface of a security-sensitive application without SGX enclaves (left) and with SGX enclaves
(right). [4]

1.3.3 Debug and test with simulation mode

The official SGX Software Development Kit (SDK) from Intel enables developers to build their
applications in three different profiles (debug, pre-release, or release) under two different modes (software
simulation or hardware). [5] Hardware debug enclaves can be inspected using the SGX debug instructions
by an enclave-aware debugger. Hardware pre-release enclaves are also launched in enclave-debug mode,
but with the same compiler optimization and debug symbol support as the release profile. This enables the
enclave to be performance tested under similar conditions as the release build while still being debug-able.
The simulation mode for all three profiles builds the application linked with the SGX simulation libraries,
allowing the enclave to be built, tested, debugged, and executed on any non-SGX enabled platform.

1.3.4 Attestation and sealing

SGX provides mechanisms for entities to attest to the legitimacy of a running enclave, both locally
(two enclaves running on the same machine verifying each other) and remotely (an entity on one machine
verifying an enclave on a separate machine). Attestation guarantees the trustworthiness of the enclave to
the challenging entity, which the entity may want to ensure before provisioning any sensitive data to the
enclave.

SGX also provides the ability to seal data to a specific enclave for long-term storage in non-volatile
memory. The data is cryptographically sealed using a key derived via SGX hardware before being written
to disk and can only be unsealed by a running instance of the same enclave on the same machine (or
optionally by an instance of any enclave signed by the same author running on the same machine). This
protects the confidentiality and integrity of enclave data while making the data available across separate
executions of the application.

4

1.4 CAVEATS

1.4.1 Ring 3 (no syscalls)

As a consequence of providing enclave protections only to user-level (Ring 3) applications, certain
instructions are illegal within an enclave. [6] This includes all privileged instructions such as system calls,
input/output instructions, as well as any instructions that may lead to a VMEXIT. Developers must ensure
that their enclave code does not contain any illegal instructions. Some methods to accomplish this include
designing the application to not include any illegal instructions within the enclave boundary or replacing
illegal enclave code with safe alternatives.

1.4.2 Limited memory

The size of the physical protected enclave memory is currently limited to 128 MB. After subtracting
the overhead required for the MEE, only about 96 MB is left for the application developer’s enclave. [3]
However, this can be seen as an advantage, since it forces the developer to keep the program’s attack surface
small. The newer SGX2 instruction set extension enables dynamic enclave memory management for
programs that require a larger amount of enclave memory. [7]

1.4.3 Overheads

The protections that SGX provides incur some timing and storage overheads. Reading and writing to
main memory experience an additional performance penalty compared to usual cache misses due to the
encryption/decryption of data by the MEE. In experiments conducted by Intel [3], the average performance
degradation due to the MEE is about 5.5 percent. Sealing and unsealing data for long term storage suffers
a performance penalty in a similar fashion since the data must be encrypted or decrypted. Sealing also
requires roughly 500 bytes of storage overhead per piece of sealed data to store the metadata that the SGX
hardware needs in order to unseal it later. [8]

1.4.4 C/C++, Windows and Linux only

The official SGX SDK currently supports only C and C++ for enclave development. An unofficial
SDK provided by China-based Baidu X-Lab supports the development of SGX enclaves in the Rust
programming language, but this SDK has not been vetted by Intel. [9] Also, the official SDK is currently
only available for Windows and Linux.

1.4.5 Licensing with Intel

The ability to run a production-ready (hardware release) enclave on actual SGX hardware requires
the developer to obtain a commercial license from Intel. [10] The acquisition process involves providing a
CA-signed certificate to Intel and demonstrating that the developer is employing secure software
development practices, storing their signing key safely, and is not creating malware to be executed within
enclaves. In addition, the license provides the developer with access to Intel’s Production Attestation
Service, which is required for remote attestation of production-level software. Without a commercial license
from Intel, the developer can only run enclaves in software simulation or on hardware with support for
inspection by a debugger, which do not deliver the full confidentiality and integrity protections of the
hardware.

5

2. ARCHITECTING PROGRAM INTO SENSITIVE
AND NON-SENSITIVE PARTS

The first and most important step in integrating SGX protections into an existing application is
partitioning the codebase into security-sensitive and non-security-sensitive parts. The component(s) that
are security sensitive must be placed within the trusted enclave while the rest of the code can reside in the
untrusted application space. The developer should aim to shrink the size of the enclave code as much as
possible – this reduces the size of code that may need to be formally analyzed and verified, which also
decreases the size of the program’s attack surface. Basically, the code that must be placed in an enclave is
the answer to the following question: What is the bare minimum amount of code that requires handling
sensitive data in the clear?

As an example, consider a feature-rich application that sometimes needs to perform some type of
cryptographic processing using sensitive keys, and the confidentiality and integrity of those keys must be
protected at all times. The cryptographic component of the application would reside within the trusted
enclave, while the remainder of the code would continue to execute in the untrusted application space. Since
all code that requires the use of key material resides within an enclave, the key material’s confidentiality
and integrity is protected by the SGX hardware.

This page intentionally left blank.

7

3. PROJECT SETUP AND ASSUMPTIONS

3.1 DEVELOPMENT ENVIRONMENT

This paper assumes that the software developer is working on a C++ project on a 64-bit Linux-based
operating system (specifically Ubuntu 16.04). The developer does not use an integrated development
environment (IDE), but instead writes and modifies code using a text editor and compiles binaries and
libraries using the latest versions of g++ and GNU Make.

3.2 INSTALLING THE SDK

The SGX software development kit (SDK) can be downloaded from Intel’s website [11] and is
available for 64-bit versions of both Windows and Linux-based OSes. The SGX installation guide [12] goes
into greater detail about the SDK installation process that is summarized here. In order to run the application
using actual SGX hardware, SGX must be supported by the processor and enabled in the system’s BIOS,
then the SGX driver, platform software (PSW), and SDK must be installed in that order. To develop SGX
applications on non-SGX-supported systems or to use only the software simulation mode, only the SDK
needs to be installed.

The SDK includes source code for sample SGX programs in the SampleCode/ directory. Most of
these projects organize their code into separate directories for the untrusted application and trusted enclave
spaces and include all of the necessary files to build an SGX-enabled program. Therefore, it is
recommended to emulate the directory structure and Makefiles from these sample projects, and copy the
signing key files, if necessary, for software and debug enclaves.

3.3 TERMINOLOGY

The remainder of this document refers to the codebase in the following fashion. The entirety of the
SGX-enabled application is referred to as the “program”. The portion of the program that resides in the
untrusted application space is referred to as the “application” or “application code,” and the portion of the
program that resides within the trusted enclaves is referred to as the “enclave” or “enclave code”.

This page intentionally left blank.

9

4. SGX IMPLEMENTATION

This section details the methods by which SGX support can be added to an existing codebase. It
covers how to build the enclave shared-object library, create edge routines to interface between the enclave
and untrusted application, and modify enclave code to remove illegal instructions.

4.1 BUILDING WITH SGX

It is recommended for an enclave developer to model the project’s Makefile after one that is bundled
with one of the sample projects that are included with the SDK. The basic additions that need to be made
to a non-SGX Makefile are covered below, and the reader can refer to a sample project’s Makefile for a
real-world implementation.

4.1.1 SGX SDK settings

The first section of the Makefile should have variables describing the SGX architecture (x86 or x64),
mode (hardware or simulation) and profile (debug/pre-release/release). Several flag and path variables are
set based on these options.

SGX_SDK ?= /opt/intel/sgxsdk
SGX_MODE ?= HW
SGX_ARCH ?= x64
SGX_DEBUG ?= 1

ifeq ($(shell getconf LONG_BIT), 32)
 SGX_ARCH := x86
else ifeq ($(findstring -m32, $(CXXFLAGS)), -m32)
 SGX_ARCH := x86
endif

ifeq ($(SGX_ARCH), x86)
 SGX_COMMON_CFLAGS := -m32
 SGX_LIBRARY_PATH := $(SGX_SDK)/lib
 SGX_ENCLAVE_SIGNER := $(SGX_SDK)/bin/x86/sgx_sign
 SGX_EDGER8R := $(SGX_SDK)/bin/x86/sgx_edger8r
else
 SGX_COMMON_CFLAGS := -m64
 SGX_LIBRARY_PATH := $(SGX_SDK)/lib64
 SGX_ENCLAVE_SIGNER := $(SGX_SDK)/bin/x64/sgx_sign
 SGX_EDGER8R := $(SGX_SDK)/bin/x64/sgx_edger8r
endif

Figure 2. Snippet of basic SGX settings defined at the beginning of the Makefile provided in the SDK’s
SampleEnclave project.

10

4.1.2 Using SGX libraries

Additional SGX libraries need to be linked with both the untrusted application and trusted enclave
code in order to use the SGX API. For example, the Untrusted Run-time System (uRTS) library needs to
be linked with the application and the Trusted Run-time System must be linked to the enclave. These
libraries are responsible for tasks such as making calls into an enclave and managing the enclave while it
is running. Either the actual versions of these libraries or the “simulation” versions must be linked
depending on the SGX mode (hardware or software simulation).

ifneq ($(SGX_MODE), HW)
 Urts_Library_Name := sgx_urts_sim
 Uae_Library_Name := sgx_uae_service_sim
else
 Urts_Library_Name := sgx_urts
 Uae_Library_Name := sgx_uae_service
endif

App_Link_Flags := $(SGX_COMMON_CFLAGS) -L$(SGX_LIBRARY_PATH) \
-l$(Urts_Library_Name) -l$(Uae_Library_Name)

Figure 3. Setting linker flags for the application.

4.1.3 Enclave gcc flags

The enclave .so library requires several compiler and linker flags in order to be built correctly. Some
examples include the –nostdinc and –fpie compiler flags (to not include the standard system header files
and to compile position-independent code) as well as the –nostdlib and –Bstatic linker flags (to not include
standard libraries and to link shared objects statically).

Enclave_C_Flags := $(SGX_COMMON_CFLAGS) -nostdinc -fvisibility=hidden -fpie \
-fstack-protector $(Enclave_Include_Paths)
Enclave_Cpp_Flags := $(Enclave_C_Flags) -std=c++03 -nostdinc++

Enclave_Link_Flags := $(SGX_COMMON_CFLAGS) -Wl,--no-undefined -nostdlib \
-nodefaultlibs -nostartfiles -L$(SGX_LIBRARY_PATH) \
 -Wl,--whole-archive -l$(Trts_Library_Name) -Wl,--no-whole-archive \
 -Wl,--start-group -lsgx_tstdc -lsgx_tstdcxx -l$(Crypto_Library_Name) \
-l$(Service_Library_Name) -Wl,--end-group \
 -Wl,-Bstatic -Wl,-Bsymbolic -Wl,--no-undefined \
 -Wl,-pie,-eenclave_entry -Wl,--export-dynamic \
 -Wl,--defsym,__ImageBase=0 \
 -Wl,--version-script=Enclave/Enclave.lds

Figure 4. Example flags used for enclave compilation.

11

4.1.4 Create .edl file (edge routines)

Once the enclave developer has defined the boundary between the application and enclave, the edge
routines that interface between the two must be defined. Any function that passes this boundary is
considered an edge routine – functions that are called from the application into enclave are referred to as
enclave calls (ecalls) while functions that are called from the enclave into the application are named outside
calls (ocalls).

The function prototypes for these edge routines must be placed in an Enclave Definition Language
(.edl) file, which will be used by the SGX Edger8r tool during compilation to generate proxy functions for
the ecalls and ocalls. When a program calls an edge routine, it actually invokes the generated proxy function,
which then handles the data marshalling and enclave border crossing. Edger8r generates four files to hold
these proxy functions – two each for the application and enclave. As an example, if the .edl filename is
Enclave.edl, Edger8r generates Enclave_u.c and Enclave_u.h for the application code and Enclave_t.c and
Enclave_t.h for the enclave code, where the _u and _t represent the untrusted and trusted sides of these
proxies.

Only objects of known scope can be passed as arguments to an ecall or ocall; therefore, C buffers and
structures are acceptable but C++ objects are not. [13] [14] Any C++ object arguments should be converted
to an equivalent C structure before being passed to an edge routine. For example, a C++ vector<uint8_t>
argument in an ecall could be passed as a uint8_t* (along with an additional variable to represent its size)
instead. Once inside the enclave, the buffer could be converted back to a vector if necessary.

All buffer arguments in edge routines must include a direction specifier and data count. This specifier
enables the Edger8r tool to automatically generate data marshalling code for the buffer across the enclave
boundary. The specifier can have values of [in], which copies the buffer into the edge routine; [out], which
initializes a buffer of zeros in the edge routine and copies it to the calling code upon function completion;
or [in/out], in which the data is copied back and forth. Additionally, the specifier can designate a buffer as
[user_check], in which no data marshalling is performed automatically and no data size is required. In this
case, the raw pointer is passed across the enclave boundary, and it is the developer’s responsibility to
marshal and access the data correctly.

Further information about the EDL syntax can be found at [15].

void KmCrypto::encryptAES256_GCM(const vector<uint8_t> &plainText, const
vector<uint8_t> &aad, const vector<uint8_t> &key, vector<uint8_t>
&rCipherText, vector<uint8_t> &rIv, vector<uint8_t> &rAuthTag)

void ecall_encryptAES256_GCM([user_check] const uint8_t *plainText_buffer,
uint32_t plainText_size,
[user_check] const uint8_t *aad_buffer, uint32_t aad_size,
[user_check] const uint8_t *key_buffer, uint32_t key_size,
[user_check] uint8_t *rCipherText_buffer, uint32_t rCipherText_size,
[user_check] uint8_t *rIv_buffer, uint32_t rIv_size,
[user_check] uint8_t *rAuthTag_buffer, uint32_t rAuthTag_size)

Figure 5. Example of an encryption function prototype and its ecall counterpart defined in the EDL file.

12

4.1.5 Enclave signing

Once the enclave’s shared object (.so) library is compiled, it must be signed with the developer’s
private key using the enclave signing tool, sgx_sign, included with the SDK. The sample projects’
Makefiles handle this automatically using an included private key file for all build types except hardware
release, where it is expected that the developer uses their own key and perform the signing manually in a
secure environment.

Optionally, an enclave configuration file can be passed to the signing tool. [16] This XML file
contains user-defined parameters for the enclave such as its security version number or product ID and is
included as part of the signature calculation.

4.2 MODIFY APPLICATION AND ENCLAVE CODE

4.2.1 Include header files for libraries

Certain libraries from the SGX SDK need to be included in both the application and enclave in order
to support SGX functionality. On the application side, sgx_urts.h (untrusted runtime system) and
Enclave_u.h (untrusted proxy generated by Edger8r) are needed for SGX variable types, enclave creation
and destruction, and edge routine calls. Additionally, other SGX library header files could be included, such
as sgx_tseal.h for calculating the amount of memory to allocate for an output buffer that will contain sealed
data.

On the enclave side, sgx_trts.h (trusted runtime system) and Enclave_t.h (trusted proxy generated by
Edger8r) are needed for SGX variable types, trusted memory checking functions, and edge routine calls.
Additionally, other SGX library header files could be included, such as sgx_tseal.h for sealing data to the
enclave.

4.2.2 Initialize and destroy enclave

The untrusted application handles the initialization and destruction of enclaves. Launching an enclave
is accomplished by calling the sgx_create_enclave() function provided by the SDK. This function takes in
the enclave filename, debug flag, and optionally the enclave initialization token as input, and outputs the
enclave ID (an unsigned 64-bit integer), updated token data if it has been altered, and optionally additional
enclave attributes. The enclave ID is used as the first argument to all ecalls to specify the enclave in which
the function is being executed. The token data stores attributes and measurements of the enclave that are
checked and updated upon enclave creation to increase the enclave initialization performance.

An enclave can be terminated simply by passing its ID to the sgx_destroy_enclave() function via the
application.

13

sgx_status_t sgx_status = SGX_ERROR_UNEXPECTED;
sgx_launch_token_t token = {0};
int updated = 0;

...
// Read token data from file and store in "token"
...

sgx_status = sgx_create_enclave(ENCLAVE_FILENAME, SGX_DEBUG_FLAG, &token,
&updated, &global_enclave_id, NULL);

Figure 6. Partial code to demonstrate call to sgx_create_enclave().

4.2.3 Call into/out of enclave

The developer can make an ecall into a particular enclave at any point between its creation and
destruction. This is accomplished simply by calling the ecall as it is defined in the .edl file, except that the
enclave ID is added as the first argument of the function.

The enclave code can make an ocall if it requires a function that can only be executed in the untrusted
application. The ocall can be made by calling the function defined in the .edl file.

Since the application is untrusted, the developer cannot make any assumptions within the enclave
regarding the I/O parameters of an ecall or ocall or the state of execution when an ecall is made or an ocall
returns. Therefore, the developer must perform proper sanity checking within the enclave to ensure that no
sensitive data leaves its borders.

4.2.4 Marshall I/O buffers in enclave

For variables that are passed by reference, if the direction specifiers [in], [out], or [in/out] are used in
the ecall or ocall function prototype, data marshalling across the enclave boundary happens automatically
and no action is required from the enclave developer. However, the developer must handle data marshalling
of any [user_check] buffers manually. As an example use case, a developer may want to pass a buffer of
encrypted data into an enclave function. If the developer designates that buffer with [user_check], the buffer
should be copied into enclave space by the developer before any processing is performed on it.

void ecall_encryptAES256_GCM(uint8_t *key_buffer, uint32_t key_size, ...)
{
 // Copy arguments from untrusted space to trusted space
 // Also convert from C buffer to C++ vector:
 vector<uint8_t> key_vec(&key_buffer[0], &key_buffer[key_size]);

 // Continue processing
 ...

Figure 7. The key material for this encryption function is stored in a C++ vector. To pass it through the enclave
boundary, it is converted to a buffer within the application and then manually copied back into a vector defined within
protected enclave memory.

14

4.2.5 Handle sensitive data in enclave

The developer must write the enclave in a secure manner such that no sensitive data can ever leave
the enclave boundary. Before unsealing sensitive data, the developer can call the sgx_is_within_enclave()
function provided by the SDK to guarantee that the output buffer (which will contain raw sensitive data) is
strictly within the enclave’s protected memory. Once the processing of sensitive material is complete, the
developer should call memset_s() to clear every variable that contains sensitive data. The use of memset_s()
cannot be optimized away by the compiler, guaranteeing that the data is overwritten.

4.2.6 Remove illegal instructions

There are several ways to exclude illegal instructions from the enclave code. The most
straightforward method is to partition the codebase such that the enclave portion does not include any illegal
instructions in the first place. For example, if the cryptographic processing portion of a codebase does not
contain any illegal instructions, it would be simple to encapsulate that portion within an enclave without
making any major changes.

However, there are cases where this task is either impossible or impractical. For these cases, the most
effective option may be to define ocalls in the .edl file. However, the developer must keep in mind that
since the processing of an ocall function happens in the untrusted domain, the function may not perform
the operations nor return the parameters that the enclave expects.

Yet another option involves replacing the illegal instructions with SGX-provided counterparts. For
example, instead of making a system call to the OS’s random number generator (RNG), which has the
potential of issuing an illegal VMEXIT instruction, the developer could use the RNG provided by the SGX
SDK (sgx_read_rand()).

The final option would be to simply remove the offending code from the program entirely. This option
could be useful when the illegal instructions do not affect the functionality of the program. For example,
print statements used for debugging purposes could be commented out of the code when building the SGX-
enabled program.

15

5. PROTECTING SENSITIVE DATA

5.1 SEALING

As explained in Section 1.3.4, SGX provides the ability to cryptographically seal sensitive data before
placing it in untrusted non-volatile storage. The sealing and unsealing processes are fairly straightforward
and must occur within the enclave. To seal data, the developer needs to make two SGX library calls:
sgx_calc_sealed_data_size() to determine how much memory to allocate for the output buffer and
sgx_seal_data() to seal the data using the seal key derived in the SGX hardware. As expected, unsealing
data works in a similar fashion: the developer calls sgx_get_encrypt_txt_len() to get the size of the output
(unsealed) data and sgx_unseal_data() to unseal the data and write it to the buffer.

// Initialize output vector
uint32_t unsealedDataSize = sgx_get_encrypt_txt_len(
(sgx_sealed_data_t*) &sealedData.front());
vector<uint8_t> unsealedData(unsealedDataSize);

// Ensure that the output vector is completely within the enclave
if(sgx_is_within_enclave(&unsealedData.front(), unsealedDataSize) != 1)
{
 // Buffer is outside enclave!
 return ERROR_UNSEAL_DATA;
}

// Unseal the data and store it in "plaintext"
sgx_status_t result = sgx_unseal_data((sgx_sealed_data_t*)
&sealedData.front(), NULL, 0, &unsealedData.front(),
&unsealedDataSize);

Figure 8. Example of the data unsealing process. The enclave should use sgx_is_within_enclave() to ensure that
unsealed sensitive data does not leave the enclave boundary.

5.2 REMOTE ATTESTATION

Remote attestation is the process by which a challenger verifies the legitimacy of an enclave that is
running on a separate physical machine before provisioning sensitive data to it. [17] Remote attestation
involves a three-party communication between the SGX-enabled program, remote challenger (referred to
as a “service provider” by Intel), and Intel’s Attestation Service (IAS). First, the program’s enclave and
remote challenger perform an Elliptic-Curve Diffie-Hellman (ECDH) key exchange to establish a secure
channel. Next, the enclave sends a report of its authenticity to the challenger, who verifies it with the IAS.
If the verification is successful, the challenger can then provision sensitive data to the enclave over the
secure channel with confidence that the data will not be leaked to the surrounding untrusted system.

This page intentionally left blank.

17

6. OPTIMIZATIONS

This section describes several optimizations that developers can make in order to maximize the
performance of their SGX-enabled program, make minimal changes to their program-specific code, and
ensure that their programs are still compatible with legacy and non-Intel hardware.

6.1 SHIM LAYER

The most important optimization for a developer to leverage is to contain all of the program’s SGX-
specific code in a “shim layer”. This shim layer is responsible for all SGX-related processing, including
instantiating and destroying enclaves, making ecalls and ocalls, and sealing and unsealing data. The shim
layer straddles the enclave boundary, with one half of it in the application space and the other half contained
within the enclave. This makes the enclave boundary opaque to the surrounding program-specific code and
allows the API between the application and enclave program code to remain the same, since all data
marshalling happens within the shim layer. Logically, the program code on both sides of the enclave
boundary interacts as if the shim is not even there.

Figure 9. The API for the security-sensitive code is the same whether the “legacy” or “SGX-enabled” version of the
program is built. The only aspect of the general application code and security-sensitive code that changes is the
inclusion of SGX-specific header files.

6.2 DUAL CODE PATHS

An application should never crash or otherwise fail ungracefully solely because the platform does not
support Intel SGX; therefore, the developer should include dual code paths based on whether or not SGX
is supported. [18] The implementation of the dual code paths is left to the developer; based on the program
and the sensitivity of the material the non-SGX path could do anything from implementing the full suite of
security-sensitive code to displaying an error message and failing gracefully. The SDK includes functions
to detect SGX support on the platform.

18

6.3 CODE REFACTORING

If the program code requires several jumps across the enclave boundary in a single function, the
developer may choose to refactor that code to decrease the number of enclave border crossings. For
example, the program may be structured to encrypt several pieces of data by calling the encryption function
in a loop for each piece. If the loop is in the application space but the encryption function is within an
enclave, each iteration of the loop involves all of the data marshalling, encryption key unsealing, and
memory checking innate to an enclave call, adding overhead to the program. This code could be refactored
to prepare all pieces of data ahead of time, pass them into the enclave all at once, perform the encryption,
and return the result in bulk. This would involve only one enclave border crossing, decreasing the amount
of overhead due to leveraging SGX protections in this program.

6.4 MACRO DEFINITIONS

If all SGX-specific code is implemented in the shim layer, the developer can use macro definitions at
the start of source code files to decide whether to include it or not. A simple flag can be passed to the
compiler to determine whether or not the shim layer is included, as shown in Figure 10. Since the API
between the program-specific code is unchanged when implementing a shim layer, the function calls within
the general application layer are identical whether the SGX or non-SGX programs are built.

// In general_app_code.h
#ifdef USING_SGX
 #include "secure_code_shim.h"
#else
 #include "secure_code_real.h"
#endif

Figure 10. If the USING_SGX macro is defined, the application code includes the shim layer’s header file;
otherwise it includes the header of the actual security-sensitive code.

6.5 ERROR HANDLING

If the program’s enclave code includes explicit error checking and exception throwing, the developer
must catch the exceptions within the enclave and pass a status flag back to the application indicating that
an error occurred. Exceptions are not allowed to be thrown across the enclave boundary, but they can be
thrown and caught within the enclave. Each ecall function body should be wrapped in a try/catch block so
that any exceptions that are thrown within them are caught within the enclave. A status variable should be
passed to each ecall from the application and set to the caught error code within the catch block. This status
variable should be checked upon return from the ecall in the application’s shim layer, and an exception
should be thrown if the status indicates that an error occurred in the enclave. This emulates the exception
throwing/catching functionality of the program-specific code in a non-SGX-enabled build of the program.

19

Figure 11. Exception throwing and catching can be emulated across the enclave boundary by setting a flag variable
within the enclave when an error is caught and checking that flag once the ecall returns to the application.

This page intentionally left blank.

21

7. RELATED WORK

7.1 ARM TRUSTZONE AND AMD SECURE PROCESSOR

Arm TrustZone technology provides system-wide hardware isolation for trusted software. [19] It
works by partitioning the computing space into hardware-separated secure and non-secure worlds,
disallowing software in the non-secure world from accessing secure resources directly. Arm provides a
reference implementation of low-level secure world software known as Arm Trusted Firmware [20] which
can be used to launch a trusted OS and trusted applications through secure boot.

AMD’s Secure Processor [21] is simply an on-chip Arm processor with TrustZone technology, and
Apple’s Secure Enclave Processor on iOS devices is essentially a highly customized version of TrustZone
technology. [22]

7.2 INTEL TXT

Intel’s Trusted Execution Technology (TXT) [23] provides hardware-based security by measuring
each component of the boot process to ensure that the system was initialized securely and has not been
altered from a known trusted configuration. Intel TXT establishes a “root of trust” in hardware that provides
launch control policy and verified launch protections. It also enables the sealing of sensitive data and
attestation of platform legitimacy. Intel TXT was launched in 2010 and is currently available in most Intel
Xeon processors.

7.3 CRYPTO LIBRARIES IN SGX

Intel has implemented a cryptographic library that leverages SGX enclaves. It is based on the
OpenSSL library and available on GitHub under an open-source license. [24] This library incorporates a
shim layer as described in this whitepaper, enabling the API exposed by the library to be fully compliant
with a subset of the unmodified OpenSSL API. This allows for straightforward compatibility with projects
that already interface with the OpenSSL library.

The mbedtls library (previously known as PolarSSL) has been ported to use SGX enclaves. It provides
an implementation of the TLS protocol suite and a variety of cryptographic primitives. It is also available
for download on GitHub under the Apache License version 2.0. [25]

7.4 INTEL KPT

Intel Key Protection Technology (KPT) [26] augments Intel’s QuickAssist Technology (QAT)
hardware crypto accelerator with the run-time protection of Intel Platform Trust Technology (PTT) for
persistent key storage at rest. It supports high-performance, scalable, security-enabled cryptography and
key management and is intended to replace traditional hardware security modules in server environments.
Intel introduced KPT with their latest Intel Xeon Scalable processors.

22

TABLE 1
Comparison of Hardware-Based Security Technologies

 Intel SGX Arm TrustZone Intel TXT Crypto
Libraries in

SGX

Intel KPT

Hardware
trusted?

CPU chip
only

Yes Yes CPU chip only CPU chip
only

OS/VMM trusted? No Yes Yes No No

Confidentiality
and Integrity
Protections

Yes Yes Yes Yes Yes

Trusted boot No Yes Yes No No

Attestation Yes Yes Yes Yes Yes

Built-in data
sealing

Yes No Yes Yes No

23

8. CONCLUSION

Intel SGX provides secure applications with hardware-backed confidentiality and integrity
protections. As long as the enclave is bug-free and is not susceptible to side-channel attacks, these
protections apply to all three phases of the operational data lifecycle: at rest through sealing, in use through
processing within an enclave, and in transit through ECDH key exchange during remote attestation. SGX
shrinks the trusted computing base (and therefore the attack surface) of the application to only the hardware
on the CPU chip and the portion of the application’s software that is executed within the protected enclave,
versus the entire hardware/VMM/OS/application stack in traditional computing environments. Its SDK
enables relatively straightforward integration into existing C/C++ codebases and ensures program support
for legacy and non-Intel platforms.

This page intentionally left blank.

25

 REFERENCES

[1] M. Schwarz, S. Weiser, D. Gruss, C. Maurice and S. Mangard, "Malware Guard Extension: Using
SGX to conceal cache attacks," 2017.

[2] S. Johnson, S. Vinnie, R. Carlos, E. Brickell and F. Mckeen, Intel Software Guard Extensions: EPID
Provisioning and Attestation Services, 2016.

[3] S. Gueron, A Memory Encryption Engine Suitable for General Purpose Processors, 2016.

[4] John M., "Intel® Software Guard Extensions Tutorial Series: Part 1, Intel® SGX Foundation," Intel,
7 July 2016. [Online]. Available: https://software.intel.com/en-us/articles/intel-software-guard-
extensions-tutorial-part-1-foundation. [Accessed 12 September 2017].

[5] S. Johnson, "Intel SGX: Debug, Production, Pre-release what's the difference?," Intel, 7 January 2016.
[Online]. Available: https://software.intel.com/en-us/blogs/2016/01/07/intel-sgx-debug-production-
prelease-whats-the-difference. [Accessed 12 September 2017].

[6] "Illegal Instructions Within an Enclave," Intel, [Online]. Available: https://software.intel.com/en-
us/node/703005. [Accessed 12 September 2017].

[7] B. Xing, M. Shanahan and R. Leslie-Hurd, "Intel SGX Software Support for Dynamic Memory
Allocation inside an Enclave," ACM, 2016.

[8] "sgx_sealed_data_t," Intel, [Online]. Available: https://software.intel.com/en-us/node/709220.
[Accessed 12 September 2017].

[9] B. X-Lab, "Rust SGX SDK v0.2.0," [Online]. Available: https://github.com/baidu/rust-sgx-
sdk/releases/tag/v0.2.0. [Accessed 12 September 2017].

[10] D. Rao, "Intel SGX Product Licensing," Intel, 28 February 2016. [Online]. Available:
https://software.intel.com/en-us/articles/intel-sgx-product-licensing. [Accessed 12 September 2017].

[11] "Intel SGX SDK," Intel, [Online]. Available: https://software.intel.com/en-us/sgx-sdk/download.
[Accessed 12 September 2017].

[12] "Intel SGX Installation Guide v1.9," Intel, [Online]. Available: https://01.org/intel-software-guard-
extensions/documentation/intel-sgx-sdk-installation-guide. [Accessed 12 September 2017].

[13] "Intel SGX Developer Guide - Inputs Passed by Reference," Intel, 21 June 2017. [Online]. Available:
https://software.intel.com/en-us/node/702975. [Accessed 12 September 2017].

26

[14] "C++ Language Support," Intel, [Online]. Available: https://software.intel.com/en-us/node/709059.
[Accessed 13 September 2017].

[15] John M., "Refine the Enclave with Proxy Functions," Intel, 28 November 2016. [Online]. Available:
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-7-refining-the-
enclave. [Accessed 12 September 2017].

[16] "Enclave Configuration File," Intel, [Online]. Available: https://software.intel.com/en-
us/node/708992. [Accessed 12 September 2017].

[17] "Remote Attestation End-to-End Example," Intel, 8 July 2016. [Online]. Available:
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-
end-example. [Accessed 12 September 2017].

[18] John M., "How to Create Dual Code Paths," Intel, 28 October 2016. [Online]. Available:
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-series-part-6-dual-
code-paths. [Accessed 12 September 2017].

[19] "SoC and CPU System-Wide Approach to Security," Arm Holdings, [Online]. Available:
https://www.arm.com/products/security-on-arm/trustzone. [Accessed 12 September 2017].

[20] "ARM Trusted Firmware," Arm Holdings, [Online]. Available: https://github.com/ARM-
software/arm-trusted-firmware. [Accessed 12 September 2017].

[21] "AMD Secure Technology," AMD, [Online]. Available: http://www.amd.com/en-
us/innovations/software-technologies/security. [Accessed 12 September 2017].

[22] T. Mandt, M. Solnik and D. Wang, "Demystifying the Secure Enclave Processor," 2016. [Online].
Available: https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-
Enclave-Processor.pdf. [Accessed 12 September 2017].

[23] "Intel Trusted Execution Technology Whitepaper," 2012. [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-
technology/trusted-execution-technology-security-paper.html. [Accessed 12 September 2017].

[24] "Intel SGX SSL," Intel Open Source Technology Center, [Online]. Available:
https://github.com/01org/intel-sgx-ssl. [Accessed 12 September 2017].

[25] "mbedtls-SGX," bl4ck5un, [Online]. Available: https://github.com/bl4ck5un/mbedtls-SGX.
[Accessed 12 September 2017].

[26] H. Tadepalli, "Intel Quick Assist Technology with Intel Key Protection Technology in Intel Server
Platforms Based on Intel Xeon Processor Scalable Family," Intel, 2017.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

29-January-2018
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
FA8721-05-C-0002 and/or FA8702-15-D-0001

Leveraging Intel SGX Technology to Protect Security-Sensitive Applications 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
1971

Joseph M. Sobchuk, Sean R. O’Melia, Dan M. Utin, Roger I. Khazan 5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02421-6426

TR-1230

10. SPONSOR/MONITOR’S ACRONYM(S)
SMC/MCD

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Space and Missile Systems Center
483 N. Aviation Blvd.
El Segundo, CA 90245 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A: Approved for public release distribution unlimited.

13. SUPPLEMENTARY NOTES

13. ABSTRACT
This report explains the basic process by which Intel Software Guard Extensions (SGX) can be leveraged into an existing codebase to

protect a security-sensitive application. Intel SGX provides user-level applications with hardware-enforced confidentiality and integrity
protections. These protections apply to all three phases of the operational data lifecycle: at rest, in use, and in transit. SGX shrinks the
trusted computing base (and therefore the attack surface) of the application to only the hardware on the CPU chip and the portion of the
application’s software that is executed within the protected enclave. The SGX SDK enables relatively straightforward integration into
existing C/C++ codebases while still ensuring program support for legacy and non-Intel platforms.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

unclassified 42 19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

This page intentionally left blank.

	Leveraging Intel SGX Technology to Protect Security-Sensitive Applications
	Abstract
	Table of Contents
	1. Introduction
	1.1 The Need for Hardware protections
	1.2 What is SGX?
	1.3 Benefits
	1.4 Caveats

	2. Architecting Program into Sensitive and Non-Sensitive Parts
	3. Project Setup and Assumptions
	3.1 Development Environment
	3.2 Installing the SDK
	3.3 Terminology

	4. SGX Implementation
	4.1 Building with SGX
	4.2 Modify application and enclave code

	5. Protecting SENSITIVE DATA
	5.1 Sealing
	5.2 Remote Attestation

	6. Optimizations
	6.1 Shim layer
	6.2 Dual code paths
	6.3 Code refactoring
	6.4 Macro definitions
	6.5 Error handling

	7. Related work
	7.1 Arm TrustZone and AMD Secure Processor
	7.2 Intel TXT
	7.3 Crypto libraries in SGX
	7.4 Intel KPT

	8. Conclusion
	References

