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ABSTRACT 

This report explains the basic process by which Intel Software Guard Extensions (SGX) can be 
leveraged into an existing codebase to protect a security-sensitive application. Intel SGX provides user-
level applications with hardware-enforced confidentiality and integrity protections. These protections apply 
to all three phases of the operational data lifecycle: at rest, in use, and in transit. SGX shrinks the trusted 
computing base (and therefore the attack surface) of the application to only the hardware on the CPU chip 
and the portion of the application’s software that is executed within the protected enclave. The SGX SDK 
enables relatively straightforward integration into existing C/C++ codebases while still ensuring program 
support for legacy and non-Intel platforms. 
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1. INTRODUCTION 

1.1 THE NEED FOR HARDWARE PROTECTIONS 

As cloud computing and other remote execution technologies become more widespread, service 
providers are increasingly running their programs on machines over which they have no physical control. 
If these programs involve the storage, processing, or transportation of sensitive data, the need arises to 
protect that data from being read or altered on untrusted machines. For example, stored user authentication 
information needs to be kept secure from a curious cloud service provider, digital rights management keys 
must not be leaked to an EULA-bending end user, and employee records must be resistant to a vulnerable 
node on a distributed platform. Intel SGX fulfills this necessity by providing hardware-backed protections 
to security-sensitive applications vulnerable to disclosure or modification by privileged software and 
hardware.  

1.2 WHAT IS SGX? 

1.2.1 Threat model 

Intel SGX’s threat model encompasses both software- and hardware-capable adversaries. It protects 
against unprivileged software, which has the ability to execute Ring 3 instructions and access memory that 
is mapped to it by the OS. It also protects against system-level and startup software, which can manage task 
scheduling and processor execution mode, access any visible memory on the platform, interface with 
hardware devices directly, and even control the initial system state. To address adversaries with direct 
access to internal hardware, SGX’s hardware checks and memory encryption prevent memory snooping 
and bus tapping attacks.  

However, side channel attacks against SGX-enabled programs are explicitly out-of-scope; it is the 
responsibility of the programmer to write safe code. For example, if a program executing with SGX 
protections includes sensitive data-dependent memory accesses such as in [1], an attacker can force cache 
misses in order to measure memory access time by the program and derive the sensitive data.  

1.2.2 Enclave 

Intel SGX is a set of hardware and CPU instructions that provides user-level (Ring 3) applications 
with hardware-enforced confidentiality and integrity protections. SGX allows developers to partition their 
applications into hardware-protected secure containers referred to as enclaves. An SGX enclave is an 
isolated container within the running application’s address space. Code that executes within an enclave is 
tamper-resistant, and any sensitive data that is generated within or provisioned to an enclave is protected 
from snooping or disclosure outside the enclave. SGX is available starting in Intel’s 6th generation of CPUs, 
codenamed Skylake.  

Enclave code is compiled as a shared-object library appended with an RSA-signed certificate. The 
certificate contains data such as the enclave measurement and application author ID for integrity and 
authenticity purposes, ensuring that any enclave loaded into memory and executed is genuine and has not 
been modified by anyone other than its author. 
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1.2.3 Hardware keys 

The SGX hardware requires persistent keys in order to deliver its promised functionality. Two CPU-
unique symmetric keys are burned into the processor hardware at manufacture time: the root provisioning 
key, which is retained by Intel, and the root seal key, which is only known by the CPU onto which it is 
burned. [2] The root provisioning key is used to derive additional keys during enclave provisioning and 
attestation in order to demonstrate that the enclave is running on genuine SGX hardware. The root seal key 
derives keys to cryptographically seal data to the hardware and enclave instance. All other persistent keys 
in the system are derived from one or both of these keys when necessary. 

1.2.4 Memory protection 

Enclave memory is protected from the rest of the system using two mechanisms: hardware-enforced 
checks prevent enclave memory from being read or modified by non-enclave code within the CPU (in 
SRAM), while the hardware-based SGX Memory Encryption Engine (MEE) encrypts and authenticates all 
enclave memory before writing it to the (untrusted) system’s main memory (DRAM). The MEE performs 
this encryption/decryption and authentication/verification of DRAM using hardware-based cryptographic 
keys that are randomly generated at power-on time, separate from the system’s persistent hardware keys. 
[3] 

1.3 BENEFITS 

1.3.1 Protection from higher privilege levels 

The primary security benefit that Intel SGX provides is the protection of enclave code and data from 
higher privilege levels, including the OS, virtual machine monitor (VMM), and even the hardware. In a 
traditional computing environment, a security-sensitive application that must maintain the confidentiality 
and integrity of its execution and data would need to trust that the OS, VMM, and hardware also maintain 
those security properties. If any of those entities snoop on the application and modify its code or data, the 
confidentiality and integrity of the application are broken. Likewise, if a user-level malicious application 
running on the same machine is able to exploit a vulnerability in the OS, escalate its privilege, or otherwise 
break isolation between itself and the security-sensitive application, the confidentiality and integrity are 
compromised once again. With SGX, the only entities that the application needs to trust are the CPU 
hardware and the code that is executing within the secure enclave. Therefore, as long as the application is 
running an enclave and handles its sensitive data securely, its sensitive data storage and processing remains 
confidentiality and integrity protected, even if it is running on a machine that has been compromised with 
privileged malware. 

1.3.2 Shrinking of TCB and attack surface 

Secure execution within an SGX enclave entails a massive reduction of the application’s trusted 
computing base (TCB) and therefore its attack surface. Instead of taking steps to harden the hardware, 
VMM, OS, and entire application, with SGX, only the CPU hardware and the application code running 
within an enclave needs to be trusted and can be considered as part of the application’s attack surface. 
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Figure 1. Attack surface of a security-sensitive application without SGX enclaves (left) and with SGX enclaves 
(right). [4] 

1.3.3 Debug and test with simulation mode 

The official SGX Software Development Kit (SDK) from Intel enables developers to build their 
applications in three different profiles (debug, pre-release, or release) under two different modes (software 
simulation or hardware). [5] Hardware debug enclaves can be inspected using the SGX debug instructions 
by an enclave-aware debugger. Hardware pre-release enclaves are also launched in enclave-debug mode, 
but with the same compiler optimization and debug symbol support as the release profile. This enables the 
enclave to be performance tested under similar conditions as the release build while still being debug-able. 
The simulation mode for all three profiles builds the application linked with the SGX simulation libraries, 
allowing the enclave to be built, tested, debugged, and executed on any non-SGX enabled platform. 

1.3.4 Attestation and sealing 

SGX provides mechanisms for entities to attest to the legitimacy of a running enclave, both locally 
(two enclaves running on the same machine verifying each other) and remotely (an entity on one machine 
verifying an enclave on a separate machine). Attestation guarantees the trustworthiness of the enclave to 
the challenging entity, which the entity may want to ensure before provisioning any sensitive data to the 
enclave.  

SGX also provides the ability to seal data to a specific enclave for long-term storage in non-volatile 
memory. The data is cryptographically sealed using a key derived via SGX hardware before being written 
to disk and can only be unsealed by a running instance of the same enclave on the same machine (or 
optionally by an instance of any enclave signed by the same author running on the same machine). This 
protects the confidentiality and integrity of enclave data while making the data available across separate 
executions of the application. 
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1.4 CAVEATS 

1.4.1 Ring 3 (no syscalls) 

As a consequence of providing enclave protections only to user-level (Ring 3) applications, certain 
instructions are illegal within an enclave. [6] This includes all privileged instructions such as system calls, 
input/output instructions, as well as any instructions that may lead to a VMEXIT. Developers must ensure 
that their enclave code does not contain any illegal instructions. Some methods to accomplish this include 
designing the application to not include any illegal instructions within the enclave boundary or replacing 
illegal enclave code with safe alternatives.  

1.4.2 Limited memory 

The size of the physical protected enclave memory is currently limited to 128 MB. After subtracting 
the overhead required for the MEE, only about 96 MB is left for the application developer’s enclave. [3] 
However, this can be seen as an advantage, since it forces the developer to keep the program’s attack surface 
small. The newer SGX2 instruction set extension enables dynamic enclave memory management for 
programs that require a larger amount of enclave memory. [7]  

1.4.3 Overheads 

The protections that SGX provides incur some timing and storage overheads. Reading and writing to 
main memory experience an additional performance penalty compared to usual cache misses due to the 
encryption/decryption of data by the MEE. In experiments conducted by Intel [3], the average performance 
degradation due to the MEE is about 5.5 percent. Sealing and unsealing data for long term storage suffers 
a performance penalty in a similar fashion since the data must be encrypted or decrypted. Sealing also 
requires roughly 500 bytes of storage overhead per piece of sealed data to store the metadata that the SGX 
hardware needs in order to unseal it later. [8] 

1.4.4 C/C++, Windows and Linux only 

The official SGX SDK currently supports only C and C++ for enclave development. An unofficial 
SDK provided by China-based Baidu X-Lab supports the development of SGX enclaves in the Rust 
programming language, but this SDK has not been vetted by Intel. [9] Also, the official SDK is currently 
only available for Windows and Linux. 

1.4.5 Licensing with Intel 

The ability to run a production-ready (hardware release) enclave on actual SGX hardware requires 
the developer to obtain a commercial license from Intel. [10] The acquisition process involves providing a 
CA-signed certificate to Intel and demonstrating that the developer is employing secure software 
development practices, storing their signing key safely, and is not creating malware to be executed within 
enclaves. In addition, the license provides the developer with access to Intel’s Production Attestation 
Service, which is required for remote attestation of production-level software. Without a commercial license 
from Intel, the developer can only run enclaves in software simulation or on hardware with support for 
inspection by a debugger, which do not deliver the full confidentiality and integrity protections of the 
hardware.  
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2. ARCHITECTING PROGRAM INTO SENSITIVE  
AND NON-SENSITIVE PARTS 

The first and most important step in integrating SGX protections into an existing application is 
partitioning the codebase into security-sensitive and non-security-sensitive parts. The component(s) that 
are security sensitive must be placed within the trusted enclave while the rest of the code can reside in the 
untrusted application space. The developer should aim to shrink the size of the enclave code as much as 
possible – this reduces the size of code that may need to be formally analyzed and verified, which also 
decreases the size of the program’s attack surface. Basically, the code that must be placed in an enclave is 
the answer to the following question: What is the bare minimum amount of code that requires handling 
sensitive data in the clear? 

As an example, consider a feature-rich application that sometimes needs to perform some type of 
cryptographic processing using sensitive keys, and the confidentiality and integrity of those keys must be 
protected at all times. The cryptographic component of the application would reside within the trusted 
enclave, while the remainder of the code would continue to execute in the untrusted application space. Since 
all code that requires the use of key material resides within an enclave, the key material’s confidentiality 
and integrity is protected by the SGX hardware.
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3. PROJECT SETUP AND ASSUMPTIONS 

3.1 DEVELOPMENT ENVIRONMENT 

This paper assumes that the software developer is working on a C++ project on a 64-bit Linux-based 
operating system (specifically Ubuntu 16.04). The developer does not use an integrated development 
environment (IDE), but instead writes and modifies code using a text editor and compiles binaries and 
libraries using the latest versions of g++ and GNU Make. 

3.2 INSTALLING THE SDK 

The SGX software development kit (SDK) can be downloaded from Intel’s website [11] and is 
available for 64-bit versions of both Windows and Linux-based OSes. The SGX installation guide [12] goes 
into greater detail about the SDK installation process that is summarized here. In order to run the application 
using actual SGX hardware, SGX must be supported by the processor and enabled in the system’s BIOS, 
then the SGX driver, platform software (PSW), and SDK must be installed in that order. To develop SGX 
applications on non-SGX-supported systems or to use only the software simulation mode, only the SDK 
needs to be installed. 

The SDK includes source code for sample SGX programs in the SampleCode/ directory. Most of 
these projects organize their code into separate directories for the untrusted application and trusted enclave 
spaces and include all of the necessary files to build an SGX-enabled program. Therefore, it is 
recommended to emulate the directory structure and Makefiles from these sample projects, and copy the 
signing key files, if necessary, for software and debug enclaves. 

3.3 TERMINOLOGY 

The remainder of this document refers to the codebase in the following fashion. The entirety of the 
SGX-enabled application is referred to as the “program”. The portion of the program that resides in the 
untrusted application space is referred to as the “application” or “application code,” and the portion of the 
program that resides within the trusted enclaves is referred to as the “enclave” or “enclave code”.
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4. SGX IMPLEMENTATION 

This section details the methods by which SGX support can be added to an existing codebase. It 
covers how to build the enclave shared-object library, create edge routines to interface between the enclave 
and untrusted application, and modify enclave code to remove illegal instructions. 

4.1 BUILDING WITH SGX 

It is recommended for an enclave developer to model the project’s Makefile after one that is bundled 
with one of the sample projects that are included with the SDK. The basic additions that need to be made 
to a non-SGX Makefile are covered below, and the reader can refer to a sample project’s Makefile for a 
real-world implementation.  

4.1.1 SGX SDK settings 

The first section of the Makefile should have variables describing the SGX architecture (x86 or x64), 
mode (hardware or simulation) and profile (debug/pre-release/release). Several flag and path variables are 
set based on these options. 

SGX_SDK ?= /opt/intel/sgxsdk 
SGX_MODE ?= HW 
SGX_ARCH ?= x64 
SGX_DEBUG ?= 1 
 
ifeq ($(shell getconf LONG_BIT), 32) 
 SGX_ARCH := x86 
else ifeq ($(findstring -m32, $(CXXFLAGS)), -m32) 
 SGX_ARCH := x86 
endif 
 
ifeq ($(SGX_ARCH), x86) 
 SGX_COMMON_CFLAGS := -m32 
 SGX_LIBRARY_PATH := $(SGX_SDK)/lib 
 SGX_ENCLAVE_SIGNER := $(SGX_SDK)/bin/x86/sgx_sign 
 SGX_EDGER8R := $(SGX_SDK)/bin/x86/sgx_edger8r 
else 
 SGX_COMMON_CFLAGS := -m64 
 SGX_LIBRARY_PATH := $(SGX_SDK)/lib64 
 SGX_ENCLAVE_SIGNER := $(SGX_SDK)/bin/x64/sgx_sign 
 SGX_EDGER8R := $(SGX_SDK)/bin/x64/sgx_edger8r 
endif 

Figure 2. Snippet of basic SGX settings defined at the beginning of the Makefile provided in the SDK’s 
SampleEnclave project. 
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4.1.2 Using SGX libraries 

Additional SGX libraries need to be linked with both the untrusted application and trusted enclave 
code in order to use the SGX API. For example, the Untrusted Run-time System (uRTS) library needs to 
be linked with the application and the Trusted Run-time System must be linked to the enclave. These 
libraries are responsible for tasks such as making calls into an enclave and managing the enclave while it 
is running. Either the actual versions of these libraries or the “simulation” versions must be linked 
depending on the SGX mode (hardware or software simulation). 

ifneq ($(SGX_MODE), HW) 
 Urts_Library_Name := sgx_urts_sim 
 Uae_Library_Name := sgx_uae_service_sim 
else 
 Urts_Library_Name := sgx_urts 
 Uae_Library_Name := sgx_uae_service 
endif 
 
App_Link_Flags := $(SGX_COMMON_CFLAGS) -L$(SGX_LIBRARY_PATH) \ 
-l$(Urts_Library_Name) -l$(Uae_Library_Name) 

Figure 3. Setting linker flags for the application. 

4.1.3 Enclave gcc flags 

The enclave .so library requires several compiler and linker flags in order to be built correctly. Some 
examples include the –nostdinc and –fpie compiler flags (to not include the standard system header files 
and to compile position-independent code) as well as the –nostdlib and –Bstatic linker flags (to not include 
standard libraries and to link shared objects statically). 

Enclave_C_Flags := $(SGX_COMMON_CFLAGS) -nostdinc -fvisibility=hidden -fpie \ 
-fstack-protector $(Enclave_Include_Paths) 
Enclave_Cpp_Flags := $(Enclave_C_Flags) -std=c++03 -nostdinc++ 
 
Enclave_Link_Flags := $(SGX_COMMON_CFLAGS) -Wl,--no-undefined -nostdlib \ 
-nodefaultlibs -nostartfiles -L$(SGX_LIBRARY_PATH) \ 
 -Wl,--whole-archive -l$(Trts_Library_Name) -Wl,--no-whole-archive \ 
 -Wl,--start-group -lsgx_tstdc -lsgx_tstdcxx -l$(Crypto_Library_Name) \ 
-l$(Service_Library_Name) -Wl,--end-group \ 
 -Wl,-Bstatic -Wl,-Bsymbolic -Wl,--no-undefined \ 
 -Wl,-pie,-eenclave_entry -Wl,--export-dynamic  \ 
 -Wl,--defsym,__ImageBase=0 \ 
 -Wl,--version-script=Enclave/Enclave.lds 

Figure 4. Example flags used for enclave compilation. 
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4.1.4 Create .edl file (edge routines) 

Once the enclave developer has defined the boundary between the application and enclave, the edge 
routines that interface between the two must be defined. Any function that passes this boundary is 
considered an edge routine – functions that are called from the application into enclave are referred to as 
enclave calls (ecalls) while functions that are called from the enclave into the application are named outside 
calls (ocalls).  

The function prototypes for these edge routines must be placed in an Enclave Definition Language 
(.edl) file, which will be used by the SGX Edger8r tool during compilation to generate proxy functions for 
the ecalls and ocalls. When a program calls an edge routine, it actually invokes the generated proxy function, 
which then handles the data marshalling and enclave border crossing. Edger8r generates four files to hold 
these proxy functions – two each for the application and enclave. As an example, if the .edl filename is 
Enclave.edl, Edger8r generates Enclave_u.c and Enclave_u.h for the application code and Enclave_t.c and 
Enclave_t.h for the enclave code, where the _u and _t represent the untrusted and trusted sides of these 
proxies. 

Only objects of known scope can be passed as arguments to an ecall or ocall; therefore, C buffers and 
structures are acceptable but C++ objects are not. [13] [14] Any C++ object arguments should be converted 
to an equivalent C structure before being passed to an edge routine. For example, a C++ vector<uint8_t> 
argument in an ecall could be passed as a uint8_t* (along with an additional variable to represent its size) 
instead. Once inside the enclave, the buffer could be converted back to a vector if necessary.  

All buffer arguments in edge routines must include a direction specifier and data count. This specifier 
enables the Edger8r tool to automatically generate data marshalling code for the buffer across the enclave 
boundary. The specifier can have values of [in], which copies the buffer into the edge routine; [out], which 
initializes a buffer of zeros in the edge routine and copies it to the calling code upon function completion; 
or [in/out], in which the data is copied back and forth. Additionally, the specifier can designate a buffer as 
[user_check], in which no data marshalling is performed automatically and no data size is required. In this 
case, the raw pointer is passed across the enclave boundary, and it is the developer’s responsibility to 
marshal and access the data correctly.  

Further information about the EDL syntax can be found at [15]. 

void KmCrypto::encryptAES256_GCM( const vector<uint8_t> &plainText, const  
vector<uint8_t> &aad, const vector<uint8_t> &key, vector<uint8_t>  
&rCipherText, vector<uint8_t> &rIv, vector<uint8_t> &rAuthTag ) 
 
void ecall_encryptAES256_GCM( [user_check] const uint8_t *plainText_buffer,  
uint32_t plainText_size,  
[user_check] const uint8_t *aad_buffer, uint32_t aad_size,  
[user_check] const uint8_t *key_buffer, uint32_t key_size,  
[user_check] uint8_t *rCipherText_buffer, uint32_t rCipherText_size,  
[user_check] uint8_t *rIv_buffer, uint32_t rIv_size,  
[user_check] uint8_t *rAuthTag_buffer, uint32_t rAuthTag_size ) 

Figure 5. Example of an encryption function prototype and its ecall counterpart defined in the EDL file. 
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4.1.5 Enclave signing 

Once the enclave’s shared object (.so) library is compiled, it must be signed with the developer’s 
private key using the enclave signing tool, sgx_sign, included with the SDK. The sample projects’ 
Makefiles handle this automatically using an included private key file for all build types except hardware 
release, where it is expected that the developer uses their own key and perform the signing manually in a 
secure environment.  

Optionally, an enclave configuration file can be passed to the signing tool. [16] This XML file 
contains user-defined parameters for the enclave such as its security version number or product ID and is 
included as part of the signature calculation. 

4.2 MODIFY APPLICATION AND ENCLAVE CODE  

4.2.1 Include header files for libraries 

Certain libraries from the SGX SDK need to be included in both the application and enclave in order 
to support SGX functionality. On the application side, sgx_urts.h (untrusted runtime system) and 
Enclave_u.h (untrusted proxy generated by Edger8r) are needed for SGX variable types, enclave creation 
and destruction, and edge routine calls. Additionally, other SGX library header files could be included, such 
as sgx_tseal.h for calculating the amount of memory to allocate for an output buffer that will contain sealed 
data.  

On the enclave side, sgx_trts.h (trusted runtime system) and Enclave_t.h (trusted proxy generated by 
Edger8r) are needed for SGX variable types, trusted memory checking functions, and edge routine calls. 
Additionally, other SGX library header files could be included, such as sgx_tseal.h for sealing data to the 
enclave.  

4.2.2 Initialize and destroy enclave  

The untrusted application handles the initialization and destruction of enclaves. Launching an enclave 
is accomplished by calling the sgx_create_enclave() function provided by the SDK. This function takes in 
the enclave filename, debug flag, and optionally the enclave initialization token as input, and outputs the 
enclave ID (an unsigned 64-bit integer), updated token data if it has been altered, and optionally additional 
enclave attributes. The enclave ID is used as the first argument to all ecalls to specify the enclave in which 
the function is being executed. The token data stores attributes and measurements of the enclave that are 
checked and updated upon enclave creation to increase the enclave initialization performance. 

An enclave can be terminated simply by passing its ID to the sgx_destroy_enclave() function via the 
application. 
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sgx_status_t sgx_status = SGX_ERROR_UNEXPECTED; 
sgx_launch_token_t token = {0}; 
int updated = 0; 
 
... 
// Read token data from file and store in "token" 
... 
 
sgx_status = sgx_create_enclave(ENCLAVE_FILENAME, SGX_DEBUG_FLAG, &token,  
&updated, &global_enclave_id, NULL); 

Figure 6. Partial code to demonstrate call to sgx_create_enclave(). 

4.2.3 Call into/out of enclave 

The developer can make an ecall into a particular enclave at any point between its creation and 
destruction. This is accomplished simply by calling the ecall as it is defined in the .edl file, except that the 
enclave ID is added as the first argument of the function.  

The enclave code can make an ocall if it requires a function that can only be executed in the untrusted 
application. The ocall can be made by calling the function defined in the .edl file. 

Since the application is untrusted, the developer cannot make any assumptions within the enclave 
regarding the I/O parameters of an ecall or ocall or the state of execution when an ecall is made or an ocall 
returns. Therefore, the developer must perform proper sanity checking within the enclave to ensure that no 
sensitive data leaves its borders. 

4.2.4 Marshall I/O buffers in enclave 

For variables that are passed by reference, if the direction specifiers [in], [out], or [in/out] are used in 
the ecall or ocall function prototype, data marshalling across the enclave boundary happens automatically 
and no action is required from the enclave developer. However, the developer must handle data marshalling 
of any [user_check] buffers manually. As an example use case, a developer may want to pass a buffer of 
encrypted data into an enclave function. If the developer designates that buffer with [user_check], the buffer 
should be copied into enclave space by the developer before any processing is performed on it. 

void ecall_encryptAES256_GCM( uint8_t *key_buffer, uint32_t key_size, ... ) 
{ 
  // Copy arguments from untrusted space to trusted space 
  // Also convert from C buffer to C++ vector: 
  vector<uint8_t> key_vec(&key_buffer[0], &key_buffer[key_size]); 
   
  // Continue processing 
  ... 

Figure 7. The key material for this encryption function is stored in a C++ vector. To pass it through the enclave 
boundary, it is converted to a buffer within the application and then manually copied back into a vector defined within 
protected enclave memory. 
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4.2.5 Handle sensitive data in enclave 

The developer must write the enclave in a secure manner such that no sensitive data can ever leave 
the enclave boundary. Before unsealing sensitive data, the developer can call the sgx_is_within_enclave() 
function provided by the SDK to guarantee that the output buffer (which will contain raw sensitive data) is 
strictly within the enclave’s protected memory. Once the processing of sensitive material is complete, the 
developer should call memset_s() to clear every variable that contains sensitive data. The use of memset_s() 
cannot be optimized away by the compiler, guaranteeing that the data is overwritten.  

4.2.6 Remove illegal instructions 

There are several ways to exclude illegal instructions from the enclave code. The most 
straightforward method is to partition the codebase such that the enclave portion does not include any illegal 
instructions in the first place. For example, if the cryptographic processing portion of a codebase does not 
contain any illegal instructions, it would be simple to encapsulate that portion within an enclave without 
making any major changes.  

However, there are cases where this task is either impossible or impractical. For these cases, the most 
effective option may be to define ocalls in the .edl file. However, the developer must keep in mind that 
since the processing of an ocall function happens in the untrusted domain, the function may not perform 
the operations nor return the parameters that the enclave expects.  

Yet another option involves replacing the illegal instructions with SGX-provided counterparts. For 
example, instead of making a system call to the OS’s random number generator (RNG), which has the 
potential of issuing an illegal VMEXIT instruction, the developer could use the RNG provided by the SGX 
SDK (sgx_read_rand()).  

The final option would be to simply remove the offending code from the program entirely. This option 
could be useful when the illegal instructions do not affect the functionality of the program. For example, 
print statements used for debugging purposes could be commented out of the code when building the SGX-
enabled program. 
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5. PROTECTING SENSITIVE DATA 

5.1 SEALING 

As explained in Section 1.3.4, SGX provides the ability to cryptographically seal sensitive data before 
placing it in untrusted non-volatile storage. The sealing and unsealing processes are fairly straightforward 
and must occur within the enclave. To seal data, the developer needs to make two SGX library calls: 
sgx_calc_sealed_data_size() to determine how much memory to allocate for the output buffer and 
sgx_seal_data() to seal the data using the seal key derived in the SGX hardware. As expected, unsealing 
data works in a similar fashion: the developer calls sgx_get_encrypt_txt_len() to get the size of the output 
(unsealed) data and sgx_unseal_data() to unseal the data and write it to the buffer. 

// Initialize output vector 
uint32_t unsealedDataSize = sgx_get_encrypt_txt_len( 
(sgx_sealed_data_t*) &sealedData.front()); 
vector<uint8_t> unsealedData(unsealedDataSize); 
 
// Ensure that the output vector is completely within the enclave 
if(sgx_is_within_enclave(&unsealedData.front(), unsealedDataSize) != 1) 
{ 
  // Buffer is outside enclave! 
  return ERROR_UNSEAL_DATA; 
} 
 
// Unseal the data and store it in "plaintext" 
sgx_status_t result = sgx_unseal_data((sgx_sealed_data_t*)  
&sealedData.front(), NULL, 0, &unsealedData.front(),  
&unsealedDataSize); 

Figure 8. Example of the data unsealing process. The enclave should use sgx_is_within_enclave() to ensure that 
unsealed sensitive data does not leave the enclave boundary. 

5.2 REMOTE ATTESTATION 

Remote attestation is the process by which a challenger verifies the legitimacy of an enclave that is 
running on a separate physical machine before provisioning sensitive data to it. [17] Remote attestation 
involves a three-party communication between the SGX-enabled program, remote challenger (referred to 
as a “service provider” by Intel), and Intel’s Attestation Service (IAS). First, the program’s enclave and 
remote challenger perform an Elliptic-Curve Diffie-Hellman (ECDH) key exchange to establish a secure 
channel. Next, the enclave sends a report of its authenticity to the challenger, who verifies it with the IAS. 
If the verification is successful, the challenger can then provision sensitive data to the enclave over the 
secure channel with confidence that the data will not be leaked to the surrounding untrusted system.
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6. OPTIMIZATIONS 

This section describes several optimizations that developers can make in order to maximize the 
performance of their SGX-enabled program, make minimal changes to their program-specific code, and 
ensure that their programs are still compatible with legacy and non-Intel hardware.  

6.1 SHIM LAYER  

The most important optimization for a developer to leverage is to contain all of the program’s SGX-
specific code in a “shim layer”. This shim layer is responsible for all SGX-related processing, including 
instantiating and destroying enclaves, making ecalls and ocalls, and sealing and unsealing data. The shim 
layer straddles the enclave boundary, with one half of it in the application space and the other half contained 
within the enclave. This makes the enclave boundary opaque to the surrounding program-specific code and 
allows the API between the application and enclave program code to remain the same, since all data 
marshalling happens within the shim layer. Logically, the program code on both sides of the enclave 
boundary interacts as if the shim is not even there. 

Figure 9. The API for the security-sensitive code is the same whether the “legacy” or “SGX-enabled” version of the 
program is built. The only aspect of the general application code and security-sensitive code that changes is the 
inclusion of SGX-specific header files. 

6.2 DUAL CODE PATHS  

An application should never crash or otherwise fail ungracefully solely because the platform does not 
support Intel SGX; therefore, the developer should include dual code paths based on whether or not SGX 
is supported. [18] The implementation of the dual code paths is left to the developer; based on the program 
and the sensitivity of the material the non-SGX path could do anything from implementing the full suite of 
security-sensitive code to displaying an error message and failing gracefully. The SDK includes functions 
to detect SGX support on the platform.  
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6.3 CODE REFACTORING 

If the program code requires several jumps across the enclave boundary in a single function, the 
developer may choose to refactor that code to decrease the number of enclave border crossings. For 
example, the program may be structured to encrypt several pieces of data by calling the encryption function 
in a loop for each piece. If the loop is in the application space but the encryption function is within an 
enclave, each iteration of the loop involves all of the data marshalling, encryption key unsealing, and 
memory checking innate to an enclave call, adding overhead to the program. This code could be refactored 
to prepare all pieces of data ahead of time, pass them into the enclave all at once, perform the encryption, 
and return the result in bulk. This would involve only one enclave border crossing, decreasing the amount 
of overhead due to leveraging SGX protections in this program. 

6.4 MACRO DEFINITIONS  

If all SGX-specific code is implemented in the shim layer, the developer can use macro definitions at 
the start of source code files to decide whether to include it or not. A simple flag can be passed to the 
compiler to determine whether or not the shim layer is included, as shown in Figure 10. Since the API 
between the program-specific code is unchanged when implementing a shim layer, the function calls within 
the general application layer are identical whether the SGX or non-SGX programs are built. 

// In general_app_code.h 
#ifdef USING_SGX 
  #include "secure_code_shim.h" 
#else 
  #include "secure_code_real.h" 
#endif 

Figure 10. If the USING_SGX macro is defined, the application code includes the shim layer’s header file; 
otherwise it includes the header of the actual security-sensitive code. 

6.5 ERROR HANDLING 

If the program’s enclave code includes explicit error checking and exception throwing, the developer 
must catch the exceptions within the enclave and pass a status flag back to the application indicating that 
an error occurred. Exceptions are not allowed to be thrown across the enclave boundary, but they can be 
thrown and caught within the enclave. Each ecall function body should be wrapped in a try/catch block so 
that any exceptions that are thrown within them are caught within the enclave. A status variable should be 
passed to each ecall from the application and set to the caught error code within the catch block. This status 
variable should be checked upon return from the ecall in the application’s shim layer, and an exception 
should be thrown if the status indicates that an error occurred in the enclave. This emulates the exception 
throwing/catching functionality of the program-specific code in a non-SGX-enabled build of the program.  
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Figure 11. Exception throwing and catching can be emulated across the enclave boundary by setting a flag variable 
within the enclave when an error is caught and checking that flag once the ecall returns to the application. 
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7. RELATED WORK 

7.1 ARM TRUSTZONE AND AMD SECURE PROCESSOR 

Arm TrustZone technology provides system-wide hardware isolation for trusted software. [19] It 
works by partitioning the computing space into hardware-separated secure and non-secure worlds, 
disallowing software in the non-secure world from accessing secure resources directly.  Arm provides a 
reference implementation of low-level secure world software known as Arm Trusted Firmware [20] which 
can be used to launch a trusted OS and trusted applications through secure boot.  

AMD’s Secure Processor [21] is simply an on-chip Arm processor with TrustZone technology, and 
Apple’s Secure Enclave Processor on iOS devices is essentially a highly customized version of TrustZone 
technology. [22] 

7.2 INTEL TXT 

Intel’s Trusted Execution Technology (TXT) [23] provides hardware-based security by measuring 
each component of the boot process to ensure that the system was initialized securely and has not been 
altered from a known trusted configuration. Intel TXT establishes a “root of trust” in hardware that provides 
launch control policy and verified launch protections. It also enables the sealing of sensitive data and 
attestation of platform legitimacy. Intel TXT was launched in 2010 and is currently available in most Intel 
Xeon processors. 

7.3 CRYPTO LIBRARIES IN SGX 

Intel has implemented a cryptographic library that leverages SGX enclaves. It is based on the 
OpenSSL library and available on GitHub under an open-source license. [24] This library incorporates a 
shim layer as described in this whitepaper, enabling the API exposed by the library to be fully compliant 
with a subset of the unmodified OpenSSL API. This allows for straightforward compatibility with projects 
that already interface with the OpenSSL library.  

The mbedtls library (previously known as PolarSSL) has been ported to use SGX enclaves. It provides 
an implementation of the TLS protocol suite and a variety of cryptographic primitives. It is also available 
for download on GitHub under the Apache License version 2.0. [25] 

7.4 INTEL KPT 

Intel Key Protection Technology (KPT) [26] augments Intel’s QuickAssist Technology (QAT) 
hardware crypto accelerator with the run-time protection of Intel Platform Trust Technology (PTT) for 
persistent key storage at rest. It supports high-performance, scalable, security-enabled cryptography and 
key management and is intended to replace traditional hardware security modules in server environments. 
Intel introduced KPT with their latest Intel Xeon Scalable processors. 

  



 

22 

 

TABLE 1 
Comparison of Hardware-Based Security Technologies 

 Intel SGX Arm TrustZone Intel TXT Crypto 
Libraries in 

SGX 

Intel KPT 

Hardware 
trusted? 

CPU chip 
only 

Yes Yes CPU chip only  CPU chip 
only 

OS/VMM trusted? No Yes Yes No No 

Confidentiality 
and Integrity 
Protections 

Yes Yes Yes Yes Yes 

Trusted boot No Yes Yes No No 

Attestation Yes Yes Yes Yes  Yes 

Built-in data 
sealing 

Yes No Yes Yes No 
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8. CONCLUSION 

Intel SGX provides secure applications with hardware-backed confidentiality and integrity 
protections. As long as the enclave is bug-free and is not susceptible to side-channel attacks, these 
protections apply to all three phases of the operational data lifecycle: at rest through sealing, in use through 
processing within an enclave, and in transit through ECDH key exchange during remote attestation. SGX 
shrinks the trusted computing base (and therefore the attack surface) of the application to only the hardware 
on the CPU chip and the portion of the application’s software that is executed within the protected enclave, 
versus the entire hardware/VMM/OS/application stack in traditional computing environments. Its SDK 
enables relatively straightforward integration into existing C/C++ codebases and ensures program support 
for legacy and non-Intel platforms.  
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