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Abstract 

The purpose of this research was to investigate the flattening effect at tail end of 

learning curves by identifying a more accurate learning curve model.  The learning curve 

models accepted by DOD are Wright’s original learning curve theory and Crawford’s 

Unit Theory. The models were formulated in 1936 and 1944 respectively.  This analysis 

compares the conventional models to contemporary learning curve models in order to 

determine if the current DOD methodology is outdated.  The results are inconclusive as 

to if there is a more accurate model.  The contemporary models are the DeJong and S-

Curve and they both include an incompressibility factor, which is the percentage of the 

process that includes automation.  Including models that incorporate automation was 

important as technology and machinery plays a larger role in production.  Wright’s model 

appears to be most accurate unless incompressibility is very low.  A trend for all models 

appeared.  The trend is Wright’s curve was accurate early in production and the 

contemporary models were more accurate later in production.  Future research should 

have an objective of finding a heuristic for when the models are most accurate or 

comparative studies including more models.   
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A COMPARATIVE STUDY OF LEARNING CURVE MODELS AND FACTORS IN 
DEFENSE COST ESTIMATING USING PROGRAM INTEGRATION, ASSEMBLY, 

AND CHECKOUT  
 
 

I.   Introduction 

Purpose and Overview 

Department of Defense (DOD) acquisition programs have frequent cost overruns that 

exceed billions of dollars every year.  The effect of the overruns is detrimental to the DOD and 

limits the United States Government’s ability to operate efficiently.  Inaccurate cost estimates 

play a large role in the stated cost overruns.  The final cost of a program when compared to the 

baseline, show DOD programs historically have underestimated costs.  Cost estimates allow the 

DOD to assess the future of programs and the role that cost plays.  The government budgets are 

based these cost estimates.  The current state of the DOD includes shrinking budgets and large 

funding cuts for acquisition programs.  An extra emphasis on and scrutiny of accurate cost 

estimates are the result of the current cuts and budget issues.  There is a new standard for 

Financial Managers and Program Managers.  They have to support and maintain a cost estimate 

like no time before.  A balanced budget is a goal for the DOD, and the budget depends on the 

cost estimate.  Gone are the days when the DOD had ever-growing budgets where the fiscal 

mentality was to spend.  The fiscal mentality now involves saving and receiving as much value 

as possible for every budgeted dollar.  In order to obtain reliable cost estimates, cost estimating 

models and tools within the DOD present the opportunity for an evaluation on their accuracy.   

The current learning curve methods within the DOD’s cost estimating procedures are from the 

1930s.  As automation and robotics increasingly replace human touch-labor in the production 
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process, a model that is 80 years old, and assumes constant learning, may no longer be 

appropriate for accurate learning curve estimates.  Robotics and automation do not learn and they 

are inevitably a part of future production.  New learning curve methods are available for cost 

estimators to utilize.  The modern learning curve methods could be a useful tool for obtaining 

better cost estimates for the DOD.  The purpose of this research is ultimately to investigate new 

learning curve methods, develop the learning curve theory within DOD, and pursue a more 

accurate model.   

This thesis will examine whether different learning curve models are more accurate than 

Wright’s Learning Curve model (the status quo) when comparing actual values to predicted.   

The current DOD learning curve methodology does not take into account available information 

and factors that contribute to learning.  The information and factors are not taken into account 

largely because the status quo models are outdated and do not account for many parts of the 

learning processes.  The theory of forgetting is a concept from contemporary learning curve 

models and it may provide an answer to providing accurate cost estimates.  Forgetting is human 

error or the tendency to not show constant learning over time (Badiru, 2012).  The point of 

emphasis for this research, and issue that needs to be resolved is that DOD agencies need to 

estimate more accurately.  Prior thesis work and research on this subject shows that the learning 

curve methods show room for further development.  The prior research found that models that 

are more accurate potentially exist.  There is a chance to incorporate alternate learning curve 

models and more DOD programs into this area of research.  Research found that an important 

factor (incompressibility) was not explicitly researched or known.  An assumption on the 

incompressibility factor was the route of analysis for the certain learning curve models that 

incorporated it.  Towill and Cherrington defined incompressibility as the percentage of the 
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learning process that is automated (1994).  Robotics and automation are not going away and will 

likely play a larger role in the future.  Research on what that factor actually equals or how it 

relates to different airframes could be critical for obtaining a more precise model.  Using 

integration, assembly, and checkout (IA&CO) processes instead of complete touch labor 

processes should provide an analysis that is more insightful and potentially lead to a more 

accurate model.  IA&CO are specific work that occurs during production.  Further chapters will 

provide more detail and explanation of IA&CO.  The reason for this significance is that 

production, in general, is moving towards a more automated process.  Machines are starting to 

take over parts of production.  This research on the specific part of production assumes that 

humans will be doing the work.  Since the IA&CO is a highly manual process, human learning 

and forgetting occurs.  The rest of Chapter 1 includes background, a problem statement, 

objectives, investigative questions, methodology, and assumptions and limitations.  Lastly, the 

conclusion will provide an overview of the remaining chapters of this comparative study.  

Background 

The learning concept itself is the theory that as a worker performs a task repeatedly, he or 

she will require less time to complete the same task due to familiarity with the  process (Moore, 

2015).  The learning concept and learning curve models have been applied to manufacturing for 

over 70 years.  From government to private industry, learning curve methodology has been 

applied and adopted.  The earliest learning curve model, Wright’s Model, is a mathematical 

representation that illustrates as the quantity produced doubles, a worker’s performance will 

increase at a constant rate (Wright 1936).  Tasks tend to be completed faster with practice; the 

task completion increase in speed is not surprising because we have all seen this and it is 
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intuitive (Ritter, 2001).  People and the organizations that include human labor tend to learn and 

complete tasks better and more efficiently over time if the tasks are repetitive in nature.  Under a 

repetitive task, and certain conditions, a pattern that is usable for estimating time or costs 

emerges.  If the conditions for learning vary or are not repetitive in nature, learning curve 

formulations and patterns do not emerge.  One of the first and most recognizable learning curve 

formulas is y=𝑎𝑎𝑏. This is referred to as the Unit Learning Curve Model,   

Equation 1: 

                                           𝑦 = 𝑎𝑎𝑏                                                            (1) 

Where 

y = the estimated production 
hours or cost 
a = the production hours of the 
theoretical first unit  
x = is the unit produced 
b = is a factor of the learning = 
log R (learning rate)/log2 

 

The theoretical first unit, a, is determined by analysis on obtainable historical data and is not to 

be confused with the actual first unit cost (T1) or hours.  Chapter 2 will explain the model in 

further detail based on unit and cumulative average concepts that were developed.  Cumulative 

Average theory is the same equation but different definitions for the variables “y” and “x.”  

Cumulative average theory is attributed to Wright, but the equation differs in that “y” represents 

cumulative average costs and “x” represents cumulative average units.  

 The Air Force methodology on learning curves and guidance in their application is found 

in Chapter 8 of the Air Force Cost Analysis Handbook (AFCAH) and chapter 17 of the DOD 

Basic Cost Estimating Guidebook (BCE).  These two guides focus on two theories: unit theory 
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and cumulative average theory.  The unit theory, equation 1, predicts a specific unit cost.   

Cumulative average theory focuses on the average of all units produced up to a certain point in 

the production process.   

Wright’s Model has been the standard in manufacturing.  However, recent research has 

shown other models may provide a more accurate predictor of cost.  Moore analyzed learning 

curve models and provided the foundation for this research.  His research showed that two 

alternative learning curve models, the S-Curve and DeJong, were more accurate when an 

incompressibility factor was assumed to be somewhere between in the range 0.0 and 0.06 for 

production on the F-15 fighter aircraft.  The research highlighted that results were inconclusive 

as to which model is the most accurate and whether or not the level of automation assumption 

was valid (Moore 2015).  The equations and factors will be explained in further detail the 

equations in chapter 2.  There are multiple learning curve models in present day production.  The 

S-Curve and DeJong Models were models in the comparative study that emphasize the concept 

of forgetting in the form of automation.  A 2013 Journal of Aviation and Aerospace Perspective 

Article titled “Half-Life Learning Curve Computations for Airframe Life-Cycle Costing of 

Composite Manufacturing” emphasized a forgetting concept that relates learning curves 

methodology.  The forgetting concept includes the idea that workers experience forgetfulness 

and an associated decline in performance with time instead of constant learning.  Even as a 

worker is making progress with time, the learning can decrease (Badiru, 2012).  This decrease in 

learning can be as simple as forgetting processes over time.  The article added, “Contemporary 

learning curves have attempted to incorporate forgetful components into learning curves” 

(Badiru et al, 2013).  Forgetting theory was the concept and basis for Moore’s (2015) research 

into learning curve models.  Forgetting was the basis because Wright’s Model does not account 
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for it.  Moore attempted to demonstrate that the S-Curve and DeJong were better predictors of 

manufacturing hours (or costs) than conventional models.  Wright’s Learning Curve, the 

Stanford B, S-Curve, and DeJong were the models used in Moore’s research.  The research was 

able to incorporate one aircraft for comparison.  Incorporating other aircraft at the time of 

research did not happen because of multiple data issues on other fighter aircraft.  The research 

found that there is evidence to support a hypothesis that a more accurate model exists.  

Forgetting and the future of production using a more automated manufacturing process could 

provide insight into cost estimating.  The idea is to provide cost estimates that are more accurate.  

This thesis, sponsored by the Air Force Life Cycle Management Center (AFLCMC), will expand 

upon prior research, and attempt to research a more accurate model that can provide a more 

accurate cost estimating method for the DOD.    

Problem Statement/Research Objectives 

The problem is that there is flattening effect near the end of production runs, learning 

does not remain constant in aircraft production, and machinery is becoming more involved in the 

production process.  Prior research sought to answer why the flattening effect happens, but was 

based on only one aircraft and a certain factor in the learning curve models was assumed.  The 

research needs development and further comparisons in order to capture breadth.  Through the 

efforts of Moore, there is evidence to support a hypothesis that a different model may be more 

accurate than Wright’s model.  Moore’s research found that the contemporary models are more 

accurate than Wright’s model given an incompressibility factor (M) that is somewhere between 

0.0 and 0.1.  M is a number between zero and one where zero indicates a completely manual 

process and one indicates a fully automated process.  Wright’s model is the most accurate 

predictor of cost if M is assumed to be greater than 0.1.  Prior research results as to which 
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alternative learning curve model is the more accurate were inconclusive (Moore, 2015).  Results 

did not support nor disprove a change from Wright’s Model based on one aircraft, the F-15.  

Prior research provides the foundation for further research into additional types of aircraft.  

Specifically further research and analysis using program integration, assembly, and checkout.  

Additional research on the impressibility factor may indicate a model that is more applicable to 

DOD methodology.  Additional learning curve models that do not rely on an assumed M may 

provide strong results as well.  Using all of the data points, every airframe produced instead of a 

lot data, should prove insightful and may be more robust than using lots.  Lot data is typical for 

DOD programs.  Further chapters will explain why lot data is typical for DOD programs. The 

unit data refers to actual individual production or manufacturing units whereas lot data refers to 

data for multiple units for an entire production.  Lot data is harder to see what is happening in the 

learning process because there are less checkpoints.   

Investigative Questions 

The following investigative questions are the basis for this thesis.  

1. How does the application of learning curve models using program integration, 

assembly, and checkout data effect learning curve models that incorporate an 

incompressibility factor?  

2. How sensitive are IA&CO data to the incompressibility range? 

3. Which learning curve model is the most accurate at predicting cost or time for 

IA&CO? 

4. How can the individual airframe work codes prove beneficial for predicting cost or 

time? 
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Methodology 

The method for this thesis begins by collecting data from the Air Force Life Cycle 

Management Center Cost Staff on Airframe, Integration, Assembly, and Checkout.  Data are 

essential to predict costs and research the incompressibility factor.  The basic method is to use 

learning curve models to compare actual costs to predicted costs.  A comparison of actual costs 

to predicted costs will enable a calculation of error and further analysis of variance.  Lastly, this 

research will attempt to determine a good estimate for an incompressibility factor through 

application into different models.  The alternative models, the DeJong and S-curve, will be 

predictors of cost or hours for the Air Force Program.  The Air Force Program is a multi-mission 

aircraft used for intelligence surveillance and reconnaissance. The alternative models will be 

compared to Wright’s Model (Cumav or Unit based on which provides a more accurate estimate) 

in order to calculate a percent error.  The error is the comparison point for accuracy.  The 

comparison will use an Analysis of Variance (ANOVA) and potentially a Kruskal-Wallis means 

test if the results are not from a normal distribution.  Chapter 3 will explain the methodology in 

detail.   

Assumptions/Limitations 

If one or more of the models is found to have a mean residual value (average difference 

between the observed values and the predicted values) that is significant, the next step is to 

determine which model is the best predictor of actual production costs (“Residual Analysis in 

Regression,” n.d.).  The smallest mean total for a model is reflective of the most accurate model.  

The incompressibility factor, explained further in Chapter 2, must have an accurate range in 

order to provide a more accurate model.  Assuming the factor lies within a certain range could 

provide an estimator a basis for including an alternative model in an estimate.  Data should 
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provide constants and factors for model incorporation.  Later chapters provide the assumptions 

on the factors and constants in the equations.  The scope of this thesis will focus on aircraft 

production hours within the Air Force.   

Preview 

The goal of this thesis is to answer the research questions, expand prior research, and 

determine if contemporary learning curve models more accurately predict costs than the 

conventional models used.  The analysis of data will compare the contemporary models to the 

conventional models (status quo) used in the DOD.  Provided there are significant results, there 

is potential for adopting new learning curve methods.  The next chapter will deliver an in depth 

look into literature surrounding learning curve concepts, the associated incompressibility factor, 

[and the influence of machinery in aircraft production].  Specifically, Chapter 2 will assess Air 

Force and DOD costs estimates.  Chapter 2 will address how learning curves play a role in the 

cost estimation.  Chapter 2 provides in depth explanations of the contemporary learning curves 

models.  The following chapter, Chapter 3, will identify the methodology.  The methodology 

provides the basis for, data collected, how the data application will work, and statistical 

techniques.  Chapter 4 highlights the results from the analysis (tests and methodology) described 

in Chapter 3.  Descriptions of results and graphical explanations are the basis of Chapter 4.  The 

results of the analytical tests provide the basis for Chapter 5, which provides the impacts of the 

results, the conclusions, and implications for cost estimation.     
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to summarize previous published research as appropriate to 

learning curve methodology.  As stated in Chapter 1, the current spending on DOD programs is 

declining.  The Budget Control Act of 2011 set to DOD spending and sought to reduce the deficit 

by $1.5 trillion over a ten-year period.  Since 2010, there have been three iterations of the Air 

Force’s Better Buying Power (BBP), which focuses on efficiencies and affordability within the 

Air Force.  BBP is an initiative from the Office of Acquisition, Technology and Logistics that 

pursues continuous improvement being the best approach to improving DOD acquisitions 

(Kendall, 2014).  One pillar of BBP 3.0 is to achieve dominant capabilities while controlling 

lifecycle costs.  A sub-pillar is to strengthen and expand “should cost” based cost management 

(Kendall, 2014).  The concept of should cost based management includes identifying goals for 

cost reduction and implementing efforts to achieve cost reductions (Mueller, 2011).  Essentially 

BBP 3.0 is attempting to achieve the efficiency of DOD acquisitions.  Kendall states this by 

saying, “progression from BBP 1.0 to 2.0 reflected a change in emphasis from best practices to 

an increased emphasis on helping acquisition professionals think critically and make better 

decisions as they confront a myriad of complex situation encountered in defense acquisition” 

(Kendall, 2014).  Finding a more accurate learning curve model (also known as an experience 

curve) for predicting cost can make the DOD acquisition process more efficient and control life 

cycle costs.  The success of the budget control act relies on controlling costs.  Controlling costs 

does not mean lowering the costs of programs; it means the DOD estimate will not have a better 

picture of what a program will actually cost.  The DOD has a budget and the estimates drive 
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where the budgeted dollars end up (which programs get what).  Budgeting accuracy is achievable 

through accurate cost estimates.   

Many learning curve models exist and learning curve theory has grown and evolved over 

time.  However, the DOD practice and methodology has seen little change or adaptation to 

current technological trends.  It is known that over time a worker and organizations learn (find 

efficiencies and process improvements) when performing repetitive tasks (Malashevitz & 

Williams, 2010).  Efficiencies and improvements over time equate to the learning curve 

methodology.  From learning curve methodology, the concept of forgetting emerged.  Forgetting 

is the phenomenon that a worker’s performance may fluctuate or decline with time.  Forgetting, 

unlike Wright’s theory that assumes constant learning, there is unlearning in the production 

process.  Moore (2015) uses the example of the production of an automobile: “While the 

processes and parts are always the same, a savvy car buyer may want to avoid cars that were 

built on a Monday or Friday.  The worker and even the entire assembly line may suffer a loss in 

performance due to working at the beginning or end of the week” (Moore, 2015.  10).  It is 

human nature for people to lose focus or concentration at certain times when performing 

repetitive tasks.  An example of this loss of focus would be a production line worker doing the 

same task repeatedly.  Eventually that person might slow down because of a daydream or 

boredom.  The same idea for the production of cars can occur within any production.  A worker 

will show forms of forgetting and will not show constant learning over time.  There is visual 

evidence of forgetting when plotting cost or hours to complete tasks.  The forgetting is evident 

when the tail end of the learning curve does not exhibit a constant slope.  The learning curve’s 

slope changes, showing a flattening, or decrease in learning.  The change might be an effect 

attributable to forgetting.  Figure 1 highlights that constant learning was not the case for the Air 
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Force Program.  The hours to complete individual units actually in some instances show an 

increase.   

 

Figure 1 Air Force Program Actuals 

The actuals leave a ground for questioning whether the flattening effect at the tail end of 

production attributable to forgetting or the influence of machinery.  One might be able to 

hypothesize that machinery, which does not learn may have caused the flattening effects at the 

tail end of the curves.  With the combination of organizational forgetting theory and automation, 

a more robust model may be present.  

This chapter summarizes research appropriate to learning curve methodology.  Chapter II 

includes concepts of forgetting theory, appropriate learning curve models, if and how private 

industry utilizes learning curves, and the background on the incompressibility factor.  This 

chapter will provide background on contemporary learning curve theories, summarize prior 
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research on learning and forgetting theories, investigate machinery and technology involved in 

production, limitations, and conclude with a description of methodology.   

Description of Learning Curves  

Theory 

The theory of learning curves dates back over 70 years, when Theodore Paul Wright (T. 

P. Wright) first identified a relationship between a worker’s performance on a single task and the 

time required to complete that task.  The time to complete a task decreases at a constant rate over 

time.  In 1936, T. P. Wright annotated the effect of learning on production costs in his article 

about the aircraft industry, “Factors Affecting the Cost of Airplanes.”  Wright developed the 

learning curve mathematical model and stated it in his article (Wright, 1936).  The best way to 

think Wright’s model is as the unit doubles from 1-2, 2-4, 4-8, etcetera, learning will happen at a 

constant rate.  In the 1970s the Boston Consulting Group found that various industries 

experienced a range from 10 to 25 percent learning curve effect (Hax & Majluf, 1982), which 

was in line with what Wright observed in the aircraft industry years earlier (20 percent learning 

curve effect).   

The effect of learning is evident by examining the slope of the line over time.  Figure 2 is 

a graphical representation of Wright’s learning curve.  Figure 2 is an example with the first unit 

costing 100 per unit.  Based on 90%, 80%, and 70% learning, the graph highlights when the 

number of units doubles, the average production cost decreases by 10%, 20%, and 30% 

respectively.  The direct costs decrease because they are a function of direct labor costs.  As the 

time to complete a unit decreases, so will the costs.  The average is the sum of the values divided 

by the number of units (the mean).   
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Figure 2: Cumulative Unit Theory Learning Curve (Wikipedia, 1936) 

Figure 3 highlights the log scale learning curve rate.  This log relationship results in a linear 

relationship for the experience curve.  The log relationship is the result of an algebraic 

manipulation.  The algebra enables regression analysis; the transformation makes the data linear.  

Practitioners find the log relationship useful in their efforts to best fit a straight line to the 

algebraically manipulated data.    

 

Figure 3: Cumulative Unit Theory Log Scale (Wikipedia, 1936) 

The log scale’s straight line for Wright’s Model provides the basis that a constant learning rate 

over time is a straight line, and thus learning is constant.  The most flexible and appropriate 
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transformation is the logarithmic (LOG (base 10)) or the Natural LOG (LN (base e)) of hours 

and quantity  (Malashevitz & Williams, 2010).  Logarithms are a method to reduce long 

mathematical calculations.  Graphing the values on log-log paper as seen in Figure 3 (or by 

mathematical calculation of the logs) is evident.  A line, characterized as having a constant slope, 

emerges from this method.  Slope is defined as change in Y given a change in X where 

Y=mX+B (equation of a straight line).  A figure in log space highlights the slope and it relates it 

to a constant learning percentage.  Wright’s model originally took into account cumulative 

average costs, where the average cost is the average cost of the units.  Crawford was able to 

create a model based on Wright’s model and created an equation (Equation 1 found in Chapter 1) 

to predict a cost for a specific unit.  The cumulative average equation is similar, but uses 

averages.  For example, consider a hypothetical 80% learning rate with a theoretical first unit 

cost of $100.  The second unit would cost $80.  Whereas the Cumav cost would be the 

cumulative average of the first two units.  The average of $100 and $80 equals $90.  Cumav thus 

will always result in a more conservative estimate than the unit curve.  Table 1 highlights the 

cumav and unit cost comparisons below.   

Table 1 Cumav and Unit Cost Comparison 

 

Unit Unit Cost Cumav Cost 
1 100.00$  100.00$        
2 80.00$     90.00$          
3 70.21$     83.40$          
4 64.00$     78.55$          
5 59.56$     74.75$          
6 56.17$     71.66$          
7 53.45$     69.06$          
8 51.20$     66.82$          
9 49.29$     64.88$          

10 47.65$     63.15$          
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 The DOD typically receives reports from contractors based on lot or unit data.  It is more 

common for a contractor to provide lot data, however it is far preferable for the estimator to have 

unit data.  Having unit data provides the estimator with actual costs or hours and helps them 

avoid a Lot Midpoint or Lot Plot Point determinations.  Based on the data available to DOD cost 

estimators, the unit curve method is not readily used.  Regression is the primary method for 

predicting learning curves using lot data.  The lot is the number of units in a certain production 

run.  If the data are in lots, and the lots are consecutive, the approach is to use the last unit in the 

data as the plot point.  The last unit of the lot approach is the Lot Plot Point (LPP) approach.  

LPP is similar to plotting individual units in order to determine learning from lot to lot over time 

(Hu and Smith, 2013).  The Lot Midpoint (LMP) captures the unit curve and is the unit that 

corresponds with average unit cost for the lot.  This is simply the lot average unit cost.  The 

reason lots usage typically occurs in cost estimation is that there are limits on the availability of 

information.  In general, the military procures equipment (planes, tanks, satellites, etc.) in lots 

greater than one and as a result receives cost data in the form of dollars or hours by lot and not 

on a unit basis (Everest, 1988).  Inquiries show that defense acquisitions typically utilizes the 

cumulative average cost curve because of receiving data in lots Unit data is considered superior 

to Cumav data because individual points highlight learning and forgetting over time.  An average 

(CUMAV) will not display learning/forgetting as readily because of a smoothing effect.  By 

using an average, the curve is smoother and the effects of learning are less apparent (All, 2013).  

If a program or estimator is able to obtain unit data in the form of actual hours there may 

be room to incorporate the unit curve.  Having all of the proprietary data on a weapon system 

may prove beneficial to utilizing a unit cost curve.  The learning curves may prove more accurate 

than using the LPP or LMP [this assumes there was not a major production break].  The trends 
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are much more evident for hours than costs and lots.  Hours provide a constant homogenous 

comparison from year to year.  Dollars on the other hand can feels the effects of external factors 

such as inflation.  For example, an hour in 1985 is equivalent to an hour in 2010.  Lots include 

multiple airframes that are sometimes not equivalent.  For example, a program could purchase 10 

units in the first lot and 85 in the next.  The actual labor hours for different work codes gives this 

analysis grounds to test the specific data.  Loss of learning, machinery, and automation analysis 

using IA&CO may provide profound and insightful learning curve results.    

A description of labor categories Integration, Assembly, and Checkout highlights that not 

all definitions are synonymous amongst manufacturers.  The manufacturers largely consider 

what is involved in each category as proprietary information.  For the purpose of this study, Final 

Test Integration, Electrical and Mechanical Assembly, Test/Integration, Composites (all 

locations), and Quality Control are considered IA&CO.  Final Test Integration includes the direct 

labor for the final integration and test, which includes final assembly, system burn-in, payload 

integration and interface, autopilot checks, taxi tests, range tests and first flight support.  

Electrical Assembly is the direct labor required to assemble electronic components.  Mechanical 

Assembly is the direct labor required to build servos for the aircraft, to build landing gear, build 

starter/alternators, to perform rework, and high-time maintenance on those components.  

Test/Integration is the direct labor for new build electronics, field repairs, integrating avionics, 

and testing them at the system level.  Composites manufacturing is the direct labor required to 

lay up, cure, and finish components such as the fuselage, wings, tails, and landing gear.  Quality 

Control is the direct labor required to provide inspection of electronics and mechanical 

components and assemblies, document discrepancies, and resolve problem areas (“Labor 
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Categories_2.pdf,” n.d.). Of note, these labor categories involve mainly direct labor performed 

by humans where the learning process is observable.  

 A contemporary variation of learning curve models is DeJong’s Learning Formula.  This 

formula is a modification of Wright’s model, and it takes into account the constant, M.  M is the 

incompressibility factor, which is a constant between zero (fully manual operation) and one 

(fully automated or machine dominated operation) (Badiru ET.  Al, 2013).  Equation 2 highlights 

DeJong’s Learning Model.  

                                                  𝑡𝑛 =  𝑡1{𝑀 + (1−𝑀)𝑛−𝑏                                               (2) 

Where:  

𝑡𝑛 = the cumulative average time after producing n units 
𝑡1 = time required to produce theoretical first unit 

 𝑛 = cumulative unit number  
        b = log R/log 2 (learning index) 
        M = incompressibility factor (a constant)  
 

A machine based production process would result in no learning, and thus an M value of one.  It 

the basis of this thesis and belief that aircraft production, complex in nature, has an M value 

close zero because aircraft production is a highly manual process.  Thus, M would be closer to 

zero for IA&CO.  M does not have a specific value.  This research will focus on the best M value 

for the particular aircraft production.  A potential weakness of the DeJong model is that it does 

not take into account previous units produced much as the S-Curve model does.    

 The S-Curve Model takes into account both previous units produced and the 

incompressibility factor.  Figure 4 below shows the effects of learning over time as hypothesized 

from the S-Curve Model.  The linear nature of Wright’s original learning curve model has been 

in question for many years (Everest, 1988).  The Rand Corporation first sought to explain the 

progression of the learning curve used to estimate costs for both military and civilian airframes.  
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The report made an attempt to describe the relationship between units (quantity) and costs, and 

ultimately whether the relationship was linear on a log scale.  The results of the Rand 

Corporation found that a convex curve may provide more accuracy if producing a large number 

of units (Asher, 1956).  The results found that a convex model provides less error if there is a 

need for large extrapolation.  Essentially, an estimation of significantly more units in production 

instead of fewer provides less error.  For units where large extrapolation is the circumstance a 

non-linear model was more appropriate.  The S-Curve model, convex in nature, presents a shape 

of learning.  The S-Curve, when plotted on using a log scale relationship follows an S function.  

The experience over time (attempts at learning) may exhibit the S-Curve (Everest, 1988).   

 

Figure 4: S-Curve Learning Model (Dewey, n.d.) 

Initially there is a slow beginning as a worker learns the production process.  The newness of the 

product is a characteristic of the slow initial beginning.  New tools, methods, shortages of parts, 

reworks, and the challenge of developing a cohesive production team are all potential 

contributors to the slow beginning.  The fact that the initial stage in production deals changes 

from tooling to even workers contributes to the gradual start (Badiru, 1992).   From there, 
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learning and familiarity of tools, methods, and workers occur.  The learning enables a steep 

acceleration of production.  Production improvement occurs with attempts on the process, or 

learning by doing.  An example from literature is aircraft production.  Aircraft production that 

includes workers that are more efficient, more efficient tools and organization results in an 

assembly that is more efficient.  The efficiencies found result in less time to complete an aircraft 

(Asher, 1956).  However, the improvement and efficiencies eventually begin to fade.  The 

plateau at the trailing edge of the curve is the slope of diminishing returns where the curve 

begins to flatten out or in many occurrences at the end of production cycles, there is a “tailup” 

(Everest, 1988).  After time inefficiencies can occur: forgetting, experienced workers focusing 

on new projects, failure to repair worn tooling at the normal rate, increase of machine 

disassembly, lack of key materials (safety stock), and workers taking more time to prolong their 

employment (Everest, 1988).  The S-Curve equation is shown in Equation 3:  

                                               𝑡𝑛 =  𝑡1 + 𝑀(𝑛+ 𝐵)−𝑏                                                (3) 

Where: 

𝑡𝑛 = the cumulative average time after producing n units 
𝑡1 = time required to produce theoretical first unit 

 𝑛 = cumulative unit number  
        b = log R/log 2 (learning index) 
        M = incompressibility factor (a constant)  
        B = equivalent experience units (a constant)  

 

From this equation and figure 4, the forgetting concept is evident.  The S-Curve portrays that 

with time, some inefficiencies will occur.  Use of the S-Curve and DeJong Models may provide 

more precision to learning curve and enable higher accuracy within DOD cost estimating 

because they include previously unaccounted for influences.   
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 Many learning curve models exist.  Badiru’s (1992) paper Survey on Univariate and 

Multivariate Learning Curve Models that reiterates the abundance of models, “Learning in the 

context of operations management, refers to the improved efficiency obtained from repetition of 

a production operation.  Workers learn and improve by repeating operations” (Badiru, 1992).  

Badiru listed the most notable univariate (one variable) models, which are perhaps the simplest 

forms.  In regards to this work, the learning curves are both univariate and express the dependent 

variable (cost or hours) in terms of the independent variable (cumulative output).  The first 

univariate model was Wright’s Learning Curve.  Other univariate models that Badiru identified: 

Stanford-B, S-Curve, DeJong’s, levy’s Adaptation Function, Glover’s Learning Formula, Pegel’s 

Exponential Function, Knect’s Upturn Model, and Yelle’s Product Model (Badiru, 1992).  The 

models chosen for this research include the incompressibility factor which was found as very 

important in previous research, “results indicate that the S-Curve and DeJong models offer 

improvement over current estimation techniques, but more importantly-and unexpectedly-

highlight the importance of incompressibility (the amount of a process that is automated) in 

learning curve estimating (Moore, Elshaw, Badiru, Ritschel, 2015).   Multivariate models have 

the potential to examine numerous factors that could influence learning.  They have not received 

the attention they deserve due most likely to the nature of their complexity.   

Another potential problem is multicollinearity (Alchian, 1963).  The definition is 

multicollinearity is where two or more independent variables (predictor variables) are highly 

correlated.  From this correlation, multiple regression coefficient estimates may change 

substantially in response to small changes of variables.  Essentially the predictor variables might 

be redundant (“Multicollinearity in regression,” n. d. ).  Alchian experimented with multivariate 

models, specifically the Cobb-Douglas Multiplicative Model.  The heavily researched Cobb-
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Douglas model and other multivariate models exist.  The chance of Multicolinearity is high.  All 

of this considered this research has a goal to make the cost estimators jobs easier.  Going from 

Wright’s Model to a multivariate model where the estimators have to find variables and ask for 

contractor data will likely make the work more complicated and tedious.  Learning curve model 

complexity adds analysis time for an analyst and there is no evidence to support a complex 

model provides any benefit.  The models that taken into account incompressibility could provide 

an answer to a more accurate model.  Ultimately, understanding the forgetting curve, the 

influence of automation, and relevant research on incompressibility factors may provide an 

answer to improved cost estimating.   

Relevant Research 

Prior research tested three models and compared the results to Wright’s model.  The 

results were inconclusive as to whether there is a more accurate model available.  Moore did 

have some insights “results do provide some insight…findings also emphasize the importance of 

incompressibility in the learning process” (Moore, 2015).  Moore found that slight changes in the 

assumed incompressibility within the DeJong and S-Curve Models lead to drastically different 

results as to which model is the most accurate.  In addition to the analysis, Moore also found that 

incompressibility might affect learning models more than prior experience units.  Moore’s 

research showed that the DeJong and S-Curve models were more accurate.  They were more 

accurate than Wright’s model at predicting of cost when compared.  This was under the 

assumption that the incompressibility was low.  Because prior research did not provide a 

conclusive result based on the assumed factor value, there is a demand for continued research.  

Further research into more programs could prove beneficial to finding a more accurate learning 

curve model.  Additionally, research into incompressibility and machinery for production could 
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prove beneficial for learning curve methodology.  Assessment on how changing 

incompressibility is difficult and it could wildly change results could also prove beneficial.  

Other relevant research has compared learning curves; however, there are limited comparative 

studies in defense cost estimating.   

Relevant research has highlighted an important point in why military programs have not 

adapted a contemporary learning curve model, “Because of the regularity of production in 

military programs, organizational forgetting, and spillovers of production experience are less 

apparent.  If forgetting is present, it may be very difficult to identify (e. g., data could be 

consistent with either a 20 percent learning rate or a 25 percent learning rate with 5 percent 

forgetting).  And, in most cases there are not many model variants, so spillovers are not 

important” (Benkard, 1999, p. 4).  The newest fighter weapon in the US military arsenal will be 

the F-35.  The F-35 has 3 variants and the Pentagon plans to spend over $390 billion on these 

aircraft (Luce, 2014) Five percent of $390 billion attributed to learning/forgetting processes is 

still a staggering number.  The point is that there is room for improvement.  Many of the fighter 

aircraft in use today have had multiple models.  The F-15 had models A-E and the F-16 had 

models A-F.  The DOD can use the hypothesized five percent forgetting to save millions of 

taxpayer’s dollars.  The accurate estimates result in less spending, or savings that could go into 

other taxpayer needs or public works.  The estimates enable the DOD to truly forecast a budget 

and spending levels.    

So one may consider question what does the future actually look like in regards to 

machinery and automation.  Are people still going to be relevant for production?  In the Defense 

acquisitions realm the basis is that with low purchase quantities for state of the art machines will 

not rely on technological or machine dominated production.  This idea really comes down to the 
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machine verses machines argument.  Asking whether a robot with take the jobs of people is key.  

Experts say yes and no.  In the past, machines were used to replace manual labor that is an 

intensive and repetitive task.  According to a study by the Bank of America, robots are likely to 

be performing 45% of manufacturing tasks by 2025, versus 10% today (Madigan, 2011).  The 

price of a computer, a robot, a chip, etc. is falling and it is speculated that they will fall even 

more in the future.  However, the jobs that require human interaction are least likely to be 

replaced by a robot.  Maybe DOD acquisitions are in the clear and 100% of learning is still 

realizable for learning curve methodology.  Experts agree that the future does include a 

significant presence of machinery because the prices of robotics and computers are decreasing 

while the cost of a human employee is increasing (Aeppel, 2012).  

One method that is popular amongst program offices within the DOD is the Rate Effect 

for estimating costs.  The principal idea behind the Rate Effect is modeling a production rate 

decrease due to a decrease in personnel-related expense.  The reason behind the decrease is that 

fixed costs, when spread over fewer units is less expensive.  The opposite happens for an 

increase in production.  Personnel-related expenses and costs generally decrease.  The Rate 

Effect, first proposed by RAND in 1974 attempted to incorporate production rate changes in the 

learning curve model (All, 2013).  The result was a modified learning equation within the unit 

theory that incorporates a rate adjustment.  Two key variables to the learning curve model: R and 

c are now a part of the model shown below in equation 4.  

Equation 4: 

                                           𝑦 = 𝑎𝑎𝑏𝑅𝑐                                                           (4) 

Where 

y = the estimated production 
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hours or cost 
a = the production hours of the 
theoretical first unit  
x = is the unit produced 
b = is a factor of the learning = 
log R (learning rate)/log2 
R = annual production rate 
C = log2 (rate slope) 

 

The Rate Effect is popular amongst Program Offices, but unpopular with oversight organizations 

such as the DOD because the rate term is rarely found to be significant (All, 2013). Another 

reason for this models unpopularity is the effect of multicollinearity and its likelihood for 

multivariate models.  Multicollinearity refers to a correlation between dependent variables, 

meaning the variables are predicting the same thing.  The rate effect could play a more prevalent 

role in the future if machinery becomes more prevalent.  Oversight offices such as OSD Cost 

Assessment and Program Evaluation (CAPE) may start to consider Rate Effect Model if humans 

are less involved in the production process.  

The principal idea behind the future incorporating more machinery and levels of 

automation in production is that people are expensive.  If companies, who work for profit, want 

to increase profit, an easy route is to have low skilled employees.  An employer would have to 

pay high skilled employees more than the low skilled employees did.  If you have high skilled 

employees they will be expensive and thus the price you have to charge for the product you are 

selling will have to increase in order for the business to have the same level of profit.  The 

definition of profit is revenues minus cost.  The definition of revenue is the price charged 

multiplied by the quantity sold.  The idea behind increasing profit is that a company should have 

the lowest skilled employees needed to complete the production process.  Most employees offer 

a broad range of skills that sometimes are not necessary on a production run.  The simplest, 
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lowest skilled employee would have to be a machine, because for the life of the machine costs 

will be low (Godin & Warner, 2010).  Machinery relatively has a high initial cost, but the 

machine will repeat every task and the company does not have to pay for its medical insurance or 

retirement.  The idea that machinery will dominate the future is highly likely; in the immediate 

future, machines or robotics could be working next to humans.  Prior generation machines might 

have been limited to the a certain skill and people to service them, the future of machinery in 

production will be cheaper and could provide a renaissance (“Making the future | The 

Economist,” n.d.).  Machines have replaced workers in production lines and people answering 

telephones.  In my opinion, competitive pressures encourage organizations to turn their workers 

into machines.  Machines can be measured and if the organizations can measure it, they can 

produce faster and increase profit (Godin & Warner, 2010).   

Summary 

Chapter 2 provided a summary of previously published research as appropriate to 

learning curves.  Learning theory and modeling is a known process in production and plays a 

role in cost estimating.  The forgetting theory, automation, and the learning curve models that 

take forgetting/automation into consideration have not been adapted into the DOD cost 

estimating process.  Research on the models that take forgetting into account and the 

incompressibility factor are the basis of this thesis.  The methodology for this thesis follows in 

Chapter 3 and it will describe data, methods, and assumptions.   
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III. Methodology 

Chapter Overview 

The purpose of this chapter is to explain the methods behind the research that modern 

learning curve models provide better accuracy than conventional models when estimating 

production costs using program integration, assembly, and checkout data.  Modern learning 

curve models take into account factors such as automation that conventional learning curve 

models do not.  Conventional models assume a constant learning rate over time, which seems 

like an unrealistic assumption.  Intuitively, learning fluctuates and does not remain constant 

because humans tend to forget and machines do not learn.  Contractors are looking to lower 

expenses because lowering expenses leads to more profit.  From large organizations that are 

comparable to large DOD contractors, it is known that people are expensive; total human capital 

costs (cost of workforce) average approximately 70% of expenses (Higgins & Cooperstein, 

2010).  One way to lower costs is to have a machine be a part of the process.  This move towards 

automating processes is the future of production.  Production estimates within the DOD utilize 

learning curve models.  As previously stated, DOD budgets for acquisition programs are 

shrinking.  Cost estimates associated with acquisition programs are a high priority within the 

DOD.  Finding methods to increase the accuracy of the estimates are of value.  They are 

particularly of value to estimators because increased accuracy leads to less error.  If a modern 

learning curve model is more accurate than what is currently being used (Wright’s model), it has 

the potential to add significant value to the cost-estimating field.  The method is to test which 

learning curve model is the best predictor of cost.  Wright’s learning curve equation,𝑡𝑖 =  𝑡1𝑥𝑏  

does not take into account the performance decline of forgetting or the influence of machinery.  

Using program integration, assembly, and checkout data as a basis for this research is useful 
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because it involves manual processes that will have a low incompressibility factor.  The 

hypothesis is that using this level of data instead of all of the production data, will demonstrate 

that the modern learning curve models are more accurate predictors of cost than the status quo.  

Essentially, the analysis will be more sensitive to program integration, assembly, and checkout 

data in hours than the entire lot data in dollars.  The reason behind this is having individual unit 

labor hours will provide an accurate picture of learning, forgetting and the influence of 

machinery.  Using the specific work codes identified, and hypothesized to have more 

forgetting/learning processes involved, should have results that are more sensitive because more 

manual processes are involved.   

Comparing the modern learning curve models to the conventional method is essential in 

determining which is more accurate.  The models chosen are relevant to this research because 

they incorporate incompressibility and the application of only IA&CO can be input.  Moore 

states “the conventional method lacks the application of key factors that affect learning: prior 

experience and incompressibility.  Accounting for these factors can reduce the amount of 

estimating error for airframe costs" (Moore, 2015, p.14).  The incompressibility factor played a 

large role in his research.  The S-Curve and DeJong model were more accurate predictors of cost 

than Wright’s model.  Those models only exhibited more accuracy if incompressibility was low.  

Using integration, checkout, and assembly may make this assumption valid.  Chapter 3 clarifies 

how the application of the models, methods for comparison, and data analysis.  

Data Collection  

The Air Force Life Cycle Management Center Cost Staff (AFLCMC/FCZ) at Wright-

Patterson Air Force Base (WPAFB) provided learning curve data for 17 Major Defense 

Acquisition Programs (MDAPs).  A MDAP, classified as a major program that exceeds a certain 
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dollar threshold.  There are 80 MDAPs in the DOD as of 2014.  The numbers have decreased 

slightly over the years.  The data files consist of average Learning Curve Reports of Annual Unit 

Cost (AUC) in addition to the MDAPs estimate methods using Wright’s conventional learning 

curve model.  Only one program provided was broken into the specific work codes that include 

the needed data (IA&CO).  That program was the for the purpose of this study, an Air Force 

Program.  The data are primary data that is proprietary.  Primary data are data that is from the 

contractor and has not been normalized, inflated, or altered (Ellis, n.d.).  When comparing 

models based on airframe’s integration, assembly, and checkout data the assumption of 

incompressibility close to zero is reliable.  The airframes for this analysis are the Air Force 

Program.  Moore researched one fighter aircraft, the F-15, and found incomplete or too few data 

on other airframes to make a valid comparison.  It is important to have data span several years 

for comparison purposes.  The historical data is important because the effects of learning are 

evident.  Having data spread over a period of time shows patterns.  The Air Force Program data 

are adequate and spans Fiscal Years (FY) 2005 to FY 2013.  If data from AFLCMC and the Air 

Force Program are not adequate, the Joint Cost Analysis Research Database (JCARD) system 

may have cost data for programs or asking for specific Work Breakdown Structure level IV data 

from a contractor may be a route to take.   

Once data compilation is complete, the data will have to be standardized.  

Standardization will occur by converting prior year’s values into a Base Year (BY) to take into 

account the effects of inflation.  This standardization assumes the data are in dollars and not 

hours.  If the data are in hours, no conversion is necessary.  Comparing the cost of a program in 

1980 dollars and the cost of program in 2000 dollars will not suffice.  Every year the Office of 

the Secretary of Defense (OSD) publishes OSD Inflation Tables.  Values for this research will be 
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standardized to Base Year 2015 (BY$15) using the tables.  This conversion will display dollars 

that are relevant to present time.  Once data conversion to BY$15 for all programs is complete, 

the next step will be plotting the average unit costs and the cumulative average unit costs.  

Trends might be evident for the production such as initial learning, period of peak performance, 

and then diminishing returns or forgetting.  In order to highlight the data points, a log-log graph 

will provide the visual representation.  The log-log graph is a two-dimensional graph of numeric 

data that uses logarithmic scales on both axes.  Relationships appear in a straight line on the 

graph which is useful in estimating relationships and parameters (Ritter, 2001) 

Learning Curve Models 

 Wright’s model, which takes the form of 𝑡𝑖 =  𝑡1𝑥𝑏 , has parameters 𝑡1 and b that need to 

be determined in order to obtain an estimate.  The statistical method for determining these 

parameters is linear regression.  Linear regression is an approach for modeling relationships 

between variables.  The natural log of a cumulative units (x) against their associated costs (y) 

will provide 𝑡1 and b.  The regression line that explains the most variability will determine 

whether unit cost or cumulative average theory is the best method for predicting cost.  

Determining the regression that explains the most variability comes from a comparison of the 

line’s 𝑅2 values.  𝑅2 is a goodness of fit percentage the represents variance between independent 

and dependent variables (McClave, Benson, and Sincich 2011).  Besides 𝑅2 there is an adjusted 

R-squared which is an adapted description of R-squared that adjusts for the number of predictors 

in the model.  Essentially, the adjusted R-squared compares the explanatory power of regression 

models that contain different numbers of predictors (Frost, 2013).  R-Squared is sufficient for 

this analysis because the number of predictors are low.  From the regression, b is the slope of the 
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line and 𝑡1 is the natural log of the y-intercept.  With these two parameters solved, they remain 

constant for the other models.   

 The DeJong Model and S-Curve models are the modern models considered for 

comparison in this research.  The incompressibility factor in Dejong’s model highlights the 

effects of learning.  M is the constant between zero and one where zero is a fully manual 

development and one is a fully machine development.  Aircraft production, specifically the 

program integration, assembly, and checkout portion, is close to fully manual.  The S-Curve 

Model in addition to M uses a previous unit experience constant, B.  Incompressibility is 

undefined and led to subjectivity in Moore’s research (Moore 2015).  Moore tested the F-15 

assuming a low M.  Moore tested the models in increments of .05 from zero to 0.20.  Moore’s 

research hypothesis was that one or more of the modern learning curve models would have a 

mean average percent error (MAPE) significantly different from the conventional model.  He 

found that when the incompressibility factor was zero to 0.05 the DeJong and S-Curve Models 

were statistically different and ultimately more accurate than Wright’s Model.  However, for all 

other values there was no statistical difference or Wright’s Model was more accurate.  Table 2 

below highlights these findings.   

Table 2 Moore's F-15 Analysis 
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Research Hypothesis 

 This comparative study’s theory is that using program integration, assembly, and 

checkout data will provide a more realistic assumption for low incompressibility and ultimately a 

more accurate predictor of actual costs based on a modern learning curve model.  The hypothesis 

is that the MAPE is significantly different between the predicted labor hours for the modern 

models when compared to the conventional model.  MAPE is the measure of variation that takes 

the error both positive and negative as an average.  The positive and negative errors, taken as 

absolute values, or the average distance from the actual values is the measure.  Small MAPE 

values relate to values that are more accurate.  Therefore, smaller MAPES are better.  The 

research hypotheses based on comparing the models using program integration, assembly, and 

checkout data are as follows:   

H1: One of the compared models will have MAPE significantly different from the others.   

H2: One of the modern learning curve models will be significantly more accurate than 

Wright’s model in predicting costs or hours.  

H3: The S-Curve model with IA&CO will have a significantly lower MAPE than 

Wright’s and DeJong’s Learning Curve Models.  

H4: The incompressibility factor will have a significant influence on the accuracy of the 

DeJong and S-Curve Models   

The first hypothesis’ null (𝐻0) is 𝜇1 = 𝜇2 = 𝜇3 .  This means that the MAPE for each learning 

curve model are the same.  The alternative hypothesis(𝐻𝑎) is that one of the model’s MAPE is 

statistically different.  A rejection of null hypothesis in favor of the alternative hypothesis 

supports significant finding.  The significant finding means that testing each contemporary 

learning curve model against Wright’s model is the next phase.  The second hypothesis (H2) has 
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a null 𝜇1 = 𝜇𝑖.  Where i will equal models 2 and 3 (DeJong’s and the S-Curve).  The 𝐻𝑎 is that 

the contemporary learning curve models will have a lower MAPE than the conventional model 

(𝜇1 > 𝜇𝑖).  H3’s null hypothesis is 𝜇2 = 𝜇3.  The 𝐻𝑎 is that 𝜇2 > 𝜇3 meaning that the S-Curve 

will have the lowest MAPE and thus be the most accurate predictor of cost or hours.  The last 

hypothesis is that small changes in the incompressibility factor will have a large influence of the 

MAPE of each model.  

Method of Analysis 

 A Microsoft Excel Spreadsheet is the means to housing the data collected. 

Standardization (if needed) to BY$15 averages if it is in dollars is the second step.  The 

spreadsheet will include actual costs and the predicted costs using one of the learning curve 

models.  Once calculation of the predicted costs is complete, the error is simply the difference 

between the actuals costs and the predicted costs.  To provide a comparison, a difference 

calculation in the absolute value and absolute value percent error are the means of analysis.  The 

next step is to perform an analysis to test the hypotheses.  ANOVA or Kruskal-Wallis test [with 

IBM® SPSS statistics software] with Microsoft Excel will provide the basis for comparing the 

percent errors.  The tests will produce an F-statistic (a test statistic) that falls within a Chi-

distribution and a p-value.  This comparative study will produce results based on a 95% 

confidence level (an ∝ of 0.05).  In order for the test to result in significant findings, the test’s p-

value has to be less than 0.05.  If the P-value is less than 0.05, rejection of the null hypothesis in 

favor of the alternative hypothesis will occur.  Rejecting the null hypothesis for this study will 

represent that there is a 95% chance that the tested populations are different.  The conditions for 

ANOVA are as follows: the samples must be from a random selection of the population, 

normally distributed, and population variances must be equal (McClave, Benson, Sincich 2011).  



34 

Chapter 4 will state the conditions for this ANOVA.  If the conditions for ANOVA fail to meet 

the needed criteria, the Kruskal-Wallis test (non-parametric equivalent to ANOVA) will be the 

test to determine if multiple samples arise from the same distribution and have the same 

parameters (Kruskal & Wallis, 1952).  The ANOVA or Kruskal-Wallis f-test provide insight into 

the first hypothesis.  The Kruskal-Wallis test is beneficial since the one-way ANOVA is usually 

robust based on the assumptions for ANOVA.  The Kruskal-Wallis test becomes useful in 

particular when group sample strongly deviate from normal (sample size is small and unequal 

and data are not symmetric) and variances are different (potential outliers exist).  The 

assumptions for the Kruskal-Wallis test are that no assumptions are made about the underlying 

distribution, however, assume that all groups have a distribution with the same shape, and no 

population parameters are estimated (no confidence intervals in the data) (Zaiontz, 2015).  If the 

F-statistic is significant, then rejection of the null hypothesis in favor of the alternative that at 

least one of the sample means is different is the outcome.  

The t-Test for two samples test will evaluate the second hypothesis that one or more of 

the models is a better fit to the data than Wright’s Model.  The control for this comparison is 

Wright’s learning curve model.  Since Wright’s model is the control for this study, a comparison 

to the other model’s MAPEs is the method.  If the assumption for equal variance is not met, the 

t-Test for two samples assuming unequal variances will be used.  The next analysis that 

corresponds to H3 will be testing which model is most accurate given significant results for more 

than one model from the H2.  Once again, the paired difference t-test is the next step.  A paired 

difference experiment uses a probability distribution when comparing two sample means and 

produces a t-statistic that falls within a student-t distribution that can either reject or fail to reject 

the null hypothesis depending on the desired confidence level (McClave et al, 2011).  Lastly, H4 
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will require reiterations of the tests in order to determine a good estimate for incompressibility 

factor based on the airframes.  

Of note, the reader may question why the means cannot provide the basis for the analysis. 

This lies in the variation of the means.  If the coefficient of variation (standard deviation as a 

percentage of the mean) is low, the mean may be a good predictor of the better model.  However, 

as a rule of thumb, if the coefficient of variation (CV) is greater than 15% the mean indicates a 

looser distribution.  Analyst would like a tighter distribution with less variability.  In practice, a 

low CV (say, 5%) would indicate that the average (mean) of the cost data is a useful description 

of the data set.  On the other hand, if the CV is much higher (say, greater than 15%), there should 

be a cost driver in the data set that causes the cost to vary (citation needed).  The CV’s for the 

analysis will provide insight into the dispersion of the data points.  

Conclusion 

 The methods for this comparative study are quantitative and require statistical analysis as 

a means of comparison.  If any rejection of the null hypotheses in favor of the alternate 

hypotheses occurs, the findings could result in a valuable tool for cost estimating with more 

accuracy.  At a minimum, the results can be an opportunity for further analysis.  The following 

section will highlight the results from the analysis.  The final chapter will interpret the results 

and discuss the impacts of the comparative study.   

IV. Analysis and Results 

Chapter Overview 

 This chapter highlights the results from the analysis (tests and methodology) described in 

Chapter III.  This chapter answers the research questions by describing the results and 
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highlighting relevant analytical information.  This chapter includes graphical representations and 

in depth description of charts.  The Air Force Program provided the initial analysis and 

investigation into whether or not integration, assembly, and checkout data provide robust results 

on the comparative learning curve model study.  After analysis and results, the limitations, 

implications, and the future research areas will conclude in Chapter V.   

Results of Simulation Scenarios 

The first step in the analysis was to determine whether the unit theory or the cumav for 

the Air Force Program data was the best representation.  The next step was a log-linear 

regression; performed on the early-fielded units of the Air Force Program.  The early units, 

treated as historical values, predicts hours for the remaining Air Force Program units used in the 

analysis.  Both the unit and cumav data were plotted using a scatter plot.  The cumav regression 

resulted in an 𝑅2 (coeffeicient of determination) value of 0.9525.  This 0.9525 value means that 

roughly 95% of the variance for the cumav regression is explainable.  The unit curve regression 

resulted in a 𝑅2 value of 0.8174.  Since the cumav theory resulted in a higher 𝑅2value, the unit 

theory was no longer useful in this study to estimate the remaining points (regression graphs can 

be seen in Appendix A).  The remaining points to that need an estimation are the remaining Air 

Force Program units produced and provided.   

The cumav regression from the early units of the Air Force Program provided the factors 

and parameters for the equations used in this analysis.  The analysis needs to transform the log 

space results.  The theoretical first unit (𝑇1) is found by taking the log-linear regression’s Y-

intercept (a) from the equation lnY=lna + blnx and raising it to the constant Euler’s number, “e”.  

Euler’s Number is the base of the natural logarithm (Weisstein, n.d.).  The theoretical first unit in 

hours for this analysis is 29,971 hours.  The learning curve slope, based on the 
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equation 𝑒𝑏∗ln(2) =  2𝑏.  The b value was -0.1726 and resulted in an 88.7% learning curve slope.  

The remaining factors for the initial analysis were B (prototypes) of two and an M value of 0.05.  

The table below highlights these initial values.   

Table 3 Initial Analysis Parameters 

Theoretical First Unit (Hours) 29,971 

B 2 

M 0.05 

b -0.1726 

LCS 88.72% 

 

Results of Parameters  

 From the initial analysis, the data was used to build a Microsoft Excel equation for all 

three learning curve models.  Each respective model’s equation provided a predicted value for 

each Air Force Program.  A comparison for the predicted values to the actual values was the next 

step.  Appendix B shows an example model calculation for the DeJong Model.  This resulted in 

an APE for all of the units.  The MAPE of the three models is below.  The table highlights that 

given the specific parameters, the S-Curve and the DeJong Models both have lower MAPE 

values.  Performing statistical analysis is the next step in order to identify if there is a significant 

difference between the models occurs.   
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Table 4 MAPE Analysis M=0.05 

WLC  DeJong  S-Curve  

4.11% 3.00% 2.64% 

 

The coefficient of variation (𝐶𝐶 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  
𝑀𝑀𝑀𝑀

) calculations were performed as a 

cross check.  The mean may be a good predictor of a better model.  However, as a rule of thumb, 

if the coefficient of variation (CV) is greater than 15% the mean indicates a looser distribution.  

The CVs for the three models exceeded the 15% rule of thumb.  The large CVs indicate that the 

mean is a poor estimator of a more accurate model.  An analyst would like a tighter distribution 

with less variability when using means.  On the other hand, if the CV is much higher (say, 

greater than 15%), there should be a cost driver in the data set that causes the cost to vary 

(Dameron, Megan E., n.d.).  The CV’s for the analysis will provide insight into the dispersion of 

the data points.  In order to compare models further statistical methods were the basis of 

evaluation.  

The next step was to test for normality of the predicted values of each learning curve 

model.  If normality passes, ANOVA will be the method.  The assumption of normality was not 

meet because of kurtosis and skewness.  An important part of the statistical analysis is to 

characterize the variability of the data set.  The description of the data includes skewness and 

kurtosis.  Skewness is a measure of symmetry.  Typically, the skewness is important because of 

the lack of symmetry.  The distribution is symmetric if it looks the same to the left and right of 

the center point.  Kurtosis is a measure of whether the data are heavy-tailed or light-tailed 



39 

relative to a normal distribution (Filliben, 2012).  Data when plotted tend to have heavy tails or 

outliers if there is high kurtosis.  Low kurtosis tend to have light tails, or lack of outliers.  The 

histogram is an effective method for showing both the skewness and kurtosis.  

Wright’s Learning Curve Model (Figure 5) when graphed appears to follow a normal 

curve.  Kurtosis equaled -1.164 and skewness equaled 0.320.   

 

Figure 5 WLC Frequency Distribution 

The descriptive statistics provided both of the measures that Table 5 below highlight.  The 

kurtosis absolute values for the DeJong and S-Curve Models are both greater than one.  Both of 

these models have moderate skewness.  Appendix C graphically captures the frequency of both 

the DeJong and S-Curve’s distributions.  It is evident that the distributions do not follow a 

normal curve.  The Kruskal-Wallis test, used to determine if the predicted samples are 

significantly different, is the next statistical test.   
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Table 5 Descriptive Statistics 

 

The variances are the next statistic to test.  This will determine whether performing a T-

Test with equal variances is a possibility.  The rule of thumb for testing variance is to divide the 

largest sample standard deviation by the smallest.  From the descriptive statistics, S-Curve has 

the smallest (0.020) and DeJong has the largest (0.024).  If this value is greater than one, the 

assumption of equal variances will not be acceptable.  The rule of thumb value equals 1.231 so 

equal variance cannot be assumed and a T-Test with unequal variances has to be performed to 

compare sample means.   

Results of Means Comparisons  

 The test for non-normal distributions, the KW test is useful to predict if values are 

significantly different.  The KW test, performed at an M value of 0.05, resulted in significantly 

different distributions.  The null hypothesis was that the distributions of the APE values for the 

three models was the same based on a significance level of 0.05.  The table below shows these 

results.  Since the K value is greater than the critical value, rejecting the null hypothesis that the 

APE values are same is necessary.  Table 6 also highlights that the p-value is less than the 0.05 

significance level.  The p-value echoes rejecting the null hypothesis.   
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Table 6 KW Test 

K 34.56 

Critical Value 5.99 

P-Val 3.1E-08 

 

Once there are indications that one or more of the models are significantly different, it is 

necessary to determine which model captures the difference.  We held WLC as the status quo in 

order to determine if the DeJong Model or S-Curve Model were different.  The conclusion for 

WLC and DeJong t-Test assuming unequal variance: Perform a two-tail test (inequality), if the t 

Stat < -t Critical two-tail or t Stat > t Critical two-tail, then reject the null hypothesis.  T Stat 

(3.329 is > 1.97) so results reject the null hypothesis.  The means are different for WLC and 

DeJong.  The conclusion for WLC and S-Curve t-Test assuming unequal variance: Perform a 

two-tail test (inequality).  If t Stat < -t Critical two-tail or t Stat > t Critical two-tail, reject the 

null hypothesis.  T Stat (4.912 is > 1.97) so results reject the null hypothesis, the means are 

different.  Because both MAPES for the DeJong and S-Curve model, the next step was 

comparing the two alternative model.  Conclusion: Performing a two-tail test (inequality).  If t 

Stat < -t Critical two-tail or t Stat > t Critical two-tail, we reject the null hypothesis.  T Stat 

(1.118 is not > 1.97) so we fail reject the null hypothesis.  There is no reason to believe the S-

Curve is a more accurate predictor over the DeJong model.  The results for The DeJong and S-

Curve t-Test resulted in failing to reject the Null hypothesis.  As to which model is most 

accurate, the results were inconclusive.  Appendix D highlights all results from the t-Tests.  The 

S-Curve is statistically different from WLC.  However, the S-Curve it is not statistically different 

from the DeJong model.  This highlights that WLC is a less accurate predictor with a MAPE 
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value of 4.1% compared to DeJong and S-Curve MAPES of 3.0% and 2.6% respectively.  There 

was not a need for an M value of zero test because at an M value of zero, DeJong’s Model 

reverts to WLC Model.   

Results of Sensitivity Analysis  

 The sensitivity analysis includes changing the M to a value of 0.1 and 0.15.  Results 

dramatically changed by changing the incompressibility factor.  The KW test at an M=0.10 is 

shown below in Table 7.  

Table 7 KW Test at M=0.10 

K 104.54 

Critical Value 5.99 

P-Val 2E-23 

 

Since the K value is greater than the critical value, reject the null hypothesis that there is not a 

difference.  The next step was holding WLC as the status quo and it to each of the alternative 

models.  WLC when tested using the t-Test for two samples assuming unequal variance rejected 

the null hypothesis against the S-Curve and DeJong found there was a significant difference.  

The two-tail test (inequality) conclusion found that if t Stat < -t Critical two-tail or t Stat > t 

Critical two-tail, reject the null hypothesis.  T Stat (-9.31 is < -1.97) so we reject the null 

hypothesis.  The means are not the same.  WLC is more accurate than Dejong and S-Curve.  This 

means that WLC is the most accurate predictor with a MAPE value of 4.1% compared to DeJong 

and S-Curve MAPES of 7.3% and 6.7% respectively.  The results of the APE values highlights 

that WLC has less error earlier on, but as the sample size increase DeJong and the S-Curve have 
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less APE.  Chapter V will provide insight into why the error occurs for WLC and the 

contemporary models.  Figure 6 shows the results at an M value of 0.05 and 0.10.   

  

Figure 6 APE Trends  

Of note is how the incompressibility factor plays a role in the estimates.  It is evident that the 

Absolute percent errors swing in favor of the modern learning curve models when predicting 

hours using IA&CO.  WLC provides less percent error initially, but WLC has more percent error 

in both cases for an M-Value of 0.05 and 0.10.   

 The next test for sensitivity was running the method again using all of the data on the Air 

Force Program.  All of the data includes Test Support, Machine Shop.  Program Support and 

Design.  These work codes are not repetitive in nature like IA&CO.  The initial parameters found 

that the cumav regression was the best fit for the data.  The parameter analysis values are in 
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Table 8 below.  Of note and as expected the theoretical first unit would be higher with more data 

points.  

Table 8 Parameters for All Data Points Analysis 

Theoretical First Unit (Hours) 41440 

B 2 

M 0.05 

b -0.2517 

LCS 83.99% 

 

The three learning curve models calculations all for a MAPE analysis with the parameters in 

place.  The MAPE analysis found the values in Table 9 below.  WLC has the lowest Mean 

Absolute Percent Error, followed by the S-Curve, and lastly DeJong’s model.  

Table 9 MAPE Values for All Data M = 0.05 

WLC  DeJong  S-Curve  

7.02% 6.59% 5.92% 

 

The coefficient of variation calculations were performed as a cross check.  The mean may 

be a good predictor of a better model.  However, as a rule of thumb, if the coefficient of variation 

(CV) is greater than 15% the mean indicates a looser distribution.  The CVs for the three models 

exceeded the 15% rule of thumb.  The large CVs indicate that the mean is a poor estimator of a 

more accurate model.  In order to compare models further statistical methods were the basis of 

evaluation.  
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The next step was to test for normality of the predicted values of each learning curve 

model.  If normality passes, ANOVA will be the method.  The assumption of normality was not 

met because of kurtosis and skewness.  The variances are the next statistic to test.  This will 

determine whether performing a T-Test with equal variances is a possibility.  The rule of thumb 

for testing variance is to divide the largest sample standard deviation by the smallest.  From the 

descriptive statistics, WLC has the smallest (0.034) and DeJong has the largest (0.059).  If this 

value is greater than one, the assumption of equal variances will not be acceptable.  The rule of 

thumb value equals 1.734 so equal variance cannot be assumed and a t-Test with unequal 

variances has to be performed to compare sample means.  Table 10 shows the descriptive 

statistics for the data analysis including all points.  

Table 10 Descriptive Statistics All Data 

 

Table 11 below shows the results for the KW test for non-normal distributions.  KW test 

predicts if values are significantly different.  The null hypothesis was that the distributions of the 

APE values for the three models was the same based on a significance level of 0.05.  The table 

below shows these results.  Since the K value is less than the critical value, rejecting the null 

hypothesis that the APE values are same is not necessary.  Table 10 also highlights that the p-



46 

value is 0.063 is greater than the 0.05 significance level.  The p-value echoes failing to reject the 

null hypothesis.  These values are close to being significant.  

Table 11 KW Test All Data 

K 5.534 

Critical Value 5.991 

P-Val 0.063 

 

When plotting the Absolute Percent Errors a trend similar to the analysis using IA&CO was 

evident.  WLC starts as a more accurate predictor of cost and then becomes less and less 

accurate.  Whereas the DeJong and S-Curve models become increasingly more accurate 

predictors.  Figure 7 below shows the results of APE.   

 

Figure 7 All Data APE Trends 
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If there are indications that one or more of the models are significantly different, it is 

necessary to determine which model captures the difference.  The t-Test will not take place 

because there is no reason to believe any of the models were different.  When changing the M 

Value to 0.10, the S-Curve and DeJong MAPE values increased more than double.  WLC is a 

better predictor of with all of the data at an M value of 0.10.  Table 12 highlights the MAPE 

findings.  

Table 12 MAPE Values M = 0.10 All Data 

WLC  DeJong  S-Curve  

7.01% 15.04% 14.21% 

 

Summary 

Chapter IV provided results to the analytical tests performed as described in Chapter III.  

A description of the results for the Air Force Program, based on the assumption of low 

incompressibility values of 0.05 and 0.1, highlights the effects of learning.  The results changed 

between these values and indicated that the S-Curve model may be a more accurate predictor at 

0.05, but WLC is more accurate at 0.10.  After 0.10 WLC becomes significantly less error prone 

for both IA&CO and the analysis with all of the work codes.  WLC is a better predictor of cost 

when the incompressibility is 0.10 and higher.  Analysis on all of the data points, not just 

IA&CO, showed no difference between the models at an M of 0.05.  However increasing the M 

value results in WLC becoming an increasingly more accurate predictor of cost.  
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V.   Conclusions and Recommendations 

Chapter Overview 

  Chapter V will conclude the thesis and provide insight into whether or not there is reason 

to believe a more accurate learning curve model exists.  The thesis was a comparative study on 

learning curve models in defense cost estimating.  The study focused on the two conventional 

models (Wright’s Cumav and Crawford’s Unit Curves) used in defense cost estimating and two 

other contemporary models.  DeJong’s Learning and the S-Curve model were the contemporary 

models in the comparison.  Chapter IV shows the results of the comparative study analysis which 

led to the conclusion and recommendations in this chapter.  Chapter V highlights the conclusions 

of the research and the impacts of it.  Specifically Chapter V will draw inferences on IA&CO 

data analysis on the Air Force Program.  The significance of the results will provide a potential 

conclusion to the questions posed by this comparative study.  Chapter V also addresses the 

recommendations for action within the Air Force and DOD.  In Chapter V there is a section 

detailing the limitations of the research study.  Lastly, Chapter V will highlight recommendations 

for future follow on research.  

Conclusions of Research 

The results of the comparative study were inconclusive.  The answer to whether or not 

there is a more accurate learning curve model did not produce a significant result.  The status 

quo, Wright’s Learning Curve, was just as accurate of a predictor of learning when compared to 

contemporary learning curve models.  The results using Integration, Assembly, and Checkout 

data provides awareness on automation and the effects that it plays in the learning curve models.  

In comparison to the analysis on all of the data, the results were, as theorized, more sensitive to 
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IA&CO.  The conclusions for the hypotheses for the analysis are next. They hypotheses were 

one of the compared models will have MAPE (Mean Absolute Percent Error) significantly 

different from the others.  One of the modern learning curve models will be significantly more 

accurate than Wright’s model in predicting costs or hours.  The S-Curve model with IA&CO will 

have a significantly lower MAPE than Wright’s and DeJong’s Learning Curve Models.  Lastly, 

the incompressibility factor will have a significant influence on the accuracy of the DeJong and 

S-Curve Models 

In regards to the first hypothesis, that one of the compared models will have MAPE 

(Mean Absolute Percent Error) significantly different from the others the following holds.  At all 

incompressibility factors of 0.05, 0.10, and 0.15 the learning curve models were statistically 

different.  However, when using all of the data there was no reason to believe there was a 

difference at 0.05.  At values of 0.10 and 0.15 there was statistical difference between the 

models.  The results of the first hypothesis are essential in the comparative study.  The first 

hypothesis establishes the basis for testing the remaining hypotheses.  

The second hypothesis, one of the modern learning curve models will be significantly 

more accurate than Wright’s model in predicting costs or hours held when IA&CO analysis was 

held at an incompressibility factor of 0.05.  WLC proved to be more accurate of a predictor for 

IA&CO at incompressibility factors of 0.10 and 0.15.  When including all of the data points, 

there was not a statistical difference at an incompressibility of 0.05.  However, the analysis held 

that WLC was more accurate for IA&CO at incompressibility factors of 0.10 and 0.15.  Of 

interest, the analysis portrays that Wright’s Learning Curve performs with more accuracy when 

the automation increases.  Results did not support that that the modern learning curve models, 

DeJong and S-Curve are more accurate (lower percent error) than WLC.   
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The third hypothesis, the S-Curve model with IA&CO will have a significantly lower 

MAPE than Wright’s and DeJong’s Learning Curve Models did not hold.  The reason behind this 

hypothesis was that the S-Curve accounts for more aspects of the learning process by including 

both prior unit experience and incompressibility.  This hypothesis was not found to be significant 

at the chosen parameters (alpha of 0.05) for the analysis.  However, the MAPE for the S-Curve 

was lower (more accurate and less error prone) than DeJong’s Model.  The MAPES of 2.64% 

and 3.00% respectively reflect the results.  The DeJong and S-Curve Models were more accurate 

than WLC, but they did not show a statistical difference amongst themselves.  Because of no 

statistical difference, the third hypothesis is inconclusive as to which model will predict with the 

lowest percent error.  

Lastly, the hypothesis that incompressibility factor will have a significant influence on 

the accuracy of the DeJong and S-Curve Models held.  Small changes in incompressibility did 

result in drastically different results.  Changes in increments of 0.05 to 0.15 led to significantly 

different results.  The figures of the Absolute Percent Errors in Chapter IV highlight the result of 

the comparison.  With time and increasing trials, the S-Curve and DeJong models become 

increasingly less error prone.  WLC is more accurate initially, however with time the 

contemporary models become less error prone.  The result of this leads to a theory that the 

influence of machinery in this instance could be more sensitive to longer production cycles.  It 

may support an expanded incompressibility range as well.  

In summary of the hypotheses, results support the first hypothesis that there is a 

significant difference between the models.  Results are inconclusive as to whether any models 

are significantly more accurate than Wright’s model.  Between an incompressibility of 0 to 0.1 

DeJong and S-Curve models were more accurate (less error prone).  Nevertheless, at an 
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incompressibility of 0.10 and beyond Wright’s model most accurate.  The third hypothesis has 

results that are inconclusive as to which model is most accurate at an incompressibility of 0.05.  

Both DeJong and S-Curve models were more accurate than WLC, but no difference between the 

two.  Finally yet importantly, incompressibility was highly influential as hypothesized.  The 

results of the findings lead to questioning why for the program chosen incompressibility would 

become increasingly more error prone when more automation is present.  In addition, the 

findings put into question how the DOD can draw a conclusion about the application of 

contemporary learning curve models in acquisitions and specifically cost estimation.  

 In regards to the questions posed in the last paragraph, the first question as to why the 

analysis for program chosen, would incompressibility became increasing more error prone when 

more automation is present may be due to the data.  The Absolute Percent Error figures highlight 

that WLC is accurate initially and eventually becomes increasingly less accurate.  The opposite 

that the S-Curve and DeJong Models are not as accurate initially, but become increasingly 

accurate over trials.  The MAPE analysis averages all of the errors.  If the data set included more 

units, results may trend towards results in favor of the contemporary models.  That theoretical 

question answer is based on the visual trend from the APE figures.  Of interest when the 

incompressibility factor is 0.10, the models portray that 90% of learning is obtainable.  Because 

the data set was small, changes in incompressibility may not be as evident to the significance of 

the comparative study.  The findings also put into question how the DOD can draw a conclusion 

about the application of contemporary learning curve models in acquisitions and specifically cost 

estimation.  If the production cycle is long, and many trials will be realized, there is potential the 

contemporary models may capture a more accurate picture of learning.  Aircraft production may 

provide starkly different results from a missile production run where more units are produced 
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over time.  The results support there is potential for a more accurate model.  However, it may not 

be in the realm of aircraft production.  Aircraft production may include some automation.  It is 

not implausible that aircraft production is 95% manual and supports an incompressibility factor 

of 0.05.  The contemporary models may support a more automated process such as a production 

line much like the automobile industry.  Prior studies and subject matter expert opinion support 

that aircraft production is manual.  However, there is the belief that more automation is going to 

be present in the future.  

Significance of Research 

Results from the analysis show that there is reason to believe Wright’s Learning Curve 

may not be the best method for estimating costs.  By extrapolating from actuals, the method for 

Wright’s model may not incorporate enough of the variability of learning.  The results provide 

evidence that Wright’s Model is accurate initially, but with attempts at learning (trials) the 

amount of error increases.  The comparative analysis on learning curve models provides a 

standalone analysis of program actuals.  The fact that the analysis includes proprietary data in 

labor hours is distinctive.  The conclusions from that study are there is potential for a more 

accurate cost-estimating model and that the conventional learning curve models become 

increasingly less error prone over trials.  The DeJong and S-Curve models show promise as a 

way to improve DOD cost estimating.  

The results of the research do not support all of the hypotheses.  Results did confirm that 

the incompressibility factor was highly influential for both the S-Curve and DeJong models.  The 

results of the comparison changed drastically with a small change in the incompressibility factor.  

The DeJong and S-Curve models were both more accurate than WLC, but there was no 

difference between the two.  This finding makes it challenging to simplify the results given the 
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uncertainty of incompressibility.  Findings do provide a representation that further investigation 

on learning curve methodology and potential change is near as automation becomes increasingly 

more relevant in every aspect of life.  The influence of machinery in a longer production cycle is 

a valid assumption for the future.  The influence of automation in this comparative study was 

evident by the absolute percent error graphs.  

Recommendations for Future Research 

 The comparative study tried to find answers in regards to the learning curve methodology 

within Department of Defense acquisitions.  The effects of learning have shown a flattening 

trend at the tail end of production.  This investigation sought to investigate whether the current 

methodology was significantly less accurate than contemporary learning curve models.  Wright’s 

Learning Curve Model is the method that the DOD uses to extrapolate from actuals and estimate. 

The contemporary learning curve models incorporate a percentage of the process that has 

automation.  The study found that the Dejong Model and S-Curve Model may be more accurate 

is automation is low for aircraft production.  The research did not find support as to which model 

is most accurate or find evidence that there is a given incompressibility factor.  Given the 

findings from this research, recommendations for future research include expanding findings to 

determine which model is most accurate, incorporating a different aircraft platform, 

incorporating the Rate Effect into the models, and testing the different models for separate 

production runs or lots to see which is most accurate.  

 Future research should incorporate more platforms and look at a more automated 

production such as missiles where more automation may be more present.  This research focused 

on one platform.  This platform was the only program with data broken out into specific work 

codes.  The recommendation for future research is to look at additional platforms with a longer 
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production.  Aircraft with low total units in production make it challenging to see the effects of 

automation.  The Absolute Percent Error graphs highlight that with time the contemporary 

learning curve models become more accurate.  With this analysis, there is impending possibility 

of a more accurate model.  

 Analysis of additional models, such as the Rate Effect may provide strong results.  The 

potential to add another variable to the Rate Effect may be a unique and exclusive study.  Adding 

the incompressibility to the Rate Effect and performing the same analysis would be an analysis 

that sheds light on automation, production runs, and learning within the DOD or Air Force 

acquisitions realm.  This idea for future research would mean making of modifying a learning 

equation similar to what RAND did with the Rate Theory.  Rate Theory essentially attempts to 

include production rate as part of the ULC model.  Consider it the ULC with a rate adjustment.  

Of note, the rate term (variable) is infrequently found to be statistically significant even though it 

popular with Program Offices.  The nest step in the future could be the ULC, with rate 

adjustment, and incompressibility.  

 Given that trend for Wright’s Learning Curve is initially to have less error and the 

contemporary models becoming increasingly less error prone, finding where the switching point 

for the models may provide profound insight into the production.  For instance if WLC is only 

accurate for predicting the initial units and the contemporary models are more accurate for 

production that exceeds where WLC is accurate is a recommendation for future research.  

Finding a defendable break point or threshold to give the cost estimator such as use WLC for the 

initial 25% of production and a contemporary for the remainder of production.  Fundamentally, if 

a heuristic for a defendable break point were found, it would be of value to defense cost 

estimating and estimators using extrapolation from actuals and learning curve analysis.  Finding 
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a defendable range as to where this break occurs is another one of the recommendations for 

future research. 

Assumptions and Limitations  

The assumptions and limitations to this comparative research study are a part of any 

analysis.  Assumptions for the research are necessary in order to test the hypotheses, which is a 

limitation to the validity of the results.  The first limitation to the study is that only one aircraft 

was available with the specific work codes, Integration, Assembly, and Checkout.  The data 

available to analyze was small.  The results cannot be generalized to other aircraft acquisitions or 

DOD acquisitions since the sample size was a small percentage of production.  Analysis uses 

Wright’s CUMAV theory, which can artificially smooth data into the appearance of better fit.  

Crawford’s Unit theory may provide different results.  Use of just the one aircraft production 

makes it difficult to assume results would hold across multiple platforms.  Essentially different 

results may be found for other airframes.  In general, a limitation was that most available data 

was inefficient because it was not broken out into the specific work codes.  Results are very 

dependent on the incompressibility factor.  The assumption that incompressibility is low was a 

basis of expert opinion, a 1993 Bureau of Labor and Statistics report, and prior research.  As a 

whole, the analysis assumes no major change in product design, production processes, workforce 

composition, and interval between units.  

Summary 

In summary, the goal of this research was to find out if a more accurate learning curve 

model exists.  Help from AFLCMC/FCZ) to attain data on aircraft in order to test DeJong and S-

Curve learning models against Wright’s model was the basis  of finding a way to increase the 
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accuracy of the current learning curve methodology within DOD and Air Force acquisition.  The 

results were inconclusive as to which model is most accurate, but indicate that DeJong and S-

Curve models may be more accurate than WLC if incompressibility is assumed low.  If the 

incompressibility is 0.10 or greater, Wright’s Learning Curve is most accurate having a Mean 

Absolute Percent Error lower than the contemporary Dejong and S-Curve Models.  However, the 

trend of the Absolute Percent Errors shows divergent tendencies for both the conventional status 

quo and the contemporary models.  The results did not show which contemporary model is most 

accurate.  This thesis paves the way for future research on learning curve methodology and the 

significance of Integration, Assembly, and Checkout Data.  IA&CO was less error prone than the 

entire learning curve data.  Combining models and broadening the scope of the analysis, at a 

minimum, provides a groundwork for the learning curve methodology.  AFLCMC/FZC backed 

research into flattening effect at tail end of learning curves.  Wright’s original learning curve 

theory (CUMAV) was formulated in 1936 and Crawford’s theory (Unit) was adopted a decade 

after.  The learning curve models accepted by DOD are over 70 years old and both models are in 

use within the DOD.  This study sought to determine if the current DOD methodology is 

outdated and if a contemporary model is more accurate.  
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