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Abstract

The purpose of this research was to investigate the flattening effect at tail end of
learning curves by identifying a more accurate learning curve model. The learning curve
models accepted by DOD are Wright’s original learning curve theory and Crawford’s
Unit Theory. The models were formulated in 1936 and 1944 respectively. This analysis
compares the conventional models to contemporary learning curve models in order to
determine if the current DOD methodology is outdated. The results are inconclusive as
to if there is a more accurate model. The contemporary models are the DeJong and S-
Curve and they both include an incompressibility factor, which is the percentage of the
process that includes automation. Including models that incorporate automation was
important as technology and machinery plays a larger role in production. Wright’s model
appears to be most accurate unless incompressibility is very low. A trend for all models
appeared. The trend is Wright’s curve was accurate early in production and the
contemporary models were more accurate later in production. Future research should
have an objective of finding a heuristic for when the models are most accurate or

comparative studies including more models.
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A COMPARATIVE STUDY OF LEARNING CURVE MODELS AND FACTORS IN
DEFENSE COST ESTIMATING USING PROGRAM INTEGRATION, ASSEMBLY,
AND CHECKOUT

. Introduction

Purpose and Overview

Department of Defense (DOD) acquisition programs have frequent cost overruns that
exceed billions of dollars every year. The effect of the overruns is detrimental to the DOD and
limits the United States Government’s ability to operate efficiently. Inaccurate cost estimates
play a large role in the stated cost overruns. The final cost of a program when compared to the
baseline, show DOD programs historically have underestimated costs. Cost estimates allow the
DOD to assess the future of programs and the role that cost plays. The government budgets are
based these cost estimates. The current state of the DOD includes shrinking budgets and large
funding cuts for acquisition programs. An extra emphasis on and scrutiny of accurate cost
estimates are the result of the current cuts and budget issues. There is a new standard for
Financial Managers and Program Managers. They have to support and maintain a cost estimate
like no time before. A balanced budget is a goal for the DOD, and the budget depends on the
cost estimate. Gone are the days when the DOD had ever-growing budgets where the fiscal
mentality was to spend. The fiscal mentality now involves saving and receiving as much value
as possible for every budgeted dollar. In order to obtain reliable cost estimates, cost estimating
models and tools within the DOD present the opportunity for an evaluation on their accuracy.
The current learning curve methods within the DOD’s cost estimating procedures are from the

1930s. As automation and robotics increasingly replace human touch-labor in the production
1



process, a model that is 80 years old, and assumes constant learning, may no longer be
appropriate for accurate learning curve estimates. Robotics and automation do not learn and they
are inevitably a part of future production. New learning curve methods are available for cost
estimators to utilize. The modern learning curve methods could be a useful tool for obtaining
better cost estimates for the DOD. The purpose of this research is ultimately to investigate new
learning curve methods, develop the learning curve theory within DOD, and pursue a more
accurate model.

This thesis will examine whether different learning curve models are more accurate than
Wright’s Learning Curve model (the status quo) when comparing actual values to predicted.
The current DOD learning curve methodology does not take into account available information
and factors that contribute to learning. The information and factors are not taken into account
largely because the status quo models are outdated and do not account for many parts of the
learning processes. The theory of forgetting is a concept from contemporary learning curve
models and it may provide an answer to providing accurate cost estimates. Forgetting is human
error or the tendency to not show constant learning over time (Badiru, 2012). The point of
emphasis for this research, and issue that needs to be resolved is that DOD agencies need to
estimate more accurately. Prior thesis work and research on this subject shows that the learning
curve methods show room for further development. The prior research found that models that
are more accurate potentially exist. There is a chance to incorporate alternate learning curve
models and more DOD programs into this area of research. Research found that an important
factor (incompressibility) was not explicitly researched or known. An assumption on the
incompressibility factor was the route of analysis for the certain learning curve models that

incorporated it. Towill and Cherrington defined incompressibility as the percentage of the
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learning process that is automated (1994). Robotics and automation are not going away and will
likely play a larger role in the future. Research on what that factor actually equals or how it
relates to different airframes could be critical for obtaining a more precise model. Using
integration, assembly, and checkout (IA&CO) processes instead of complete touch labor
processes should provide an analysis that is more insightful and potentially lead to a more
accurate model. 1A&CO are specific work that occurs during production. Further chapters will
provide more detail and explanation of IA&CO. The reason for this significance is that
production, in general, is moving towards a more automated process. Machines are starting to
take over parts of production. This research on the specific part of production assumes that
humans will be doing the work. Since the IA&CO is a highly manual process, human learning
and forgetting occurs. The rest of Chapter 1 includes background, a problem statement,
objectives, investigative questions, methodology, and assumptions and limitations. Lastly, the

conclusion will provide an overview of the remaining chapters of this comparative study.

Background

The learning concept itself is the theory that as a worker performs a task repeatedly, he or
she will require less time to complete the same task due to familiarity with the process (Moore,
2015). The learning concept and learning curve models have been applied to manufacturing for
over 70 years. From government to private industry, learning curve methodology has been
applied and adopted. The earliest learning curve model, Wright’s Model, is a mathematical
representation that illustrates as the quantity produced doubles, a worker’s performance will
increase at a constant rate (Wright 1936). Tasks tend to be completed faster with practice; the

task completion increase in speed is not surprising because we have all seen this and it is



intuitive (Ritter, 2001). People and the organizations that include human labor tend to learn and
complete tasks better and more efficiently over time if the tasks are repetitive in nature. Under a
repetitive task, and certain conditions, a pattern that is usable for estimating time or costs
emerges. If the conditions for learning vary or are not repetitive in nature, learning curve
formulations and patterns do not emerge. One of the first and most recognizable learning curve

formulas is y=ax?. This is referred to as the Unit Learning Curve Model,

Equation 1:
y =ax® (1)

Where

y = the estimated production

hours or cost

a = the production hours of the

theoretical first unit

X = is the unit produced

b =is a factor of the learning =

log R (learning rate)/log2
The theoretical first unit, a, is determined by analysis on obtainable historical data and is not to
be confused with the actual first unit cost (T1) or hours. Chapter 2 will explain the model in
further detail based on unit and cumulative average concepts that were developed. Cumulative
Average theory is the same equation but different definitions for the variables “y” and “x.”
Cumulative average theory is attributed to Wright, but the equation differs in that “y” represents
cumulative average costs and “X” represents cumulative average units.

The Air Force methodology on learning curves and guidance in their application is found

in Chapter 8 of the Air Force Cost Analysis Handbook (AFCAH) and chapter 17 of the DOD

Basic Cost Estimating Guidebook (BCE). These two guides focus on two theories: unit theory
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and cumulative average theory. The unit theory, equation 1, predicts a specific unit cost.
Cumulative average theory focuses on the average of all units produced up to a certain point in
the production process.

Wright’s Model has been the standard in manufacturing. However, recent research has
shown other models may provide a more accurate predictor of cost. Moore analyzed learning
curve models and provided the foundation for this research. His research showed that two
alternative learning curve models, the S-Curve and DeJong, were more accurate when an
incompressibility factor was assumed to be somewhere between in the range 0.0 and 0.06 for
production on the F-15 fighter aircraft. The research highlighted that results were inconclusive
as to which model is the most accurate and whether or not the level of automation assumption
was valid (Moore 2015). The equations and factors will be explained in further detail the
equations in chapter 2. There are multiple learning curve models in present day production. The
S-Curve and DeJong Models were models in the comparative study that emphasize the concept
of forgetting in the form of automation. A 2013 Journal of Aviation and Aerospace Perspective
Article titled “Half-Life Learning Curve Computations for Airframe Life-Cycle Costing of
Composite Manufacturing” emphasized a forgetting concept that relates learning curves
methodology. The forgetting concept includes the idea that workers experience forgetfulness
and an associated decline in performance with time instead of constant learning. Even as a
worker is making progress with time, the learning can decrease (Badiru, 2012). This decrease in
learning can be as simple as forgetting processes over time. The article added, “Contemporary
learning curves have attempted to incorporate forgetful components into learning curves”
(Badiru etal, 2013). Forgetting theory was the concept and basis for Moore’s (2015) research

into learning curve models. Forgetting was the basis because Wright’s Model does not account
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for it. Moore attempted to demonstrate that the S-Curve and DeJong were better predictors of
manufacturing hours (or costs) than conventional models. Wright’s Learning Curve, the
Stanford B, S-Curve, and DeJong were the models used in Moore’s research. The research was
able to incorporate one aircraft for comparison. Incorporating other aircraft at the time of
research did not happen because of multiple data issues on other fighter aircraft. The research
found that there is evidence to support a hypothesis that a more accurate model exists.

Forgetting and the future of production using a more automated manufacturing process could
provide insight into cost estimating. The idea is to provide cost estimates that are more accurate.
This thesis, sponsored by the Air Force Life Cycle Management Center (AFLCMC), will expand
upon prior research, and attempt to research a more accurate model that can provide a more

accurate cost estimating method for the DOD.

Problem Statement/Research Objectives

The problem is that there is flattening effect near the end of production runs, learning
does not remain constant in aircraft production, and machinery is becoming more involved in the
production process. Prior research sought to answer why the flattening effect happens, but was
based on only one aircraft and a certain factor in the learning curve models was assumed. The
research needs development and further comparisons in order to capture breadth. Through the
efforts of Moore, there is evidence to support a hypothesis that a different model may be more
accurate than Wright’s model. Moore’s research found that the contemporary models are more
accurate than Wright’s model given an incompressibility factor (M) that is somewhere between
0.0and 0.1. M is a number between zero and one where zero indicates a completely manual
process and one indicates a fully automated process. Wright’s model is the most accurate

predictor of cost if M is assumed to be greater than 0.1. Prior research results as to which
6



alternative learning curve model is the more accurate were inconclusive (Moore, 2015). Results
did not support nor disprove a change from Wright’s Model based on one aircraft, the F-15.
Prior research provides the foundation for further research into additional types of aircraft.
Specifically further research and analysis using program integration, assembly, and checkout.
Additional research on the impressibility factor may indicate a model that is more applicable to
DOD methodology. Additional learning curve models that do not rely on an assumed M may
provide strong results as well. Using all of the data points, every airframe produced instead of a
lot data, should prove insightful and may be more robust than using lots. Lot data is typical for
DOD programs. Further chapters will explain why lot data is typical for DOD programs. The
unit data refers to actual individual production or manufacturing units whereas lot data refers to
data for multiple units for an entire production. Lot data is harder to see what is happening in the

learning process because there are less checkpoints.

Investigative Questions
The following investigative questions are the basis for this thesis.

1. How does the application of learning curve models using program integration,
assembly, and checkout data effect learning curve models that incorporate an
incompressibility factor?

2. How sensitive are IA&CO data to the incompressibility range?

3. Which learning curve model is the most accurate at predicting cost or time for
IA&CO?

4. How can the individual airframe work codes prove beneficial for predicting cost or

time?



Methodology

The method for this thesis begins by collecting data from the Air Force Life Cycle
Management Center Cost Staff on Airframe, Integration, Assembly, and Checkout. Data are
essential to predict costs and research the incompressibility factor. The basic method is to use
learning curve models to compare actual costs to predicted costs. A comparison of actual costs
to predicted costs will enable a calculation of error and further analysis of variance. Lastly, this
research will attempt to determine a good estimate for an incompressibility factor through
application into different models. The alternative models, the DeJong and S-curve, will be
predictors of cost or hours for the Air Force Program. The Air Force Program is a multi-mission
aircraft used for intelligence surveillance and reconnaissance. The alternative models will be
compared to Wright’s Model (Cumav or Unit based on which provides a more accurate estimate)
in order to calculate a percent error. The error is the comparison point for accuracy. The
comparison will use an Analysis of Variance (ANOVA) and potentially a Kruskal-Wallis means
test if the results are not from a normal distribution. Chapter 3 will explain the methodology in

detail.

Assumptions/Limitations

If one or more of the models is found to have a mean residual value (average difference
between the observed values and the predicted values) that is significant, the next step is to
determine which model is the best predictor of actual production costs (“Residual Analysis in
Regression,” n.d.). The smallest mean total for a model is reflective of the most accurate model.
The incompressibility factor, explained further in Chapter 2, must have an accurate range in
order to provide a more accurate model. Assuming the factor lies within a certain range could

provide an estimator a basis for including an alternative model in an estimate. Data should
8



provide constants and factors for model incorporation. Later chapters provide the assumptions
on the factors and constants in the equations. The scope of this thesis will focus on aircraft

production hours within the Air Force.

Preview

The goal of this thesis is to answer the research questions, expand prior research, and
determine if contemporary learning curve models more accurately predict costs than the
conventional models used. The analysis of data will compare the contemporary models to the
conventional models (status quo) used in the DOD. Provided there are significant results, there
is potential for adopting new learning curve methods. The next chapter will deliver an in depth
look into literature surrounding learning curve concepts, the associated incompressibility factor,
[and the influence of machinery in aircraft production]. Specifically, Chapter 2 will assess Air
Force and DOD costs estimates. Chapter 2 will address how learning curves play a role in the
cost estimation. Chapter 2 provides in depth explanations of the contemporary learning curves
models. The following chapter, Chapter 3, will identify the methodology. The methodology
provides the basis for, data collected, how the data application will work, and statistical
techniques. Chapter 4 highlights the results from the analysis (tests and methodology) described
in Chapter 3. Descriptions of results and graphical explanations are the basis of Chapter 4. The
results of the analytical tests provide the basis for Chapter 5, which provides the impacts of the

results, the conclusions, and implications for cost estimation.



Il. Literature Review

Chapter Overview

The purpose of this chapter is to summarize previous published research as appropriate to
learning curve methodology. As stated in Chapter 1, the current spending on DOD programs is
declining. The Budget Control Act of 2011 set to DOD spending and sought to reduce the deficit
by $1.5 trillion over a ten-year period. Since 2010, there have been three iterations of the Air
Force’s Better Buying Power (BBP), which focuses on efficiencies and affordability within the
Air Force. BBP is an initiative from the Office of Acquisition, Technology and Logistics that
pursues continuous improvement being the best approach to improving DOD acquisitions
(Kendall, 2014). One pillar of BBP 3.0 is to achieve dominant capabilities while controlling
lifecycle costs. A sub-pillar is to strengthen and expand “should cost” based cost management
(Kendall, 2014). The concept of should cost based management includes identifying goals for
cost reduction and implementing efforts to achieve cost reductions (Mueller, 2011). Essentially
BBP 3.0 is attempting to achieve the efficiency of DOD acquisitions. Kendall states this by
saying, “progression from BBP 1.0 to 2.0 reflected a change in emphasis from best practices to
an increased emphasis on helping acquisition professionals think critically and make better
decisions as they confront a myriad of complex situation encountered in defense acquisition”
(Kendall, 2014). Finding a more accurate learning curve model (also known as an experience
curve) for predicting cost can make the DOD acquisition process more efficient and control life
cycle costs. The success of the budget control act relies on controlling costs. Controlling costs
does not mean lowering the costs of programs; it means the DOD estimate will not have a better

picture of what a program will actually cost. The DOD has a budget and the estimates drive
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where the budgeted dollars end up (which programs get what). Budgeting accuracy is achievable
through accurate cost estimates.

Many learning curve models exist and learning curve theory has grown and evolved over
time. However, the DOD practice and methodology has seen little change or adaptation to
current technological trends. Itis known that over time a worker and organizations learn (find
efficiencies and process improvements) when performing repetitive tasks (Malashevitz &
Williams, 2010). Efficiencies and improvements over time equate to the learning curve
methodology. From learning curve methodology, the concept of forgetting emerged. Forgetting
is the phenomenon that a worker’s performance may fluctuate or decline with time. Forgetting,
unlike Wright’s theory that assumes constant learning, there is unlearning in the production
process. Moore (2015) uses the example of the production of an automobile: “While the
processes and parts are always the same, a savwy car buyer may want to avoid cars that were
built on a Monday or Friday. The worker and even the entire assembly line may suffer a loss in
performance due to working at the beginning or end of the week” (Moore, 2015. 10). Itis
human nature for people to lose focus or concentration at certain times when performing
repetitive tasks. An example of this loss of focus would be a production line worker doing the
same task repeatedly. Eventually that person might slow down because of a daydream or
boredom. The same idea for the production of cars can occur within any production. A worker
will show forms of forgetting and will not show constant learning over time. There is visual
evidence of forgetting when plotting cost or hours to complete tasks. The forgetting is evident
when the tail end of the learning curve does not exhibit a constant slope. The learning curve’s
slope changes, showing a flattening, or decrease in learning. The change might be an effect

attributable to forgetting. Figure 1 highlights that constant learning was not the case for the Air
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Force Program. The hours to complete individual units actually in some instances show an

increase.
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Figure 1 Air Force Program Actuals

The actuals leave a ground for questioning whether the flattening effect at the tail end of
production attributable to forgetting or the influence of machinery. One might be able to
hypothesize that machinery, which does not learn may have caused the flattening effects at the
tail end of the curves. With the combination of organizational forgetting theory and automation,
a more robust model may be present.

This chapter summarizes research appropriate to learning curve methodology. Chapter Il
includes concepts of forgetting theory, appropriate learning curve models, if and how private
industry utilizes learning curves, and the background on the incompressibility factor. This

chapter will provide background on contemporary learning curve theories, summarize prior
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research on learning and forgetting theories, investigate machinery and technology involved in

production, limitations, and conclude with a description of methodology.

Description of Learning Curves

Theory

The theory of learning curves dates back over 70 years, when Theodore Paul Wright (T.
P. Wright) first identified a relationship between a worker’s performance on a single task and the
time required to complete that task. The time to complete a task decreases at a constant rate over
time. In 1936, T. P. Wright annotated the effect of learning on production costs in his article
about the aircraft industry, “Factors Affecting the Cost of Airplanes.” Wright developed the
learning curve mathematical model and stated it in his article (Wright, 1936). The best way to
think Wright’s model is as the unit doubles from 1-2, 2-4, 4-8, etcetera, learning will happen at a
constant rate. In the 1970s the Boston Consulting Group found that various industries
experienced arange from 10 to 25 percent learning curve effect (Hax & Majluf, 1982), which
was in line with what Wright observed in the aircraft industry years earlier (20 percent learning
curve effect).

The effect of learning is evident by examining the slope of the line over time. Figure 2 is
a graphical representation of Wright’s learning curve. Figure 2 is an example with the first unit
costing 100 per unit. Based on 90%, 80%, and 70% learning, the graph highlights when the
number of units doubles, the average production cost decreases by 10%, 20%, and 30%
respectively. The direct costs decrease because they are a function of direct labor costs. As the
time to complete a unit decreases, so will the costs. The average is the sum of the values divided

by the number of units (the mean).
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Figure 2: Cumulative Unit Theory Learning Curve (Wikipedia, 1936)

Figure 3 highlights the log scale learning curve rate. This log relationship results in a linear
relationship for the experience curve. The log relationship is the result of an algebraic
manipulation. The algebra enables regression analysis; the transformation makes the data linear.
Practitioners find the log relationship useful in their efforts to best fit a straight line to the

algebraically manipulated data.

Experience curve
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Figure 3: Cumulative Unit Theory Log Scale (Wikipedia, 1936)

The log scale’s straight line for Wright’s Model provides the basis that a constant learning rate

over time is a straight line, and thus learning is constant. The most flexible and appropriate
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transformation is the logarithmic (LOG (base 10)) or the Natural LOG (LN (base €)) of hours
and quantity (Malashevitz & Williams, 2010). Logarithms are a method to reduce long
mathematical calculations. Graphing the values on log-log paper as seen in Figure 3 (or by
mathematical calculation of the logs) is evident. A line, characterized as having a constant slope,
emerges from this method. Slope is defined as change in Y given achange in X where
Y=mX+B (equation of a straight line). A figure in log space highlights the slope and it relates it
to a constant learning percentage. Wright’s model originally took into account cumulative
average costs, where the average cost is the average cost of the units. Crawford was able to
create a model based on Wright’s model and created an equation (Equation 1 found in Chapter 1)
to predict a cost for a specific unit. The cumulative average equation is similar, but uses
averages. For example, consider a hypothetical 80% learning rate with a theoretical first unit
cost of $100. The second unit would cost $80. Whereas the Cumav cost would be the
cumulative average of the first two units. The average of $100 and $80 equals $90. Cumav thus
will always result in a more conservative estimate than the unit curve. Table 1 highlights the

cumav and unit cost comparisons below.

Table 1 Cumav and Unit Cost Comparison

Unit Unit Cost Cumav Cost
1 $100.00 S 100.00
2 S 80.00 S$ 90.00
3S$ 7021 S 83.40
4 S 64.00 S 78.55
58S 595 § 74.75
6 S 56.17 S 71.66
7 S 5345 § 69.06
8 $ 51.20 § 66.82
9 S 4929 § 64.88
10 S 4765 S 63.15
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The DOD typically receives reports from contractors based on lot or unit data. It is more
common for a contractor to provide lot data, however it is far preferable for the estimator to have
unit data. Having unit data provides the estimator with actual costs or hours and helps them
avoid a Lot Midpoint or Lot Plot Point determinations. Based on the data available to DOD cost
estimators, the unit curve method is not readily used. Regression is the primary method for
predicting learning curves using lot data. The lot is the number of units in a certain production
run. If the data are in lots, and the lots are consecutive, the approach is to use the last unit in the
data as the plot point. The last unit of the lot approach is the Lot Plot Point (LPP) approach.
LPP is similar to plotting individual units in order to determine learning from lot to lot over time
(Hu and Smith, 2013). The Lot Midpoint (LMP) captures the unit curve and is the unit that
corresponds with average unit cost for the lot. This is simply the lot average unit cost. The
reason lots usage typically occurs in cost estimation is that there are imits on the availability of
information. In general, the military procures equipment (planes, tanks, satellites, etc.) in lots
greater than one and as a result receives cost data in the form of dollars or hours by lot and not
on a unit basis (Everest, 1988). Inquiries show that defense acquisitions typically utilizes the
cumulative average cost curve because of receiving data in lots Unit data is considered superior
to Cumav data because individual points highlight learning and forgetting over time. An average
(CUMAV) will not display learning/forgetting as readily because of a smoothing effect. By
using an average, the curve is smoother and the effects of learning are less apparent (All, 2013).

If a program or estimator is able to obtain unit data in the form of actual hours there may
be room to incorporate the unit curve. Having all of the proprietary data on a weapon system
may prove beneficial to utilizing a unit cost curve. The learning curves may prove more accurate

than using the LPP or LMP [this assumes there was not a major production break]. The trends
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are much more evident for hours than costs and lots. Hours provide a constant homogenous
comparison from year to year. Dollars on the other hand can feels the effects of external factors
such as inflation. For example, an hour in 1985 is equivalent to an hour in 2010. Lots include
multiple airframes that are sometimes not equivalent. For example, a program could purchase 10
units in the first lot and 85 in the next. The actual labor hours for different work codes gives this
analysis grounds to test the specific data. Loss of learning, machinery, and automation analysis
using IA&CO may provide profound and insightful learning curve results.

A description of labor categories Integration, Assembly, and Checkout highlights that not
all definitions are synonymous amongst manufacturers. The manufacturers largely consider
what is involved in each category as proprietary information. For the purpose of this study, Final
Test Integration, Electrical and Mechanical Assembly, Test/Integration, Composites (all
locations), and Quality Control are considered IA&CO. Final Test Integration includes the direct
labor for the final integration and test, which includes final assembly, system burn-in, payload
integration and interface, autopilot checks, taxi tests, range tests and first flight support.
Electrical Assembly is the direct labor required to assemble electronic components. Mechanical
Assembly is the direct labor required to build servos for the aircraft, to build landing gear, build
starter/alternators, to perform rework, and high-time maintenance on those components.
Test/Integration is the direct labor for new build electronics, field repairs, integrating avionics,
and testing them at the system level. Composites manufacturing is the direct labor required to
lay up, cure, and finish components such as the fuselage, wings, tails, and landing gear. Quality
Control is the direct labor required to provide inspection of electronics and mechanical

components and assemblies, document discrepancies, and resolve problem areas (“Labor
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Categories_2.pdf,” n.d.). Of note, these labor categories involve mainly direct labor performed
by humans where the learning process is observable.

A contemporary variation of learning curve models is DeJong’s Learning Formula. This
formula is a modification of Wright’s model, and it takes into account the constant, M. M is the
incompressibility factor, which is a constant between zero (fully manual operation) and one
(fully automated or machine dominated operation) (Badiru ET. Al, 2013). Equation 2 highlights
DeJong’s Learning Model.

t,= t;{M+ (1—M)n™° 2)
Where:

= the cumulative average time after producing n units
t, = time required to produce theoretical first unit
= cumulative unit number
= log R/log 2 (learning index)
= incompressibility factor (a constant)
A machine based production process would result in no learning, and thus an M value of one. It
the basis of this thesis and belief that aircraft production, complex in nature, has an M value
close zero because aircraft production is a highly manual process. Thus, M would be closer to
zero for IA&CO. M does not have a specific value. This research will focus on the best M value
for the particular aircraft production. A potential weakness of the DeJong model is that it does
not take into account previous units produced much as the S-Curve model does.

The S-Curve Model takes into account both previous units produced and the
incompressibility factor. Figure 4 below shows the effects of learning over time as hypothesized
from the S-Curve Model. The linear nature of Wright’s original learning curve model has been

in question for many years (Everest, 1988). The Rand Corporation first sought to explain the

progression of the learning curve used to estimate costs for both military and civilian airframes.

18



The report made an attempt to describe the relationship between units (quantity) and costs, and
ultimately whether the relationship was linear on a log scale. The results of the Rand
Corporation found that a convex curve may provide more accuracy if producing a large number
of units (Asher, 1956). The results found that a convex model provides less error if there is a
need for large extrapolation. Essentially, an estimation of significantly more units in production
instead of fewer provides less error. For units where large extrapolation is the circumstance a
non-linear model was more appropriate. The S-Curve model, convex in nature, presents a shape
of learning. The S-Curve, when plotted on using a log scale relationship follows an S function.

The experience over time (attempts at learning) may exhibit the S-Curve (Everest, 1988).

Steep acceleration

e

Slow beginning

Sy

alnseaw aduewliollad

Number of trials or attempts at learning

Figure 4: S-Curve Learning Model (Dewey, n.d.)

Initially there is a slow beginning as a worker learns the production process. The newness of the
product is a characteristic of the slow initial beginning. New tools, methods, shortages of parts,
reworks, and the challenge of developing a cohesive production team are all potential
contributors to the slow beginning. The fact that the initial stage in production deals changes

from tooling to even workers contributes to the gradual start (Badiru, 1992). From there,
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learning and familiarity of tools, methods, and workers occur. The learning enables a steep
acceleration of production. Production improvement occurs with attempts on the process, or
learning by doing. An example from literature is aircraft production. Aircraft production that
includes workers that are more efficient, more efficient tools and organization results in an
assembly that is more efficient. The efficiencies found result in less time to complete an aircraft
(Asher, 1956). However, the improvement and efficiencies eventually begin to fade. The
plateau at the trailing edge of the curve is the slope of diminishing returns where the curve
begins to flatten out or in many occurrences at the end of production cycles, there is a “tailup”
(Everest, 1988). After time inefficiencies can occur: forgetting, experienced workers focusing
on new projects, failure to repair worn tooling at the normal rate, increase of machine
disassembly, lack of key materials (safety stock), and workers taking more time to prolong their

employment (Everest, 1988). The S-Curve equation is shown in Equation 3:

t,=t;+M(n+B)™" (3)
Where:

t, = the cumulative average time after producing n units

t, = time required to produce theoretical first unit

n = cumulative unit number

b =log R/log 2 (learning index)

M = incompressibility factor (a constant)

B = equivalent experience units (a constant)
From this equation and figure 4, the forgetting concept is evident. The S-Curve portrays that
with time, some inefficiencies will occur. Use of the S-Curve and DeJong Models may provide

more precision to learning curve and enable higher accuracy within DOD cost estimating

because they include previously unaccounted for influences.
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Many learning curve models exist. Badiru’s (1992) paper Survey on Univariate and
Multivariate Learning Curve Models that reiterates the abundance of models, “Learning in the
context of operations management, refers to the improved efficiency obtained from repetition of
a production operation. Workers learn and improve by repeating operations” (Badiru, 1992).
Badiru listed the most notable univariate (one variable) models, which are perhaps the simplest
forms. In regards to this work, the learning curves are both univariate and express the dependent
variable (cost or hours) in terms of the independent variable (cumulative output). The first
univariate model was Wright’s Learning Curve. Other univariate models that Badiru identified:
Stanford-B, S-Curve, Delong’s, levy’s Adaptation Function, Glover’s Learning Formula, Pegel’s
Exponential Function, Knect’s Upturn Model, and Yelle’s Product Model (Badiru, 1992). The
models chosen for this research include the incompressibility factor which was found as very
important in previous research, “results indicate that the S-Curve and DeJong models offer
improvement over current estimation techniques, but more importantly-and unexpectedly-
highlight the importance of incompressibility (the amount of a process that is automated) in
learning curve estimating (Moore, Elshaw, Badiru, Ritschel, 2015). Multivariate models have
the potential to examine numerous factors that could influence learning. They have not received
the attention they deserve due most likely to the nature of their complexity.

Another potential problem is multicollinearity (Alchian, 1963). The definition is
multicollinearity is where two or more independent variables (predictor variables) are highly
correlated. From this correlation, multiple regression coefficient estimates may change
substantially in response to small changes of variables. Essentially the predictor variables might
be redundant (“Multicollinearity in regression,” n. d.). Alchian experimented with multivariate

models, specifically the Cobb-Douglas Multiplicative Model. The heavily researched Cobb-
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Douglas model and other multivariate models exist. The chance of Multicolinearity is high. All
of this considered this research has a goal to make the cost estimators jobs easier. Going from
Wright’s Model to a multivariate model where the estimators have to find variables and ask for
contractor data will likely make the work more complicated and tedious. Learning curve model
complexity adds analysis time for an analyst and there is no evidence to support a complex
model provides any benefit. The models that taken into account incompressibility could provide
an answer to a more accurate model. Ultimately, understanding the forgetting curve, the
influence of automation, and relevant research on incompressibility factors may provide an

answer to improved cost estimating.

Relevant Research

Prior research tested three models and compared the results to Wright’s model. The
results were inconclusive as to whether there is a more accurate model available. Moore did
have some insights “results do provide some insight...findings also emphasize the importance of
incompressibility in the learning process” (Moore, 2015). Moore found that slight changes in the
assumed incompressibility within the DeJong and S-Curve Models lead to drastically different
results as to which model is the most accurate. In addition to the analysis, Moore also found that
incompressibility might affect learning models more than prior experience units. Moore’s
research showed that the DeJong and S-Curve models were more accurate. They were more
accurate than Wright’s model at predicting of cost when compared. This was under the
assumption that the incompressibility was low. Because prior research did not provide a
conclusive result based on the assumed factor value, there is a demand for continued research.
Further research into more programs could prove beneficial to finding a more accurate learning

curve model. Additionally, research into incompressibility and machinery for production could
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prove beneficial for learning curve methodology. Assessment on how changing
incompressibility is difficult and it could wildly change results could also prove beneficial.
Other relevant research has compared learning curves; however, there are limited comparative
studies in defense cost estimating.

Relevant research has highlighted an important point in why military programs have not
adapted a contemporary learning curve model, “Because of the regularity of production in
military programs, organizational forgetting, and spillovers of production experience are less
apparent. If forgetting is present, it may be very difficult to identify (e. g., data could be
consistent with either a 20 percent learning rate or a 25 percent learning rate with 5 percent
forgetting). And, in most cases there are not many model variants, so spillovers are not
important” (Benkard, 1999, p. 4). The newest fighter weapon in the US military arsenal will be
the F-35. The F-35has 3 variants and the Pentagon plans to spend over $390 billion on these
aircraft (Luce, 2014) Five percent of $390 billion attributed to learning/forgetting processes is
still a staggering number. The point is that there is room for improvement. Many of the fighter
aircraft in use today have had multiple models. The F-15 had models A-E and the F-16 had
models A-F. The DOD can use the hypothesized five percent forgetting to save millions of
taxpayer’s dollars. The accurate estimates result in less spending, or savings that could go into
other taxpayer needs or public works. The estimates enable the DOD to truly forecast a budget
and spending levels.

So one may consider question what does the future actually look like in regards to
machinery and automation. Are people still going to be relevant for production? In the Defense
acquisitions realm the basis is that with low purchase quantities for state of the art machines will

not rely on technological or machine dominated production. This idea really comes down to the
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machine verses machines argument. Asking whether a robot with take the jobs of people is key.
Experts say yes and no. In the past, machines were used to replace manual labor that is an
intensive and repetitive task. According to a study by the Bank of America, robots are likely to
be performing 45% of manufacturing tasks by 2025, versus 10% today (Madigan, 2011). The
price of a computer, a robot, a chip, etc. is falling and it is speculated that they will fall even
more in the future. However, the jobs that require human interaction are least likely to be
replaced by a robot. Maybe DOD acquisitions are in the clear and 100% of learning is still
realizable for learning curve methodology. Experts agree that the future does include a
significant presence of machinery because the prices of robotics and computers are decreasing
while the cost of a human employee is increasing (Aeppel, 2012).

One method that is popular amongst program offices within the DOD is the Rate Effect
for estimating costs. The principal idea behind the Rate Effect is modeling a production rate
decrease due to a decrease in personnel-related expense. The reason behind the decrease is that
fixed costs, when spread over fewer units is less expensive. The opposite happens for an
increase in production. Personnel-related expenses and costs generally decrease. The Rate
Effect, first proposed by RAND in 1974 attempted to incorporate production rate changes in the
learning curve model (All, 2013). The result was a modified learning equation within the unit
theory that incorporates a rate adjustment. Two key variables to the learning curve model: R and

c are now a part of the model shown below in equation 4.

Equation 4:
y = axPR°® (4
Where

y = the estimated production
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hours or cost

a = the production hours of the

theoretical first unit

X = is the unit produced

b =is a factor of the learning =

log R (learning rate)/log2

R =annual production rate

C =log2 (rate slope)
The Rate Effect is popular amongst Program Offices, but unpopular with oversight organizations
such as the DOD because the rate term is rarely found to be significant (All, 2013). Another
reason for this models unpopularity is the effect of multicollinearity and its likelihood for
multivariate models. Multicollinearity refers to a correlation between dependent variables,
meaning the variables are predicting the same thing. The rate effect could play a more prevalent
role in the future if machinery becomes more prevalent. Oversight offices such as OSD Cost
Assessment and Program Evaluation (CAPE) may start to consider Rate Effect Model if humans
are less involved in the production process.

The principal idea behind the future incorporating more machinery and levels of
automation in production is that people are expensive. If companies, who work for profit, want
to increase profit, an easy route is to have low skilled employees. An employer would have to
pay high skilled employees more than the low skilled employees did. If you have high skilled
employees they will be expensive and thus the price you have to charge for the product you are
selling will have to increase in order for the business to have the same level of profit. The
definition of profit is revenues minus cost. The definition of revenue is the price charged
multiplied by the quantity sold. The idea behind increasing profit is that a company should have

the lowest skilled employees needed to complete the production process. Most employees offer

a broad range of skills that sometimes are not necessary on a production run. The simplest,
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lowest skilled employee would have to be a machine, because for the life of the machine costs
will be low (Godin & Warner, 2010). Machinery relatively has a high initial cost, but the
machine will repeat every task and the company does not have to pay for its medical insurance or
retirement. The idea that machinery will dominate the future is highly likely; in the immediate
future, machines or robotics could be working next to humans. Prior generation machines might
have been limited to the a certain skill and people to service them, the future of machinery in
production will be cheaper and could provide a renaissance (“Making the future | The
Economist,” n.d.). Machines have replaced workers in production lines and people answering
telephones. In my opinion, competitive pressures encourage organizations to turn their workers
into machines. Machines can be measured and if the organizations can measure it, they can

produce faster and increase profit (Godin & Warner, 2010).

Summary

Chapter 2 provided a summary of previously published research as appropriate to
learning curves. Learning theory and modeling is a known process in production and plays a
role in cost estimating. The forgetting theory, automation, and the learning curve models that
take forgetting/automation into consideration have not been adapted into the DOD cost
estimating process. Research on the models that take forgetting into account and the
incompressibility factor are the basis of this thesis. The methodology for this thesis follows in

Chapter 3 and it will describe data, methods, and assumptions.
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I11. Methodology

Chapter Overview

The purpose of this chapter is to explain the methods behind the research that modern
learning curve models provide better accuracy than conventional models when estimating
production costs using program integration, assembly, and checkout data. Modern learning
curve models take into account factors such as automation that conventional learning curve
models do not. Conventional models assume a constant learning rate over time, which seems
like an unrealistic assumption. Intuitively, learning fluctuates and does not remain constant
because humans tend to forget and machines do not learn. Contractors are looking to lower
expenses because lowering expenses leads to more profit. From large organizations that are
comparable to large DOD contractors, it is known that people are expensive; total human capital
costs (cost of workforce) average approximately 70% of expenses (Higgins & Cooperstein,
2010). One way to lower costs is to have a machine be a part of the process. This move towards
automating processes is the future of production. Production estimates within the DOD utilize
learning curve models. As previously stated, DOD budgets for acquisition programs are
shrinking. Cost estimates associated with acquisition programs are a high priority within the
DOD. Finding methods to increase the accuracy of the estimates are of value. They are
particularly of value to estimators because increased accuracy leads to less error. If a modern
learning curve model is more accurate than what is currently being used (Wright’s model), it has
the potential to add significant value to the cost-estimating field. The method is to test which
learning curve model is the best predictor of cost. Wright’s learning curve equation,t; = t,x”
does not take into account the performance decline of forgetting or the influence of machinery.

Using program integration, assembly, and checkout data as a basis for this research is useful
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because it involves manual processes that will have a low incompressibility factor. The
hypothesis is that using this level of data instead of all of the production data, will demonstrate
that the modern learning curve models are more accurate predictors of cost than the status quo.
Essentially, the analysis will be more sensitive to program integration, assembly, and checkout
data in hours than the entire lot data in dollars. The reason behind this is having individual unit
labor hours will provide an accurate picture of learning, forgetting and the influence of
machinery. Using the specific work codes identified, and hypothesized to have more
forgetting/learning processes involved, should have results that are more sensitive because more
manual processes are involved.

Comparing the modern learning curve models to the conventional method is essential in
determining which is more accurate. The models chosen are relevant to this research because
they incorporate incompressibility and the application of only IA&CO can be input. Moore
states “the conventional method lacks the application of key factors that affect learning: prior
experience and incompressibility. Accounting for these factors can reduce the amount of
estimating error for airframe costs” (Moore, 2015, p.14). The incompressibility factor played a
large role in his research. The S-Curve and DeJong model were more accurate predictors of cost
than Wright’s model. Those models only exhibited more accuracy if incompressibility was low.
Using integration, checkout, and assembly may make this assumption valid. Chapter 3 clarifies

how the application of the models, methods for comparison, and data analysis.

Data Collection
The Air Force Life Cycle Management Center Cost Staff (AFLCMC/FCZ) at Wright-
Patterson Air Force Base (WPAFB) provided learning curve data for 17 Major Defense

Acquisition Programs (MDAPs). A MDAP, classified as a major program that exceeds a certain
28



dollar threshold. There are 80 MDAPs in the DOD as of 2014. The numbers have decreased
slightly owver the years. The data files consist of average Learning Curve Reports of Annual Unit
Cost (AUC) in addition to the MDAPs estimate methods using Wright’s conventional learning
curve model. Only one program provided was broken into the specific work codes that include
the needed data (IA&CO). That program was the for the purpose of this study, an Air Force
Program. The data are primary data that is proprietary. Primary data are data that is from the
contractor and has not been normalized, inflated, or altered (Ellis, n.d.). When comparing
models based on airframe’s integration, assembly, and checkout data the assumption of
incompressibility close to zero is reliable. The airframes for this analysis are the Air Force
Program. Moore researched one fighter aircraft, the F-15, and found incomplete or too few data
on other airframes to make a valid comparison. It is important to have data span several years
for comparison purposes. The historical data is important because the effects of learning are
evident. Having data spread over a period of time shows patterns. The Air Force Program data
are adequate and spans Fiscal Years (FY) 2005 to FY 2013. If data from AFLCMC and the Air
Force Program are not adequate, the Joint Cost Analysis Research Database (JCARD) system
may have cost data for programs or asking for specific Work Breakdown Structure level 1V data
from a contractor may be a route to take.

Once data compilation is complete, the data will have to be standardized.
Standardization will occur by converting prior year’s values into a Base Year (BY) to take into
account the effects of inflation. This standardization assumes the data are in dollars and not
hours. If the data are in hours, no conversion is necessary. Comparing the cost of a program in
1980 dollars and the cost of program in 2000 dollars will not suffice. Every year the Office of

the Secretary of Defense (OSD) publishes OSD Inflation Tables. Values for this research will be
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standardized to Base Year 2015 (BY$15) using the tables. This conversion will display dollars
that are relevant to present time. Once data conversion to BY$15 for all programs is complete,
the next step will be plotting the average unit costs and the cumulative average unit costs.
Trends might be evident for the production such as initial learning, period of peak performance,
and then diminishing returns or forgetting. In order to highlight the data points, a log-log graph
will provide the visual representation. The log-log graph is a two-dimensional graph of numeric
data that uses logarithmic scales on both axes. Relationships appear in a straight line on the

graph which is useful in estimating relationships and parameters (Ritter, 2001)

Learning Curve Models

Wright’s model, which takes the form of t; = t,x?”, has parameters t, and b that need to
be determined in order to obtain an estimate. The statistical method for determining these
parameters is linear regression. Linear regression is an approach for modeling relationships
between variables. The natural log of a cumulative units (X) against their associated costs (y)
will provide ¢, and b. The regression line that explains the most variability will determine
whether unit cost or cumulative average theory is the best method for predicting cost.
Determining the regression that explains the most variability comes from a comparison of the
line’s R? values. R? is a goodness of fit percentage the represents variance between independent
and dependent variables (McClave, Benson, and Sincich 2011). Besides R? there is an adjusted
R-squared which is an adapted description of R-squared that adjusts for the number of predictors
in the model. Essentially, the adjusted R-squared compares the explanatory power of regression
models that contain different numbers of predictors (Frost, 2013). R-Squared is sufficient for

this analysis because the number of predictors are low. From the regression, b is the slope of the
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line and t, is the natural log of the y-intercept. With these two parameters solved, they remain
constant for the other models.

The DeJong Model and S-Curve models are the modern models considered for
comparison in this research. The incompressibility factor in Dejong’s model highlights the
effects of learning. M is the constant between zero and one where zero is a fully manual
development and one is a fully machine development. Aircraft production, specifically the
program integration, assembly, and checkout portion, is close to fully manual. The S-Curve
Model in addition to M uses a previous unit experience constant, B. Incompressibility is
undefined and led to subjectivity in Moore’s research (Moore 2015). Moore tested the F-15
assuming a low M. Moore tested the models in increments of .05 from zero to 0.20. Moore’s
research hypothesis was that one or more of the modern learning curve models would have a
mean average percent error (MAPE) significantly different from the conventional model. He
found that when the incompressibility factor was zero to 0.05 the DeJong and S-Curve Models
were statistically different and ultimately more accurate than Wright’s Model. However, for all
other values there was no statistical difference or Wright’s Model was more accurate. Table 2

below highlights these findings.

Table 2 Moore's F-15 Analysis

M =0.0 M =0.05 M =0.10 M=0.15 M =0.20
WLC NAA N/A N/A N/A N/A
Stanford-B X X X X X
Delong X - X + +
5-Curve X X + +

X indicates model is not significantly different from WLC

(+)} indicates model is statistically less accurate than WLC (Higher MAPE)
(-) indicates model is statistically more accurate than WLC (Lower MAPE)

31




Research Hypothesis

This comparative study’s theory is that using program integration, assembly, and
checkout data will provide a more realistic assumption for low incompressibility and ultimately a
more accurate predictor of actual costs based on a modern learning curve model. The hypothesis
is that the MAPE is significantly different between the predicted labor hours for the modern
models when compared to the conventional model. MAPE is the measure of variation that takes
the error both positive and negative as an average. The positive and negative errors, taken as
absolute values, or the average distance from the actual values is the measure. Small MAPE
values relate to values that are more accurate. Therefore, smaller MAPES are better. The
research hypotheses based on comparing the models using program integration, assembly, and
checkout data are as follows:

H1: One of the compared models will have MAPE significantly different from the others.

H2: One of the modern learning curve models will be significantly more accurate than

Wright’s model in predicting costs or hours.

H3: The S-Curve model with IA&CO will have a significantly lower MAPE than

Wright’s and DeJong’s Learning Curve Models.

H4: The incompressibility factor will have a significant influence on the accuracy of the

DeJong and S-Curve Models
The first hypothesis” null (H,) is 4, = u, = ;. This means that the MAPE for each learning
curve model are the same. The alternative hypothesis(H,) is that one of the model’s MAPE is
statistically different. A rejection of null hypothesis in favor of the alternative hypothesis
supports significant finding. The significant finding means that testing each contemporary

learning curve model against Wright’s model is the next phase. The second hypothesis (H2) has
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anull u; = ;. Where i will equal models 2 and 3 (DeJong’s and the S-Curve). The H, is that
the contemporary learning curve models will have a lower MAPE than the conventional model
(qy > ). H3’s null hypothesis is u, = u;. The H, is that u, > u, meaning that the S-Curve
will have the lowest MAPE and thus be the most accurate predictor of cost or hours. The last
hypothesis is that small changes in the incompressibility factor will have a large influence of the

MAPE of each model.

Method of Analysis

A Microsoft Excel Spreadsheet is the means to housing the data collected.
Standardization (if needed) to BY$15 averages if it is in dollars is the second step. The
spreadsheet will include actual costs and the predicted costs using one of the learning curve
models. Once calculation of the predicted costs is complete, the error is simply the difference
between the actuals costs and the predicted costs. To provide a comparison, a difference
calculation in the absolute value and absolute value percent error are the means of analysis. The
next step is to perform an analysis to test the hypotheses. ANOVA or Kruskal-Wallis test [with
IBM® SPSS statistics software] with Microsoft Excel will provide the basis for comparing the
percent errors. The tests will produce an F-statistic (a test statistic) that falls within a Q-
distribution and a p-value. This comparative study will produce results based on a 95%
confidence level (an o« of 0.05). In order for the test to result in significant findings, the test’s p-
value has to be less than 0.05. If the P-value is less than 0.05, rejection of the null hypothesis in
favor of the alternative hypothesis will occur. Rejecting the null hypothesis for this study will
represent that there is a 95% chance that the tested populations are different. The conditions for
ANOVA are as follows: the samples must be from a random selection of the population,

normally distributed, and population variances must be equal (McClave, Benson, Sincich 2011).
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Chapter 4 will state the conditions for this ANOVA. If the conditions for ANOVA fail to meet
the needed criteria, the Kruskal-Wallis test (non-parametric equivalent to ANOVA) will be the
test to determine if multiple samples arise from the same distribution and have the same
parameters (Kruskal & Wallis, 1952). The ANOVA or Kruskal-Wallis f-test provide insight into
the first hypothesis. The Kruskal-Wallis test is beneficial since the one-way ANOVA is usually
robust based on the assumptions for ANOVA. The Kruskal-Wallis test becomes useful in
particular when group sample strongly deviate from normal (sample size is small and unequal
and data are not symmetric) and variances are different (potential outliers exist). The
assumptions for the Kruskal-Wallis test are that no assumptions are made about the underlying
distribution, however, assume that all groups have a distribution with the same shape, and no
population parameters are estimated (no confidence intervals in the data) (Zaiontz, 2015). If the
F-statistic is significant, then rejection of the null hypothesis in favor of the alternative that at
least one of the sample means is different is the outcome.

The t-Test for two samples test will evaluate the second hypothesis that one or more of
the models is a better fit to the data than Wright’s Model. The control for this comparison is
Wright’s learning curve model. Since Wright’s model is the control for this study, a comparison
to the other model’s MAPEs is the method. If the assumption for equal variance is not met, the
t-Test for two samples assuming unequal variances will be used. The next analysis that
corresponds to H3 will be testing which model is most accurate given significant results for more
than one model from the H2. Once again, the paired difference t-test is the next step. A paired
difference experiment uses a probability distribution when comparing two sample means and
produces a t-statistic that falls within a student-t distribution that can either reject or fail to reject

the null hypothesis depending on the desired confidence level (McClave et al, 2011). Lastly, H4
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will require reiterations of the tests in order to determine a good estimate for incompressibility
factor based on the airframes.

Of note, the reader may question why the means cannot provide the basis for the analysis.
This lies in the variation of the means. If the coefficient of variation (standard deviation as a
percentage of the mean) is low, the mean may be a good predictor of the better model. However,
asarule of thumb, if the coefficient of variation (CV) is greater than 15% the mean indicates a
looser distribution. Analyst would like a tighter distribution with less variability. In practice, a
low CV (say, 5%) would indicate that the average (mean) of the cost data is a useful description
of the data set. On the other hand, if the CV is much higher (say, greater than 15%), there should
be a cost driver in the data set that causes the cost to vary (citation needed). The CV’s for the

analysis will provide insight into the dispersion of the data points.

Conclusion

The methods for this comparative study are quantitative and require statistical analysis as
a means of comparison. If any rejection of the null hypotheses in favor of the alternate
hypotheses occurs, the findings could result in a valuable tool for cost estimating with more
accuracy. At a minimum, the results can be an opportunity for further analysis. The following
section will highlight the results from the analysis. The final chapter will interpret the results
and discuss the impacts of the comparative study.

IV. Analysis and Results

Chapter Overview
This chapter highlights the results from the analysis (tests and methodology) described in

Chapter Ill. This chapter answers the research questions by describing the results and
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highlighting relevant analytical information. This chapter includes graphical representations and
in depth description of charts. The Air Force Program provided the initial analysis and
investigation into whether or not integration, assembly, and checkout data provide robust results
on the comparative learning curve model study. After analysis and results, the limitations,

implications, and the future research areas will conclude in Chapter V.

Results of Simulation Scenarios

The first step in the analysis was to determine whether the unit theory or the cumav for
the Air Force Program data was the best representation. The next step was a log-linear
regression; performed on the early-fielded units of the Air Force Program. The early units,
treated as historical values, predicts hours for the remaining Air Force Program units used in the
analysis. Both the unit and cumav data were plotted using a scatter plot. The cumav regression
resulted in an R? (coeffeicient of determination) value of 0.9525. This 0.9525 value means that
roughly 95% of the variance for the cumav regression is explainable. The unit curve regression
resulted in a R? value of 0.8174. Since the cumav theory resulted in a higher R2value, the unit
theory was no longer useful in this study to estimate the remaining points (regression graphs can
be seen in Appendix A). The remaining points to that need an estimation are the remaining Air
Force Program units produced and provided.

The cumav regression from the early units of the Air Force Program provided the factors
and parameters for the equations used in this analysis. The analysis needs to transform the log
space results. The theoretical first unit (7,) is found by taking the log-linear regression’s Y-
intercept (a) from the equation InY=Ina + blnx and raising it to the constant Euler’s number, “e”.
Euler’s Number is the base of the natural logarithm (Weisstein, n.d.). The theoretical first unit in

hours for this analysis is 29,971 hours. The learning curve slope, based on the
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equation e?M = 20 The b value was -0.1726 and resulted in an 88.7% learning curve slope.
The remaining factors for the initial analysis were B (prototypes) of two and an M value of 0.05.

The table below highlights these initial values.

Table 3 Initial Analysis Parameters

Theoretical First Unit (Hours) 29,971
B 2
M 0.05
b -0.1726
LCS 88.72%

Results of Parameters

From the initial analysis, the data was used to build a Microsoft Excel equation for all
three learning curve models. Each respective model’s equation provided a predicted value for
each Air Force Program. A comparison for the predicted values to the actual values was the next
step. Appendix B shows an example model calculation for the DeJong Model. This resulted in
an APE for all of the units. The MAPE of the three models is below. The table highlights that
given the specific parameters, the S-Curve and the DeJong Models both have lower MAPE
values. Performing statistical analysis is the next step in order to identify if there is a significant

difference between the models occurs.
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Table 4 MAPE Analysis M=0.05

WLC Delong S-Curve

4.11% 3.00% 2.64%

Standard Deviation

The coefficient of variation (CV = ) calculations were performed as a

Mean

cross check. The mean may be a good predictor of a better model. However, as a rule of thumb,
if the coefficient of variation (CV) is greater than 15% the mean indicates a looser distribution.
The CVs for the three models exceeded the 15% rule of thumb. The large CVs indicate that the
mean is a poor estimator of a more accurate model. An analyst would like a tighter distribution
with less variability when using means. On the other hand, if the CV is much higher (say,
greater than 15%), there should be a cost driver in the data set that causes the cost to vary
(Dameron, Megan E., n.d.). The CV’s for the analysis will provide insight into the dispersion of
the data points. In order to compare models further statistical methods were the basis of
evaluation.

The next step was to test for normality of the predicted values of each learning curve
model. If normality passes, ANOVA will be the method. The assumption of normality was not
meet because of kurtosis and skewness. An important part of the statistical analysis is to
characterize the variability of the data set. The description of the data includes skewness and
kurtosis. Skewness is a measure of symmetry. Typically, the skewness is important because of
the lack of symmetry. The distribution is symmetric if it looks the same to the left and right of

the center point. Kurtosis is a measure of whether the data are heavy-tailed or light-tailed
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relative to a normal distribution (Filliben, 2012). Data when plotted tend to have heavy tails or
outliers if there is high kurtosis. Low kurtosis tend to have light tails, or lack of outliers. The
histogram is an effective method for showing both the skewness and kurtosis.

Wright’s Learning Curve Model (Figure 5) when graphed appears to follow a normal

curve. Kurtosis equaled -1.164 and skewness equaled 0.320.
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Figure 5 WLC Frequency Distribution

The descriptive statistics provided both of the measures that Table 5 below highlight. The
kurtosis absolute values for the DeJong and S-Curve Models are both greater than one. Both of
these models have moderate skewness. Appendix C graphically captures the frequency of both
the DeJong and S-Curve’s distributions. Itis evident that the distributions do not follow a
normal curve. The Kruskal-Wallis test, used to determine if the predicted samples are

significantly different, is the next statistical test.
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Table 5 Descriptive Statistics

e £ Dagaruy S
Mean 0.0471 Mean 0.030 Mean 0026
Standard Error 0,002 Standard Errar 0.003 Standard Errar .00z
Median 0.032 Median 0.020 Median 0.7
Standard Deviation 0.027 Standard Deviation 0.024 Standard Deviation 0.0z20
Sample Variance 0.000 Sample Yariance 0.001 Sample Yariance 0.000
Furtosis -1.16d Kurtosis -1.328 Kurtosis -1.245
Skewness 0.320 Skewness 0.595 Skewness 0626
Range 0.050 Range 0.063 Range 0.080
Minimum 0,002 Minimum 0,000 Minimum 0.0
Masimum 0.082 Masimum 0.063 Mazimum 0.0e1
Sum 3,304 Sum 2,854 Sum 2512
Count 35 Count 35 Count 35
Confidence Level[35.054) 0,004 Confidence Lewel(35.05:] 0.005 Confidence Lewel35.05:] 0,004

The variances are the next statistic to test. This will determine whether performing a T-
Test with equal variances is a possibility. The rule of thumb for testing variance is to divide the
largest sample standard deviation by the smallest. From the descriptive statistics, S-Curve has
the smallest (0.020) and DeJong has the largest (0.024). If this value is greater than one, the
assumption of equal variances will not be acceptable. The rule of thumb value equals 1.231 so
equal variance cannot be assumed and a T-Test with unequal variances has to be performed to

compare sample means.

Results of Means Comparisons

The test for non-normal distributions, the KW test is useful to predict if values are
significantly different. The KW test, performed at an M value of 0.05, resulted in significantly
different distributions. The null hypothesis was that the distributions of the APE values for the
three models was the same based on a significance level of 0.05. The table below shows these
results. Since the K value is greater than the critical value, rejecting the null hypothesis that the
APE values are same is necessary. Table 6 also highlights that the p-value is less than the 0.05

significance level. The p-value echoes rejecting the null hypothesis.

40



Table 6 KW Test

K 34.56
Critical Value 5.99
P-Val 3.1E-08

Once there are indications that one or more of the models are significantly different, it is
necessary to determine which model captures the difference. We held WLC as the status quo in
order to determine if the DeJong Model or S-Curve Model were different. The conclusion for
WLC and DelJong t-Test assuming unequal variance: Perform a two-tail test (inequality), if the t
Stat < -t Critical two-tail ort Stat >t Critical two-tail, then reject the null hypothesis. T Stat
(3.329 is > 1.97) so results reject the null hypothesis. The means are different for WLC and
DeJong. The conclusion for WLC and S-Curve t-Test assuming unequal variance: Perform a
two-tail test (inequality). Ift Stat < -t Critical two-tail or t Stat > t Critical two-tail, reject the
null hypothesis. T Stat (4.912 is > 1.97) so results reject the null hypothesis, the means are
different. Because both MAPES for the DeJong and S-Curve model, the next step was
comparing the two alternative model. Conclusion: Performing a two-tail test (inequality). Ift
Stat < -t Critical two-tail ort Stat >t Critical two-tail, we reject the null hypothesis. T Stat
(1.118 is not > 1.97) so we fail reject the null hypothesis. There is no reason to believe the S-
Curve is a more accurate predictor over the DeJong model. The results for The DeJong and S-
Curve t-Test resulted in failing to reject the Null hypothesis. As to which model is most
accurate, the results were inconclusive. Appendix D highlights all results from the t-Tests. The
S-Curve is statistically different from WLC. However, the S-Curve it is not statistically different

from the DeJong model. This highlights that WLC is a less accurate predictor with a MAPE
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value of 4.1% compared to DeJong and S-Curve MAPES of 3.0% and 2.6% respectively. There
was not a need for an M value of zero test because at an M value of zero, DeJong’s Model

reverts to WLC Model.

Results of Sensitivity Analysis
The sensitivity analysis includes changing the M to a value of 0.1 and 0.15. Results
dramatically changed by changing the incompressibility factor. The KW test at an M=0.10 is

shown below in Table 7.

Table 7 KW Test at M=0.10

K 104.54
Critical Value 5.99
P-Val 2E-23

Since the K value is greater than the critical value, reject the null hypothesis that there is not a
difference. The next step was holding WLC as the status quo and it to each of the alternative
models. WLC when tested using the t-Test for two samples assuming unequal variance rejected
the null hypothesis against the S-Curve and DeJong found there was a significant difference.

The two-tail test (inequality) conclusion found that if t Stat < -t Critical two-tail ort Stat >t
Critical two-tail, reject the null hypothesis. T Stat (-9.31 is <-1.97) so we reject the null
hypothesis. The means are not the same. WLC is more accurate than Dejong and S-Curve. This
means that WLC is the most accurate predictor with a MAPE value of 4.1% compared to DeJong
and S-Curve MAPES of 7.3% and 6.7% respectively. The results of the APE values highlights

that WLC has less error earlier on, but as the sample size increase DeJong and the S-Curve have
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less APE. Chapter V will provide insight into why the error occurs for WLC and the

contemporary models. Figure 6 shows the results at an M value of 0.05 and 0.10.
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Figure 6 APE Trends

Of note is how the incompressibility factor plays a role in the estimates. It is evident that the
Absolute percent errors swing in favor of the modern learning curve models when predicting
hours using IA&CO. WLC provides less percent error initially, but WLC has more percent error
in both cases for an M-Value of 0.05 and 0.10.

The next test for sensitivity was running the method again using all of the data on the Air
Force Program. All of the data includes Test Support, Machine Shop. Program Support and
Design. These work codes are not repetitive in nature like IA&CO. The initial parameters found

that the cumav regression was the best fit for the data. The parameter analysis values are in
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Table 8 below. Ofnote and as expected the theoretical first unit would be higher with more data

points.

Table 8 Parameters for All Data Points Analysis

Theoretical First Unit (Hours) 41440
B 2
M 0.05
b -0.2517
LCS 83.99%

The three learning curve models calculations all for a MAPE analysis with the parameters in
place. The MAPE analysis found the values in Table 9 below. WLC has the lowest Mean

Absolute Percent Error, followed by the S-Curve, and lastly DeJong’s model.

Table 9 MAPE Values for All Data M = 0.05

WLC DeJong S-Curve

7.02% 6.59% 5.92%

The coefficient of variation calculations were performed as a cross check. The mean may
be a good predictor of a better model. However, as a rule of thumb, if the coefficient of variation
(CV) is greater than 15% the mean indicates a looser distribution. The CVs for the three models
exceeded the 15% rule of thumb. The large CVs indicate that the mean is a poor estimator of a
more accurate model. In order to compare models further statistical methods were the basis of

evaluation.
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The next step was to test for normality of the predicted values of each learning curve
model. If normality passes, ANOVA will be the method. The assumption of normality was not
met because of kurtosis and skewness. The variances are the next statistic to test. This will
determine whether performing a T-Test with equal variances is a possibility. The rule of thumb
for testing variance is to divide the largest sample standard deviation by the smallest. From the
descriptive statistics, WLC has the smallest (0.034) and DeJong has the largest (0.059). If this
value is greater than one, the assumption of equal variances will not be acceptable. The rule of
thumb value equals 1.734 so equal variance cannot be assumed and a t-Test with unequal
variances has to be performed to compare sample means. Table 10 shows the descriptive

statistics for the data analysis including all points.

Table 10 Descriptive Statistics All Data

[ Shviarug S
Mean 0,071 Mean 0.067 Mean 0,080
Standard Error 0.003 Standard Error 0.00& Standard Error 0.005
Median 0,073 Median 0.050 Median 0,043
Standard Deviation 0,034 Standard Deviation 0.053 Standard Deviation 0052
Sample Wariance 0,007 Sample Variance 0.003 Sample Yariance 0,003
Kurtosis -1.043 Kurtosis -1.108 Kurtosis =117
Skewness -0.150 Skewress 0.613 Skewness 0.606
Range 0,127 Range 0,185 Range 062
Mirirmum 0,007 Minimum 0,000 Minimum 0,000
Masimum 0,127 Masimum 0,138 Mazimum 0163
Sum E. 713 Sum E.378 Sum 5728
Count 95.000 Count 95,000 Count 595,000
Confidence Levell35.02]  0.0083 Confidence Level(35.0221  0.01204 Confidence Lewsl[35.057] 0.0707

Table 11 below shows the results for the KW test for non-normal distributions. KW test
predicts if values are significantly different. The null hypothesis was that the distributions of the
APE values for the three models was the same based on a significance level of 0.05. The table
below shows these results. Since the K value is less than the critical value, rejecting the null

hypothesis that the APE values are same is not necessary. Table 10 also highlights that the p-
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value is 0.063 is greater than the 0.05 significance level. The p-value echoes failing to reject the

null hypothesis. These values are close to being significant.

Table 11 KW Test All Data

K 5.534

Critical Value 5.991

P-Val 0.063

When plotting the Absolute Percent Errors a trend similar to the analysis using IA&CO was
evident. WLC starts as a more accurate predictor of cost and then becomes less and less
accurate. Whereas the DeJong and S-Curve models become increasingly more accurate

predictors. Figure 7 below shows the results of APE.

All Data M=0.05
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Figure 7 All Data APE Trends
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If there are indications that one or more of the models are significantly different, it is
necessary to determine which model captures the difference. The t-Test will not take place
because there is no reason to believe any of the models were different. When changing the M
Value to 0.10, the S-Curve and DeJong MAPE values increased more than double. WLC is a

better predictor of with all of the data at an M value of 0.10. Table 12 highlights the MAPE

findings.
Table 12 MAPE Values M =0.10 All Data
WLC Delong S-Curve
7.01% 15.04% 14.21%
Summary

Chapter IV provided results to the analytical tests performed as described in Chapter IlI.
A description of the results for the Air Force Program, based on the assumption of low
incompressibility values of 0.05 and 0.1, highlights the effects of learning. The results changed
between these values and indicated that the S-Curve model may be a more accurate predictor at
0.05, but WLC is more accurate at 0.10. After 0.10 WLC becomes significantly less error prone
for both IA&CO and the analysis with all of the work codes. WLC is a better predictor of cost
when the incompressibility is 0.10 and higher. Analysis on all of the data points, not just
IA&CO, showed no difference between the models atan M of 0.05. However increasing the M

value results in WLC becoming an increasingly more accurate predictor of cost.
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V. Conclusions and Recommendations

Chapter Overview

Chapter V will conclude the thesis and provide insight into whether or not there is reason
to believe a more accurate learning curve model exists. The thesis was a comparative study on
learning curve models in defense cost estimating. The study focused on the two conventional
models (Wright’s Cumav and Crawford’s Unit Curves) used in defense cost estimating and two
other contemporary models. DeJong’s Learning and the S-Curve model were the contemporary
models in the comparison. Chapter IV shows the results of the comparative study analysis which
led to the conclusion and recommendations in this chapter. Chapter V highlights the conclusions
of the research and the impacts of it. Specifically Chapter V will draw inferences on IA&CO
data analysis on the Air Force Program. The significance of the results will provide a potential
conclusion to the questions posed by this comparative study. Chapter V also addresses the
recommendations for action within the Air Force and DOD. In Chapter V there is a section
detailing the limitations of the research study. Lastly, Chapter V will highlight recommendations

for future follow on research.

Conclusions of Research

The results of the comparative study were inconclusive. The answer to whether or not
there is a more accurate learning curve model did not produce a significant result. The status
quo, Wright’s Learning Curve, was just as accurate of a predictor of learning when compared to
contemporary learning curve models. The results using Integration, Assembly, and Checkout
data provides awareness on automation and the effects that it plays in the learning curve models.

In comparison to the analysis on all of the data, the results were, as theorized, more sensitive to
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IA&CO. The conclusions for the hypotheses for the analysis are next. They hypotheses were
one of the compared models will have MAPE (Mean Absolute Percent Error) significantly
different from the others. One of the modern learning curve models will be significantly more
accurate than Wright’s model in predicting costs or hours. The S-Curve model with IA&CO will
have a significantly lower MAPE than Wright’s and DeJong’s Learning Curve Models. Lastly,
the incompressibility factor will have a significant influence on the accuracy of the DeJong and
S-Curve Models

In regards to the first hypothesis, that one of the compared models will have MAPE
(Mean Absolute Percent Error) significantly different from the others the following holds. At all
incompressibility factors of 0.05, 0.10, and 0.15 the learning curve models were statistically
different. However, when using all of the data there was no reason to believe there was a
difference at 0.05. At values of 0.10 and 0.15 there was statistical difference between the
models. The results of the first hypothesis are essential in the comparative study. The first
hypothesis establishes the basis for testing the remaining hypotheses.

The second hypothesis, one of the modern learning curve models will be significantly
more accurate than Wright’s model in predicting costs or hours held when IA&CO analysis was
held at an incompressibility factor of 0.05. WLC proved to be more accurate of a predictor for
IA&CO at incompressibility factors of 0.10 and 0.15. When including all of the data points,
there was not a statistical difference at an incompressibility of 0.05. However, the analysis held
that WLC was more accurate for IA&CO at incompressibility factors of 0.10 and 0.15. Of
interest, the analysis portrays that Wright’s Learning Curve performs with more accuracy when
the automation increases. Results did not support that that the modern learning curve models,

DeJong and S-Curve are more accurate (lower percent error) than WLC.
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The third hypothesis, the S-Curve model with IA&CO will have a significantly lower
MAPE than Wright’s and DeJong’s Learning Curve Models did not hold. The reason behind this
hypothesis was that the S-Curve accounts for more aspects of the learning process by including
both prior unit experience and incompressibility. This hypothesis was not found to be significant
at the chosen parameters (alpha of 0.05) for the analysis. However, the MAPE for the S-Curve
was lower (more accurate and less error prone) than DeJong’s Model. The MAPES of 2.64%
and 3.00% respectively reflect the results. The DeJong and S-Curve Models were more accurate
than WLC, but they did not show a statistical difference amongst themselves. Because of no
statistical difference, the third hypothesis is inconclusive as to which model will predict with the
lowest percent error.

Lastly, the hypothesis that incompressibility factor will have a significant influence on
the accuracy of the DeJong and S-Curve Models held. Small changes in incompressibility did
result in drastically different results. Changes in increments of 0.05 to 0.15 led to significantly
different results. The figures of the Absolute Percent Errors in Chapter IV highlight the result of
the comparison. With time and increasing trials, the S-Curve and DeJong models become
increasingly less error prone. WLC is more accurate initially, however with time the
contemporary models become less error prone. The result of this leads to a theory that the
influence of machinery in this instance could be more sensitive to longer production cycles. It
may support an expanded incompressibility range as well.

In summary of the hypotheses, results support the first hypothesis that there is a
significant difference between the models. Results are inconclusive as to whether any models
are significantly more accurate than Wright’s model. Between an incompressibility of 0 to 0.1

DeJong and S-Curve models were more accurate (less error prone). Nevertheless, atan
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incompressibility of 0.10 and beyond Wright’s model most accurate. The third hypothesis has
results that are inconclusive as to which model is most accurate at an incompressibility of 0.05.
Both DeJong and S-Curve models were more accurate than WLC, but no difference between the
two. Finally yet importantly, incompressibility was highly influential as hypothesized. The
results of the findings lead to questioning why for the program chosen incompressibility would
become increasingly more error prone when more automation is present. In addition, the
findings put into question how the DOD can draw a conclusion about the application of
contemporary learning curve models in acquisitions and specifically cost estimation.

In regards to the questions posed in the last paragraph, the first question as to why the
analysis for program chosen, would incompressibility became increasing more error prone when
more automation is present may be due to the data. The Absolute Percent Error figures highlight
that WLC is accurate initially and eventually becomes increasingly less accurate. The opposite
that the S-Curve and DeJong Models are not as accurate initially, but become increasingly
accurate over trials. The MAPE analysis averages all of the errors. If the data set included more
units, results may trend towards results in favor of the contemporary models. That theoretical
question answer is based on the visual trend from the APE figures. Of interest when the
incompressibility factor is 0.10, the models portray that 90% of learning is obtainable. Because
the data set was small, changes in incompressibility may not be as evident to the significance of
the comparative study. The findings also put into question how the DOD can draw a conclusion
about the application of contemporary learning curve models in acquisitions and specifically cost
estimation. If the production cycle is long, and many trials will be realized, there is potential the
contemporary models may capture a more accurate picture of learning. Aircraft production may

provide starkly different results from a missile production run where more units are produced

51



over time. The results support there is potential for a more accurate model. However, it may not
be in the realm of aircraft production. Aircraft production may include some automation. It is
not implausible that aircraft production is 95% manual and supports an incompressibility factor
of 0.05. The contemporary models may support a more automated process such as a production
line much like the automobile industry. Prior studies and subject matter expert opinion support
that aircraft production is manual. However, there is the belief that more automation is going to

be present in the future.

Significance of Research

Results from the analysis show that there is reason to believe Wright’s Learning Curve
may not be the best method for estimating costs. By extrapolating from actuals, the method for
Wright’s model may not incorporate enough of the variability of learning. The results provide
evidence that Wright’s Model is accurate initially, but with attempts at learning (trials) the
amount of error increases. The comparative analysis on learning curve models provides a
standalone analysis of program actuals. The fact that the analysis includes proprietary data in
labor hours is distinctive. The conclusions from that study are there is potential for a more
accurate cost-estimating model and that the conventional learning curve models become
increasingly less error prone over trials. The DeJong and S-Curve models show promise as a
way to improve DOD cost estimating.

The results of the research do not support all of the hypotheses. Results did confirm that
the incompressibility factor was highly influential for both the S-Curve and DeJong models. The
results of the comparison changed drastically with a small change in the incompressibility factor.
The DeJong and S-Curve models were both more accurate than WLC, but there was no

difference between the two. This finding makes it challenging to simplify the results given the
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uncertainty of incompressibility. Findings do provide a representation that further investigation
on learning curve methodology and potential change is near as automation becomes increasingly
more relevant in every aspect of life. The influence of machinery in a longer production cycle is
avalid assumption for the future. The influence of automation in this comparative study was

evident by the absolute percent error graphs.

Recommendations for Future Research

The comparative study tried to find answers in regards to the learning curve methodology
within Department of Defense acquisitions. The effects of learning have shown a flattening
trend at the tail end of production. This investigation sought to investigate whether the current
methodology was significantly less accurate than contemporary learning curve models. Wright’s
Learning Curve Model is the method that the DOD uses to extrapolate from actuals and estimate.
The contemporary learning curve models incorporate a percentage of the process that has
automation. The study found that the Dejong Model and S-Curve Model may be more accurate
is automation is low for aircraft production. The research did not find support as to which model
is most accurate or find evidence that there is a given incompressibility factor. Given the
findings from this research, recommendations for future research include expanding findings to
determine which model is most accurate, incorporating a different aircraft platform,
incorporating the Rate Effect into the models, and testing the different models for separate
production runs or lots to see which is most accurate.

Future research should incorporate more platforms and look ata more automated
production such as missiles where more automation may be more present. This research focused
on one platform. This platform was the only program with data broken out into specific work

codes. The recommendation for future research is to look at additional platforms with a longer
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production. Aircraft with low total units in production make it challenging to see the effects of
automation. The Absolute Percent Error graphs highlight that with time the contemporary
learning curve models become more accurate. With this analysis, there is impending possibility
of a more accurate model.

Analysis of additional models, such as the Rate Effect may provide strong results. The
potential to add another variable to the Rate Effect may be a unique and exclusive study. Adding
the incompressibility to the Rate Effect and performing the same analysis would be an analysis
that sheds light on automation, production runs, and learning within the DOD or Air Force
acquisitions realm. This idea for future research would mean making of modifying a learning
equation similar to what RAND did with the Rate Theory. Rate Theory essentially attempts to
include production rate as part of the ULC model. Consider it the ULC with a rate adjustment.
Of note, the rate term (variable) is infrequently found to be statistically significant even though it
popular with Program Offices. The nest step in the future could be the ULC, with rate
adjustment, and incompressibility.

Given that trend for Wright’s Learning Curve is initially to have less error and the
contemporary models becoming increasingly less error prone, finding where the switching point
for the models may provide profound insight into the production. For instance if WLC is only
accurate for predicting the initial units and the contemporary models are more accurate for
production that exceeds where WLC is accurate is a recommendation for future research.

Finding a defendable break point or threshold to give the cost estimator such as use WLC for the
initial 25% of production and a contemporary for the remainder of production. Fundamentally, if
a heuristic for a defendable break point were found, it would be of value to defense cost

estimating and estimators using extrapolation from actuals and learning curve analysis. Finding
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a defendable range asto where this break occurs is another one of the recommendations for

future research.

Assumptions and Limitations

The assumptions and limitations to this comparative research study are a part of any
analysis. Assumptions for the research are necessary in order to test the hypotheses, which is a
limitation to the validity of the results. The first limitation to the study is that only one aircraft
was available with the specific work codes, Integration, Assembly, and Checkout. The data
available to analyze was small. The results cannot be generalized to other aircraft acquisitions or
DOD acquisitions since the sample size was a small percentage of production. Analysis uses
Wright’s CUMAV theory, which can artificially smooth data into the appearance of better fit.
Crawford’s Unit theory may provide different results. Use of just the one aircraft production
makes it difficult to assume results would hold across multiple platforms. Essentially different
results may be found for other airframes. In general, a limitation was that most available data
was inefficient because it was not broken out into the specific work codes. Results are very
dependent on the incompressibility factor. The assumption that incompressibility is low was a
basis of expert opinion, a 1993 Bureau of Labor and Statistics report, and prior research. As a
whole, the analysis assumes no major change in product design, production processes, workforce

composition, and interval between units.

Summary
In summary, the goal of this research was to find out if a more accurate learning curve
model exists. Help from AFLCMC/FCZ) to attain data on aircraft in order to test DeJong and S-

Curve learning models against Wright’s model was the basis of finding a way to increase the
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accuracy of the current learning curve methodology within DOD and Air Force acquisition. The
results were inconclusive as to which model is most accurate, but indicate that DeJong and S-
Curve models may be more accurate than WLC if incompressibility is assumed low. If the
incompressibility is 0.10 or greater, Wright’s Learning Curve is most accurate having a Mean
Absolute Percent Error lower than the contemporary Dejong and S-Curve Models. However, the
trend of the Absolute Percent Errors shows divergent tendencies for both the conventional status
quo and the contemporary models. The results did not show which contemporary model is most
accurate. This thesis paves the way for future research on learning curve methodology and the
significance of Integration, Assembly, and Checkout Data. 1A&CO was less error prone than the
entire learning curve data. Combining models and broadening the scope of the analysis, at a
minimum, provides a groundwork for the learning curve methodology. AFLCMC/FZC backed
research into flattening effect at tail end of learning curves. Wright’s original learning curve
theory (CUMAYV) was formulated in 1936 and Crawford’s theory (Unit) was adopted a decade
after. The learning curve models accepted by DOD are over 70 years old and both models are in
use within the DOD. This study sought to determine if the current DOD methodology is

outdated and if a contemporary model is more accurate.
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Appendix B
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Dejong
Unit (=) Actual Predicted Error Abs Error Abs PE In(x) In{Actual) In[predict)
20 17336.8 18476.1 -113924 113524 007 3.00 976 932
21 172218 183337 -111186 1111 .86 006 3.04 975 932
22 170413 181991 -1157.72 1157.72 007 3.09 974 931
23 16916.1 180714 -115531 115531 007 3.14 974 9.80
24 16854.6 179501 -1095.52 109552 0.065 3.18 973 9.80
25 167975 178346 -1037.13 1037.13 006 322 973 49.748
26 167103 177244 -101412 101412 006 3.26 972 978
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Appendix D

Conclusion: We do a two-tail test (ineguality). If t Stat < -t Critical two-tail or t Stat =
t Critical two-tail, we reject the null hypothesiz. T Stat (2.32 is = 1.97) 20 we reject
the null hvpothesis. The means are not the same.

t-Test: Two-Sample Assuming Unequal Variances
e Saiarz

Mean 0.041 0.030
Variance 0.000 0.0071
Obzervations 35 35
Hupothesized Mean Difference 0

df 185

t Stat 3323

t Critical two-tail 1373

Conclusion: We do a two-tail test (ineguality). If t Stat < -t Critical two-tail or t Stat =
t Critical two-tail, we reject the null hypothesiz. T Stat (4.91 is = 1.97) 20 we reject
the null hvpothesis. The means are not the same.

t-Test: Two-Sample Assuming Unequal Variances
fl S-Lirina

Mean 0.041 0.026
Variance 0.000 0.000
Obzervations 35 35
Hupothesized Mean Difference 0

df 187

t Stat 4.312

t Critical two-tail 1373

Conclusion: We do a two-tail test (ineguality). If t Stat < -t Critical two-tail or t Stat =
t Critical two-tail, we reject the null hypothesis. T Stat (1.117 iz not = 1.57) s0 we
fail reject the null hypothesis. There is no reason to believe the S-Curve is a more

accurate predictor over the Delong model

t-Test: Two-Sample Assuming Unequal Variances
Doy S-Lane

Mean 0.030 0,026
\ariance 0.0m 0.000
Obzereations 35 35
Hupothesized Mean Difference 0

df 150

t Stat 1115

t Critic.al two-tail 1373
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