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Abstract

Game theory is the study of mathematical models of conflict. It provides tools for

analyzing dynamic interactions between multiple agents and (in some cases) across

multiple interactions. This thesis consists of two scholarly articles that address de-

ception from a game theoretic (GT) perspective.

The first article is a survey of GT models of deception. The survey describes the

ways researchers use game theory to measure the practicality of deception, model

the mechanisms for performing deception, analyze the outcomes of deception, and

respond to, or mitigate the effects of deception. The survey highlights several gaps

in the literature. One important gap concerns the benefit-cost-risk trade-off made

during deception planning.

To address this research gap, the second article introduces a novel approach for

modeling these trade-offs. The approach uses a GT model of deception to define a

new multiobjective optimization problem called the deception design problem (DDP).

Solutions to the DDP provide courses of deceptive action that are efficient in terms

of their benefit, cost, and risk to the deceiver.

A case study based on the output of an air-to-air combat simulator demonstrates

the DDP in a 7× 7 normal form game. Two prominent features are observed in the

solutions. First, many of the resulting solutions are zero-risk. A zero-risk solution

implies one of two properties: either 1.) the deceived player has no recourse if the

deception is discovered, or 2.) the deception cannot be revealed unless the deceived

player intentionally adopts a strategy that he perceives to be suboptimal. Second,

the solutions tended to distort a considerable portion of the game’s payouts: at least

94 of the 98 payouts were modified in each of the seven efficient solutions. Several

iv



techniques are described that may reduce the number of changed payouts.

This thesis makes several significant contributions to the literature:

� A survey of the GT models of deception

� Introduces a GT model for environmental deception in normal form games

� Defines a quantitative measure of deceptive risk when employing environmental

deception

� Introduces the first multiobjective GT model of deception

� Introduces the first GT model that addresses the benefit, cost, and risk trade-off

inherent to every deception

� Marks the first time a multiobjective evolutionary algorithm has been applied

to solve a GT problem

v



Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Modeling Deception using Game Theory and its Extensions:
A Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Models of Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Models of Deception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The Practicality of Deception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Situations that Warrant the use of Deception . . . . . . . . . . . . . . . . . . . . . . 18
Necessary Conditions for Deception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Desirable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Deception Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Detecting Deception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Performing Deception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

In Deception Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
In Hypergame Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
In Bayesian Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Responding to Deception: Mitigation and
Counterdeception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III. A multi-objective optimization problem for environmental
deception using game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 The Environmental Deception Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 The Deception Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Benefit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



Page

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Example: Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

IV. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Conclusion and Path Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Survey of Deception in Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
The Deception Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vii



List of Figures

Figure Page

1. Example extensive form game with imperfect information . . . . . . . . . . . . . 8

2. Wimp or Surly: the first Signaling game . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. Example Hypergame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. Payout interdependence and correspondence . . . . . . . . . . . . . . . . . . . . . . . . 19

5. Two-Dimensional Correspondence Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6. Example of Tactical Deception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7. Missle Support Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8. Deceiver Payouts for Missile Support Time game . . . . . . . . . . . . . . . . . . . . 58

9. Number of changed payouts in DDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

viii



List of Tables

Table Page

1. Example cost metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2. SMPSO Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3. The Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. DDP Example Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. Parameter vectors for the deceiver (βD) and mark (βM) . . . . . . . . . . . . . . 59

6. Solutions to the Missile Support Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



DECEPTION IN GAME THEORY

A SURVEY AND MULTIOBJECTIVE MODEL

I. Introduction

1.1 Overture

Numerous historical conflicts relied on deception to achieve victory. The success

of the Trojan horse in the capture of Troy is a well-known example. In the past,

individual commanders planned and executed tactical-level deceptions, but by the

early 20th century, warfare had become prohibitively complex. The Prussian general

Clausewitz (1780-1831) argued that even in the absence of deception it is hard to see

through the fog of war; without an accurate view of the battlefield, it is impossible

to anticipate the adversary’s response to an elaborate deception. “To prepare a

sham action with sufficient thoroughness to impress an enemy requires a considerable

expenditure of time and effort.... there is always the risk that nothing will be gained

and that the troops deployed will not be available when they are needed” [81].

In response to warfare’s growing complexity, deception planning transitioned from

individual commanders to strategic planning departments. These departments devel-

oped unified deceptive plans across multiple battlefields, e.g. Operation Bodyguard

ahead of the Allied landing at Normandy. However, modern warfare is characterized

by both an increase in complexity as well as an accelerated operations tempo.

The most extreme examples unfold in the domain of cyberspace, where attackers

can compromise a network without ever alerting a network administrator. Concerning

surprise in the traditional warfighting domains, Clausewitz argued, “the enemy forces
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can never assemble and advance so secretly that the defender’s first news of it would

come from his outposts” [81]. Yet, this is exactly the situation faced by cyberspace

operators. Historically, cyber network defense relied heavily on human intervention

to detect malicious activity in a network [35]; however, even against a well-defended

network, attackers can exploit unforeseen vulnerabilities that human administrators

overlook. It is estimated that 35 percent of all cyber attacks are never detected [62].

Recent, high-profile cyber-attacks [65] have highlighted a critical need for defenses

against sophisticated, well-organized adversaries. Hamilton, et al. [35] envisioned the

application of game theoretic techniques to combat this growing threat, noting that

game theory provides a means for evaluating hundreds of thousands of possible sce-

narios and recommending several responses to adversarial activities. Furthermore,

since cyberspace exists as a virtual world, agents have much greater influence over

their adversary’s perception of the environment. Cyberspace, therefore, offers tremen-

dous opportunities for deception planning and execution by autonomous agents. In

general, any time the decision-to-action-to-effect chain is so small that it is difficult

for a human operator to react, deception can be an effective tool. Thus, although

this research is conceived with cyberspace in mind, the contributions apply to a broad

range of situations faced by the United States military.

1.2 Contribution

This research is presented as a pair of scholarly articles. The first article is located

in Chapter II, and the second article is contained in Chapter III. The first article

surveys the corpus of game theoretic models of deception. The main contributions of

the survey are:

� To develop a case for the applicability of game theory to deception planning

and modeling

2



� To describe the ways in which game theory is used to measure the practicality

of using deception

� To describe the mechanisms for performing deception (e.g. camouflage) in game

theoretic terms

� To survey the literature on game theoretic models of deception and summarize

the conclusions

� To identify gaps in the body of research that require additional attention

The most significant gap identified in the survey is the frequent omission of cost and

risk measures. Few studies addressed cost as an explicit consideration when planning

a deception. No study addressed the risk of being countered by a deception-aware

opponent.

To address this gap, the second article presents a novel approach that combines

multiobjective optimization, game theory, and risk assessment principles to the prob-

lem of planning efficient deceptions. The intent is to evaluate the desirability of

inducing a change in the opponent’s perception of the conflict. An objective function

is defined for each goal—benefit, cost, and risk—and instances of the Deception De-

sign Problem are solved using a multiobjective evolutionary algorithm (MOEA). This

article has three major contributions. First, it is the first effort which quantitatively

measures benefit, cost, and risk in a single game theoretic model. Second, it is the

first effort that uses MOEAs to solve a game theoretic problem; however, the converse

is common. (Game theory has been used to solve multiobjective problems.) Third,

the approach can be adapted and used by practitioners to inform deception design

processes.

3



II. Modeling Deception using Game Theory and its
Extensions: A Survey

2.1 Introduction

Deception is a deliberate activity executed to mislead others into taking specific

actions that benefit the deceiver. Decision making in deceptive environments is simi-

lar to decision making under uncertainty. However, deceptions introduce additional,

unique challenges because they are engineered and adversarial. One technique to

overcome uncertainty is to gather additional information about a conflict. However,

in deceptive conflicts, this extra information can be manipulated to cause increased

damage to the target decision maker (called the mark). The key difference is that

deceptions are not the product of random chance or natural phenomenon; they are

designed. This difference distinguishes deceptive situations from non-deceptive situ-

ations.

With the tremendous potential for gain and loss, many have undertaken the study

of deception. Researchers have studied deception in fields as diverse as philosophy,

law, psychology, and sociology. In economics, deception is used as a strategic tool

to improve corporate performance [49]. Although deception in social and economic

interactions can be destructive, it has long been employed as a tool in warfare. Sun

Tzu stated that all warfare is based on deception, and its usage has been described

in battles from the conquest of Canaan to World War II [17, 77] and its employment

continues into the emerging domain of cyberspace [74].

Deception has been observed in the animal kingdom, as well. Many animals use

mimicry to ward off predators: the red milk snake mimics the color pattern of the

highly venomous coral snake. It is from this mimicry that the saying is derived, “Red

on black, venom lack...” Some animals use complex motion to deceive their prey and
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potential mates. Dragonflies, for instance, can plan their flight path to appear to

their target as if they are motionless [55]. The only evidence of their approach is

their looming size. By using this motion camouflage, the dragonfly can approach its

target unnoticed.

The fact that deception is not simply a human phenomenon indicates that there

may be generalizable principles that govern its operation [39]. It is, therefore, no

surprise that researchers apply mathematics to the study of deception. Game theory

provides many tools to analyze mathematical models of conflict including those where

uncertainty and deception are used. Much work has been done to study deception

using game theory, and it is appropriate to summarize the themes and characteristics

observed in the literature.

This chapter is a survey of the game theoretic study of deception. The remainder of

this chapter is organized as follows: Section 2.2 provides an overview of game theory.

Section 2.3 describes the necessary conditions for deception, its desirable properties,

and summarizes the various deceptive mechanisms observed in the literature. Several

new deceptive mechanisms are recommended, as well. Section 2.4 highlights a need

for additional work focused on detecting deception in games. Section 2.5 surveys the

various deception models. Section 2.6 describes deception mitigation and counter-

deception in the literature. Concluding remarks and future work are presented in

Section 2.7.

2.2 Background

Game theory is a field of mathematics that models conflict as a game. In a

game, the players compete simultaneously to attain the best outcome. In 1928,

John von Neumann authored his seminal paper, On the theory of games, and set

apart game theory as a unique field of study [82]. Later, he provided an axiomatic
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definition of the theory in his book co-authored with Oskar Morgenstein, Theory

of Games and Economic Behavior [83]. Myerson [56] defines game theory as “the

study of mathematical models of conflict and cooperation between intelligent, rational

decision-makers.” A game captures some of the complexity in a model—a model that

can be used to identify desirable strategies for the real conflict. Often, there is no

single best strategy. Instead, a game theorist recommends a mixed-strategy where

players select their actions according to a probability distribution. Modern game

theory began by considering the existence of mixed-strategy equilibria in two-player

zero-sum games, i.e. in games where the losses of one player are the gains of another

player. In its simplest form, a game consists of a collection of players, the set of

actions available to each player, and the outcomes that result from their combined

actions. Each outcome is assigned a vector, called the payouts. When the combined

actions of the players result in an outcome, each player is rewarded according to their

index in the payout vector, i.e. player 1 receives the value in positon 1, player 2

receives the value in position 2, and so on. These elements are used to determine how

each player should play the game, i.e. the players’ strategies. A Nash equilibrium is

a solution concept in which no player has an incentive to deviate unilaterally from a

particular strategy. The Nash equilibrium is named in honor of John Nash who in

1951 proved that every non-cooperative game with finite action set exhibits at least

one such equilibrium [57].

Models of Information.

Aumann and Maschler [3, p. 66] emphasize two ways in which real-life conflicts

differ from traditional game theoretic models. First, games are “essentially a one-shot-

affair,” but many real-life conflicts require participants to consider the ramifications

of a sequence of actions. Simply selecting the best option available at each point
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of a conflict (the greedy approach) can have detrimental consequences for a player

in subsequent stages of play [54]. Second, games assume players know all strategies

and payoff functions of the game. In real-life conflicts, participants usually have only

partial knowledge of the strategies available, and it may be impossible to determine

actual payoffs.

These criticisms motivated several extensions to game theory—extensions which

have enabled researchers to model deception. They can be broadly classified as be-

ing deception games, Bayesian games, signaling games (a type of Bayesian game),

or belonging to hypergame theory. These three game classes are described below.

Several other classes are used in the literature, but these do not fall into one of the

aforementioned categories. In Section 2.5, they are presented in the Other Models

subsection.

One feature shared by all classes is the rules of the game limit the players’ per-

ception of the conflict: they are games with incomplete information, imperfect infor-

mation, or both. Since incomplete and imperfect information are often confused, the

following subsections provide a brief review.

Imperfect Information.

In games with imperfect information at least one player is unaware of the actions

chosen by the other players, and this player is unable to distinguish between which

of several states the game could be in after the other players have taken these hidden

actions. In extensive form games, nodes (i.e. the game states) are partitioned into

information sets, and a player with imperfect information cannot distinguish between

nodes in the same information set. In contrast, a game with perfect information is

one where all states are known, i.e. all information sets are singletons. Figure 1

shows an extensive form game where state A and state B are contained in a single
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A

B

I1

1,-1

-1, 1

-1, 1

1, -1down

down

up

up

down

up

Figure 1. Example extensive form game with imperfect information. Play begins at

the leftmost decion node. The first player selects a direction–either up or down. The

second player cannot distinguish between state A and state B because they are both

members the information set I1.

information set (indicated by the dashed line in the figure). The first player selects

an action—either up or down. The second player subsequently chooses to go either

up or down, but the second player cannot distinguish whether or not the game is

in state A or state B when making the decision—the two states are elements of the

same information set and, and he was not provided information about the first player’s

choice.

Kriegspiel Chess is a board game with imperfect information. It is similar to a

combination of battleship and chess. The players setup their own pieces on separate

game boards, hidden from one another. A referee observes the actions of both players

and tracks the moves on a third (master) board which is also hidden from the players.

Play proceeds as in a standard game of chess, except that the players do not know

what moves have been made by their opponent and are unable to determine the board

state immediately after the opponent has moved. On their turn, the player attempts

a move. If the move is valid, the referee records it on the master board without

announcing what move was made. Then play is passed to the next player. If the

move is invalid, the referee requests a new move from the moving player.
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Incomplete Information.

A game has incomplete information if one or more players lacks some informa-

tion about their opponents, e.g. their type, available strategies, payoffs, preferences or

some combination thereof. Incomplete information games are sometimes called partial

information games [37, 38]. Perhaps the most common type of incomplete informa-

tion is when a player is unaware of the opponents’ payouts. Incomplete information

arises in many real-world conflicts, and games that include incomplete information

are numerous. Negotiations can be modeled as a game of incomplete information:

each participant does not usually know how much the other party values each of the

different possible outcomes. In cyber warfare, attackers use the fact that software

vendors do not know all possible attack vectors when new software is released. An

attacker can take advantage of these vulnerabilities before they can be addressed .

So, the conflict between an attacker and vendor can be modeled as a game of incom-

plete information, with the vendor not knowing the full set of actions available to the

attacker.

Other models.

Although most games are described as having either incomplete or imperfect in-

formation, two less-common terms are encountered in the literature: informational

asymmetry and interrupted observation. They are mentioned briefly for complete-

ness. Informational asymmetry [1] arises in situations where one player has more or

better information than the others. Interrupted observation indicates that a player

is only able to observe the true state of the conflict intermittently. For example,

interrupted observation is used in a pursuit-evasion differential game [90] where one

player—the pursuer—intermittently observes the opponent; the pursuer must extrap-

olate the evader’s new location based on its last known location and velocity.
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Models of Deception.

Three classes of games constitute the majority of the deception literature. They

are Deception Games [4], Bayesian Games [36], and a special kind of Bayesian Game

known as a Signaling Game [20]. Several studies use Hypergame Theory [7]—an

extension of game theory. The three classes named above and Hypergame Theory

are described.

Deception Games.

A Deception Game is a two-player, zero-sum game where information in a vector is

distorted by the deceiver. Deception Games are less frequently studied, but they have

been effectively used as models for deception in political negotiations [91] and network

security [61]. The first formal Deception Game was introduced by Mark Thompson in

his Harvard undergraduate thesis in 1970 and later posed as an open problem in [73].

A general deception game was defined in 1988 by Baston and Bostock [4]. The

general form involves two players and an n-tuple X := (x1, . . . , xn) of independent

and identically distributed (IID) real-valued random variables obtained according

to probability function Pi on the closed interval [0, 1] ⊂ R. At the start of the

game, Player 2—the deceiver—observes X, and presents a modified n-tuple, Y :=

(y1, . . . , yn), to Player 1. The misrepresentation, Y , satisfies the condition that at

most n − k ≥ 0 positions of X have been changed, i.e. xi = yi for at least k ≤ n

indices i. Player 2 presents Y to Player 1, who subsequently selects a single position

j ∈ {1, . . . , n}. The payout is determined by the value of position j in the original

game, i.e. (xj,−xj). The game is solved in [51], showing that for n = 3 and k = 1

the information can be completely distorted, but with n = 4, the optimal strategy

for mark has an expected gain greater than the mean value of a random selection

strategy. The generalized form of the game is solved in [30], showing for k > n/2, the
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optimal deceptive strategy completely distorts the information, rendering it useless

to the mark.

The general Deception Game is single-sided, i.e. there is only one deceiving player.

The related Cover-up Game [5] is extended in [68] to allow two-sided deception. The

two-sided Cover-up Game is given as follows: Let X := (x1, x2) and Y := (y1, y2) be

IID random variables selected from a probability distribution over [0, 1] ⊂ R. Player

1 observes X and selects a critical value θ1 ∈ [0, 1]. Likewise, Player 2 observes Y and

selects a critical value θ2 ∈ [0, 1]. Player 1 (2) reveals xi ∈ X (yi ∈ Y ) that is closest

to θ1 (θ2). If a player’s critical value is greater than the opponent’s revealed number,

the player receives as his payout the value of the covered-up number. Otherwise, the

player’s critical value is less than the opponent’s revealed number. So, the player

receives a payout equal to the value of the revealed number. To illustrate: Let

X = (0.25, 0.75) and Y = (0.33, 0.66), and suppose the players select critical values

θ1 = 0.45 and θ2 = 0.94. Then Player 1 must reveal x1 = 0.25 because it is the closest

xi ∈ X to θ1, and Player 2 must reveal y2 = 0.66 because it is the closest yi ∈ Y to θ2.

Since y2 = 0.66 > 0.45 = θ1, Player 1 receives the value of Player 2’s covered number,

i.e. 0.33. And since x1 = 0.25 < 0.94 = θ2, Player 2 receives Player 1’s covered-up

value, 0.75.

Bayesian Games.

Bayesian games were introduced in 1968 to address the issue of player mispercep-

tion [36]. A Bayesian game accounts for the incompleteness of information by using

probability distributions (called priors) to represent the player perceptions. Priors

indicate the perceived likelihood that each player is of a particular type. In this way,

a Bayesian game transforms an incomplete information game into a complete infor-

mation game by augmenting the model with a set of types and a prior for the players’
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subjective view of the conflict. Thus, a Bayesian game is a complete information

game: the players are fully aware of the type sets and each type’s subjective prior.

Signaling Games.

A signaling game [20] is a particular kind Bayesian Game involving a sender

(S) and receiver (R). A third player—Nature (N)—is introduced that assigns S a

type according to a common-knowledge probability distribution. After observing its

type t, S takes an action—literally, S transmits a signal. R selects an action after

observing the signal from S. Formally, a signaling game can be specified as a tuple

Γ = 〈T,M,A, US, UR〉, where T = {t1, . . . , tI} is the set of types held by the sender,

M = {m1, . . . ,mI} is the set of sender messages, A = a1, . . . , ak is the set of receiver

actions, and Us(ti,mj, ak) and UR(ti,mj, ak) are the utility functions of the sender

and receiver, respectively.

The first signaling game [20] describes a two-player game called Wimp-or-Surly.

The situation is depicted graphically in Figure 2. In this game, Player A is either a

wimp or is surly, and A must choose what to eat for breakfast (either beer or quiche).

Player B must decide to either duel or not duel A. Since, B does not know A’s actual

disposition; B must infer it based only on the signal sent by A, e.g. what A ate for

breakfast. Although quiche benefits a wimp, it is more likely to signal to B that A is

a wimp and encourage the duel (regardless of him being a wimp or not). On the other

hand, the game says beer only benefits a surly, and since anyone can drink beer, the

signal is not unambiguous. Thus, A chooses a meal after observing his own type, and

B chooses to either duel or not duel. Payouts are awarded according to each player’s

decision.
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Figure 2. Wimp or Surly: the first Signaling game. Play begins when Nature (N)

selects a type t for A, either wimp or surly. At the next decision node, A selects either

beer or quiche as the signal (S). B observes the signal, but the information sets I1 and

I2 make it impossible to discern t. So, B selects an action knowing only what A ate for

breakfast.

Hypergame Theory.

Game theory traditionally operates under the assumption that players are well-

informed about the game being played: The players are aware of the range of strategies

and their opponents’ preferences. However, in many real-world circumstances, this is

not the case; players’ perceptions of the situation and of their opponents are inconsis-

tent. In fact, players may not know that particular actions are possible or even that

certain other players exist. Even in simple conflicts, actions by one participant can

appear irrational when observed by a participant with a different view of the conflict.

But games of incomplete and imperfect information do not address situations where

players are absolutely convinced of something that is inconsistent with reality, i.e.

situations of paranoia or self-deception [32]. A deceiving player may take advantage

of these false perceptions. Indeed, the best deception is often the one which causes

the mark to be absolutely certain of the wrong thing.
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Hypergame Theory is introduced in [7] to address situations where player percep-

tions did not coincide. A simple n-player Hypergame is defined as follows:

H.1 A set Pn of n elements, interpreted as the players of the hypergame,

H.2 For each p, q ∈ Pn, a non-empty finite set Sq
p ⊂ N interpreted as p’s available

strategy set according to q

H.3 For each p, q ∈ Pn, an ordering relationship Oq
p defined over the product space

Sq
1 × · · · × Sq

n, interpreted as p’s outcome preferences according to q

Hereafter, this formulation is called the Bennett hypergame. In this formulation,

each subgame Gq
p (= 〈Sq

p , O
q
p〉) represents q’s perception of the game that player p is

playing. So, the collection of sets {Sq
1 , . . . , S

q
n} together with {Oq

1, . . . , O
q
n} represent

q’s perception of the hypergame, i.e. the collection Gq (={Gq
1, . . . , G

q
n}) describes

the hypergame that player q is playing. So, the hypergame H = {G1, . . . , Gn} is

interpreted as a set of n games, each expressing a different player’s perspective.

Bennett hypergames deviate from the original utility value treatment of von Neu-

mann and Morgenstern [83] by using preference vectors to represent player preferences

for each outcome. A preference vector is simply an ordering over outcomes. When

using a preference vector in games, the outcomes are first arbitrarily assigned an in-

dex. Each player then sorts the outcome indices according to their preference: the

most desirable outcomes are listed first and the least desirable are listed last. The

ordinal approach reflects the fact that Hypergame Theory was originally introduced

as a “soft” approach to conflict analysis [10]—i.e. to help structure and clarify the

situation for decision-makers.

An example Bennett hypergame, H, is loosely based on the Battle of the Sexes.

Here X � Y indicates a preference for X over Y , and X ∼ Y indicates indifference

between X and Y .
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� Pn = {1, 2}

� S1
1 = {a, b}, S1

2 = {A,B}

S2
1 = {a, b}, S2

2 = {A,B,C}

� O1
1 = O2

1 = {(a,A) � (b, B) � (a,B) ∼ (b, A)}

O1
2 = {(b, B) � (a,A) � (a,B) ∼ (b, A)}

O2
2 = {(a, C) ∼ (b, C) � (b, B) � (a,A) � (a,B) ∼ (b, A)}

Although originally introduced using ordinal preference vectors, hypergames allow

for cardinal utilities which results in a special case of the ordinal system above [6].

The hypergame in Figure 3 is equivalent to H except that the outcome preferences

have been assigned cardinal values. H is represented as three games in normal form.

In this example, Player 1 believes that both players are playing an instance of Battle

of the Sexes : the players are trying to decide whether to see movie A or movie B. If

the players go to different movies, then they gain nothing. Player 1 prefers movie A

to movie B, and Player 2 prefers movie B to movie A. Player 2 accurately perceives

Player 1’s game (since G1
1 = G1

2 = G2
1); however, Player 2 is also aware of a third

strategy, see movie C, which is preferred regardless of whether Player 1 attends or

not. Player 2’s rational course of action is to play the pure strategy C, while Player 1

mixes over A and B according to the mixed strategy Nash equilibrium (A,B) = (2
3
, 1

3
).

This example demonstrates how players in a hypergame need not agree upon the game

being played.

Fraser and Hipel introduce a slightly modified formulation that exclusively con-

siders preference vectors [26]. The preference vector for player i is an ordering over

the outcomes that expresses each outcome’s desirability according to player i. The

preference vectors are sorted from most-desirable outcome to least-desirable outcome.

A Fraser-Hipel hypergame is defined entirely by the preference vectors of the play-

ers and their beliefs about each other’s preferences vector. Thus, player q’s game is
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Figure 3. Example Hypergame. Player 1 perceives the game as an instance of Battle

of the Sexes. Player 2 accurately perceives Player 1’s game, but is aware of a third

strategy, C, that is hidden from Player 1.

defined as Gq := (V q
1 , V

q
2 , . . . , V

q
n ), where V q

i is player i’s preference vector according

to player q. An n-player Fraser-Hipel hypergame is therefore defined by the tuple

of subgames as H := (G1, G2, . . . , Gn). Takahashi, Fraser and Hipel present several

algorithmic approaches to analyzing stability in Fraser-Hipel hypergames [26,75], and

the form is used to model several complex conflicts [27–29].

Since its introduction, hypergame theory has been used to study real-world con-

flicts in business, sports, resource allocation problems, and in the cyber domain.

Hypergames were also used to analyze several military conflicts including the 1940

fall of France [9], the 1956 Suez Canal Crisis [70], the 1973 Middle East war [67],

and the 1982 Falkand–Malvinas conflict between Argentina and Britain [41]. These

post-hoc analyses demonstrated the viability of Hypergames as an effective tool for in-

ference, i.e. they can help researchers understand the reason for a particular conflict’s

outcome.

The first live test of hypergame theory was performed by Bennett et al. during

the worldwide shipping crisis of the 1970s and 1980s [11]. The crisis is attributed (pri-

marily) to over-production and under-demand of large shipping vessels and a general
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unwillingness of the participants to adapt to the changing economic environment.

in 1978, Bennett et al. published the a report on their hypergame analysis. They

predicted an unexciting outcome: no involved party had an incentive to unilaterally

deviate from their current strategy. Thus, they anticipated the shipping crisis to con-

tinue without any significant changes. The authors revisited the topic two years after

publishing their initial report to summarize the state of the crisis. Their retrospect

evaluation showed that hypergame theory did provide a means of predicting conflict

outcomes; the crisis continued as predicted to the detriment of many parties involved.

In 1991, the Persian Gulf crisis between Iraq and the United States-led Allied forces

provided another opportunity to apply the predictive power of hypergames to a mili-

tary conflict. On January 11 and 12, 1991, Wang and Hipel [87] modeled and analyzed

the Persian Gulf war as a 1st- and 2nd-level hypergame just before the outbreak of

the air campaign on January 16, 1991. They predicted U.S.-led forces would launch

air strikes against strategic targets and later conduct a full-scale ground war, while

Iraq would respond with military offensives including Scud missiles, ground battles,

and the use of non-conventional weapons. Their predictions coincide well with the

historical outcome and demonstrated the viability of hypergame theory as a tool for

predicting the outcome of complex conflicts with misperception or deception.

2.3 The Practicality of Deception

Game theory has been used to determine if a situation warrants the use of de-

ception, i.e. benefit the deceiver. From a game theoretic perspective, the desirability

of an outcome is encapsulated in the outcome’s payout value. So, for a deception

to benefit the deceiver, it must necessarily improve the expected payout. But this

is not the only measure of a deception’s desirability. Game theorists have further

characterized a deceptive strategy according to other features, e.g. surety [33] and

17



stealth [16, 33]. Thus, game theory provides a rich set of tools for modeling conflicts

with deception and misperception. This section discusses how game theory is used

to determine whether a situation warrants the use of deception. It also introduces

several desirable properties and the five GT mechanisms for performing deception.

Situations that Warrant the use of Deception.

One aspect of deception planning is to distinguish situations that warrant the

use of deception from those that do not. Drawing inspiration from interdependence

theory (a subfield of social exchange theory formalized by Thibaut and Kelley [76]),

Wagner and Arkin [84] use outcome correspondence and payout interdependence to

measure the degree to which a game’s payouts warrant the use of deception.

Interdependence describes the extent to which the actions of one player impact the

reward of another [86]. Interdependence is calculated separately for each player and

ranges from 0 for independent situations to +1 for dependent situations [84]. When

payouts are independent, actions by one player have no impact on other players’

utility. The players can act as if no other player exists. Although game theory can

be used to analyze conflicts without payout interdependence, other approaches are

more appropriate, e.g. decision theory [60].

“Correspondence describes the extent to which the outcomes of one individual

in a situation are consistent with the outcomes of the other individual” [86]. When

correspondence is high, players select mutually beneficial actions to maximize their

own utility. When correspondence is low, one player gains as the other player(s) lose.

So, games with low correspondence favor competition over cooperation.

Wagner and Arkin [85] argue that deception is only warranted when correspon-

dence is low: if correspondence is high, a non-deceptive (honest) signal can be used

to improve each player’s outcome. This does not imply that deception cannot be
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Figure 4. Payout interdependence and correspondence. Three games illustrate payout

interdependence and correspondence. Game 1 (left) is a non-cooperative game with

interdependence and low payouts correspondence. Game 2 (center) is a cooperative

game with interdependence and high payout correspondence. Game 3 (right) is not

interdependent, not corresponding, and not necessarily cooperative or non-cooperative;

it could be analyzed more simply using decision theory.

used when correspondence is high, but it does imply that an honest signal could be

used instead. For example, in Battle of the Sexes, two players must coordinate their

actions: if they select the same action, they win; if they select different actions, they

lose. The players could rely on a public signal such as a traffic light or the weather to

coordinate their actions. In this case, they can improve their expected outcome using

a non-deceptive (honest) signal. However, the signal need not be honest. A deceptive,

false signal can be used to coordinate their actions, as well. So, even though Battle

of the Sexes has high correspondence, both an honest signal and a deceptive signal

can improve the players’ outcomes.

It is important to make a distinction: A game may exhibit interdependence be-

tween payouts, but that does not necessarily mean it is either cooperative or non-

cooperative. To help illustrate this difference, consider the three games in Figure 4.

Game 1 is an instance of matching pennies: it is an example of a non-cooperative

game with interdependence and conflict in the payouts. Game 2 is an instance of

the Choosing Game where the players win if they choose the same side and lose oth-

19



Outcome 
Correspondence

O
ut

co
m

e
In

te
rd

ep
en

de
nc

e

Dependent

Independent

Warrants 
Deception

Unlikely

Likely
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of interdependence space [85] showing outcome correspondence on the horizontal axis

and outcome interdependence on the vertical axis. Games that map to the dark region

tend to warrant the use of deception more than games mapped to the light region.

erwise. The Choosing Game is cooperative with interdependence, but it does not

exhibit conflict in the payouts. Finally, Game 3 is a contrived example that does not

exhibit interdependence, and its payouts do not conflict; it is neither cooperative nor

non-cooperative, and deception is entirely unwarranted.

A game is mapped into a two-dimensional space according to its outcome inter-

dependence and outcome correspondence to determine the level to which it warrants

the use of deception. This space is illustrated in Figure 5. Games that map to dark

regions tend warrant the use of deception more than games mapped into the light

regions. The upper-left corner consists of games that maximally warrant the use of

deception. Areas on the lower area tend not to warrant the use of deception be-

cause the actions of the mark have a lesser impact on the outcome of the deceiver.

Games with high correspondence do not require false communication to improve the

deceiver’s outcome, and therefore deception tends not to be warranted.
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Necessary Conditions for Deception.

To perform deception, two conditions must be satisfied. First, the deceiver must

have the capacity to deceive. Second, the conflict must be one of incomplete or

imperfect information. This section describes the necessary conditions for deception.

Capacity to Deceive.

The first condition is that deceptive player be able to influence and take advantage

of the mark’s (mis)perceptions, i.e. that the deceivers have the capacity to deceive.

This condition may be unsatisfied for several reasons including resource and time

constraints, cognitive ability, or when player actions are restricted through the course

of play.

For example, several articles consider a hypothetical conflict between network at-

tacker and network defender [18,31,61]. The defender places camouflaged monitoring

systems—called honeypots—throughout the network to lure attackers away from crit-

ical systems. In [18], the attacker can probe a system to distinguish honeypot from

non-honeypot before deciding whether or not to attack. For an attacker with unlim-

ited resources, one solution is to simply probe every system before attacking. Since

the probe eventually returns the true system type, the attacker can always distinguish

normal systems from honeypots. In this case, the network defender has no capacity

to deceive unless time is an important consideration for the attacker.

Incomplete or Imperfect Information.

The second condition necessary for deception requires the mark to misperceive

some aspect of the conflict. Without complete or perfect knowledge, each participant

acts based on a limited perception of the conflict. Over time, the participants may

update their perception based on the past experiences and observations. However,
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sometimes, a deception is designed to take advantage of learning on the part of the

mark. For instance, Burns [17] describes Operation Overlord where the allied forces

of World War II performed an extensive campaign of deception surrounding the place

and time of their Normandy invasion. Their efforts so deceived the defending Germans

of their intentions, that the German 15th Army delayed their response for several

weeks expecting the true offensive to begin several hundred miles to the North near

the Pas de Calais.

In games with uncertainty, learning from past mistakes can help players identify

inconsistencies in their perception of the environment. In Bayesian games, players

learn by updating their beliefs about an opponent’s type according to Bayes’ rule, and

these beliefs may change on the basis of their actions. However, the ability to learn

does not necessarily imply the mark’s perceptions converge to toward reality [32]. It

only implies that the mark’s perceptions are updated. Some deceptive techniques

take advantage of a player’s ability to learn. To do this, the deceiver carefully plans

actions to precondition the mark. As the mark learns from past interactions with

the deceiver, his perception of the conflict tends to diverge from the true nature of

the conflict. Thus, if the information revealed to the mark is carefully planned, the

deceiver can mislead the mark in an advantageous way. For example, Gharesifard

and Cortés [32] introduce a method for learning opponent preferences in hypergames

where players interact multiple times. They later introduce an algorithm [33] that

can be used to exploit learning on the part of the mark through carefully planned

action sequences.

Desirable Properties.

Given that the necessary conditions for the deception are met, it is useful to also

evaluate the desirability of the a deceptive strategy. An natural measure of desirability
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is the expected value gain, i.e. the expected value of the deceptive strategy minus

the expected value of the game at it’s true equilibrium. Although this technique

is effective, researchers have expanded the way in which the quality of a deception

can be measured by identifying several other desirable properties. A description of

three such properties, namely Stealth, Surety, and Cost are described. However, an

important property that is absent from the literature is risk of exposure, i.e. the

possible value loss for being out-witted by a deception-aware mark. If the deceptive

strategy requires off-equilibrium play on the part of the deceiver, then the deceiver

has the potential to lose value. Addressing risk in game theoretic models is important

because of the central role that risk analysis plays in real-life deceptive planning. Risk

must be reexamined in every stage of the deception [77] because failure or disclosure

of the deception can significantly impact the outcome.

Stealthy.

A deception is stealthy if the deceiver purposefully restricts his actions to those

which do not contradict the mark’s beliefs. Stealthy deceptions are possible in games

with asymmetric information—when the deceiver has more or better information

than the mark. The deceiver is able to leverage this information superiority to avoid

strategies that reveal helpful information to the mark. A stealthy deception is played

until the deceiver is confident that the desired outcome is inevitable. At that mo-

ment, the deceiver may choose to either continue restricting his actions or not. If

the deceiver continues to play restricted actions, the stealthy deception is called tacit.

Otherwise, the deception is said to be revealed. This terminology is introduced in

the Voting Game [16] (described below). When the deceiver misrepresents his out-

come preferences, the other players respond in a rational way. The deceiver can take

advantage of the other players’ responses in two ways: He can tacitly deceive and
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receive his second-preferred outcome, or he can play the revealed strategy and receive

his most-preferred outcome. The choice depends on the number of interactions. A

tacit deception is especially desirable in repeated conflicts because it can succeed re-

peatedly without being revealed to mark. The long-term benefits of a tacit deception

may outweigh the gains of a deception that is revealed immediately.

Surety (Certainty).

Surety is a property of the outcomes in a game with sequential actions. Surety

indicates whether or not a action sequence exists that guarantees an outcome from the

game’s current state. Formally, let S be the set of game states and let O be the set of

outcomes. An outcome o ∈ O is surely deceivable if there exists a deceptive strategy

for the deceiver from the game’s current state s ∈ S that achieves o with probability

one. Suppose the deceiver desires outcome o and that o is surely deceivable from

state s. Then, in a way, the game ends once it reaches state s; from that moment

forward, the players simply go through the motions to reach outcome o. When o ∈ O

is surely deceivable regardless of the initial state (i.e. ∀sk ∈ S), then o is said to

be surely strong deceivable. The definitions for surely deceivable and surely strong

deceivable are given in the context of hypergames in [33], but these concepts can be

used to describe deception in general.

Cost.

The cost of deception describes the amount of effort that must be expended to

achieve the desired effect. Cost can represent many different aspects of a conflict, e.g.

profit loss, loss of life, opportunity cost, reputation damage, regret. Surprisingly, most

studies never explicitly address the cost of deception. Instead, they assume a zero-

cost deception. Future work might take a different approach by parameterizing the
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payouts based on the cost of performing the deception. This approach is often used in

Costly Signaling Theory to study cooperative communication. For example, Floreano

et al. [25] studied the evolutionary conditions for the emergence of communication.

After simulating the evolution of 100 colonies of 10 robots over 500 generations,

the authors implement the resulting communication strategies in physical robots.

The study presents three major findings. First, deceptive strategies emerge more

often among unrelated robots, i.e. those randomly grouped together from dissimilar

evolutionary colonies. Second, deception reduces the overall productivity of the group

compared to those groups that did not use deception. Third, deception is rational

even when deceptive signaling is costly.

Traditionally, game theory incorporates all aspects of value to the player in their

payouts: e.g. it represents an outcome’s value as a scalar equal to the reward minus

the cost. In many conflicts, this approach is appropriate: if the cost of performing

an action is $100 and the associated reward is $1000, the outcome’s payout is set to

$900. But in many real-world conflicts, the reward and the cost are not comparable.

How does one subtract regret from profit margin? It is conceivable that one could

assign a monetary value to the regret (e.g. hours of therapy multiplied by therapist

cost per hour), but a more direct approach considers cost as a separate dimension

from the payout itself. The game theorist can then take a multi-objective approach

to the problem of performing deception: maximize the expected value gain while

simultaneously minimizing the cost of performing deception.

Deception Mechanism.

A deceptive mechanism describes the means by which the deception is accom-

plished. From a game theoretic perspective, the mechanism targets the mark’s per-

ception of the game, e.g. payouts, action set, players set, player types, information
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set. Surprisingly, the surveyed articles each consider at most a single deceptive mech-

anism. The remainder of this section describes the various deceptive mechanisms in

game theoretic terms.

Environmental Deception (Payout Manipulation).

Environmental Deception (or payout manipulation) is a mechanism that causes

the mark to misperceive the payouts of the game. Since the desirability of an outcome

depends on the payout, environmental deception causes the mark to select suboptimal

strategies and allows the deceiver to improve his outcome. Camouflage can be used

to perform environmental deception. Camouflage causes the mark to misperceive the

threat posed by (or the value of) the camouflaged object.

This mechanism naturally leads to the question: How much must a payout value

be manipulated before the game’s equilibrium is changed? A strategy is called essen-

tial if and only if it has a non-zero probability at equilibrium. Arsham [2] presents

a necessary and sufficient condition for such strategies to be stable, i.e. to remain

essential when payoffs are changed. This is relevant to environmental deception be-

cause the deceiver is often trying to induce changes to the opponents’ strategy. The

condition can be used to determine the degree to which an environmental decep-

tion may alter the payouts before an action enters/exits the essential strategy set.

If environmental deception is costly (vice cost-free), this approach can help identify

least-cost deceptions.

Tactical Deception.

A tactical deception occurs when an honest action is used out-of-context so that

others misinterpret its meaning [88]. Tactical deception is often achieved in real-world

conflicts by withholding information. For example, if a person who usually plays golf
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on Saturdays secretly uses the time instead to prepare for their upcoming anniversary,

they perform a tactical deception. This mechanism is not exclusive to humans; it is

observed in many animal species, as well [88].

In the context of a game, a tactical deception uses or manipulates the mark’s

perception of the information sets to the deceiver’s advantage. In effect, a tactical

deception prevents the mark from distinguishing between states. Many games use

information sets to model uncertainty and deception, e.g. in Signaling Games, but no

example could be found of a deception that allows changes to the information sets.

To illustrate such a situation, consider the conflict depicted in Figure 6. Here, the

attacker is the deceiver, and the defender is the mark. Suppose the defender must

guard two targets, t1 and t2. The defender controls a single unit, which he can send

to either of the two targets. The defender also has an early-warning system that

announces the destination of any incoming attackers. If the defender intercepts the

attacker, it receives a payout of one. Otherwise, the defender receives a payout of

negative one. The payouts in this game are zero-sum. Suppose an attacker seeks to

destroy one of the targets and has developed a jamming capability that can disrupt

the early-warning system. In effect, this prevents the defender from being able to

distinguish the state where the attacker strikes t1 from the state where the attacker

strikes t2.

Action Deception.

An action deception occurs when the deceiver’s causes the mark to misperceive the

action set. In normal form games, an action deception hides actions from the mark.

Vane [79] shows that when the mark plays a subset of the available actions, the best

response is often a pure strategy. In extensive form games on directed graphs, an

action deception eliminates edges from the digraph. If action deception can be used
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Figure 6. Example of Tactical Deception. The attacker selects target t1 or t2 to attack

and can employ jamming. If jammed, the defender cannot distinguish between states

D and E because they are both members of information set I1.

on an edge, then the edge is said to be edge deceivable. If properly employed, an

action deception causes the mark to select a sequence of actions that would otherwise

be irrational.

Gharesifard and Cortes [33] study action deceptions in hypergames using the H-

digraph [32]. The H-digraph is a directed graph. The vertices correspond to the pay-

outs of each outcome and the edges correspond the actions available to each player.

The authors use the order of each player’s preference lists to determine when an out-

come is an improvement—if outcome y is preferred to outcome x by player i (denoted

x �i y), and all other players are indifferent, then y is said to be an improvement

to x. The turn-based nature of their game causes some outcomes to be sanctioned

by a player. An outcome x is sanctioned by an outcome y according to player i if

either (a) y is preferred to x by i and all other players are strategically indifferent

to the two, or (b) if player i is strategically indifferent between x and y but y is an

improvement for all other players. An outcome is rational if it cannot be improved

upon, and an outcome is sequentially rational if it cannot be improved to a sanction-

free outcome. Thus, no rational sequence of actions can attain a sanctioned outcome.

Using the notation presented in the first several sections, the authors present a nec-

essary and a sufficient condition for determining whether action deception can be
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used to remove an edge from the H-digraph. Furthermore, they “fully characterize

when [stealthy] deception is possible” and present a algorithm to “find a sequence of

deceiving actions” [33].

Participant Deception (Hidden/Fictional Players).

Another deceptive mechanism is to influence the mark’s perception of the set of

players, i.e. to either hide the existence of a real player or to introduce fictional

players. The latter version could occur in conflict at school: one child invokes the

threat of his (fictional) big brother to avoid being teased by other children. The

former version could occur in a conflict between nations, where one is supported

secretly by an outside entity and provokes their opponents. Both hypergame theory

and Bayesian games can be used to model conflicts where the existence of one or

more players is unknown to some or all of the other players. Sasaki [69] argues that

despite the fact that the two modeling techniques are equivalent, hypergames may

be better suited for this type of analysis: hypergames tend to have a more natural

and less ambiguous interpretation than Bayesian games: Bayesian games assume that

the set of players is common knowledge, but in hypergames, players have their own

subjective view of the entire conflict, including the set of players.

Misrepresenting Player Type.

The final mechanism for deception is to distort the mark’s perception of the play-

ers’ types. The misrepresentation mechanism requires that the mark respond differ-

ently based on the player types and is the key mechanism for deception in Signaling

Games: The player is assigned a type by nature, and the signal they send communi-

cates something about their type.

This mechanism is common in many real-world conflicts. One example of this
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mechanism is a hustle—a scheme in which the mark is deceived after the opponent

first establishes a history of play as an especially weak type when the potential for

loss is low. Later when the potential for gain is high, the deceiver capitalizes on the

mark’s misperception by playing according to his true type and surprising the mark.

This is a common approach in poker where part of the challenge is to discern the

other player’s type—whether they play only strong hands or bluff on weak hands too,

whether they check and call frequently or else bet and raise frequently. A poker player

may misrepresent his type early through slow play [71,72] to gain an advantage over

his opponents when the stakes are higher.

2.4 Detecting Deception

Deception detection is studied in many fields, but little has been done from a

game theoretic perspective. This is surprising considering the central role that decep-

tion detection plays in counterdeception. By definition, counterdeception requires the

ability to detect deception i.e. it assumes the player knows his opponent is attempt-

ing to deceive. “Decision makers must be aware of adversary deception activities so

they can formulate informed and coordinated responses” [77]. However, deception

detection is helpful for the deceiver, as well: knowing the indicators that expose a

deceptive strategy, a deceiver can maintain the deception long by avoiding compro-

mising or revealing actions. For example, after the Allied code breakers in World

War II cracked the Enigma code, they were able to decode the Nazi transmissions.

The Allies concealed this achievement so that the decrypted information could be

exploited in a strategic way. If the Allies were careless in using the information they

obtained, the Nazis would have realized their communications were compromised and

adopted an alternative encryption scheme. Thus, the Allies had to select only a

subset of information upon which they would take action. This example illustrates
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how knowing which indicators expose a deceptive strategy can enhance the long-term

maintainability of the deception.

Several studies [14, 16, 86] consider the impact of deception against deception-

näıve opponents. Future work could extend these efforts, studying deception against

deception-aware opponents. This is an area that requires additional investigation,

especially in the context of repeated games, where multiple interactions provide an

opportunity to reveal a deception. Hoanget al. [42] survey repeated games in net-

work security. They describe several studies in cooperative games where nodes in a

network are either good or bad. The nodes must differentiate the good from the bad.

Although the bad nodes do not necessarily employ deception, these studies give cre-

dence to the idea that game theory can be used to differentiate honest and dishonest

actors in a network simply by observing their behavior. Much work has been done

to detect deception in other fields. For instance, Elsaesser and Stech [23] describe a

process to assist intelligence analysts in deception detection based on an analysis of

competing hypothesis [40]. In hypergames, an algorithm was recently developed to

identify and exploit inconsistencies in player perceptions [33]. The algorithm makes

two assumptions. First, it assumes the deceiver has perfect knowledge of the mark’s

game. Second, it assumes that if the deceiver takes actions that contradict the mark’s

perceptions, the mark will update his perception of the game accordingly. Future work

might explore the situation when the deceiver does not have perfect knowledge of the

mark’s game a priori [43]. In this case, it is possible that a deception-wary mark

might benefit from intentionally playing a suboptimal strategy. These exploratory

actions could prevent the deceiver from being able to anticipate the mark’s actions

perfectly, make deception more difficult, and may uncover a method for deception-

aware players to detect an act of deception.
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2.5 Performing Deception

This section describes the various studies focused on performing deception. This

section is divided into four subsections according to the game type. The first three

subsections describe deception in Deception Games, Hypergame Theory, and Bayesian

Games, respectively. The last subsection describes how various other game types were

used to model deception.

In Deception Games.

Deception Games are useful especially when the information being distorted rep-

resents player preferences. Misrepresenting preferences is studied in two-player, 2× 2

games [16] and in simple three-player voting games [14]. This approach is used to

explain the actions of the United States at the Geneva Conference of 1954—the con-

ference which led to the partitioning of Vietnam into the northern and southern

regions [91]. The voting game consists of three voters (v1, v2, v3). Each voter casts

a single vote for one of three alternatives, a1, a2, a3. Voter v1 is given an additional

vote in the event of a three-way tie. The player preferences are defined from most

preferred outcome to least preferred outcome as follows:

� v1: (a1, a2, a3)

� v2: (a2, a3, a1)

� v3: (a3, a1, a2)

The preferences are assumed to be common knowledge among the players. Knowing

that v1 could cast a tie-breaking vote, it is not in the interest of v2 to vote for his

most-preferred outcome: it would result in a three-way tie, v1 would cast a second

vote for a1, and v2 would receive his least-preferred outcome. Instead, v2 improves his

expected outcome by voting for his second most-preferred outcome, a3. Thus, despite
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the fact that v1 has tiebreaking power, v2’s action guarantees v1 receives his least-

preferred outcome. It is asked if there is any recourse for v1 through deception, i.e.

whether v1 can improve his expected outcome by misrepresenting his true preferences.

The conclusion is if v1 deceptively announced a preference of (a2, a1, a3), v2 would have

an incentive to vote for a2 and v3 would have an incentive to vote for v1. Thus, v1

had the option to either perform a tacit deception by voting for a2 (despite his true

preference for a1) or reveal his deception by voting v1. This simple model is extended

to the case when two players could deceive simultaneously [15].

Deception Games have been used to study computer network defense strategies.

Specifically, the Honeypot Selection Game (HSG) [61] is based on the Deception

Game and earlier work in [31]. In network security, a honeypot is a networked sys-

tem designed to lure would-be attackers away from critical network resources. Since

honeypots are equipped with substantial logging capabilities, they provide a way of

delaying an attack and sometimes provide means of identifying the origin of the at-

tack. The HSG provides insight into how honeypots should be allocated to maximize

their effectiveness. Although the technical details of a honeypot implementation are

important, the HSG highlights the strategic importance of honeypot allocation and

how suboptimal allocation strategies can degrade the honeypots’ effectiveness. The

model is similar to the Deception Game except that rather than changing the values

in the original vector X, the network defender extends X by inserting values into

new positions. The rationale is simple: The network exists in the real-world and is

comprised of many systems. The values in the vector X represent the value of the

real-world system. By adding k honeypots to the network, the network defender is

extending the network from n systems to n + k systems. Thus, the resulting vec-

tor Y = (x1, . . . , xn, h1 . . . hk) is composed of the original systems, xi’s, and the new

honeypots, hi’s.
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In Hypergame Theory.

Hypergame theory is used to model the 1976 negotiations between Ford Motor

Company (FMC) and the governments of France, Germany, and Great Britain [8].

The negotiations were opened to determine in which country FMC would construct

its newest European manufacturing plant, but early in the negotiations, it was clear

to FMC that Britain was the best choice. The hypergame examines the impact of

the FMC misrepresenting its preferences, playing off one bidder against another after

having already secretly decided the winner. This study illustrates how such a conflict

could be modeled using hypergames, how the dispenser (FMC in this case) could

carry out simple forms of deception, and how inter-bidder communication can be

used as a hedge against deception in similar circumstances.

Wang and Hipel [87] model the effects of Allied deception against Saddam Hussein

during the first Gulf War. In the buildup ahead of the air campaign, the Allies used

deception to cause the Iraqi leadership to anticipate a land invasion would originate

from two places: from the Saudi-Kuwaiti border and the sea. Falling for the deception,

the Iraqis focused their defenses on the border and sea, and neglected to protect their

flank. However, at the onset of the air campaign, the ground forces near the Saudi-

Kuwaiti border were moved secretly as far as 500km Northwest toward the central

Iraqi border [87]. From this position, the Allied ground forces surprised the Iraqi

leadership, avoided much of their defensive preparations, and faced little resistance.

Gharesifard and Cortes [33] provide a formal definition for an n-player, k-level

hypergame with imperfect information based on earlier work by Bennet [7]. They

also define improvement, rationality, sequential rationality and equilibria in such a

game. The authors then present a two-player, turn-based hypergame with asymmetric

information, i.e. where the deceiver has perfect information about the payouts while

the mark does not. In their game, each player seeks to maximize his payout. After
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each action, the mark refines his estimation of the game’s true payouts. When an

action contradicts the mark’s perception of the game, it causes a cascading update to

the mark’s belief structure. So, the deceiver tries to avoid such actions via stealthy

deception. The key result includes a general method for computing action sequences

through the hypergame’s H-digraph that accomplish stealthy edge deceptions.

In Bayesian Games.

Zhuang, Bier, and Alagoz [92] examine an N -period attacker-defender resource

allocation game with incomplete information. The game is converted to one of im-

perfect information by including a hypothetical Nature player. The game begins

with Nature assigning a type to the defender according to a probability distribution

known a priori to the other players. The defender selects a defense posture and a

signal. The attacker observes the signal, updates his belief about the true defender

type, and chooses an attack effort. The payouts are given to each player according to

the defender’s level of defense and the attacker’s selected attack effort. This approach

is novel in that the defender also has private information about the valuation of its

assets. It shows that the defender benefits from secrecy and deception regarding his

actual valuation of his assets.

Several works address the problem of strategic honeypot allocation to support

network security. The problem is modeled a hypothetical conflict between a net-

work attacker and network defender. The defender places camouflaged monitoring

systems—called honeypots—throughout the network to lure attackers away from crit-

ical systems. Garg and Grosu [31] assume the honeypots are always successful, and

Pibil, et al. [61] extends this model by taking a probabilistic approach. However, an

experienced, patient attacker with sufficient resources (i.e. the typical modern cyber-

criminal) is not necessarily susceptible to such deceptions since they can repeatedly
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probe systems. In [18], Carroll and Grosu investigate such a situation. They use

a signaling game with incomplete information to model the conflict between a net-

work attacker and network defender, where the defender is not necessarily capable of

deception. Their model depicts a heterogeneous network of normal systems and hon-

eypots similar to [31]; however, they charge the attacker a fixed cost for determining

a system’s type (i.e. probing) and assume that the probes always return the true

system type. Thus, their attacker could not be deceived by the defender once the

system had been probed. Nonetheless, since probing is costly, the cost-constrained

attacker might choose to attack a system without first probing its type. Against such

an adversary, the defender has the capacity to deceive.

Other Models.

Yavin [90] studies deception in a stochastic, two-player differential game. The

players represent two airplanes, one chasing the other. Both players select their

strategy according to their bearing and distance: the pursuer must intercept the

evader, and the evader must avoid the pursuer. Three cases are analyzed. The first

case allows the evader to induce errors in the pursuer’s perception of the evader’s

position and bearing. The second case allows the evader to produce two decoys to

confuse the pursuer. The third case allows the evader to interrupt the pursuer’s

observations. The most interesting result is that in the third case, it is possible that

a line-of-sight guidance law [53] is not an optimal pursuit strategy.

Israeli [44] shows how a player could deceive another in an infinitely repeated game

by communicating several fictitious payout matrices. Essentially, the deceiver’s intent

is to “sow doubt” in the mark’s mind as to the true state of the conflict. The true

payouts for the deceiver and mark are given by matrix A and matrix B, respectively.

Then the deceiver introduces a finite set of payout matrices {A ≡ A1, A2, . . . , A|K|}
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and a probability vector p ∈ ∆K that indicates the likelihood of each game being the

true game. The mark must select an action based on this distorted view of the game.

Three studies [19,37,86] demonstrate how the availability of information can im-

pact the success or failure of a deception. These three studies are described.

In [37], Hespanha and Ateşkan examine the use of deception on a simultaneous,

zero-sum, stochastic game of attack and defense (similar to a Blotto game [12]). The

game involves two players: (i) the defender guarding two locations (A and B) with

three units that can be distributed between them, and (ii) the attacker who chooses

a location to strike. The payouts for the defender correspond to the number of units

stationed at the target selected by the attacker: c0 if the selected target is undefended,

c1 if one unit defends, c2 if two units defend, or c3 if three units defend. Thus, the

defender’s payout is higher when the attacker strikes a well-defended location, and

it is lower when the attacker strikes an undefended location. The payouts for the

defender are scaled so that c0 = 0, c3 = 1, and c0 < c1 < c2 < c3. The game is

zero-sum. So, it is best for the attacker to select an undefended target. For example,

suppose the defender stations two units at A and one unit at B, and suppose the

attacker strikes B. Since one unit was stationed at B, the defender’s payout is c1,

and the attacker’s payout is −c1. In this case, the attacker selected the best course

of action, since −c1 > −c2 and the attacker is maximizing utility.

Three versions of the game are described and analyzed. They each differ in the

amount of information available to the attacker. In the first and most simple version,

the attacker has no information about the distribution of the defending units. Here,

the authors present a mixed strategy Nash equilibrium (MSNE). Interestingly, two

cases emerge. If c1 + c2 ≤ 1, then the defender plays an all-or-nothing strategy on a

single location. Otherwise, the defender mixes evenly between a 2-1 and 1-2 strategy

of defense. The former case occurs when the attacker is proportionately strong versus
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two or fewer units while the latter case implies that a single unit or pair of units can

substantially attrit the attacker’s forces.

The next form of the game affords the defender complete control over which units

are seen. In this case, the defender can either reveal one or two units to the attacker.

(Although it could reveal three, it would be to its own detriment.) The authors ideal-

ize this situation by saying that the attacker always sees a unit that is revealed. This

section is useful because it provides a taxonomy of strategic policies. For instance,

the attacker can either play blind (ignore detections), näıve (attack location that did

not detect a unit), and counterdeception (attack location where detection occurred)

policies. Likewise, the defender can play a policy of no-information (reveal nothing),

deception (reveal units at the under-defended location), or disclosure (reveal unit at

best-defended location).

There are several MSNEs for this version of the game, which again depend on

the value of c1 and c2. The MSNEs imply a counter-intuitive result: even though

detections provide definite information about the location of the defense units, the

attacker gains nothing from them. So, the best strategy for the attacker is to either

mix between näıve and counterdeception or to randomly select a location. The final

and most complex game form uses a characteristic function χ(nA, sA) to model the

conditional probability of detecting a unit at location A given that there are nA units

defending A and sA such units shown (not camouflaged). The authors provide several

practical example functions but assume a generic characteristic. The overall intent

of this generalization is to account for the fact that a unit displayed may not be

detected, and it is shown that the first two forms are special cases. Abstractly, the

characteristic function represents a sensor’s probability of detection. Reliable sensors

detect units regardless of whether or not the unit is visible. Three cases arise in the

analysis of this game based on the sum of c1 and c2 and the reliability of the sensors.
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Castanon et al. [19] use a sequential two-player game to model a conflict between

a combat aircraft and a mobile missile launch vehicle. The aircraft tries to prevent

the ground vehicle from moving into position and launching a missile. However, the

ground vehicle can send decoy vehicles to entice the patrolling aircraft to leave its

patrol station. The vehicle strategies are to either use a decoy or not use a decoy,

and the aircraft strategies are to either pursue or not pursue. The game ends when

the actual launch vehicle moves: if the aircraft is overhead, the vehicle is destroyed;

otherwise, the missile launch is successful. The study shows that the optimal strategy

for the players depend on whether or not the aircraft’s past decisions are observable.

If they are observable, decoys provide a significant advantage to the ground vehicle.

If they are not observable, the decoys offer no advantage.

Wagner and Arkin [86] explored the possibility of deception in robotics and showed

that a better model of the opponent improved the effectiveness of deception. The

authors perform an experiment where two robots play hide and seek. Each robot

models its environment as a two-player, zero-sum game. The seeker earns a positive

payout for locating the hider. The hiding robot can send deceptive signals to the

seeker by knocking down dry-erase markers placed along its path. These signals are

meant to manipulate the seeker’s perception of the true game’s payouts. The seeking

robot is equipped with a simulated suite of sensors, e.g. infrared, auditory, or visual.

The seeker’s ability to observe signals from the hider is based upon the number of

sensors in its suite—the more sensors, the better the seeker was able to observe the

environment. By searching an area with a toppled marker, the seeker is more likely

to obtain a higher payout than by searching an area where all the markers remain

upright. Some information about the seeker’s sensors is revealed to the hider before

each experimental trial, e.g. that the seeker has an infrared sensor or that it does

not have visual sensors. The results show the hider deceives more effectively when
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given additional information about the seeker’s sensors: the rate at which deception

succeeded increases from 78 percent when the hider had no information about the

seeker’s sensor suite to 95 percent when it has full knowledge of the seeker’s sensor

suite.

2.6 Responding to Deception: Mitigation and Counterdeception

Much of the research that focuses on performing deception also addresses ways of

mitigating the effects of deception. Deception mitigation is applicable in cooperative

mechanism design—an area of increasing importance in several emerging fields. For

instance, mobile ad hoc networks (MANETs) rely on the ability of autonomous net-

work nodes to operate in dynamic environments. An adversary can degrade network

performance by introducing a malicious node. The malicious node could broadcast

spurious signals to entice the honest MANET nodes to organize in a less efficient

configuration. However, the MANET can protect against such malicious activities

by using deception mitigation techniques. Although, game theory has been used to

reduce the impact of malicious nodes in MANETs [59], additional work is needed to

mitigate the risk of deception in MANETs and other emerging fields. Furthermore,

no article explicitly addresses the use of counterdeception.

“Counterdeception strives to identify and exploit adversary attempts to mislead...

[it] includes actions taken to force adversaries to reveal their. . . intentions and objec-

tives” [77]. The difference between mitigation and counterdeception is this: mitigation

seeks to avoid the worst-case outcome, counterdeception seeks to improve the current

expected outcome by turning the deception against the deceiver.

The problem of counterdeception is difficult because it assumes the mark is able to

(1) detect ongoing deception, (2) accurately model the opponent, and (3) formulate

a response to the deceptive activity. Bennett and Vane [6] identifies three objectives
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that would need to be met for hypergames to be an effective planning tool for decep-

tion. These objective are relevant more generally to any tool used for either deception

planning or counterdeception planning. The model must:

1. Allow planners to compare (counter)deception plans to deception-free plans

2. Allow planners to evaluate cost of potential failure

3. Focus attention on planner’s belief contexts regarding the adversary’s potential

courses of action

Hypergame Theory, with its ability to model opponent perceptions to the k-th level,

provide a straight-forward approach to such a problem. Furthermore, the Hypergame

Normal Form (HNF) described in [78] is intentionally designed to accomplish these

three objectives. Still, we, the authors, have seen no study that applies Game Theory,

Hypergame Theory or the HNF to the problem of performing counterdeception.

The remainder of this section describes several studies that present optimal strate-

gies of deception mitigation by a deception-aware mark.

Lee and Teo [50] present a simple signaling game that consists of two players

and two boxes. Box 1 and box 2 are assigned values (i, j) from among a set S of

possible values according to a collection of discrete probability functions, where pij

is the probability of assigning the pair (i, j) to the boxes. The deceiver observes the

box values, closes the boxes, and affixes a label (k, j) to the outside of the boxes. The

mark then observes the label, selects a single box, and receives the payout according

to the original value contained inside. The value of the game is denoted by v. Lee

and Teo showed that if the following inequality holds as an equality, then the deceiver

has completely distorted the information:

v ≥ max

 ∑
(i,j)∈S

ipij,
∑

(i,j)∈S

jpij


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On the other hand, if the inequality holds strictly, then the first player has not entirely

distorted the information. In such a case, the second player should simply choose the

box with the highest mean box contents. Thus, the authors demonstrate that a

suboptimal deception can be overcome through careful analysis of the game’s history.

In [52], Lisýet al. consider a game where an adversary camouflages targets in

an area to degrade a mobile sensor team’s ability to accurately perceive the targets’

importance. Despite this obfuscation of priorities, the mobile sensor teams must

arrange themselves to provide sufficient coverage of the targets. An algorithm is

introduced that maximizes the worst-case performance of the sensor team, i.e. the

algorithm guarantees a minimum level of performance despite deception. This ap-

proach is worthwhile in high-risk environments (e.g. security scenarios); however it is

not generally useful to assume a worst-case scenario [50]. Future work should explore

an alternative, hybrid solution that maximizes the mark’s payoff unless and until

the potential cost of deception reaches some predefined threshold. Once reached,

the mark could enact a loss-prevention strategy with a MaxiMin approach. This hy-

brid solution might have amortized better performance when the penalty for being

deceived is relatively low.

2.7 Conclusion and Future Work

Adversarial conflicts often give rise to deception. This chapter provides an overview

of game theory as a model of deceptive conflicts. Section 2.3 describes the ways in

which the practicality of deception is measured. First, the situation must warrant the

use of deception. Next, the deceiver must have the capacity to deceive, and the con-

flict must be one of incomplete/imperfect information. Finally, section 2.3 describes

several properties that were used to determine the desirability of a deception (i.e.

stealth, surety and cost), and a list of deceptive mechanisms for games is presented.
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Section 2.4 highlights a need for additional work focused on detecting deception in

games. Section 2.5 introduces the various ways in which game theory is used to

model deception in the literature. Section 2.6 surveys several studies that focused

on deception mitigation. Still, much work is needed in this area. Furthermore, the

discussion highlights the need for works that specifically model counterdeception, i.e.

the ability to expose or exploit a deceptive adversary’s actions. Two approaches are

recommended for mitigating or countering deception that should be considered in fu-

ture work: performing exploratory actions and value loss threshold-based strategies.

Several other areas should be addressed in future studies, as well. Specifically, future

efforts should consider the following:

� The benefit-risk trade-off inherent to every deception, especially against deception-

aware opponents

� Deception as a costly activity either by parameterizing the payouts or using a

multi-objective approach

� Situations where the deception uses multiple mechanisms simultaneously to

create synergistic effects (e.g. payout manipulation combined with tactical de-

ception)

� The effects of uncertainty on the part of the deceiver; many models assumed

the deceiver had perfect or complete knowledge
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III. A multi-objective optimization problem for
environmental deception using game theory

3.1 Introduction

Adversarial conflicts often give rise to deception. Therefore, a model of conflict is

needed to thoroughly study deception. Game theory is “the study of mathematical

models of conflict” [56]. It is used in multi-agent conflicts to determine strategies

that maximize an agent’s expected utility when the utility function depends on the

combined actions of all agents. Game theory has been used to study deception in many

different ways, but there remain several gaps in the research, especially pertaining

to the cost and risk of deception [21]. Deceptive cost describes the amount of effort

required to cause an opponent to act according to the projected view of the conflict.

Risk describes the potential loss when playing an off-equilibrium deceptive strategy

against a deception-aware opponent; it depends on the accuracy of the opponent

model used to counter the deception [13]. It is important to address the benefit of

deception along with it’s cost and risk because deception in real-world conflicts is

commonly realized as a trade-off between these three objectives. However, modeling

cost and risk is difficult: It is hard to formulate the benefit, cost, and risk in a

single utility function, and parameterized utility functions are not a general solution

since these objectives are not always comparable. It, therefore, comes as no surprise

that most of the game theoretic (GT) literature considers only cost-free deceptions.

Furthermore, a recent survey of GT models of deception [21] indicates that risk is

entirely absent from the literature. This is surprising because risk assessment is a

critical factor in deception planning doctrine [77].

In light of these gaps, this chapter focuses on deception via payout manipulation

in normal form games. Payout manipulation, also called environmental deception,
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is achieved when the deceiver successfully causes the target player (called the mark)

to misperceive one or more of the game’s utility functions. This chapter presents a

GT model of environmental deception and formulates the task of designing efficient

deceptive payout matrices as a multiobjective optimization problem—the deception

design problem (DDP). A solution to the DDP is a payout matrix which, if presented

to the mark as the true state of the conflict, is Pareto-efficient according to benefit,

cost, and risk for the deceiver. Several versions of the DDP objective functions are

discussed to help researchers articulate the deceiver’s goals. A case study demon-

strates the DDP using a 7 × 7 normal-form game. The game’s payouts are derived

from an air-to-air combat simulator [63].

The remainder of this chapter is organized as follows. Section 3.2 introduces the

Environmental Deception Game used in the DDP. Section 3.3 defines the DDP as

a multiobjective optimization problem. Section 3.4 describes the methodology for

solving the DDP and presents an example based on the classic Prisoner’s Dilemma.

Section 3.5 presents a case study using a 7× 7 normal form game. Related works are

described in Section 3.6. Concluding remarks and areas for future work are given in

Section 3.7.

3.2 The Environmental Deception Game

Environmental deception is a mechanism that causes the mark to misperceive the

conflicts’ payouts. Since the payouts express player preferences, misperception of the

payouts can cause the mark to select a suboptimal strategy. The deceiver can take

advantage of the mark’s misperception by anticipating their response and responding

accordingly. The Environmental Deception Game (EDG) provides a model for this

kind of deception. The EDG is a game defined by a tuple of payout matrices: the

true payout matrix and the deceived payout matrix. The true payouts describe the
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actual state of the conflict; the deceived payouts are generated by the deceiver to

mislead the mark. The game assumes, at the end of play, players observe their own

received payout, but they do not know the true payouts received by their opponent.

The game with true payouts A and and deceived payouts B is denoted G = 〈A,B〉.

Let apij denote the payout for player p at the intersection of row i and column j in

the m× n payout matrix A. Given strategy profiles s and t for the row and column

player respectively, the expected utility for the row player is

Erow(G) =
m∑
i=1

n∑
j=1

arowij sitj (Row Expected Utility)

and the expected utility for the column player is

Ecol(G) =
m∑
i=1

n∑
j=1

acolij sitj (Column Expected Utility)

For consistency, the row player is the deceiver and the column player is the mark.

The deceiver plays according to the true payouts in A while the mark plays according

to the deceived payouts in B. The mark believes both players are playing the same

game, i.e. according to the Nash equilibrium of the deceived payouts. However,

the deceiver plays a different game: The deceiver anticipates the mark’s strategy

according to the deceived payouts and computes the best response according to the

true payouts. In this way, the deceiver takes advantage of the mark’s misperception

of the conflict.

Denote by σp
X the strategy profile for player p according to the Nash equilibrium

of the matrix X. Since the mark plays according to the payout matrix B, the mark’s

strategy profile is denoted, σmark
B . The deceiver’s best response to σmark

B is called the

deceptive strategy and denoted σD . The deceptive strategy σD = X = (x1, x2, . . . , xm)
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is be computed by solving the following linear program:

X = maximizex Cx

subject to
m∑
i=1

xi = 1,

0 ≤ xi ≤ 1, i = 1, . . . ,m

where C = {c1, c2, . . . cm} and ci =
n∑

j=1

(
(σmark

B )j · adeceiverij

)
for i = 1, . . . ,m, with

(σmark
B )j being the jth element of mark’s strategy profile at the Nash equilibrium

according to the deceived payouts B, and adeceiverij being the deceiver’s payout in the

ith row and jth column of the true payout matrix A.

Likewise, the mark’s best response to σD is called the counterdeception strategy

and denoted σCD. The mark’s counterdeception strategy σCD = Y = (y1, y2, . . . , yn)

is computed by solving the following linear program:

Y = maximizey Dy

subject to
n∑

j=1

yj = 1,

0 ≤ yj ≤ 1, j = 1, . . . , n

where D = {d1, d2, . . . dn} and dj =
m∑
i=1

(
(σD)i · amark

ij

)
for j = 1, . . . , n, with σD being

the deceiver’s’s best response to the mark’s strategy profile at the Nash equilibrium

according to the deceived payouts in B, and amark
ij being the mark’s payout in the ith

row and jth column of the true payout matrix A.

3.3 The Deception Design Problem

The DDP is intended as a means of analyzing the benefit-cost-risk trade-off of

environmental deception in multi-agent conflicts. As such, it is designed to answer
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the following question: Suppose one agent could successfully deceive another through

environmental deception; how should such a capability be used to achieve an efficient

trade-off between benefit, cost, and risk? Military utility analysts often consider

questions of this kind in the earliest phases of a capability’s acquisition life-cycle.

They assume the capability exists and then try to predict its impact on operations. In

the same way, this chapter is interested not in engineering a capability that performs

environmental deception. Instead, it frames a discussion on efficient employment of

such a capability and provides a means of predicting its impact. The Environmental

Deception Game predicts the outcome of a conflict with one-sided misperception

of the payouts. The DDP asks: If the row player (deceiver) could influence those

misperceptions, how should they be changed?

The DDP makes two principal assumptions with regards to uncertainty. First, the

deceiver’s environmental deception is assumed to be successful, i.e. the mark plays

according to the Nash equilibrium of the deceived payouts. Second, the deceiver is

assumed to know the true payouts of the game. Relaxation of these assumptions is

discussed in the future work section.

With this in mind, the DDP for two players is defined as follows. Given a payout

matrix for a two-player game, A, compute a payout matrix, B for the environmental

deception game G = 〈A,B〉 that maximizes benefit (fB) and minimizes cost (fC) and

risk (fR). The functions fB, fC , fR are defined below. For notational convenience, the

solution where G = 〈A,A〉, is called the null solution and is denoted s∅.

Benefit.

Benefit describes the increase in expected utility for using B as the environmental

deception. Benefit is defined as

fB(G) = Erow(G)− Erow(A), (Benefit)
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where Erow(G) is the deceiver’s expected value in G and Erow(A) is the expected

value of the original game. Benefit compares the value of playing the environmental

deception game G against playing the non-deceptive game according to A. The value

of the null solution s∅ is fB(s∅) = 0, since G = 〈A,A〉 implies Erow(G) = Erow(A). On

the other hand, when A 6= B, fB(G) ≥ 0, since misperception by the mark can cause

him to deviate from the Nash equilibrium of the true game. The mark’s unilateral

deviation provides an opportunity for the deceiver to increase his expected utility

over that of the Nash equilibrium by playing a best response. However, the deception

provides zero benefit if the misperception of the mark does not induce changes in his

equilibrium strategy.

Cost.

The cost function describes the amount of effort that must be expended to cause

the mark to believe the deception. It is assumed that the cost of the deception varies

according to the difference between the true payout matrix and the deceived payout

matrix, i.e. the distance between the two. Thus, it is sensible to use a metric function

to define cost:

fC(G) = dist(A,B), (Cost)

where dist(A,B) : M×M → [0,∞) is a metric, M is the set of all real-valued

m × n payout matrices, and [0,∞) is the set of non-negative real numbers. Table 1

presents several cost metrics and domains in which they might be useful. The metrics

in Table 1 are defined so that the cost of deceiving any particular payout is treated

the same as those in any other payout. In some circumstances, it may be appropriate

to measure cost differently based on the particular payout being changed, i.e. when

the cost varies based on both the change to the true payouts and the outcome payout

being modified. This approach is useful if it were possible to deceive on some payouts
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Table 1. Example cost metrics

Cost Metric Problem Domain
0 Cost-free deceptions∑

ijp

∣∣apij − bpij∣∣ Cost of deception is constant regardless of pay-
out value∑

ijp

√(
apij − b

p
ij

)2 Small payout manipulations cost proportion-
ately less than large payout manipulations∑

ijp

∣∣∣∣∣
∫ bpij

apij

2
1−|2x−1|dx

∣∣∣∣∣
Payouts are constrained to a range (e.g. [0,1]),
and cost grows asymptotically near the limits
of a payout’s range

cost-free while other payouts in the same game are not cost-free.

Risk.

Deception sometimes involves an element of surprise, but often the best deception

is the tacit one—the one that remains undiscovered even after many encounters. At

what point does such a tacit deception pose a risk to the deceiver? It poses a risk

if the mark discovers the deception and can formulate a counterdeception strategy

before the deceiver changes his own strategy. Considering risk in a game where the

deception is assumed to be successful may appear at first glance to be nonsense, but

there is a potential for risk if the deception is revealed through the gameplay itself. If

the mark is surprised by the outcome, he may question whether or not he perceived

the conflict accurately. Surprise could spur an update to his belief state that uncovers

the deception. If he discovers the true payouts unbeknownst to the deceiver, he could

formulate the counterdeception strategy (σCD) that defeats the deceiver in subsequent

encounters.

Risk assessments usually involve calculating two critical components: the magni-

tude of a potential consequence and the likelihood of its occurring [80]. For DDP,

the magnitude of the consequence depends on the deceiver’s level of exposure when

playing an off-equilibrium strategy. Consequence is measured as the deceiver’s value
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loss in the worst-case scenario, i.e. when the deceiver assumes the mark is success-

fully deceived, but the mark counters the deception perfectly. Thus, consequence is

expressed as:

RC = Erow(A)−

(
m∑
i=1

n∑
j=1

adeceiverij (σD)i(σCD)j

)
(Consequence)

where (σCD)j is the jth element of the mark’s counterdeception strategy and (σD)i is

the ith element of the deceiver’s deception strategy.

DDP assumes the deception is initially successful and that the deception is re-

vealed if the payouts do not match the mark’s perception of the game. The likelihood

component of risk is based on the probability that the game’s actual outcome and

the mark’s perception of the conflict are inconsistent, i.e. that the deception is re-

vealed when the game is played. For the deception to be revealed, two conditions

must be satisfied. First, the mark must receive a payout. Given strategy profile

s = (s1, . . . , sm) for row and strategy profile t = (t1, . . . , tn) for column, the prob-

ability of receiving outcome aij equals si · tj and is denoted pij(s, t). The second

condition is that the payout received by the mark must contradict his perception of

the outcome’s payout. The discrete indicator function I : R × R → {0, 1} is used to

indicate whether or not the mark’s perception of the game agrees with the payout

he receives. If x = y, then I(x, y) = 0. Otherwise, I(x, y) = 1. Thus, likelihood is

defined by the following equation:

RL =
∑
ij

I
(
amark
ij , bmark

ij

)
· pij(σD, σmark

B ) (Likelihood)

Given an environmental deception game G with likelihood of detection RL(G) and
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consequence RC(G), risk is expressed as the product:

fR(G) = RL(G) ·RC(G) (Risk)

To show how risk is affected by consequence, consider the situation where the

deceiver changes all the payouts i.e. when ∀i, j, I(aij, bij) = 1. In this case, regardless

of the strategies adopted by the players, the likelihood of discovery equals

∑
ij

1 · pij(s, t) = 1 ·
∑
ij

pij(s, t) = 1

Thus, the deception is certain to be discovered. If the deception strategy σD is off-

equilibrium, then the deceiver is exposed to the counterdeception strategy σCD and

RC > 0. In this case, fR = RL ·RC = 1 ·RC > 0. On the other hand, if the deception

strategy σD is on-equilibrium, the deceiver does not change his strategy from the

original game. Thus, the consequence is zero. As a result, fR = RL ·RC = 1 · 0 = 0.

To show how risk is affected by likelihood, consider the situation where the decep-

tive strategy σD is off-equilibrium. Then the consequence is non-zero. If the deceiver

achieves the deception by changing only those payouts outside the deception game’s

equilibrium, then the players will only receive payouts that correspond to the orig-

inal game’s payout values. In this case, the likelihood of discovery is zero. Thus,

fR = RL ·RC = 0 ·RC = 0. On the other hand, if the payouts in the deceived game’s

equilibrium have been changed, then RL > 0 and fR = RL ·RC > 0.

A special case arises in when the true payouts contain one or more correlated

equilibrium. A correlated equilibrium is a generalization of the Nash equilibrium

whereby no player has incentive to deviate from the equilibrium assuming the other

player selects a strategy based on the same public signal—in this case, the deceptive

payouts. Thus, if the true payouts have a correlated equilibrium and σD plays the
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correlated equilibrium, then the counterdeception strategy is to play the correlated

equilibrium, as well. By playing a deception that follows a favorable correlated equi-

librium, the deceiver is no worse-off for being discovered since (assuming rationality

of the mark) the deceptive payouts force the mark’s strategy choice. In this way, it is

possible for RC to be less than zero. Thus, for games where the only equilibrium is the

Nash equilibrium, RC has a straightforward interpretation: it is the expected value

loss when the mark plays the counterdeception strategy. In games with correlated

equilibria other than Nash, a negative value for RC must be interpreted as forcing

cooperation between the players.

To prevent ambiguity in the results, each solution lists the risk objective function

value as well as the likelihood RL and consequence RC .

3.4 Methodology

This section outlines the process used to perform the case study in Section 3.5. A

small demonstration using the prisoner’s dilemma provides a concrete example.

Process.

Solving an instance of the DDP involves computing the best-known a set of non-

dominated solutions, called PFknown. The Speed-constrained Multiobjective Particle

Swarm Optimization (SMPSO) algorithm is used [58]. The SMPSO algorithm is

discussed in Section 3.6.

The authors implemented the DDP and its associated objective functions using the

MOEA Framework [34]—a Java library for multiobjective evolutionary algorithms.

The equilibrium for each game is computed using the Enumeration of Extreme Equi-

librium algorithm [66] and the linear programs are implemented using the JOptimizer

version 3.4.0—a Java library for solving convex optimization problems. The true and

53



Table 2. SMPSO Settings

Setting Value

Number of seeds 1000
Population size 100
Generations 250
Polynomial Mutation rate 1/100
Polynomial Mutation distribution index 20

deceived payouts are stored as 2× n×m arrays. To account for finite representation

of the solutions, the deceived payouts are rounded to the nearest 10−5th decimal place

before evaluating the objective functions.

SMPSO is executed 1,000 times using a unique random seed for each run. The

settings for SMPSO are listed in Table 2. Each run produces a set of nondominated

solutions including their associated fitness values, the deceiver’s deceptive strategy

σD, and the mark’s optimal counteredeception strategy σCD. All 1,000 solution sets

are inserted into an intermediate set, which is then reduced to PFknown by removing

all dominated solutions. Furthermore, any solution dominated by the null solution,

s∅, is removed. The solutions in PFknown are then decoded back into payout matrix

form and analyzed.

Example: Prisoner’s Dilemma.

An instance of the prisoner’s dilemma illustrates the process. The prisoner’s

dilemma is a classic problem presented in introductory game theory courses; the

payouts are shown in Table 3.

It is often introduced as a conflict between two prisoners with regards to a plea

bargain. The prisoners agreed that if caught, they would not confess the crime.

However, they have been caught and separated so that neither knows what the other

will choose. Each must decide to either cooperate with their fellow prisoner or to
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Table 3. The Prisoner’s Dilemma

Cooperate Defect

Cooperate (-1,-1) (-3,0)

Defect (0,-3) (-2,-2)

defect, i.e. to confess their crime to the police. If both cooperate, they face only

a one-year sentence for a lesser crime. If they both defect, their confessions earn

them a two years sentence. But if only one prisoner defects, his confession will

be used against the other: The defecting prisoner is released immediately, and his

fellow prisoner will face the maximum sentence of three-years. The game exhibits a

pure strategy Nash equilibrium wherein both prisoners confess and receive two-year

sentences. This equilibrium is underlined in Table 3.

In this example, the cost of deception is assumed to be constant regardless of the

payout value. Therefore, the L1-norm is used as the cost metric, i.e.

fC(G) =
∑
ijp

∣∣∣a(p)
ij − b

(p)
ij

∣∣∣ .
After executing SMPSO and removing all dominated solutions from the solutions

sets, PFknown, contains only a single solution s1. The deceived payouts B defined by s1

are shown in Table 4; differences from the true payouts are shown in bold. s1 exhibits

a pure strategy Nash equilibrium at (Defect, Cooperate), underlined in Table 4. The

deceiver’s best response is to Defect, i.e. σD = (0, 1.0). The expected utility of the

original game matrix A is -2 since both players receive a two-year sentence. In the

environmental deception game G = 〈A,B〉, the deceiver’s expected utility is 0 and

the mark’s expected utility is -3. Since the deceiver improves his expected utility by

two years, the benefit of deception is fB(G) = 2.
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Table 4. DDP Example Solutions. Deceived payout matrix B for solution s1 to the Pris-

oner’s Dilemma. Deviations from the true payouts are shown in bold. The equilibrium

of the EDG is underlined.

Cooperate Defect

Cooperate (-1,0) (-3,0)

Defect (0,-1.999) (-1,-2)

Since the L1-norm is used as the cost metric, the total cost of s1 is:

fC(G) =
∑
ijp

∣∣∣a(p)
ij − b

(p)
ij

∣∣∣ = (1 + 1.001 + 1) = 3.001

Given the mark is deceived, the mark plays Cooperate while the deceiver plays

Defect. As a result, the mark expects a payout of -1.999, but receives -3 instead. This

result is certain since the equilibrium of G is a pure strategy. Therefore, the likelihood

component of risk RL = 1.0. On the other hand, the mark’s counterdeception strategy

is to defect, i.e. σCD = (0, 1.0). If the mark plays σCD, then the game returns to the

original equilibrium, (Defect, Defect). Since the deceiver plays exactly as he would

in the deception-free game, the consequence component of risk RC = 0. Thus, the

risk for performing this deception is fR(s1) = 1.0 · 0 = 0. As an interesting result,

this means that in a single-shot prisoner’s dilemma, there is no reason not to deceive

your opponent.

3.5 Case Study

This section presents a case study to demonstrate the DDP in a more complex

game. Specifically, the case study uses a 7×7 normal form game based on the output
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Figure 7. Missile Support Scenario. The aircraft must decide how long they will

support their missile before evading the oncoming missile.

of an air-to-air combat simulator, the Missile Support Time (MST) game [63], shown

in Figure 7. The conflict involves two identical aircraft (AC) approaching each other

at the edge of their engagement range. They each fire a missile at their opponent.

The pilots can increase their probability of kill (PK) by supporting their missile with

updates from their AC’s guidance system. The pilots can enhance their chances

of survival by performing evasive maneuvers. A pilot can either evade or support,

but not both. To evade, the pilot must break his lock on the opponent and cease

supporting his missile. So, the pilots must decide how long they will support before

they evade. The longer they support, the more likely they are to kill their target, but

this exposes them to a higher probability of being shot down themselves. Conversely,

if they evade too soon, they are more likely to survive the engagement, but their

missile will not likely hit their opponent.

This case study investigates the possibility of using deception to cause one pilot to

either support too long, or evade too soon. The payouts for each pilot are defined by

a regression model fitted to the output of a discrete-event air combat simulator [63].
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Figure 8. Deceiver Payouts for Missile Support Time game. The payouts for the

mark and deceiver are nearly symmetric. The game exhibits a pure strategy Nash

equilibrium wherein both players support for ten seconds.

The payouts for the players are nearly symmetric, and the payouts for the deceiver

are shown in Figure 8.

The payouts are determined by a regression model of the form

p(x, y; β) =
exp(q(x, y; β))

1 + exp(q(x, y; β))

where x is the support time of the deceiver, y is the support time of the mark, and

q(x, y; β) is a quadratic function of decision variables x and y, i.e.

q(x, y; β) = β0 + β1x+ β2y + β3x
2 + β4y

2 + β5xy.

The resulting PK values are based on the β parameter vectors for the deceiver (βD)

and mark (βM) presented in Table 5.
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Table 5. Parameter vectors for the deceiver (βD) and mark (βM)

variable parameter βD Deceiver βM Mark

constant β0 -3.440 -3.529
x β1 0.289 -0.013
y β2 -0.131 0.300
x2 β3 -0.009 0.011
y2 β4 0.012 -0.009
xy β5 0.003 0.003

Thus, given that the deceiver supports for x seconds and the mark supports for y

seconds, the deceiver’s PK is p(x, y; βD) and the mark’s PK is p(x, y; βM). Since the

probability of survival equals (1− PK), the probability of survival for the deceiver is

(1− p(x, y; βM)), and the probability of survival for the mark is (1− p(x, y; βD)). A

weighted sum defines each player’s payout as a trade-off between achieving a kill and

surviving the engagement, i.e.

udeceiver(x, y) = ωDp(x, y; βD) + (1− ωD)(1− p(x, y; βM))

and

umark(x, y) = ωMp(x, y; βM) + (1− ωM)(1− p(x, y; βD))

where 0 ≤ ωM and 0 ≤ ωD. For this case study, ωD and ωM are set to 0.5.

The strategies x and y are discretized so the game can be represented in normal

form. The resulting support times range from 0 seconds to 15 seconds at 2.5 second

intervals, i.e. the pilots can support for either 0s, 2.5s, 5s, and so on. The maximum

support time of 15 seconds is based on the maximum flight time of the simulated

missiles. Under these conditions, the game exhibits a pure strategy Nash equilibrium

when each player supports for 10 seconds before evading. As in the prisoner’s dilemma

example, this case study uses the L1-norm as the cost function.
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Table 6. Solutions to the Missile Support Game.

Index
Fake Game Strategy Profile of Mark

(
σmark

B

)
σD σCD fB fC fR RC RL0s 2.5s 5s 7.5s 10s 12.5s 15s

s1 1.00 - - - - - - 15s 10s 0.095 3.263 - 0.048 -
s2 1.00 - - - - - - 15s 10s 0.095 3.159 0.048 0.048 1.000
s3 0.70 - 0.30 - - - - 12.5s 10s 0.076 3.152 0.008 0.008 1.000
s4 - - - - - - 1.00 10s 10s 0.056 3.151 - - 1.000
s5 - - 0.67 - - - 0.33 10s 10s 0.039 3.148 - - 0.328
s6 - - 0.67 - - 0.01 0.32 10s 10s 0.039 3.133 - - 1.000
s7 - - 0.64 0.30 - 0.06 - 10s 10s 0.024 3.103 - - 1.000

SMPSO found 71,415 solutions total during the 1,000 runs. After the dominated

solutions are eliminated, PFknown contained seven non-dominated solutions. The so-

lutions are enumerated in Table 6, sorted by benefit fB. The first column lists the

index of each solution. The next seven columns show the mark’s equilibrium strategy

based on the deceived payouts of the solution. Thus, the deceived payouts for s1

exhibit a pure strategy Nash equilibrium where the mark supports for 0 seconds. The

deception strategy for the deceiver is listed in the σD column, and the counterdecep-

tion strategy for the mark is listed in column σCD. For s1, the best response to the

mark is for the deceiver to support for 15 seconds; the best counterdeception is for

the mark to support for 10 seconds. Equilibrium strategies throughout the table are

rounded to the nearest 100th decimal place for presentation purposes. The objective

function values for each solution are listed in the adjacent three columns with the

most desirable values for each function shown in bold. Since risk is the product of

consequence RC and likelihood RL, the final two columns display the consequence

and likelihood components for each solution.

The most beneficial solution, s1, provided an increase in the deceiver’s expected

utility of 0.095. The payout manipulations cause the mark to support for 0 seconds

(i.e. the fire and forget strategy). The deceiver can take advantage of this and support

his missile for a full 15 seconds. So, the EDG results in the outcome at (15s, 0s).

s1 is the highest cost solution: the absolute deviations from the true payouts

60



summed to 3.263. s1 modified 97 of the 98 (= 7× 7× 2) payout values in the game.

The only payout that remained untouched was the payout for the mark at (15s, 0s),

i.e. the expected outcome when the mark plays σmark
B and the deceiver plays σD. The

solution increased the values of 58 payouts and decreased the values of 39 payouts.

The solution applies a large portion of the cost (+0.149) to the payout in outcome

(15s, 7.5s) for the mark. Since s1 leaves the mark’s payouts in (15s, 0s) untouched,

it achieves zero likelihood of detection (RL). However, if by some alternative means,

the mark discovers the deception, the counterdeception strategy is to support for 10s;

the consequence (RC) in this case is 0.048 for the deceiver. Recall fR = RL · RC .

Thus, fR(s1) = 0 · 0.05 = 0.

The risk to the deceiver was zero in five of the seven cases. Four of the zero-risk

strategies (s4, s5, s6, s7) achieved zero risk because the deception strategy σD is to

support for 10 seconds. Since supporting for 10 seconds is the equilibrium strategy of

the original game, the deceiver faces no consequence for playing these strategies. s1

is the only other zero-risk solution. No solution had both zero consequence and zero

likelihood of detection. Still, the observed risk values are lower than anticipated; it

was surprising that so many zero- and low-risk solutions could be located in a game

with 98 (= 7× 7× 2) free variables.

In all cases, σD implied the deceiver should support for at least 10s before evad-

ing, i.e. at least as long as in the deception-free game. Surprisingly, the mark’s

counterdeception strategy, σCD, is to revert to the true game’s equilibrium. However,

that σCD reverts back to the original equilibrium is not true for every possible de-

ceptive strategy—only the non-dominated solutions found in this case study. If the

deceiver supported for less than 10 seconds, the mark responds best with a longer,

off-equilibrium support time. For instance, if the deceiver supports for 0 seconds, the

counterdeception strategy is σCD = 15s.
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The tendency to support longer when deceiving is influenced by the pilot pref-

erences weights, ωD and ωM . However, the tendency to cause the mark to support

for a shorter amount of time applies generally. If the deceiving pilot favors kills over

survival, then the deception improves utility when the pilot can support longer. This

is possible if the mark evades sooner. On the other hand, if the deceiving pilot favors

survival over kills, then the deception improves utility when the mark supports for

less time. Thus, in both cases, the tendency is to deceive the mark into evading

sooner.

The lowest-cost solution was s7 with fC(s7) = 3.103; however, this solution also

had the lowest benefit, as well. One interesting observation is that there is no incentive

for the algorithm to reduce the number of altered payouts, only the total magnitude

of the changes. It’s not surprising that this algorithm produces solutions where very

few payout values remained unchanged. Specifically, each solution changed at least 94

payout values. Plotting the number of changed payouts according to the magnitude

of change shows that half of the payouts are modified by less than 0.02 utility points.

This relationship is shown in Figure 9. The light-grey lines in Figure 9 are the traces of

each solution, and the black line is the average for all seven solutions. The relationship

between the magnitude of manipulation and the number of changed payouts indicates

that the solutions produced by SMPSO may be noisy.

3.6 Related Works

The benefit and cost objective functions resemble those found in [64], which

presents an algorithm for computing desirable costly environmental deceptions in

3 × 3 normal form games. The risk objective function was based on the principles

of risk assessment [80]. The effects of misrepresenting preferences was studied in

two-player, 2 × 2 games [14] and in simple three-player voting games [16]. That the
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Figure 9. Number of changed payouts in DDP. The number of changed payouts are

shown according to the magnitude of the payout’s change. The light-grey lines are the

traces for solutions s1, s2, . . . , s7. The black line shows the average of all ten solutions.

deception and counterdeception strategies are pure strategies coincide well with the

results of [79] which shows that a pure strategy is often the best response to an op-

ponent who misperceives the conflict. The environmental deception game is partially

inspired by Hypergame theory [7]. It differs in that one player is assumed to know

the true state of the conflict; Hypergame theory does not make this assumption in

general.

The algorithm used to compute PFknown, SMPSO, is based on Particle Swarm

Optimization (PSO), which is inspired by the flocking behavior of birds [46]. Although

the no free lunch theorem implies that no one single optimization algorithm works

best on all problems [89], PSOs have been proven to be effective tools for solving both

continuous nonlinear and discrete binary optimization problems [24, 46–48]. In PSO

algorithms, each solution is called a particle, and the population of solutions is called

the swarm. Each particle i has a position ~xi and velocity ~vi. The PSO updates the
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position at each generation t using the formula

~xi(t) = ~xi(t− 1) + ~vi(t)

where ~vi(t) is given by

~vi = w · ~vi(t− 1) + C1 · r1 · ( ~xpi − ~xi) + C2 · r2 · ( ~xgi − ~xi),

and ~xpi is the best solution according to the ith particle, ~xgi is the best solution known

to the swarm, w is the inertia weight, and C1 and C2 dictate the influence of inertia

and swarm particle attraction on the velocity of xi.

SMPSO [58] constrains the velocity of each variable (in each particle) to prevent

the particle velocities from “exploding” [22]. Constraining the velocity allows the

algorithm to perform well even on difficult multiobjective problems (e.g. ZDT4 [93]).

The pseudocode for SMPSO is given in Algorithm 1.

Algorithm 1 SMPSO pseudocode [58]

initializeSwarm()
initilizeLeadersArchive()
generation = 0
while generation < maxGenerations do

computeSpeed()
updatePosition()
polynomialMutation()
fitnessEvaluation()
updateLeadersArchive()
updateParticlesMemory()
generation++

end while
return LeadersArchive()
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3.7 Conclusion and Future Work

A recent survey of game theoretic models of deception [21] highlights a gap in

GT literature regarding deception in the trade space of between benefit, cost, and

risk. This chapter presents a novel approach to fill this gap. Section 3.2 introduces

a GT model for environmental deception in situations where an opponent’s percep-

tion of the conflict’s payouts can be altered by the deceiver. The DDP is introduced

in Sectoion 3.3 as a multiobjective optimization problem to design efficient environ-

mental deceptions regarding benefit, cost, and risk. Benefit is measured as the value

difference between the non-deceptive and deceptive games. Cost is computed us-

ing a metric to measure the distance between the original payouts and the deceived

payouts. Risk is the product of the likelihood of discovery and consequence of dis-

covery [80]. When the true game payouts exhibit correlated equilibrium other than

the Nash equilibrium, the measure of risk is useful, but it can be harder to interpret.

If risk likelihood and consequence are treated as separate objective functions, this

difficulty is eliminated.

Section 3.4 outlines the process used to perform the case study in Section 3.5

using the Missile Support Time (MST) game. The known Pareto front for the MST

consists of seven solutions. The solutions are obtained by executing a multiobjective

evolutionary algorithm, SMPSO, 1000 times. Each time, a population of 100 parti-

cles is evolved over 250 generations. Of the seven solutions, five exhibited zero risk

indicating that SMPSO is able to effectively locate zero-risk solutions. Four solutions

are zero-risk because there is no consequence for being discovered, i.e. the deception

strategy coincides with the deceiver’s strategy in the deception-free game. The fifth

zero-risk solution has zero-valued risk likelihood component. Thus, the mark’s ex-

pected outcome in the deceived payout matrix coincides exactly with the expected

outcome in the true payout matrix. Concerning the solutions’ costs, it is possible
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that some cost observed in the resulting solutions is an artifact of the algorithm, but

this observation requires further investigation.

This chapter provides several opportunities for future exploration by relaxing the

two principal assumptions made by the DDP. First, the DDP assumes that the de-

ceiver’s environmental deception is successful. An environmental deception is suc-

cessful if two conditions are satisfied: 1.) the mark correctly perceives the deceived

payouts provided by the deceiver, and 2.) the mark chooses to play the Nash equilib-

rium. This assumption could be relaxed to consider situations where one of these two

conditions are not satisfied. If a relaxation allows the mark to incorrectly perceives

the deceived payouts, researchers should characterize the degree to which the mark’s

perception deviate from the payouts provided by the deceiver. If a relaxation allows

the mark to select a strategy other than the Nash equilibrium, it is necessary to define

a reasonable alternative. The DDP also assumes that the deceiver accurately per-

ceives the true payouts of the conflict. This assumption could be relaxed to explore

the effects of misperception on the part of the deceiver. A more general form of the

environmental deception game would need to be defined. A possible solution would

be constructed of three matrices: One for the true payouts, one for the deceiver’s

perception of the conflict, and one for the deceived payouts presented to the mark.

The strategies of the mark and deceiver could be selected as they are in the version

of the environmental deception game; however, the expected utility for each player

would be computed according to the true payouts (vice the deceiver’s perception of

the true payouts). In this way, the environmental deception game defined above be-

comes a special case of this more general version. If the DDP is used as a tool for

post hoc analysis, this approach might be able to address the issue of misperception

on the part of the deceiver. In an ad hoc situation, this approach could be used to

perform sensitivity analysis on the solutions.
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Finally, all solutions to the case study manipulate at least 94 out of 98 payouts,

but most of the payouts change by less than 0.02. This case study used the L1-norm

as a cost metric. Researchers should evaluate the impact of the cost metric on the

number of changed payouts, e.g. by comparing solutions with an L1-norm cost to

those that use Lp-norm cost with 0 < p < 1. However, the cost metric should be

carefully selected based on the problem domain. Therefore, future work should evalu-

ate alternative techniques for reducing the total number of changed payouts, as well.

One simple technique is to introduce an additional objective function that counts

the number of changed payouts; however, the introduction of a fourth dimension in

objective space will likely increase the number of non-dominated solutions consider-

ably. Alternatively, future work can evaluate the performance of other optimization

algorithms. Another technique is to adjust the cost (or benefit) objective function

according to the number of changed payouts. For example, the cost can be scaled

by multiplying cost by 1
p−c , where p is the total number of payouts and c is the total

number of changed payouts. As c approaches p, the cost increases, penalizing so-

lutions with many changed payouts. One final approach, borrowed from the Ridge

Regression shrinkage method [45], penalizes cost additively based on the magnitude of

changed payouts. For instance, suppose the maximum allowable deviation is ±δmax.

Then the cost can be penalized by adding the shrinkage penalty, λ
∑

ij(1−δij/δmax)2,

where δij is the absolute deviation in row i and column j, and lambda is a tuning pa-

rameter. The shrinkage penalty is inversely proportional to the size of the deviation;

it effectively shrinks the deviations toward zero. The tuning parameter λ controls

the relative impact of the penalty on the resulting solutions. One final approach is

to reduce solution noise mid- or post- execution. A greedy approach could reduce

the smallest deviations first unless and until a change in the equilibrium is observed

before moving to subsequently larger deviations.
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IV. Conclusion

4.1 Conclusion and Path Forward

This research is presented as two scholarly articles. The first is a survey of de-

ception in game theory and the second introduces a novel multiobjective approach to

deception modeling. The concluding remarks and path forward for each article are

discussed in turn.

Survey of Deception in Game Theory.

A survey of the various game theoretic models of deception is presented. It pro-

vides background on the information models and game classes used to study decep-

tion. The survey covers numerous models for detecting, performing, and responding

to deception. However, the majority of the literature focuses on performing deception.

Four topics require additional attention in future efforts.

The first topic relates to the benefit-risk trade-off of deception. The deceiver

is exposed to risk when playing an off-equilibrium strategy. Little has been done

to address the risk of deception, especially as a trade-off to benefit or value gain.

Characterizing risk is an important area for future work because deception is often

realized as a trade-off between benefit and risk.

Costly deception is the second topic that requires additional attention. Many

of the deception models considered strictly cost-free deceptions. In some scenarios,

cost-free deception is appropriate, but this is not true in general. One approach is

to parametrize the utility functions based on the cost of deception. This common

approach is rarely used in the deception literature. One reason for such little atten-

tion is that analyzing conflicts with parameterized utility functions can be difficult.

Another reason is that cost and utility are not always comparable; in this case, it is
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inappropriate to parameterize the player utility functions based on the cost of decep-

tion. Thus, future work should consider deception from a multiobjective perspective,

measuring cost and benefit separately. This approach is used in Chapter III to define

the Deception Design Problem.

The survey also identifies an absence of models that use multiple deceptive mech-

anisms simultaneously. Recall, a deceptive mechanism describes the means by which

the deception is accomplished from a game theoretic perspective. The survey iden-

tifies five deceptive mechanisms, namely environmental deception (payout manipula-

tion), tactical deception, action deception, participant deception, and misrepresenting

player types. When combined, the mechanisms may improve the effectiveness of the

deception synergistically.

The literature rarely considers the effects of uncertainty on the deceiver. Instead,

much of the literature uses an asymmetric model of information, i.e. researchers often

assume the deceiver has perfect knowledge of the conflict. But in many real-world

conflicts, this is seldom the case: there is often misperception on both sides of the

deception. Future work should investigate models that allow misperception by the

mark and also by the deceiver in order to measure the impact of uncertainty and

misperception in a more realistic way.

Finally, the survey indicates that deception mitigation receives little attention in

the literature. Deception mitigation seeks to minimize the effects of deception and has

applicability in cooperative mechanism design. It is an area of increasing importance

in several emerging fields. For instance, mobile ad hoc networks (MANETs) rely on

the ability of autonomous network nodes to operate in dynamic environments. An

adversary can degrade network performance by introducing a malicious node. The

malicious node could broadcast spurious signals to entice the honest MANET nodes

to organize in a less efficient configuration. However, the MANET can protect against
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such malicious activities by using deception mitigation techniques. Game theory has

been used to reduce the impact of malicious nodes in MANETs [59], but additional

work is needed to mitigate the risk of deception in MANETs and other emerging

fields.

The Deception Design Problem.

The Deception Design Problem (DDP) is a novel approach to deception design,

introduced as a multiobjective problem. The DDP addresses the benefit, cost, and

risk trade-off observed in deceptive conflicts. The model uses a simple normal form

game to define one-sided environmental deception. This game is called the Environ-

mental Deception Game and resembles a two-player hypergame [7]. Definitions for

the benefit, cost, and risk objective functions are presented and discussed. The DDP

is implemented in Java and leverages the algorithms provided by the Multiobjective

Evolutionary Algorithm (MOEA) framework [34].

A case study is used to demonstrate the viability of DDP to inform deception

design. The case study uses a normal form version of the Missile Support Time

(MST) game [63]. The Speed-constrained Multiobjective Particle Swarm Optimiza-

tion (SMPSO) algorithm [58] produces solutions to the DDP that are Pareto efficient

in terms of the benefit, cost and risk objective functions. After executing SMPSO

1,000 times, seven nondominated solutions were presented. The solutions describe the

perceptions that are most desirable for the deceiver, in terms of their benefit, cost,

and risk. Most of the solutions are zero-risk because they either have zero likelihood

of detection or because the deceiver does not need to deviate from the equilibrium of

the original game.

The DDP provides several opportunities for future research. First, the DDP

assumes that the deceiver’s environmental deception was successful, i.e. that the mark
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plays according to the Nash equilibrium of the deceived payouts. This assumption

could be relaxed to consider situations where the deception’s success is uncertain

and the deceiver must operate in a more risk-averse manner. The second principal

assumption was that the deceiver accurately perceived the true payouts of the conflict.

This assumption could be relaxed to explore the effects of misperception on the part

of the deceiver. A more general form of the environmental deception game would

need to be defined. Finally, the case study solutions manipulate the majority of the

payouts (at least 94), but most of the payouts change by less that 0.02. Future work

should evaluate techniques for reducing the total number of changed payouts.

All solutions to the case study manipulate at least 94 out of 98 payouts, but most

of the payouts change by less than 0.02. This case study used the L1-norm as a cost

metric. Researchers should evaluate the impact of the cost metric on the number of

changed payouts, e.g. by comparing solutions with an L1-norm cost to those that use

Lp-norm cost with 0 < p < 1. However, the cost metric should be carefully selected

based on the problem domain. Therefore, future work should evaluate alternative

techniques for reducing the total number of changed payouts, as well. One simple

technique is to introduce an additional objective function that counts the number of

changed payouts; however, the introduction of a fourth dimension in objective space

will likely increase the number of non-dominated solutions considerably. Alterna-

tively, future work can evaluate the performance of other optimization algorithms.

Another technique is to adjust the cost (or benefit) objective function according to

the number of changed payouts. For example, the cost can be scaled by multiplying

cost by 1
p−c , where p is the total number of payouts and c is the total number of

changed payouts. As c approaches p, the cost increases, penalizing solutions with

many changed payouts. One final approach, borrowed from the Ridge Regression

shrinkage method [45], penalizes cost additively based on the magnitude of changed
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payouts. For instance, suppose the maximum allowable deviation is ±δmax. Then the

cost can be penalized by adding the shrinkage penalty, λ
∑

ij(1 − δij/δmax)2, where

δij is the absolute deviation in row i and column j, and lambda is a tuning param-

eter. The shrinkage penalty is inversely proportional to the size of the deviation;

it effectively shrinks the deviations toward zero. The tuning parameter λ controls

the relative impact of the penalty on the resulting solutions. One final approach is

to reduce solution noise mid- or post- execution. A greedy approach could reduce

the smallest deviations first unless and until a change in the equilibrium is observed

before moving to subsequently larger deviations.
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