
NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

TIME SENSITIVITY IN CYBERWEAPON

REUSABILITY

by

Carissa G. Hall

December 2017

Thesis Advisor: Neil Rowe

Second Reader: Wade Huntley

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE

December 2017
3. REPORT TYPE AND DATES COVERED

Master’s thesis

4. TITLE AND SUBTITLE

TIME SENSITIVITY IN CYBERWEAPON REUSABILITY
5. FUNDING NUMBERS

6. AUTHOR(S) Carissa G. Hall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

N/A

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A cyberweapon is weaponized software code that exploits flaws in software. It is only effective if the

flaw still exists at the time of weapon deployment. Because of this, there is only a small window of time in

which a particular cyberweapon can be used. Many argue that cyberweapons can only be effectively used

once, and that after first use, the vulnerability will be patched. However, the target must first detect the

attack, find the vulnerability that was exploited, reverse-engineer the cyberweapon to identify signatures,

then create and implement a patch. This window of opportunity between attack detection and patch

implementation allows an attacker to reuse the cyberweapon against different or even the same targets as

long as the window of opportunity remains open. An attacker can increase the length of time the window

remains open by obfuscating the cyberweapon’s signatures to make it harder to detect the attack or by

making it harder to locate and remove the weapon. This can be accomplished by incorporating

survivability into the weapon’s design requirement. This thesis explores the strategic implications of

reusable cyberweapons by specifically looking at stealth as the critical attribute that allows a cyberweapon

to go undetected and survive long enough to be effectively used more than once.

14. SUBJECT TERMS

cyberweapons, cyberweapon reusability
15. NUMBER OF

PAGES
65

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION

OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release. Distribution is unlimited.

TIME SENSITIVITY IN CYBERWEAPON REUSABILITY

Carissa G. Hall

Lieutenant, United States Navy

B.S., United States Naval Academy, 2011

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL

December 2017

Approved by: Neil Rowe, Ph.D.

Thesis Advisor

Wade Huntley, Ph.D.

Second Reader

Dan Boger, Ph.D.

Chair, Department of Information Sciences

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

A cyberweapon is weaponized software code that exploits flaws in software. It is

only effective if the flaw still exists at the time of weapon deployment. Because of this,

there is only a small window of time in which a particular cyberweapon can be used.

Many argue that cyberweapons can only be effectively used once, and that after first use,

the vulnerability will be patched. However, the target must first detect the attack, find the

vulnerability that was exploited, reverse-engineer the cyberweapon to identify signatures,

then create and implement a patch. This window of opportunity between attack detection

and patch implementation allows an attacker to reuse the cyberweapon against different

or even the same targets as long as the window of opportunity remains open. An attacker

can increase the length of time the window remains open by obfuscating the

cyberweapon’s signatures to make it harder to detect the attack or by making it harder to

locate and remove the weapon. This can be accomplished by incorporating survivability

into the weapon’s design requirement. This thesis explores the strategic implications of

reusable cyberweapons by specifically looking at stealth as the critical attribute that

allows a cyberweapon to go undetected and survive long enough to be effectively used

more than once.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

 OVERVIEW ...1

 SIGNIFICANCE OF A REUSABLE CYBERWEAPON2

II. RELATED RESEARCH ...5

 OVERVIEW ...5

 DEFINING CYBERWEAPONS ..5

1. Classifying Types of Cyberweapons ...7

 VULNERABILITY LIFE CYCLE ..8

1. Discovering Vulnerabilities ...8

2. Reporting Vulnerabilities ..9

3. Patching Vulnerabilities ..10

 THE DEBATE ON PUBLIC DISCLOSURE11

 PERISHABILITY OF CYBERWEAPONS ..13

1. Risk of Rediscovery..14

 TIMING THE USE OF CYBERWEAPONS ..16

III. REUSABILITY ..19

 OVERVIEW ...19

 MALWARE SIGNATURES ...19

 NEGLIGENCE ..20

1. Unpatched Systems ..20

2. Outdated Antivirus Software ..23

3. Publicly Known Vulnerabilities ..23

4. The Human Element ..25

 PERSISTENCE ..26

1. Memory-Resident Malware ..26

2. Fileless Malware ...27

3. Supply Chain Manipulation ..28

 VARIATIONS ..28

1. Encryption and Packing ..29

2. Polymorphic and Metamorphic Malware29

IV. STRATEGIC IMPLICATIONS OF A REUSABLE CYBERWEAPON31

 OVERVIEW ...31

 SURVIVABILITY ...32

1. Applying Survivability to Cyberweapons32

viii

2. Deception and Concealment of Cyberweapons33

 DESIGNING A SURVIVABLE CYBERWEAPON35 C.

1. Determining Probability of Mission Success36

2. Determining Measure of Effectiveness over Time37

V. CONCLUSION ..39

 OVERVIEW ...39 A.

 POLICY RECOMMENDATIONS ..39 B.

1. The Benefits of a Reusable Cyberweapon40

2. The Debate on Cyberweapon Stockpiling..................................40

3. Title 10 and Title 50 Policy Discussion41

 FUTURE RESEARCH ..42 C.

LIST OF REFERENCES ..43

INITIAL DISTRIBUTION LIST ...49

ix

LIST OF FIGURES

Figure 1. Life cycle of a cyberweapon’s effectiveness. Source: Smeets (2017).14

Figure 2. Survivability design model. Adapted from Ball (2003).36

Figure 3. Tree diagram for static mission success. Adapted from Ball (2003).37

Figure 4. Flowchart for continuous mission reevaluation ...38

x

 THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

CVE common vulnerabilities and exposures

CPU central processing unit

DOD Department of Defense

DLL dynamic link libraries

IT information technology

OLE object linking and embedding

OS operating systems

RAM random-access memory

ROM read-only memory

SMB server message block

US-CERT United States Computer Emergency Readiness Team

USB universal serial bus

WINE Worldwide Intelligence Network Environment

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Dr. Neil Rowe, for his contributions and

guidance throughout the writing process. I would also like to thank my second reader, Dr.

Wade Huntley, for his helpful feedback and assistance in scoping my topic. Lastly, I

would like to thank my husband and my parents for all of their contributions throughout

this process. This would not have been possible without all of you. Thank you.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

 OVERVIEW A.

Exploitable flaws in software code that are unknown to the software manufacturer

are referred to as zero-day vulnerabilities. Many individuals and organizations are

interested in exploiting these vulnerabilities by selling information about them or by

creating a weaponized zero-day exploit for that software vulnerability (Stockton &

Golabek-Goldman, 2013). A cyberweapon is software code that exploits a specific

vulnerability on a specific system with the intent to cause destructive physical or digital

effects (Herr & Rosenzweig, 2014). Cyberweapons are usually based on flaws in

software and will usually only be effective if the flaw still exists at the time of weapon

deployment. Because of this, there is an inherent time sensitivity surrounding the use of

cyberweapons where there is only a small window of time when they can be effectively

used or reused.

One factor driving the time-sensitive decision of when to use a cyberweapon is

the potential for obsolescence. Many researchers argue that the longer the attacker holds

onto the cyberweapon, the vulnerability becomes more likely to be discovered and

patched, thus rendering the cyberweapon obsolete (Huntley, 2016). Undeniably, there are

several ways in which a vulnerability could be discovered prior to its use. For example,

an insider could expose the vulnerability, it could be discovered during a penetration test,

or it may be obtained from a third party. Vulnerabilities can also be inadvertently

removed through regularly-scheduled software updates or system upgrades. Any of these

allow the target to patch the vulnerability and remove any opportunity for the attacker to

use or reuse the cyberweapon.

It has been argued that cyberweapons cannot be reused because they are

perishable. The perishability of a cyberweapon refers to its ineffectiveness after first use

because it exposes the vulnerability that was exploited. Once the vulnerability is exposed,

it can be patched and the cyberweapon will be ineffective (Huntley, 2016). However, this

requires that the target recognize that they have been attacked. This could take a varying

2

amount of time depending on the overtness of the cyberweapon’s effects and the caliber

of the target’s cyber defenses. Once the target realizes they have been attacked, they (or

the software vendor or some agency working on their behalf such as an incident response

team) must now locate the vulnerability that was exploited. This process includes

reverse-engineering the cyberweapon to identify signatures and the cyberweapon’s

targets within software. However, the weapon may have been designed to erase its tracks,

leaving minimal artifacts behind to classify signatures or reverse engineer. Once the

analyst determines the exploited vulnerability, someone (often the software vendor) must

write a patch to fix the vulnerability. This may be time-consuming depending on the

complexity of the system. Patching the vulnerability may also adversely affect other

systems. In this instance, it may take days or weeks to write a fully functioning patch.

Writing a patch could also introduce new vulnerabilities into the system. To counter this,

many vendors heavily test their patches to ensure there are no new potential zero-day

vulnerabilities. Once the patch is written, it must be distributed and implemented to

complete the process. If the target has end-users who will also be impacted by the

vulnerability, the target must also disseminate the patch to those users who must also

implement the patch on their systems. Thus, there is a significant gap in time between

when a cyberweapon is launched by an attacker and when a system is fully patched, to

include all end-users.

 SIGNIFICANCE OF A REUSABLE CYBERWEAPON B.

In this gap in time, there is a window of opportunity for the attacker to reuse the

cyberweapon. To appreciate the significance of this gap, first it is important to distinguish

between low-level malware and highly tailored cyberweapons by comparing the intent of

the payload. Highly tailored cyberweapons are designed to cause major effects in a single

use, and are not designed to be reused. Conversely, low-level malware used in

ransomware or denial of service attacks is meant to be reused, relying on the fact that not

all users will patch their systems quickly or use antivirus software. However, this is not to

say that a highly tailored cyberweapon cannot be effectively used more than once. If a

cyberweapon is intended to be reused against the same or different targets, for example,

3

the cyberweapon could target the same vulnerability across multiple platforms that are

geographically dispersed. The attacker could launch these attacks simultaneously or at

different times, relying on the fact that information from attacks is often kept secret from

all but a few responding agencies who may not communicate well. The cyberweapon

could also be designed using obfuscation or encryption techniques that change the

signature of the malware with the intention of getting it past antivirus software by making

it look different.

A cyberweapon that is designed to be used effectively more than once provides a

significant strategic advantage to the attacker and it is extremely hard to defend against.

Once a target is attacked, the victim must begin the post-attack process and their systems

will not be secure until it has been fully patched. This gap in time allows for reuse of

cyberweapons. This paper will show that cyberweapons can be effectively used more

than once, and that there is a benefit to the time-sensitive component inherent in

cyberweapons.

The remaining chapters are organized as follows. Chapter II is a literature review

of related research. It introduces the concept of cyberweapon reusability resulting from

the window of opportunity that is created between when a vulnerability is exploited and

when it is fully patched and implemented. Chapter III expands on the previous chapter

and introduces techniques an attacker can use to influence the window of opportunity

directly, such as manipulating malware signatures to extend the window. Chapter IV

discusses the importance of stealth when creating a cyberweapon and how that directly

influences its reusability. Lastly, Chapter V provides major conclusions and opportunities

for future research.

4

THIS PAGE INTENTIONALLY LEFT BLANK.

5

II. RELATED RESEARCH

 OVERVIEW A.

Cyberspace exists in both physical and logical ways. The Joint Publication on

Cyberspace Operations (U.S. Joint Chiefs of Staff, 2013) states that cyberspace can be

defined in terms of a physical, logical, or cyber-persona layer. The physical layer is the

geographic location of the physical hardware and infrastructure. The logical layer

involves cyber components that are closely related but may not reside in one geographic

location, and their interconnections. The cyber-persona layer refers to the actors in

cyberspace. Together, the layers are used to define cyberspace as an “interdependent

network of IT infrastructures, including the Internet, telecommunications networks,

computer systems, and embedded processors and controllers, and the content that flows

across and through these components” (U.S. Joint Chiefs of Staff, 2013, p. I-2).

 DEFINING CYBERWEAPONS B.

To describe something in the cyber domain, parallels are often made between the

conventional and digital world. Rid and McBurney (2012) define conventional weapons

as the tools used to threaten or cause physical harm to a target. The physical effects of

conventional weapons range on a spectrum based on their resulting level of damage. The

same also applies to cyberweapons. Generic low-level malware is malicious software that

can influence a system, but does not cause direct harm. Most malware used by criminal

attackers is low-level malware that causes minimum damage. On the opposite end of the

spectrum, there are cyberweapons—highly capable pieces of malware which can

penetrate a system and possibly autonomously cause physical damage. Cyberweapons are

“computer code that is used, or designed to be used, with the aim of threatening or

causing physical, functional, or mental harm to structures, systems, or living beings” (Rid

& McBurney, 2012, p. 7). They are used to conduct cyberattacks designed to deny,

degrade, disrupt, destroy, and manipulate adversary’s networks. The effects can be both

physical and logical depending on the desired goal (U.S. Joint Chiefs of Staff, 2013).

6

The method of delivering a weapon to the target also differs in the cyber domain.

Cyberweapons usually take advantage of flaws in software code. In fact, there are an

estimated 20 flaws per every thousand lines of source code (Smeets, 2017). Some of

these flaws are vulnerabilities that can ultimately be exploited if discovered.

Vulnerabilities unknown to the software vendor, zero-day vulnerabilities, provide a

special advantage to the attacker. Ablon and Bogart (2017) define a zero-day

vulnerability as a vulnerability without a publicly released patch. A vulnerability

becomes an exploit when there is code that can take advantage of the vulnerability and

grant the attacker access to the system, something not always true for a vulnerability.

Zero-day vulnerabilities give attackers the advantage because they often grant the

attacker a more unobstructed access to a system.

However, there are other ways for an attacker to gain access to a system that do

not require zero-day vulnerabilities. Users who fail to conduct timely software security

updates and antivirus updates will have unpatched operating systems. Security updates

remove previous vulnerabilities in software, so an unpatched system gives attackers easy

access into a system. Social engineering can also enable attackers to access a system. For

instance, user information can be used to conduct email phishing in which an attacker

sends a link with malware attached to it. The malware could contain a virus, a Trojan

Horse, a worm, a rootkit, or could send the user to a malicious site. The user is especially

vulnerable if there is no antivirus software installed or if it is not up to date. A malicious

attacker could also conduct a brute-force password attack to gain system access using

personal information they gathered. There are also several kinds of insider threats that

could enable attacks from within. An insider threat could install some form of removable

media into the system which could also initiate a backdoor on hardware or software. The

attacker ultimately just needs to gain access onto the network somewhere, such as

through an unprotected printer, and then they can begin privilege escalation and

persistence.

7

1. Classifying Types of Cyberweapons

Herr (2014) introduces a model for describing cyberweapons which they refer to

as the PrEP framework. The model identifies three components: a propagation method,

an exploit, and a payload. The propagation method is defined as the way in which the

weapon is delivered to the target. This can be done through removable media,

compromised certificate authorities, compromised email attachments, or compromised

websites, and could have multiple stages. The exploit is the code that takes advantage of

a specific vulnerability in the target that allows access to the system. Vulnerabilities can

be in the operating system, the browser, firmware, or even in hardware. Herr breaks

exploits into three categories: access, privilege escalation, and code execution. The

payload is the weapon itself, the code that accomplishes a goal such as espionage,

persistence, or denial of service. This framework can apply to many kinds of

cyberweapons such as malware, worms, and viruses. It also allows distinguishing

between different variations of the same cyberweapon.

Herr and Rosenzweig (2014) acknowledge that all cyberweapons are malware,

but not all malware are cyberweapons. A cyberweapon must contain all three components

of the PrEP framework, but generally a destructive payload is what differentiates a

cyberweapon from malware. The authors use Metasploit as a case study. Metasploit is an

open-source software framework that consists of a set of “hacking tools including exploit

configuration modules, payload selection and application features, obfuscation modules

to evade intrusion detection systems, and graphical collaboration tools” (Herr &

Rosenzweig, 2014, p. 316). The authors explain that the exploits on Metasploit cannot be

considered malware unless they are used in conjunction with a propagation method.

Further, to be considered a cyberweapon, the exploit and propagation method must be

used in conjunction with a payload that causes destructive effects.

Another way to classify cyberweapons is introduced by Herr and Armbrust (2015)

which uses the characteristics of the code. They analyzed samples of open-source

malware that have been previously attributed to different actors. They defined a

“Malicious Software Sophistication or MASS index,” which “relies on a set of

8

characteristics which describe the behavior and construction of the malware including the

severity of exploits and customization of the payload” (Herr & Armbrust, 2015, p. 1).

These characteristics could be used to identify whether the code came from a state-

sponsored actor and make current attribution techniques stronger. This work also

references the PrEP framework, to suggest that differences in characteristics will occur in

each of the three components of the PrEP framework.

 VULNERABILITY LIFE CYCLE C.

Cyberweapons exist because of the vulnerabilities in software code. To explain

the life cycle a vulnerability undergoes, Arbaugh, Fithen, and McHugh (2000) introduced

a life cycle model that consists of vulnerability birth, discovery, disclosure, correction,

publicity, scripting, and death. Birth refers to the date the flaw was written into the code.

Discovery refers to the date that an actor finds the vulnerability. Disclosure is the date

that the actor reveals information about the vulnerability. Correction is the date the

vulnerability was patched by the software vendor. Publicity refers to the date the public

learns of the vulnerability. Scripting refers to the date an attacker exploits the

vulnerability. Death refers to the day that the vulnerability is no longer exploitable. The

authors note that a vulnerability may not progress though every one of these states. The

critical states of the life cycle model are the discovery, disclosure and correction of

vulnerabilities.

1. Discovering Vulnerabilities

Wilson, Schulman, Bankston, and Herr (2016) introduce the concept of a

vulnerability ecosystem that consists of several different kinds of actors who are

interested in finding software vulnerabilities for a variety of different reasons. The actors

are characterized into four groups: independent agents, small teams, larger teams, and

governments. The independent agents could be security researchers or amateur hackers.

The small teams are academic labs or security firms. The larger teams are the large

technology companies. Governments refer to State-sponsored agencies. The actors who

search for vulnerabilities may be white-hat hackers who are seeking to find and patch

9

vulnerabilities, or they may be black-hat hackers who are finding vulnerabilities for

destructive purposes. Some actors may be driven by financial incentives where they can

report the vulnerability to a bug bounty program or sell it to a third party, regardless of

whether or not the vulnerability will later be exploited. In fact, there is an entire market

for buying, selling, and renting vulnerabilities. Government actors have more capital than

the other actors and will use it to purchase zero-days and other advanced tools. However,

they are also highly capable of discovering and developing their own vulnerabilities.

Criminal actors are focused on purchasing tools with the largest net return, which means

the largest scale with minimal investment. This includes tools such as renting a botnet or

other less-sophisticated tools. Another aspect of vulnerability discovery is how quickly

the software vendor becomes aware of the vulnerability and creates a patch. Because of

this, some software vendors will purchase vulnerabilities for their own products.

2. Reporting Vulnerabilities

Once an actor finds a vulnerability, Wilson et al. (2016) explain that there are

three different reporting options. First, they could choose to keep the vulnerability secret,

referred to as non-disclosure. This is typically done by government actors or market

brokers who rely on the principle that if few know about the vulnerability, few can patch

it, which makes it more valuable to buyers or governments. An actor could also choose to

responsibly disclose it to the vendor so it can be patched before information is released to

the public. Or the actor could choose to fully disclose the vulnerability to the public

without first informing the vendor. The last two options are designed to pressure the

vendor into creating a patch for the vulnerability. Whether vulnerability information

should be made public prior to the release of a patch is the topic of a contentious debate

which will be further discussed in Section D. Interestingly, Shazad, Shafiq, and Liu

(2012) conducted a large-scale study on the trends in software vulnerability disclosure

between 1990 to 2010. They determined that between 1997 and 2006, monthly public

disclosures of vulnerabilities were exponentially increasing. However, since 2008, the

number of monthly disclosures has been decreasing.

10

A list of every publicly released vulnerability is maintained by the Common

Vulnerabilities and Exposures (CVE) database which is sponsored by the United States

Computer Emergency Readiness Team (US-CERT). Arora, Krishnan, Nandkumar,

Telang, and Yang (2004) explained the sequence of events following a vulnerability

disclosure to CERT. First, CERT will contact the vendor and provide them a prescribed

amount of time to patch the vulnerability. After the time has elapsed, CERT will send out

a public advisory, and a CVE identifier will be assigned to the vulnerability.

3. Patching Vulnerabilities

The duration between vendor discovery and patch distribution differs per

vulnerability depending on when the attack is discovered by the vendor so they can begin

the patch development process. Bilge and Dumitras (2012) were able to conclude that

attacks can last anywhere between 19 days and 30 months with an average zero-day

attack lasting up to 312 days before it is discovered. Some attacks have taken up to 2.5

years before they were discovered.

Shazad et al. (2012) conducted a pattern analysis of 46310 vulnerabilities

discovered between 1988 and 2011 and were able to conclude that up until 2005, “the

percentage of vulnerabilities patched on or before disclosure dates consistently

decreased.” This is attributed to the overall lack of security concerns during this period in

time. However, this has been gradually improving since 2005 and now “vendors have

been providing patches for more than 80% of total vulnerabilities till their disclosure

dates.” This is attributed to the monetary incentives advertised by the software vendors to

motivate vulnerability discoverers to report their findings directly to the vendors. Future

research will prove interesting to see whether this trend continued from 2012 to current

day (Shazad et al., 2012, p. 777).

However, once a patch is released by the software vendor, the user still needs to

install it. A recent study determined that, “most hacking attacks in 2015 exploited known

vulnerabilities that the targets had failed to address despite fixes having been available

for months or even years” (Wilson et al., 2016, p. 4). Thus, a vulnerability’s life cycle

11

ultimately depends both on how quickly the vendor discovers it and how quickly the user

implements the patch.

 THE DEBATE ON PUBLIC DISCLOSURE D.

There is a debate over whether there should be instantaneous or delayed

(“responsible”) disclosure of software vulnerabilities. Instantaneous disclosure is publicly

releasing the vulnerability information at the time of vulnerability discovery prior to

vendor patch development; responsible disclosure is waiting to release vulnerability

information until the patch is ready. Those who argue for instantaneous disclosure

maintain that this puts pressure on software vendors to release patches. Responsible

disclosure supporters argue that public disclosure of unpatched vulnerabilities directly

leads to more attacks. Both sides agree that the vulnerabilities need to be patched quickly

or they risk being rediscovered by malicious actors.

Ozment (2005) examined vulnerability disclosure and vulnerability rediscovery.

The study sought to determine whether vulnerability discovery depleted the number of

vulnerabilities in a system and reduced the probability of vulnerability rediscovery, by

using software-reliability growth models. For the study, the author used data from

vulnerabilities found in the OpenBSD operating system. 39 vulnerabilities had been

discovered over two years. To determine whether vulnerabilities were being depleted, the

vulnerabilities were analyzed using two different software-reliability growth models,

“Brooke’s & Motley’s Discrete SR Binomial Model” and “Yamada’s S-Shaped

Reliability Growth Model” (Ozment, 2005, p. 10). Both models had an acceptable

goodness-of-fit. The results suggested that vulnerability disclosure is socially beneficial

as it provides a hardened product. The article also contradicts prior research which stated

that vulnerabilities could not be rediscovered by providing numerous instances of

vulnerability rediscovery using Microsoft Security Bulletins and an analysis of potential

reasons for rediscovery. This article assumed that everyone who is discovering or

rediscovering vulnerabilities were “white-hat” (non-malicious) researchers, so from an

attacker’s perspective several things are not addressed. For instance, this article fails to

12

address the gap in time between patch readiness and a fully patched system and the

security concerns with rediscovery.

Bilge and Dumitras (2012) conducted an empirical study on zero-day attacks. The

data used were taken from the Worldwide Intelligence Network Environment (WINE), a

database that was compiled by Symantec from 11 million hosts across the world. The

hosts targeted by the attacks were all real computers (not honeypots). First, the authors

identified executable files that were targeted in specific exploits. The authors then

retrieved the executable-file public disclosure date. They could use these two data points

to look for instances of an executable file existing on a system prior to the public-

disclosure date. This would identify a zero-day attack. The results showed 18

vulnerabilities were exploited prior to their public disclosure. From this, they could

determine that after the vulnerabilities were publicly disclosed, attacks increased in

volume up to 5 orders of magnitude. They also found that 42% of the vulnerabilities were

used within 30 days after the public disclosure date. These findings support the majority

thinking that public disclosure of vulnerabilities cause attacks to increase. However,

participants of the debate “disagree about whether trading off a high volume of attacks

for faster patching provides an overall benefit to society” (Bilge & Dumitras, 2012, p.

842).

Arora et al. (2004) tested how quickly software vendors release a patch following

public disclosure and the probability that attackers find and exploit unpublicized

vulnerabilities. Their goal was to provide evidence for a good public policy that would

end the contentious debate over vulnerability disclosure. The data for the test was taken

from 14 honeypots utilizing four different operating systems: Linux, Solaris, OpenBSD,

and Windows. To test the frequency of attacks on the honeypots, the researchers selected

308 vulnerabilities from the CVE database. They classified the vulnerabilities based on

whether they were secret, published, or patched. Over a period of nine weeks, there were

2772 observations taken from the honeypots. The results showed that public disclosure

forces the software vendors to patch earlier than they otherwise would have, but public

disclosure also increases the frequency of attacks on users. However, vulnerabilities that

13

are kept secret tend to remain secret and are never publicly disclosed, resulting in fewer

attacks on users.

 PERISHABILITY OF CYBERWEAPONS E.

Smeets (2017) discusses the transitory nature of cyberweapons. Most scholars

refer to cyberweapons as single-use or “perishable” weapons. However, the concepts are

different. Single-use means that once the cyberweapon is used, the vulnerability will be

patched and can no longer be exploited. Perishable means that cyberweapons become

ineffective after first use because use exposes the vulnerability that was exploited. Smeets

suggests there is a temporary period in which cyberweapons can cause harm, which is

what makes them transitory. They can be stockpiled, and there is an average of 312 days

between a vulnerability being exploited and its patch implementation, which means that

there is still an opportunity to reuse the cyberweapon after first use.

Schneier (2000) referred to the transitory nature of cyberweapons as a “window of

exposure.” His framework consists of five phases of the vulnerability life cycle. Smeets

(2017) took this framework and added in additional events to make it more

comprehensive. Figure 1 summarizes the new framework which includes tvulnerability,

tdiscovery, texploit, tawareness, tdisclosure, and tpatch to account for the date the

vulnerability was introduced into the code, the date the vulnerability was discovered, the

date the vulnerability was exploited, the date the vendor became aware of the

vulnerability, the date the vulnerability was disclosed to the public, and the date the patch

is released to the public respectively. These events will not necessarily happen in this

order. This framework is designed to help explain the transitory nature of cyberweapons

because there is only a short period of time during which the weapon can be effective.

Ultimately, a cyberweapon can be effective so long as it remains within the window of

exposure, which exists between tvulnerability and tpatch. Once the vulnerability has been

patched, the cyberweapon can no longer be effective.

14

Figure 1. Life cycle of a cyberweapon’s effectiveness. Source: Smeets (2017).

Smeets (2017) argues that once a cyberweapon is used, its effectiveness decreases

against other targets. This is due in part because of the payload design. A payload that

takes down an entire system will likely cause the duration of time between texploit and

tawareness to decrease. But if the payload is an espionage tool, it may not be found as

quickly, causing the time interval to increase. Effectiveness also changes with the target

pool size. If the goal of the attacker is to infect as many vulnerable users as possible, then

the attacker could use the cyberweapon and potentially affect thousands of users.

However, more targets mean a greater chance of discovering the attack quickly. It is true

that with many targets, there will be some users who never patch their system after it is

released. This allows the same vulnerability to be re-exploited by the same or different

cyberweapon. However, for the users who install the patch, reusability of the

cyberweapon has ended.

1. Risk of Rediscovery

Ablon and Bogart (2017) proposed a set of factors for how long governments

should keep zero-day exploits in their arsenals before they risk rediscovery. The factors

are life status, longevity, collision rate, and cost. Life status refers to the vulnerability and

whether or not it is public or private knowledge, meaning whether the vulnerability is

considered a zero-day vulnerability or is fully patched. A private vulnerability has a

higher persistence value than a public vulnerability. Longevity refers to how long it is

15

likely to remain publicly undiscovered or undisclosed. A long longevity means that the

vulnerability would have a high persistence value. Collision rate is the probability that

someone else will discover the zero-day. A high collision rate would decrease the

persistence value of the weapon. The cost refers to the development of the cyberweapon

from the zero-day vulnerability which would not have a significant impact on the

cyberweapon’s persistence. These four criteria were used to analyze 200 zero-day

exploits from 2002–2016 to determine which zero-day exploits the actor should stockpile,

assuming they had to choose which to keep and which to disclose so they can be patched

by the vendor. One of the major findings was that “exploits have an average life

expectancy of 6.9 years after initial discovery; but roughly 25 percent of exploits will not

survive for more than a year and a half, and another 25 percent will not survive more than

9.5 years” before they are rediscovered (Abalon & Bogart, 2017, p. 52). However, this

study does not address the time between vulnerability discovery, patch development,

patch implementation, and a fully patched system, during which exploits can still be

successful after rediscovery. Also, an additional factor could be the risk versus reward.

For example, a factor that addresses the cyberweapon’s capability and the risk associated

with holding on to the cyberweapon for future use versus the probability of vulnerability

discovery which would render the cyberweapon useless with the creation of a patch.

Herr and Schneier (2017) refer to “collision rate” as a “rediscovery rate”; an

example case is the Heartbleed vulnerability which was discovered by two different

companies within just days of each other. When an undisclosed vulnerability is

discovered, the discoverer often will not know if they are the only ones who know about

it. The software vendor could already know about the vulnerability and a patch could be

imminent, or there could be another individual who knows about the vulnerability and

plans to make it public. Also as time elapses, there is more chance of a vulnerability

rediscovery. Vulnerability rediscovery is an important factor in deciding whether a

cyberweapon is useful against a particular target at a particular moment, since an easily

discovered vulnerability is probably not useful to attack.

16

Moussouris and Siegel (2015) proposed a system-dynamics model of the

discovery, rediscovery, and stockpiling processes for software vulnerabilities. The model

addresses the offensive and defensive capabilities associated with vulnerabilities and the

impact this has on the model. For instance, defenders want to find the undiscovered

vulnerabilities and patch them quickly. However, they must also assume that an attacker

also knows of this vulnerability and is stockpiling attacks on it. Therefore, the defender’s

ability to patch the vulnerability renders the stockpiled attacks useless. Moussouris and

Siegel refer to this as discovery correlation. The authors also suggest there is a smaller

discovery correlation rate with hardened software.

 TIMING THE USE OF CYBERWEAPONS F.

All this analysis can be used to plan the use of cyberweapons. Axelrod and Iliev

(2014) introduced a mathematical model for the best time to use a cyberweapon. In their

model, the authors use variables called stakes, stealth, persistence, and use threshold. The

stakes variable is the risk of the current situation, or the chance that you could lose the

weapon’s capability due to discovery of a fix or patch. Increasing the stakes will decrease

the persistence of the weapon value because greater stakes mean it would have a greater

impact if discovered. Stealth is the probability of using but not losing the reuse capability

of the weapon. Increasing the stealth will increase the persistence of the weapon value

because it will increase the amount of time before the weapon has been discovered.

Persistence is the degree that delaying use of the weapon will not affect its usability later.

Stealth and persistence are heavily affected by the network security and capabilities of

the target. The use threshold is the tipping point that causes the cyberweapon to be used

when the stakes are high enough.

The model computes a function of the variables noted earlier for the cyberweapon

that rates the benefit of using the weapon against a particular target at a particular time.

The model outputs the value by introducing “a trade-off between waiting until the stakes

of the present situation are high enough to warrant the use of the resource, but not waiting

so long that the vulnerability the resource exploits might be discovered and patched”

(Axelrod & Iliev, 2012, p. 1298). The model provides a systematic way to weigh the

17

considerations surrounding whether is it more beneficial to use the cyberweapon or wait.

It reduces the complexity of the decision-making process by automating some its steps,

which provides an objective way of determining when cyberweapons should be used.

Hichkad and Bowie (2012) analyze a concept of secret weapons using some

similar ideas. The authors developed a system to explain the importance of secrecy in

maximizing cyberweapon effectiveness. To evaluate the effectiveness of cyberweapons

during military operations, the authors used the following factors: operational

effectiveness, degree of impact, longevity of the weapon once employed, and fragility of

the weapon’s use. Operational effectiveness measured the success of the weapon to meet

objectives. Degree of impact measured whether the weapon had tactical or strategic

implications. Longevity measured the long-term persistence of the effects. Fragility

measured the complexity of the weapon, and how easily it could be reverse-engineered

and patched by the enemy, rendering it obsolete. The authors concluded that

cyberweapons need to remain secret to maintain efficacy, which also generates an

inherent fear of using the weapon. Secret weapons are difficult to test because you do not

want an enemy to get clues to them and patch the vulnerability before the secret weapon

can exploit it. This brings a hesitation to test the cyberweapon in realistic settings and

thus, a greater uncertainty as to whether or not the cyberweapon will actually work once

it is deployed. However, not mentioned is the capability for a wealthy nation state to

create a rather faithful replica of the realistic setting, whereas an entity with fewer

resources would not have this luxury.

18

THIS PAGE INTENTIONALLY LEFT BLANK.

19

III. REUSABILITY

 OVERVIEW A.

During a vulnerability’s lifetime, there is a window of opportunity which begins

once an attack exploits a specific vulnerability, and ends once a patch has been

implemented that removes the vulnerability. The window will vary per vulnerability. For

example, a vulnerability that is found quickly and then publicly disclosed will put

pressure on the vendor to create and release a software patch, so this kind of vulnerability

will only have a short window of opportunity. However, a zero-day vulnerability not

disclosed immediately has a larger window of opportunity because it requires the target

to recognize the attack, locate the vulnerability that was exploited, reverse-engineer the

attack, and then create, test and implement a software patch.

During this window of opportunity, malware and cyberweapons can be reused

effectively until the vulnerability has been patched and the window of opportunity has

closed. However, these scenarios do not account for other factors that may influence a

vulnerability’s window of opportunity, such as an attacker’s ability to influence the

window directly. This chapter discusses malware signatures and how an attacker can

manipulate them to extend the window of opportunity.

 MALWARE SIGNATURES B.

A malware signature is a distinctive byte sequence that has been “extracted from

the body of a specific malware strain” (Ask, 2006, p. 21). It is a distinctive pattern of

bytes that should rarely appear in other files. It is also typically the part of the malware

that contains critical steps for malware functionality and cannot be easily obfuscated.

New malware signatures are developed every day. Ikarus Software GmbH is one

company that writes malware signatures from the samples they receive from “other anti-

virus companies, customers, honeypots and many other sources” (Ask, 2006, p. 26). They

have developed their own automated process to sort through and classify the malware

they receive as either containing a pre-existing signature or as a new variant of pre-

20

existing malware that does not contain a pre-existing signature. Once the sorter tool

makes the initial classification, a human analyst generates a signature for the new variants

of malware (Ask, 2006). This is done by looking for syntactic signatures, which are

particular patterns in sequences of bytes in files or main memory (Bonfante, Kaczmarek,

& Marion, 2008). Fixed patterns can be generalized to “regular expressions” which allow

a single expression to represent a set of similar signatures (Yu, Chen, Diao, Lakshman, &

Katz, 2006). Once the human analyst writes the new signature, it must be tested and then

uploaded into a database so that the users of the antivirus product will be protected from

this new malware variant.

 An alternative to signature-based detection is anomaly-based detection where

intrusions are defined by abnormalities in system behavior. Here, malware analysts must

define what the normal system behaviors are first, and then anomalous behaviors can be

defined (Yang, Usynin, & Hines, 2006). Anomaly based detection can recognize some

zero-day attacks, unlike signature-based detection, but it can have a high false-alarm rate.

 NEGLIGENCE C.

Most system exploitations today are a result of unpatched operating systems or

out-of-date antivirus software (Arbaugh et al., 2000). Users and administrators who fail

to keep their operating systems and antivirus software up-to-date may be defenseless

against attacks and re-attacks which are addressed by previous security updates.

However, there are also cases where the vulnerabilities are public knowledge yet the

vendor fails to release a patch, putting users at risk. Both scenarios allow the attacker to

reuse malware because the window of opportunity remains constant. Attackers can also

encourage negligence directly by coercing users into downloading malware directly to

their computers.

1. Unpatched Systems

As an example of negligence in patching, the Heartbleed vulnerability, CVE-

2014-0160, was in the OpenSSL software library. The US-CERT (2014) released a

technical alert, Ta14-098A, addressing this vulnerability on April 8, 2014, and

21

announcing that a patch had been released. Then there were 600,000 websites at risk. But

two months later, only half of the websites had implemented the patch (Vatu, 2017). As

of January 22, 2017, a Shodan search reported that 199,594 devices were still vulnerable

to Heartbleed (Kovacs, 2017). Microsoft Security Bulletins MS14-064 and MS17-010

identify two other vulnerabilities that were exploited immediately following their public

disclosure. Both exploits were largely effective because many operating systems were not

updated as security updates became available. Another example is Conficker, CVE-2008-

4250, a remote code-execution vulnerability that was first disclosed in Microsoft Security

Bulletin MS08-067 on October 23, 2008. Ten years later, Conficker has exploited almost

eleven million Windows XP machines and continues to infect devices (Olenick, 2016).

Another example is CVE-2014-6332, a vulnerability that was reported in

Microsoft’s Object Linking and Embedding (OLE) technology in Windows (Microsoft,

2015). The vulnerability was privately reported to Microsoft and was followed by the

release of a patch on November 11, 2014 in Microsoft Security Bulletin MS14-064. The

following day, an exploit taking advantage of CVE-2014-6332 was publicly released. By

November 14, 2014, there was evidence of the exploit being used. If users failed to install

the security patch within the first three days after it was released, then they were

defenseless against an attack targeting OLE. This shows how quickly attackers can create

an exploit that targets a specific vulnerability.

A third example occurred on March 14, 2017, when Microsoft Security Bulletin

MS17-010 explained how to patch Server Message Block (SMB) remote code-execution

vulnerabilities CVE-2017-0143, CVE-2017-0144, CVE-2017-0145, CVE-2017-0146,

and CVE-2017-0148 (Microsoft, 2017). One month later, an exploit known as

EternalBlue was publicly released which takes advantage of the SMB vulnerability that

was patched by MS17-010. On May 12, 2017, the large WannaCry ransomware attack

began taking advantage of the EternalBlue vulnerability (Rudis, 2017). On July 12, 2017,

two months after the patch was released by Microsoft, security researcher Elad Eraz

conducted a scan across 80 million IP addresses looking for the vulnerability exploited by

EternalBlue and he identified “50,000 Internet-connected systems that have the SMB_v1

flaw” (Schwartz, 2017). Despite the widespread media coverage of the WannaCry attack,

22

the vulnerability is still present in some systems and the same exploits can be reused by

an attacker.

Many of these exploits succeeded due to failure of Microsoft users to set their

systems to do automatic updates. The default setting on Windows machines is to have

automatic updates selected, which means that a significant number of Microsoft users are

intentionally turning this function off. Kingsley-Hughes (2017) suggests that many users

choose to turn this function off because of the disruption and unreliability of the patches

themselves, even though it leaves them completely vulnerable. For instance, some

organizations do not allow automatic updates on workstations, and do not install them

until their information-technology departments have tested them themselves. Depending

on the vendor, patches can require users to download and install an entire new operating

system or reboot their system multiple times, which is time-consuming. A justification is

that faulty patches have been occasionally released by vendors which break the normal

functionality of the computer or device and disallow users from reverting to previous

updates.

As another example, Petya was introduced a little over one month after

WannaCry, on June 27, 2017. Petya also takes advantage of the EternalBlue vulnerability

that was patched by MS17-010. It was designed to target large companies across several

different countries (Symantec Security Response, 2017). EternalBlue affected most

versions of Windows operating systems. This is significant because as of April 2014,

Microsoft does not support Windows XP operating system. This means there are

generally no new patches being developed or promulgated to the seven percent of

computer users worldwide who still have Windows XP operating systems. But this case

forced Microsoft to create and release a patch for the SMB vulnerability on the Windows

XP operating system on May 12, almost two months after the initial patch was released

for newer versions of Windows operating systems (Dunn, 2017). Although Windows XP

has a patch to protect it from the SMB vulnerability, this does not protect the Windows

XP user from other vulnerabilities discovered in the three-year period after Microsoft

stopped supporting Windows XP.

23

These case studies are focused on individual users who failed to install patches on

time and do not address nation-state militaries or government organizations. The latter

should be more diligent about applying patches quickly. However, diligent patching does

not necessarily mean that the window of opportunity cannot be exploited by an attacker.

It takes one administrator at one organization to fail to install a patch properly or on time

to compromise an entire system.

2. Outdated Antivirus Software

A study by Microsoft estimates that, on average, 24 percent of the world’s

population is unprotected from malware because of outdated antivirus software, which

leaves them five times more likely to become infected with malware (Meisner, 2013).

Antivirus software is designed to check for previously identified malicious patterns (US-

CERT Publications, 2009). For example, the email worm known as the ILOVEYOU bug

infected almost 45 million Windows machines between May 4–5, 2000 (Ward, 2010).

Symantec reported that as of May 31, 2001, all 82 variants of the worm were updated in

virus definitions and would be detected by antivirus software (Chien, 2000). Still, some

systems were infected after that date.

Tools for penetration testing can also maliciously launch attacks against

unsuspecting unprotected targets. For example, Metasploit has a program known as

MSFvenom which allows an attacker to create a trojaned version of a Windows

application. This will still allow the application to retain full functionality but it will also

contain embedded malware. A user who has the most basic protection from up-to-date

free antivirus software could detect the trojaned application before it launches, yet

substantial portions of the world’s population do not have antivirus systems or keep them

up-to-date which allows an attacker to have continued success by reusing the same

malware.

3. Publicly Known Vulnerabilities

Users are also defenseless against vulnerabilities that have been publicly disclosed

but unpatched by the vendor. An example is the Hot Potato exploit, which chains together

24

three different vulnerabilities in the Windows operating systems. The first exploit was

released in 2014 by Google’s Project Zero. There are also several readily available

exploit tutorials on websites such as Reddit and YouTube about how to exploit this

vulnerability using Metasploit’s exploit module or a Powershell script. Hot Potato is still

prevalent because it still has not been patched by Microsoft. Some of the vulnerabilities

used in Hot Potato were reported in 2000 and Microsoft claims that they cannot patch it

because it would “break compatibility between the different versions of their operating

system” (Prabhu, 2016).

Another heavily used exploit takes advantage of the vulnerability CVE-2017-

0199. It was first discovered in July 2016 and privately reported to Microsoft in October

2016 by Ryan Hanson. In January 2017 attacks began, and there was still no patch

available. McAfee discovered the vulnerability, notified Microsoft on April 6, 2017, and

then publicly released the vulnerability information the next day. On April 9, 2017, an

exploit was for sale on the black market. Then on April 25, 2017 a patch was released by

Microsoft, almost 9 months after discovery. Microsoft claimed that their delay in

patching the vulnerability was because they wanted to “identify other potentially similar

methods and ensure that our fix addresses more than just the issue reported” (Menn,

2017). The delay between discovery, public disclosure, and patch provided a large

window of opportunity for attackers.

Open-source software-sharing websites such as Github allow attackers to post

exploits that take advantage of known vulnerabilities. An example was an exploit for

CVE-2017-0016 which was “a denial of service vulnerability that can crash Windows

when connecting to a malicious SMB share” (Robinson, 2017). The vulnerability was

initially found in September 2016, and an exploit was released on GitHub in February

2017. Microsoft issued a patch for the vulnerability on March 14, 2017 (Spring, 2017).

The patch came alongside 17 additional security bulletins regarding completely different

vulnerabilities, eight of which were critical and three of which had been publicly

disclosed and had accompanying exploits (Robinson, 2017).

Few vulnerabilities remain unpatched for a significant amount of time. However,

the window of opportunity provided by the public sharing of exploits that target known

25

unpatched vulnerabilities give attackers a major advantage, and allow for a greater

window of opportunity to reuse the exploit.

4. The Human Element

Humans can be a key component in allowing attackers to reuse malware multiple

times because an attack can involve deceiving them repeatedly (Symantec, 2017, p. 8). In

2016, there was a significant increase in email malware rates, targeted spear-phishing,

and ransomware. Despite continued warnings to users about opening links in suspicious

emails, users continue to fall prey to these kinds of methods which provide attackers with

good ways for the delivery of malware. Attacks which leverage the human element do

not need to rely on malware signatures bypassing anti-virus software to gain access to a

system. They just need to coerce a user to click a malicious link which takes them to a

website, which then downloads malicious software directly to the target’s computer.

Social engineering is a timeless technique to gather information about a specific

target to tailor phishing emails directly to them. Social engineering could also allow an

attacker to gain information to be able to blackmail an individual, target their home

network with the intention to pivot to their work network, or brute-force their credentials.

Thumb drives can also be used to install malicious software directly on to a target

network. Whether they are dropped in a parking lot and an unsuspecting user plugs it into

the network out of curiosity or an insider deliberately plugs it in to a network, USB

thumb drives are an effective means to target isolated networks.

In fact, CERT updated their definition of an insider threat in 2017 to include

unintentional non-malicious actors (CERT, 2017). This is an important distinction

because there is a significant difference between errors in source code from a mistake and

software engineers who are deliberately writing errors into source code with the intent to

later exploit it as a zero-day exploit. Similarly, users are not clicking on links in emails

with the intention of compromising their company’s network, but because they are

cleverly crafted by an attacker to entice the user. Users will continue to provide an

imperishable attack vector which allows for the window of opportunity to remain open

and malware to be reused.

26

 PERSISTENCE D.

Attackers can also gain continuing access through memory-based malware,

fileless malware, or by manipulating the supply chain. Persistence can be defined as “any

access, action, or configuration change to a system that gives an adversary a persistent

presence on that system” (Mitre, 2017). A persistent presence on a system impedes the

window of opportunity on the system from closing.

1. Memory-Resident Malware

Memory inside a computer is divided into cache, primary, and secondary

memory. Cache memory is designed for temporary use and is faster than primary

memory. Primary memory, or main memory, maintains the data and instructions the

computer is currently using, and is divided into RAM (random-access memory) and

ROM (read-only memory) (Tutorials Point, 2017). Malware that resides in memory

“loads its code into that memory space and remains resident until it is accessed or

reactivated” (McAfee, 2015). However, primary memory and cache are volatile meaning

that memory-resident malware stored in either of these locations is lost when the power

to the computer is turned off (Wueest & Anand, 2017, p. 10). The secondary memory is

non-volatile meaning data is stored until explicitly deleted (Tutorials Point, 2017). This is

a common place for attackers to install malware on target systems. Malware in secondary

storage can also be encrypted, unlike malware in main memory, so it can be more

difficult for antivirus software to detect it.

An example of a memory-resident attack was the Code Red worm which targeted

“a vulnerability in Microsoft’s IIS web servers” (Moore, Shannon, & Claffy 2002, p.

273). On June 18, 2001, Microsoft released the vulnerability information in Security

Bulletin MS01-033 which urged system administrators to patch their systems (Dolak,

2001). Then on July 13, 2001, the Code RedI v1 worm was first discovered in use. This

variant of the worm resided in primary memory, so a reboot would disinfect the machine.

On July 19, 2001, a second variant called Code RedI v2 appeared which differed in the

pseudo-random number generator it used to spread to other hosts. A machine could be

infected multiple times unless the vulnerability was patched. A third variant known as

27

Code RedII began to spread on August 4, 2001 by exploiting the same vulnerability with

completely different code. Code RedII created a “backdoor” giving itself remote access

with administrator privileges, which gave it the persistence it needed to remain through

system reboots (Moore et al., 2002).

Another technique used by attackers to establish persistence on a target machine

is to insert itself in the operating system, often into the dynamic link libraries (DLL)

within the Microsoft Windows operating system. M-Labs (2010) described how an

attacker could gain persistence on a target machine by using DLL search-order hijacking.

To get the program to upload the malware DLL instead of the legitimate DLL, the

attacker can insert the malware DLL into the directory containing the program. If the

malware DLL is in the directory with the same name as the legitimate DLL, the program

will install the malware DLL and never check the folder where the legitimate DLL

actually is. Microsoft is aware of the vulnerability, but claims that patching this would

cause compatibility issues (M-Labs, 2010). This allows attackers to establish and

maintain persistence through a single exploit.

2. Fileless Malware

Fileless malware can use the CPU registers which hold the instructions and data

the CPU is currently working on. Fileless malware can evade “detection by hiding in the

Microsoft Windows registry” (McAfee, 2015a, p. 3). Fileless malware gives the attacker

persistence after the system reboots because the operating system loads the registry when

the computer restarts (Semantic Security Response, 2015). An early example was

Poweliks which uses a naming method to prevent users from finding it, along with a

Watchdog process which continually verifies that “Poweliks is still running and that its

registry subkeys have not been deleted” (Gossett, 2015).

Similarly to Windows registry malware, rootkits can give attackers persistence on

target systems. Rootkits are “software that acquires and maintains privileged access to the

operating systems (OS) while hiding its presence by subverting normal OS behavior”

(Smith and Harrison, 2012, p. 2). Rootkits can subvert normal OS behavior by

intercepting and responding to questions about files and registry keys to hide their

28

existence on machines. Both these techniques allow the attacker to remain on the targeted

machine and continue to reuse a single exploit well after the initial installation.

3. Supply Chain Manipulation

Inserra and Bucci (2014) concluded that a big cybersecurity challenge is the

vulnerability in the components that make up the supply chain by which digital devices

and software are acquired. This includes hardware, firmware, and software. The cyber

supply chain is a global market where components are developed in countries around the

world, and oftentimes a single component requires elements from multiple countries.

Shackleford (2015) states that supply chain issues include malware distributed to end

users in software and firmware updates, disclosure of information to unauthorized

personnel, and stolen vendor credentials that can later be used against an end user. There

could also be product tampering where software or firmware errors are injected into the

code, or hardware trojans or backdoors are installed into the hardware.

Inserra and Bucci (2014) suggest that what makes supply chain attacks so difficult

to detect is that the end user ultimately has to identify what component led to the

intrusion. This becomes difficult when testing must examine all of the software,

firmware, and hardware used by the system. Hardware trojans are challenging to find

because they are often designed to hide from testing procedures; they can be designed to

only activate after certain actions or events.

 VARIATIONS E.

Once a variant of malware is used and analyzed, antivirus software developers

release updated signatures to prevent the reuse of the same variant of malware. Malware

signatures are generally difficult to modify because they are usually created from the

most critical portion of the malware that is difficult to change. However, a skilled

malware author can vary the signatures of the malware through obfuscation techniques.

In 2016 alone, there were “more than 357 million new variants observed” (Symantec,

2017, p. 38). Varying the malware’s signature may temporarily fool host-based antivirus

29

software. This allows the malware to have a greater window of opportunity for

reusability.

1. Encryption and Packing

The ongoing arms race between antivirus companies and attackers continues as

the antivirus companies try to keep up with the evolving methods used by attackers to

obscure malware (Graveland, 2011). A technique used to bypass signature-based

antivirus software is to encrypt the malware. Encrypted malware contains the decryptor

and the encrypted main body. Each time the malware infects a new target, the malware

can be encrypted with a different key. This means the malware looks different each time

and its signatures will be different. However, the malware must be decrypted in main

memory to enable it to be used, and antivirus software can detect it there. Furthermore,

the decryptor usually remains constant from one infection to the next, so an antivirus

signature can be written for just the decryptor (You & Yim, 2010). Malware can also be

compressed or packed to try to evade signatures, but then it is easier to restore the

original malware. Encrypted files are also easier to detect because they have very high

entropy (data randomness), so even without a recognized signature, the target will know

their system is under attack.

Another technique used by malware authors to hide their signatures from anti-

virus software is packing. Software packers are designed to “compress and encrypt other

executable files in a disk and restore the original executable images when the packed files

are loaded into memories” (Yan, Zhang, & Ansari, 2008, p. 72). To detect malware after

it has been packed, it needs to be unpacked so that the anti-virus software or security

researcher can scan it for executable signatures. Most packing or compressing algorithms

are well known; nonetheless, this approach allows for a window of opportunity where the

malware could be reused (Yan et al., 2008).

2. Polymorphic and Metamorphic Malware

Malware authors also use techniques which permit malware to change over time.

This is referred to as polymorphic malware. Examples of obfuscation techniques used

30

include dead-code insertion, register reassignment, subroutine reordering, instruction

substitution, code transportation and code integration. Dead-code insertion adds

instructions to change the appearance of the code but not the code’s behavior. Register

reassignment switches register assignments when this does not change functionality.

Subroutine reordering changes the order of the subroutines, which rarely changes

functionality. Instruction substitution replaces the original instruction with an equivalent

instruction. Code transposition changes the sequence order of the instructions, and code

integration attaches and intertwines to a target program. But as discussed earlier, it is

difficult for obfuscation to change key aspects of the malware which provide the best

signatures. Another technique to combat obfuscation is to run the malware in a safe area

or “sandbox,” allowing it to decrypt itself and reveal its signatures.

Polymorphic malware developers can try to combat detection with

“metamorphic” malware which uses obfuscation techniques, but where the main body is

never exposed in memory so a signature cannot be written against it (You & Yim, 2010).

However, writing such malware is difficult. Christiansen (2010) suggests that malware

which has a morphing mechanism inside, such as polymorphic malware, gives the

antivirus developer an advantage because once they have the malware, it just has to be

reverse engineered to find a specific signature or behavior.

31

IV. STRATEGIC IMPLICATIONS OF A REUSABLE

CYBERWEAPON

 OVERVIEW A.

The previous chapter identified techniques the attacker can leverage to increase

the window of opportunity between vulnerability discovery and patch implementation.

However, using some of these techniques on generic malware differs from using them on

a highly tailored cyberweapon. Generic malware is designed to be used on a large scale

and distributed to many people simultaneously. It can often be reused because the

attackers can rely on mistake-prone ordinary people. The success of the attack depends

upon the likelihood that a portion of the population will be enticed to click links

embedded with malware, or that enough people will fail to patch their operating systems,

install anti-virus software, or keep it up-to-date with the latest malware definitions.

However, attackers cannot rely on random user errors to get system access when

using cyberweapons. Most cyberweapons contain payloads that are highly tailored to a

specific system and are designed to carry out a specific effect in a single strike, much like

conventional armaments. Due to their specificity, cyberweapons are not traditionally

designed to be used more than once, but some could be. A cyberweapon intended for

single use tends to have overt payload effects. They are distinct and dramatic effects

which bring government and media attention, encourage allocation of resources for better

understanding, and prompt investigation to determine exactly what vulnerabilities led to

the effects. In turn, this may cause the window of opportunity for reuse to close quickly

for the original target and also for any other susceptible targets. However, usually it is

irrelevant whether or not the vulnerability is discovered and patched after the cyberattack

because the mission will have already been accomplished, such as with missions that

demonstrate strength or provide temporary area denial.

A reusable cyberweapon should be designed with its survivability in mind. Its

stealthy effects could allow it to accomplish the mission prior to being detected. A

cyberweapon that goes undetected allows the window of opportunity to remain open.

32

 SURVIVABILITY B.

Knowing a cyberweapon’s probability of surviving an attack is especially critical

when offensive actions must be continued over a period to accomplish the objective.

Knowing a cyberweapon’s survivability metric is also beneficial if the intention is to later

reuse this weapon against other targets. A cyberweapon with a high probability of

survivability has a high suitability for reuse.

A model can be adapted from the aircraft combat survivability model created by

Ball (2003). Survivability is measured by how killable the aircraft is based on the

aircraft’s susceptibility and vulnerability. Susceptibility is defined as “the inability of an

aircraft to withstand the man-made hostile environment” (Ball, 2003, p. 1). Vulnerability

is defined as “the inability of an aircraft to avoid the guns, approaching missiles,

exploding warheads, air interceptors, radars, and all of the other elements of an enemy’s

air defense that make up the man-made hostile mission environment” (Ball, 2003, p. 1).

Survivability can be measured using a probability on a scale from 0 to 1. It could

refer to the probability the aircraft will survive the entire mission or the probability it will

survive an attack from a specific threat. Killability, the opposite of survivability, could

refer to a downed aircraft following an attack or an aborted mission where the aircraft

was damaged from an attack and had to return to base. Ball models survivability as one

minus the product of susceptibility and vulnerability. To measure susceptibility of an

aircraft, a model is needed of the sequence of events between when the aircraft

encounters a threat and until there is a successful attack against the aircraft. This is

known as a flyout model. The higher the capability of the threat to detect the aircraft and

successfully target it, the higher the killability of the aircraft. The aircraft’s vulnerability

depends on the predicted threat that the aircraft may face during the mission. It also

depends on the threat’s capability to hit critical components on the aircraft. The higher

the effectiveness of the threat, the higher the killability of the aircraft (Ball, 2003).

1. Applying Survivability to Cyberweapons

The aircraft survivability model can be applied to cyberweapons. Survivability of

a cyberweapon is its capability to avoid or withstand target-detection systems. Detection

33

systems include antivirus software, host-based or network-based intrusion-detection

systems, and other software looking for indicators of compromise. It also includes

manual detection capabilities such as the training and overall level of cyber-security

knowledge of the personnel at the target and their capability to understand their logs and

equipment and realize that they have been attacked.

There are two kinds of survivability: a cyberweapon that survives an attack on the

system it targeted, and a cyberweapon that survives over multiple uses without becoming

obsolete. Some objectives will be tailored around one kind of survivability, and some will

be tailored to fit both. However, a survivable cyberweapon of either kind is valuable.

A cyberweapon can be killed in two ways: vulnerability patching prior to mission

accomplishment, or removal of the cyberweapon from the target system prior to mission

accomplishment. Killability is contingent on how susceptible and vulnerable the

cyberweapon is to the specific target and the effectiveness of the cyberweapon’s

capabilities. Susceptibility is the inability of a cyberweapon to avoid target-detection

systems. Vulnerability is the inability of a cyberweapon to withstand target-detection and

neutralization systems.

2. Deception and Concealment of Cyberweapons

To survive, a cyberweapon must persist on the target system, meaning it must

deceive the target and conceal its effects. Therefore, the ideal cyberweapon is one in

which susceptibility and vulnerability are as close to zero as possible, thus minimizing

the possibility for the cyberweapon to be killed.

Susceptibility is lowest when a cyberweapon fully avoids target-detection

systems. Several attributes can contribute to lower susceptibility, but the most effective

for a cyberweapon is stealth or its capability to conceal effects. Stealth could refer to the

cyberweapon’s propagation method going unnoticed by the target detection systems, its

inability to be located on the target system, or the effects of the payload after it is

installed as an implant on the target system. Stealth could also refer to the cyberweapon’s

capability to deceive the target’s operators by concealing the effects of organizational

routines (Gartzke & Lindsay, 2015).

34

Vulnerability is lowest when a cyberweapon can be discovered by the target’s

detection systems but still accomplish the mission. Redundancy can lower the

vulnerability, analogously to how an aircraft with a single engine is more likely to be

disabled with a single-shot attack. Redundancy in a cyberweapon could mean that

discovery of one method of the weapon will not prevent it from accomplishing its

mission with another method. Vulnerability can also be reduced by hardening the

cyberweapon to make it more persistent between detection and vulnerability patching.

Chapter 3 listed several techniques to harden malware or cyberweapons to make them

more difficult to remove, such as obfuscating the cyberweapon’s code by using

encryption or packing techniques, inserting cyberweapons into the cache or software

registry so they will be reinstalled if deleted, attacking obsecure programs or services that

are not invoked often, or using zero-day attacks so the weapon is harder to find (Rowe,

2015). There is also an opportunity to influence the supply chain by tampering with

hardware, firmware, and software to install hardware trojans or backdoors through

deliberate errors that may be inputed into the code.

These techniques could extend the lifetime of the cyberweapon considerably.

Once the cyberweapon is discovered, the target needs to reverse-engineer the

cyberweapon, determine how persistence was established, determine what vulnerability

was exploited, and patch the vulnerability. The cyberweapon could try to make all these

difficult. For example, it could delay the amount of time before the weapon is first

detected, the amount of time before it is found on the target, the amount of time before it

is removed, and so on. This would allows the window of opportunity to remain open for a

longer period, which could allows for reuse. Reuse could include attacking different

aspects of the same target or sending different payloads.

A great amount of costs in time, effort, and resources are necessary to make a

cyberweapon more resilient. When deciding where in the software the cyberweapon will

mount its attack from, there is a tradeoff between the level of difficulty and resilience.

For instance, a cyberweapon can attack the hardware, but it would require a difficult

process that would likely involve the supply chain. The attacker would need to insert

malicious code into the hardware design or implementation, then ensure that the device

35

that was altered gets installed on the equipment that is later going to be targeted. This

requires much time and effort and has a high level of risk, but would provide an

extremely persistent cyberweapon that would be very difficult to locate on the system.

Conversely, it is easy for an attacker to mount an attack from secondary storage, but anti-

malware software scans such storage repeatedly. Main memory and cache memory are

also easier to mount an attack from, but they are volatile and the system will delete traces

of the malware when the system is powered off, therefore requiring that they be reloaded

with malware when power is restored. The registry and the boot memory are good for

malware to use when it needs stealth and persistence, but they are difficult to modify.

 DESIGNING A SURVIVABLE CYBERWEAPON C.

Depending on the mission objective and type of adversary, each cyberweapon

needs a different design approach. Figure 2 has been adapted from the aircraft

survivability model (Ball, 2003) to create a new method which accounts for survivability

in the cyberweapon design process. Design begins by describing what the mission

objective is, including its intended effects. A cyber capability is designed to exploit a

specific vulnerability on the target system. A determination will be made of the best place

to hide the cyberweapon on a target system according to the type of adversary and the

type of persistence that is desired. The next step is a killability assessment including

vulnerability and susceptibility. In subsequent wargaming, it is necessary to simulate

forces with which the cyberweapon may come in contact while on mission. These include

vulnerability discovery and public disclosure by a third party which results in a patch or

the inadvertent discovery of the system intrusion, or a target-system configuration change

that exposes the cyberweapon or nullifies its effect. The result of wargaming is a mission-

success assessment. If the cyberweapon does not meet the survivability requirements that

are necessary to accomplish the mission, the weapon can be refined.

36

Figure 2. Survivability design model. Adapted from Ball (2003).

1. Determining Probability of Mission Success

To determine the overall probability of mission success, the cyberweapon must

survive the propagation to the target and installation. Then if it remains undetected, it

may be available for reuse on the same system or others. If the cyberweapon is

discovered prior to mission accomplishment, there is a good probability that it will be

killed prior to accomplishing its objective. However, a cyberweapon may still be able to

accomplish the objective after being discovered depending on how long the window of

opportunity remains open on the target system. Note that a detected cyberweapon may

still be available for reuse against other targets if the first target does not ever disclose it.

The tree diagram in Figure 3 has been adapted from the aircraft mission success

model that was developed by Ball (2003) to demonstrate what conditions must be met for

a cyberweapon to survive a mission and be available for reuse.

37

Figure 3. Tree diagram for static mission success. Adapted from Ball (2003).

2. Determining Measure of Effectiveness over Time

A cyberweapon should be continually reevaluated to ensure it is still

accomplishing the intended objective and has not been detected. This is especially

important when a cyberweapon can be reused against the same target or others. If the

weapon was detected by the target, there is still an opportunity to continue the mission

but it becomes risky. The options are to either discontinue the mission and potentially

forego reuse of the cyberweapon in the future, or leave the weapon in place and use the

foothold to install a different form of persistence. If the decision is made to discontinue

the mission, the implant can be fully removed or just rendered inactive. This is an

important distinction because an inactive implant could be reused in the future. In

addition, lengthy missions may also decide to terminate a cyber-operation prior to the

cyberweapon being detected. Figure 4 provides a flowchart for continuously reevaluating

a cyberweapon’s mission effectiveness.

38

Figure 4. Flowchart for continuous mission reevaluation

39

V. CONCLUSION

 OVERVIEW A.

Cyberweapons are traditionally thought of as perishable, use-and-lose weapons

where once the capability has been used, it is revealed to the public, and soon a patch will

be released that removes most of the value of the cyberweapon in the future. However,

this thesis showed that cyberweapons can be effectively used more than once. In a

vulnerability’s life cycle, there is a window of opportunity to re-exploit the vulnerability

after it is discovered and before it is patched. An attacker can prolong the window of

opportunity through obfuscation and concealment of the cyberweapon’s signatures. The

ability for a cyberweapon to survive a mission undetected is enhanced by stealth since

that gives it a higher the probability of surviving.

To begin patching and cause the window of opportunity to close for an attacker,

the target must realize they have been attacked. This includes recognizing the attack,

finding the vulnerability that was exploited, and then creating and implementing a patch

for the vulnerability. This can take time. Until discovered, there is still an opportunity to

reuse the cyberweapon against the same target by re-exploiting the unpatched

vulnerability. Then until the attack has been publicized, there will be opportunities to

reuse the cyberweapons against different targets. Patching itself may be difficult for key

infrastructure systems that must be kept running continuously, so the vulnerability

window may be even larger for them. It is not realistic for a major government

installation to bring down their entire infrastructure while they search for, create, and

implement a patch on all affected systems.

 POLICY RECOMMENDATIONS B.

Historically, cyber attacks by nation-states have yielded effects that have been

very overt and are highly destructive or disruptive. Attacks can be overt to assert

dominance, deter, insert influence, for revenge, or for political effect. Oftentimes overt

weapons with noisy effects cannot be reused. However, if the desire is to retain the

40

capability of the cyberweapon and reuse it, the cyberweapon must be designed with

survivability in mind.

1. The Benefits of a Reusable Cyberweapon

When the cyberweapon is under development, it must be considered whether it

will be designed as a traditional overt single-use cyberweapon or a stealthy reusable

cyberweapon. There are benefits to both, but a reusable cyberweapon with stealthy

effects can provide an attacker with a strategic advantage over an overt single-use

cyberweapon. For instance, if a target organization is developing a capability that the

cyberattacker wanted to prevent, a cyberweapon could infiltrate the supply chain and

disable equipment in a non-alarming manner that would appear to be general machine

malfunction. Alternatively, an attacker could slow down an adversary network so that it

would appear to the system administrators as routine updates or software malfunctioning.

A cyberweapon could also place a multi-method implant on a target system so that the

target could realize they have been attacked, but be unable to stop it because they cannot

find all the methods. Being stealthy and persistent is a tactical advantage for the

commander because it allows the window of opportunity to remain open for a longer

period which enables meeting follow-on objectives using cyber or non-cyber means.

2. The Debate on Cyberweapon Stockpiling

Chapter 2 introduced the issue of whether there is a greater benefit to stockpiling

cyber capabilities versus developing the capabilities as they are required. The decision to

use versus stockpile the weapon depends on the ability to predict when the cyberweapon

will be killed. A cyberweapon on the shelf risks becoming obsolete prior to use, but a

cyberweapon in use has the potential to become perishable because the vulnerability will

be patched.

A reusable cyberweapon has a lower risk of being killed in use. Therefore, the

issue with a reusable cyberweapon is whether it has a higher chance of being killed on the

shelf or in use, and also whether the target is capable of killing the cyberweapon.

Therefore, the risk-assessment decision becomes whether it is more beneficial to use the

41

weapon against a specific target, or delay the use of the weapon until it can be assured

that it is being used against a target that is not capable of killing it. The cyberweapon’s

susceptibility and vulnerability assessments aid in this decision. If all cyberweapons are

designed with survivability in mind, it decreases the need to stockpile them.

3. Title 10 and Title 50 Policy Discussion

Title 10 of the U.S. Code defines Department of Defense (DOD) and military

operations, whereas Title 50 defines the operations conducted by the intelligence

community. Distinguishing between the two depends on whose authorization the mission

commander is operating. If the effect of the action is not apparent and is never intended

to be known or publicly acknowledged, then it is considered covert action which is a Title

50 authority. Military operations, or Title 10 authorities, must publicly acknowledge the

United States’ role in the operation or it must be apparent (Wall, 2011). This is an

important distinction because cyberweapons can be designed with or without the

intention to be attributed to the United States.

Cyberweapon reusability impacts the Title 10 and Title 50 policy discussion in

two ways. First, the cyberweapon can be reused in a single mission to send a variety of

payloads to the target. This allows a cyberweapon to potentially switch authorities mid-

mission from a Title 50 authority to Title 10, or vice versa. A determination would need

to be made on which authority would take precedence depending on whether there is a

greater benefit for the intelligence community or the military. For example, if the

cyberweapon began as a covert action, then there would need to be a risk determination

on whether it is more strategically beneficial to switch to a Title 10 authority and

acknowledge involvement. The disadvantage in acknowledging it is that this would allow

the target to begin searching for the cyberweapon and then patch the vulnerability that

was exploited, which could prevent the cyberweapon from being reused. However, Wall

(2011) argues that a military operation does not require a press release announcing

United States involvement. Therefore, if the operation goes undetected and the United

States is never asked about their involvement, then they will not need to acknowledge it.

42

The intent to acknowledge the operation if asked is different from the actual

acknowledgement itself.

Second, the reusable characteristic of a cyberweapon allows it to be used under

different authorities each time it is used against a new target. Determining the authority

that the cyberweapon falls under will depend on the desired mission goal and whether the

effects are intended to be overt or stealthy. For example, suppose an attacker operates

under Title 50 authority against the first target and Title 10 authority against the next

target. When the effects are acknowledged by the attacker against the second target, the

first target may not even be aware they have been attacked. To fully take advantage of the

benefits a reusable cyberweapon can have in the Title 10 and Title 50 discussion, there

needs to be an updated policy documenting the authorization process specific to reusable

cyberweapons.

 FUTURE RESEARCH C.

The reusability characteristic of a cyberweapon can alter a number of policy

discussions and operating requirements. Future research could focus more specifically on

how to integrate the issues discussed here with current doctrine. Also, it would be helpful

to focus on developing a quantitative way to measure cyberweapon survivability through

measures of effectiveness and measures of performance, and then integrate these

measurements into current cyberweapon development and monitoring. Lastly, future

research could compare costs and benefits between specific single-use cyberweapons and

reusable cyberweapons to see which is more cost-effective.

43

LIST OF REFERENCES

Ablon, L., & Bogart, A. (2017). Zero days, thousands of nights (Research Report No.

1751). Retrieved from http://www.rand.org/t/RR1751

Arbaugh, W., Fithen, W., & McHugh, J. (2000). Windows of vulnerability: A case study

analysis. Computer, 33(12), 52–59. http://dx.doi.org/10.1109/2.889093

Arora, A., Krishnan, R., Nandkumar, A., Telang, R., & Yang, Y. (2004). Impact of

vulnerability disclosure and patch availability—an empirical analysis. Third

Workshop on the Economics of Information Security, 24, 1268–1287. Retrieved

from https://www.dtc.umn.edu/weis2004/telang.pdf

Ask, K. (2006). Automatic Malware Signature Generation. Gecode. Retrieved from

http://www.gecode.org/~schulte/teaching/theses/ICT-ECS-2006-122.pdf

Axelrod, R., & Iliev, R. (2014). Timing of cyber conflict. Proceedings of the National

Academy of Sciences of the United States of America, 111(4), 1298–1303.

http://dx.doi.org/10.1073/pnas.1322638111

Ball, R. E. (2003).The fundamentals of aircraft combat survivability analysis and design,

second edition. Reston, VA: American Institute of Aeronautics and Astronautics,

Inc.

Bilge, L., Dumitras, T. (2012). Before we knew it: An empirical study of zero-day attacks

in the real world. Proceedings of the 2012 ACM Conference on Computer and

Communications Security, 833–844. http://dx.doi.org/10.1145/2382196.2382284

Bonfante, G., Kaczmarek, M., & Marion, J. (2008). Architecture of a morphological

malware detector. Journal in Computer Virology, 5(3), pp. 263–270.

http://dx.doi.org/10.1007/s11416-008-0102-4

CERT. (2017). CERT Insider Threat Center. Retrieved from http://www.cert.org/insider-

threat/cert-insider-threat-center.cfm

Chien, E. (2000). VBS.LoveLetter.Var. Symantec Corporation. Retrieved from

https://www.symantec.com/security_response/writeup.jsp?docid=2000-121815-

2258-99&tabid=3

Christiansen, M. (2010). Bypassing malware defenses [White Paper]. SANS Institute.

Retrieved from SANS Institute InfoSec Reading Room website:

https://www.sans.org/reading-room/whitepapers/testing/bypassing-malware-

defenses-33378

44

Cylance Threat Guidance Team. (2017, April 4). Threat spotlight: The truth about fileless

malware [Blog Post]. Retrieved from https://www.cylance.com/en_us/blog/threat-

spotlight-the-truth-about-fileless-malware.html

Dolak, J. (2001). The Code Red worm [White Paper]. SANS Institute. Retrieved from

SANS Institute InfoSec Reading Room website: https://www.sans.org/reading-

room/whitepapers/malicious/code-red-worm-85

Dunn, J. (2017, May 15). A huge number of PCs still use ancient Windows software that

puts them at risk. Retrieved from http://www.businessinsider.com/how-many-

people-use-windows-xp-chart-2017-5

Gartzke, E., & Lindsay, J. (2015). Weaving tangled webs: Offense, defense, and

deception in cyberspace. Security Studies, 24(2), 316–348. http://dx.doi.org/

10.1080/09636412.2015.1038188

Gossett, K. (2015, June 9). Poweliks click-fraud malware goes fileless in attempt to

prevent removal [Blog Post]. Retrieved from https://www.symantec.com/connect/

blogs/poweliks-click-fraud-malware-goes-fileless-attempt-prevent-removal

Graveland, B. (2011, January 20). Fully undetectable cryptors and the antivirus detection

arms race [Blog Post]. Retrieved from https://www.symantec.com/connect/blogs/

fully undetectable-cryptors-and-antivirus-detection-arms-race

Herr, T. (2014). PrEP: a framework for malware & cyber weapons. The Journal of

Information Warfare, 13(1). http://dx.doi.org/10.2139/ssrn.2343798

Herr, T., & Armbrust, E. (2015). Milware: Identification and implications of state

authored malicious software. Proceedings of the 2015 New Security Paradigms

Workshop, 29–43. http://dx.doi.org/10.1145/2841113.2841116

Herr, T., & Rosenzweig, P. (2014). Cyber weapons and export control: Incorporating

dual use with the PrEP model. Journal of National Security Law and Policy, 8(2),

301–319. http://dx.doi.org/10.2139/ssrn.2501789

Herr, T., & Schneier, B. (2017). Taking stock: estimating vulnerability rediscovery.

Social Science Research Network (SSRN). http://dx.doi.org/10.2139/ssrn.2928758

Hichkad, R., & Bowie, C. (2012). Secret weapons & cyberwar. Armed Forces Journal.

Retrieved from http://armedforcesjournal.com/secret-weapons-cyberwar-2/

Huntley, W. (2016). Strategic implications of offense and defense in cyberwar. 2016 49
th

Hawaii International Conference on System Sciences. http://dx.doi.org/10.1109/

HICSS.2016.691

45

Inserra, D., & Bucci, S. (2014). Cyber supply chain security: A crucial step toward U.S.

security, prosperity, and freedom in cyberspace. The Heritage Foundation.

Retrieved from http://www.heritage.org/defense/report/cyber-supply chain-

security-crucial-step-toward-us-security-prosperity-and-freedom

Kingsley-Hughes, A. (2017, May 15). Stop disabling automatic updates, people.

Retrieved from http://www.zdnet.com/article/stop-disabling-automatic-updates-

people/

Kovacs, E. (2017, January 23). Heartbleed still affects 200,000 devices: Shodan.

Retrieved from http://www.securityweek.com/heartbleed-still-affects-200000-

devices-shodan

M-Labs. (2010, July 15). Malware persistence without the Windows registry [Blog Post].

Retrieved from https://www.fireeye.com/blog/threat-research/2010/07/malware-

persistence-windows-registry.html

McAfee. (2015). McAfee Labs Threats Report. McAfee Inc. Retrieved from

https://www.mcafee.com/us/resources/reports/rp-quarterly threats-nov-2015.pdf

McAfee. (2015a). Protecting Against Fileless Malware. McAfee Inc. Retrieved from

https://www.mcafee.com/us/resources/solution-briefs/sb-quarterly threats-nov-

2015-1.pdf

Meisner, J. (2013, April 17). Latest security intelligence reports shows 24 percent of PCs

are unprotected [Blog Post]. Retrieved from https://blogs.microsoft.com/blog/

2013/04/17/latest-security-intelligence-report-shows-24-percent-of-pcs-are-

unprotected/

Menn, J. (2017, April 26). Hackers exploited Word flaw for months while Microsoft

investigated. Reuters. Retrieved from http://ca.reuters.com/article/

technologyNews/idCAKBN17S32G-OCATC

Microsoft. (2015). Microsoft security intelligence report, volume 18. Microsoft

Corporation. Retrieved from https://www.microsoft.com/en-us/download/

details.aspx?id=46928

Microsoft. (2017). Microsoft security bulletin MS17-010—critical. Microsoft

Corporation. Retrieved from https://technet.microsoft.com/en-us/library/security/

ms17-010.aspx

Mitre. (2017). Persistence. Mitre Corporation. Retrieved from https://attack.mitre.org/

wiki/Persistence

Moore, D., Shannon, C., & Claffy, K. (2002). Code red: a case study on the spread and

victims of an Internet worm. Proceedings of the 2
nd

 ACM SIGCOMM Workshop

46

on the Internet Measurement 2002, France, pp. 273–284. http://dx.doi.org/

10.1145/637201.637244

Moussouris, K., & Siegel, M. (2015). The wolves of Vuln Street: The 1st dynamic

systems model of the 0day market. Retrieved from RSA Conference USA 2015

website: https://www.rsaconference.com/events/us15/agenda/sessions/1749/the-

wolves-of-vuln-street-the-1st-dynamic-systems

Olenick, D. (2016, November 21). Happy birthday Conficker: malware hits 8. Retrieved

from https://www.scmagazine.com/happy-birthday-conficker-malware-hits-8/

article/574419/

Ozment, A. (2005). The likelihood of vulnerability rediscovery and the social utility of

vulnerability hunting. Retrieved from https://pdfs.semanticscholar.org/1e83/

3bab15a975dd71af5fcbbaed4a8df3a5be8a.pdf

Prabhu, V. (2016, January 24). Windows 7/8/8.1/10 vulnerable to Hot Potato exploit by

hackers. Retrieved from https://www.techworm.net/2016/01/windows-7-8-8-1-10-

vulnerable-to-hot-potato-exploit-by-hackers.html

Rid, T., & McBurney, P. (2012). Cyber-weapons. The RUSI Journal, 157:1, 6–13.

http://dx.doi.org/10.1080/03071847.2012.664354

Robinson, T. (2017, March 14). Patch Tuesday: Microsoft releases 18 security bulletins,

18 critical. Retrieved from https://www.scmagazine.com/patch-tuesday-

microsoft-releases-18-security-bulletins-8-critical/article/644148/

Rowe, N. (2015). Finding contextual clues to malware using a large corpus. 3rd IEEE

International Workshop on Security and Forensics in Communication Systems

2015, pp.229-236. http://dx.doi.org/ 10.1109/ISCC.2015.7405521

Rudis, B. (2017, May 12). Wanna decryptor (WNCRY) ransomware explained [Blog

Post]. Retrieved from https://community.rapid7.com/community/infosec/blog/

2017/05/12/wanna-decryptor-wncry-ransomware-explained

Schneier, B. (2000). Full disclosure and the window of exposure. Crypto-Gram.

Retrieved from https://www.schneier.com/crypto-gram/archives/2000/0915.html

Schwartz, M. (2017, July 13). Eternally blue? Scanner finds EternalBlue still widespread

[Blog Post]. Retrieved from http://www.bankinfosecurity.com/blogs/eternally

blue-scanner-finds-eternalblue-still-widespread-p-2512

Shackleford, D. (2015). Combatting cyber risks in the supply chain [White Paper]. SANS

Institute. Retrieved from SANS Institute InfoSec Reading Room website:

https://www.sans.org/reading-room/whitepapers/analyst/combatting-cyber-risks-

supply chain-36252

47

Smith, S., & Harrison, J. (2012). Rootkits [White Paper]. Symantec Corporation.

Retrieved from Symantec Corporation website: https://www.symantec.com/

content/dam/symantec/docs/security-center/white-papers/rootkits-12-en.pdf

Shazad, M., Shafiq, M., & Liu, A. (2012). A large scale exploratory analysis of software

vulnerability life cycles. Proceedings of the 34
th

 International Conference on

Software Engineering, 771–781. Retrieved from http://dl.acm.org/

citation.cfm?id=2337314

Smeets, M. (2017). A Matter of time: On the transitory nature of cyberweapons. Journal

of Strategic Studies, 1–28. http://dx.doi.org/10.1080/01402390.2017.1288107

Spring, T. (2017, February 23). Publicly disclosed Windows vulnerabilities await

patches. Retrieved from https://threatpost.com/publicly disclosed-windows-

vulnerabilities-await-patches/123833/

Stockton, P., & Golabek-Goldman, M. (2013). Curbing the market for cyberweapons.

Yale Law and Policy Review, 32(1), 101–128. Retrieved from

http://digitalcommons.law.yale.edu/ylpr/vol32/iss1/11

Symantec. (2017). Internet Security Threat Report Volume 22. Symantec Corporation.

Retrieved from https://www.symantec.com/security-center/threat-report

Symantec Security Response. (2015, September 24). Kovter malware learns from

Poweliks with persistent registry update [Blog Post]. Retrieved from

https://www.symantec.com/connect/blogs/kovter-malware-learns-poweliks-

persistent-fileless-registry-update

Symantec Security Response. (2017, June 27). Petya ransomware outbreak: Here’s what

you need to know [Blog Post]. Retrieved from https://www.symantec.com/

connect/blogs/petya-ransomware-outbreak-here-s-what-you-need-know

Tutorials Point. (2017). Computer—Memory. Tutorials Point. Retrieved from

https://www.tutorialspoint.com/computer_fundamentals/computer_memory.htm

U.S. Joint Chiefs of Staff. (2013). Cyberspace Operations. Joint Publication 3–12R.

Washington, DC: U.S. Joint Chiefs of Staff, February 5, 2013. Retrieved from

https://cle.nps.edu/access/content/group/0b41fea9-fc21-4d06-8afd-fe9533799b20/

JointPubs/jp3_12r.pdf

US-CERT. (2014). Alert (TA14-098A). United States Computer Emergency Readiness

Team. Retrieved from https://www.us-cert.gov/ncas/alerts/TA14-098A

US-CERT Publications. (2009). Security tip (ST04-005). United States Computer

Emergency Readiness Team. Retrieved from https://www.us-cert.gov/ncas/tips/

ST04-005

48

Vatu, G. (2017, January 23). OpenSSL bug heartbleed still affects some 200,000

websites. Retrieved from http://news.softpedia.com/news/openssl-bug-heartbleed-

still-affects-some-200-000-websites-512117.shtml

Wall, A. (2011). Demystifying the Title 10-Title 50 debate: distinguishing military

operations, intelligence activities & covert action. Harvard Law School National

Security Journal, 3(1), pp. 85–142. Retrieved from http://harvardnsj.org/wp-

content/uploads/2012/01/Vol-3-Wall.pdf

Ward, M. (2010, May 4). A decade on from the ILOVEYOU bug. BBC News. Retrieved

from http://www.bbc.com/news/10095957

Wilson, A., Schulman, R., Bankston, K., & Herr, T. (2016). Bugs in the system. Open

Technology Institute. Retrieved from https://www.newamerica.org/oti/policy-

papers/bugs-system/

Wueest, C., & Anand, H. (2017). ISTR Living off the land and fileless attack techniques

[White Paper]. Symantec Corporation. Retrieved from Symantec Corporation

website: https://www.symantec.com/content/dam/symantec/docs/security-center/

white-papers/istr-living-off-the-land-and-fileless-attack-techniques-en.pdf

Yan, W., Zhang, Z., & Ansari, N. (2008). Revealing Packed Malware. IEEE Security &

Privacy, 6(5), pp. 72–76. http://dx.doi.org/10.1109/MSP.2008.126

Yang, D., Usynin, A., & Hines, J. (2006). Anomaly based intrusion detection for SCADA

systems. American Nuclear Society. Retrieved from

https://pdfs.semanticscholar.org/1af8/

4c9c62fb85590c41b7cfc9357919747842b2.pdf

You, I. & Yim, K. (2014). Malware obfuscation techniques: a brief survey. Proceedings

of the Fifth International Conference on Broadband and Wireless Computing,

Communications and Applications, Japan, pp. 297–300. http://dx.doi.org/10.1109/

BWCCA.2010.85

Yu, F., Chen, Z., Diao, Y., Lakshman, T., & Katz, R. (2006). Fast and memory-efficient

regular expression matching for deep packet inspection. Proceedings of the 2006

ACM/IEEE Symposium on Architecture for Networking and Communications

Systems, USA, pp.93-102. http://dx.doi.org/10.1145/1185347.1185360

49

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

