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ABSTRACT 

A cyberweapon is weaponized software code that exploits flaws in software. It is 

only effective if the flaw still exists at the time of weapon deployment. Because of this, 

there is only a small window of time in which a particular cyberweapon can be used. 

Many argue that cyberweapons can only be effectively used once, and that after first use, 

the vulnerability will be patched. However, the target must first detect the attack, find the 

vulnerability that was exploited, reverse-engineer the cyberweapon to identify signatures, 

then create and implement a patch. This window of opportunity between attack detection 

and patch implementation allows an attacker to reuse the cyberweapon against different 

or even the same targets as long as the window of opportunity remains open. An attacker 

can increase the length of time the window remains open by obfuscating the 

cyberweapon’s signatures to make it harder to detect the attack or by making it harder to 

locate and remove the weapon. This can be accomplished by incorporating survivability 

into the weapon’s design requirement. This thesis explores the strategic implications of 

reusable cyberweapons by specifically looking at stealth as the critical attribute that 

allows a cyberweapon to go undetected and survive long enough to be effectively used 

more than once. 
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I. INTRODUCTION 

 OVERVIEW A.

Exploitable flaws in software code that are unknown to the software manufacturer 

are referred to as zero-day vulnerabilities. Many individuals and organizations are 

interested in exploiting these vulnerabilities by selling information about them or by 

creating a weaponized zero-day exploit for that software vulnerability (Stockton & 

Golabek-Goldman, 2013). A cyberweapon is software code that exploits a specific 

vulnerability on a specific system with the intent to cause destructive physical or digital 

effects (Herr & Rosenzweig, 2014). Cyberweapons are usually based on flaws in 

software and will usually only be effective if the flaw still exists at the time of weapon 

deployment. Because of this, there is an inherent time sensitivity surrounding the use of 

cyberweapons where there is only a small window of time when they can be effectively 

used or reused. 

One factor driving the time-sensitive decision of when to use a cyberweapon is 

the potential for obsolescence. Many researchers argue that the longer the attacker holds 

onto the cyberweapon, the vulnerability becomes more likely to be discovered and 

patched, thus rendering the cyberweapon obsolete (Huntley, 2016). Undeniably, there are 

several ways in which a vulnerability could be discovered prior to its use. For example, 

an insider could expose the vulnerability, it could be discovered during a penetration test, 

or it may be obtained from a third party. Vulnerabilities can also be inadvertently 

removed through regularly-scheduled software updates or system upgrades. Any of these 

allow the target to patch the vulnerability and remove any opportunity for the attacker to 

use or reuse the cyberweapon.  

It has been argued that cyberweapons cannot be reused because they are 

perishable. The perishability of a cyberweapon refers to its ineffectiveness after first use 

because it exposes the vulnerability that was exploited. Once the vulnerability is exposed, 

it can be patched and the cyberweapon will be ineffective (Huntley, 2016). However, this 

requires that the target recognize that they have been attacked. This could take a varying 
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amount of time depending on the overtness of the cyberweapon’s effects and the caliber 

of the target’s cyber defenses. Once the target realizes they have been attacked, they (or 

the software vendor or some agency working on their behalf such as an incident response 

team) must now locate the vulnerability that was exploited. This process includes 

reverse-engineering the cyberweapon to identify signatures and the cyberweapon’s 

targets within software. However, the weapon may have been designed to erase its tracks, 

leaving minimal artifacts behind to classify signatures or reverse engineer. Once the 

analyst determines the exploited vulnerability, someone (often the software vendor) must 

write a patch to fix the vulnerability. This may be time-consuming depending on the 

complexity of the system. Patching the vulnerability may also adversely affect other 

systems. In this instance, it may take days or weeks to write a fully functioning patch. 

Writing a patch could also introduce new vulnerabilities into the system. To counter this, 

many vendors heavily test their patches to ensure there are no new potential zero-day 

vulnerabilities. Once the patch is written, it must be distributed and implemented to 

complete the process. If the target has end-users who will also be impacted by the 

vulnerability, the target must also disseminate the patch to those users who must also 

implement the patch on their systems. Thus, there is a significant gap in time between 

when a cyberweapon is launched by an attacker and when a system is fully patched, to 

include all end-users. 

 SIGNIFICANCE OF A REUSABLE CYBERWEAPON B.

In this gap in time, there is a window of opportunity for the attacker to reuse the 

cyberweapon. To appreciate the significance of this gap, first it is important to distinguish 

between low-level malware and highly tailored cyberweapons by comparing the intent of 

the payload. Highly tailored cyberweapons are designed to cause major effects in a single 

use, and are not designed to be reused. Conversely, low-level malware used in 

ransomware or denial of service attacks is meant to be reused, relying on the fact that not 

all users will patch their systems quickly or use antivirus software. However, this is not to 

say that a highly tailored cyberweapon cannot be effectively used more than once. If a 

cyberweapon is intended to be reused against the same or different targets, for example, 
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the cyberweapon could target the same vulnerability across multiple platforms that are 

geographically dispersed. The attacker could launch these attacks simultaneously or at 

different times, relying on the fact that information from attacks is often kept secret from 

all but a few responding agencies who may not communicate well. The cyberweapon 

could also be designed using obfuscation or encryption techniques that change the 

signature of the malware with the intention of getting it past antivirus software by making 

it look different. 

A cyberweapon that is designed to be used effectively more than once provides a 

significant strategic advantage to the attacker and it is extremely hard to defend against. 

Once a target is attacked, the victim must begin the post-attack process and their systems 

will not be secure until it has been fully patched. This gap in time allows for reuse of 

cyberweapons. This paper will show that cyberweapons can be effectively used more 

than once, and that there is a benefit to the time-sensitive component inherent in 

cyberweapons. 

The remaining chapters are organized as follows. Chapter II is a literature review 

of related research. It introduces the concept of cyberweapon reusability resulting from 

the window of opportunity that is created between when a vulnerability is exploited and 

when it is fully patched and implemented. Chapter III expands on the previous chapter 

and introduces techniques an attacker can use to influence the window of opportunity 

directly, such as manipulating malware signatures to extend the window. Chapter IV 

discusses the importance of stealth when creating a cyberweapon and how that directly 

influences its reusability. Lastly, Chapter V provides major conclusions and opportunities 

for future research. 
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II. RELATED RESEARCH 

 OVERVIEW A.

Cyberspace exists in both physical and logical ways. The Joint Publication on 

Cyberspace Operations (U.S. Joint Chiefs of Staff, 2013) states that cyberspace can be 

defined in terms of a physical, logical, or cyber-persona layer. The physical layer is the 

geographic location of the physical hardware and infrastructure. The logical layer 

involves cyber components that are closely related but may not reside in one geographic 

location, and their interconnections. The cyber-persona layer refers to the actors in 

cyberspace. Together, the layers are used to define cyberspace as an “interdependent 

network of IT infrastructures, including the Internet, telecommunications networks, 

computer systems, and embedded processors and controllers, and the content that flows 

across and through these components” (U.S. Joint Chiefs of Staff, 2013, p. I-2).  

 DEFINING CYBERWEAPONS B.

To describe something in the cyber domain, parallels are often made between the 

conventional and digital world. Rid and McBurney (2012) define conventional weapons 

as the tools used to threaten or cause physical harm to a target. The physical effects of 

conventional weapons range on a spectrum based on their resulting level of damage. The 

same also applies to cyberweapons. Generic low-level malware is malicious software that 

can influence a system, but does not cause direct harm. Most malware used by criminal 

attackers is low-level malware that causes minimum damage. On the opposite end of the 

spectrum, there are cyberweapons—highly capable pieces of malware which can 

penetrate a system and possibly autonomously cause physical damage. Cyberweapons are 

“computer code that is used, or designed to be used, with the aim of threatening or 

causing physical, functional, or mental harm to structures, systems, or living beings” (Rid 

& McBurney, 2012, p. 7). They are used to conduct cyberattacks designed to deny, 

degrade, disrupt, destroy, and manipulate adversary’s networks. The effects can be both 

physical and logical depending on the desired goal (U.S. Joint Chiefs of Staff, 2013). 
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The method of delivering a weapon to the target also differs in the cyber domain. 

Cyberweapons usually take advantage of flaws in software code. In fact, there are an 

estimated 20 flaws per every thousand lines of source code (Smeets, 2017). Some of 

these flaws are vulnerabilities that can ultimately be exploited if discovered. 

Vulnerabilities unknown to the software vendor, zero-day vulnerabilities, provide a 

special advantage to the attacker. Ablon and Bogart (2017) define a zero-day 

vulnerability as a vulnerability without a publicly released patch. A vulnerability 

becomes an exploit when there is code that can take advantage of the vulnerability and 

grant the attacker access to the system, something not always true for a vulnerability. 

Zero-day vulnerabilities give attackers the advantage because they often grant the 

attacker a more unobstructed access to a system. 

However, there are other ways for an attacker to gain access to a system that do 

not require zero-day vulnerabilities. Users who fail to conduct timely software security 

updates and antivirus updates will have unpatched operating systems. Security updates 

remove previous vulnerabilities in software, so an unpatched system gives attackers easy 

access into a system. Social engineering can also enable attackers to access a system. For 

instance, user information can be used to conduct email phishing in which an attacker 

sends a link with malware attached to it. The malware could contain a virus, a Trojan 

Horse, a worm, a rootkit, or could send the user to a malicious site. The user is especially 

vulnerable if there is no antivirus software installed or if it is not up to date. A malicious 

attacker could also conduct a brute-force password attack to gain system access using 

personal information they gathered. There are also several kinds of insider threats that 

could enable attacks from within. An insider threat could install some form of removable 

media into the system which could also initiate a backdoor on hardware or software. The 

attacker ultimately just needs to gain access onto the network somewhere, such as 

through an unprotected printer, and then they can begin privilege escalation and 

persistence. 
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1. Classifying Types of Cyberweapons 

Herr (2014) introduces a model for describing cyberweapons which they refer to 

as the PrEP framework. The model identifies three components: a propagation method, 

an exploit, and a payload. The propagation method is defined as the way in which the 

weapon is delivered to the target. This can be done through removable media, 

compromised certificate authorities, compromised email attachments, or compromised 

websites, and could have multiple stages. The exploit is the code that takes advantage of 

a specific vulnerability in the target that allows access to the system. Vulnerabilities can 

be in the operating system, the browser, firmware, or even in hardware. Herr breaks 

exploits into three categories: access, privilege escalation, and code execution. The 

payload is the weapon itself, the code that accomplishes a goal such as espionage, 

persistence, or denial of service. This framework can apply to many kinds of 

cyberweapons such as malware, worms, and viruses. It also allows distinguishing 

between different variations of the same cyberweapon. 

Herr and Rosenzweig (2014) acknowledge that all cyberweapons are malware, 

but not all malware are cyberweapons. A cyberweapon must contain all three components 

of the PrEP framework, but generally a destructive payload is what differentiates a 

cyberweapon from malware. The authors use Metasploit as a case study. Metasploit is an 

open-source software framework that consists of a set of “hacking tools including exploit 

configuration modules, payload selection and application features, obfuscation modules 

to evade intrusion detection systems, and graphical collaboration tools” (Herr & 

Rosenzweig, 2014, p. 316). The authors explain that the exploits on Metasploit cannot be 

considered malware unless they are used in conjunction with a propagation method. 

Further, to be considered a cyberweapon, the exploit and propagation method must be 

used in conjunction with a payload that causes destructive effects. 

Another way to classify cyberweapons is introduced by Herr and Armbrust (2015) 

which uses the characteristics of the code. They analyzed samples of open-source 

malware that have been previously attributed to different actors. They defined a 

“Malicious Software Sophistication or MASS index,” which “relies on a set of 
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characteristics which describe the behavior and construction of the malware including the 

severity of exploits and customization of the payload” (Herr & Armbrust, 2015, p. 1). 

These characteristics could be used to identify whether the code came from a state-

sponsored actor and make current attribution techniques stronger. This work also 

references the PrEP framework, to suggest that differences in characteristics will occur in 

each of the three components of the PrEP framework. 

 VULNERABILITY LIFE CYCLE C.

Cyberweapons exist because of the vulnerabilities in software code. To explain 

the life cycle a vulnerability undergoes, Arbaugh, Fithen, and McHugh (2000) introduced 

a life cycle model that consists of vulnerability birth, discovery, disclosure, correction, 

publicity, scripting, and death. Birth refers to the date the flaw was written into the code. 

Discovery refers to the date that an actor finds the vulnerability. Disclosure is the date 

that the actor reveals information about the vulnerability. Correction is the date the 

vulnerability was patched by the software vendor. Publicity refers to the date the public 

learns of the vulnerability. Scripting refers to the date an attacker exploits the 

vulnerability. Death refers to the day that the vulnerability is no longer exploitable. The 

authors note that a vulnerability may not progress though every one of these states. The 

critical states of the life cycle model are the discovery, disclosure and correction of 

vulnerabilities. 

1. Discovering Vulnerabilities 

Wilson, Schulman, Bankston, and Herr (2016) introduce the concept of a 

vulnerability ecosystem that consists of several different kinds of actors who are 

interested in finding software vulnerabilities for a variety of different reasons. The actors 

are characterized into four groups: independent agents, small teams, larger teams, and 

governments. The independent agents could be security researchers or amateur hackers. 

The small teams are academic labs or security firms. The larger teams are the large 

technology companies. Governments refer to State-sponsored agencies. The actors who 

search for vulnerabilities may be white-hat hackers who are seeking to find and patch 
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vulnerabilities, or they may be black-hat hackers who are finding vulnerabilities for 

destructive purposes. Some actors may be driven by financial incentives where they can 

report the vulnerability to a bug bounty program or sell it to a third party, regardless of 

whether or not the vulnerability will later be exploited. In fact, there is an entire market 

for buying, selling, and renting vulnerabilities. Government actors have more capital than 

the other actors and will use it to purchase zero-days and other advanced tools. However, 

they are also highly capable of discovering and developing their own vulnerabilities. 

Criminal actors are focused on purchasing tools with the largest net return, which means 

the largest scale with minimal investment. This includes tools such as renting a botnet or 

other less-sophisticated tools. Another aspect of vulnerability discovery is how quickly 

the software vendor becomes aware of the vulnerability and creates a patch. Because of 

this, some software vendors will purchase vulnerabilities for their own products. 

2. Reporting Vulnerabilities 

Once an actor finds a vulnerability, Wilson et al. (2016) explain that there are 

three different reporting options. First, they could choose to keep the vulnerability secret, 

referred to as non-disclosure. This is typically done by government actors or market 

brokers who rely on the principle that if few know about the vulnerability, few can patch 

it, which makes it more valuable to buyers or governments. An actor could also choose to 

responsibly disclose it to the vendor so it can be patched before information is released to 

the public. Or the actor could choose to fully disclose the vulnerability to the public 

without first informing the vendor. The last two options are designed to pressure the 

vendor into creating a patch for the vulnerability. Whether vulnerability information 

should be made public prior to the release of a patch is the topic of a contentious debate 

which will be further discussed in Section D. Interestingly, Shazad, Shafiq, and Liu 

(2012) conducted a large-scale study on the trends in software vulnerability disclosure 

between 1990 to 2010. They determined that between 1997 and 2006, monthly public 

disclosures of vulnerabilities were exponentially increasing. However, since 2008, the 

number of monthly disclosures has been decreasing.  
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A list of every publicly released vulnerability is maintained by the Common 

Vulnerabilities and Exposures (CVE) database which is sponsored by the United States 

Computer Emergency Readiness Team (US-CERT). Arora, Krishnan, Nandkumar, 

Telang, and Yang (2004) explained the sequence of events following a vulnerability 

disclosure to CERT. First, CERT will contact the vendor and provide them a prescribed 

amount of time to patch the vulnerability. After the time has elapsed, CERT will send out 

a public advisory, and a CVE identifier will be assigned to the vulnerability.  

3. Patching Vulnerabilities 

The duration between vendor discovery and patch distribution differs per 

vulnerability depending on when the attack is discovered by the vendor so they can begin 

the patch development process. Bilge and Dumitras (2012) were able to conclude that 

attacks can last anywhere between 19 days and 30 months with an average zero-day 

attack lasting up to 312 days before it is discovered. Some attacks have taken up to 2.5 

years before they were discovered.  

Shazad et al. (2012) conducted a pattern analysis of 46310 vulnerabilities 

discovered between 1988 and 2011 and were able to conclude that up until 2005, “the 

percentage of vulnerabilities patched on or before disclosure dates consistently 

decreased.” This is attributed to the overall lack of security concerns during this period in 

time. However, this has been gradually improving since 2005 and now “vendors have 

been providing patches for more than 80% of total vulnerabilities till their disclosure 

dates.” This is attributed to the monetary incentives advertised by the software vendors to 

motivate vulnerability discoverers to report their findings directly to the vendors. Future 

research will prove interesting to see whether this trend continued from 2012 to current 

day (Shazad et al., 2012, p. 777). 

However, once a patch is released by the software vendor, the user still needs to 

install it. A recent study determined that, “most hacking attacks in 2015 exploited known 

vulnerabilities that the targets had failed to address despite fixes having been available 

for months or even years” (Wilson et al., 2016, p. 4). Thus, a vulnerability’s life cycle 
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ultimately depends both on how quickly the vendor discovers it and how quickly the user 

implements the patch. 

 THE DEBATE ON PUBLIC DISCLOSURE D.

There is a debate over whether there should be instantaneous or delayed 

(“responsible”) disclosure of software vulnerabilities. Instantaneous disclosure is publicly 

releasing the vulnerability information at the time of vulnerability discovery prior to 

vendor patch development; responsible disclosure is waiting to release vulnerability 

information until the patch is ready. Those who argue for instantaneous disclosure 

maintain that this puts pressure on software vendors to release patches. Responsible 

disclosure supporters argue that public disclosure of unpatched vulnerabilities directly 

leads to more attacks. Both sides agree that the vulnerabilities need to be patched quickly 

or they risk being rediscovered by malicious actors.  

Ozment (2005) examined vulnerability disclosure and vulnerability rediscovery. 

The study sought to determine whether vulnerability discovery depleted the number of 

vulnerabilities in a system and reduced the probability of vulnerability rediscovery, by 

using software-reliability growth models. For the study, the author used data from 

vulnerabilities found in the OpenBSD operating system. 39 vulnerabilities had been 

discovered over two years. To determine whether vulnerabilities were being depleted, the 

vulnerabilities were analyzed using two different software-reliability growth models, 

“Brooke’s & Motley’s Discrete SR Binomial Model” and “Yamada’s S-Shaped 

Reliability Growth Model” (Ozment, 2005, p. 10). Both models had an acceptable 

goodness-of-fit. The results suggested that vulnerability disclosure is socially beneficial 

as it provides a hardened product. The article also contradicts prior research which stated 

that vulnerabilities could not be rediscovered by providing numerous instances of 

vulnerability rediscovery using Microsoft Security Bulletins and an analysis of potential 

reasons for rediscovery. This article assumed that everyone who is discovering or 

rediscovering vulnerabilities were “white-hat” (non-malicious) researchers, so from an 

attacker’s perspective several things are not addressed. For instance, this article fails to 
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address the gap in time between patch readiness and a fully patched system and the 

security concerns with rediscovery. 

Bilge and Dumitras (2012) conducted an empirical study on zero-day attacks. The 

data used were taken from the Worldwide Intelligence Network Environment (WINE), a 

database that was compiled by Symantec from 11 million hosts across the world. The 

hosts targeted by the attacks were all real computers (not honeypots). First, the authors 

identified executable files that were targeted in specific exploits. The authors then 

retrieved the executable-file public disclosure date. They could use these two data points 

to look for instances of an executable file existing on a system prior to the public-

disclosure date. This would identify a zero-day attack. The results showed 18 

vulnerabilities were exploited prior to their public disclosure. From this, they could 

determine that after the vulnerabilities were publicly disclosed, attacks increased in 

volume up to 5 orders of magnitude. They also found that 42% of the vulnerabilities were 

used within 30 days after the public disclosure date. These findings support the majority 

thinking that public disclosure of vulnerabilities cause attacks to increase. However, 

participants of the debate “disagree about whether trading off a high volume of attacks 

for faster patching provides an overall benefit to society” (Bilge & Dumitras, 2012, p. 

842). 

Arora et al. (2004) tested how quickly software vendors release a patch following 

public disclosure and the probability that attackers find and exploit unpublicized 

vulnerabilities. Their goal was to provide evidence for a good public policy that would 

end the contentious debate over vulnerability disclosure. The data for the test was taken 

from 14 honeypots utilizing four different operating systems: Linux, Solaris, OpenBSD, 

and Windows. To test the frequency of attacks on the honeypots, the researchers selected 

308 vulnerabilities from the CVE database. They classified the vulnerabilities based on 

whether they were secret, published, or patched. Over a period of nine weeks, there were 

2772 observations taken from the honeypots. The results showed that public disclosure 

forces the software vendors to patch earlier than they otherwise would have, but public 

disclosure also increases the frequency of attacks on users. However, vulnerabilities that 
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are kept secret tend to remain secret and are never publicly disclosed, resulting in fewer 

attacks on users.  

 PERISHABILITY OF CYBERWEAPONS E.

Smeets (2017) discusses the transitory nature of cyberweapons. Most scholars 

refer to cyberweapons as single-use or “perishable” weapons. However, the concepts are 

different. Single-use means that once the cyberweapon is used, the vulnerability will be 

patched and can no longer be exploited. Perishable means that cyberweapons become 

ineffective after first use because use exposes the vulnerability that was exploited. Smeets 

suggests there is a temporary period in which cyberweapons can cause harm, which is 

what makes them transitory. They can be stockpiled, and there is an average of 312 days 

between a vulnerability being exploited and its patch implementation, which means that 

there is still an opportunity to reuse the cyberweapon after first use. 

Schneier (2000) referred to the transitory nature of cyberweapons as a “window of 

exposure.” His framework consists of five phases of the vulnerability life cycle. Smeets 

(2017) took this framework and added in additional events to make it more 

comprehensive. Figure 1 summarizes the new framework which includes tvulnerability, 

tdiscovery, texploit, tawareness, tdisclosure, and tpatch to account for the date the 

vulnerability was introduced into the code, the date the vulnerability was discovered, the 

date the vulnerability was exploited, the date the vendor became aware of the 

vulnerability, the date the vulnerability was disclosed to the public, and the date the patch 

is released to the public respectively. These events will not necessarily happen in this 

order. This framework is designed to help explain the transitory nature of cyberweapons 

because there is only a short period of time during which the weapon can be effective. 

Ultimately, a cyberweapon can be effective so long as it remains within the window of 

exposure, which exists between tvulnerability and tpatch. Once the vulnerability has been 

patched, the cyberweapon can no longer be effective.   
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Figure 1.  Life cycle of a cyberweapon’s effectiveness. Source: Smeets (2017). 

Smeets (2017) argues that once a cyberweapon is used, its effectiveness decreases 

against other targets. This is due in part because of the payload design. A payload that 

takes down an entire system will likely cause the duration of time between texploit and 

tawareness to decrease. But if the payload is an espionage tool, it may not be found as 

quickly, causing the time interval to increase. Effectiveness also changes with the target 

pool size. If the goal of the attacker is to infect as many vulnerable users as possible, then 

the attacker could use the cyberweapon and potentially affect thousands of users. 

However, more targets mean a greater chance of discovering the attack quickly. It is true 

that with many targets, there will be some users who never patch their system after it is 

released. This allows the same vulnerability to be re-exploited by the same or different 

cyberweapon. However, for the users who install the patch, reusability of the 

cyberweapon has ended.  

1. Risk of Rediscovery 

Ablon and Bogart (2017) proposed a set of factors for how long governments 

should keep zero-day exploits in their arsenals before they risk rediscovery. The factors 

are life status, longevity, collision rate, and cost. Life status refers to the vulnerability and 

whether or not it is public or private knowledge, meaning whether the vulnerability is 

considered a zero-day vulnerability or is fully patched. A private vulnerability has a 

higher persistence value than a public vulnerability. Longevity refers to how long it is 
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likely to remain publicly undiscovered or undisclosed. A long longevity means that the 

vulnerability would have a high persistence value. Collision rate is the probability that 

someone else will discover the zero-day. A high collision rate would decrease the 

persistence value of the weapon. The cost refers to the development of the cyberweapon 

from the zero-day vulnerability which would not have a significant impact on the 

cyberweapon’s persistence. These four criteria were used to analyze 200 zero-day 

exploits from 2002–2016 to determine which zero-day exploits the actor should stockpile, 

assuming they had to choose which to keep and which to disclose so they can be patched 

by the vendor. One of the major findings was that “exploits have an average life 

expectancy of 6.9 years after initial discovery; but roughly 25 percent of exploits will not 

survive for more than a year and a half, and another 25 percent will not survive more than 

9.5 years” before they are rediscovered (Abalon & Bogart, 2017, p. 52). However, this 

study does not address the time between vulnerability discovery, patch development, 

patch implementation, and a fully patched system, during which exploits can still be 

successful after rediscovery. Also, an additional factor could be the risk versus reward. 

For example, a factor that addresses the cyberweapon’s capability and the risk associated 

with holding on to the cyberweapon for future use versus the probability of vulnerability 

discovery which would render the cyberweapon useless with the creation of a patch. 

Herr and Schneier (2017) refer to “collision rate” as a “rediscovery rate”; an 

example case is the Heartbleed vulnerability which was discovered by two different 

companies within just days of each other. When an undisclosed vulnerability is 

discovered, the discoverer often will not know if they are the only ones who know about 

it. The software vendor could already know about the vulnerability and a patch could be 

imminent, or there could be another individual who knows about the vulnerability and 

plans to make it public. Also as time elapses, there is more chance of a vulnerability 

rediscovery. Vulnerability rediscovery is an important factor in deciding whether a 

cyberweapon is useful against a particular target at a particular moment, since an easily 

discovered vulnerability is probably not useful to attack.  
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Moussouris and Siegel (2015) proposed a system-dynamics model of the 

discovery, rediscovery, and stockpiling processes for software vulnerabilities. The model 

addresses the offensive and defensive capabilities associated with vulnerabilities and the 

impact this has on the model. For instance, defenders want to find the undiscovered 

vulnerabilities and patch them quickly. However, they must also assume that an attacker 

also knows of this vulnerability and is stockpiling attacks on it. Therefore, the defender’s 

ability to patch the vulnerability renders the stockpiled attacks useless. Moussouris and 

Siegel refer to this as discovery correlation. The authors also suggest there is a smaller 

discovery correlation rate with hardened software.  

 TIMING THE USE OF CYBERWEAPONS F.

All this analysis can be used to plan the use of cyberweapons. Axelrod and Iliev 

(2014) introduced a mathematical model for the best time to use a cyberweapon. In their 

model, the authors use variables called stakes, stealth, persistence, and use threshold. The 

stakes variable is the risk of the current situation, or the chance that you could lose the 

weapon’s capability due to discovery of a fix or patch. Increasing the stakes will decrease 

the persistence of the weapon value because greater stakes mean it would have a greater 

impact if discovered. Stealth is the probability of using but not losing the reuse capability 

of the weapon. Increasing the stealth will increase the persistence of the weapon value 

because it will increase the amount of time before the weapon has been discovered. 

Persistence is the degree that delaying use of the weapon will not affect its usability later. 

Stealth and persistence are heavily affected by the network security and capabilities of 

the target. The use threshold is the tipping point that causes the cyberweapon to be used 

when the stakes are high enough.  

The model computes a function of the variables noted earlier for the cyberweapon 

that rates the benefit of using the weapon against a particular target at a particular time. 

The model outputs the value by introducing “a trade-off between waiting until the stakes 

of the present situation are high enough to warrant the use of the resource, but not waiting 

so long that the vulnerability the resource exploits might be discovered and patched” 

(Axelrod & Iliev, 2012, p. 1298). The model provides a systematic way to weigh the 
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considerations surrounding whether is it more beneficial to use the cyberweapon or wait. 

It reduces the complexity of the decision-making process by automating some its steps, 

which provides an objective way of determining when cyberweapons should be used. 

Hichkad and Bowie (2012) analyze a concept of secret weapons using some 

similar ideas. The authors developed a system to explain the importance of secrecy in 

maximizing cyberweapon effectiveness. To evaluate the effectiveness of cyberweapons 

during military operations, the authors used the following factors: operational 

effectiveness, degree of impact, longevity of the weapon once employed, and fragility of 

the weapon’s use. Operational effectiveness measured the success of the weapon to meet 

objectives. Degree of impact measured whether the weapon had tactical or strategic 

implications. Longevity measured the long-term persistence of the effects. Fragility 

measured the complexity of the weapon, and how easily it could be reverse-engineered 

and patched by the enemy, rendering it obsolete. The authors concluded that 

cyberweapons need to remain secret to maintain efficacy, which also generates an 

inherent fear of using the weapon. Secret weapons are difficult to test because you do not 

want an enemy to get clues to them and patch the vulnerability before the secret weapon 

can exploit it. This brings a hesitation to test the cyberweapon in realistic settings and 

thus, a greater uncertainty as to whether or not the cyberweapon will actually work once 

it is deployed. However, not mentioned is the capability for a wealthy nation state to 

create a rather faithful replica of the realistic setting, whereas an entity with fewer 

resources would not have this luxury. 
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III. REUSABILITY 

 OVERVIEW A.

During a vulnerability’s lifetime, there is a window of opportunity which begins 

once an attack exploits a specific vulnerability, and ends once a patch has been 

implemented that removes the vulnerability. The window will vary per vulnerability. For 

example, a vulnerability that is found quickly and then publicly disclosed will put 

pressure on the vendor to create and release a software patch, so this kind of vulnerability 

will only have a short window of opportunity. However, a zero-day vulnerability not 

disclosed immediately has a larger window of opportunity because it requires the target 

to recognize the attack, locate the vulnerability that was exploited, reverse-engineer the 

attack, and then create, test and implement a software patch.  

During this window of opportunity, malware and cyberweapons can be reused 

effectively until the vulnerability has been patched and the window of opportunity has 

closed. However, these scenarios do not account for other factors that may influence a 

vulnerability’s window of opportunity, such as an attacker’s ability to influence the 

window directly. This chapter discusses malware signatures and how an attacker can 

manipulate them to extend the window of opportunity. 

 MALWARE SIGNATURES  B.

A malware signature is a distinctive byte sequence that has been “extracted from 

the body of a specific malware strain” (Ask, 2006, p. 21). It is a distinctive pattern of 

bytes that should rarely appear in other files. It is also typically the part of the malware 

that contains critical steps for malware functionality and cannot be easily obfuscated.  

New malware signatures are developed every day. Ikarus Software GmbH is one 

company that writes malware signatures from the samples they receive from “other anti-

virus companies, customers, honeypots and many other sources” (Ask, 2006, p. 26). They 

have developed their own automated process to sort through and classify the malware 

they receive as either containing a pre-existing signature or as a new variant of pre-
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existing malware that does not contain a pre-existing signature. Once the sorter tool 

makes the initial classification, a human analyst generates a signature for the new variants 

of malware (Ask, 2006). This is done by looking for syntactic signatures, which are 

particular patterns in sequences of bytes in files or main memory (Bonfante, Kaczmarek, 

& Marion, 2008). Fixed patterns can be generalized to “regular expressions” which allow 

a single expression to represent a set of similar signatures (Yu, Chen, Diao, Lakshman, & 

Katz, 2006). Once the human analyst writes the new signature, it must be tested and then 

uploaded into a database so that the users of the antivirus product will be protected from 

this new malware variant.  

 An alternative to signature-based detection is anomaly-based detection where 

intrusions are defined by abnormalities in system behavior. Here, malware analysts must 

define what the normal system behaviors are first, and then anomalous behaviors can be 

defined (Yang, Usynin, & Hines, 2006). Anomaly based detection can recognize some 

zero-day attacks, unlike signature-based detection, but it can have a high false-alarm rate. 

 NEGLIGENCE C.

Most system exploitations today are a result of unpatched operating systems or 

out-of-date antivirus software (Arbaugh et al., 2000). Users and administrators who fail 

to keep their operating systems and antivirus software up-to-date may be defenseless 

against attacks and re-attacks which are addressed by previous security updates. 

However, there are also cases where the vulnerabilities are public knowledge yet the 

vendor fails to release a patch, putting users at risk. Both scenarios allow the attacker to 

reuse malware because the window of opportunity remains constant. Attackers can also 

encourage negligence directly by coercing users into downloading malware directly to 

their computers. 

1. Unpatched Systems 

As an example of negligence in patching, the Heartbleed vulnerability, CVE-

2014-0160, was in the OpenSSL software library. The US-CERT (2014) released a 

technical alert, Ta14-098A, addressing this vulnerability on April 8, 2014, and 
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announcing that a patch had been released. Then there were 600,000 websites at risk. But 

two months later, only half of the websites had implemented the patch (Vatu, 2017). As 

of January 22, 2017, a Shodan search reported that 199,594 devices were still vulnerable 

to Heartbleed (Kovacs, 2017). Microsoft Security Bulletins MS14-064 and MS17-010 

identify two other vulnerabilities that were exploited immediately following their public 

disclosure. Both exploits were largely effective because many operating systems were not 

updated as security updates became available. Another example is Conficker, CVE-2008-

4250, a remote code-execution vulnerability that was first disclosed in Microsoft Security 

Bulletin MS08-067 on October 23, 2008. Ten years later, Conficker has exploited almost 

eleven million Windows XP machines and continues to infect devices (Olenick, 2016). 

Another example is CVE-2014-6332, a vulnerability that was reported in 

Microsoft’s Object Linking and Embedding (OLE) technology in Windows (Microsoft, 

2015). The vulnerability was privately reported to Microsoft and was followed by the 

release of a patch on November 11, 2014 in Microsoft Security Bulletin MS14-064. The 

following day, an exploit taking advantage of CVE-2014-6332 was publicly released. By 

November 14, 2014, there was evidence of the exploit being used. If users failed to install 

the security patch within the first three days after it was released, then they were 

defenseless against an attack targeting OLE. This shows how quickly attackers can create 

an exploit that targets a specific vulnerability. 

A third example occurred on March 14, 2017, when Microsoft Security Bulletin 

MS17-010 explained how to patch Server Message Block (SMB) remote code-execution 

vulnerabilities CVE-2017-0143, CVE-2017-0144, CVE-2017-0145, CVE-2017-0146, 

and CVE-2017-0148 (Microsoft, 2017). One month later, an exploit known as 

EternalBlue was publicly released which takes advantage of the SMB vulnerability that 

was patched by MS17-010. On May 12, 2017, the large WannaCry ransomware attack 

began taking advantage of the EternalBlue vulnerability (Rudis, 2017). On July 12, 2017, 

two months after the patch was released by Microsoft, security researcher Elad Eraz 

conducted a scan across 80 million IP addresses looking for the vulnerability exploited by 

EternalBlue and he identified “50,000 Internet-connected systems that have the SMB_v1 

flaw” (Schwartz, 2017). Despite the widespread media coverage of the WannaCry attack, 
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the vulnerability is still present in some systems and the same exploits can be reused by 

an attacker.  

Many of these exploits succeeded due to failure of Microsoft users to set their 

systems to do automatic updates. The default setting on Windows machines is to have 

automatic updates selected, which means that a significant number of Microsoft users are 

intentionally turning this function off. Kingsley-Hughes (2017) suggests that many users 

choose to turn this function off because of the disruption and unreliability of the patches 

themselves, even though it leaves them completely vulnerable. For instance, some 

organizations do not allow automatic updates on workstations, and do not install them 

until their information-technology departments have tested them themselves. Depending 

on the vendor, patches can require users to download and install an entire new operating 

system or reboot their system multiple times, which is time-consuming. A justification is 

that faulty patches have been occasionally released by vendors which break the normal 

functionality of the computer or device and disallow users from reverting to previous 

updates.  

As another example, Petya was introduced a little over one month after 

WannaCry, on June 27, 2017. Petya also takes advantage of the EternalBlue vulnerability 

that was patched by MS17-010. It was designed to target large companies across several 

different countries (Symantec Security Response, 2017). EternalBlue affected most 

versions of Windows operating systems. This is significant because as of April 2014, 

Microsoft does not support Windows XP operating system. This means there are 

generally no new patches being developed or promulgated to the seven percent of 

computer users worldwide who still have Windows XP operating systems. But this case 

forced Microsoft to create and release a patch for the SMB vulnerability on the Windows 

XP operating system on May 12, almost two months after the initial patch was released 

for newer versions of Windows operating systems (Dunn, 2017). Although Windows XP 

has a patch to protect it from the SMB vulnerability, this does not protect the Windows 

XP user from other vulnerabilities discovered in the three-year period after Microsoft 

stopped supporting Windows XP. 
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These case studies are focused on individual users who failed to install patches on 

time and do not address nation-state militaries or government organizations. The latter 

should be more diligent about applying patches quickly. However, diligent patching does 

not necessarily mean that the window of opportunity cannot be exploited by an attacker. 

It takes one administrator at one organization to fail to install a patch properly or on time 

to compromise an entire system. 

2. Outdated Antivirus Software 

A study by Microsoft estimates that, on average, 24 percent of the world’s 

population is unprotected from malware because of outdated antivirus software, which 

leaves them five times more likely to become infected with malware (Meisner, 2013). 

Antivirus software is designed to check for previously identified malicious patterns (US-

CERT Publications, 2009). For example, the email worm known as the ILOVEYOU bug 

infected almost 45 million Windows machines between May 4–5, 2000 (Ward, 2010). 

Symantec reported that as of May 31, 2001, all 82 variants of the worm were updated in 

virus definitions and would be detected by antivirus software (Chien, 2000). Still, some 

systems were infected after that date.  

Tools for penetration testing can also maliciously launch attacks against 

unsuspecting unprotected targets. For example, Metasploit has a program known as 

MSFvenom which allows an attacker to create a trojaned version of a Windows 

application. This will still allow the application to retain full functionality but it will also 

contain embedded malware. A user who has the most basic protection from up-to-date 

free antivirus software could detect the trojaned application before it launches, yet 

substantial portions of the world’s population do not have antivirus systems or keep them 

up-to-date which allows an attacker to have continued success by reusing the same 

malware. 

3. Publicly Known Vulnerabilities 

Users are also defenseless against vulnerabilities that have been publicly disclosed 

but unpatched by the vendor. An example is the Hot Potato exploit, which chains together 
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three different vulnerabilities in the Windows operating systems. The first exploit was 

released in 2014 by Google’s Project Zero. There are also several readily available 

exploit tutorials on websites such as Reddit and YouTube about how to exploit this 

vulnerability using Metasploit’s exploit module or a Powershell script. Hot Potato is still 

prevalent because it still has not been patched by Microsoft. Some of the vulnerabilities 

used in Hot Potato were reported in 2000 and Microsoft claims that they cannot patch it 

because it would “break compatibility between the different versions of their operating 

system” (Prabhu, 2016).  

Another heavily used exploit takes advantage of the vulnerability CVE-2017-

0199. It was first discovered in July 2016 and privately reported to Microsoft in October 

2016 by Ryan Hanson. In January 2017 attacks began, and there was still no patch 

available. McAfee discovered the vulnerability, notified Microsoft on April 6, 2017, and 

then publicly released the vulnerability information the next day. On April 9, 2017, an 

exploit was for sale on the black market. Then on April 25, 2017 a patch was released by 

Microsoft, almost 9 months after discovery. Microsoft claimed that their delay in 

patching the vulnerability was because they wanted to “identify other potentially similar 

methods and ensure that our fix addresses more than just the issue reported” (Menn, 

2017). The delay between discovery, public disclosure, and patch provided a large 

window of opportunity for attackers. 

Open-source software-sharing websites such as Github allow attackers to post 

exploits that take advantage of known vulnerabilities. An example was an exploit for 

CVE-2017-0016 which was “a denial of service vulnerability that can crash Windows 

when connecting to a malicious SMB share” (Robinson, 2017). The vulnerability was 

initially found in September 2016, and an exploit was released on GitHub in February 

2017. Microsoft issued a patch for the vulnerability on March 14, 2017 (Spring, 2017). 

The patch came alongside 17 additional security bulletins regarding completely different 

vulnerabilities, eight of which were critical and three of which had been publicly 

disclosed and had accompanying exploits (Robinson, 2017). 

Few vulnerabilities remain unpatched for a significant amount of time. However, 

the window of opportunity provided by the public sharing of exploits that target known 
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unpatched vulnerabilities give attackers a major advantage, and allow for a greater 

window of opportunity to reuse the exploit. 

4. The Human Element 

Humans can be a key component in allowing attackers to reuse malware multiple 

times because an attack can involve deceiving them repeatedly (Symantec, 2017, p. 8). In 

2016, there was a significant increase in email malware rates, targeted spear-phishing, 

and ransomware. Despite continued warnings to users about opening links in suspicious 

emails, users continue to fall prey to these kinds of methods which provide attackers with 

good ways for the delivery of malware. Attacks which leverage the human element do 

not need to rely on malware signatures bypassing anti-virus software to gain access to a 

system. They just need to coerce a user to click a malicious link which takes them to a 

website, which then downloads malicious software directly to the target’s computer.  

Social engineering is a timeless technique to gather information about a specific 

target to tailor phishing emails directly to them. Social engineering could also allow an 

attacker to gain information to be able to blackmail an individual, target their home 

network with the intention to pivot to their work network, or brute-force their credentials. 

Thumb drives can also be used to install malicious software directly on to a target 

network. Whether they are dropped in a parking lot and an unsuspecting user plugs it into 

the network out of curiosity or an insider deliberately plugs it in to a network, USB 

thumb drives are an effective means to target isolated networks.  

In fact, CERT updated their definition of an insider threat in 2017 to include 

unintentional non-malicious actors (CERT, 2017). This is an important distinction 

because there is a significant difference between errors in source code from a mistake and 

software engineers who are deliberately writing errors into source code with the intent to 

later exploit it as a zero-day exploit. Similarly, users are not clicking on links in emails 

with the intention of compromising their company’s network, but because they are 

cleverly crafted by an attacker to entice the user. Users will continue to provide an 

imperishable attack vector which allows for the window of opportunity to remain open 

and malware to be reused.  
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 PERSISTENCE D.

Attackers can also gain continuing access through memory-based malware, 

fileless malware, or by manipulating the supply chain. Persistence can be defined as “any 

access, action, or configuration change to a system that gives an adversary a persistent 

presence on that system” (Mitre, 2017). A persistent presence on a system impedes the 

window of opportunity on the system from closing. 

1. Memory-Resident Malware 

Memory inside a computer is divided into cache, primary, and secondary 

memory. Cache memory is designed for temporary use and is faster than primary 

memory. Primary memory, or main memory, maintains the data and instructions the 

computer is currently using, and is divided into RAM (random-access memory) and 

ROM (read-only memory) (Tutorials Point, 2017). Malware that resides in memory 

“loads its code into that memory space and remains resident until it is accessed or 

reactivated” (McAfee, 2015). However, primary memory and cache are volatile meaning 

that memory-resident malware stored in either of these locations is lost when the power 

to the computer is turned off (Wueest & Anand, 2017, p. 10). The secondary memory is 

non-volatile meaning data is stored until explicitly deleted (Tutorials Point, 2017). This is 

a common place for attackers to install malware on target systems. Malware in secondary 

storage can also be encrypted, unlike malware in main memory, so it can be more 

difficult for antivirus software to detect it. 

An example of a memory-resident attack was the Code Red worm which targeted 

“a vulnerability in Microsoft’s IIS web servers” (Moore, Shannon, & Claffy 2002, p. 

273). On June 18, 2001, Microsoft released the vulnerability information in Security 

Bulletin MS01-033 which urged system administrators to patch their systems (Dolak, 

2001). Then on July 13, 2001, the Code RedI v1 worm was first discovered in use. This 

variant of the worm resided in primary memory, so a reboot would disinfect the machine. 

On July 19, 2001, a second variant called Code RedI v2 appeared which differed in the 

pseudo-random number generator it used to spread to other hosts. A machine could be 

infected multiple times unless the vulnerability was patched. A third variant known as 
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Code RedII began to spread on August 4, 2001 by exploiting the same vulnerability with 

completely different code. Code RedII created a “backdoor” giving itself remote access 

with administrator privileges, which gave it the persistence it needed to remain through 

system reboots (Moore et al., 2002). 

Another technique used by attackers to establish persistence on a target machine 

is to insert itself in the operating system, often into the dynamic link libraries (DLL) 

within the Microsoft Windows operating system. M-Labs (2010) described how an 

attacker could gain persistence on a target machine by using DLL search-order hijacking. 

To get the program to upload the malware DLL instead of the legitimate DLL, the 

attacker can insert the malware DLL into the directory containing the program. If the 

malware DLL is in the directory with the same name as the legitimate DLL, the program 

will install the malware DLL and never check the folder where the legitimate DLL 

actually is. Microsoft is aware of the vulnerability, but claims that patching this would 

cause compatibility issues (M-Labs, 2010). This allows attackers to establish and 

maintain persistence through a single exploit. 

2. Fileless Malware 

Fileless malware can use the CPU registers which hold the instructions and data 

the CPU is currently working on. Fileless malware can evade “detection by hiding in the 

Microsoft Windows registry” (McAfee, 2015a, p. 3). Fileless malware gives the attacker 

persistence after the system reboots because the operating system loads the registry when 

the computer restarts (Semantic Security Response, 2015). An early example was 

Poweliks which uses a naming method to prevent users from finding it, along with a 

Watchdog process which continually verifies that “Poweliks is still running and that its 

registry subkeys have not been deleted” (Gossett, 2015). 

Similarly to Windows registry malware, rootkits can give attackers persistence on 

target systems. Rootkits are “software that acquires and maintains privileged access to the 

operating systems (OS) while hiding its presence by subverting normal OS behavior” 

(Smith and Harrison, 2012, p. 2). Rootkits can subvert normal OS behavior by 

intercepting and responding to questions about files and registry keys to hide their 
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existence on machines. Both these techniques allow the attacker to remain on the targeted 

machine and continue to reuse a single exploit well after the initial installation. 

3. Supply Chain Manipulation 

Inserra and Bucci (2014) concluded that a big cybersecurity challenge is the 

vulnerability in the components that make up the supply chain by which digital devices 

and software are acquired. This includes hardware, firmware, and software. The cyber 

supply chain is a global market where components are developed in countries around the 

world, and oftentimes a single component requires elements from multiple countries. 

Shackleford (2015) states that supply chain issues include malware distributed to end 

users in software and firmware updates, disclosure of information to unauthorized 

personnel, and stolen vendor credentials that can later be used against an end user. There 

could also be product tampering where software or firmware errors are injected into the 

code, or hardware trojans or backdoors are installed into the hardware. 

Inserra and Bucci (2014) suggest that what makes supply chain attacks so difficult 

to detect is that the end user ultimately has to identify what component led to the 

intrusion. This becomes difficult when testing must examine all of the software, 

firmware, and hardware used by the system. Hardware trojans are challenging to find 

because they are often designed to hide from testing procedures; they can be designed to 

only activate after certain actions or events.  

 VARIATIONS E.

Once a variant of malware is used and analyzed, antivirus software developers 

release updated signatures to prevent the reuse of the same variant of malware. Malware 

signatures are generally difficult to modify because they are usually created from the 

most critical portion of the malware that is difficult to change. However, a skilled 

malware author can vary the signatures of the malware through obfuscation techniques. 

In 2016 alone, there were “more than 357 million new variants observed” (Symantec, 

2017, p. 38). Varying the malware’s signature may temporarily fool host-based antivirus 
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software. This allows the malware to have a greater window of opportunity for 

reusability. 

1. Encryption and Packing 

The ongoing arms race between antivirus companies and attackers continues as 

the antivirus companies try to keep up with the evolving methods used by attackers to 

obscure malware (Graveland, 2011). A technique used to bypass signature-based 

antivirus software is to encrypt the malware. Encrypted malware contains the decryptor 

and the encrypted main body. Each time the malware infects a new target, the malware 

can be encrypted with a different key. This means the malware looks different each time 

and its signatures will be different. However, the malware must be decrypted in main 

memory to enable it to be used, and antivirus software can detect it there. Furthermore, 

the decryptor usually remains constant from one infection to the next, so an antivirus 

signature can be written for just the decryptor (You & Yim, 2010). Malware can also be 

compressed or packed to try to evade signatures, but then it is easier to restore the 

original malware. Encrypted files are also easier to detect because they have very high 

entropy (data randomness), so even without a recognized signature, the target will know 

their system is under attack.  

Another technique used by malware authors to hide their signatures from anti-

virus software is packing. Software packers are designed to “compress and encrypt other 

executable files in a disk and restore the original executable images when the packed files 

are loaded into memories” (Yan, Zhang, & Ansari, 2008, p. 72). To detect malware after 

it has been packed, it needs to be unpacked so that the anti-virus software or security 

researcher can scan it for executable signatures. Most packing or compressing algorithms 

are well known; nonetheless, this approach allows for a window of opportunity where the 

malware could be reused (Yan et al., 2008). 

2. Polymorphic and Metamorphic Malware 

Malware authors also use techniques which permit malware to change over time. 

This is referred to as polymorphic malware. Examples of obfuscation techniques used 
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include dead-code insertion, register reassignment, subroutine reordering, instruction 

substitution, code transportation and code integration. Dead-code insertion adds 

instructions to change the appearance of the code but not the code’s behavior. Register 

reassignment switches register assignments when this does not change functionality. 

Subroutine reordering changes the order of the subroutines, which rarely changes 

functionality. Instruction substitution replaces the original instruction with an equivalent 

instruction. Code transposition changes the sequence order of the instructions, and code 

integration attaches and intertwines to a target program. But as discussed earlier, it is 

difficult for obfuscation to change key aspects of the malware which provide the best 

signatures. Another technique to combat obfuscation is to run the malware in a safe area 

or “sandbox,” allowing it to decrypt itself and reveal its signatures.  

Polymorphic malware developers can try to combat detection with 

“metamorphic” malware which uses obfuscation techniques, but where the main body is 

never exposed in memory so a signature cannot be written against it (You & Yim, 2010). 

However, writing such malware is difficult. Christiansen (2010) suggests that malware 

which has a morphing mechanism inside, such as polymorphic malware, gives the 

antivirus developer an advantage because once they have the malware, it just has to be 

reverse engineered to find a specific signature or behavior.  
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IV. STRATEGIC IMPLICATIONS OF A REUSABLE 

CYBERWEAPON 

 OVERVIEW A.

The previous chapter identified techniques the attacker can leverage to increase 

the window of opportunity between vulnerability discovery and patch implementation. 

However, using some of these techniques on generic malware differs from using them on 

a highly tailored cyberweapon. Generic malware is designed to be used on a large scale 

and distributed to many people simultaneously. It can often be reused because the 

attackers can rely on mistake-prone ordinary people. The success of the attack depends 

upon the likelihood that a portion of the population will be enticed to click links 

embedded with malware, or that enough people will fail to patch their operating systems, 

install anti-virus software, or keep it up-to-date with the latest malware definitions. 

However, attackers cannot rely on random user errors to get system access when 

using cyberweapons. Most cyberweapons contain payloads that are highly tailored to a 

specific system and are designed to carry out a specific effect in a single strike, much like 

conventional armaments. Due to their specificity, cyberweapons are not traditionally 

designed to be used more than once, but some could be. A cyberweapon intended for 

single use tends to have overt payload effects. They are distinct and dramatic effects 

which bring government and media attention, encourage allocation of resources for better 

understanding, and prompt investigation to determine exactly what vulnerabilities led to 

the effects. In turn, this may cause the window of opportunity for reuse to close quickly 

for the original target and also for any other susceptible targets. However, usually it is 

irrelevant whether or not the vulnerability is discovered and patched after the cyberattack 

because the mission will have already been accomplished, such as with missions that 

demonstrate strength or provide temporary area denial.   

A reusable cyberweapon should be designed with its survivability in mind. Its 

stealthy effects could allow it to accomplish the mission prior to being detected. A 

cyberweapon that goes undetected allows the window of opportunity to remain open.  
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 SURVIVABILITY B.

Knowing a cyberweapon’s probability of surviving an attack is especially critical 

when offensive actions must be continued over a period to accomplish the objective. 

Knowing a cyberweapon’s survivability metric is also beneficial if the intention is to later 

reuse this weapon against other targets. A cyberweapon with a high probability of 

survivability has a high suitability for reuse. 

A model can be adapted from the aircraft combat survivability model created by 

Ball (2003). Survivability is measured by how killable the aircraft is based on the 

aircraft’s susceptibility and vulnerability. Susceptibility is defined as “the inability of an 

aircraft to withstand the man-made hostile environment” (Ball, 2003, p. 1). Vulnerability 

is defined as “the inability of an aircraft to avoid the guns, approaching missiles, 

exploding warheads, air interceptors, radars, and all of the other elements of an enemy’s 

air defense that make up the man-made hostile mission environment” (Ball, 2003, p. 1).   

Survivability can be measured using a probability on a scale from 0 to 1. It could 

refer to the probability the aircraft will survive the entire mission or the probability it will 

survive an attack from a specific threat. Killability, the opposite of survivability, could 

refer to a downed aircraft following an attack or an aborted mission where the aircraft 

was damaged from an attack and had to return to base. Ball models survivability as one 

minus the product of susceptibility and vulnerability. To measure susceptibility of an 

aircraft, a model is needed of the sequence of events between when the aircraft 

encounters a threat and until there is a successful attack against the aircraft. This is 

known as a flyout model. The higher the capability of the threat to detect the aircraft and 

successfully target it, the higher the killability of the aircraft. The aircraft’s vulnerability 

depends on the predicted threat that the aircraft may face during the mission. It also 

depends on the threat’s capability to hit critical components on the aircraft. The higher 

the effectiveness of the threat, the higher the killability of the aircraft (Ball, 2003).     

1. Applying Survivability to Cyberweapons 

The aircraft survivability model can be applied to cyberweapons. Survivability of 

a cyberweapon is its capability to avoid or withstand target-detection systems. Detection 
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systems include antivirus software, host-based or network-based intrusion-detection 

systems, and other software looking for indicators of compromise. It also includes 

manual detection capabilities such as the training and overall level of cyber-security 

knowledge of the personnel at the target and their capability to understand their logs and 

equipment and realize that they have been attacked. 

There are two kinds of survivability: a cyberweapon that survives an attack on the 

system it targeted, and a cyberweapon that survives over multiple uses without becoming 

obsolete. Some objectives will be tailored around one kind of survivability, and some will 

be tailored to fit both. However, a survivable cyberweapon of either kind is valuable.   

A cyberweapon can be killed in two ways: vulnerability patching prior to mission 

accomplishment, or removal of the cyberweapon from the target system prior to mission 

accomplishment. Killability is contingent on how susceptible and vulnerable the 

cyberweapon is to the specific target and the effectiveness of the cyberweapon’s 

capabilities. Susceptibility is the inability of a cyberweapon to avoid target-detection 

systems. Vulnerability is the inability of a cyberweapon to withstand target-detection and 

neutralization systems.   

2. Deception and Concealment of Cyberweapons 

To survive, a cyberweapon must persist on the target system, meaning it must 

deceive the target and conceal its effects. Therefore, the ideal cyberweapon is one in 

which susceptibility and vulnerability are as close to zero as possible, thus minimizing 

the possibility for the cyberweapon to be killed.   

Susceptibility is lowest when a cyberweapon fully avoids target-detection 

systems. Several attributes can contribute to lower susceptibility, but the most effective 

for a cyberweapon is stealth or its capability to conceal effects. Stealth could refer to the 

cyberweapon’s propagation method going unnoticed by the target detection systems, its 

inability to be located on the target system, or the effects of the payload after it is 

installed as an implant on the target system. Stealth could also refer to the cyberweapon’s 

capability to deceive the target’s operators by concealing the effects of organizational 

routines (Gartzke & Lindsay, 2015). 
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Vulnerability is lowest when a cyberweapon can be discovered by the target’s 

detection systems but still accomplish the mission. Redundancy can lower the 

vulnerability, analogously to how an aircraft with a single engine is more likely to be 

disabled with a single-shot attack. Redundancy in a cyberweapon could mean that 

discovery of one method of the weapon will not prevent it from accomplishing its 

mission with another method. Vulnerability can also be reduced by hardening the 

cyberweapon to make it more persistent between detection and vulnerability patching. 

Chapter 3 listed several techniques to harden malware or cyberweapons to make them 

more difficult to remove, such as obfuscating the cyberweapon’s code by using 

encryption or packing techniques, inserting cyberweapons into the cache or software 

registry so they will be reinstalled if deleted, attacking obsecure programs or services that 

are not invoked often, or using zero-day attacks so the weapon is harder to find (Rowe, 

2015). There is also an opportunity to influence the supply chain by tampering with 

hardware, firmware, and software to install hardware trojans or backdoors through 

deliberate errors that may be inputed into the code.  

These techniques could extend the lifetime of the cyberweapon considerably. 

Once the cyberweapon is discovered, the target needs to reverse-engineer the 

cyberweapon, determine how persistence was established, determine what vulnerability 

was exploited, and patch the vulnerability. The cyberweapon could try to make all these 

difficult. For example, it could delay the amount of time before the weapon is first 

detected, the amount of time before it is found on the target, the amount of time before it 

is removed, and so on. This would allows the window of opportunity to remain open for a 

longer period, which could allows for reuse. Reuse could include attacking different 

aspects of the same target or sending different payloads. 

A great amount of costs in time, effort, and resources are necessary to make a 

cyberweapon more resilient. When deciding where in the software the cyberweapon will 

mount its attack from, there is a tradeoff between the level of difficulty and resilience. 

For instance, a cyberweapon can attack the hardware, but it would require a difficult 

process that would likely involve the supply chain. The attacker would need to insert 

malicious code into the hardware design or implementation, then ensure that the device 
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that was altered gets installed on the equipment that is later going to be targeted. This 

requires much time and effort and has a high level of risk, but would provide an 

extremely persistent cyberweapon that would be very difficult to locate on the system. 

Conversely, it is easy for an attacker to mount an attack from secondary storage, but anti-

malware software scans such storage repeatedly. Main memory and cache memory are 

also easier to mount an attack from, but they are volatile and the system will delete traces 

of the malware when the system is powered off, therefore requiring that they be reloaded 

with malware when power is restored. The registry and the boot memory are good for 

malware to use when it needs stealth and persistence, but they are difficult to modify.  

 DESIGNING A SURVIVABLE CYBERWEAPON C.

Depending on the mission objective and type of adversary, each cyberweapon 

needs a different design approach. Figure 2 has been adapted from the aircraft 

survivability model (Ball, 2003) to create a new method which accounts for survivability 

in the cyberweapon design process. Design begins by describing what the mission 

objective is, including its intended effects. A cyber capability is designed to exploit a 

specific vulnerability on the target system. A determination will be made of the best place 

to hide the cyberweapon on a target system according to the type of adversary and the 

type of persistence that is desired. The next step is a killability assessment including 

vulnerability and susceptibility. In subsequent wargaming, it is necessary to simulate 

forces with which the cyberweapon may come in contact while on mission. These include 

vulnerability discovery and public disclosure by a third party which results in a patch or 

the inadvertent discovery of the system intrusion, or a target-system configuration change 

that exposes the cyberweapon or nullifies its effect. The result of wargaming is a mission-

success assessment. If the cyberweapon does not meet the survivability requirements that 

are necessary to accomplish the mission, the weapon can be refined. 
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Figure 2.  Survivability design model. Adapted from Ball (2003). 

1. Determining Probability of Mission Success 

To determine the overall probability of mission success, the cyberweapon must 

survive the propagation to the target and installation. Then if it remains undetected, it 

may be available for reuse on the same system or others. If the cyberweapon is 

discovered prior to mission accomplishment, there is a good probability that it will be 

killed prior to accomplishing its objective. However, a cyberweapon may still be able to 

accomplish the objective after being discovered depending on how long the window of 

opportunity remains open on the target system. Note that a detected cyberweapon may 

still be available for reuse against other targets if the first target does not ever disclose it.   

The tree diagram in Figure 3 has been adapted from the aircraft mission success 

model that was developed by Ball (2003) to demonstrate what conditions must be met for 

a cyberweapon to survive a mission and be available for reuse.  
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Figure 3.  Tree diagram for static mission success. Adapted from Ball (2003). 

2. Determining Measure of Effectiveness over Time 

A cyberweapon should be continually reevaluated to ensure it is still 

accomplishing the intended objective and has not been detected. This is especially 

important when a cyberweapon can be reused against the same target or others. If the 

weapon was detected by the target, there is still an opportunity to continue the mission 

but it becomes risky. The options are to either discontinue the mission and potentially 

forego reuse of the cyberweapon in the future, or leave the weapon in place and use the 

foothold to install a different form of persistence. If the decision is made to discontinue 

the mission, the implant can be fully removed or just rendered inactive. This is an 

important distinction because an inactive implant could be reused in the future. In 

addition, lengthy missions may also decide to terminate a cyber-operation prior to the 

cyberweapon being detected. Figure 4 provides a flowchart for continuously reevaluating 

a cyberweapon’s mission effectiveness. 
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Figure 4.  Flowchart for continuous mission reevaluation  
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V. CONCLUSION 

 OVERVIEW A.

Cyberweapons are traditionally thought of as perishable, use-and-lose weapons 

where once the capability has been used, it is revealed to the public, and soon a patch will 

be released that removes most of the value of the cyberweapon in the future. However, 

this thesis showed that cyberweapons can be effectively used more than once. In a 

vulnerability’s life cycle, there is a window of opportunity to re-exploit the vulnerability 

after it is discovered and before it is patched. An attacker can prolong the window of 

opportunity through obfuscation and concealment of the cyberweapon’s signatures. The 

ability for a cyberweapon to survive a mission undetected is enhanced by stealth since 

that gives it a higher the probability of surviving.   

To begin patching and cause the window of opportunity to close for an attacker, 

the target must realize they have been attacked. This includes recognizing the attack, 

finding the vulnerability that was exploited, and then creating and implementing a patch 

for the vulnerability. This can take time. Until discovered, there is still an opportunity to 

reuse the cyberweapon against the same target by re-exploiting the unpatched 

vulnerability. Then until the attack has been publicized, there will be opportunities to 

reuse the cyberweapons against different targets. Patching itself may be difficult for key 

infrastructure systems that must be kept running continuously, so the vulnerability 

window may be even larger for them. It is not realistic for a major government 

installation to bring down their entire infrastructure while they search for, create, and 

implement a patch on all affected systems.  

 POLICY RECOMMENDATIONS B.

Historically, cyber attacks by nation-states have yielded effects that have been 

very overt and are highly destructive or disruptive. Attacks can be overt to assert 

dominance, deter, insert influence, for revenge, or for political effect. Oftentimes overt 

weapons with noisy effects cannot be reused. However, if the desire is to retain the 
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capability of the cyberweapon and reuse it, the cyberweapon must be designed with 

survivability in mind.    

1. The Benefits of a Reusable Cyberweapon 

When the cyberweapon is under development, it must be considered whether it 

will be designed as a traditional overt single-use cyberweapon or a stealthy reusable 

cyberweapon. There are benefits to both, but a reusable cyberweapon with stealthy 

effects can provide an attacker with a strategic advantage over an overt single-use 

cyberweapon. For instance, if a target organization is developing a capability that the 

cyberattacker wanted to prevent, a cyberweapon could infiltrate the supply chain and 

disable equipment in a non-alarming manner that would appear to be general machine 

malfunction. Alternatively, an attacker could slow down an adversary network so that it 

would appear to the system administrators as routine updates or software malfunctioning. 

A cyberweapon could also place a multi-method implant on a target system so that the 

target could realize they have been attacked, but be unable to stop it because they cannot 

find all the methods. Being stealthy and persistent is a tactical advantage for the 

commander because it allows the window of opportunity to remain open for a longer 

period which enables meeting follow-on objectives using cyber or non-cyber means.  

2. The Debate on Cyberweapon Stockpiling 

Chapter 2 introduced the issue of whether there is a greater benefit to stockpiling 

cyber capabilities versus developing the capabilities as they are required. The decision to 

use versus stockpile the weapon depends on the ability to predict when the cyberweapon 

will be killed. A cyberweapon on the shelf risks becoming obsolete prior to use, but a 

cyberweapon in use has the potential to become perishable because the vulnerability will 

be patched. 

A reusable cyberweapon has a lower risk of being killed in use. Therefore, the 

issue with a reusable cyberweapon is whether it has a higher chance of being killed on the 

shelf or in use, and also whether the target is capable of killing the cyberweapon. 

Therefore, the risk-assessment decision becomes whether it is more beneficial to use the 
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weapon against a specific target, or delay the use of the weapon until it can be assured 

that it is being used against a target that is not capable of killing it. The cyberweapon’s 

susceptibility and vulnerability assessments aid in this decision. If all cyberweapons are 

designed with survivability in mind, it decreases the need to stockpile them. 

3. Title 10 and Title 50 Policy Discussion 

Title 10 of the U.S. Code defines Department of Defense (DOD) and military 

operations, whereas Title 50 defines the operations conducted by the intelligence 

community. Distinguishing between the two depends on whose authorization the mission 

commander is operating. If the effect of the action is not apparent and is never intended 

to be known or publicly acknowledged, then it is considered covert action which is a Title 

50 authority. Military operations, or Title 10 authorities, must publicly acknowledge the 

United States’ role in the operation or it must be apparent (Wall, 2011). This is an 

important distinction because cyberweapons can be designed with or without the 

intention to be attributed to the United States. 

Cyberweapon reusability impacts the Title 10 and Title 50 policy discussion in 

two ways. First, the cyberweapon can be reused in a single mission to send a variety of 

payloads to the target. This allows a cyberweapon to potentially switch authorities mid-

mission from a Title 50 authority to Title 10, or vice versa. A determination would need 

to be made on which authority would take precedence depending on whether there is a 

greater benefit for the intelligence community or the military. For example, if the 

cyberweapon began as a covert action, then there would need to be a risk determination 

on whether it is more strategically beneficial to switch to a Title 10 authority and 

acknowledge involvement. The disadvantage in acknowledging it is that this would allow 

the target to begin searching for the cyberweapon and then patch the vulnerability that 

was exploited, which could prevent the cyberweapon from being reused. However, Wall 

(2011) argues that a military operation does not require a press release announcing 

United States involvement. Therefore, if the operation goes undetected and the United 

States is never asked about their involvement, then they will not need to acknowledge it. 
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The intent to acknowledge the operation if asked is different from the actual 

acknowledgement itself. 

Second, the reusable characteristic of a cyberweapon allows it to be used under 

different authorities each time it is used against a new target. Determining the authority 

that the cyberweapon falls under will depend on the desired mission goal and whether the 

effects are intended to be overt or stealthy. For example, suppose an attacker operates 

under Title 50 authority against the first target and Title 10 authority against the next 

target. When the effects are acknowledged by the attacker against the second target, the 

first target may not even be aware they have been attacked. To fully take advantage of the 

benefits a reusable cyberweapon can have in the Title 10 and Title 50 discussion, there 

needs to be an updated policy documenting the authorization process specific to reusable 

cyberweapons. 

 FUTURE RESEARCH C.

The reusability characteristic of a cyberweapon can alter a number of policy 

discussions and operating requirements. Future research could focus more specifically on 

how to integrate the issues discussed here with current doctrine. Also, it would be helpful 

to focus on developing a quantitative way to measure cyberweapon survivability through 

measures of effectiveness and measures of performance, and then integrate these 

measurements into current cyberweapon development and monitoring. Lastly, future 

research could compare costs and benefits between specific single-use cyberweapons and 

reusable cyberweapons to see which is more cost-effective. 
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