
Contract No. HQ0034-13-D-0004 UNCLASSIFIED

Report No. SERC-2018-TR-105 Date April 30, 2018

New Project Incubator

Technical Report SERC-2018-TR-105

April 30, 2018

Principal Investigator:

Jon Wade, Stevens Institute of Technology

Research Team:

David Coe, University of Alabama Huntsville
Paul Grogan, Stevens Institute of Technology
Azad Madni, University of Southern California

Karen Marais, Purdue University
Tom McDermott, Georgia Institute of Technology

Gary Witus, Wayne State University
Lu Xiao, Stevens Institute of Technology

Sponsor: DASD(SE)

Castle Point on Hudson, Hoboken, NJ 07030

Report No. SERC-2018-TR-105 April 30, 2018

2

Copyright © 2018 Stevens Institute of Technology, Systems Engineering Research Center

The Systems Engineering Research Center (SERC) is a federally funded University Affiliated Research
Center managed by Stevens Institute of Technology.

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense
through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under
Contract HQ0034-13-D-0004 (TO#0286).

Any views, opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Department of Defense nor
ASD(R&E).

No Warranty.
This Stevens Institute of Technology and Systems Engineering Research Center Material is furnished on
an “as-is” basis. Stevens Institute of Technology makes no warranties of any kind, either expressed or
implied, as to any matter including, but not limited to, warranty of fitness for purpose or merchantability,
exclusivity, or results obtained from use of the material. Stevens Institute of Technology does not make
any warranty of any kind with respect to freedom from patent, trademark, or copyright infringement.

This material has been approved for public release and unlimited distribution.

Report No. SERC-2018-TR-105 April 30, 2018

3

Table of Contents
1 Introduction ..5

2 The Feasibility of Enhancing Security of Complex Systems Through Disaggregation of Security
Components to Asymmetric Multi-Processors – David Coe, University of Alabama-Huntsville8

2.1 Motivation ..8
2.2 Proposed Approach and Its Advantages ..8
2.3 Security Coprocessors: Current Practice and Limitations ... 10
2.4 Proposed Work and Its Impact ... 11
2.5 Risk and Mitigations .. 12
2.6 Project Management ... 12
2.7 References .. 14

3 Game-theoretic Risk Assessment for Distributed Systems (GRADS) - Paul Grogan, Stevens
Institute of Technology .. 16

3.1 Introduction and Motivation .. 16
3.2 Value-Centric Design for Distributed Systems ... 16
3.3 Game Theory and Equilibrium Selection ... 18
3.4 Multi-actor Value Functions and Strategic Design Games .. 19
3.5 Example Application Case .. 20
3.6 Extensions and Opportunities... 25
3.7 References ... 26

4 Program Protection System Security and Trust Extending Flexible Contracts for Mission
Assurance – Azad Madni, University of Southern California ... 28

4.1 Introduction .. 29
4.2 Current MA Approach .. 29
4.3 The Flexible Contract Construct .. 31
4.4 Closed Loop MA Approach ... 35
4.5 POMDP Concept of Operations for Exemplar Problem .. 36
4.6 An Illustrative Example .. 37
4.7 Concluding Comments ... 40
4.8 References .. 40

5 Data Science Approaches to Prevent Failures in Systems Engineering - Karen Marais, Purdue
University .. 41

5.1 Our Vision and Roadmap ... 42
5.2 Relational Deep Learning with few data points ... 44
5.3 Identifying Potential Systems Engineering Failure Signals.. 46
5.4 Case study: Student Teams .. 52
5.5 Conclusion ... 54
5.6 References .. 54

6 Systemic Security and the Role of Heterarchical Design in Cyber-Physical Systems – Tom
McDermott, Co-PI Val Sitterle, Georgia Tech ... 57

6.1 Objectives of the Research ... 57
6.2 Current Practice and its Limitations .. 57
6.3 Research Approach .. 59
6.4 Relevance of the Research ... 66

Report No. SERC-2018-TR-105 April 30, 2018

4

6.5 Risks, Mitigations, and Payoffs ... 66
6.6 Budget ... 66
6.7 Timeline .. 67
6.8 Project Evaluation and Measurement ... 67
6.9 References ... 67

7 Trusted Autonomy – Methods for Test and Evaluation – Gary Witus, Wayne State 69
7.1 Problem and Need ... 69
7.2 Technical Solution .. 71
7.3 Program Plan ... 76
7.5 Conclusions and Recommendations ... 79
7.6 References .. 79

8 Identifying and Measuring Modularity Violations in Cyber-Physical Systems – Lu Xiao, Co-PI
Michael Pennock, Stevens Institute of Technology .. 81

8.1 Problem Statement, Motivations, and Objectives ... 81
8.2 Current Practice and Its Limitations .. 83
8.3 Research Approach .. 84
8.4 Proposed Work in the Next Phase .. 88
8.5 Relevance of the Research ... 90
8.6 Expected Contribution ... 91
8.7 Risks and Payoffs ... 92
8.8 Budget... 92
8.9 Timeline .. 92
8.10 Project Evaluation and Measurement .. 93
8.11 References .. 93

Report No. SERC-2018-TR-105 April 30, 2018

5

1 INTRODUCTION

As described in SERC Technical Plan, the SERC performs research on 20-25 active tasks on well-defined
topics that are aligned with the SERC’s research strategy. While it is believed that that the aforementioned
research programs have a great potential to have a transformative impact on the DoD and IC, there is a
need to support new ideas in their infancy that may become the critical research programs for emerging
challenges. This incubation capability will be supported by a biennial open call to the SERC research
collaborating universities to propose early stage research that can be nurtured through relatively small
levels of seed funding.

The initial open call took place in December 19, 2016 with the objective of identifying and developing
several short white papers outlining research programs with a significant potential to improve the practice
of engineering systems. A total of 33 responses were received as shown in Table 1 below:

Table 1: Responses to 2016 SERC Incubation Grant Solicitation

University PI Team Title

AFIT Badiru, Deji Toward the Postulation of Theory of Systems
Engineering

UAH Bailey, Carmine Augmented Reality Technologies

NPS Beery, Paul Paulo, Eugene MBSE for Methodology for the Employment of
Architectures in Systems Analysis (MEASA)

Stevens Chandramouli, R. Co-operative Artificial Intelligence for Cognitive
Mobile Systems

Stevens Chandramouli, R. Modeling and Simulation of Synthetic Bio-Nano
Systems

UAH Coe, David Kulick, Jeffrey The Feasibility of Enhancing Security of Complex
Systems through Disaggregation of Security
Components to Asymmetric Multi-Processors

Purdue,
Wayne State,
Gtech, Stevens

DeLaurentis, Dan Davendalingam,
Navindran
Witus, Gary
Paredis, Chris
Xiao, Lu

Approaches to Achieve Modularity Benefits in
Defense Acquisitions

Purdue Mendoza-Garcia,
John

Cardella, Monica
Kenley, Charles

A Learning-Theory-Based Assessment Instrument
to Measure the Ability to Address Complex Socio-
Technical Systems

NPS, Missouri
S&T

Giammarco, Kristin Dagli, Cihan Methods and Analytics for Purging System Designs
of Unwanted Behaviors

Stevens Grogan, Paul Game-theoretic Risk Assessment for Distributed
Systems (GRADS)

Stevens Hoffenson, Steven Agent-based Modeling of Semi-autonomous
Military Vehicle Systems

Stevens,
USMA

Klappholz, David Engling, Michael
Condly, Steven

Building a Computer Science/Software Engineering
Education Research Group

Report No. SERC-2018-TR-105 April 30, 2018

6

USC Madni, Azad Flexible and Adaptable Systems and Processes
Negotiation and Sociability in Resilient SoS
Networks

USC Madni, Azad SE Transformation for Next Gen. DoD Systems
Adaptive Cyber-Physical Human Systems

USC Madni, Azad Program Proection System Security and Trust
Extending Flexible Contracts for Mission Assurance

Purdue Marais, Karen Data Science Approaches to Prevent Failures in
Systems Engineering

Gtech, UAH,
SIT

Paredis, Chris McDermott, Tom
Collopy, Paul
Blackburn, Mark
Pennock, Mike

ESoS Model for Digital Thread Enabled Acquisition

Gtech McDermott, Tom Sitterle, Val Systemic Security and the Role of Heterarchical
Design in Cyber-Physical Systems

USC Medvidovic, Nenad Systematic Exploration of Decision Spaces in CPH
Systems

Stevens Pennock, Michael Identifying Leading Indicators of System of System
Interoperability Issues

Auburn Smith, Alice E. Sakinc, Eren Cost Prediction in the Presence of Categorical and
Numeric Cost Drivers

Stevens Subbalakshmi, K.P. Resilient, Fast Mobile Data to Decisions Systems

UAH Thomas, Dale Robust Methods in Model Based Systems
Engineering

USC Wang, Chao Automated Techniques for Testing and Diagnosing
PLC Software

USC Wang, Chao Incremental Analysis of Concurrent Software
Systems

Stevens Wang, Wendy Research and Development for Resilient Cyber-
Physical-Human Systems

Wayne State Witus, Gary Trusted Autonomy -- Methods for Test and
Evaluation

Stevens Xiao, Lu Pennock, Michael Identifying and Measuring Modularity Violations in
Cyber-Physical Systems

Stevens Yang, Ye A Hybrid Approach in Testing of Autonomous and
Learning CPH Systems: Combining Human
Computing and Machine Learning

Penn State Yukish, Michael Methodology for Manufacturability Design Assist
Tools

Report No. SERC-2018-TR-105 April 30, 2018

7

Each of the received proposals were reviewed by the SERC Research Council except where they noted
that they had a potential conflict. Each member provided a final score based on an equal weighing in each
of the following four criteria as well as a set of short comments:

 Intellectual Merit

 Clarity of Vision

 Past Performance

 Potential Strategic Impact

Each of the Research Council member’s ratings were normalized based on their average numerical score
and an average score was calculated for each proposal. To aid in the visualization of the results, the
rankings for each Research Council member were color coded to be Green – top 1/3, Yellow – middle 1/3
and Red – bottom 1/3. The proposals were ranked based on these results.

The sponsor independently ranked the top ten projects based on these criteria. Preference was given to
proposals that contend with issues not currently being addressed by SERC research, or use novel
approaches, but which support the current SERC UARC research focus areas and have a strong potential
for additional funding outside of SERC core funds. In this case, the selected six proposals were in the top
ten proposals as determined by the Research Council.

Of these, the following seven proposals were selected:

1. David Coe, University of Alabama-Huntsville, The Feasibility of Enhancing Security of Complex
Systems through Disaggregation of Security Components to Asymmetric Multi-Processors

2. Paul Grogan, Stevens Institute of Technology, Game-theoretic Risk Assessment for Distributed
Systems (GRADS)

3. Azad Madni, University of Southern California, Program Protection System Security and Trust
Extending Flexible Contracts for Mission Assurance

4. Karen Marais, Purdue University, Data Science Approaches to Prevent Failures in Systems
Engineering

5. Val Sitterle, Georgia Tech, Systemic Security and the Role of Heterarchical Design in Cyber-Physical
Systems

6. Gary Witus, Wayne State, Trusted Autonomy -- Methods for Test and Evaluation

7. Lu Xiao, Stevens Institute of Technology, Identifying and Measuring Modularity Violations in
Cyber-Physical Systems

This report contains the white papers that was supported by each of these funded proposals.

Report No. SERC-2018-TR-105 April 30, 2018

8

2 THE FEASIBILITY OF ENHANCING SECURITY OF COMPLEX SYSTEMS THROUGH DISAGGREGATION OF SECURITY

COMPONENTS TO ASYMMETRIC MULTI-PROCESSORS – DAVID COE, UNIVERSITY OF ALABAMA-HUNTSVILLE

2.1 MOTIVATION
Given the increasing frequency of cyber breaches and near daily announcements of newly discovered
system vulnerabilities, it is clear that the computer systems that control critical cyber-physical systems or
conduct critical business practices are under increasing threat of attack [1][2][3][4]. Cyberattacks have
become so rampant and successful that the Federal Bureau of Investigation predicts an exponential
increase in the frequency of cyberattacks for the foreseeable future [5]. To date the common industry
practice of attempting to add security to the system after the fact through the addition of a firewall or
malware scanner has been an inadequate response to the threat environment.

2.2 PROPOSED APPROACH AND ITS ADVANTAGES

2.2.1 WHAT ARE WE TRYING TO DO?

Security, as an emergent property of the system as a whole and the way the system is deployed, used,
and maintained, must be a consideration at the outset. Our goal is to provide a solid computer
architectural foundation that will make cyber-physical computing systems inherently more securable.

To this end, the proposed research project shall investigate the feasibility of disaggregating and exporting
critical security functions such as code and data integrity checkers, to an Asymmetric Multiprocessor
System-on-a-Chip (ASMP SoC) not accessible to the applications processor to enhance the overall security
of cyber-physical systems. Several levels of realizations are proposed from passive snooping on
application processor signatures through memory scanning for virus signatures through control flow
graph verification through hardware architecture additions to soft core processors. Each of these levels
of realization require different levels of cooperation between the exposed protected system and ASMP
protector.

What is new in our approach is that the proposed security monitoring tasks are not vulnerable to software
processes executed by the application processor, which is inherently untrustworthy because it is exposed
and under attack, but rather these security monitoring tasks are carried out orthogonal to the application
processor by the asymmetric multi-processor, which is sequestered behinds layers of software and
hardware isolation.

2.2.2 ADVANTAGES OF OUR APPROACH

Our approach combining ASMP SoC with disaggregation of security components has a number of
advantages that are enumerated below.

2.2.2.1 Enhanced Security through Use of SoC Technology

The semiconductor industry has already recognized that the use of SoC technology provides an inherently
more securable platform by integration of components into a single chip package, making probing of
communications between components far more challenging requiring observation of interconnects within
a chip. Moreover, the use of ever decreasing feature sizes in the fabrication of the semiconductor
components and their interconnects shall make it increasingly difficult for those without extensive
knowledge and access to specialized hardware to successfully decapsulate and probe the SoC integrated
circuit.

Report No. SERC-2018-TR-105 April 30, 2018

9

2.2.2.2 Enhanced Security through Disaggregation

Current security practice typically relies upon security services such as firewalls, anti-malware scanners,
and event logging services being able to operate correctly despite the fact that they are being executed
by the system that is under attack. It is our assertion that the system under attack is inherently unreliable,
and it is thus unreasonable to assume that it can either fully protect itself or reliably gather the forensic
data required for incident analysis, response, and recovery.

An excellent example of this is a desktop computer running typical antivirus software. Commonly
available exploit tool suites such as Metasploit [6] include easy to execute scripts designed specifically to
disable antivirus software once an attacker gains a foothold in the compromised system. Moreover, the
Metasploit tool suite also includes scripts that can readily destroy the event and activity log information
and thereby hamper the use of forensics techniques to discover how the attacker gained access to the
system and what the attacker did once they gained access.

The principle of disaggregation is already commonly used to enhance the security of operating systems
and hypervisors. In this context, disaggregation refers to the structuring of software components in a way
that provides isolation to protect the system from untrusted services or components such as third-party
device drivers. Operating systems make use of virtual address spaces to isolate processes. A hypervisor
may encapsulate untrusted third-party device drivers entirely within a stub-domain whose only function
is to provide secure wrapping of third party drivers. Garfinkel and Rosenblum proposed using a hypervisor
to disaggregate the Intrusion Detection System (IDS) from the system being secured, placing both the
protected system and the IDS into separate virtual machines running on the same physical host [7].

In our previous work funded by the National Security Agency, we introduced Dielectric Xen, a security-
enhanced version of the Xen hypervisor in which we employed disaggregation to relocate an IDS from the
guest and host virtual machines into the Xen hypervisor itself where it is less visible and less exposed to a
remote attacker yet still able to perform the intrusion detection task [8][9]. Attackers that gain access to
either the guest or host virtual machines are unable to view the IDS process since it is located outside of
either virtual machine.

As part of the proposed project, we intend to disaggregate critical security services from application
processors into (a) Field Programmable Gate Arrays (FPGAs) or (b) hard processor cores solely dedicated
to security tasks that are hidden (disaggregated) from the target platform. These resources will serve as
a trusted hardware component within the ASMP SoC. By selecting an SoC and board architecture in which
the FPGA may only be reconfigured by physical access to the circuit board as through a JTAG port or boot
rom, the FPGA will be inherently more resistant to remote attacks, making the FPGA-hosted security and
event logging algorithms more reliable.

2.2.2.3 Enhanced Security through Asymmetry

We seek to establish and exploit asymmetry in the level of exposure of the protected systems and the
ASMP hardware tasked with its protection. The designer of the computing system has control over which
communication paths exist and whether those paths are read-only, write-only, or readable and writable.
Careful design and selection of these communication paths shall provide additional protections to the
security components that have been disaggregated from the protected system and placed in the ASMP
SoC by eliminating unnecessary paths for interactions between the potentially compromised protected
system and its ASMP protector.

Report No. SERC-2018-TR-105 April 30, 2018

10

We also seek to exploit asymmetry in the execution engines employed in the protected system and the
protector to enhance security. The use of an FPGA allows for the deployment of a hardware-realization
of a security algorithm, such as a malware signature scanner or an IDS. Again, proper ASMP SoC and board
architecture selection shall make it more difficult for a remote attacker to alter the FPGA reconfiguration
without physical access and thus provide for enhanced security for the disaggregated security services.

2.2.2.3 Enhanced Security through Encapsulation and Information Hiding

By sequestering the most critical security algorithms in the ASMP SoC FPGA, an attacker that compromises
the protected system may be unaware of the existence of the security algorithms or the nature of those
algorithms in use. An examination of running processes in the compromised protected system will reveal
no information regarding the hidden algorithms executed in the FPGA.

2.3 SECURITY COPROCESSORS: CURRENT PRACTICE AND LIMITATIONS
A variety of coprocessors have historically been employed to improve overall system performance by off-
loading computationally intensive tasks from the main processor [10]. Early examples of the use of
coprocessors include the use of input/output coprocessors and floating-point coprocessors (FPUs).
Dedicated Graphical Processing Units (GPUs) that include multiple cores to speed rendering of scene
imagery have become very popular for gaming and machine learning applications. Cryptographic
coprocessors were originally developed to accelerate encryption and decryption operations.

More recently, coprocessors have been employed specifically in an attempt to enhance system security.
The Trusted Platform Module (TPM) is a secure cryptoprocessor standard that attempts to create trusted
regions of hardware for storage or generation of encryption keys [11]. The IBM 4758 is a FIPS 140 level 4
cryptographic coprocessor that provides additional support in the form of anti-tamper protection, but the
processor is not a mainstream processor that can be used for critical infrastructure applications such as
banking but not in cyber-physical systems such as missiles [12].

A number of companies including Altera and Microsemi SoC Corporation have investigated the use of a
Field Programmable Gate Array (FPGA) as a part of a mechanism to secure the boot process [13] [14]. An
FPGA may be used as a secure code storage location or to verify the signature of codes prior to booting
the system. An advantage of this approach is that the FPGA may be integrated onto the same die as the
processor (SoC) making it more challenging to access those stored codes or signatures since the chip
package must be breached.

DARPA SSITH [15] is an ambitious 3+year, $50M program that seeks to mitigate the following seven
categories of hardware vulnerabilities: (1) buffer errors, (2) permissions/privileges/access control, (3)
resource management, (4) code injection, (5) information leakage/exposure, (6) cryptographic errors, and
(7) numeric errors. Participants are required to utilize a RISC-V soft-core processor in an FPGA board.
Security additions to the systems are limited with respect to the impact on chip area (< 50% => < 30%)
and performance (< 20% => <10%). Limitations of the SSITH approach includes maturity of the RISC-V
development tool chains and the extensive base of existing software that would require rehosting for the
RISC-V environment.

The modern processor cores can be partitioned and configured to run independent software stacks. For
example, the ARM Cortex A family of processors supports the TrustZone technology [16]. TrustZone
partitions a multi-core system between a secure world for critical system resources and a non-secure
world for everything else. For example, one core can run a secure real-time operating system (RTOS) and

Report No. SERC-2018-TR-105 April 30, 2018

11

another core can run a main operating system (e.g., Linux). Thus, a trusted execution environment that
includes parts of the system that can only be accessed by the secure world is separated from the
potentially vulnerable operating system. With TrustZone processor cores and memory are partitioned
between the secure and non-secure worlds thus preventing any interference. Two cores communicate
over a shared physical memory channel. Peripherals are divided as well with no possibility of sharing and
access rights are enforced using a security bit and security status of each resource. The non-secure
software stack cannot change any configuration parameters that may affect the secure software stack.
The secure software stack can typically access all system resources. In hybrid systems that combine hard
ARM processor cores and FPGA fabric (Xilinx Zynq and Altera Cyclone V), TrustZone can be extended to
custom IP cores residing in the FPGA fabric, making them an attractive option for deploying hardware-
oriented security solutions.

It is clear after a review of the work summarized above and similar works that attempts to add security to
a system after the fact are unsuccessful. One must design the system from the outset to be securable.

2.4 PROPOSED WORK AND ITS IMPACT
Below is an overview of our 4-phase program for implementing ever more secure realizations of the ASMP
paradigm. The four phases are briefly outlined below.

Phase 1 - An ASMP soft core processor will passively observe the memory of the application processor
having been provided a layout of system and application codes in a real-time embedded system
environment. Deviations from the layout and content will be annunciated through an independent
communication channel to the operator in this phase, the protected system is assumed to be
untrustworthy. The primary threat being remediated is code and data modification of application
programs.

Phase 2 - In this phase, previously developed work by one of the applicants to passively extract a control
flow graph information in real time from executing programs on a soft-core processor from the
processor’s instruction execution pipeline will be compared against a previously obtained allowable
control flow graphs. The previous work demonstrated a very low bit bandwidth requirement of
approximately 1 bit per instruction retired to capture executing control structures [17] [18]. The primary
threat being remediated is return-oriented programming (ROP) attacks where the attacker, being
thwarted in modifying existing code, uses code fragments from the legitimate application to assemble an
attack. Although difficult and time consuming, this attack vector continues to be a significant threat.

Phase 3 - In Phase 3 we will begin to use the Trust Zone capabilities of the ARM processor to allow the
protected host to provide information to the protector without requiring hardware modifications to the
protected processor, as required by Phase 2. In this case the protected processor will provide real time
control flow information to the protection processor using data collected from PMU registers currently
present in ARM processors. In this case the control flow, data and code integrity provided by Phases 1 and
2 will be available without hardware modification. This phase will also explore generating live forensics
data of attack mechanisms as the operate in the open. Threats remediated will move up the complexity
chain and include threats to operating system architectural elements such as scheduling queues and
memory management tables.

Phase 4 - In this phase all the remediations available in Phases 1-3 will be exported to an environment
utilizing hypervisors. Recent unpublished work by the applicants have shown that real time cyber-physical

Report No. SERC-2018-TR-105 April 30, 2018

12

control systems can be deployed with hypervisor frameworks with extremely low latency penalties - on
the order of 10s of microseconds on low cost processors such as the ODROID C2. This phase will investigate
the extension of mitigations and remediations up to operating system and hypervisor architectural
components such as scheduling tables and network interfaces.

A table containing additional propriety details on each phase of work is provided as an appendix.

2.4.1 PROPOSED WORK IMPACT

As discussed earlier, many attempts today to harden cyber physical systems consist of closing the door in
hope the horse cannot be seen through the slats of the barn. The better way to develop secure systems
is from the ground up, starting with the processors, operating systems, architectures, and deployment
methodologies. The work proposed herein will provide system and software engineers a common
platform for constructing cyber physical systems without jury rigging and wrapping systems that are
inherently insecure. This should significantly increase the quality of products developed while reducing
the procurement and maintenance costs of disparate systems.

2.4.2 AUDIENCE FOR PROPOSED WORK

Acquisition agencies, program management authorities, system developers, and people responsible for
ensuring the safe and secure operation of cyber physical systems should welcome a potential common
secure deployment platform architecture for future systems.

2.5 RISK AND MITIGATIONS

Risk #1 - Performance Impact on Real-Time Embedded Applications
Mitigation - Use an asymmetric SoC which does not use resources required by the embedded application.

Risk #2 - Insufficient Isolation Between ASMPs
Mitigation - Use threat analysis to identify vulnerabilities and reduce attack surface.

Risk #3 - Obtaining Buy In and Adoption of New Secure Architectures by Developers
Mitigation - Hard evidence of enhanced security and education of next generation developers.
Acquisition must drive participation of hardware vendors to adopt new architectures and participation of
software vendors who must provide required memory layouts, signatures, or control-flow graphs as
needed.

Risk #4 - Evolving Technological Advances in Computing, Security, and Threats
Mitigation - Continuous analysis of evolving technologies and threats.

2.6 PROJECT MANAGEMENT

2.6.1 RESEARCH TEAM

Our research team includes three faculty from the UAH Department of Electrical and Computer
Engineering, engineering support staff, and graduate student researchers.

Report No. SERC-2018-TR-105 April 30, 2018

13

● Dr. David J. Coe (PI) shall perform threat assessment and project management/reporting tasks.
● Dr. Jeffrey H. Kulick (Co-I) is the system architect.
● Dr. Aleksandar Milenkovic (Co-I) is our expert in execution tracing and performance measurement.

The members of our team have established research records in the areas of software safety and security,
anti-tamper, embedded systems, FPGA coprocessors, and computing system performance analysis.
Selected publications include [8-9] [17-28].

2.6.2 COST AND SCHEDULE ESTIMATES

An outline of the four phases of the research plan appears in Section 2.4 above. The technical challenges
being addressed at each phase increase in complexity and effort required. Each phase includes an
investigations subtask which performs preliminary research for the subsequent phase. The results of
these investigations shall permit our team to refine the cost and schedule estimates as well as the
technical goals for the upcoming phases.

Presented below in Figure 2.1 is a projected Plan of Work for Phase 1 and Phase 2.
Our estimated budget for Phase 1 is $300K and the estimated budget for Phase 2 $400K.

 Year 1 Year 2 Year 3

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

Phase 1

Threat Modeling

Prototyping

Assessment

Investigations

Phase 2

Threat Modeling

Prototyping

Assessment

Investigations

Figure 2.1: Proposed plan of work for Phase 1 and Phase 2

Rough order of magnitude estimates for Phase 3 and Phase 4 are 18-24 months and $600K per phase due
to the increased technical challenges. The estimates for Phase 3 and Phase 4 shall be refined based upon
what we learn in the first two phases.

Report No. SERC-2018-TR-105 April 30, 2018

14

2.6.3 RESEARCH MILESTONES AND METRICS

Each phase produces a proof-of-concept prototype that may be deployed in absence of subsequent
phases. Project milestones for each phase include quarterly telecons with project sponsor and biannual
status reports.

2.6.3.1 Midterm Exam for Each Phase

The Midterm Exam for each phase shall be a demonstration of the assessment infrastructure which
includes the threat to be mitigated and its delivery mechanism-- this establishes that the assessment
criteria and mechanism are in place.

2.6.3.2 Final Exam for Each Phase

The Final Exam for each phase shall be a final demonstration of the mitigated threat with documentation
and appropriate deliverables.

2.7 REFERENCES

[1] Kim Zetter, “A Cyberattack Has Caused Confirmed Physical Damage for the iSecond Time Ever,” Wired,

01/08/15, http://www.wired.com/2015/01/german-steel-mill-hack-destruction/

[2] http://www.heritage.org/research/reports/2014/10/cyber-attacks-on-us-companies-in-2014

[3] David Z. Morris, “Hackers stole restricted F-35 data from Australian contractor,” Fortune, October 14,

2017. http://fortune.com/2017/10/14/hacked-f-35-data

[4] Dan Klinedinst, Joel Land, and Kyle O'Meara, 2017 Emerging Technology Domains Risk Survey.

CMU/SEI-2017-TR-008. Software Engineering Institute, Carnegie Mellon University. 2017.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=505311

[5] Paul Lagarde, “FBI Expects Number of Cyber Attacks ‘To Grow Exponentially’ in Coming Years,”

CNSnews.com, May 23, 2014, 2:10pm, http://www.cnsnews.com/news/article/paul-lagarde/fbi-

expects-number-cyber-attacks-grow-exponentially-coming-years

[6] Metasploit, https://www.metasploit.com/

[7] Tal Garfinkel and Mendel Rosenblum, “A Virtual Machine Introspection Based Architecture for

Intrusion Detection”, Network and Distributed System Security Symposium • February 2003.

[8] Reece Johnston, Sun-il Kim, David J. Coe, Letha Etzkorn, Jeffrey H. Kulick, and Aleksandar Milenkovic,

"Xen Network Flow Analysis for Intrusion Detection," 11th Cyber and Information Security Research

Conference, Oak Ridge, Tennessee, April 5-7, 2016.

[9] David J. Coe, Jeffrey H. Kulick, Aleksandar Milenkovic, Sun-il Kim, and Letha Etzkorn, "An Approach to

Securing Cloud and Internet of Things Applications, 2016 National Cyber Summit, June 7-9, 2016.

[10] Wikipedia, https://en.wikipedia.org/wiki/Coprocessor

[11] https://trustedcomputinggroup.org/tpm-main-specification/

[12] “Extracting a 3DES key from an IBM 4758,” http://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html

[13] US Patent US 9600291 B1, “Secure boot using a field programmable gate array (FPGA), Altera

Corporation, published March 21, 2017.

[14] US Patent US 20150012737 A1, “Secure boot for unsecure processors,” January 8, 2015.

[15] Linton Salmon, “System Security Integrated Through Hardware and Firmware (SSITH),” DARPA

Proposers Day Overview, April 21, 2017.

http://www.wired.com/2015/01/german-steel-mill-hack-destruction/
http://www.heritage.org/research/reports/2014/10/cyber-attacks-on-us-companies-in-2014
http://fortune.com/2017/10/14/hacked-f-35-data
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=505311
http://www.cnsnews.com/news/article/paul-lagarde/fbi-expects-number-cyber-attacks-grow-exponentially-coming-years
http://www.cnsnews.com/news/article/paul-lagarde/fbi-expects-number-cyber-attacks-grow-exponentially-coming-years
https://www.metasploit.com/
https://en.wikipedia.org/wiki/Coprocessor
https://trustedcomputinggroup.org/tpm-main-specification/
http://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html

Report No. SERC-2018-TR-105 April 30, 2018

15

[16] SoC and CPU System-Wide Approach to Security, https://www.arm.com/products/security-on-

arm/trustzone, retrieved October 2017.

[17] Amrish K. Tewar, Albert R. Myers, Aleksandar Milenković, "mcfTRaptor: Toward unobtrusive on-the-

fly control-flow tracing in multicores," Journal of Systems Architecture, Vol. 61, No. 10, November

2015, pp. 601-614, doi: 10.1016/j.sysarc.2015.07.005.

[18] Vladimir Uzelac, Aleksandar Milenković, Milena Milenković, Martin Burtscher, "Using Branch

Predictors and Variable Encoding for On-the-fly Program Tracing," IEEE Transactions on Computers,

Vol. 63, No. 4, April 2014, pp. 1008-1020, doi: 10.1109/TC.2012.267.

[19] Ryan Cowart, David Coe, Jeffrey Kulick, and Aleksandar Milenkovic, "An Implementation and

Experimental Evaluation of Hardware Accelerated Ciphers in All-Programmable SoCs" in ACM SE '17:

SouthEast Conference.

[20] Austin Rogers, Aleksandar Milenković, "Security extensions for integrity and confidentiality in

embedded processors," Microprocessors and Microsystems, Vol. 33, Issues 5-6, pp. 398-414 (August

2009).

[21] J.M. English, D.J. Coe, D. Hyde, R.K. Gaede, and J. Kulick, "MEMS-Assisted Cryptography for CPI

Protection," IEEE Security & Privacy, vol. 5, issue 4, July-August 2007, pp. 14-21.

[22] Jennifer English, David Coe, Rhonda Gaede, Jeffrey Kulick, "Protection of Cryptographic Systems Using

Reconfigurable MEMS-Based Tamper Sensors," Proceedings of the Reconfigurable Systems,

Microsystems, and Nanotechnology Conference, Redstone Arsenal, May 8, 2007.

[23] J.H. Kulick, D.J. Coe, J.S. Hogue, and R.K. Gaede, "Cyber-physical Systems Design: The Software Safety

Engineering & Model-Based Design Divide," 2011 Army/NASA System and Software Engineering

Forum, July 26-27, 2011, Huntsville, AL.

[24] Michael C. Lindsey, David J. Coe, Jeffrey Kulick, Letha Etzkorn, and Yujian Fu, "Design of Safety Critical

Survivable Systems Using Autonomic and Semantic Web Methodologies," 2012 International

Conference on Software Engineering Research and Practice (SERP'12), WORLDCOMP 2012, July 16-19,

2012, Las Vegas, NV.

[25] Travis Cleveland, David J. Coe, and Jeffrey H. Kulick "Video Processing for Motion Tracking of Safety

Critical Systems," 2013 International Conference on Software Engineering Research and Practice

(SERP'13), WORLDCOMP 2013, July 22-25, 2013, Las Vegas, NV.

[26] David J. Coe and Jeffrey H. Kulick, "A Model-Based Agile Process for DO-178C Certification," 2013

International Conference on Software Engineering Research and Practice (SERP'13), WORLDCOMP

2013, July 22-25, 2013, Las Vegas, NV.

[27] David J. Coe and Jeffrey H. Kulick, "Positive Train Control: Concepts, Implementations, and

Challenges," 2014 International Conference on Software Engineering Research and Practice (SERP’14),

WORLDCOMP 2014, July 21-24, 2014, Las Vegas, NV.

[28] Jason D. Winningham, David J. Coe, and Jeffrey H. Kulick, "Agile Systems Integration Process," 2015

Frontiers in Education: Computer Science and Computer Engineering (FECS'15), WORLDCOMP 2015,

July 27-30, 2015, Las Vegas, NV.

Report No. SERC-2018-TR-105 April 30, 2018

16

3 GAME-THEORETIC RISK ASSESSMENT FOR DISTRIBUTED SYSTEMS (GRADS) - PAUL GROGAN, STEVENS INSTITUTE

OF TECHNOLOGY

3.1 INTRODUCTION AND MOTIVATION

Sustained interest in distributed system architectures presents an important tradeoff in conceptual
design. Distributed systems pursue superior performance compared to traditional monolithic systems
through greater flexibility, robustness, and efficiency. For example, arguments for fractionated spacecraft
systems emphasize elements of architectural flexibility in uncertain contexts as more information is
gathered in operations, risk diversification across multiple systems, spatial distribution to mitigate failures
or attacks, and lower cost for individual components (Brown and Eremenko, 2006). Similar arguments in
the decentralization theorem in economics argues distributed systems can exhibit finer control to more
efficiently match available resources with localized demands (Oates, 2008).

However, by definition, distributed architectures also introduce new interdependencies between
constituent modules which can lead to overall system failure if not understood or anticipated. These
effects are amplified by communication barriers if constituent systems are owned and operated by
independent entities as a system-of-systems or federation-of-systems. In infrastructure, for example,
cross-sector interdependencies can directly lead to cascading failures and loss of critical societal functions
(e.g. Rinaldi, Peerenboom, and Kelly, 2001). This paradoxical relationship has been described as “robust
yet fragile” in systems literature (Alderson and Doyle, 2010) and highlights a fundamental tradeoff
between risk and reward which remains a critical area of research in systems engineering.

Engineers and decision-makers must understand the tradeoffs associated with alternative system
architectures during early conceptual design activities to best inform concept selection and detailed
design. However, the current approach of treating systems engineering as a centralized decision-making
process is not appropriate for distributed system architectures due to the inherent lack of control.
Applying existing value-centric and tradespace exploration methods to distributed systems only
emphasizes the positive upsides of collective action and provides little analysis of the strategic incentives
among interactive decision-makers. The objective of this project is to develop and evaluate a game-
theoretic risk dominance metric and assessment method to compare monolithic and distributed system
alternatives in the context of multi-architecture tradespace exploration.

Grogan et al. (2016) showed how federated systems—one type of distributed system—can be modeled
as a Stag Hunt game where an independent (centralized) design is analogous to a payoff dominated
equilibrium and a federated (distributed) design is analogous to a payoff dominant equilibrium. Results
showed how Selten’s (1995) weighted average log measure (WALM) can assess strategic risk for two-
player cases and demonstrated why the payoff-maximizing alternative may not be the most desirable
choice. This project seeks to extend and demonstrate game-theoretic risk assessment approaches and,
particularly, investigate how risk dominance measures similar to Selten’s WALM can evaluate alternative
architectures in more general design cases. This report documents progress on initial tasks to formulate
and illustrate the risk assessment method and identifies further extensions as future work.

3.2 VALUE-CENTRIC DESIGN FOR DISTRIBUTED SYSTEMS

Systems engineering increasingly relies on value-centric methods to guide conceptual design activities.
These methods build on rational decision-making theory to guide design decisions to maximize system

Report No. SERC-2018-TR-105 April 30, 2018

17

value (Collopy and Hollingsworth, 2011) rather than minimizing cost to meet requirements. Traditional
tradespace exploration methods enumerate a design space and evaluate one or more design attributes
including value/utility to visualize a set of alternatives (Ross et al. 2004). The central feature of value-
centric methods is a value function in Eq. (1) to map elements from a design space 𝒟 to a scalar quantity
interpreted as utility, net present value, or some other measure of preference.

𝑉:𝒟 → ℝ, 𝑉 = 𝑉(𝑑) (1)

Value functions for distributed architectures benefit from an alternative design space representation. A
revised form in Eq. (2) maps a composite design space with up to 𝑛 constituent systems, each with its own
design space 𝒟𝑖, to a scalar value. From this perspective, the distributed architecture may be large, but
not fundamentally different from a centralized architecture.

𝑉: (∏𝒟𝑖

𝑛

𝑖=1

) → ℝ, 𝑉 = 𝑉(𝑑1, … , 𝑑𝑛) (2)

However, two additional issues arise in valuing distributed architectures and particularly from distributed
control or autonomy among constituent systems. First, well-established results such as Arrow’s
Impossibility Theorem clearly explain how and why group preferences cannot generally be transformed
into consistent aggregate preferences (Hazelrigg, 1996). Rather, one must maintain 𝑁 individual value
functions by mapping the design space to a vector value in Eq. (3). Multi-actor value functions lead to
strategic behaviors and generally limit the existence of a globally optimal solution.

𝑉: (∏𝒟𝑖

𝑛

𝑖=1

) → ℝ𝑁 , 𝑉𝑖 = 𝑉𝑖(𝑑1, … , 𝑑𝑛) (3)

Second, the focus of this project, distributed architectures introduce interactive effects for individual
values 𝑉𝑖 as a function of others’ decisions 𝑑𝑗≠𝑖. Essential uncertainty of others’ decisions contributes a

fundamental source of risk in distributed systems: the system may not perform as anticipated due to the
inherent lack of control across system boundaries. Even in cases where a distributed system is controlled
by a single central actor, anomalous operations exhibit similar dynamics where the anticipated design
does not perform as expected due to failures of individual components.

Traditional systems engineering methods treat risk as uncertainty or variation in value which can be
analyzed with Monte Carlo sampling of a stochastic value function. However, this approach is
computationally intense, particularly for distributed systems, due to combinatorial factors of the design
space coupled with pairwise interactions between interdependent components. More importantly,
however, this type of risk should not be considered as an explicit attribute to be traded during concept
evaluation, but rather only as uncertainty on other attributes (Abbas and Cadenbach, 2016).

In contrast, this work seeks to codify strategic risk as a type of design instability instead of uncertainty on
value. Even designs with high expected value may be unstable due to interactive effects. Risk analysis
should be a fundamental part of conceptual design; however, it may presently be omitted in tradespace
analysis due to computational tractability and methodological issues. This leads to overly optimistic and
fragile results which focus only on the upside potential of distributed systems without sufficient
recognition of the downside risk contributed by additional interdependencies. Program managers and
systems engineers will benefit from the development of quantitative risk metrics and associated
methodologies for their use in multi-architectural tradespace analysis.

Report No. SERC-2018-TR-105 April 30, 2018

18

3.3 GAME THEORY AND EQUILIBRIUM SELECTION

Game theory is a branch of economics which studies strategic decision-making among multiple interacting
players. A game is defined by a set of available decisions (strategies) 𝒞𝑖 for each player and corresponding
payoffs or resulting utilities under interactive effects. The value function in Eq. (4) maps strategy decisions
for each player to utilities for each player.

𝑉: (∏𝒞𝑖

𝑁

𝑖=1

) → ℝ𝑁 , 𝑉𝑖 = 𝑉𝑖(𝑐1, … , 𝑐𝑁) (4)

Binary games only consider two strategies per player, i.e. 𝒞𝑖 = {𝜙𝑖, 𝜓𝑖}. Table 2 shows the normal form
notation of a binary game with 𝑁 = 2 players and payoffs 𝑉𝑖 resulting from various strategy pairs.

Table 2. Normal Form for a Binary Strategic Game and an Example Stag Hunt Game

 𝜙2 𝜓2 𝐻𝑎𝑟𝑒 𝑆𝑡𝑎𝑔

𝜙1
𝑉1(𝜙1, 𝜙2)

𝑉2(𝜙1, 𝜙2)

𝑉1(𝜙1, 𝜓2)

𝑉2(𝜙1, 𝜓2)
𝐻𝑎𝑟𝑒

2

2

4

0

𝜓1
𝑉1(𝜓1, 𝜙2)

𝑉2(𝜓1, 𝜙2)

𝑉1(𝜓1, 𝜓2)

𝑉2(𝜓1, 𝜓2)
𝑆𝑡𝑎𝑔

0

4

5

5

Nash equilibria are stable strategy sets under interactive effects and often considered solutions to games
because of this stability feature. Bipolar games are a subclass of binary games with two Nash equilibria
defined by strategies 𝜙 = (𝜙1, … , 𝜙𝑁) and 𝜓 = (𝜓1, … , 𝜓𝑁). A Stag Hunt is a classic example of a two-
player bipolar game in Table 2. Strategy pairs where both players choose hare (𝜙1, 𝜙2) and both choose
stag (𝜓1, 𝜓2) are Nash equilibria. In the above case, a common stag strategy yields 5 payoff for each player
while a common hare strategy yields only 2 each. However, a player can pursue a hare alone and earn a
total payoff of 4 while pursuing stag alone sends a player home hungry. Both strategies are equally stable
from an equilibrium perspective but have different payoff and risk characteristics.

Harsanyi and Selten (1988) and Selten (1995) develop theory for equilibrium selection in bipolar games
based on the concept of risk dominance. Similar to how some equilibria may exhibit payoff dominance,
risk dominance objectively captures resistance to losses. Selten (1995) proposes a quantitative metric to
measure risk dominance in bipolar games with linear incentives called the weighted average log measure
(WALM). A positive WALM indicates the payoff dominated equilibrium is risk dominant while a negative
WALM indicates the payoff dominant equilibrium is also risk dominant.

Schmidt et al. (2003) simplify WALM to the form in Eq. (5) for games with two symmetric players.

𝑅(𝜙, 𝜓) = ln (
𝑉𝑖(𝜙𝑖 , 𝜙𝑗) − 𝑉𝑖(𝜓𝑖 , 𝜙𝑗)

𝑉𝑖(𝜓𝑖 , 𝜓𝑗) − 𝑉𝑖(𝜙𝑖 , 𝜓𝑗)
) (5)

For the Stag Hunt game in Table 2, WALM is shown to be positive in Eq. (6) indicating 𝜙 risk dominates 𝜓.
This result can be interpreted as the large losses associated with deviating from 𝜙 provides more stability
than the smaller deviation loss associated with 𝜓. In the absence of subjective information, players may
reasonably choose to hunt hare as the risk-dominant strategy.

𝑅(𝜙, 𝜓) = ln (
2 − 0

5 − 4
) = ln (

2

1
) ≈ 0.69 (6)

For greater generalizability to asymmetric games with 𝑁 ≥ 2 players, Selten’s WALM of risk dominance is
defined in terms of an abstraction called a biform uniquely determined by an influence matrix 𝐴 capturing

Report No. SERC-2018-TR-105 April 30, 2018

19

interdependencies between players and a vector of normalized deviation losses 𝑢. Together, these factors
assign losses to deviations from a baseline strategy. Equation (7) defines WALM risk dominance for
generalized games (Selten, 1995) where 𝑤𝑖 represent influence weights for each player.

𝑅(𝜙, 𝜓) = ∑𝑤𝑖(𝐴) ln (
𝑢𝑖

1 − 𝑢𝑖
)

𝑁

𝑖=1

 (7)

At its core, risk dominance deals with resistance to deviation losses 𝐿𝑖 experienced from switching
strategies in Eq. (8) where the notation 𝜙 = (𝜙1, … , 𝜙𝑁) indicates all players choose strategy 𝜙 and 𝜙−𝑖
indicates all except player 𝑖 choose strategy 𝜙. Formally, deviation losses may be subject to complex
behavioral factors such as diminishing sensitivity and loss aversion (Tversky and Kahneman, 1992);
however, for clarity this work expresses deviation losses as a simple difference between payoff values.

𝐿𝑖(𝜙) ∝ 𝑉𝑖(𝜙) − 𝑉𝑖(𝜙−𝑖), 𝐿𝑖(𝜓) ∝ 𝑉𝑖(𝜓) − 𝑉𝑖(𝜓−𝑖) (8)

Normalized deviation losses 𝑢𝑖 in Eq. (9) transform the quantity to a unit scale.

𝑢𝑖 =
𝐿𝑖(𝜙)

𝐿𝑖(𝜙) + 𝐿𝑖(𝜓)
, 1 − 𝑢𝑖 =

𝐿𝑖(𝜓)

𝐿𝑖(𝜙) + 𝐿𝑖(𝜓)
 (9)

Influence weights measure the importance of one player on others’ stability. In the class of games studied
by Selten, the weights 𝑤𝑖(𝐴) are a function of an influence matrix 𝐴 which captures the degree of
influence players have on each other for choosing between strategies. Weights can be interpreted as the
eigenvector of 𝐴𝑇 rescaled to unit norm corresponding to the eigenvalue of 1 which is equivalent to the
stationary stochastic distribution for the Markov chain with state transition probabilities 𝑎𝑖𝑗.

The only possible solution for two player games is 𝑤𝑖(𝐴) = 𝑤𝑗(𝐴) = 0.5 which leads to the Schmidt et

al.’s simplification in Eq. (5) for symmetric players. However, for more general cases, influence matrix
elements 𝑎𝑖𝑗 can be computed in Eq. (10) by measuring how deviations in player 𝑗’s strategy influence

player 𝑖’s payoff relative to player 𝑖’s own effect via global deviation losses.

𝑎𝑖𝑗 =
𝑙𝑖𝑗(𝜙) + 𝑙𝑖𝑗(𝜓)

𝐿𝑖(𝜙) + 𝐿𝑖(𝜓)
 (10)

Pairwise deviation losses 𝑙𝑖𝑗 are computed in Eq. (11) by considering combinations of players where 𝒦 =

𝒫({1,… ,𝑁} ∖ {𝑖, 𝑗}) is the power set of all players except 𝑖 and 𝑗 with cardinality |𝒦| = 2𝑁−2.

𝑙𝑖𝑗(𝜙) ∝
1

|𝒦|
∑ (𝑉𝑖(𝜙−𝑘) − 𝑉𝑖(𝜙−𝑘𝑗))

𝑘∈𝒦

, 𝑙𝑖𝑗(𝜓) ∝
1

|𝒦|
∑ (𝑉𝑖(𝜓−𝑘) − 𝑉𝑖(𝜓−𝑘𝑗))

𝑘∈𝒦

(11)

3.4 MULTI-ACTOR VALUE FUNCTIONS AND STRATEGIC DESIGN GAMES

A strategic design game based on the multi-actor design framework in Grogan et al. (2016) distinguishes
between two levels of decisions: strategy decisions 𝑐𝑖 ∈ 𝒞 govern collective behavior between actors and
design decisions 𝑑𝑖 ∈ 𝒟𝑖 specify system configurations. A corresponding multi-actor value function for 𝑁
design actors and 𝑛 design decisions in Eq. (12) maps design and strategy decisions for each actor to a
vector of real-number values interpreted as von Neumann-Morgenstern utilities.

𝑉: (∏𝒟𝑖

𝑛

𝑖=1

) × 𝒞𝑁 → ℝ𝑁 , 𝑉𝑖 = 𝑉𝑖
𝑐1,…,𝑐𝑁(𝑑1, … , 𝑑𝑛) ∀ 𝑖 (12)

While the design spaces 𝒟𝑖 may be large or unbounded and unique to each actor, the strategy space 𝒞 =
{𝜙,𝜓} is limited to a few options common to all actors, namely choosing between independent action (𝜙)

Report No. SERC-2018-TR-105 April 30, 2018

20

or collective action (𝜓). In the context of distributed systems, independent means monolithic,
disconnected, or defective while collective means distributed, connected, or anticipated.

A strategic design game benefits from a few special conditions. For simplicity, this section assumes actor
𝑖 controls strategy decision 𝑐𝑖 and design decision 𝑑𝑖 such that 𝑁 = 𝑛. If there are no interaction effects
between independent players, described by Grogan et al. (2016) as a perfectly limited case, the multi-
actor value function can be replaced by a single-actor value function in Eq. (13) when player 𝑖 chooses an
independent strategy 𝑐𝑖 = 𝜙 or all other players choose an independent strategy 𝑐𝑗 = 𝜙 ∀ 𝑗 ≠ 𝑖.

𝑉𝑖
𝑐1,…,𝑐𝑁(𝑑1, … , 𝑑𝑛) ≈ 𝑉𝑖(𝑑𝑖) if 𝑐𝑖 = 𝜙 or 𝑐𝑗 = 𝜙 ∀ 𝑗 ≠ 𝑖 (13)

Perfectly limited cases allow local design optimization in Eq. (14) under an independent strategy.

𝒱𝑖
𝜙
= max

𝑑∈𝒟𝑖

𝑉𝑖(𝑑𝑖) , 𝑑𝑖
𝜙
= argmax

𝑑∈𝒟𝑖

𝑉𝑖(𝑑𝑖) (14)

A second notational simplification in Eq. (15) aggregates all players participating in a collective strategy.

𝑉𝑖
𝑐1,…,𝑐𝑁(𝑑1, … , 𝑑𝑛) ≈ 𝑉𝑖

𝜓({𝑑𝑘: 𝑐𝑘 = 𝜓}) (15)

Thus, a strategic design game can be represented using multi-actor value functions parameterized by
candidate collective designs (𝑑1, … , 𝑑𝑛) using the simplified notation above for independent and collective
alternatives. Table 3 shows a normal form game parameterized for 𝑁 = 3 players.

Table 3. Normal Form Perfectly Limited Strategic Design Game for Three Players

 𝑐2 = 𝜙 𝑐2 = 𝜓

𝑐2 = 𝜙 𝑐2 = 𝜓

𝑐1 = 𝜙

𝒱1
𝜙

𝒱2
𝜙

𝒱3
𝜙

𝒱1
𝜙

𝑉2(𝑑2)

𝒱3
𝜙

𝒱1
𝜙

𝒱2
𝜙

𝑉3(𝑑3)

𝒱1
𝜙

𝑉2
𝜓(𝑑2, 𝑑3)

𝑉3
𝜓(𝑑2, 𝑑3)

𝑐1 = 𝜓

𝑉1(𝑑1)

𝒱2
𝜙

𝒱3
𝜙

𝑉1
𝜓(𝑑1, 𝑑2)

𝑉2
𝜓(𝑑1, 𝑑2)

𝒱3
𝜙

𝑉1
𝜓(𝑑1, 𝑑3)

𝒱2
𝜙

𝑉3
𝜓(𝑑1, 𝑑3)

𝑉1
𝜓(𝑑1, 𝑑2, 𝑑3)

𝑉2
𝜓(𝑑1, 𝑑2, 𝑑3)

𝑉3
𝜓(𝑑1, 𝑑2, 𝑑3)

 𝑐3 = 𝜙 𝑐3 = 𝜓

Using the strategic design game notation, simplified deviation loss functions are redefined in Eq. (16).

𝐿𝑖(𝜙) ∝ 𝒱𝑖
𝜙
− 𝑉𝑖(𝑑𝑖), 𝐿𝑖(𝜓) ∝ 𝑉𝑖

𝜓(𝑑1, … , 𝑑𝑛) − 𝒱𝑖
𝜙

 (16)

For games with 𝑁 = 3 players, as in Table 3, the pairwise deviation loss functions reduce to Eq. (17).

𝑙𝑖𝑗(𝜙) ∝ 0, 𝑙𝑖𝑗(𝜓) ∝
1

2
[(𝑉𝑖

𝜓
(𝑑𝑖 , 𝑑𝑗) − 𝑉𝑖(𝑑𝑖)) + (𝑉𝑖

𝜓
(𝑑𝑖 , 𝑑𝑗 , 𝑑𝑘) − 𝑉𝑖

𝜓(𝑑𝑖 , 𝑑𝑘))] (17)

3.5 EXAMPLE APPLICATION CASE

To illustrate the proposed method to assess risk dominance in distributed systems, consider the following
application case based on Orbital Federates, a stylized model of distributed Earth-observing space systems
(Grogan and de Weck, 2015) paired with an existing simulation implemented in Python. The simulation
model acts as a multi-actor value function by mapping design and strategy sets (inputs) to net present
value earned by each player over a simulated lifetime (outputs). The model includes stochastic features
to capture uncertainty in demands such that results must be sampled using Monte Carlo methods. While
many model details are clearly fictional, Orbital Federates has been developed with similar features to
space systems to help understand strategic player behavior.

Report No. SERC-2018-TR-105 April 30, 2018

21

The design scenario in Table 4 considers 𝑁 = 3 players who design, build, and operate space systems to
collect and downlink data to satisfy demands and earn revenue. Each player chooses between a
monolithic strategy of independent operations and a distributed strategy allowing exchange of data
services. The monolithic alternative excludes participation by player 1 and includes small standalone
observing spacecraft for players 2 and 3 who specialize in synthetic aperture radar (SAR) and visual light
(VIS) sensors, respectively. Distributed designs consider an opportunistic data exchange policy where
inter-satellite link (ISL) and space-to-ground (SGL) services are priced at a fixed cost of 100. Distributed
design A includes participation by player 1 with a data relay spacecraft and SGL receiver and ISL adoption
among all three players. Distributed design B eliminates the ISL technology option and establishes an
independent observing spacecraft for player 1 with the SGL receiver.

Table 4. Orbital Federates Design Space

Player Monolithic Design Distributed Design A Distributed Design B

1

None.

𝒱1
𝜙
= 0

Small satellite with inter-

satellite link (ISL) and open

space-to-ground link (oSGL).

Ground station with oSGL.

𝑉1(𝑑1𝐴) = −1100

𝑉1
𝜓(𝑑1𝐴, 𝑑2𝐴) = −572

𝑉1
𝜓(𝑑1𝐴, 𝑑3𝐴) = −653

𝑉1
𝜓(𝑑1𝐴, 𝑑2𝐴, 𝑑3𝐴) = 100

Small satellite with SAR sensor

and open space-to-ground link

(oSGL).

Ground station with oSGL.

𝑉1(𝑑1𝐵) = −104

𝑉1
𝜓(𝑑1𝐵 , 𝑑2𝐵) = 83

𝑉1
𝜓(𝑑1𝐵 , 𝑑3𝐵) = 33

𝑉1
𝜓(𝑑1𝐵 , 𝑑2𝐵 , 𝑑3𝐵) = 271

2

Small satellite with SAR sensor

and proprietary space-to-

ground link (pSGL).

Ground station with pSGL.

𝒱2
𝜙
= −39

Medium satellite with SAR

sensor, inter-satellite link (ISL)

and proprietary and open space-

to-ground links (pSGL and oSGL).

Ground station with pSGL.

𝑉2(𝑑2𝐴) = −389

𝑉2
𝜓(𝑑1𝐴, 𝑑2𝐴) = 440

𝑉2
𝜓(𝑑2𝐴, 𝑑3𝐴) = −255

𝑉2
𝜓(𝑑1𝐴, 𝑑2𝐴, 𝑑3𝐴) = 536

Medium satellite with SAR

sensor and proprietary and

open space-to-ground links

(pSGL and oSGL).

Ground station with pSGL.

𝑉2(𝑑2𝐵) = −288

𝑉2
𝜓(𝑑1𝐵 , 𝑑2𝐵) = 141

𝑉2
𝜓(𝑑2𝐵 , 𝑑3𝐵) = −288

𝑉2
𝜓(𝑑1𝐵 , 𝑑2𝐵 , 𝑑3𝐵) = 150

Report No. SERC-2018-TR-105 April 30, 2018

22

3

Small satellite with VIS sensor

and proprietary space-to-

ground link (pSGL).

Ground station with pSGL.

𝒱3
𝜙
= 30

Medium satellite with VIS

sensor, inter-satellite link (ISL)

and proprietary and open space-

to-ground links (pSGL and oSGL).

Ground station with pSGL.

𝑉3(𝑑3𝐴) = −320

𝑉3
𝜓(𝑑1𝐴, 𝑑3𝐴) = 386

𝑉3
𝜓(𝑑2𝐴, 𝑑3𝐴) = −158

𝑉3
𝜓(𝑑1𝐴, 𝑑2𝐴, 𝑑3𝐴) = 639

Medium satellite with VIS

sensor and proprietary and

open space-to-ground links

(pSGL and oSGL).

Ground station with pSGL.

𝑉3(𝑑3𝐵) = −220

𝑉3
𝜓(𝑑1𝐵 , 𝑑3𝐵) = 391

𝑉3
𝜓(𝑑2𝐵 , 𝑑3𝐵) = −161

𝑉3
𝜓(𝑑1𝐵 , 𝑑2𝐵 , 𝑑3𝐵) = 378

Value function outputs shown in Table 4 evaluate expected net present value over a 24-turn game using
a discount rate of 2% per turn sampled using 1000 seeded runs of the Orbital Federates Simulation –
Python (OFSPY) executable. The monolithic design requires only one value function evaluation while each
distributed design requires five function evaluations to consider all combinations of two or more
cooperating players and the single case with zero or one cooperating players. Preprocessing configures
OFSPY inputs to consider favorable spatial locations for player’s spacecraft for each function evaluation.

3.5.1 ANALYSIS OF DISTRIBUTED ALTERNATIVE A

This section analyses distributed design A compared to the monolithic alternative. Table 5 frames a
strategic design game for the distributed design alternatives A. Note that this design scenario constitutes
a bipolar game with Nash equilibria (𝜙, 𝜙, 𝜙) and (𝜓, 𝜓, 𝜓).

Table 5. Strategic Design Game for Distributed Designs A

 𝑐2 = 𝜙 𝑐2 = 𝜓

𝑐2 = 𝜙 𝑐2 = 𝜓

𝑐1 = 𝜙

0

−39

30

0

−389

30

0

−39
−320

0

−255
−158

𝑐1 = 𝜓

−1100

−39

30

−572

440

30

−652

−39
386

100

536
639

 𝑐3 = 𝜙 𝑐3 = 𝜓

From the above data, the deviation losses can be calculated using Eq. (16) with results in Eq. (18).

[𝐿𝑖(𝜙)] = [

𝐿1(𝜙)

𝐿2(𝜙)

𝐿2(𝜙)
] = [

1100
350
350

] , [𝐿𝑖(𝜓)] = [

𝐿1(𝜓)

𝐿2(𝜓)

𝐿2(𝜓)
] = [

100
575
609

] (18)

Pairwise deviation losses can be calculated using Eq. (17) with results in Eq. (19).

𝑙𝑖𝑗(𝜙) = 0 ∀ 𝑖 ≠ 𝑗, [𝑙𝑖𝑗(𝜓)] = [

0 𝑙12(𝜓) 𝑙13(𝜓)

𝑙21(𝜓) 0 𝑙23(𝜓)

𝑙31(𝜓) 𝑙32(𝜓) 0

] = [
0 640 560

810 0 115
751.5 207.5 0

] (19)

Report No. SERC-2018-TR-105 April 30, 2018

23

Next, the interaction matrix can be calculated using Eq. (10) with results in Eq. (20).

𝐴 = [

0 𝑎12 𝑎13
𝑎21 0 𝑎23
𝑎31 𝑎32 0

] = [
0 0.533 0.467

0.876 0 0.124
0.783 0.217 0

] (20)

Eigenvector analysis of the transposed influence matrix 𝐴𝑇 yields the eigenvector corresponding to the
eigenvalue of 1 (rescaled to unit norm) in Eq. (21).

𝑤(𝐴) = [

𝑤1(𝐴)

𝑤2(𝐴)

𝑤3(𝐴)
] = [

0.455
0.296
0.249

] (21)

Bringing these results together in Eq. (22), the result shows the monolithic strategy 𝜙 is risk dominant.

𝑅𝜓(𝑑1𝐴, 𝑑2𝐴, 𝑑3𝐴) = 𝑤1(𝐴) ln (
𝐿1(𝜙)

𝐿1(𝜓)
) + 𝑤2(𝐴) ln (

𝐿2(𝜙)

𝐿2(𝜓)
) + 𝑤3(𝐴) ln (

𝐿3(𝜙)

𝐿3(𝜓)
)

= 0.455 ln (
1100

100
) + 0.296 ln (

350

575
) + 0.249 ln (

350

609
) = 0.80

(22)

Analysis of distributed design A shows the monolithic strategy is more stable for player 1 because of large
downside losses incurred if other players chose independent action. This risk arises because player 1 has
no independent source of revenue to recover the high cost of the distributed design. However, the
distributed strategy is more stable for players 2 and 3 because large upside gains realized from shared
data services outweigh the additional cost of larger spacecraft and additional hardware. Influence analysis
identifies player 1 as the most influential which can be explained by their central role in both providing
shared inter-satellite link (ISL) relay and space-to-ground (SGL) downlink services via the spacecraft and
ground station, respectively. Players 2 and 3 have similar weights of 0.296 and 0.249 reflecting their
symmetry in operational mission. Given player 1’s aversion to the distributed strategy and strong
influence, the monolithic strategy is risk dominant and the distributed strategy is prone to failure due to
disengagement by player 1.

3.5.2 ANALYSIS OF DISTRIBUTED ALTERNATIVE B

Design B takes two actions to relieve strategic risk and attempt to make the distributed strategy risk
dominant. First, it reduces the scope (and potential payoffs) of the distributed strategy by eliminating
inter-satellite link (ISL) services to reduce the initial cost of spacecraft and hardware. Second, it provides
player 1 an independent source of revenue by hosting an instrument to complete data contracts.

Table 6 frames a strategic design game for the distributed design alternatives B. Note that this design
scenario constitutes a bipolar game with Nash equilibria 𝜙 = (𝜙, 𝜙, 𝜙) and 𝜓 = (𝜓,𝜓, 𝜓).

Table 6. Strategic Design Game for Distributed Designs B

 𝑐2 = 𝜙 𝑐2 = 𝜓

𝑐2 = 𝜙 𝑐2 = 𝜓

𝑐1 = 𝜙

0

−39

30

0

−288

30

0

−39
−220

0

−288
−161

𝑐1 = 𝜓

−104

−39

30

83

141

30

33

−39
391

271

150
378

 𝑐3 = 𝜙 𝑐3 = 𝜓

Report No. SERC-2018-TR-105 April 30, 2018

24

From the above data, the deviation losses can be calculated using Eq. (16) with results in Eq. (23).

[𝐿𝑖(𝜙)] = [

𝐿1(𝜙)

𝐿2(𝜙)

𝐿2(𝜙)
] = [

104
249
250

] , [𝐿𝑖(𝜓)] = [

𝐿1(𝜓)

𝐿2(𝜓)

𝐿2(𝜓)
] = [

271
189
348

] (23)

Pairwise deviation losses can be calculated using Eq. (17) with results in Eq. (24).

𝑙𝑖𝑗(𝜙) = 0 ∀ 𝑖 ≠ 𝑗, [𝑙𝑖𝑗(𝜓)] = [

0 𝑙12(𝜓) 𝑙13(𝜓)

𝑙21(𝜓) 0 𝑙23(𝜓)

𝑙31(𝜓) 𝑙32(𝜓) 0

] = [
0 212.5 162.5

433.5 0 4.5
575 23 0

] (24)

Next, the interaction matrix can be calculated using Eq. (10) with results in Eq. (25).

𝐴 = [

0 𝑎12 𝑎13
𝑎21 0 𝑎23
𝑎31 𝑎32 0

] = [
0 0.566 0.434

0.989 0 0.011
0.961 0.039 0

] (25)

Eigenvector analysis of the transposed influence matrix 𝐴𝑇 yields the eigenvector corresponding to the
eigenvalue of 1 (rescaled to unit norm) in Eq. (26).

𝑤(𝐴) = [

𝑤1(𝐴)

𝑤2(𝐴)

𝑤3(𝐴)
] = [

0.494
0.288
0.218

] (26)

Bringing these results together in Eq. (27), the result shows the distributed strategy 𝜓 is risk dominant.

𝑅𝜓(𝑑1𝐵 , 𝑑2𝐵 , 𝑑3𝐵) = 𝑤1(𝐴) ln (
𝐿1(𝜙)

𝐿1(𝜓)
) + 𝑤2(𝐴) ln (

𝐿2(𝜙)

𝐿2(𝜓)
) + 𝑤3(𝐴) ln (

𝐿3(𝜙)

𝐿3(𝜓)
)

= 0.494 ln (
104

271
) + 0.288 ln (

249

189
) + 0.218 ln (

250

348
) = −0.46

(27)

Analysis of distributed design B shows the distributed strategy is more stable for players 1 and 3 and the
monolithic strategy is more stable for player 2. The goals of reducing upfront costs and providing a second
source of revenue successfully changed the strategic risk posture of player 1. However, the loss of the
inter-satellite link (ISL) relay services tips player 2 towards a stable independent solution. Influence
analysis still identifies player 1 as the most influential with weight 0.494. Similar to design A, this can be
explained by the player’s central role in providing shared downlink services via the ground station and the
influence is greater than in design A because other players lack the relay components to interact with
each other directly. Combining these factors, player 1’s contributions outweigh player 2’s contributions
and the distributed strategy is risk dominant. In the event that player 2 disengages, players 1 and 3 still
enjoy moderate returns from the distributed strategy.

3.5.3 DISCUSSION OF RESULTS

This analysis illustrates how “robust-yet-fragile” features can emerge from engineering design and how
strategic risk assessment can mitigate fragility. If successful, distributed design A provides superior value
for all three players by taking advantage of new technology and operational concepts. However, focusing
on maximizing upside potential can yield unstable design solutions prone to failure. Player 1 experiences
greater potential losses from distributed design A compared to others and is most likely to disengage from
a distributed strategy. Distributed design B reduces the level of technological ambition and establishes an
independent value stream. While its potential payoffs are smaller than design A, design B exhibits superior
strategic stability and is robust to disengagement by player 2, the most likely to disengage from a

Report No. SERC-2018-TR-105 April 30, 2018

25

distributed strategy. These results echo Maier’s (1998) principles for system-of-system architecting
emphasizing stable intermediate forms and ensuring cooperating among all actors.

There are several extensions to this analysis which could be studied further. This case only investigates
comparative analysis between two distributed architectures under a single collective strategy; however,
similar analysis could be applied to a tradespace of a potential architectures or collective strategies. For
example, the players could enumerate a set of alternative design architectures and several collective
strategies with varying policies governing pricing, link availability, or other features to compare with the
monolithic alternative which can be analyzed separately using existing systems engineering optimization
methods. As a scalar metric, WALM risk dominance can compare the degree of stability (or instability) in
a candidate architecture and strategy pair relative to a baseline monolithic or independent alternative.

A multi-actor value function is the key requirement for WALM risk dominance analysis. However,
complete analysis requires 2𝑁 −𝑁 function evaluations to assess each collective architecture/strategy
pair. Thus, care must be taken to narrow the candidate architecture/strategy set to a minimum size to
avoid lengthy computational burdens, especially when considering a stochastic model such as OFSPY.

3.6 EXTENSIONS AND OPPORTUNITIES

As demonstrated in the example application case, strategic design games and measures of risk dominance
can inform concept selection in systems engineering. These methods help to assess inherent risks in
decentralized architectures resulting from strategic instabilities of aligning decisions across independent
actors. By applying WALM risk dominance analysis during conceptual design, systems engineers can
identify, avoid, or rework distributed design alternatives with high but unstable payoffs compared to
monolithic alternatives. This perspective may help to avoid costly development programs having
structural problems likely leading to schedule and cost growth and, ultimately, cancellation. If scaled up
to larger application cases, this research project could change how distributed systems are conceived and
evaluated in conceptual design. Future work must proceed in two parallel directions.

First, additional theoretical work is required to assess the significance of violating assumptions of linear
incentives or consider alternative metric definitions for cases with nonlinear incentives. Linear
assumptions are unlikely to hold in most engineering projects because marginal contribution of each
player tend to increase with collective size (i.e. there are increasing returns to scale in many distributed
systems). Future work is also required to identify rigorous but practical means to quantify deviation losses
in accordance with rational and behavioral economic theory. The simplified method of taking the value
difference employed in this project may be adequate; however, additional exploration is required.

Second, additional practical or applied work is required to validate the proposed method in a realistic
system context. In particular, a real-world system must be identified as being a bipolar game to benefit
from risk dominance measures; however, many distributed systems are likely representable as bipolar
games due to the framing of upside potential and downside risks in a strategic design game. Furthermore,
a real-world application case would critically rely on a multi-actor value function to quantify value of
varying levels of participation. Due to the relative novelty of this problem framing, a subsequent research
project would likely require additional effort to either develop a suitable model or modify an existing one
(e.g. using preprocessing and/or post-processing) to yield required outputs.

As a theoretically-grounded project, much of the risk of a future research project has been minimized
through this incubator project. The overall theory of equilibrium selection appears internally consistent

Report No. SERC-2018-TR-105 April 30, 2018

26

and complicated but understandable to engineering managers. Quantities such as deviation losses,
influence matrix elements, and weighting factors can be calculated for a general class of problems using
the equations developed in this project. Remaining risks mostly deal with the framing of a particular design
problem as a bipolar game, availability of a multi-actor value function, and combinatorial scaling. Given
the successes of the formulation of WALM risk dominance in simplified but not trivial problems similar to
Orbital Federates, the next step of research would scale up to a more realistic system.

Provided access to an existing or actively-developed value model, an appropriate level of support would
total approximately $350k over two years to support a full-time research assistant, travel for sponsor
meetings and presentation of results at domain conferences, computation time on cloud platforms, and
release time for the principal investigator. A midpoint review would establish the validity of a multi-actor
value function to assess preference for multiple players and the overall framing of the design problem as
a bipolar game. A final review would establish the validity of a game-theoretic risk analysis to assess a
multi-architecture tradespace of candidate designs and collective strategies for distributed systems
compared to a monolithic or independent alternative.

There exists potential synergy with a related project at NASA’s Goddard Space Flight Center led by Dr.
Jacqueline Le Moigne. The Tradespace Analysis Tool for Constellations (TAT-C) is a simulation modeling
tool to quantify the performance of distributed spacecraft missions (Le Moigne et al., 2017). In the
terminology of this project, it serves as distributed system value function similar to Eq. (2). While it
presently addresses a subset of needs for strategic risk assessment, potential extensions may be able to
transform it into a multi-actor value function to assess collective strategies for Earth-observing spacecraft
missions. There exist some interesting existing application cases, such as the Afternoon Constellation, a
collection of spacecraft which gather spatially and temporally correlated datasets, and potential
coordination between U.S. and European medium-resolution land imaging platforms (Landsat and
Sentinel-2) which gather overlapping data using similar orbital geometries to benefit from cross-
validation. A strategic risk assessment method similar to that described in this project may help to identify
stable designs among national and international government agencies and commercial partners.

Distributed system architectures provide an opportunity to achieve greater performance compared to
monolithic alternatives; however, this project demonstrates a careful analysis of strategic risk is critical to
identify stable design alternatives. Game-theoretic methods such as Selten’s WALM risk dominance can
help systems engineers assess and mitigate threats to distributed architectures during conceptual design.
Understanding of both the upside potential of nominal operations as well as the downsides associated
with failures or anomalous operations help assess sources of strategic risk. With additional support and
development, this research has the potential to transform how distributed systems are perceived during
conceptual design and avoid pursuing inherently unstable concepts.

3.7 REFERENCES

[1] O. Brown and P. Eremenko, “The Value Proposition for Fractionated Space Architectures,” Space 2006, San Jose,

CA, 2006.

[2] W.E. Oates, “On the Theory and Practice of Fiscal Decentralization,” A.J. Auerbach and D.N. Shaviro (Eds.),

Institutional Foundations of Public Finance: Economic and Legal Perspectives, Cambridge, MA: Harvard

University Press, pp. 165-189, 2008.

[3] S.M. Rinaldi, J.P. Peerenboom, and T.K. Kelly, “Identifying, Understanding, and Analyzing Critical Infrastructure

Interdependencies,” IEEE Control Systems Magazine, 11-25, 2001.

Report No. SERC-2018-TR-105 April 30, 2018

27

[4] D.L. Alderson and J.C. Doyle, “Contrasting Views of Complexity and Their Implications for Network-centric

Infrastructures,” IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 40(4):839-

852, 2010.

[5] P.T. Grogan, K. Ho, A. Golkar, and O.L. de Weck, “Multi-actor Value Modeling for Federated Systems,” IEEE

Systems Journal, Early access, 2016.

[6] R. Selten, “An Axiomatic Theory of a Risk Dominance Measure for Bipolar Games with Linear Incentives,” Games

and Economic Behavior, 8(1):213-263, 1995.

[7] P.D. Collopy and P.M. Hollingsworth, “Value-Driven Design,” Journal of Aircraft, 48(3):749-759, 2011.

[8] A.M. Ross, D.E. Hastings, J.M. Warmkessel and N.P. Diller, “Multi-Attribute Tradespace Exploration as Front End

for Effective Space System Design,” Journal of Spacecraft and Rockets, 41(1):20-28, 2004.

[9] G.A. Hazelrigg, “The Implications of Arrow’s Impossibility Theorem on Approaches to Optimal Engineering

Design,” Journal of Mechanical Design, 118:161-164, 1996.

[10] A.E. Abbas and A.H. Cadenbach, “On the Use of Utility Theory in Engineering Design,” IEEE Systems Journal,

2016. Early access.

[11] J.C. Harsanyi and R. Selten, A General Theory of Equilibrium Selection in Games, MIT Press, Cambridge, MA, 1988.

[12] D. Schmidt, R. Shupp, J.M. Walker, and E. Ostrom, “Playing safe in coordination games: the roles of risk

dominance, payoff dominance, and history of play,” Games and Economic Behavior 42(X):281-299, 2003.

[13] A. Tversky and D. Kahneman, “Advances in prospect theory: Cumulative representation of uncertainty,” Journal

of Risk and Uncertainty, 5(4):297-323, 1992.

[14] P.T. Grogan and O.L. de Weck, “Interactive Simulation Games to Assess Federated Satellite System Concepts,”

2015 IEEE Aerospace Conference, Big Sky, MT, 2015.

[15] M.W. Meier, “Architecting principles for systems-of-systems,” Systems Engineering, 1(4):267-284, 1998.

[16] J. Le Moigne, P. Dabney, O. de Weck, V. Foreman, P. Grogan, M. Holland, S. Hughes, and S. Nag, “Tradespace

Analysis Tool for Designing Constellations (TAT-C),” IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), Fort Worth, TX, 2017.

Report No. SERC-2018-TR-105 April 30, 2018

28

4 PROGRAM PROTECTION SYSTEM SECURITY AND TRUST EXTENDING FLEXIBLE CONTRACTS FOR MISSION ASSURANCE

– AZAD MADNI, UNIVERSITY OF SOUTHERN CALIFORNIA

Abstract. Mission assurance focuses on reducing uncertainty in the ability of systems to successfully
complete missions despite disruptions. Current approaches to MA tend to rely exclusively on information
available at design time. In other words, they do not take into account incoming situation awareness data
from the operational environment. More recent approaches attempt to combine risk management with
shared situation awareness data from the operational environment. However, these approaches tend to
be inflexible when the system needs to operate in partially observable environments. This paper presents
a closed-loop, model-based, approach to mission assurance. The approach employs: probabilistic models
to account for uncertainty arising from partial observability, incremental information availability, and
noisy sensors; a flexible contract construct that introduces flexible assertions into traditional contracts to
adapt to changes in the operational environment while still supporting formal verification and testing to
some degree; and reinforcement learning to increase confidence in probabilistic system models. The
overall approach is discussed within the context of resilient multi-UAV swarm operations.

The proposed approach using Heilmeier Criteria is summarized below:

1. What are we trying to do?
a. Develop a formal model-based approach for closed loop assessment of mission assurance

and reliability
2. How is it done today? What are the limits of current practice?

a. Mission assurance uses data available solely at design time (“open loop assessment”).
Operational situational awareness data during mission execution is not used to update
initial MA assessment.

3. What’s new in our approach? Why do we think it will be successful?
a. Based on resilience contract, a hybrid modeling construct, that combines formal and

probabilistic models that supports model-based system verification and flexibility to cope
with disruptions. Approach strikes a balance between system verification and flexibility,
the two key requirements for mission assurance. Approach is based on a combination of
two proven modeling approaches. We have mission assurance expert working with us
from day one.

4. Who cares?
a. The space industry, DoD, automotive and aerospace industries

5. If we are successful, what difference will it make?
a. More accurate assessment of mission assurance and reliability leading to better decision

making in the face of disruption.
6. What are the risks and payoffs?

a. Partial observability and noisy sensors pose a problem for system modeling. We
overcome these problem through online reinforcement learning. Payoffs are accurate
assessment of MA and reliability in safety-critical and mission-critical systems.

7. How much will it cost?
a. Cost to prototype will be $260K per year for 2 years.

8. How long will it take?
a. Two years to demonstrate overall concept with progress demos along the way

9. What are the mid-term and final exams to check for success? How will progress be measured?
a. Mid-term: probabilistic system model using Markov Decision Process (full observability);

final exam: probabilistic system model using Partially Observable Markov Decision

Report No. SERC-2018-TR-105 April 30, 2018

29

Process (POMDP). Demonstration of MDP and POMDP models on a DoD-relevant
problem (e.g. autonomous ground vehicles).

4.1 INTRODUCTION
Mission Assurance (MA) is concerned with reducing uncertainty in the ability of systems to accomplish
missions in the face of disruptions [1], [2], [3]. MA has historically been a part of a variety of engineering
sub-disciplines including: high availability systems, failure analysis, performance engineering, quality
assurance, reliability assessment, redundancy management, security engineering, hazard identification,
software engineering, systems engineering, and safety engineering [4], [5].

Existing methods for MA are based on information available exclusively at design time (Jabbour and
Muccio, 2010). Recently, various MA approaches have been proposed to improve on existing methods.
Some of the more popular approaches for MA in federated environments combine standardized risk
management with shared situation awareness among entities involved in executing operational missions
[4]. However, these approaches tend to be inflexible when the system needs to operate in partially
observable environments.

This paper presents a model-based MA approach that accounts for uncertainties arising from partial
observability of the operational environment, and employs reinforcement learning based on incoming
data (i.e., observations) from the operational environment to progressively determine system states.
This paper is organized as follows. Section 2 presents the current approach to MA. Section 3 presents the
flexible contract construct for real-time MA based on operational situation awareness data. Section 4
presents a closed-loop approach to MA based on flexible contracts. Section 5 presents real-time MA
concept of operations for a simple system. Section 6 discusses the technical underpinnings of the overall
approach. Section 7 presents concluding comments and future developments to realize the proposed
approach in operational settings.

4.2 CURRENT MA APPROACH
MA today is a sequential, design time process (Figure 1). In other words, it does not reflect real-time
situational awareness data that could potentially contribute to more accurate MA assessment. Figure 1
presents a simplified, high level view of the current approach to mission assurance. Several key
considerations such as reliability, safety, performability, quality assurance, parts, materials, processes,
and domain-specific considerations such as radiation effects in space missions which are all part of MA,
are not explicitly represented to prevent cluttering the figure.

The traditional MA approach, based on the analysis of dynamic system characteristics, employs methods
such as: bottom up evaluation of component faults (e.g., failure modes effects analysis); worst case circuit
analysis; single event effects analysis; and reliability analysis. MA predicts how likely the system will
provide the required level of service in its operational environment.

Thus, the key question is how valid can predictions be that are based solely on information available at
design time. While these predictions are useful for conducting trade-studies and identifying potential risk
areas, it is questionable whether they reflect the realities of the operational environment. To begin with,
system behavior cannot be reliably predicted because the system’s environment and operational context
cannot be fully controlled. Furthermore, it is difficult to discern all the states that a system might be in. As
a result, it is difficult to tell whether the system is performing satisfactorily (i.e., within safe states regime),
is in trouble (i.e., in unsafe states), or heading into potential trouble (i.e., about to enter unsafe states).

Report No. SERC-2018-TR-105 April 30, 2018

30

Thus, online assessment of MA becomes essential to understand a system’s overall state and health
status, and guide decisions about its operational use.

Figure 1. Current Approach to Mission Assurance

An illustrative example of MA for a simple system (Figure 2) is presented next. The simple system
comprises a prime computer (P) and a redundant computer (R) that are cross-strapped to sensor and
actuator interfaces.

Figure 2. A Simple System

For this example, traditional MA typically involves analyzing a static block diagram (e.g., fault trees that
are used to evaluate potential causes of mission failure in a top down fashion). A fault tree for the system
in Figure 2 is shown in Figure 3.

Figure 3. Fault Tree for simple system
With respect to this problem, reliability is defined by the equation:
Rsys = Rsens * Ract * (2*Rcomp – R2comp)

Computer
(P)

Computer
(R)

Sensor
Interface

Actuator
Interface

X

System
Fails

Sensors
Fail Actuators

Fail

Computer
Fail

Computer
(R) Fail

Computer
(P) Fail

System
Model

Fault Tree
Analysis

Failure
Modes &

Effects
Analysis

Update

Worst Case
Analysis

Evaluate

Reliability
Analysis

MA performed during design cannot reflect real-time situational awareness

Report No. SERC-2018-TR-105 April 30, 2018

31

In this equation, Rsys = reliability of system
 Rsens = reliability of sensors
 Ract = reliability of actuators
 (2*Rcomp – R2comp) = reliability associated with one of 2 computers not working

However, such traditional MA methods do not exploit sensed data from the operational environment
during the conduct of the mission. The latter is needed for accurate, real-time, MA assessments.
Specifically, what is needed is a flexible, closed loop approach that reduces uncertainty by progressively
learning system states from sensed data. This recognition led to the creation of the Flexible Contract (FC)
construct [6], [7], [8], [9], [10].

4.3 THE FLEXIBLE CONTRACT CONSTRUCT

A traditional (i.e., inflexible) design contract is a formal modeling construct defined by: assert-guarantee
pairs, and rigorous concepts such as composition, abstraction, and refinement. The assert-guarantee
construct states that system/component properties are guaranteed under a set of assumptions about the
environment. A traditional contract enables rigorous step-wise refinement and supports modularity and
hierarchy. It is capable of representing conditions on continuous and discrete components. Design
contracts are used for requirements validation, conflict detection and resolution, and identification of
redundant or incomplete requirements.

A flexible contract (FC) is a system modeling construct based on Markov Decision Process {6], [7], [8], [9],
[10]. It extends the deterministic design contract through flexible assertions. It is suitable for probabilistic
modeling and is capable of handling both observable and unobservable states. Implemented as a Partially
Observable Markov Decision Process (POMDP), a FC supports in-use learning, uncertainty handling, and
pattern recognition. While developed at design time, the FC is trained during actual use (“learning”).

More formally, FCs extend the concept of invariant contracts which are defined by a pair of assertions, C
= (A, G), in which A is an assumption (pre-condition) made on the environment and G is the guarantee
(post-condition) a system makes if the assumption is met. More precisely, invariant contracts describe a
system that produces an output from set 𝑜 ∈ { 𝑜0, 𝑜1, … 𝑜𝑜 −1} ⊆ 𝑂 when in the state 𝜎 ∈ {𝑠0, 𝑠1, … 𝑠𝑠−1}
⊆ Σ for an input 𝑖 ∈ {𝑖0, 𝑖1, … 𝑖𝑖−1} ⊆ I where O is the set of all outputs, Σ is the set of all system states, and
I is the set of all inputs. Systems defined by invariant contracts are compatible with formal analyses
methods that enable rigorous design and validation. However, invariant constructs are not well-matched
with unknown and unexpected disruptions that might result from unpredictable swarm environments,
internal faults, prolonged system usage, and previously undiscovered interactions with the operational
environment. Flexibility is introduced within the “sense-plan-act” construct shown in Fig. 4. This construct

comprises iterations of: sensing the environment and system status (Sense ≡ assumption); planning

action that maximize the likelihood of achieving a goal (Plan), and executing those actions (Act ≡

guarantee). The environment and system health are sensed and assessed after each action. The planning
function determines whether to continue with the current plan if the actions accomplish the desired
outcome, or otherwise make changes.

Report No. SERC-2018-TR-105 April 30, 2018

32

Figure 4. Flexibility is implemented with Sense, Plan, and Act Cycle

From a computational perspective, flexibility is introduced through POMDP, which accommodates
observable, unobservable, and unknown states. A POMDP models a decision process in which system
dynamics are assumed to be a belief Markovian Decision Process (MDP), a memoryless decision process
with transition rewards. A belief MDP comprises the 4-tuple:
 β = infinite set of belief states
 α = finite set of actions

 (𝑏, 𝑎) = ∑𝑠∈𝑆 (𝑠) (𝑠, 𝑠′𝑎) Expected reward at b (s) on transition from s to s’ given 𝑎

 Λ (𝑏′|𝑏, 𝑎) = ∑𝑜∈𝑂 Λ (𝑏′|𝑏, 𝑎, 𝑜) Λ (𝑜|𝑎, 𝑏) Transition function

In the transition function, a belief represents an understanding of a system state, 𝑠 ∈ 𝑆, with uncertainty.
The MDP has a policy, π, which describes how to select actions for a belief state based on maximizing a

goal defined by the reward function, 𝜌, within some time period, that is, 𝜋: 𝑠 ∈ 𝑆 → 𝑎 ∈ 𝛼. We define the

expected utility of executing π when started from s as 𝑈𝜋(𝑠). An optimal policy 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑈𝜋(𝑠)
maximizes the expected utility of an action.

Expected utility may be computed iteratively using a number of methods including a dynamic
programming approach in which a discount factor, γ, where 0 ≤ 𝛾 < 1, is used to penalize future rewards
and is based on the “cost” for not taking immediate action. The kth value of (𝑠) is computed iteratively
using Eq. (1). The optimal policy is determined by finding the policy that maximizes 𝑈𝜋(𝑠) for each policy
𝜋𝑖.

𝑈0
𝜋(𝑠) = 0

𝑈1
𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠))

…

 𝑈𝑘
𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾∑ Λ (𝑠′|𝑠, 𝜋(𝑠))𝑈𝑘−1

𝜋

𝑠′
 (𝑠′)

As noted earlier, in a POMDP model, some states are not observable (hidden) because of uncertainties
about the current system state and the outcomes of actions due to imperfect information (e.g., noisy
sensors). The FC approach begins with a naïve model of system behavior comprising known (designed)
states and transitions, as well as predicted anomalous states and transitions. For the UAV swarm, the
naïve model is refined over time by observing UAV swarm behavior as actions are taken.

Post deployment, swarms perform one or more missions defined by mission scenarios. Each scenario
comprises a set of mission phases that are further refined into a collection of detailed task behaviors that
are allocated to the vehicles in the UAV swarm to accomplish mission objectives. Mission scenarios are
defined by instantiating meta-states and transitions shown in Fig. 5. After initialization, the swarm
transitions to a Planning state within mission operations. Planning takes stock of swarm health, mission
objectives, risks, and prior knowledge of the operational environment to create an initial set of mission

Report No. SERC-2018-TR-105 April 30, 2018

33

phases and individual vehicle tasks. Thereafter, the swarm transitions to Cruise in which each vehicle
positions itself for making observations. Vehicles typically make observations during Cruise and provide
the information collected back to Planning. The swarm may encounter faults that require deciding how to
best to accomplish the mission or select a secondary (less ambitious) mission when the primary mission
becomes unachievable. The swarm enters the Observation state when it arrives at its desired locations
and begins intelligence gathering and operational mission data collection.

Fig. 5 shows that the swarm may return to Cruise between observations, or may transition to degraded
or unsafe operation. Fig. 5 includes restoration transitions that may return the swarm to a fully
operational capability after a fault, or may place the swarm into a degraded state by marshalling surviving
swarm resources.

Figure 5. Mission meta-states

The swarm may return to the Planning state after concluding the mission, if there is adequate time and
resources remaining to prosecute another mission. Additionally, Planning may be needed when restarting
a disrupted or an aborted mission depending on when the disruption occurs during task execution, and
where the swarm is in relation to ongoing observations. The Planning function may also modify missions
as a result of “interesting” observations. For example, a vehicle that detects a threat may request
confirmation from another vehicle that has been tasked with observing a different geographic sector.
Similarly, a vehicle might request support from another vehicle if a sensor needed for a particular
observation has failed, or is found to be untrustworthy.

Fig. 6 shows the structure of a FC that implements the transitions shown in Fig. 5. A belief state estimate
is derived from environmental and health sensors and used to evaluate which actions to take as
previously described. The actions are then mapped onto tasks.

A POMDP is a MDP, in which the system state is not directly observable, but probabilistically inferred from
available sensory measurements. Thus, next action determination is not based on the current state, but
on the current probability distribution. Thus, computationally there is a major distinction between MDP
and POMDP. MDP assumes perfect knowledge of state, is relatively easy to specify, and is computationally
tractable. POMDP, on the other hand, does not require perfect knowledge of state, is a bit more difficult
to specify, and computationally intractable with respect to optimality. However, POMDP treats all sources
of uncertainty uniformly, and allows for information gathering actions. Several approaches have been
proposed in the literature to solve POMDP [12] [13] [14] [15]. One class of solutions is locally optimal in
Gaussian belief spaces [16] [17].

Report No. SERC-2018-TR-105 April 30, 2018

34

In sum, with POMDP, each belief is a probability distribution. Thus, each value in a POMDP is a function
of an entire probability distribution. This property is problematic, because probability distributions are
continuous, and belief spaces are large and complex. So, the real value of POMDPs is in finite worlds with
finite state, action, and measurement spaces, and finite time horizons. In these cases, the value functions
can be effectively represented by piecewise linear functions.

A POMDP transitions from one state to the next by evaluating a belief state and determining the “best”
action to take in the most likely system state. It is initialized by invariant assertions that represent
traditional design contracts for a system. As the system operates, the emission and transmission
probabilities and actions are updated (get “trained”) to reflect real world operational dynamics. Figure 6
presents a graphical depiction of a generalized FC.

Figure 6 Generalized Flexible Contract

As shown in this figure, the upper light blue portion represents the deterministic (i.e., known) parts of the
system. These are defined by invariant (i.e., traditional) contracts such as “if X, then Y.” The bottom light
green portion depicts the unknown and uncontrolled “hidden” part of the system, which is represented
probabilistically by a POMDP. This portion of the model, which is learned during actual system use, is akin
to learning on the job. The initially postulated hidden states may or may not exist, and their probabilities
are initially unknown. As observations are made during operation, these hidden states are “filled in” along
with their emissions (outputs) that occur when the system is in those states. There are a few techniques
to perform these calculations [18].

Intuitively, one can surmise how these techniques work. If the system is not in state S1 or S2 or S3 or S4,
then it must be in one of the hidden states. The frequency with which the system goes into a hidden state
determines the transition probability and the observations made in that state determine the emission
probabilities.

The action policy determines the needed action at each state by evaluating a reward or penalty function.
For example, the options might include: continue, stop, take an action that avoids an obstacle, put the
system into a safe operational mode, notify the support team, and so forth.

FC evaluates POMDP

reward; typical

responses:

• Keep going

• Stop

• Enforce trajectory

to a safe state

• Notify support team

Policy
Execution

Report No. SERC-2018-TR-105 April 30, 2018

35

4.4 CLOSED LOOP MA APPROACH

The closed-loop, FC-based, MA concept is depicted in Figure 7. A FC comprises a state estimator, a MA
evaluation system (which evaluates factors such as reliability, availability, safety, and risk), and a response
policy. The state estimator determines the belief state probability distribution from observations made
and actions taken. MA is then evaluated from the belief distributions. The Response Policy determines
the optimal action to take as a function of the state estimation and MA evaluation. Each belief estimate
is associated with the system’s MA metrics (e.g., reliability, safety, risk). The probabilities are then
evaluated for each belief estimation, for example:

 P (system is sound) =  Prob (system is in a known “good” state)

 P (system has failed) =  Prob (system is in a known “failed” state)

 P (system is in a risky state) =  Prob (system is in an unknown or un-designed for state)

Figure 7. Flexible Contract Approach to Mission Assurance

An exemplar hypothetical progression of belief states based on observations and actions taken is visually
depicted in Figure 8.

Figure 8. Graphical Depiction of Belief States Progression

intial

a

d

a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S1
S2

S3
S4

Environment

Flexible Contracts

Physical
System

State
Estimator

MA Evaluation
System

reliability, safety,
risk,..

Response
Policy

Report No. SERC-2018-TR-105 April 30, 2018

36

As shown in this figure, initially all belief states are equally probable. When an observation “a” is made,
the State Estimator updates the belief states making state S1 the most probable. When an observation
“d” is subsequently made, the belief evaluation function makes state S4 the most likely. Finally, an
observation “a” is made which makes S1 again the most likely. If state S4 = “failed,” for example then the
reliability R= 1-P (S4).

4.5 POMDP CONCEPT OF OPERATIONS FOR EXEMPLAR PROBLEM

Returning to the simple system (Figure 2), we now examine the state model which is used for calculating
reliability. The simple system comprises a prime computer (P) and a redundant computer (R) that are
cross-strapped to sensor and actuator interfaces. An initial Markov model for a repairable system derived
from invariant contracts is shown in Figure 9.

Figure 9. Markov Model for Exemplar Problem

In this model, the system is initially in state S1 (i.e., all systems working). From this state, the system can
transition to other states based on failure and repair rates, denoted by λi and μj. For example, the system
transitions from state S1 to S2 if one of the computers fail with the failure rate λ1. The system transitions
from state S1 to state S3 at the rate λ2 = (1- λ1) if either the sensor, actuator, or both fail. The system
transitions from state S2 to state S3, at the rate if the remaining computer fails or the sensor, actuator, or
both fail. The reliability of the system is the sum of the probabilities of being in S1 or S2, or equivalently,
the probability of not being state S3. Availability is the ratio of time when not in S3 to the total time.

We now address the problem of incorporating a hidden state into the Markov model. For simplicity, we
add a single hidden state (H1) to the system model as shown in Figure 10. S1 now has a failure rate of λ4

to H1 and H1 has a failure rate λ6 to S2, and λ5 to S3. Because H1 is hidden, the transitions rates into and
from H1 are learned during system operation and/or test.

The “step-through” of states occurs as follows. Once the POMDP model is trained, we observe system
outputs, evaluate the state we believe the system is most likely in, and take the action having the highest
reward (or least penalty) for that state. For example, if the system is most likely in state S1, then it
continues operating in that state in the absence of component/system failure. If the system is in state S2,
it continues operating and requests a computer repair. An emergency repair is requested if system is in
state S3. If the system is in the hidden state, H1, then it might continue monitoring its health for a period
of time. If the system transitions to S1, S2, or S3 during the wait period, then the above actions are taken.
If the system stays in H1, during wait period then maintenance personnel are called to investigate. If
maintenance personnel determine that H1, is “good,” then the state diagram and actions are updated,

All
Working

(S1)

1 Comp
Fails (S2)

System
Fails (S3)

 1

 1

 2 2 3
The initial transition rates
are set by up-front
reliability analyses and
repair rates

Report No. SERC-2018-TR-105 April 30, 2018

37

otherwise the action in H1 is changed to “schedule repair.” If the system state is ambiguous (i.e., two or
more states are equally probable with the highest probability of occurrence), then the policy could either
assume the worst, and take the associated action, or continue sampling outputs in the hope that the
system state disambiguates. Table 1 summarizes the logic associated with stepping through the states.

Figure 10. Introducing Flexibility in System Model

Table 7. Stepping Through States

 After training, we observe system outputs, evaluate the state we most likely believe system is in
and take appropriate action, e.g.:

 if system is in S1, then continue operating

 if system is in S2, then continue operating and schedule a computer repair

 if system is in S3, then schedule an emergency repair

 If system is in H1, then monitor what occurs for a period of time

 if system transitions to S1, S2, or S3 during wait period, take above actions

 if system stays in H1 during wait period, then schedule a maintenance check

 if the check indicates H1 is “good,” then update state diagram and actions: otherwise,
change action in H1 to schedule repair

 If system state is ambiguous (i.e., two or more states are equally probable and have highest
probability), then:

 collect additional observations and retrain state model – which might require adding
new states, and schedule a maintenance check as above, or

 assume the worst and take the associated action

In sum, incorporating flexibility in MDP consists of: introducing hidden states in MDP representation
thereby making it a POMDP model; relaxing time-invariance restriction of the state space and action
space; adding an evaluation metric to determine best action; and introducing the concept of time (e.g.,
temporal constraints/changes in probabilities that impact occurrence of events).

4.6 AN ILLUSTRATIVE EXAMPLE

All
Working

(S1)

1 Comp
Fails (S2)

System
Fails (S3)

Hidden
State
(H1)

The transition rates to and
from H1 are initialized to 0.
As the system runs, we
observe system outputs and
update transition rates

Report No. SERC-2018-TR-105 April 30, 2018

38

We now discuss the different system modeling elements within the context of multi-UAV swarm control.
These include: traditional contracts; flexible contracts, control flow model; swarm control architecture;
and iterative Bayesian belief update.

Traditional (i.e., inflexible) Contracts. These are “assert-guarantee” pairs derived from system
requirements and expected system behavior. Table 2 shows two invariant contracts using linear
temporal logic terminology.

Table 8. Invariant Contracts

 Contract #1: At the next instant, if obstacle ahead, then turn left

 Contract #2: At the next instant, if no obstacle ahead, then continue path

Flexible Contracts. Invariant contracts can be made flexible by relaxing the assertions to account for
uncertainty. The assumptions in a flexible contract are represented by belief states, while the action
policies replace guarantees in the traditional contract. Accommodating disruptions is accomplished by
including belief states that represent environmental hazards and fault conditions and including
contingency or mitigation policies. For example, Table 3 shows a simple penalty function that is associated
with a threat being possibly to the right or to the left of a UAV. If belief estimation determines that the
probability of the threat on the left is 0.95 then the penalty for making a left turn is 8.5 but the penalty
for making a right turn in -96, meaning there is a reward for turning right and a penalty for turning left.

Table 9. Penalty Function Calculation and Decision

 A simple penalty function:

 P(leftThreat) * 10 + P(rightThreat) * (-100) + (1 – (P(rightThreat) + P(leftThreat))) * (-1)

 If P(leftThreat) = 0.95, P(rightThreat) = .01, and P(can’t decide) = 0,04, then:

 penalty = .95 (10) + .01 (-100) + .04 (-1) = 9.5 – 1 -.04 = 8.49, if turn left

 penalty = .01 (10) + .95 (-100) + .04 (-1) = 1 + 95 - .04 = -95.94, if turn right

 Want to turn right because penalty for turning right is negative (i.e., reward), but penalty for
turning left is positive

Control Flow Model. System behavior is captured using the control flow model shown in Figure 11. Fig.
11 shows transition “guards” or conditions that must be true for the transition to occur, e.g.:
 b (failed) ≥ 0.95 is the threshold to transition from “normal motors” to “failed motors.”
Belief state estimates are derived from observations about the system, and used by the Auto Plan function
that determines next actions to take.

Report No. SERC-2018-TR-105 April 30, 2018

39

Figure 11. Control Flow Model

An exemplar architecture that implements Figure 11 using software agents is shown in Figure 12. This
figure shows that environment sensor outputs, the MDP model, and the policy feed the state estimator
which produces an updated set of belief values, and triggers an action for the UAV swarm.

Figure 12. Multi-UAV Swarm Control Architecture

Iterative Belief Update. The system’s behavior reflects its beliefs based on latest observations. For
example, suppose an UAV swarm finds itself in an environment in which it needs to avoid obstacles while
being mindful of unknown threats. In this instance, the UAV swarm needs to veer left or veer right to avoid
an obstacle which may be either to the left or the right of the swarm If the UAV swarm guesses correctly,
it can avoid the threat. If the UAV swarm guesses wrong (i.e., it decides to veer left and the threat is
located on the left, or it decides to veer right and the threat is located on the right), then the swarm is
likely to suffer damage. The potential actions that the swarm can take are: veer left, veer right, or continue

Report No. SERC-2018-TR-105 April 30, 2018

40

on the current path making further observations of the threat. The algorithm for summing potential
outcomes based on path taken is rooted in Bayesian Belief update with normalized rewards and penalties.
Figure 13 presents a pictorial of iterative Bayesian Belief update and the formula for computing beliefs
based on Bayesian Belief Network. The system starts with a 50-50 belief that the threat could be to the
left or the right. The system makes an observation which suggests that a potential threat is to the left. So,
the system’s Bayesian engine moves the belief to the left as depicted in this diagram. This move indicates
that there is greater belief that the threat is to the left. Eventually, the system concludes that the belief
that the threat could not be to the right because it does not observe anything to the right. Belief updating
occurs in accord with Bayesian analysis using observation and current state. The state history is contained
in the current state. The “a” are actions, the “o” are observations, the “b” are beliefs, and the “S” are
states. Belief state changes results from observations and actions taken.

Figure 13. Iterative Belief Update

4.7 CONCLUDING COMMENTS

The MA function is concerned with reducing uncertainty in the ability of a system (or SoS) to successfully
complete its mission despite running into disruptions (Madni and Jackson, 2009; Goerger et al., 2014;
Madni et al., 2017b). Current approaches to MA tend to rely exclusively on information available at design
time. This is a clear limitation of the traditional approach. This paper has presented a closed-loop, model-
based approach based on flexible contracts and reinforcement learning. Specifically, the approach
employs probabilistic modeling to account for uncertainty arising from partial observability, and
incremental availability of information. It employs a flexible extension of invariant contracts from
contract-based design to accomplish some level of system verification and testing while having the ability
to adapt to changes. It employs reinforcement learning to reduce uncertainty in the knowledge of system
state and health status. The key concepts associated with this approach were presented in this paper
within the context of multi-UAV swarm operations.

4.8 REFERENCES
1. Madni, A.M., Jackson, S., "Towards a conceptual framework for resilience engineering." Systems

Journal, IEEE 3.2 (2009): 181-191.

Report No. SERC-2018-TR-105 April 30, 2018

41

2. Neches, R., and Madni, A.M. "Towards affordably adaptable and effective systems." Systems
Engineering 16.2 (2013): 224-234.

3. Goerger, S.R., Madni, A.M., and Eslinger, O.J., "Engineered resilient systems: a DoD perspective."
Procedia Computer Science 28 (2014): 865-872.

4. Grimaila, M.R., Mills, R.F., Haas, M., and Kelly, D., Mission Assurance: Issues and Challenges, 2010
International Conference on Security and Management (SAM 10), 2010.

5. Jabbour, K. and Muccio, S. The Science of Mission Assurance Journal of Strategic Security, Vol. 4,
No.1, 2011:61-74

6. Madni, A.M., D’Ambrosio, J., Sievers, M., Humann, J., Ordoukhanian, E., Sundaram, P. “Model-
Based Approach for Engineering Resilient System-of-Systems: Applications to Autonomous
Vehicle Network” 2017 CSER, March 23-25, Redondo Beach, CA, 2017a.

7. Sievers, M., and Madni, A.M., "A flexible contracts approach to system resiliency." 2014 IEEE SMC
International Conference, San Diego, CA.

8. Sievers, M. and Madni, A.M. Contract-Based Byzantine Resilience for Spacecraft Swarm, 2017
AIAA SciTech, Grapevine, Texas, Jan 9-13, 2017.

9. Madni, A.M., Sievers, M., “A Flexible Contract-Based Design Framework for Evaluating System
Resilience Approaches and Mechanisms”, 2015 ISERC, Nashville, Tennessee.

10. Madni, A.M., Sievers, M., Humann, J., Ordoukhanian, E., “Model-Based Approach for Engineering
Resilient System-of-Systems: Application to Multi-UAV Swarms,” 2017 CSER, March 23-25 2017,
Redondo Beach, CA, 2017b.

11. Madni, A.M. and Sievers, M. Model Based Systems Engineering: Motivation, Current Status and
Needed Advances, 2017 CSER, Redondo Beach, CA, Mar 23-25, 2017

12. Monahan, George E. "State of the art—a survey of partially observable Markov decision
processes: theory, models, and algorithms." Management Science 28.1 (1982): 1-16.

13. Sondik, Edward J. "The Optimal Control of Partially Observable Markov Decision Processes." PhD
thesis, Stanford University (1971).

14. Cheng, Hsien-Te. Algorithms for partially observable Markov decision processes. Diss. University
of British Columbia, 1988.

15. Cassandra, Anthony R., Leslie Pack Kaelbling, and Michael L. Littman. "Acting optimally in partially
observable stochastic domains." AAAI. Vol. 94. 1994.

16. Patil, Sachin, et al. "Scaling up gaussian belief space planning through covariance-free trajectory
optimization and automatic differentiation." Algorithmic Foundations of Robotics XI. Springer
International Publishing, 2015. 515-533.

17. Platt Jr, Robert, et al. "Belief space planning assuming maximum likelihood observations." (2010).
18. Eddy, Sean R. "Hidden markov models." Current opinion in structural biology 6.3 (1996): 361-365.

5 DATA SCIENCE APPROACHES TO PREVENT FAILURES IN SYSTEMS ENGINEERING - KAREN MARAIS, PURDUE

UNIVERSITY

Report No. SERC-2018-TR-105 April 30, 2018

42

Summary: Heilmeier Criteria

1. What are you trying to do? Develop automated ways of tracking risk that are based on the real
reasons of systems engineering failures.

2. How is it done today, and what
are the limits of current practice?

Current approaches are ineffective at best. Organizations, despite
following best practices, cannot consistently achieve success. Imposing
more rules and reporting requirements has not increased success
probability.

3. What’s new in your approach and
why do you think it will be
successful?

Our approach is based on automatically tracking the real reasons and
root causes of systems engineering failures so that we can provide
practitioners actionable data.

4. Who cares? If successful, our work will help reduce the probability of systems
engineering failures, freeing engineers on all types of complex systems
to innovate and create truly revolutionary systems.

5. If you’re successful, what
difference will it make?

6. What are the risks and the
payoffs?

The primary risk is that we do not obtain data. Therefore, we propose to
use student project data in the first year, to prove our concept. In
subsequent years, versions of our tool can be deployed inside
organizations in such a way that the research team does not have to see
the failure data. The potential payoff is a tool that can help
organizations predict incipient failures.

7. How much will it cost? We propose one year of effort to develop the prototype, using one
computer science student, and one systems engineering student. This
effort will cost approximately $120K.

8. How long will it take?

9. What are the midterm and final
"exams" to check for success? How
will progress be measured?

Since we will be using student project team data, the academic year
provides an appropriate set of milestones. By the end of the first
semester of the project, our goal is to have collected three months’
worth of input signals, interim failure data (e.g., missed milestones), and
final failure/success data (e.g., did the team project satisfy performance
objectives?). Over the next two semesters, we will continue collecting
data and also predicting failures. Our project will be successful if we can
predict at least half of interim and final failures.

5.1 OUR VISION AND ROADMAP

Anecdotes and statistics on the failures of systems engineering have become a sure-fire way of attracting
attention and lamentation during presentations. No-one is immune to the failure disease and in particular
past success is no guarantee of future performance—organizations that have succeeded spectacularly in
one project will fail just as spectacularly in the next project.

In response to these dire statistics, new methods, processes, and tools are continuously proposed and
implemented, including numerous new methods of risk identification, tracking, and management. Yet the
frequency of failures shows no signs of decreasing, and, meanwhile, engineering creativity in large
complex systems seems to be stifled. Rather than the revolutionary creations our 20th century
counterparts foresaw appearing in the 21st century, we have limited ourselves to evolutionary
improvements.

Why do these methods not help as much as we hoped? One possible reason, is the reliance on extensive
data creation, collection, and tracking. When projects are under pressure, activities that are seen as non-
essential to the core task will not be performed, or, worse, will be performed in a cursory compliance-
oriented fashion, potentially leading to misleading data and erroneous conclusions about the state of risk.

Report No. SERC-2018-TR-105 April 30, 2018

43

What if we could, instead, do all this risk tracking and reporting with existing information? Our proposed
effort leverages two main ideas: (1) risk assessment based on the “real reasons” for systems engineering
failures, and (2) combining existing data with Wisdom of the Crowd (WoC) indicators to uncover the
correlations between various (unreliable) traditional and crowd-derived measures and the measurable
outcome (success, failure, or delay).

Figure 1 summarizes our vision of a tool to help organizations track and manage the risks of project
failures. The tool is built around state-of-the-art relational deep learning (Meng et. al., 2018), together
with contextual bandit techniques (Lin et al., 2010), using a combination of enterprise data, and “Wisdom
of the Crowds” data that employees enter into a mobile device app. The code is continually refined using
each organization’s own data.

Figure 1: Envisioned Final Product

Figure 2 shows our roadmap for achieving this vision. The red text represents the activities for the first
year. During the first year, we propose to identify potential input data (see Section 5.3), develop an initial
version of the WoC app (see Section 5.2), and train the first generation of the machine learning software
(see Section 5.4). We propose to collect training data from student projects at Purdue, ranging from
design-build-test classes to student run organizations such as the Solar Car Challenge. Student projects
provide a convenient microcosm of “the real world” while insulating us from the risk of being unable to
obtain data.

Report No. SERC-2018-TR-105 April 30, 2018

44

Figure 2: Overview of our proposed approach to develop the failure prediction tool

The blue text represents activities for future work, should the first year be successful. Assuming we have
shown that we can successfully predict failures in student organizations, we will use this success to
“market” our idea to potential industrial or other (e.g., DoD, NGO) partners. In the first part of our planned
future work, we will expand the input data set, to reflect the broader range of data available in actual
organizations (see Section 5.3), as compared to student organizations. Then, we will deploy our app in our
partner organization(s) to collect data, based on which we will predict failures (thus providing value to our
partner(s)), and subsequently refine the machine learning code and input data set.

A note about terminology: Both accidents and project failures are “undesired and unplanned (but not
necessarily unexpected) event[s] that result in (at least) a specified level of loss” (Leveson, 1995). Here,
we use the term “accident” to refer to those events that directly result in loss of life, injury, or damage to
property. We use the term “project failures” for all other undesired project events, such as failure to
achieve mission objectives, budget or schedule overruns, cancellations, and quality or performance issues.

The remainder of this chapter describes the work we have completed thus far, and next steps.

5.2 RELATIONAL DEEP LEARNING WITH FEW DATA POINTS
In complex cutting-edge projects, neither traditional data tracking nor even Big Data analysis is able to
consistently and accurately pinpoint issues. Failures, even though they may appear simple on the surface
(the team should have had a contingency plan!), are often the result of a complex network of decisions,
many of them locally and temporally rational. Modeling and predicting such complex events requires
complex models; and complex models need large amounts of historical data to be able to produce
accurate predictions and insights; cutting-edge projects do not have an abundance of historical data (and
even when data is available, it may be hard to collect and put into appropriate formats). Project
complexity also limits the usability of methods to ameliorate these data availability issues (e.g., transfer
learning).

In such complex scenarios, one can augment existing data with “wisdom of the crowd” side information.
Wisdom of the crowd (WoC) refers to the hypothesis that the collective opinion of a large number of non-

Report No. SERC-2018-TR-105 April 30, 2018

45

experts (e.g., a novice engineer) is better than the opinion of a single expert (say, an experienced
manager). For instance, employees give their best assessment of the timeline and budget of a project,
given their knowledge of the system. These assessments are then combined with a machine learning
algorithm to predict the probability that the project will be successful or the system will fail.

Figure 3: Neural network prediction model with contextual bandit algorithm for question selection. Our interpretable neural
network (Meng et al. 2018) learns which patterns of answers related WoC questions and measurable company data predict
failures. The particular structure of our model requires a orders of magnitude less data than traditional neural networks
(tens of examples will be enough to train a first-generation model).

Hard-to-game WoC: Unfortunately, with bonuses and salaries depending on contracts, it is challenging to
ensure employees truthfully report their project estimates (private information). Moreover, employees
that have close relationships might give similar assessments and the collected data may be incomplete,
further increasing the influence of these correlations. Correlations and biases must be accounted for in
the final predictions. We address these limitations in two ways: (1) by asking some questions that are
highly correlated with the predicted outcome but are hard to “game” (see Section 5.3), and (2) using new
techniques developed by PI Ribeiro (Meng et al. 2018) to make predictions using complex relational
patterns (Figure 3). The machine learning model can automatically learn which patterns in the WoC

answers, combined with company data, tends to predict failure.

Initially, too many potential WoC questions: We show in Section 5.3 how we can identify a large pool of
potential questions. However, no team member is willing to answer hundreds of questions every week.
We need to balance the number and frequency of promising questions with our need for information.
Here, we will borrow from a widely successful technique used for online testing and advertisement:
contextual bandits (Lin et al., 2010). A/B testing is a technique for comparing two different versions of,
say, a web page. The current web page design is the null hypothesis, and the proposed design is the
alternative hypothesis (so it’s like between-subject design). So, the default (“A”) webpage might have the
shopping cart icon in the lower right corner, while the alternative webpage (“B”) has the icon on the top
right corner. The test then is to see which placement results in higher buying rates. However, when faced
with thousands of potential questions (i.e., thousands of hypotheses to test), A/B testing is prohibitively
expensive, as it requires too many answers (trials). Contextual bandits, on the other hand, integrate the
learning algorithm (e.g., our relational deep learning method (Meng et al., 2018)) with a dynamic
question-asking mechanism. This approach allows us to have a large pool of potentially useful questions,
but dynamically predict the few questions that better help our model estimate outcomes (and, similarly,
adapt the pool of questions for different organizations). In online advertisement, this boils down to
showing online ads that will more likely result in purchases. In news organizations, this amounts to
showing front-page news items that are more likely to be clicked. In our setting, this will result in deciding
which questions we should ask. Our contextual bandit will use off-the-shelf Natural Language Processing

Report No. SERC-2018-TR-105 April 30, 2018

46

tools to learn a model that translates the question sentences into the improvement in accuracy obtained
when the question is asked.

5.3 IDENTIFYING POTENTIAL SYSTEMS ENGINEERING FAILURE SIGNALS
Machine learning models are powerful but also data-hungry, so we will need a large set of signals.
Generating this set of signals is the primary challenge of this work. We propose identifying these inputs
using three different approaches: (1) identifying the factors underlying the real reasons for failures, (2)
using systems archetypes to identify dysfunctional cases of local rationality, and (3) using cognitive biases
to identify potentially irrational and destructive actions.

In related work on an NSF CAREER grant, PI Marais found that most systems engineering failures, even
those in new, one-of-a-kind high-tech systems, do not involve previously unknown phenomena, or black
swans [Sorenson and Marais, 2016]. As appealing as the black swan metaphor is, the real reasons for most
failures are, in fact, rather prosaic and predictable white swans, as shown in Table 1.

Table 1: The real reasons for systems engineering failures. Adapted from Aloisio and Marais (2017)

Cause Definition

Failed to supervise Actor(s) in the organization failed to supervise people or a process properly.

Lost tacit knowledge when
employee departed

Personnel quit, were moved to a different project, or retired, and the organization
failed to sustain the knowledge base without these persons.

Failed to provide
resources

Actor(s) in the organization failed to provide adequate resources to a department;
for instance, maintenance, marketing, or safety.

Failed to consider design
aspect

Actor(s) in the organization failed to consider an aspect in the system design. In
many cases, this causal action describes a design flaw, such as a single-point failure
or component compatibility.

Used inadequate
justification

Actor(s) in the organization used inadequate justification for a decision.

Failed to form a
contingency plan

Actor(s) in the organization failed to form a contingency plan to implement if an
unplanned event occurred.

Lacked experience Actor(s)’ lack of experience or knowledge led to the failure. For example, an
inexperienced manager who was placed in charge of a large project.

Kept poor records Actor(s) in the organization kept poor records of a process, such as maintenance.

Subjected to inadequate
reviews

Actor(s) in the organization did not review documentation or other work
sufficiently to capture errors and deficiencies.

Inadequately
communicated

Actor(s) in the organization failed to communicate with each other such that
personnel were confused with the information they were given, had to “fill in the
gaps” in the information they were given, or not notified about important
information at all.

Conducted poor
requirements engineering

Actor(s) in the organization did not lay out the needs, attributes, capabilities,
characteristics, or qualities of the system well.

Failed to consider human
factor

Actor(s) in the organization failed to consider a human factor in system
development. This causal action describes, for example, failing to consider human
factors in specifying procedures or physical design.

Report No. SERC-2018-TR-105 April 30, 2018

47

Cause Definition

Failed to inspect Actor(s) in the organization failed to inspect a crucial component.

Subjected to inadequate
testing

One or more actors in the organization subjected a component or subsystem to
inadequate testing. This causal action captures inadequate tests as well as
adequate tests performed inadequately.

Managed risk poorly Actor(s) in the organization failed to identify, assess, formulate, or implement a
proper mitigation measure.

Violated procedures Actor(s) in the organization violated a procedure pertaining to the system, such as a
maintenance or operation procedure.

Violated regulations Actor(s) in the organization violated a regulation pertaining to the system.

Did not learn from failure Actor(s) in the organization did not take past failures into account and a similar
problem occurred.

Created inadequate
procedures

Actor(s) in the organization developed a deficient procedure, for instance
maintenance, manufacturing, or emergency procedures.

Did not allow aspect to
stabilize

Actor(s) in the organization did not allow a system aspect like personnel, design, or
requirements to stabilize before moving forward with the project.

Conducted maintenance
poorly

Actor(s) in the organization failed to perform maintenance on a component or
subsystem.

Enforced inadequate
regulations

A regulator (e.g., the FAA) enforced deficient regulations. This causal action
captures writing deficient regulations as well as implementing regulations poorly.

Failed to train Actor(s) in the organization failed to train other actors in the organization, such as
operations personnel or maintenance personnel.

These findings mean that we already know in part what we need to look for—we just need to determine
which data, or signals, will alert us to the presence of these real reasons. Figure 4 shows how we propose
to use the real reasons to seed our initial set of inputs, eventually discarding them as the code learns to
use the input data to predict failures. We differentiate here between factors and signals. Factors are units
of information that we hypothesize may lead to one or more of the real reasons. Signals are pieces of data
that may alert us to the presence of the factors. Signals may already be collected by organizations, or,
may be obtained using our WoC app.

Report No. SERC-2018-TR-105 April 30, 2018

48

Figure 4: Our approach uses the “real reasons” to help identify potentially useful input data. Over time, the code will make
direct links from the input data to the real reasons.

Figure 5 shows two examples of potential signals of poor requirements engineering, one of which we
propose to obtain using the WoC app, and the second of which is already tracked by organizations.

Figure 5: The machine learning code uses signals to predict the presence of real reasons. We identify potential signals by
working backwards from the real reasons to factors to signals.

We propose to identify a set of potential factors and signals by surveying the organizational and human
factors literature, as well as surveying enterprise software tools. For example, Table 2 shows examples of
factors we identified from the literature, and how they might relate to the “created deficient
requirements” real reason.

Table 2: Potential factors affecting “conducted poor requirements engineering” identified from the literature

Factor and Definition Mechanism

Proactivity (Kirkman and Rosen, 1999):
Proactive individuals show initiative, are
willing to take action and affect their
environment, and show perseverance.

Proactive team members may put in more effort to identify
missing requirements that would otherwise be missed.

Report No. SERC-2018-TR-105 April 30, 2018

49

Factor and Definition Mechanism

Neuroticism (Virga et al., 2014): Neurotic
individuals are associated with low emotional
stability, experience frustration, anxiety,
depression, and negative emotions.

General teamwork and ability to solve problems can be negatively
impacted by neurotic members.

Stress level (Dietz et al., 2017): High level of
stress is associated with increased anxiety,
negative emotions, distraction, conflict, and
loss of team orientation.

Stress may negatively impact cognitive performance and result in
incomplete tasks.

Individual experience and experience working
together (Reagans et al., 2005): The level of
proficiency of employees as well as the
collective ability to exchange knowledge.

People with a lot of experience may be better at identifying
hidden requirements.

Team Tenure (Smith et al., 1994): The
duration a team has been working together.

An engineering team that has been working together for a long
time may be more thorough and methodical during the
requirement generation process.

Team size (Smith et al., 1994): The number of
members in a team.

Larger team sizes may correlate with more thorough
requirements generation.

Budget Uncertainty (Yan, 2005): Refers to
deviation from the initial budget estimate,
due to external funding sources and
associated risk.

Uncertain budget can affect time allocated to a phase of a project
and thus may result in deficient requirement generation.

Leadership style (Cummings et al., 2010):
Distinction between leadership that focuses
on the relationships and people, and
leadership that focuses on the tasks.

Certain leadership styles might improve teamwork in the
organization, which in turn may help the team create better
requirements (an activity best done in teams).

Parts expenditure (Mathieu et al., 2006): The
percentage of budget associated with
replacing faulty or unsuitable parts.

Many faulty parts may be a sign of poor requirements
specification (e.g., good part used in wrong way, or poor quality
part).

Parts failing in operation (comparing to
other design teams/products)

More parts failing may be correlated to deficient requirement
generation during the design phase.

Design iterations per unit time (in
comparison to previous/similar projects)

More iterations may be correlated with having to update
requirements and hence update designs.

Next, we will identify potential signals for each factor. Some factors are already tracked by organizations,
while others are known but not necessarily tracked in a convenient manner. Table 3 shows examples of
potential signals for several factors related to “conducted poor requirements engineering”. Some signals
are obtained directly from existing data (e.g., “number of changes to estimated budget”, while others we
will attempt to elucidate in a more subtle manner (e.g., “How many times did you ask your team members
a “why” question today?”).

Report No. SERC-2018-TR-105 April 30, 2018

50

Table 3: Potential signals for factors for “conducted poor requirements engineering”

Factor Signal

Proactivity How many times did you ask your team members a “why” question today?

Neuroticism Are you more excited or more worried about this project?

How many times today did you feel frustrated by your team members or by
other members of our organization?

Stress level Were you able to focus on this project as much as you would like today?

Individual experience and
experience working together

How many times today did you or your team have to look outside your team
for advice or guidance on how to do a particular item?

Did you learn anything new today in your technical discipline?

Team Tenure How many of the people that you worked with today have you known for
more than 1 year? (less than 1/3, 1/3 to 2/3, more than 2/3)

Team size How many members are there in your team?

Budget Uncertainty Number of changes to estimated budget to date.

Leadership style Does your team leader know what you did for fun this weekend?

Does your team leader know which tasks you are most proud of? Does your
team leader know which tasks you worry about the most?

Parts expenditure Percentage of parts budget spent to date.

Number of parts failing in
operation

Number or percentage of failed parts.

However, questions such as these will not provide enough or good enough data. People may answer
inaccurately for understandable reasons (for example, you may not want to tell your boss that you are
feeling stressed). Can unorthodox questions, such as “did you have breakfast this morning?”, help
determine whether a project is in potential trouble? Online companies, such as Google, Facebook, and
Amazon, rely on unorthodox signals to predict user behavior. For instance, (De Choudhury et al. 2013)
shows how the structure of someone’s Twitter follower/followee network structure can help predict
depression.

The root causes of failures can often be related to perfectly rational work incentives introduced for various
reasons (see, for example, Braun, 2002; Marais et al., 2006). For example, if a team is given bonuses for
coming in under budget, the team, might, consciously or unconsciously, decide to buy cheaper low-quality
parts or skip steps in a process. Such a response though clearly undesired, is arguably rational, given the
incentives. Organizational behavior archetypes provide a potentially useful starting point for identifying
these locally rational but ultimately destructive behaviors. Table 4 shows examples of safety archetypes
identified by PI Marais and potential Signal Questions.

Report No. SERC-2018-TR-105 April 30, 2018

51

Table 4: Examples of safety archetypes and potential signal questions.

Archetype Description Signal Question

Eroding Goals When performance does not reach a stated
goal, managers may move the goal over time
to one that appears to be more attainable,
rather than determining why the organization
did not reach the particular goal.

If your team redefined any goals
today, did that make you feel
better about meeting your overall
project objective?

Complacency When things have been going well, people
tend to become complacent.

Did you worry more today than
yesterday?

Stagnant Risk
Management Practices

When technological advances are not
accompanied by concomitant understanding of
the associated risks, risk may increase.

Did you update any of your risk
assessments today?

Unintended Side
Effects of Fixes

Poorly thought out fixes may have unintended
side effects.

Did your team experience new
problems today as a result of a
previous fix to a problem?

Fixing Symptoms
Rather Than Root
Causes

Fixes to problems that only address the
symptoms may worsen or prolong the original
problem.

Were you disappointed today
because a problem that you
thought had fixed, had instead
continued or gotten worse?

The Vicious Cycle of
Bureaucracy

When organizations respond to problems with
more rules and bureaucracy, employees may
become apathetic or alienated.

How many times today were you
frustrated by rules or bureaucracy?

Rationality therefore doesn’t always guarantee desired behavior, but, clearly irrationality is not the
answer either! Behavioral economists have identified a vast array of cognitive biases (Tversky and
Kahneman, 1975), which we will use to design simple easy-to-answer questions that aim to ferret out
potentially harmful instances of irrationality. More recently, researchers have shown how these biases
can affect engineering decision making (e.g., Smith and Bahill, 2010; Bohlman and Bahill, 2013). Behavioral
economics can also help get better signals, by asking questions in clever ways. For example, we might ask
“What do other team members think about X”, where the third person perspective is used as a proxy for
the subject’s own expectations. Table 5 shows examples of how we will use these cognitive biases to
identify potential signal questions. One of the advantages of this approach to uncovering signals is that
many of the questions do not have a “correct” answer, thus making it harder for employees, perhaps well-
meaning, to put a rosy tint on things, or to intentionally or subconsciously “hide” information.

Table 5: Selected cognitive biases and potential signal questions.

Bias Description Signal Question

Ambiguity effect
(Baron, 2000)

The tendency to avoid options for which
missing information makes the probability
seem "unknown".

How many times today did you say or
think “I don’t know”?

Anchoring or focalism
(Zhang et al., 2007)

The tendency to rely too heavily, or "anchor",
on one trait or piece of information when
making decisions (usually the first piece of
information acquired on that subject).

Is your first activity in the morning
related to your main project?

Automation bias
(Goddard et al., 2011)

The tendency to depend excessively on
automated systems which can lead to

From 1 (almost never) to 5 (all the
time), how often does the key

Report No. SERC-2018-TR-105 April 30, 2018

52

Bias Description Signal Question

erroneous automated information overriding
correct decisions.

automated system needed in your
project fail?

Bandwagon effect
(Coleman, 2003)

The tendency to do (or believe) things
because many other people do (or believe)
the same.

How many arguments did your team
have today?

Confirmation bias
(Oswald and Grosjean,
2004)

The tendency to search for, interpret, focus
on and remember information in a way that
confirms one's preconceptions.

How many things did you learn today
that surprised you?

Courtesy bias
(Ciccarelli and
White, 2012)

The tendency to give an opinion that is more
socially correct than one's true opinion, so as
to avoid offending anyone.

How many times today did you “bite
your tongue”?

Focusing effect
(Kahneman, 2006)

The tendency to place too much importance
on one aspect of an event.

What is the most important decision
your team made today?

Irrational
escalation/sunk cost
fallacy (Drummond,
1998)

The phenomenon where people justify
increased investment in a decision, based on
the cumulative prior investment, despite new
evidence suggesting that the decision was
probably wrong.

Over your career, what proportion of
ideas have you thrown out? (less than
1/3, 1/3 to 2/3, more than 2/3)

Law of the instrument
(Brislin, 1980)

An over-reliance on a familiar tool or
methods, ignoring or under-valuing
alternative approaches. "If all you have is a
hammer, everything looks like a nail."

Looking at just today, the methods
and tools you have on this project are
(1) insufficient, (2) adequate, (3) more
than good enough.

Loss aversion
(Kahneman, 1991)

The disutility of giving up an object is greater
than the utility associated with acquiring it.

Roughly how many ideas did your
team discard today?

Normalcy bias
(Kuligowski and
Gwynne,
2010)

The refusal to plan for, or react to, a disaster
which has never happened before.

On a scale of 1 (not at all) to 5 (all
day) how much time did your team
spend thinking about how things
might go wrong?

Not invented here
(Katz and Allen, 1982)

Aversion to contact with or use of products,
research, standards, or knowledge developed
outside a group.

How many ideas did you find today
from outside your team?

Optimism bias (Baron,
2000)

The tendency to be over-optimistic,
overestimating favorable and pleasing
outcomes.

What kind of TV shows do you like to
watch? [comedies/dramas/detective]

Overconfidence effect
(Hilbert, 2012)

Excessive confidence in one's own answers to
questions.

How confident do you feel that your
answers to the questions in this app
are “right”?

Status quo bias (Baron,
2000)

The tendency to like things to stay relatively
the same.

When was the last time you ordered
something new at your favorite
restaurant?

Parkinson's Law of
Triviality (Forsyth,
2009)

The tendency to give disproportionate weight
to trivial issues.

How many discussions about trivial
matters did you have today?

5.4 CASE STUDY: STUDENT TEAMS
In Section 1.3 we showed how we will identify a large pool of potential signal question, and in Section 1.4
we discussed how we will use machine learning techniques to use these signals to predict failures. One

Report No. SERC-2018-TR-105 April 30, 2018

53

crucial ingredient for the machine learning code is a set of linked signals and failures. Failure data can be
difficult to obtain, because, for understandable reasons, organizations do not like to share such
information. However, they may be more willing to do so if we can demonstrate that our approach has
the potential to help. Therefore, we propose here to demonstrate the potential of our approach using
student projects at Purdue University. Purdue offers many opportunities for students, either via large
technical organizations such as the American Institute of Aeronautics and Astronautics (AIAA) or via the
technical curriculum, to participate in smaller-scale engineering projects that include designing,
manufacturing, testing, or operating engineering equipment. Through these phases students get exposed
to real-life situations and work in teams to solve problems, while making weekly progress with meetings
and sessions. Others have also used student courses or teams to obtain useful information about how
engineers work. For example, Bohlman and Bahill (2013) used data from systems engineering courses to
identify mental mistakes engineers make while creating tradeoff studies.

This approach offers several advantages:

1. We have ready access to such teams (pending IRB approval).
2. There are several potential teams with which we can work (reducing risk of not getting any data)
3. The teams are doing “real engineering”.
4. The students have diverse backgrounds (educational, national, and personal), reflecting what

industry looks like.
Purdue has several potential teams each year, for example:

 Most years, Purdue’s AAE department runs a two-semester undergraduate course where students
design an experiment that will fly on NASA’s “vomit comet”. This year, the team will develop an
experiment to participate in NASA’s Micro-g Neutral Buoyancy Experiment Design (Micro-g NExT)
Challenge. The students will design, build, and test a tool or device that addresses a current space
exploration challenge. Test operations are conducted in the simulated microgravity environment of
the NASA Johnson Space Center Neutral Buoyancy Laboratory (NBL). The project proposals are due in
November 2017 with the teams testing their equipment in late spring 2018.

 Purdue’s AAE department also presents a varying range of design-build-test and design-build-fly
classes every semester, including several offerings at undergraduate and graduate levels. This coming
Spring, students in the aircraft senior design class will build model airplanes.

 Purdue Solar Racing is a student-run organization at Purdue University that designs, builds, and races
solar-powered vehicles in national and international competitions. The multidisciplinary team consists
of a diverse set of students who work in business, operations, and engineering functions. The team is
currently working on their tenth vehicle, named Renatus.

 Purdue’s Chapter of the Association for Computing Machinery (ACM) offers students the opportunity
to participate in Special Interest Groups (SIGs) which specialize in different areas of computer science,
such as mobile applications, artificial intelligence, game development, high performance computing,
multimedia, operating systems, or security. Each year, the SIGs recruit new members as returning
ones give guidance and lead team projects. The students work on a project year-round before
presenting it to corporate partners. One of the groups allows students to work on projects with the
goal of participating in collegiate-level robotics competitions.

Report No. SERC-2018-TR-105 April 30, 2018

54

5.5 CONCLUSION
Systems engineering failure and more broadly project management failures continue to plague industry
and government. Proper upfront systems engineering (e.g., thorough requirements engineering) has
resulted in significant improvements, but, unfortunately, organizations often deviate from these
practices, often for locally and temporally rational reasons (e.g., to meet scheduled milestones). Even
organizations with many past successes are not guaranteed future success. Many suggested methods for
managing risk are based on closely monitoring the organization or development process, but these same
methods may exacerbate the problem by diluting employee resources from the main task. Here, we have
proposed an alternative approach to both the data collection and failure prediction tasks. First, rather
than asking people to fill out time-consuming data such as detailed spending projections, we ask them a
series of relatively simple questions that do not require looking anything up (e.g., roughly how many ideas
did your team discard today? Many of our questions do not have a “correct” answer; we anticipate that
such questions will result in greater transparency, because they are harder to game, intentionally or
unintentionally. Second, rather than trying to explicitly model the relationships between these input
signals and project risk, we propose to use deep relational learning to predict failures. This code requires
an initial set of training data. Because it can be difficult to obtain such data, we propose to train the first-
generation model using student project data. Subsequent generations can be trained within
organizations. Our approach will allow organizations to partner with us while keeping sensitive data
private, and, as an added benefit, the code can be automatically tailored to best predict failures within a
particular organization.

5.6 REFERENCES

Aloisio, D.C. and Marais K. (2017). Preventing slips, overruns, and cancellations: Application of accident

investigations and theory to the understanding and prevention of engineering project. Working Paper,
Purdue University.

Baron, J. (2000). Thinking and deciding. Cambridge University Press.

Bohlman, J. and Bahill, A.T. (2013). Examples of mental mistakes made by systems engineers while
creating tradeoff studies. Studies in Engineering and Technology, 1(1), pp.22-43.

Braun, W. (2002). The system archetypes. System, 2002, p.27.

Brislin, R.W. (1980). Cross-cultural research methods. Environment and Culture, pp. 47-82. Springer US

Child, J. (1972). Organization structure and strategies of control: A replication of the Aston
study. Administrative Science Quarterly, pp.163-177.

Ciccarelli, S.K. and White, J.N. (2012). Psychology. 3rd ed. New Jersey: Prentice Hall, 201.

Coleman, A.M. (2003). Oxford dictionary of psychology. New York: Oxford University Press.

Cummings, G.G., MacGregor, T., Davey, M., Lee, H., Wong, C.A., Lo, E., Muise, M. and Stafford, E. (2010).
Leadership styles and outcome patterns for the nursing workforce and work environment: a
systematic review. International Journal of Nursing Studies, 47(3), pp.363-385.

De Choudhury, M., Gamon, M., Counts, S. and Horvitz, E. (2013). Predicting Depression via Social
Media. International Conference on Weblogs and Social Media 13, pp.1-10.

Delmar, F. and Shane, S. (2006). Does experience matter? The effect of founding team experience on the
survival and sales of newly founded ventures. Strategic Organization, 4(3), pp.215-247.

Dietz, A.S., Driskell, J.E., Sierra, M.J., Weaver, S.J., Driskell, T. and Salas, E. (2017). Teamwork under
Stress. The Wiley Blackwell Handbook of the Psychology of Team Working and Collaborative
Processes, pp.297-315. John Wiley & Sons.

Report No. SERC-2018-TR-105 April 30, 2018

55

Drummond, H. (1998). Is escalation always irrational?. Organization Studies, 19(6), pp.911-929.

Forsyth, D.R. (2009). Group dynamics. Cengage Learning.

Goddard, K., Roudsari, A. and Wyatt, J.C. (2011). Automation bias: a systematic review of frequency, effect
mediators, and mitigators. Journal of the American Medical Informatics Association, 19(1), pp.121-
127.

Griffin, A. and Hauser, J.R. (1992). Patterns of communication among marketing, engineering and
manufacturing—A comparison between two new product teams. Management Science, 38(3),
pp.360-373.

Hilbert, M. (2012). Toward a synthesis of cognitive biases: how noisy information processing can bias
human decision making. Psychological Bulletin, 138(2), p.211.

Katz, R. and Allen, T.J. (1982). Investigating the Not Invented Here (NIH) syndrome: A look at the
performance, tenure, and communication patterns of 50 R & D Project Groups. R&D
Management, 12(1), pp.7-20.

Kahneman, D., Knetsch, J.L. and Thaler, R.H. (1991). Anomalies: The endowment effect, loss aversion, and
status quo bias. The Journal of Economic Perspectives, 5(1), pp.193-206.

Kahneman, D., Krueger, A.B., Schkade, D., Schwarz, N. and Stone, A.A. (2006). Would you be happier if
you were richer? A focusing illusion. Science, 312(5782), pp.1908-1910.

Kirkman, B.L. and Rosen, B. (1999). Beyond self-management: Antecedents and consequences of team
empowerment. Academy of Management Journal, 42(1), pp.58-74.

Kuligowski, E.D. and Gwynne, S.M. (2010). The need for behavioral theory in evacuation
modeling. Pedestrian and Evacuation Dynamics 2008, pp.721-732.

Marais, K., Saleh, J.H. and Leveson, N.G. (2006). Archetypes for organizational safety. Safety
Science, 44(7), pp.565-582.

Mathieu, J.E., Gilson, L.L. and Ruddy, T.M. (2006). Empowerment and team effectiveness: an empirical
test of an integrated model. Journal of Applied Psychology, 91(1), p.97.

Meng, J., Chandra Sekar, Ribeiro B., Neville J. (2018) Predicting Subgraph Evolution in Heterogeneous
Dynamic Networks, AAAI (accepted).

Pohl, R. ed. (2004). Cognitive illusions: A handbook on fallacies and biases in thinking, judgement and
memory. Psychology Press.

Reagans, R., Argote, L. and Brooks, D. (2005). Individual experience and experience working together:
Predicting learning rates from knowing who knows what and knowing how to work
together. Management Science, 51(6), pp.869-881.

Smith, E.D. and Terry Bahill, A. (2010). Attribute substitution in systems engineering. Systems
Engineering, 13(2), pp.130-148.

Smith, K.G., Smith, K.A., Olian, J.D., Sims Jr, H.P., O'Bannon, D.P. and Scully, J.A. (1994). Top management
team demography and process: The role of social integration and communication. Administrative
Science Quarterly, pp.412-438.

Sorenson, D. and Marais, K. (2016), April. Patterns of causation in accidents and other systems engineering
failures. In Systems Conference (SysCon), 2016 Annual IEEE, pp. 1-8.

Tong, S. and Koller, D. (2001). Support vector machine active learning with applications to text
classification. Journal of Machine Learning Research, 2(Nov), pp.45-66.

Tversky, A. and Kahneman, D. (1975). Judgment under uncertainty: Heuristics and biases. In Utility,
probability, and human decision making. pp. 141-162. Springer Netherlands.

Yang, I.T. (2005). Impact of budget uncertainty on project time-cost tradeoff. IEEE Transactions on
Engineering Management, 52(2), pp.167-174.

Report No. SERC-2018-TR-105 April 30, 2018

56

Vîrgă, D., CurŞeu, P.L., Maricuţoiu, L., Sava, F.A., Macsinga, I. and Măgurean, S. (2014). Personality,
relationship conflict, and teamwork-related mental models. PloS One, 9(11), p.e110223.

Zhang, Y., Lewis, M., Pellon, M. and Coleman, P. (2007). A Preliminary Research on Modeling Cognitive
Agents for Social Environments in Multi-Agent Systems. AAAI 2007 Fall Symposium, Emergent Agents
and Socialities: Social and Organizational Aspects of Intelligence, pp. 116-123.

Report No. SERC-2018-TR-105 April 30, 2018

57

6 SYSTEMIC SECURITY AND THE ROLE OF HETERARCHICAL DESIGN IN CYBER-PHYSICAL SYSTEMS – TOM MCDERMOTT,
CO-PI VAL SITTERLE, GEORGIA TECH

6.1 OBJECTIVES OF THE RESEARCH

Defense systems in operation and in development today are increasingly what we call cyberphysical in
nature. Cyberphysical systems (CPS) combine sensors and actuators to perceive and act in the physical
world with communication to enable information and data flow and computation to drive decision making
and control the physical actuation. While CPS offer the potential for tremendous new capabilities, their
‘cyber-ized’ computation and communication backbone coupled with readily available technological
advances makes them vulnerable to classes of threats previously not relevant for many defense systems.
Cyberattacks are now a tremendous concern for the future of military operations, and this has spawned
a drive to intentionally design “cyber resilience” into these systems at the early stages in ways that are
amenable to comparative analysis and verification within the systems engineering process. Recent
studies from Rand [1] and a 2016 Defense Science Board [2] are especially relevant to the design and
evolution of CPS for defense. Both noted similar limitations in current processes, namely that current
policies, guidance, and practice still assume stable and predictable operational environments and lack
methods to consider the dynamics between rapidly changing threats and system configurations.

The overarching goal of the proposed research program is to advance the theory and practice of systems
security design and analysis for cyberphysical systems in ways that will specifically address the concerns
noted above. We distinguish security from the broader concept of resilience in that security focusses on
protecting defense systems from sentient adversaries. Cyber systems are generally designed by initially
specifying critical and other necessary functionality. The high-level functionality is decomposed into
specific functional capabilities, and system requirements derive from these functional needs. Boehm and
Kukreja [3] distinguish between functional and non-functional requirements as what the system does and
how well it does those things, respectively. The –ilities, or system qualities (SQs) of a system such as
maintainability, changeability, survivability, etc. are best understood through their relation to the non-
functional (i.e., performance) requirements. From this perspective, security is another non-functional
quality. Security is assessed based on how well a given security design pattern protects the system as
intended – without adversely impacting the critical functional capabilities.

With that understanding, this research proposes to develop a holistic approach integrating the CPS, attack
vector(s), and security implementation(s) into a unified ecosystem whereby we may evaluate how well
security design choices preserve critical system functionality necessary for mission success. Further, the
frameworks and methods created and matured in this effort will serve as a direct compliment to existing
model-based systems engineering (MBSE) processes and tools and, in turn, themselves be executable
within a toolset that enables systems engineers to produce, navigate, and understand the complexity and
scope of the problem. The penultimate goal is to extend our executable ecosystem model to assurance
test framework and patterns. Such extension will enable the community to maintain explicit knowledge
of vulnerabilities and corrective patterns in design models and begin to build standard libraries of test
strategies reusable across different security design and evaluation efforts.

6.2 CURRENT PRACTICE AND ITS LIMITATIONS

As described in the SERC System-Aware Cyber Security effort [4], cyber system protection may be
achieved through any number of implementable techniques that provide capabilities to respond to certain
types of threats (e.g., detect when a system asset has been compromised, isolate a compromised asset,

Report No. SERC-2018-TR-105 April 30, 2018

58

restore an asset to an original state, etc.) that are similarly applicable to CPS. These techniques may be
represented as design patterns, each contextually relevant to a given threat type, and are ideally reusable
from one system to another. Security is realized by incorporating these design patterns into the system,
thereby generating an adapted system architecture with new or improved, threat-specific capabilities.
Together, multiple security design patterns form the security architecture.

There are two primary reasons why selecting security measures and evaluating their effectiveness are so
difficult. Firstly, each of these implementations provides distinct security capabilities at a cost (e.g.,
implementation cost, additional resource cost, collateral impacts cost, etc.). For any given CPS, multiple
security design patterns may be implemented, which may alter the original system architecture minimally
or substantially depending on individual characteristics. The decision problem posed by security design is
very non-linear and quite complex. Secondly, and directly related to that last point, CPS are heterarchical
in nature. They are comprised of numerous, heterogeneous elements acting both independently and
interdependently. Unlike traditional defense systems, they are spatial and logical in scale and complex in
their behavior dynamics. Because of this complexity, traditional decomposition and predictive methods
are insufficient. Further, the interdependency makes a threat to a critical system function inseparable
from the original system. The system, the threat, and the security implementation change the initial
system structure and functional behavior, producing and entirely new system with new dynamics.

6.2.1 EMPHASIS ON STRUCTURE OVER FUNCTION AND A CONFLATION OF -ILITIES

The extensive focus on structural system representations alone is a critical weakness in current methods.
Even a recent DARPA BAA [5] emphasizes “structural design patterns” to help meet cyber requirements,
calling out physical elements such as load balancers and redundant elements as examples. In all complex
systems, however, form and function are intrinsically linked. A system’s structural characteristics and
what processes and behaviors are possible within and as produced by that system are not separable. The
structural bias results in an overt conflation of resilience (in the broader sense) with robustness or
reliability. Reliability theory evaluates the impact of failures due to independently occurring natural
events or system component failures and their cascading effects typically based on intrinsic system
measures such as mean time to or between failure (MTTF or MTBF, respectively). Resilience metrics in
related fields such as homeland security, however diverse [6], commonly treat resilience as an explicit
relationship between system performance and time, thus conflating notions of reliability with resilience.
This approach is also applied to systems of systems (SoS) analyses treating disruptions as a function of
constituent system reliability [7].

Even many graph-based methods evaluate resilience of complex systems based on structural properties.
For example, approaches like random node or edge removal are used to determine the impact on
structural properties such as connectedness [8]. There has been a huge emphasis on how structural
statistical properties of a network topology will be affected by additions (growth or augmentation) and
removals (failures or attacks) of nodes and links, and particularly how networks can be more robust
against the latter [9]. Those additions and removals are typically assumed as perturbations coming from
external sources, not incorporated into the dynamics of the network itself. The literature is also replete
with studies on dynamics of networks, meaning how a network changes its structure over time. This is
distinct from studies of dynamical processes on networks that are most common in immunology to study
disease propagation or idea dissemination in social sciences [8, 10, 11]. These latter studies will be
addressed as foundational to our approach in Section 6.3.

Report No. SERC-2018-TR-105 April 30, 2018

59

6.2.2 LACK OF INTEGRATION BETWEEN CURRENT MBSE, THREAT ANALYSES, AND SECURITY

Engineers traditionally view threats and uncertainties as stability and/or robustness issues instead of
security concerns, and current MBSE methods consequently evolved to support these perceptions. The
International standard OMG Systems Modeling Language (SysML), for example, was specifically
developed to support function-oriented systems development. SysML and its parent Unified Modeling
Language (UML) provide for structural component descriptions and generalized functional blocks with the
functional view often in the form of an activity diagram. They have a foundational basis, however, that is
the key challenge most relevant to our discussion: current model-based system design paradigms are
based entirely on notions of decomposition and composability. These models are also system-centric,
meaning they contain no notion of external threats. While natural threats may loosely be addressed via
measures of reliability, sentient threats (i.e., security) must be defined as constructs completely external
to the system in question and are not captured in SysML or UML system views.

Security is concerned with coordinated attacks by an intelligent, adaptive, and rational adversary. CPS
may be vulnerable if they are reachable logically, not just physically. Attack tree analysis is the most widely
accepted method to assess how an attacker can gain access via the cyber aspect of these assets and
subsequently exploit system functions. An attack tree represents adversary perspectives and decomposes
a high-level objective (i.e., “compromise the system”) into possible paths through which an attacker could
exploit a specific system feature. By themselves, however, attack trees – even with human-supported
feasibility assessment and prioritization – do not merge likely threat vectors with the system in question.

Fundamentally, the objective of a cyber-attack is to gain unauthorized access to, modify, or disable a
system. CPS attacks are distinguished by a primary focus on regulating (controlling) the state of physical
processes. This notion is not normally exploited and has only recently been considered by most security
analyses. Most security efforts for cyber-physical systems have followed an analogous paradigm to that
of cyber systems, focusing on protecting the perimeter of supervisory networks controlling the embedded
processors. Security measures include typical IT security firewalls, anti-virus packages, data encryption,
access control, and user authentication. Yet once an attacker penetrates the supervisory network, they
often find little or no security or validation schemes on the embedded process controller. This allows the
attacker to modify the behavior of the embedded processor and consequently the physical process [12].

As a community, we need a modeling paradigm that holistically unifies traditional MBSE with outputs of
attack tree analyses and design alterations resulting from security implementation. Complimenting these
existing processes with methods that embrace the natural complexity or our resultant ecosystem may
reveal emergent behaviors, economies and diseconomies of scale, and consequences we would otherwise
not see. Additionally, augmenting our design and analysis process to elucidate structure-function
relationships in a formal modeling paradigm will traceably capture how the functional dynamics of our
system are changed by considering the entire ecosystem. In turn, this formal model will enable us to
explore consequences of attacks that penetrate our perimeter protection in un-anticipated ways, moving
security analyses beyond the limits of approaches described above. Finally, the model can inform and be
augmented with system assurance test models that capture the context of the attack for formal test.

6.3 RESEARCH APPROACH

Our challenge is to define a methodology and process that is repeatable for each unique CPS
representation that enables us to rationally compare and select security implementations (a) in the early
stages of design, ‘designing in security’, and (b) is also applicable to already designed systems for which
a security solution is needed. The inextricable structure-function connection is widely appreciated in

Report No. SERC-2018-TR-105 April 30, 2018

60

research pertaining to living systems, and will be a core premise of our approach. Namely, by adding
consideration of the threat(s), and protection(s), we create a new system structure with new functional
dynamics. A system’s structural characteristics and what processes and behaviors are possible both within
and as produced by that system are not separable. System security analysis via heterarchical models that
unify these topological-functional dependencies may better inform CPS protection strategies than
hierarchical WBS structures and component lists.

Our research will consequently make two central assumptions. Firstly, we can create functional
abstractions of attacks and countermeasures, whereby attacks reduce or disable desired system
functionality and protection methods increase or enable functionality. Secondly, modeling the original
system together with these abstractions as a directed graph supportive of simulation will reveal important
behavioral dynamics across the CPS, threat, and protection elements. The original system components,
functional representation, and assets critical to realizing those functions will derive from existing MBSE
system component models, functional architectures, and activity and/or N2 diagrams. However, graph
theoretic measures based on aggregate statistics alone do not adequately characterize a system in terms
of its throughput, performance, and vulnerabilities. Networks may have identical degree distributions,
for example, and yet fundamentally different structures functional performance [13]. Key to the ability
of our directed graph to elucidate relationships and performance behaviors will be its amenability to
dynamic simulation (i.e., dynamic processes on graphs). To achieve this, we will borrow concepts
developed for ecological physics, neurology, and other living sciences.

6.3.1 PHASE 0 – PILOT BACKGROUND REVIEW AND FOUNDATIONAL CONCEPT DEVELOPMENT

The Phase 0 pilot effort began by investigating the potential for a model-based approach to CPS protection
using heterarchical models to capture threats and associated system vulnerabilities. In contrast, to
structural topologies where size represents spatial extent or physical dispersion CPS scale will encompass
logical and flow-based (e.g., signal, power, etc.) extent across the numerous assets required to realize the
necessary functions. The original notion was to cast CPS graphs as directed acyclic graphs (DAGs), a
common approach for flow-based functional models. CPS differ very much from the simple-pairwise
relationships traditionally modeled for many systems as their flow and logic relationships are directional.
DAG representations were also used in [14] to investigate the potential for graph models to serve as a
structural framework for system-aware cyber security architecture selection. CPS, however, are not
acyclic.

Figure 6-1 illustrates the cyclic nature of an individual CPS and group configuration. Higher-level functional
capabilities are often achieved through local network structures that, while still directed, also contain
cycles. While we can transform a cyclic structure into an acyclic one by duplicating node types and adding
them in appropriate places, this will not produce a functional topology representative of our problem. In
fact, the cycles in CPS are often important sources of vulnerability (e.g., an attacker tricks the system into
staying locked into a given functional state or cycle). Moreover, the pilot research found that unlike most

Report No. SERC-2018-TR-105 April 30, 2018

61

studies investigating attacks in uncorrelated, scale –free graphs or assume all nodes are identical [8, 10,
11], our final graph models are not random or statistically evolved and should exhibit different dynamic
characteristics. Phase 0 findings provided refined direction for the research, which will be expanded upon
in the following sections. Phase 1 will contain the most detail, and the ensuing phases will be described
as necessary maturations of this work.

6.3.2 PHASE 1 – DEVELOP METHODOLOGICAL FOUNDATIONS

The aim of Phase 1 is to develop the methodological foundations whereby we may begin to answer, “How
do we connect the functional representations into the same ecosystem model in a way that produces
meaningful consequences in the modes when executed upon – did our security design pattern
implementation work or not?”. Our research must therefore address three primary challenges.

Figure 6-1: Abstract representation of a CPS group configuration

Task 1. We need to effectively extract necessary system threat, and protection information from the
respective MBSE or attack tree structures in a way that enables repeatable, automated generation of a
graph structure with the correct functional specification and relationships. The goal for this task is to
automatically extract semantic descriptions from each entity type (cyber system functional component or
asset, protection pattern functional capability or asset, threat functional capability) that will be included
in the graphical model with respect to entity class, relationships with other entities of any class, and type
of relationship (i.e., logical flow, information flow, causal dependency). With these characteristics derived
from the functional model extracted from the system description, attack graphs, and a library of
protective functional patterns, this will serve as the basis for a repeatable, directly executable model
modification approach. The result of this task is a complete ecosystem model that is now comprised of
the original (unprotected) cyber system, the threat functional capabilities and attack vectors revealing the
critical cyber assets they will target, and the security functional architecture via one or more security
design patterns showing how (functional capabilities) and where (cyber assets or threat assets). Our
ecosystem model is contextual with respect to the threat and protection spaces.

We envision this process to begin from a CPS description including its functional capabilities and
associated critical assets already specified and annotated in an MBSE paradigm such as SysML or UML.
These assets are those elements required to realize a given functional capability, and may be logical
elements, software elements, data elements, gates, etc. Designers will frequently add hardware
components as necessary to this picture as needed to support the system assets. Systems are
decomposed via standard work breakdown structures (WBS) into a structural model that defines a
hierarchy of system, hardware, and software configuration items and components. As a first step, we
need to semantically extract the original CPS functional information from the relevant activity and/or
block diagrams into a form that may be used to create a directed graph. The nodes will represent the
functional capabilities and their critical cyber assets. The edges (links between nodes) will represent a

Report No. SERC-2018-TR-105 April 30, 2018

62

logical flow, information flow, or causal connectivity. Both direct and indirect connections can be
consequential, together producing cascading effects in the event of a disruption.

Similarly, our approach will build from an existing attack tree generation and analysis process already
conducted against the critical cyber assets. We envision the effort as a compliment and consumer of
attack vectors and their libraries as well as security design patterns already being investigated by the SERC
System Aware Cybersecurity effort. For this research, we need to develop a semantic mapping of attack
vector descriptors to targeted assets to create a modified version of our original graph. Threat functions
will be new nodes and edges will connect the threats to the targeted CPS functional asset. Security design
patterns are subsequently implemented alongside and on selected CPS functions to counter or mitigate
the threat posed by an attack. They are also specified and annotated in the MBSE tool. We need to
extract a semantic mapping of security design patterns to (a) their functional capabilities, (b) the cyber
assets they require to achieve their functional capabilities, (c) the critical cyber assets and/or functions
they will protect, and potentially if applicable (d) the specific threat functional capabilities and/or threat
cyber assets they are designed to detect or counter through direct connective action. In graph form, (a)
and (b) will be captured as nodes while (c) and (d) will be captured as edges. Notice that these edges, by
definition, require the original cyber system functional model to exist.

Task 2. We must develop node and edge functional/property motifs that make our ecosystem graph
executable and meaningful with respect to answering our research question. These motifs should be
detailed enough to produce the needed overall system behavior but generalizable enough by type to be
reusable and allow us to produce similarly executable graphs at much greater scale. Unlike the random
or statistically generated graphs studies in other fields, we must develop techniques best suited and
modifiable for simulating the impacts of highly correlated threats and protection implementations on
functional capabilities of a system. This research task will develop ways to specify parameters in our
graphical model that, when executed via discrete simulation, produce “consequences” most relevant and
meaningful to the CPS security problem. A key take away from the science fields mentioned previously is
that different graph topologies radically alter the dynamics possible. Our different graph topologies may
analogously alter the effectiveness of establishing security for our system under threat(s). The difficulty
in modeling CPS is the number of different node types or classes more so than the number of nodes. To
make executable models of CPS scalable, we need to devise motifs, algorithmic representations that
represent the behaviors and decision processes of each distinct class. Various graph properties may be
assigned in ways that capture dynamic impact to best represent the problem, specifically node and/or
edge state descriptions and weights.

 Node states and capacities. Nodes may be in one of a certain number of possible states during a
simulation depending on the input they receive from their neighbors and pre-specified growth or
decay characteristics of those states. A node capacity can be expressed as a direct function of its
state to represent how much of something (e.g., signal strength, data quality, etc.) a given node
possesses. State and capacity can modulate the level of influence a given node propagates to its
dependent nodes, producing a cascading effect. Final capacities of the original CPS nodes
(perhaps as a function of their state), for example, may quantify “how well” that functionality is
preserved.

 Edge states and weights. Edge state is analogous to node state, except that edge state represents
on or off connectivity, the degree of connectivity, and any latency, decay, or growth associated
with the connectivity. For example, an edge may change its strength (weight) at a certain rate
once its parent node has expressed a certain state or capacity. Edge weights represent edge
capacities or proxies for measures of connection strength. Together these concepts help shape

Report No. SERC-2018-TR-105 April 30, 2018

63

the propagation dynamics of the cyber system and can potentially capture impact of a connective
vulnerability type as well.

These techniques will, together with the graph’s final structure, govern the spreading dynamics of the
impact of the threat(s) and security implementation(s) and, consequently, the final state of the cyber
system’s functional capability. Rules governing node and edge states will derive from the node or edge
type (i.e., node class) and relational nodes defined by a Markov blanket [13]. A key aspect of the work
will be to simplify the relational state rules as much as possible to still reflect an abstraction of the
contextual cyber system behavior over time. Figure 6-2 illustrates these concepts.

Task 3. We need to identify and design an approach using a real system, likely via hardware-in-the-loop
emulation, whereby we may validate the research concept. While it is impractical to impractical to test
the full operating envelope of our simulation backed by hardware test and evaluation, simulation like
what we propose does not eliminate the need for testing using physical systems. Complex systems such
as CPS ecosystems are not explicitly predictable, even when using first principles approaches. We are not
trying to produce quantitatively accurate models in terms of expressing voltages, gains, inductances, etc.
Rather we are striving to create functional abstractions of our system, using final node and edge states
after graph simulation, that can accurately reveal whether critical system functions are preserved or not
in the face of defined threats. Initial validation will be logical, conducted using designed models to verify
they perform as expected. Second-level validation will need to compliment a CPS design or analysis effort
using hardware-in-the-loop emulation. We propose two options that together would validate the
conceptual development. Firstly, the research team has had discussions with SERC member University of
Virginia about the possibility of supporting their existing RT on smart munition systems for the US Army.
This effort will encompass system description, threat attack vector specification, and protective patterns.
It is also envisioned to include HWIL emulation. Additionally, GTRI has in-house cyber emulation
capabilities that may also serve effectively as a validation testbed.

Figure 6-2: Illustration of directed graph (here acyclic) in a 2D lattice. In (a), node X8 is conditionally dependent on its

parents (in blue), children (in green), and co-parents of those children (in orange). In (b), the state of X8 and an outgoing
edge are expressed as functions of its inputs with functional rules based on node classes within its Markov blanket.

6.3.3 PHASE 2 – MATURE AND EXPAND METHODOLOGICAL FOUNDATIONS

Phase 2 will build from and mature the research developed in Phase 1 across three task areas.

Report No. SERC-2018-TR-105 April 30, 2018

64

Task 1. We need to mature the processes and structures developed in tasks 1 and 2 from Phase 1 to
become semi-automated so that we may scale our approach across various CPS problems. Even with
humans in the loop of the process of identifying attack vectors, prioritizing attacks, and selecting defensive
protection patterns to implement, the constructs with which we represent our system and the
corresponding analytical methods must be executable in a computational environment to produce the
efficiencies at scale that are necessary for this problem. For this task, we will mature our methods to
accomplish that vision. Additionally, the conceptual validation proposed in Phase 1 will be continued and
matured under this task.

Task 2. To elucidate the structure-function relationship further, we can derive functional
representations directly from structural (i.e., component) topologies that may reveal different
behavioral dynamics or vulnerabilities. We need to understand and characterize how these insights
might be applied to the overall problem to make a difference in our security approach. In a structural
cyber topology, the nodes will represent hardware, software, or logical components. Edges will represent
a logical flow, information flow, or causal connectivity. Both direct and indirect connections can be
consequential, together producing cascading effects in the event of a disruption. We need to understand
how the structure of our cyber system and its security implementation constrains (or promotes) the
dynamics that can occur on that network. Does our structural design architecture produce the necessary
functionality we need? We may produce these insights using community detection in graphs based on
information theoretic approaches frequently applied to social and biological systems. In these methods,
relationships (edges) represent “flow” and the focus is on discovering the dynamic interdependence of
system elements connected by the edges. A known structural representation already exists as a starting
point for these methods. As a baseline we follow previous work [15, 16] using random walks as a proxy
for information flow to discover the essence of a graph flow patterns induced by the structural
architecture. There are some key aspects of the approach we should address and will be vital to our
problem: 1) What is the relationship between this functional mapping and that derived from the MBSE
process? The mapping view is derived directly from the synthesis of structure and directional flow. We
need to explore the differences that may arise and explain how they relate to produce a meaningful
interpretation. 2) What can our mapping reveal about vulnerabilities that we did not know before? This
structure-function mapping is not a dynamic simulation of our graph but a discovery of functional
communities and their relationships driven (or constrained) our directional structure. This may reveal
very different perceptions of fault or failure modes not discernible in the original topology. 3) Do
structural design changes preserve functionality for our system? As we change security implementations
or create different designs to satisfy the security requirements, we change our system topology. We may
evaluate different design attributes such as redundancy, diversity, segmentation, distributed-ness, etc.,
and their impact to our security effectiveness. Tuning our mapping process may reveal whether we retain
the same functional mapping or produce a different one. If different, we need to relate this to what we
changed. This latter concept relates directly to a measure of resilience. Did our design decisions preserve
functionality for our system? 4) Can we use this approach to determine “how much” of a design attribute
we may need? To make design decisions, we need to know how much redundancy, diversity, distributed-
ness, etc. produce a meaningful difference in our security performance. This may aid decision trades.
Adding redundancy, for example, should not change our end functionality. Does it, via our community
discovery? Diversity will add structural components and, consequently, new edges to our graph.
Distributed-ness will add new edges. Our approach to functional community discovery may reveal what
impacts on functional characteristics that the degree of these attributes included in a design may produce.

Report No. SERC-2018-TR-105 April 30, 2018

65

Task 3. We need to associate the inputs and outputs of our research with current processes to prioritize
threats and security implementations through a decision tool where we can perform trades on the
effectiveness, ease, and “cost” parameters associated with each. Each of the protective
implementations provides distinct security capabilities, but at a cost. This cost is reflected in
implementation cost, resource cost (i.e., the cost of any additional resources needed by the system for
that implementation), and a more abstract cost reflecting the set of collateral impacts to the rest of the
system. Whereas Information technology systems have few functional-structural constraints,
cyberphysical systems are likely to be more constrained with a more tenable set of protections. For any
given CPS, multiple security design patterns may be selected for implementation, altering the original
system architecture minimally or substantially as discussed earlier. It will be imperative that we prioritize
threats and security implementations through a decision tool where we can perform trades on the
effectiveness, ease, and “cost” parameters associated with each. This will enable us to narrow down our
threat and security implementation spaces for further analysis. Otherwise our architectural possibilities
may be innumerable. We need to identify specific outputs of our research process and how they may
feed into existing decision analysis methods and tools so that the “cost” of security may be evaluated.

6.3.4 PHASE 3 – EXTENSION TO ASSURANCE AND TRANSITION

Phase 3 is contingent upon the success of the previous phases. It will focus on two key aims:

Task 1. How can we formally extend and implement the process into an integrated toolset or family of
related, modular tools that manage and assemble in a semi-automated way the necessary ecosystem
information extraction, model construction, and node and edge property assignment (i.e., discrete
functional models) to enable simulation? The goal is to produce reusable system models and specify the
associated function libraries, component libraries, and standards necessary to support the semi-
automated process. As part of this task, we need to evaluate and – if deemed feasible – pilot a library
search capability that can partially automate the assembly of a new meta-model from existing component
libraries containing key CPS components and/or associated functions, common threat vectors and
associated attack libraries, and libraries of security design patterns.

Task 2: How can we extend the process to support model-based system assurance (MBSA)? The same
functional model building activity developed by the previous Phases can also be used to build a test
framework, essentially a separate functional “harness” that can be attached to portions of the functional
model. Here the attacks are replaced by actual test functions (fuzzers) that evaluate vulnerabilities of the
system. Threat patterns can be evaluated by test inputs that actually propagate through the system, and
the test framework can simulate multiple attack inputs. In contrast to the system view, current methods
typically test only one software component at a time. While this specific task will not sufficiently address
the inherent complexity of the system, it may provide a foundation from which the community can
gradually build libraries of more complex system tests.

6.3.5 RESEARCH TEAM QUALIFICATIONS TO ENSURE PROJECT SUCCESS

GTRI excels at advancing systems engineering and analysis of complex defense systems using open-source
technologies to build integrated toolsets based on modular open architecture software frameworks. The
GTRI team includes researchers well versed in complexity, MBSE standards, processes, and methods
development, discrete simulation, and cybersecurity. To complete this effort, we envision the funding
will directly support collaboration with the cyber-security efforts and analytic workbench efforts ongoing
at SERC members University of Virginia and Purdue University respectively.

Report No. SERC-2018-TR-105 April 30, 2018

66

6.4 RELEVANCE OF THE RESEARCH

New approaches to address cybersecurity and program protection planning in development and
operational use of military CPS are an obvious concern and a top priority for all DoD agencies. However,
this research specifically focuses on the complex interactions between threats, well-intended protection
patterns, and the resultant system behaviors that may or may not be what was intended. Our overarching
goal is to create methods that link to existing processes and answer how well the original functional
capabilities of the cyber are preserved in the face of the threat(s) given the augmentation with the
security design pattern(s). Our dynamic graphical model will permit us to explore and understand the
structure-function relationships inherent in our ecosystem that produce those outcomes and link our
security choices to a trades-based decision process relating cost and level of security success. Additionally,
our approach provides the structure to visibly or quantifiably reveal the inherent diseconomies of scale
that can result from over protection. Succinctly, the research offers an approach to help answer ‘How
can we evaluate the “best” security designs for a cyberphysical system?’ in a way that builds from and
compliments existing MBSE and security processes. “Best” in this sense refers to providing the necessary
security to the overall CPS – a dynamic concept within an operational context – within available resources
to do so. This is a cross-cutting project across three SERC Thematic Areas: Systems Engineering and
Management Transformation, Trusted Systems, and Enterprise Systems-of-Systems.

6.5 RISKS, MITIGATIONS, AND PAYOFFS

Our central hypothesis is that a functional abstraction of the entire security ecosystem (i.e., the initial CPS
design, attack vectors, and security design pattern implementations) can effectively produce an
executable graph that will traceably reveal whether and how well a given security implementation serves
its purpose as well as any unintended consequences it may produce. Risk: The risk is that the high-level
of abstraction inherent to functional models is not sufficient to accomplish this purpose. Mitigation: This
is the fundamental research question for this effort. and the hypothesis will be confirmed or refuted at
the end of Phase 1. Risk: The consistency and completeness of system descriptions in SysML vary by
practitioner. Annotation detail specifying critical functional assets and relationships may not be captured
to a sufficient level in a given use case. Mitigation: The research team has extensive experience with
SysML tables, query structures, and plug-ins to commercial packages that will enable us to (a) extract the
necessary system information to support our approach, and (b) guide the MBSE descriptive process in
ways that directly support security design and evaluation. Risk: The research needs a real problem or
emulation testbed to perform conceptual validation. Mitigation: GTRI has in-house resources that may
help address this need, and we have approached the lead SERC partner for smart munitions is agreeable
to our assistance on that effort pending Army approval. If realizable, then that effort provides a real
system with real data and a targeted emulation task to assist with conceptual validation

In terms of payoffs, the methods we propose are applicable to both early stage and more mature designs
for which a security analysis is needed. They are similarly extensible to use cases where CPS systems are
networked together to provide a greater physical capability extent. Our approach has the potential to
answer critical questions that are not adequately addressed through the currently disparate processes.

6.6 BUDGET

Although precise figures have yet to be calculated, the estimated budget is $345K for Phase 1 and a total
of $345K for a comprehensive Phase 2 program consisting of targeted efforts for maturation across the
multilevel framework that are driven by the results from Phase 1. An optional Phase 3, to be undertaken
based on the success of Phases 1 and 2, consists of extending the processes and tools into existing

Report No. SERC-2018-TR-105 April 30, 2018

67

processes and application for wider use. The projected budget for Phase 3 is $290k. Thus, the total budget
for the overall research program, including Phase 3 and the $20K for Phase 0, is approximately $1 million.

6.7 TIMELINE

Phase 0 of this effort was completed during the incubation project period and lasted 2 months from
funding was received until this report was produced. Phase 1, Phase 2, and Phase 3 are each projected to
last 12 months. The total timeline outside of the pilot is projected at 3 years.

6.8 PROJECT EVALUATION AND MEASUREMENT

By the end of Phase 1, we expect to produce a minimal viable demonstration of our approach and a
comprehensive description or our underlying conceptual advances for the SERC and DoD sponsors. By
the end of Phase 2 – within 2 years - we aim to produce and validate strong theoretical foundations, and
prototype processes and tools capable of being demonstrated on realistic problems and integrated into
existing complimentary MBSE and attack modeling processes. Within 3 years, at the end of Phase 3, we
expect to see significant validation of both our theory and tools in pilot applications at realistic scales and
associated complexity as well as extend our approach to support CPS assurance.

Progress will be measured by annual technical review assessments made by key stakeholders across the
SERC, DASD(SE), and complimentary RT stakeholders such as AARDEC. These reviews will include a
description of the conceptual advances and methods, processes, and tools that can support their
application to real problems as well as relevant demonstrations. The findings and results will be vetted
with the stakeholder community for any necessary course-alteration and transition planning.

6.9 REFERENCES

Snyder, D., Powers, J. D., Bodine-Baron, E., Fox, B., Kendrick, L., & Powell, M. H. (2015). Improving the
cybersecurity of US Air Force military systems throughout their life cycles. RAND Corporation, Air Force
Project, Santa Monica, CA.

Defense Science Board (September 2016). Task force report on Cyber Defense Management. Office of the
Under Secretary of Defense for Acquisition, Technology, and Logistics, DTIC number AD1023639.

Boehm, B., and Kukreja, N. (2015). An Initial Ontology for System Qualities. In INCOSE International
Symposium, vol. 25, no. 1, pp. 341-356.

Jones, R. A., & Horowitz, B. (2012). A System‐Aware Cyber Security architecture. Systems Engineering, 15(2),
225-240.

Defense Advanced Projects Agency (DARPA) (May 2017). Cyber Assured Systems Engineering (CASE), Broad
Agency Announcement, Solicitation number HR001117S003.

Dessavre, D. G., Ramirez-Marquez, J. E., & Barker, K. (2016). Multidimensional approach to complex system
resilience analysis. Reliability Engineering & System Safety, 149, 34-43.

Uday, P., & Marais, K. (2015). Designing Resilient Systems‐of‐Systems: A Survey of Metrics, Methods, and
Challenges. Systems Engineering, 18(5), 491-510.

Newman, M., Barabasi, A. L., & Watts, D. J. (2011). The structure and dynamics of networks. Princeton
University Press.

Geard, N. (2010). Adaptive Networks: Theory, Models and Applications. T. Gross and H. Sayama (Eds.), Springer-
Verlag.

Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge
University Press.

Report No. SERC-2018-TR-105 April 30, 2018

68

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and
dynamics. Physics reports, 424(4), 175-308.

Lyn, K. G., Lerner, L. W., McCarty, C. J., & Patterson, C. D. (2015, October). The Trustworthy Autonomic Interface
Guardian Architecture for Cyber-Physical Systems. In Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing, 2015 IEEE International Conference on (pp. 1803-1810).

Li, L. (2007). Topologies of complex networks: functions and structures. California Institute of Technology.

Luckett, B. (2013). Integration of Graphical Modeling Techniques as a Structural Framework for System-Aware
Cyber Security Architecture Selection. Thesis from http://libra.virginia.edu/catalog/libra-oa:3720.

Rosvall, M., Axelsson, D., & Bergstrom, C. T. (2009). The map equation. The European Physical Journal-Special
Topics, 178(1), 13-23.

Ziv, E., Middendorf, M., & Wiggins, C. H. (2005). Information-theoretic approach to network
modularity. Physical Review E, 71(4), 046117.

http://libra.virginia.edu/catalog/libra-oa:3720

Report No. SERC-2018-TR-105 April 30, 2018

69

7 TRUSTED AUTONOMY – METHODS FOR TEST AND EVALUATION – GARY WITUS, WAYNE STATE

Model-Based Assurance Arguments for Verification and Validation of Autonomous Behavior
Requirements for Autonomy-Enabled Systems

7.1 PROBLEM AND NEED

Autonomy-enabled systems (AES) are a DoD priority within the technology offset strategy.

AES present new challenges for Systems Engineering. In AES, some traditionally human cognitive
operations - choices, interpretation, adaptation, interaction etc. – are transferred from a human operator
to a machine. Human operators are trained and selected, after an initial 18 to 22 years of life experience,
operators are able to recognize unusual situations, drive in traffic, and adjudicate conflicting guidelines
such as “drive slower in the rain” and “drive faster under fire.” They are expected to adapt and apply the
unit’s tactics, techniques and procedures (TTP) to execute the mission plan and accomplish the mission
objectives – as appropriate for the situation as it develops. In AES, requirements substitute for training
and selection.

Trusted autonomy and a trustworthy AES requires that the system is able to integrate and operate as an
effective as part of the autonomy-enabled unit. Trustworthiness is more than simply being safe and
effective. The team leader must employ the system effectively as part of a manned-autonomous team,
and the manned and autonomous elements must interact smoothly to execute the TTP to accomplish the
mission. Military operations are inherently unsafe. A faster, more effective operation is a safer operation.

 The team leaders, operators, and adjacent team members understand the capabilities and
limitations of the AES, how it will act and perform over the range of missions and situations

 The AES does not limit the team’s ability to execute operations employing the unit’s TTP, or limit
the team leader’s ability to assign tasks assuming that the appropriate TTP will be used and used
effectively

 The AES is competent to perform its autonomous functions effectively, and improves the team’s
operational effectiveness over the range of missions, operation plans, and particular situation

AES are machines, sophisticated machines, but machines nonetheless. Their capabilities and behaviors
must be expressed as system requirements and acceptance criteria in system acquisition. This includes
the autonomous “cognitive” functions that will enable the AES to operate as part of an autonomy-enabled
unit with humans and AES working together.

The SE community currently lacks MPT to develop and verify system requirements for the “cognitive”
autonomy capabilities, and lacks MPT to assess designs to inform technology-selection and source-
selection decision makers vis the acceptance criteria. Despite this, DoD, and TARDEC in particular,
recognize that AES will enter the acquisition process. Acquisition agencies will be required to develop
requirements and acceptance criteria, and to assess designs to inform technology-selection and source-
selection decisions.

Report No. SERC-2018-TR-105 April 30, 2018

70

Historically, in software intensive systems, errors in requirements – incorrectness, inconsistency,
incompleteness – are the greatest source of development time and cost overrun (see figure 7.1). This
relationship is likely to be even more skewed for AES. Although not well-documented, unsuitable
requirements – not the ability of engineered solutions to satisfy the requirements – has been a major
cause of program terminations (the EFV, the DIVADS gun, the Shillelagh missile, the Sheridan tank, and
others are examples worthy of study as to what went wrong).

Fig. 7.1: Software Fault Introduction and Rework Costs over the Development Lifecycle. From “Test and
Evaluation of Autonomous Systems in a Model Based Engineering Context,” by M. Nolan (Raytheon), A.

Fifarek and J. Hoffman (USAF AFRL), March 2016

Effective SE MPT for AES autonomous capability requirements TEVV should have the following
characteristics:

 A “user-friendly” framework to express behavior requirements (the term “behavior” is used
broadly to refer to any action taken by the AES to include goal selection and adaptation as well as
physical and communication actions)

 Behavior requirements can include both prescriptions and prohibitions
o Prescriptions specify what the AES should do under what conditions – including internal

goal setting actions, so the prescriptions can represent desired outcomes
o Prohibitions specify what actions should not be taken under what conditions, and what

outcomes are to be avoided

 The behavior requirements can be refined and expanded over the acquisition lifecycle

 The requirements for situation awareness and underlying perception capabilities are derived from
the behaviors

 The requirements for execution and underlying actuation and communication are derived from
the behaviors

Report No. SERC-2018-TR-105 April 30, 2018

71

 The behaviors representation is such that the behavior set can be analyzed to identify conflicts,
inconsistencies, ambiguities, and gaps

 The behaviors representation is suitable to be incorporated into dynamic models of the military
operations, including the behaviors of other friendly and unfriendly agents, in order to assess
operational outcomes

 The individual behavior requirements, the assessment of the set of behaviors, and the assessment
of the operational outcomes all feed a rigorous method to produce an aggregate evaluation of
the AES trustworthiness (effectiveness, robustness, and compatibility with unit TTP), and support
diagnosis of the evaluation

7.2 TECHNICAL SOLUTION

The solution framework for autonomous behavior requirements is illustrated in figure 7.2.

Fig. 7.2: Model-Based Autonomous Behavior Requirements TEVV Framework

Assurance Arguments

The assurance argument paradigm is the integrating framework that “rolls up” the hierarchy of claims and
sub-claims with their supporting model-based evidence and assumptions. At the top level, claims are
about the effectiveness and team compatibility over some range of operations and situations.

Assurance arguments are an increasingly-used approach to assess safety, effectiveness, security,
reliability and similar properties that cannot be proven by formal means and for which statistical data
and/or test data are unavailable or insufficient for the range of conditions. They are especially suitable

Assurance Argument Paradigm

Behavior Requirements:
Prescribed & Prohibited
Behaviors & Outcomes

Simulations, Virtual Exercises, DT/OT and Experimental Designs

Functional Subsystem Requirements
• Situation Awareness
• Execution Capability

Behavior Executive
• Conflict Detection

& Arbitration
• Composition &

Blending

Military
Operation &

Agent
Behavior
Dynamics

Model

Report No. SERC-2018-TR-105 April 30, 2018

72

early in the development process when decisions must be made and justified prior to engineering
development.

Properly formulated, assurance arguments identify key assumptions, as well as information that is needed
early in the acquisition lifecycle to make informed capability choices, requirements, and source selection
decisions. Extended assurance arguments can potentially provide way to integrate diverse types of
evidence accrued over the development lifecycle.

Various forms of the assurance argument approach are being developed and applied: by the FAA for
safety critical systems [1], by NASA for “one-shot” satellite and launch systems [2] and for systems using
Artificial Nets [3], by medical device manufacturers and the FDA [4], cybersecurity development [5], and
hazard and safety analysis [6]. DARPA has released a solicitation for “Assured Autonomy” to develop
assurance arguments for adaptive learning in real-time [7].

The assurance argument approach has been criticized for lack of a rigorous formalism for combining
evidence of different types, sub-claims, and assumptions in the argument. There have been some
attempts to bring greater rigor by linking evidence to models [8], and by formalizing the types of assurance
arguments to use for different types of claims [9].

The proposed approach brings enhanced rigor to the assurance argument model by explicitly tracking the
scope and credibility of sub-claims, evidence and assumptions (figure 7.3). The scope is the range of
conditions of the claim, and credibility is the confidence that the claim is true over the range of conditions.
The scope and credibility of a claim are composed from the scope and credibility of its support, according
to the calculus appropriate to the logical nature of the decomposition.

Fig. 7.3: Extended Assurance Argument Paradigm

Over the development lifecycle

• Assumptions replaced with evidence or
converted into sub-claims

• Evidence accumulated from models and tests

Heterogeneous
Decomposition

• Functional
• Operational
• External condition
• Etc.

Argument Calculus

• Intersections
• Unions
• Statistical

Aggregation
• Etc.

Claim

Sub-claims

Sub-claim Assurance Arguments

Evidence Assumptions

Scope and Credibility Composition Calculus

• Explicit scope and credibility of claims, evidence and assumptions
• Explicit scope and credibility composition calculus

Report No. SERC-2018-TR-105 April 30, 2018

73

Evidence comes from multiple sources: (1) detailed simulations, virtual exercises, subsystem testing, etc.,
(2) an operational dynamics model, (3) a model of the behavior deconfliction, arbitration, and
composition, and (4) the set of behavior requirements. The operational dynamics model framework, the
behavior executive model, and the behavior requirements format are within the scope of the proposed
SE MPT. The detailed simulations etc. are not. The experimental designs used to generate evidence from
virtual and constructive simulations and tests are key factors in characterizing the scope and credibility of
the experimental results.

Generic AES Functional Architecture

The technical solution is based an implementation-agnostic functional architecture for the autonomy
component of an AES (figure 7.4). The architecture is shows the central role of the behavior executive
responsible for arbitrating among conflicting behaviors, composing compatible behaviors, and detecting
situations for which the AES has no appropriate behavior. The behavior executive is a central part of an
operating AES. The behavior executive is also the key tool to analyze inconsistencies, gaps, ambiguities
and incorrect behavior requirements.

Fig. 7.4: Implementation-Agnostic AES Functional Architecture

The behavior requirements specify what the AES should do when (prescriptions for actions and outcomes)
and what it should not do when (prohibitions on actions and outcomes). Behaviors have activation
conditions which define precepts of situation awareness, and consequence actions or activities, which are
controlled based on feedback from situation awareness precepts. The behavior specification drives the
perception and situation awareness needs. The behaviors define the activities and control limits for the
AES. A behavior specification has three parts

 A conditions template specifying the situation in which the behavior should be applied

ic

External Agents, External Physical World, Vehicle Physical Status

Internal State – Goals, Plans, Control Parameter Setting, Etc.

Actuation
& Automatic Control

Sensing & Signal
Processing

Perception &
Situation Awareness

Goal & Behavior
Activation

Behavior Execution

Goal & Behavior Arbitration &
Composition Executive

Messaging

Prescribed &
Prohibited

Behaviors &
Outcomes

Report No. SERC-2018-TR-105 April 30, 2018

74

 A distance metric specifying the activation level as a function of the distance been the template
condition and the perceived situation

 A consequence action expressed in terms of the conditions, so that the actions will be
automatically tailored to the perceived situation

This two-level structure with an outer constraint loop (prohibitions) and an inner prescriptive loop is an
emerging best practice for safety assurance in complex and autonomous systems [10]. The behavior that
the AES will exhibit, and its operational effectiveness, depends on how behaviors are composed and
conflicts are resolved, and cannot be predicted from behaviors requirements individually.

The behavior requirements will almost certainly be incomplete and inconsistent. It is not reasonable to
expect that all possible combinations of situations will be explicitly accounted for in the behavior
requirements. The conditions for the prescription and prohibition behaviors will specify when they should
and should not be applied, but the conditions as specified will not have all the details. Different behaviors
can be activated at the same time by different aspects of the situation (e.g., it can be raining and sunny at
the same time). The activation level of a behavior is a measure of how close the current situation matches
the template for the behavior. The behavior executive uses the activations levels of the behaviors and
their relative importance to arbitrate and compose the action that the AES will take.

The behavior executive is used for behavior checking – exploring the space of conditions to detect
conflicts, ambiguities, gaps and incorrect behaviors. The SE MPT will have a behavior checking tool that
explores the space of conditions, examining (1) combinations of conditions drawn from different
behaviors, and (2) situations that have intermediate values between different behaviors.

 Conflict is when two behaviors are activated that produce conflicting consequences (either in
immediate action, or outcome consequence)

 Ambiguity is when multiple behaviors have nearly equal activation levels and importance

 A gap is when no behaviors have significant activation

 Incorrect behaviors are when the outcome conflicts with prescribed or prohibited outcomes

The behavior executive is the key tool to find conflicts, gaps, and ambiguities among the behavior
requirements. It is used inside a behavior checking loop. An operational model is used inside the behavior
executive to forecast outcomes.

Operational Dynamics Model

The operational dynamics model is where the actions of the AES and other agents are played out to assess
conflicts between outcomes (prescribed or prohibited) and actions/activities (prescribed or prohibited).

Behavior requirements include prescribed and prohibited combinations of actions/activities subject to the
tactical situation. This does not need an operational dynamics model. When behavior requirements are
expressed in terms of outcomes to seek or avoid, i.e. goals not actions/activities, then an embedded
operational dynamics and outcome model is needed.

The operational dynamics model is needed to identify conflicts in of action behaviors with outcome goal
& constraint behaviors. (In the implementation-agnostic framework, behaviors are situationally
dependent, prescribing and proscribing actions, combinations of actions, and outcomes of executive
adjudication of actions vis outcomes).

Report No. SERC-2018-TR-105 April 30, 2018

75

Detecting when a set of behaviors leads to a prohibited outcome requires an embedded model of the
operational dynamics and outcomes. The operational model is used inside the behavior executive to
detect conflicts between outcomes, prohibitions and goals.

The behavior executive is the central tool used by the behavior-checking function to identify
inconsistency, gaps, ambiguity, etc. among the requirements. At the simplest level, it does not project
outcomes, and excludes behavior goals and constraint activation in reference to outcomes.

The operational dynamics model is needed when some behavior requirements are expressed in terms of
prescribed and prohibited outcomes. For the purposes of behavior requirements TEVV, the operational
dynamics model needs to reflect the behavior requirements with expected “mechanical” or
“deterministic” physical response. It is not a detailed simulation of performance, but rather an “expected
value” model of “what happens when A does X, and how does it fit into the operation TTP.”

Even in “simple” convoy operations there are complex situation awareness and decision behaviors related
to lane change, maintaining formation, etc., over the variations of road and weather conditions, mission
priorities, neutral and adversarial actors, breakdowns and mutual support, with heterogonous units and
formations (manned, weaponized, etc.), the challenge of actions to expect when (behavior requirements)
is hard. Behavior requirements will be in conflict. How requirements are expressed and conflicts resolved
is essential to asking for a system that will be operationally effective.

Finite-state machines (FSM, sometimes also called state-transition models) can be an effective approach
for operational dynamics modeling. Agents – friendly, unfriendly, and automated – are engaged in
activities or actions. The actions take time to complete. Multiple actions occur in parallel, and the
probability that one action or another completes next depends on the relative rates. FSM are well-suited
for simple operational concepts, threat interactions, TTP and behaviors.

A criticism of FSM is that can become unmanageable when there is an attempt to have broad scope and
high resolution simultaneously. Complexity can be managed with extended hierarchical FSM. A state at
one level of the hierarchy is decomposed into a more detailed FSM network, whose inside is invisible at
the higher level. Another approach to managing complexity for multi-agent operations is to use
hierarchical FSM to model agent behaviors, and let a computational engine rather than a specific model,
generate the states of the world from the actions and activities of the individual agents.

The use of a first order model, or any model for that matter, relies on assumptions and has its own
credibility and scope of application.

In work in this area, most recently supporting military utility analysis on the DARPA Ground Vehicle
Experimental Technologies (GVX-T) program, a version of hierarchical FSM modeling proved effective and
useful (figure 7.5).

Stateflow models are a further extension in which the rate of transition processes depends on the levels
of resources, and processes & events change the levels of resources. This formulation requires a first-
order model of the rate of transition events based on the levels of resources, and the
consumption/production of resources in states and at transitions. Stateflow models have been effectively
used to represent opponent populations with discrete commanders’ decisions for operational
effectiveness analysis [11]. The level of detail of stateflow models may be much greater than what is
needed for behavior requirements TEVV.

Report No. SERC-2018-TR-105 April 30, 2018

76

Fig. 7.5: Example Node in a Hierarchical Stateflow Model of a Military Operation

FSM and stateflow models can become complex if there is an attempt to have both high resolution and
broad scope in the same model. In some cases, complexity can be managed by hierarchical modeling. In
team and adversarial relations, parallel multi-agent modeling reduces the complexity to single agent
behavior.

Additional research and development is needed to specify the appropriate format for an operational
dynamics model. The Ptolemy II system provides a sound theoretical basis for hierarchical heterogeneous
models of computation [12].

7.3 PROGRAM PLAN

The project will refine and integrate the assurance argument calculus model, the behavior requirements
model, operations dynamics model, and the behavior executive model. It will produce an automatic
behavior-checker using the behavior executive, behavior requirements and operations dynamics models
to identify inconsistencies, gaps, ambiguities, and incorrect behaviors.

Co-Development Partner

We propose to work with TARDEC as co-developer and transfer partner for the SE MPT, with
developmental testing application in their autonomous convoy project. TARDEC has endorsed the
collaboration.

From Preceding Stage

To Next Stage,
Not Having Come

Under Fire

To Next Stage,
Having Come

Under Fire

Red Searching,
Blue Driving on
Planned Route,

LOS

Red Searching,
Blue Driving on
Planned Route,

NLOS

Red Firing,
Blue Driving on
Planned Route,

LOS

Red Firing,
Blue Driving on
Escape Route,

LOS

Red Searching,
Blue Waiting in

Protected Position,
NLOS

Red Acquires Blue
& Begins Firing

Blue Locates Red &
Begins Escape to

Protected Position

Enter in NLOSEnter in LOS

Pause for Red
to Resume
FOR Search

over

End of Stage Reached

Blue Killed

Inputs: transition rates

or mean time for a

transition event to occur,

absent competing

processes

Outputs: probabilities

of ending in the different

absorbing states, and

the expected times to

termination

Report No. SERC-2018-TR-105 April 30, 2018

77

TARDEC has a current Science and Technology (S&T) project for an autonomy-enabled convoy system.
The project has dual objectives to (a) produce a demonstration system, and (b) to develop and test SE
MPT for autonomy-enabled systems. TARDEC recognizes that development of SE MPT for AES is needed
in parallel with AES technology development. The US Army RDECOM S&T has allocated additional funding
to this project beyond what has been committed from TARDEC core funding. In RT148, TARDEC’s
autonomous convoy project funded a project on MPT to trace and analyze modeling and simulation (M&S)
in model-based engineering workflow for AES.

In the autonomous convoy project, TARDEC is developing and testing M&S requirements and capabilities
to support system concept and requirements development – the turquoise region of figure 7.2 (detailed
simulations, virtual exercises, developmental testing, etc.)

TARDEC is using a version of “Early Synthetic Prototyping” (ESP) warfighter experiments to explore how
warfighters will interact with and use autonomous systems and work as part of an autonomy-enabled-
units. The goal is to use early virtual experiments to test and inform operational concepts for AES,
requirements, and benefits. The SE challenges include (a) design of virtual experiments, (b) data mining
from virtual experiments, and (c) understanding the credibility and limitations of findings.

Complementary Funding

In September, we submitted a proposal to the Automotive Research Center (ARC) – TARDEC’s university
arm, led by University of Michigan, of which WSU is an active member. The ARC is focused on M&S –
what M&S is needed to address acquisition challenges and opportunities, and how to integrate it into
system acquisition. At the beginning of the summer, TARDEC gave the ARC the challenge of developing
research proposals to support development and acquisition of autonomy-enabled ground vehicles.

ARC proposals always include Government and Industry oversight participants to help ensure military and
dual-use relevance. Our proposal to the ARC has oversight participation from DASD-SE, the TARDEC
autonomous convoy team, and a Tier 1 automotive supplier with an R&D program in SE for autonomous
safety functions.

The proposed WSU project is to finalize and implement a rigorous and extended assurance argument
model (the yellow top level of figure 7.2) for AES. The scope of the ARC proposal does not include anything
below the yellow “Assurance Argument Paradigm” in figure 7.2. The scope was to develop and implement
the MPT rigorous assurance arguments, and demonstrate them, in the autonomous convoy project
context.

The scope focused on developing the hierarchy of claims and considerations needed to:

 Help develop RFP solicitation packages to ensure the Government gets information needed to
make source-selection decisions, and inform bidders how the information will be used (in order
to avoid protests)

 Probe limitations of the behavior requirements

 Compare competing bids and diagnose strengths and limitations on a level playing field

Over the Spring/Summer/Fall we participated in a series of four full-day workshops hosted by the ARC on
M&S for AES. The workshops were attended by TARDEC, academic researchers from the six ARC
universities, and the automotive industry. We continued our engagement with the TARDEC autonomous
convoy team on SE for autonomy-enabled convoys and convoy vehicles.

Report No. SERC-2018-TR-105 April 30, 2018

78

Based on the presentations and comments by TARDEC, and the “brainstorming” of M&S opportunities
and needs by the academics, we are confident that the research in our proposal to the ARC and in this to
the SERC are

 Highly relevant

 Not duplicative or overlapping with other ARC research topics

Schedule and Milestones

 Year 1
o Produce & demonstrate initial software implementation of rigorous assurance argument

paradigm in Matlab
o Develop high-level of the assurance arguments for major capability claims for trustworthy

AES, using TARDEC’s autonomous convoy project as a case study, to include sub-claims,
evidence, and assumptions with corresponding composition calculus

o Define information interfaces between the assurance argument model and the
operations dynamics model; select the initial paradigm for the operations dynamics
modeling

o Specify the initial behavior requirements expression “language”
o Produce initial requirements for the behavior executive

 Year 2
o Refine/extend software implementation of rigorous assurance argument paradigm as

needed
o Demonstrate and assess high-level of the assurance arguments for major capability claims

for AES, using TARDEC’s autonomous convoy project as a case study, using the software
implementation of rigorous assurance argument paradigm

o Implement operations dynamics model framework, with and demonstrate it for selected
convoy operations

o Implement behavior requirements expression model, with example behaviors for
selected convoy TTP

o Illustrate derivation of situation awareness requirements
o Produce draft guidelines and pseudo-code for the behavior executive and behavior

checking software

 Year 3
o Finalize initial versions of software tools
o Conduct and document TEVV analysis of the behavior requirements
o Hold a workshop to assess value, practicality and suitability of the MPT
o Plan and execute transfer of software tools and user’s manuals, MPT documentation

Funding Request

The total funding request for the full project is $160K/year to WSU, over 3 years.

The WSU ARC proposal is for $80K/year over 3 years. Funding review is in process, with announcements
expected in March 2018.

If the ARC proposal is funded by TARDEC, its scope can be excluded from the proposal to the SERC.

Report No. SERC-2018-TR-105 April 30, 2018

79

If the ARC/TARDEC provides $80K/year to WSU, then the need from SERC/DASD-SE is for $80K/year to
WSU.

7.5 CONCLUSIONS AND RECOMMENDATIONS

AES an important area for the technology offset strategy. It is an area of high interest to our long-term
co-development partner, TARDEC.

SE MPT to reduce AES development time is vital to effective technology offset. Incorrect, incomplete, and
inconsistent autonomous behavior requirements are an expected source of time and cost overrun. TEVV
of the autonomous behavior requirements is a leverage point to minimize rework and delay.

We have a co-development partner, TARDEC, and an S&T demonstration project on which to apply the SE
MPT.

There is potential cost-sharing from TARDEC though the WSU proposal to the ARC.

The proposal is practical and relevant. It addresses current needs of acquisition agencies, with TARDEC
as an example, to develop MPT for “cognitive” behavior requirements TEVV, in consideration of the
difficulties in specifying AES behaviors.

The proposed project build on R&D we have been doing across multiple projects, and is an opportunity to
bring the lessons and techniques together into a coherent whole. The technical approach extends MPT
that we have used effectively on the DARPA Ground Vehicle Experimental Technology (GVX-T) program.
The MPT under proposed development are evolutionary, step-wise improvements on and integration of
existing tools and foundations.

The bottom line: Shorten AES development time by use SE MPT to assess the inconsistencies, gaps,
ambiguities, incompatibilities, and incorrectness in the autonomous behavior requirements

7.6 REFERENCES

[1] Chris Wilkinson, Jonathan Lynch, Raj Bharadwaj, and Kurt Woodham. (2106) Verification of Adaptive
Systems. DOT/FAA/TC-16/4.

[2] David Rinehard, John Knight and Jon Rowanhill. (2015) Current Practices in Constructing and Evaluating
Assurance Cases With Applications to Aviation. NASA/CR–2015-218678.

[3] John Rushby. (2105) The Interpretation and Evaluation of Assurance Cases, SRI International, Technical
Report SRI-CSL-15-01.

[4] Charles Weinstock and John Goodenough. (2009). Towards and Assurance Case Practice for Medical
Devices. CMU/SEI-2009-TN-018.

[5] Ben Calloni. (2015). System Assurance and Related Standards. Object Management Group.

[6] Mario Gleirscher and Carmen Carlan. (2017) Arguing from Hazard Analysis in Safety Cases: A Modular
Argument Pattern, Proc. Conf. High Assurance Systems Engineering (HASE), 2017 IEEE 18th International
Symposium.

[7] Sandeep Neema. (2017). Assured Autonomy. DARPA.

Report No. SERC-2018-TR-105 April 30, 2018

80

[8] Richard Hawkins, Ibrahim Habli, Dimitris Kolovos, Richard Paige, Tim Kelly. (2015) Weaving an Assurance
Case from Design: A Model-Based Approach. High Assurance Systems Engineering (HASE), 2015 IEEE 16th
International Symposium.

[9] Ewen Denney, Ganesh Pai. (2015) A Methodology for the Development of Assurance Arguments for
Unmanned Aircraft Systems. NASA Ames Research Center, Proc. 33rd International Safety Systems Conf.

[10] A. Abdulkhaleq, P. Bluehr, D. Lammering. (2017). Using STPA in Compliance with ISO26262 for Developing
a Safe Architecture for Fully Automated Vehicles. Proc. STAMP Workshop, MIT

[11] Seth Bonder. (2002). Army Operations Research—Historical Perspectives and Lessons Learned. Operations
Research. 50(1):25-34.

[12] C. Ptolemaeus, ed. (2014) System Design, Modeling, and Simulation Using Ptolemy II, Ptolemy.org.

Report No. SERC-2018-TR-105 April 30, 2018

81

8 IDENTIFYING AND MEASURING MODULARITY VIOLATIONS IN CYBER-PHYSICAL SYSTEMS – LU XIAO, CO-PI
MICHAEL PENNOCK, STEVENS INSTITUTE OF TECHNOLOGY

8.1 PROBLEM STATEMENT, MOTIVATIONS, AND OBJECTIVES
In recent years, cyber-physical systems (CPS) have achieved widespread application in diverse areas
including: civil infrastructure, energy, healthcare, transportation, automotive, smart appliances, and
others [Rajkumar et. al. 2010]. Usually cyber-physical systems are composed of diverse subsystems
consisting of both physical and software components developed by different vendors. These components
are deeply intertwined at various levels of abstraction (e.g. data flow, physical connections, and logical
connections etc.) under changing contexts to achieve the desired functionalities and the respective quality
attributes, such as performance, security, scalability, maintainability, etc. With the advance of technology,
the recognition of new consumer needs, and the detection of deficiencies in current systems, components
need to be upgraded, replaced, and fixed---frequently, in many domains. The key question is: can the
upgrade, replacement, or problem fix happen quickly and without disrupting the rest of the system?

To address this issue, stakeholders, such as the US Department of Defense, have increasingly emphasized
modular and open approaches to system development. According to Baldwin and Clark [2000], modularity
allows for both independence of structure and integration of functions in large and complex systems. The
goal of modularity is to improve interoperability, facilitate system evolution and technology insertion, and
foster competition. Requirements such as the Modular Open Systems Approach (MOSA) have been
imposed on acquisition efforts. However, it can be difficult for the stakeholders to assess whether the
resulting architectures and systems are truly modular. In other words, can modules in a CPS actually be
upgraded, replaced, and fixed in a plug-and-play manner without affecting one another to maximally
leverage the benefits of modularization? In the traditional software engineering field, it has been
observed that it is often not the case. Modules without any explicit structural dependencies were seen
frequently changing together when new features or bug fixes were implemented. Wong et. al. [2009] call
this phenomenon a Modularity Violation (MV). Studies of real-life open source projects indicate that up
to 85% of bug-fixing efforts in a software system involve modularity violations [Xiao et. al. 2016]. An in-
depth analysis revealed that modularity violations usually result from and imply latent connections among
software modules. For example, it could be an implicit assumption regarding the usage of time units in
two modules [Schwanke et. al. 2013]. In software systems, the consequences of modularity violations
could be higher bug-rates (when the assumptions are not consistent among different parties) [Mo et. al.
2015] and increased maintenance costs (in order to keep the assumptions consistent) [Xiao et. al. 2016].
It is possible that that modularity violations could be even more harmful in cyber-physical systems.
Modularity violations, derived from the latent relationships among software and hardware components,
prevent the long-term evolution, maintenance, and success of cyber-physical systems. In particular, due
to the inflexibility and high cost of evolving hardware modules, modularity violations in cyber-physical
systems could more easily lead to vendor-lock-in compared to a pure software environment.

The objective of this research is to develop techniques, metrics, and models that would allow stakeholders
to detect, measure, and understand modularity violations in developed and acquired cyber-physical
systems. We organize modularity violations in cyber-physical systems into three different types: 1)
software vs. software, 2) software vs. hardware, and 3) hardware vs. hardware. The first type of
modularity violation has been extensively investigated in prior work [Wong et. al. 2009; Schwanke et. al.
2013; Xiao et. al. 2014; Ran et. al. 2015; Xiao et. al. 2016]. There, the approach to identify and measure
modularity violations relies on the analysis of source code and operational data such as maintenance
activity records. These are automatically and comprehensively tracked in version control systems. The

Report No. SERC-2018-TR-105 April 30, 2018

82

challenge to extending this type of analysis to identify modularity violations involving hardware is the lack
of systematic records of operations involving hardware components. Unlike, software projects that use
standard version control systems to keep track of who made what changes to which parts at what time
and for what reason, changes to hardware components are not always tracked in similar detail or are not
as easily accessible.

Given these limitations, the question naturally follows, could a subset of hardware modularity violations
be inferred from an analysis of records of software changes? More specifically, some software changes
may be a consequence of hardware related modularity violations. If that were the case, analysis of version
control systems could be used to detect some hardware related modularity violations outright and flag
other potential violations for further investigation. The issue is whether or not there is actually enough
information in a version control system to infer a hardware modularity violation. To evaluate the feasibility
of this idea, the incubator phase of this project involved the analysis of two open source cyber-physical
systems: OpenWrt and MD-PnP, which aim to develop a common software infrastructure for the Internet
of Things (IoT) and medical systems respectively. To analyze these systems, we developed a keyword-
based heuristic to help us identify software-hardware modularity violations, where the software artifacts
change due to hardware related issues. We identified 70 software source files that are potentially involved
in software-hardware level modularity violations because the changes made to these files involved
hardware related concepts. We conjecture that hardware-related concepts that propagate changes to
software artifacts imply a potential modularity violation at the software-hardware level. Consequently,
the incubator demonstrated the feasibility of identifying potential modularity violations in a cyber-
physical system by analyzing a software version control system.

 Given that the incubator established the plausibility of the analysis, several additional steps are required
to achieve the ultimate goal of developing methodologies, metrics, and tools to detect and assess
modularity violations in cyber-physical systems. First, the incubator focused on source files as the unit of
analysis. However, in practice, the definition of a module will depend on the nature of system and the
goals of different stakeholders. In some systems, stakeholders may be willing to trade modularity for
performance. In other cases, it may be a matter of perspective. For example, low-level developers may
view modules as hands-on and manageable working elements to implement functional details (e.g. a
particular source file and a particular hardware board). In comparison, a project owner views modules as
cohesive functional components to deliver the product value and competitiveness. Thus, there is a need
to be able to handle modules of different granularity in the analysis. Second, the keyword-based heuristic
developed for one project domain may not be applicable to a project in another domain. Third, there is
not yet an explanatory model that helps stakeholders to understand the reasons and context behind the
modularity violations. Without such explanatory model, it is difficult for stakeholders to mitigate current
and future violations.

To achieve the ultimate goal of allowing the stakeholders to detect, measure, and understand modularity
violations in cyber-physical systems, we propose the following activities:

 Develop strategies to decompose a CPS into modules of different granularities. The
investigationof modularity violations first relies on the understanding of what is a “module”. We
argue that the scope/granularity of modules is determined by the stakeholder who views the
system for addressing a particular concern [Kruchten 1995].

 Develop a systematic approach to identify modularity violations in CPS. This approach should be
able to scale up or scale down to different module granularity levels. This approach should also
be adaptive and generally applicable to different problem domains.

Report No. SERC-2018-TR-105 April 30, 2018

83

 Develop a software-based proof-of-concept demonstrator to evaluate the effectiveness of the
approach developed above.

8.2 CURRENT PRACTICE AND ITS LIMITATIONS

8.2.1 MODELING CPS AND ITS LIMITATIONS

The term “cyber-physical systems” emerged around 2006, when it was coined by Helen Gill at the National
Science Foundation [Lee 2015]. Gill defined a cyber-physical system (CPS) as an integration of computation
with physical processes. However, one of the challenges to designing and managing cyber-physical
systems is that there are techniques to represent either the cyber processes or the physical processes,
but not both [Baheti and Gill 2011]. From the “cyber” perspective, there are different techniques to
represent the architecture of software systems, such as architecture description languages, UML models,
and component models. From the physical perspective, there are different traditional engineering
techniques to model the development of physical systems. One study on architecting cyber-physical
systems found that, currently, researchers tend of focus on a specific attribute of interest rather than
assessing the cyber-physical architecture as a whole [Malavolta, et al. 2015].

However, there are some instances of research that take a more holistic approach to architecting cyber-
physical systems. Rajhans, et al. [2009] contributed a new cyber-physical architectural style to present the
interconnections and interactions between physical and cyber components. They defined three related
families of general components and connectors pertaining to the cyber domain, the physical domain, and
their interconnections. From the architectural assessment perspective, Sinha [2014] developed a
theoretical framework for structural complexity quantification and its implications for the design of cyber-
physical systems. Derler et al. [2012] focused on the challenges of modeling cyber-physical systems that
arise from the intrinsic heterogeneity, concurrency, and sensitivity to timing of such systems. They
described some promising approaches that use domain-specific ontologies to enhance modularity and
jointly model of the functional and implementation architectures. Finally, Cristalli et al. [2016] provides a
representative example of a modular approach to developing a cyber-physical system through their
modular design for a Smart Robotic Cell, composed by several interconnected sub-systems.

What all of the above have in common is a focus on designing cyber-physical systems to be modular.
However, there is no guarantee that the realized system will exhibit the intended modularity. The need
to assess the actual modularity of a cyber-physical system is particularly acute. As Lee [2008] points out,
cyber-physical systems have always been held to a higher reliability and predictability standard than
general-purpose computing. Without reliability and predictability, cyber-physical systems will not be
applied in safety-critical domains like traffic control, automotive safety, and healthcare. While a modular
design is just one approach to improve reliability, predictability, and maintainability; when it is employed,
one would like to know how well that was achieved. While approaches to assess modularity in pure
software systems have been developed, to the best of the investigators’ knowledge no approaches have
been developed that specifically address the unique challenges of assessing the modularity of cyber-
physical systems. Thus, the question is whether existing approaches from the software domain can be
adapted to the cyber-physical domain.

Report No. SERC-2018-TR-105 April 30, 2018

84

8.2.2 MODULARITY VIOLATION DETECTION IN SOFTWARE SYSTEMS AND ITS LIMITATIONS

The term modularity violation was first proposed by Wong et al. [2009] to describe the phenomenon
where independent software modules frequently change together during the evolution of a system in the
process of fixing bugs or adding features. Methodologies and tools [Xiao et. al. 2014] have been built for
analyzing modularity violations in software systems. The identification of a modularity violation follows
three steps:

1. Reverse-engineering the modular structure of a software system from the code base: The modular
structure of a software system can be calculated based on the structural dependencies among
software entities. Xiao et al. developed a new architectural representation, called Design Rule
Space (DRSpace) modeling to capture the modular structure of a software system as multiple
overlapping design spaces [Xiao et al. 2014], applying Baldwin and Clark’s [2000] design rule
theory. The modular structure can be visualized in the form of a DSM (Design Structure Matrix).
The items in the DSM represent software entities, the cells represent the structural dependencies
among entities. The entities can be clustered into modules based on selected dependency types
for supporting analysis of different focuses.

2. Extracting the evolutionary coupling (i.e. the number of co-changes) between software modules:
This can be calculated based on the data recorded in version control systems, which automatically
keep track of all the changes made to software entities, in terms of who at what time made what
changes to which entities/modules for what reason. Analyzing such data helps to extract the
evolutionary coupling between any two software entities: how many times they are modified
together in the course of maintenance activities. The more frequently two entities are modified
together, the stronger is their evolutionary coupling---implying latent connections.

3. Calculating the discrepancy between the above two data sets to point to modularity violations
among software modules: If two software entities/modules are structurally independent
according to step 1, but they have high evolutionary coupling according to step 2, there is a
potential modularity violation.

According to prior empirical studies of industry software systems, modularity violations usually indicate
implicit assumptions shared among software modules. For example, it could be an implicit assumption
regarding the usage of time units in two modules [Schwanke et al. 2013]. In software systems, the
consequences of modularity violations could be higher bug-rates (when the assumptions are not
consistent among different parties) and increased maintenance costs (in order to keep the assumptions
consistent) [Mo et al. 2015; Xiao et al. 2016].

However, the above-mentioned approach is limited in that it only addresses software systems
implemented in a single programming language. Complex hybrid systems are composed of multiple
heterogonous hardware and software sub-systems. Such systems are particular difficult to analyze
because of data inconsistency and heterogeneity among the various sub-systems. This incubator phase of
this research tested the feasibility of leveraging software maintenance data to infer hardware related
issues that are indicative of software-hardware modularity violations. We propose to formalize and
extend this approach to be applicable to a wide range of domains.

8.3 RESEARCH APPROACH

The research effort is divided into two phases. The first phase is to evaluate the feasibility of inferring
software-hardware modularity violations from software maintenance actions. This incubator phase,

Report No. SERC-2018-TR-105 April 30, 2018

85

lasting from July 2017 to November 2017, has been completed. The second phase is to formalize and
generalize the concepts developed during the incubation phase. This phase consists of 3 parts: 1) examine
the criteria to decompose a CPS into modules of different levels of granularities for addressing separate
concerns of stakeholders; 2) build a domain concept learning approach, leveraging natural language
processing techniques, to identify CPS modularity violations in different domains; and 3) Incorporate the
results from the previous two parts into a decision framework and develop a software-based
demonstrator system to identify CPS modularity violations.

8.3.1 RESULTS OF THE INCUBATOR STUDY

As discussed earlier, the identification of modularity violations in a CPS is a challenge because
maintenance operations on hardware components are not as comprehensively recorded as in traditional
software systems. However, we hypothesized that software components that are changed frequently due
to hardware related concepts are indicative of potential modularity violations.

As a case study for feasibility, we chose two real life software infrastructures, OpenWrt and MD-PnP, for
cyber-physical systems. OpenWrt is a Linux based core that is commonly used to support the Internet of
Things (IoT). The MD PnP provides the software infrastructure for plug-and-play medical devices to
improve patient safety. The following table summarizes basic facts of these projects. Table 10 shows the
scale (measured by number of files, methods, and lines of code), the development team size, and the age
(measured by the number of revisions and starting time). We chose these projects because they are
industry scale projects offering sufficient research data.

Table 10: Case Study Projects

Project #Files #Methods LOC #Developers #Revisions History

OpenWrt 1052 6061 163114 137 38099 Since 2004

MD PnP 866 7872 73616 12 1605 Since 2013

Based on our analysis of these two projects, we made the following observations that show the feasibility
of identifying meaningful modularity violations in a CPS based on maintenance data from the software
side. In what follows we will use OpenWrt to present the findings.

8.3.1.1 Observation 1: the OpenWrt is more modularized than about 90% of the 129 (commercial

and open source) traditional software systems we studied before

First, we want to understand how well OpenWrt is modularized. To do that, we reverse-engineered the
code base of the projects. Figure 1-a shows an overview of the modular structure identified in OpenWrt,
represented in the form of a DSM [Clark and Baldwin 2000]. This DSM is square matrix showing the
structural dependencies among source files in OpenWrt. The rows and columns represent source files,
and a black dot represent a structural dependency from the row to the column. To get an overall
understanding of how modularized OpenWrt is based on the structural dependencies among source files,
we calculated two metrics: 1) the Propagation Cost and 2) the Decoupling Level, based on the DSM.

Propagation Cost proposed by MacCormack et al. [2006] measures the density of the n-transitive closure
of the DSM. The maximum value is 100%, meaning that every element is connected (directly or
transitively) to another element in the system. The lower the value, the less coupled the system is. This

Report No. SERC-2018-TR-105 April 30, 2018

86

implies that the system is composed of independent modules. The PC value for OpenWrt is only 1.4%,
which is lower than about 90% of the 129 (commercial and open source) traditional software systems
we studied before.

Decoupling Level proposed by Ran et. al. [2016] measures how well a system is decomposed into small
and manageable modules that can evolve independently from each other. The highest possible value is 1,
meaning the system is perfectly modularized (which is not likely in practice). The DL value for OpenWrt
is 0.78. This is also higher than 90% of the 129 software projects we studied before.

The implication is that the software components in this particular CPS are more modularized compared
to traditional software systems. We conjecture that this is because the hardware components in a CPS
increase the overall complexity of the system relative to pure software systems. Increasing the modularity
of the software may be a way to cope with that complexity. Furthermore, by talking to IoT experts, we
realized that the first priority of the software components is to stay concise to reach the quality goals of
energy and cost efficiency in IoT systems.

 Figure 1-a Figure 1-b

Figure 1:

1-a: the overview of the modular structure

1-b: the overview of changes made to the system

8.3.1.2 Observation 2: Software-Software modularity violations in OpenWrt include hardware

related information in the naming conventions of the involved source files.

We applied the approach described in Section 8.2.2 [Xiao et. al. 2014; Mo et. al. 2015] to identify software-
software level modularity violations. The goal was to determine whether software-software level
modularity violations in CPS systems imply hardware related issues. If so, the hardware concepts are
potential causal factors of modularity violations among software components in a CPS. As shown in Figure
1-b, we calculated the evolutionary coupling among source files in OpenWrt. The evolutionary coupling
between two source files is the number of times the two files change together in the revision history. Each
red dot in Figure 1-b indicates the evolutionary coupling between the file on the row and the file on the
column. Actually, the weight of most of the evolutionary coupling in Figure 1-b is below 4, indicating
software source files do not change together frequently. We computed the discrepancy between Figure

Report No. SERC-2018-TR-105 April 30, 2018

87

1-a and Figure 1-b, which resulted in Figure 2, containing 23 source files that exhibit evolutionary coupling
above 4, but are structurally independent from each other. We consider these 23 source files as potential
modularity violations, which indicates shared but latent assumptions among them.

Further inspection of the naming conventions of the source files indicate that they share hardware-related
concepts. For example, from row 1 to row 10, the naming of the files all contain “mips”, which is a typical
microprocessor architecture for CPS. In addition, row 20 to 23 shows that the file names all contain
“firmware”, which is held in non-volatile memory devices, such as ROM or flash memory. Based on these
observations, we conjecture that the hardware concepts are actually the causal factors of these software-
software level modularity violations in OpenWRT.

Figure 2: 23 files involved in software-software MV

8.3.1.3 Observation 3: Hardware-related concepts are the main contributing factors to Software-

Hardware MV in OpenWrt.

Reasoning based on observation 2, we infer that hardware related concepts could also be the contributing
factors for software-hardware MV. That is, software components that change frequently due to hardware
related concepts. As an example, we find this comment when developers changed a software entity: “set
chip type directly in ar8216_id_chip”, where chip is obviously a hardware term. We assume it is less likely
the other way around: software concepts contribute to hardware changes, because it is, in most cases,
more affordable to change software components.

We manually extracted 16 key words from the commit messages and hardware devices supported by
OpenWrt. The details are shown below in Figure 3, containing keywords, like “radio”, “WiFi”, “zigbee”,
etc. By matching these manually extracted keywords in developers’ change comments (which are usually
used to explain why they made the change), we identified 71 source files in OpenWrt (of the 1052 total
files) are potentially involved in software-hardware MV.

Figure 3: 16 manually extracted

key words

{"radio", "WiFi", "zigbee", "btle", "mips", "ramips",
"mtd", "broadcom", "routerboot", "router",

"firmware", "bluetooth", "energy", "power", "soc",
"chip"}

Report No. SERC-2018-TR-105 April 30, 2018

88

Figure 4 shows the change-proneness levels of the 71 files involved in modularity violations versus the
average files in OpenWrt. The data show that these 71 files are twice likely to change compared to average
files. Therefore, the hardware related concepts could be the main contributing factor to changes made to
software modules.

Figure 4: Hardware concepts are important change factors

We made similar observations in MD PnP. However, we found that the keywords identified for OpenWrt
do not directly apply to MD PnP. The reason is that these two projects are in two completely different
problem domains. OpenWrt is for supporting IoT. Therefore, the keywords are mostly related to network
devices and sensors. However, MD PnP is in the medical domain. Therefore, the proper keyword sets to
identify MV are completely different. This finding motivated us to propose the application of natural
language processing mentioned previously. Doing so will enable an analysis approach applicable to cyber-
physical systems in different domains.

8.4 PROPOSED WORK IN THE NEXT PHASE
Motivated by the observations and limitations identified in the incubator phase, we propose the following
research activities for the second phase:

8.4.1 EXAMINE THE CRITERIA TO DECOMPOSE A CPS INTO MODULES

In the incubator phase, we treated source files as the granularity of a module. This is appropriate from
the perspective of a low-level developer. However, a project owner views modules as cohesive functional
components to deliver the product value and competitiveness. This results in a very different definition
of a module. From that perspective, a module may contain many source files, and the project owner may
not be concerned with modularity violations among source files within a given module.

The goal of this research task is to investigate the pertinent criteria to decompose a CPS into modules of
different granularity levels. We propose investigate the following approaches for defining a module:

 Modules for atomic working tasks: each module can be mapped to a working task of developers. This
was the strategy tested in the incubator phase. The study based on this strategy has provided
meaningful insights for modularity.

 Modules based on coupling: each module is composed of a group of atomic modules that are
structurally coupled with each other. This strategy helps project managers to understand the high-

Report No. SERC-2018-TR-105 April 30, 2018

89

level modules that map to sub-systems/sub-projects for different vendors to maximize the benefits
of modularization.

 Modules based on cohesion: each module is composed of atomic modules that share semantic
similarities and thus are likely to serve a cohesive purpose. This strategy serves to help understand
the functional modules of a system.

 Modules based on the system architecture: These modules are identified from the top-down based
on design documents or stakeholders’ perceptions. This helps stakeholders to understand whether
a sub-system that was designed to be modular actually is.

Based on the approach of interest, we can calculate and evaluate the decomposition of modules in a CPS.
From there the analysis of modularity can be adapted to each approach.

8.4.2 BUILD A “DOMAIN CONCEPT LEARNER” TO IDENTIFY MODULARITY VIOLATIONS IN DIFFERENT DOMAINS

Based on the approaches to identify modules in a CPS, we can scale-up and scale-down the modularity
violation analysis to address different levels of modular granularity. However, as mentioned earlier, in the
incubator phase, we realized that the keyword heuristics developed for one project domain may not be
applicable to another project domain. Therefore, this activity aims to develop a systematic approach that
can be applied to different problem domains.

We plan to develop a “Domain Concept Learner” that leverages natural language processing techniques.
The inputs to the concept learner are supporting wiki-pages or documents that record domain-related
hardware components. For example, OpenWrt maintains a “Table of Hardware”
(https://wiki.openwrt.org/toh/start) on the wiki-page. We can then build a Topic Model to summarize
the key hardware concepts, keywords, and the associated probabilities of keywords referring to hardware
concepts.

Using the resulting concept dictionary under different domain contexts and hardware environments, we
can apply the approach to identify potential modularity violations to CPS projects in different domains.

8.4.3 BUILD DECISION FRAMEWORK AND DEMONSTRATOR

Last but not least, we plan to incorporate the methods developed in prior steps into a decision framework
to increase their utility for decision makers. This decision framework will accommodate the detection and
analysis of modularity violations at different modular granularities and in different problem domains. The
ultimate goal is to provide decision making support to improve modularity where appropriate and achieve
the associated benefits.

https://wiki.openwrt.org/toh/start

Report No. SERC-2018-TR-105 April 30, 2018

90

Figure 5: Decision Framework Overview

Figure 5 shows the overview of the decision framework for analyzing modularity violations, increasing
awareness, and supporting decision making. The framework contains three processing components as the
output of the above research activities.

 Module Decomposer: Takes the project repository and user’s decomposition strategy as input to
calculate a modular decomposition based on user’s preferences.

 Domain Concept Learner: Takes the hardware supporting documentation, such as wiki pages or
design documents as input to learn the topic model of the domain hardware concepts.

 MV Analyzer: Leverages the calculated hardware concepts and the modular decomposition as
input to identify potential Modularity Violations involving hardware concepts. The stakeholder will
see the potential modularity violations identified in their projects. This will enable them to be
aware of potential modularity violations and understand the underlying hardware concepts that
triggered changes to software modules. The ultimate goal is to help stakeholders to make re-
structuring decisions to maximize the benefits of modularization.

8.5 RELEVANCE OF THE RESEARCH
Since the term first emerged in 2006, cyber-physical systems have achieved widespread application in
diverse areas, such as civil infrastructure, healthcare, transportation, and national defense. In particular,
the application of cyber-physical systems in the national defense domain is highly relevant to DoD
(Department of Defense). It has been recognized that the design, modeling, maintenance of cyber-
physical systems is more challenging than for traditional engineering systems, due to the intrinsic
heterogeneity and nondeterministic nature of the interactions among cyber and physical components

Report No. SERC-2018-TR-105 April 30, 2018

91

[Lee 2015; González 2015; Jantunen et. al. 2016]. Existing engineering techniques either focus on the
cyber side or the physical side, but not both. The proposed work tackles one aspect of this problem by
identifying the latent connections between the cyber and physical aspects of the system. More
specifically, it would identify the shared concepts that potentially propagate maintenance actions
between the cyber and the physical sides. The incubator study results have shown the feasibility of this
approach, and revealed that it is more likely that the direction of propagation is from the physical side to
cyber side. Therefore, this research offers stakeholders in DoD a new approach to understand how the
cyber and physical sides interact and impact each other.

In addition, DoD has increasingly emphasized modular and open approaches to system development. The
goal of modularity is to improve interoperability, facilitate system evolution and technology insertion, and
foster competition. Requirements such as the Modular Open Systems Approach (MOSA) have been
imposed on acquisition efforts. However, it can be difficult for the stakeholders to assess whether the
resulting architectures and systems are truly modular. In other words, can modules in a CPS actually be
upgraded, replaced, and fixed in a plug-and-play manner without affecting one another? The proposed
research helps stakeholders to answer this question based on the analysis of the modular structure with
tunable granularity that fits specific stakeholders’ concerns. Any identified latent connections between
cyber and physical modules could prevent the upgrade, replacement, or maintenance of as-known
“modules” in a plug-and-play manner. Our research considers these latent connections as modularity
violations because the structure of a cyber-physical system is no longer truly modular. Modularity is not
purely for the sake of modularity, but for achieving the benefits, such as interoperability and to foster
competition. The latent connections among modules in cyber-physical systems can easily result in vendor-
lock-in, reduce competition, and increase cost. Therefore, this research is highly relevant to the goal of
the Modular Open Systems Approach emphasized by DoD.

8.6 EXPECTED CONTRIBUTION
The ultimate goal of this research is to help stakeholders of a cyber-physical system gain an understanding
of the system’s modular structure, and reveal the associated modularity violations within that system.
This serves to support decision making, in terms of whether a re-design or re-structuring is needed. This
research expects to offer the following concrete contributions:

 A tunable granularity analysis of the modular structure of a given cyber-physical system. Different
levels of granularity address the concerns of stakeholders at different organizational levels. For
example, low-level developers view the modular structure at the level of workable atomic tasks.
Product owners view the modular structure at the cohesive functional level, where each module is
composed of a set of related atomic elements. This study will result in a flexible and tunable strategy
to decompose a complex system into modules based on different modularity strategies.

 A systematic approach to identify potential modularity violations by analyzing cyber maintenance
actions that are due to physical concepts. This approach will be applicable to different problem
domains leveraging an automated domain concept learner. This approach will help identify
modularity violations that potentially lead to vender-lock-in and high maintenance costs for
stakeholders, without requiring the stakeholders to need prior in-depth knowledge of the system
domain.

 A software-based demonstrator combining the above modular structure analysis and modularity
violation identification techniques to support decision making. This demonstrator will facilitate
decision making regarding whether to re-design or re-structure certain modules of a cyber-physical
system.

Report No. SERC-2018-TR-105 April 30, 2018

92

8.7 RISKS AND PAYOFFS

There are two known risks to the execution of the proposed research:

1. If there is a lack of high quality data, it will be impossible to develop the decomposition
approaches or train the domain concept learner. The intent of the incubator phase was to
mitigate this risk. In the incubator, we have identified and evaluated data sets for two open
source cyber-physical systems and found that they provide useful data for this study. We plan to
further leverage these data sets to perform more in-depth research. These projects are in the
domains of IoT and healthcare, which emphasize efficiency and safety, two desirable qualities in
cyber-physical systems for the DoD. As the project proceeds we will continue to seek out
additional data sets to exercise the resulting methods more broadly.

2. If the domain concept learner fails to isolate the key terms from a domain, the detected
modularity violations will be unreliable. To evaluate and tune the domain concept learner, we
will rely on assistance from subject matter experts. For MD PnP, the Co-PI of this project, Dr.
Michael Pennock has prior experience modeling medical systems and has access to experts in
the medical field. For OpenWRT, there are faculty members at Stevens that have led research
projects in the IoT domain. They will be qualified to assess the quality of the domain concept
learner outputs for OpenWRT. Finally, as MD PnP and OpenWRT are both open source projects,
we will be able to reach out to the developers and project managers of the projects for their
feedback.

If these risks can be overcome, the payoff will be a semi-automated tool that would enable DoD and other
Government program managers to evaluate conformance to modularity requirements for procured
systems, and consequently, reduce the risk of vendor lock-in.

8.8 BUDGET
The current estimated budget for Phase 2 is $250K per year for two years. The primary cost is expected
to be labor consisting of release time for the PI and Co-PI, student assistants to conduct the empirical
aspects of the research, and research assistant/scientist support to develop the software demonstrator.

8.9 TIMELINE
Phase 1: the incubator feasibility study has been completed. In Phase 2, we plan to spend one quarter on
each of the four modular decomposition approaches listed in Section 0. Once the decomposition
approaches are finalized, we expect the development of the domain concept learner will take
approximately 3 quarters. In parallel, we will begin development of the decision framework demonstrator
starting from the 4th quarter of the second phase and lasting until the end of the project.

Research

Phase

Task Description 17 18 19

Q3

Q4

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1 Feasibility Incubation

Case Study

Report No. SERC-2018-TR-105 April 30, 2018

93

2 Atomic Level Modular
Structure Analysis

Modular Analysis based on
Coupling

Modular Analysis based on
Cohesion

Modular Analysis at System
Architecture Level

Domain Concept Learner

Build Decision Framework
and Demonstrator

8.10 PROJECT EVALUATION AND MEASUREMENT

In order to evaluate the utility of the approach, we will apply the software demonstrator to a test cyber-
physical system development project. By design, this test project will not be used to develop the methods
or the software demonstrator. In other words, it will not be part of the “training” data set. We plan to
identify a suitable project over the course of the research that would be sufficiently different from the
training set to serve as a realistic test. Alternatively, we could work with the customer to identify a project
of immediate interest that could be evaluated assuming that it does not require extensive engineering
level modifications to the demonstrator due to differences in programming language, version control
systems, etc. They will then be able to compare the results produced by the demonstrator to actual data
or subject matter expert knowledge to make an independent assessment of the utility of the approach.

8.11 REFERENCES

Baldwin, C. Y., & Clark, K. B. (2000). Design rules: The power of modularity (Vol. 1). MIT press.

Kruchten, P. B. (1995). The 4+ 1 view model of architecture. IEEE software, 12(6), 42-50.

González-Nalda, P., Etxeberria-Agiriano, I., & Calvo, I. (2015, June). Flexible, modular, standard, free and
affordable model for CPS control applied to mobile robotics. In Information Systems and Technologies
(CISTI), 2015 10th Iberian Conference on (pp. 1-6). IEEE.

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex software designs:
An empirical study of open source and proprietary code. Management Science, 52(7), 1015-1030.

Rajhans, A., Cheng, S. W., Schmerl, B., Garlan, D., Krogh, B. H., Agbi, C., & Bhave, A. (2009). An architectural
approach to the design and analysis of cyber-physical systems. Electronic Communications of the
EASST, 21.

Sinha, K. (2014). Structural complexity and its implications for design of cyber-physical systems (Doctoral
dissertation, Massachusetts Institute of Technology).

Baheti, R., & Gill, H. (2011). Cyber-physical systems. The impact of control technology, 12, 161-166.

Report No. SERC-2018-TR-105 April 30, 2018

94

Jantunen, E., Zurutuza, U., Ferreira, L. L., & Varga, P. (2016, April). Optimising maintenance: What are the
expectations for cyber physical systems. In Emerging Ideas and Trends in Engineering of Cyber-
Physical Systems (EITEC), 2016 3rd International Workshop on (pp. 53-58). IEEE.

Derler, P., Lee, E. A., & Vincentelli, A. S. (2012). Modeling cyber–physical systems. Proceedings of the
IEEE, 100(1), 13-28.

Cristalli, C., Boria, S., Massa, D., Lattanzi, L., & Concettoni, E. (2016, October). A Cyber-Physical System
approach for the design of a modular Smart Robotic Cell. In Industrial Electronics Society, IECON 2016-
42nd Annual Conference of the IEEE (pp. 4845-4850). IEEE.

Lee, E. A. (2015). The past, present and future of cyber-physical systems: A focus on
models. Sensors, 15(3), 4837-4869.

Lee, E. A. (2008, May). Cyber physical systems: Design challenges. In Object oriented real-time distributed
computing (isorc), 2008 11th ieee international symposium on (pp. 363-369). IEEE.

Rajkumar, R. R., Lee, I., Sha, L., & Stankovic, J. (2010, June). Cyber-physical systems: the next computing
revolution. In Proceedings of the 47th Design Automation Conference (pp. 731-736). ACM.

Wong, S., Cai, Y., Kim, M., & Dalton, M. (2011, May). Detecting software modularity violations.
In Proceedings of the 33rd International Conference on Software Engineering (pp. 411-420). ACM.

Schwanke, R., Xiao, L., & Cai, Y. (2013, May). Measuring architecture quality by structure plus history
analysis. In Proceedings of the 2013 International Conference on Software Engineering (pp. 891-900).
IEEE Press.

Xiao, L., Cai, Y., & Kazman, R. (2014, November). Titan: A toolset that connects software architecture with
quality analysis. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (pp. 763-766). ACM.

Mo, R., Cai, Y., Kazman, R., & Xiao, L. (2015, May). Hotspot patterns: The formal definition and automatic
detection of architecture smells. In Software Architecture (WICSA), 2015 12th Working IEEE/IFIP
Conference on (pp. 51-60). IEEE.

Malavolta, I., Muccini, H., & Sharaf, M. (2015, September). A preliminary study on architecting cyber-
physical systems. In Proceedings of the 2015 European Conference on Software Architecture
Workshops (p. 20). ACM.

Xiao, L., Cai, Y., Kazman, R., Mo, R., & Feng, Q. (2016, May). Identifying and quantifying architectural debt.
In Proceedings of the 38th International Conference on Software Engineering (pp. 488-498). ACM.

Mo, R., Cai, Y., Kazman, R., Xiao, L., & Feng, Q. (2016, May). Decoupling level: a new metric for architectural
maintenance complexity. In Proceedings of the 38th International Conference on Software
Engineering (pp. 499-510). ACM.

