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1 INTRODUCTION 

 
As described in SERC Technical Plan, the SERC performs research on 20-25 active tasks on well-defined 
topics that are aligned with the SERC’s research strategy.  While it is believed that that the aforementioned 
research programs have a great potential to have a transformative impact on the DoD and IC, there is a 
need to support new ideas in their infancy that may become the critical research programs for emerging 
challenges.  This incubation capability will be supported by a biennial open call to the SERC research 
collaborating universities to propose early stage research that can be nurtured through relatively small 
levels of seed funding.   
 
The initial open call took place in December 19, 2016 with the objective of identifying and developing 
several short white papers outlining research programs with a significant potential to improve the practice 
of engineering systems.  A total of 33 responses were received as shown in Table 1 below:  
 

Table 1: Responses to 2016 SERC Incubation Grant Solicitation 

 
University PI Team Title 

AFIT Badiru, Deji   Toward the Postulation of Theory of Systems 
Engineering 

UAH Bailey, Carmine   Augmented Reality Technologies 

NPS Beery, Paul Paulo, Eugene MBSE for Methodology for the Employment of 
Architectures in Systems Analysis (MEASA) 

Stevens Chandramouli, R.   Co-operative Artificial Intelligence for Cognitive 
Mobile Systems 

Stevens Chandramouli, R.   Modeling and Simulation of Synthetic Bio-Nano 
Systems 

UAH Coe, David Kulick, Jeffrey The Feasibility of Enhancing Security of Complex 
Systems through Disaggregation of Security 
Components to Asymmetric Multi-Processors 

Purdue, 
Wayne State, 
Gtech, Stevens 

DeLaurentis, Dan Davendalingam, 
Navindran 
Witus, Gary 
Paredis, Chris 
Xiao, Lu 

Approaches to Achieve Modularity Benefits in 
Defense Acquisitions 

Purdue Mendoza-Garcia, 
John 

Cardella, Monica 
Kenley, Charles 

A Learning-Theory-Based Assessment Instrument 
to Measure the Ability to Address Complex Socio-
Technical Systems 

NPS, Missouri 
S&T 

Giammarco, Kristin Dagli, Cihan Methods and Analytics for Purging System Designs 
of Unwanted Behaviors 

Stevens Grogan, Paul   Game-theoretic Risk Assessment for Distributed 
Systems (GRADS) 

Stevens Hoffenson, Steven   Agent-based Modeling of Semi-autonomous 
Military Vehicle Systems 

Stevens, 
USMA 

Klappholz, David Engling, Michael 
Condly, Steven  

Building a Computer Science/Software Engineering 
Education Research Group 
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USC Madni, Azad   Flexible and Adaptable Systems and Processes 
Negotiation and Sociability in Resilient SoS 
Networks 

USC Madni, Azad   SE Transformation for Next Gen. DoD Systems 
Adaptive Cyber-Physical Human Systems 

USC Madni, Azad   Program Proection System Security and Trust 
Extending Flexible Contracts for Mission Assurance  

Purdue Marais, Karen   Data Science Approaches to Prevent Failures in 
Systems Engineering 

Gtech, UAH, 
SIT 

Paredis, Chris McDermott, Tom 
Collopy, Paul 
Blackburn, Mark 
Pennock, Mike 

ESoS Model for Digital Thread Enabled Acquisition 

Gtech McDermott, Tom Sitterle, Val Systemic Security and the Role of Heterarchical 
Design in Cyber-Physical Systems 

USC Medvidovic, Nenad   Systematic Exploration of Decision Spaces in CPH 
Systems 

Stevens Pennock, Michael   Identifying Leading Indicators of System of System 
Interoperability Issues 

Auburn Smith, Alice E. Sakinc, Eren Cost Prediction in the Presence of Categorical and 
Numeric Cost Drivers 

Stevens Subbalakshmi, K.P.   Resilient, Fast Mobile Data to Decisions Systems 

UAH Thomas, Dale   Robust Methods in Model Based Systems 
Engineering 

USC Wang, Chao   Automated Techniques for Testing and Diagnosing 
PLC Software 

USC Wang, Chao   Incremental Analysis of Concurrent Software 
Systems 

Stevens Wang, Wendy   Research and Development for Resilient Cyber-
Physical-Human Systems 

Wayne State Witus, Gary   Trusted Autonomy -- Methods for Test and 
Evaluation 

Stevens Xiao, Lu Pennock, Michael Identifying and Measuring Modularity Violations in 
Cyber-Physical Systems 

Stevens Yang, Ye   A Hybrid Approach in Testing of Autonomous and 
Learning CPH Systems: Combining Human 
Computing and Machine Learning 

Penn State Yukish, Michael   Methodology for Manufacturability Design Assist 
Tools 
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Each of the received proposals were reviewed by the SERC Research Council except where they noted 
that they had a potential conflict.  Each member provided a final score based on an equal weighing in each 
of the following four criteria as well as a set of short comments: 
 

 Intellectual Merit 

 Clarity of Vision 

 Past Performance 

 Potential Strategic Impact 
 
Each of the Research Council member’s ratings were normalized based on their average numerical score 
and an average score was calculated for each proposal.  To aid in the visualization of the results, the 
rankings for each Research Council member were color coded to be Green – top 1/3, Yellow – middle 1/3 
and Red – bottom 1/3.  The proposals were ranked based on these results. 
 
The sponsor independently ranked the top ten projects based on these criteria.  Preference was given to 
proposals that contend with issues not currently being addressed by SERC research, or use novel 
approaches, but which support the current SERC UARC research focus areas and have a strong potential 
for additional funding outside of SERC core funds.  In this case, the selected six proposals were in the top 
ten proposals as determined by the Research Council.   
 
Of these, the following seven proposals were selected:  
 

1. David Coe, University of Alabama-Huntsville, The Feasibility of Enhancing Security of Complex 
Systems through Disaggregation of Security Components to Asymmetric Multi-Processors  

2. Paul Grogan, Stevens Institute of Technology, Game-theoretic Risk Assessment for Distributed 
Systems (GRADS) 

3. Azad Madni, University of Southern California, Program Protection System Security and Trust 
Extending Flexible Contracts for Mission Assurance 

4. Karen Marais, Purdue University, Data Science Approaches to Prevent Failures in Systems 
Engineering 

5. Val Sitterle, Georgia Tech, Systemic Security and the Role of Heterarchical Design in Cyber-Physical 
Systems 

6. Gary Witus, Wayne State, Trusted Autonomy -- Methods for Test and Evaluation 

7. Lu Xiao, Stevens Institute of Technology, Identifying and Measuring Modularity Violations in 
Cyber-Physical Systems 

This report contains the white papers that was supported by each of these funded proposals.   
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2 THE FEASIBILITY OF ENHANCING SECURITY OF COMPLEX SYSTEMS THROUGH DISAGGREGATION OF SECURITY 

COMPONENTS TO ASYMMETRIC MULTI-PROCESSORS – DAVID COE, UNIVERSITY OF ALABAMA-HUNTSVILLE 

 

2.1 MOTIVATION 
Given the increasing frequency of cyber breaches and near daily announcements of newly discovered 
system vulnerabilities, it is clear that the computer systems that control critical cyber-physical systems or 
conduct critical business practices are under increasing threat of attack [1][2][3][4].  Cyberattacks have 
become so rampant and successful that the Federal Bureau of Investigation predicts an exponential 
increase in the frequency of cyberattacks for the foreseeable future [5].  To date the common industry 
practice of attempting to add security to the system after the fact through the addition of a firewall or 
malware scanner has been an inadequate response to the threat environment.   
 

2.2 PROPOSED APPROACH AND ITS ADVANTAGES 

2.2.1 WHAT ARE WE TRYING TO DO? 

Security, as an emergent property of the system as a whole and the way the system is deployed, used, 
and maintained, must be a consideration at the outset.  Our goal is to provide a solid computer 
architectural foundation that will make cyber-physical computing systems inherently more securable.   
 
To this end, the proposed research project shall investigate the feasibility of disaggregating and exporting 
critical security functions such as code and data integrity checkers, to an Asymmetric Multiprocessor 
System-on-a-Chip (ASMP SoC) not accessible to the applications processor to enhance the overall security 
of cyber-physical systems.  Several levels of realizations are proposed from passive snooping on 
application processor signatures through memory scanning for virus signatures through control flow 
graph verification through hardware architecture additions to soft core processors.  Each of these levels 
of realization require different levels of cooperation between the exposed protected system and ASMP 
protector. 
 
What is new in our approach is that the proposed security monitoring tasks are not vulnerable to software 
processes executed by the application processor, which is inherently untrustworthy because it is exposed 
and under attack, but rather these security monitoring tasks are carried out orthogonal to the application 
processor by the asymmetric multi-processor, which is sequestered behinds layers of software and 
hardware isolation. 

2.2.2 ADVANTAGES OF OUR APPROACH 

Our approach combining ASMP SoC with disaggregation of security components has a number of 
advantages that are enumerated below.   

2.2.2.1 Enhanced Security through Use of SoC Technology 

The semiconductor industry has already recognized that the use of SoC technology provides an inherently 
more securable platform by integration of components into a single chip package, making probing of 
communications between components far more challenging requiring observation of interconnects within 
a chip.  Moreover, the use of ever decreasing feature sizes in the fabrication of the semiconductor 
components and their interconnects shall make it increasingly difficult for those without extensive 
knowledge and access to specialized hardware to successfully decapsulate and probe the SoC integrated 
circuit. 
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2.2.2.2 Enhanced Security through Disaggregation 

Current security practice typically relies upon security services such as firewalls, anti-malware scanners, 
and event logging services being able to operate correctly despite the fact that they are being executed 
by the system that is under attack.  It is our assertion that the system under attack is inherently unreliable, 
and it is thus unreasonable to assume that it can either fully protect itself or reliably gather the forensic 
data required for incident analysis, response, and recovery. 
 
An excellent example of this is a desktop computer running typical antivirus software.  Commonly 
available exploit tool suites such as Metasploit [6] include easy to execute scripts designed specifically to 
disable antivirus software once an attacker gains a foothold in the compromised system.  Moreover, the 
Metasploit tool suite also includes scripts that can readily destroy the event and activity log information 
and thereby hamper the use of forensics techniques to discover how the attacker gained access to the 
system and what the attacker did once they gained access.   
 
The principle of disaggregation is already commonly used to enhance the security of operating systems 
and hypervisors.  In this context, disaggregation refers to the structuring of software components in a way 
that provides isolation to protect the system from untrusted services or components such as third-party 
device drivers.  Operating systems make use of virtual address spaces to isolate processes.  A hypervisor 
may encapsulate untrusted third-party device drivers entirely within a stub-domain whose only function 
is to provide secure wrapping of third party drivers.   Garfinkel and Rosenblum proposed using a hypervisor 
to disaggregate the Intrusion Detection System (IDS) from the system being secured, placing both the 
protected system and the IDS into separate virtual machines running on the same physical host [7].  
 
In our previous work funded by the National Security Agency, we introduced Dielectric Xen, a security-
enhanced version of the Xen hypervisor in which we employed disaggregation to relocate an IDS from the 
guest and host virtual machines into the Xen hypervisor itself where it is less visible and less exposed to a 
remote attacker yet still able to perform the intrusion detection task [8][9].  Attackers that gain access to 
either the guest or host virtual machines are unable to view the IDS process since it is located outside of 
either virtual machine. 
 
As part of the proposed project, we intend to disaggregate critical security services from application 
processors into (a) Field Programmable Gate Arrays (FPGAs) or (b) hard processor cores solely dedicated 
to security tasks that are hidden (disaggregated) from the target platform.  These resources will serve as 
a trusted hardware component within the ASMP SoC.  By selecting an SoC and board architecture in which 
the FPGA may only be reconfigured by physical access to the circuit board as through a JTAG port or boot 
rom, the FPGA will be inherently more resistant to remote attacks, making the FPGA-hosted security and 
event logging algorithms more reliable.   

2.2.2.3 Enhanced Security through Asymmetry  

We seek to establish and exploit asymmetry in the level of exposure of the protected systems and the 
ASMP hardware tasked with its protection.  The designer of the computing system has control over which 
communication paths exist and whether those paths are read-only, write-only, or readable and writable.  
Careful design and selection of these communication paths shall provide additional protections to the 
security components that have been disaggregated from the protected system and placed in the ASMP 
SoC by eliminating unnecessary paths for interactions between the potentially compromised protected 
system and its ASMP protector. 
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We also seek to exploit asymmetry in the execution engines employed in the protected system and the 
protector to enhance security.  The use of an FPGA allows for the deployment of a hardware-realization 
of a security algorithm, such as a malware signature scanner or an IDS.  Again, proper ASMP SoC and board 
architecture selection shall make it more difficult for a remote attacker to alter the FPGA reconfiguration 
without physical access and thus provide for enhanced security for the disaggregated security services. 

2.2.2.3 Enhanced Security through Encapsulation and Information Hiding  

By sequestering the most critical security algorithms in the ASMP SoC FPGA, an attacker that compromises 
the protected system may be unaware of the existence of the security algorithms or the nature of those 
algorithms in use.  An examination of running processes in the compromised protected system will reveal 
no information regarding the hidden algorithms executed in the FPGA.   
 

2.3 SECURITY COPROCESSORS: CURRENT PRACTICE AND LIMITATIONS  
A variety of coprocessors have historically been employed to improve overall system performance by off-
loading computationally intensive tasks from the main processor [10].  Early examples of the use of 
coprocessors include the use of input/output coprocessors and floating-point coprocessors (FPUs).  
Dedicated Graphical Processing Units (GPUs) that include multiple cores to speed rendering of scene 
imagery have become very popular for gaming and machine learning applications.  Cryptographic 
coprocessors were originally developed to accelerate encryption and decryption operations.     
 
More recently, coprocessors have been employed specifically in an attempt to enhance system security.  
The Trusted Platform Module (TPM) is a secure cryptoprocessor standard that attempts to create trusted 
regions of hardware for storage or generation of encryption keys [11].  The IBM 4758 is a FIPS 140 level 4 
cryptographic coprocessor that provides additional support in the form of anti-tamper protection, but the 
processor is not a mainstream processor that can be used for critical infrastructure applications such as 
banking but not in cyber-physical systems such as missiles [12]. 
 
A number of companies including Altera and Microsemi SoC Corporation have investigated the use of a 
Field Programmable Gate Array (FPGA) as a part of a mechanism to secure the boot process [13] [14].  An 
FPGA may be used as a secure code storage location or to verify the signature of codes prior to booting 
the system.  An advantage of this approach is that the FPGA may be integrated onto the same die as the 
processor (SoC) making it more challenging to access those stored codes or signatures since the chip 
package must be breached. 
 
DARPA SSITH [15] is an ambitious 3+year, $50M program that seeks to mitigate the following seven 
categories of hardware vulnerabilities: (1) buffer errors, (2) permissions/privileges/access control, (3) 
resource management, (4) code injection, (5) information leakage/exposure, (6) cryptographic errors, and 
(7) numeric errors.  Participants are required to utilize a RISC-V soft-core processor in an FPGA board.  
Security additions to the systems are limited with respect to the impact on chip area (< 50% => < 30%) 
and performance (< 20% => <10%).  Limitations of the SSITH approach includes maturity of the RISC-V 
development tool chains and the extensive base of existing software that would require rehosting for the 
RISC-V environment. 
 
The modern processor cores can be partitioned and configured to run independent software stacks.  For 
example, the ARM Cortex A family of processors supports the TrustZone technology [16]. TrustZone 
partitions a multi-core system between a secure world for critical system resources and a non-secure 
world for everything else.  For example, one core can run a secure real-time operating system (RTOS) and 
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another core can run a main operating system (e.g., Linux).  Thus, a trusted execution environment that 
includes parts of the system that can only be accessed by the secure world is separated from the 
potentially vulnerable operating system.  With TrustZone processor cores and memory are partitioned 
between the secure and non-secure worlds thus preventing any interference.  Two cores communicate 
over a shared physical memory channel. Peripherals are divided as well with no possibility of sharing and 
access rights are enforced using a security bit and security status of each resource.  The non-secure 
software stack cannot change any configuration parameters that may affect the secure software stack.  
The secure software stack can typically access all system resources.  In hybrid systems that combine hard 
ARM processor cores and FPGA fabric (Xilinx Zynq and Altera Cyclone V), TrustZone can be extended to 
custom IP cores residing in the FPGA fabric, making them an attractive option for deploying hardware-
oriented security solutions.  
 
It is clear after a review of the work summarized above and similar works that attempts to add security to 
a system after the fact are unsuccessful.  One must design the system from the outset to be securable. 
 

2.4 PROPOSED WORK AND ITS IMPACT 
Below is an overview of our 4-phase program for implementing ever more secure realizations of the ASMP 
paradigm.  The four phases are briefly outlined below. 
 
Phase 1 - An ASMP soft core processor will passively observe the memory of the application processor 
having been provided a layout of system and application codes in a real-time embedded system 
environment.  Deviations from the layout and content will be annunciated through an independent 
communication channel to the operator in this phase, the protected system is assumed to be 
untrustworthy.  The primary threat being remediated is code and data modification of application 
programs. 
 
Phase 2 - In this phase, previously developed work by one of the applicants to passively extract a control 
flow graph information in real time from executing programs on a soft-core processor from the 
processor’s instruction execution pipeline will be compared against a previously obtained allowable 
control flow graphs.  The previous work demonstrated a very low bit bandwidth requirement of 
approximately 1 bit per instruction retired to capture executing control structures [17] [18].  The primary 
threat being remediated is return-oriented programming (ROP) attacks where the attacker, being 
thwarted in modifying existing code, uses code fragments from the legitimate application to assemble an 
attack.  Although difficult and time consuming, this attack vector continues to be a significant threat.  
 
Phase 3 - In Phase 3 we will begin to use the Trust Zone capabilities of the ARM processor to allow the 
protected host to provide information to the protector without requiring hardware modifications to the 
protected processor, as required by Phase 2.  In this case the protected processor will provide real time 
control flow information to the protection processor using data collected from PMU registers currently 
present in ARM processors. In this case the control flow, data and code integrity provided by Phases 1 and 
2 will be available without hardware modification.  This phase will also explore generating live forensics 
data of attack mechanisms as the operate in the open. Threats remediated will move up the complexity 
chain and include threats to operating system architectural elements such as scheduling queues and 
memory management tables. 
 
Phase 4 - In this phase all the remediations available in Phases 1-3 will be exported to an environment 
utilizing hypervisors.  Recent unpublished work by the applicants have shown that real time cyber-physical 
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control systems can be deployed with hypervisor frameworks with extremely low latency penalties - on 
the order of 10s of microseconds on low cost processors such as the ODROID C2. This phase will investigate 
the extension of mitigations and remediations up to operating system and hypervisor architectural 
components such as scheduling tables and network interfaces.  
 
A table containing additional propriety details on each phase of work is provided as an appendix. 
 

2.4.1 PROPOSED WORK IMPACT  

As discussed earlier, many attempts today to harden cyber physical systems consist of closing the door in 
hope the horse cannot be seen through the slats of the barn.  The better way to develop secure systems 
is from the ground up, starting with the processors, operating systems, architectures, and deployment 
methodologies.  The work proposed herein will provide system and software engineers a common 
platform for constructing cyber physical systems without jury rigging and wrapping systems that are 
inherently insecure.  This should significantly increase the quality of products developed while reducing 
the procurement and maintenance costs of disparate systems.  
 

2.4.2 AUDIENCE FOR PROPOSED WORK 

Acquisition agencies, program management authorities, system developers, and people responsible for 
ensuring the safe and secure operation of cyber physical systems should welcome a potential common 
secure deployment platform architecture for future systems. 
  

2.5 RISK AND MITIGATIONS 
 
Risk #1 - Performance Impact on Real-Time Embedded Applications 
Mitigation - Use an asymmetric SoC which does not use resources required by the embedded application. 
 
Risk #2 - Insufficient Isolation Between ASMPs 
Mitigation - Use threat analysis to identify vulnerabilities and reduce attack surface. 
 
Risk #3 - Obtaining Buy In and Adoption of New Secure Architectures by Developers 
Mitigation - Hard evidence of enhanced security and education of next generation developers.  
Acquisition must drive participation of hardware vendors to adopt new architectures and participation of 
software vendors who must provide required memory layouts, signatures, or control-flow graphs as 
needed. 
 
Risk #4 - Evolving Technological Advances in Computing, Security, and Threats 
Mitigation - Continuous analysis of evolving technologies and threats. 
 

2.6 PROJECT MANAGEMENT 

2.6.1 RESEARCH TEAM 

Our research team includes three faculty from the UAH Department of Electrical and Computer 
Engineering, engineering support staff, and graduate student researchers.  
 



 

Report No. SERC-2018-TR-105                                                                                                                                                                 April 30, 2018 

13 

● Dr. David J. Coe (PI) shall perform threat assessment and project management/reporting tasks.   
● Dr. Jeffrey H. Kulick (Co-I) is the system architect.   
● Dr. Aleksandar Milenkovic (Co-I) is our expert in execution tracing and performance measurement. 
 
The members of our team have established research records in the areas of software safety and security, 
anti-tamper, embedded systems, FPGA coprocessors, and computing system performance analysis.  
Selected publications include [8-9] [17-28].  

2.6.2 COST AND SCHEDULE ESTIMATES 

An outline of the four phases of the research plan appears in Section 2.4 above.  The technical challenges 
being addressed at each phase increase in complexity and effort required.  Each phase includes an 
investigations subtask which performs preliminary research for the subsequent phase.  The results of 
these investigations shall permit our team to refine the cost and schedule estimates as well as the 
technical goals for the upcoming phases. 
 
Presented below in Figure 2.1 is a projected Plan of Work for Phase 1 and Phase 2.   
Our estimated budget for Phase 1 is $300K and the estimated budget for Phase 2 $400K. 
 

 Year 1 Year 2 Year 3 

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 

Phase 1           

Threat Modeling           

Prototyping           

Assessment           

Investigations           

           

Phase 2           

Threat Modeling           

Prototyping           

Assessment           

Investigations           

 
Figure 2.1:  Proposed plan of work for Phase 1 and Phase 2 

 
Rough order of magnitude estimates for Phase 3 and Phase 4 are 18-24 months and $600K per phase due 
to the increased technical challenges.  The estimates for Phase 3 and Phase 4 shall be refined based upon 
what we learn in the first two phases.   
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2.6.3 RESEARCH MILESTONES AND METRICS 

Each phase produces a proof-of-concept prototype that may be deployed in absence of subsequent 
phases.  Project milestones for each phase include quarterly telecons with project sponsor and biannual 
status reports.  

2.6.3.1 Midterm Exam for Each Phase 

The Midterm Exam for each phase shall be a demonstration of the assessment infrastructure which 
includes the threat to be mitigated and its delivery mechanism-- this establishes that the assessment 
criteria and mechanism are in place. 

2.6.3.2 Final Exam for Each Phase 

The Final Exam for each phase shall be a final demonstration of the mitigated threat with documentation 
and appropriate deliverables.   
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3 GAME-THEORETIC RISK ASSESSMENT FOR DISTRIBUTED SYSTEMS (GRADS) - PAUL GROGAN, STEVENS INSTITUTE 

OF TECHNOLOGY 

 

3.1 INTRODUCTION AND MOTIVATION 

Sustained interest in distributed system architectures presents an important tradeoff in conceptual 
design. Distributed systems pursue superior performance compared to traditional monolithic systems 
through greater flexibility, robustness, and efficiency. For example, arguments for fractionated spacecraft 
systems emphasize elements of architectural flexibility in uncertain contexts as more information is 
gathered in operations, risk diversification across multiple systems, spatial distribution to mitigate failures 
or attacks, and lower cost for individual components (Brown and Eremenko, 2006). Similar arguments in 
the decentralization theorem in economics argues distributed systems can exhibit finer control to more 
efficiently match available resources with localized demands (Oates, 2008). 
 
However, by definition, distributed architectures also introduce new interdependencies between 
constituent modules which can lead to overall system failure if not understood or anticipated. These 
effects are amplified by communication barriers if constituent systems are owned and operated by 
independent entities as a system-of-systems or federation-of-systems. In infrastructure, for example, 
cross-sector interdependencies can directly lead to cascading failures and loss of critical societal functions 
(e.g. Rinaldi, Peerenboom, and Kelly, 2001). This paradoxical relationship has been described as “robust 
yet fragile” in systems literature (Alderson and Doyle, 2010) and highlights a fundamental tradeoff 
between risk and reward which remains a critical area of research in systems engineering. 
 
Engineers and decision-makers must understand the tradeoffs associated with alternative system 
architectures during early conceptual design activities to best inform concept selection and detailed 
design. However, the current approach of treating systems engineering as a centralized decision-making 
process is not appropriate for distributed system architectures due to the inherent lack of control. 
Applying existing value-centric and tradespace exploration methods to distributed systems only 
emphasizes the positive upsides of collective action and provides little analysis of the strategic incentives 
among interactive decision-makers. The objective of this project is to develop and evaluate a game-
theoretic risk dominance metric and assessment method to compare monolithic and distributed system 
alternatives in the context of multi-architecture tradespace exploration. 
 
Grogan et al. (2016) showed how federated systems—one type of distributed system—can be modeled 
as a Stag Hunt game where an independent (centralized) design is analogous to a payoff dominated 
equilibrium and a federated (distributed) design is analogous to a payoff dominant equilibrium. Results 
showed how Selten’s (1995) weighted average log measure (WALM) can assess strategic risk for two-
player cases and demonstrated why the payoff-maximizing alternative may not be the most desirable 
choice. This project seeks to extend and demonstrate game-theoretic risk assessment approaches and, 
particularly, investigate how risk dominance measures similar to Selten’s WALM can evaluate alternative 
architectures in more general design cases. This report documents progress on initial tasks to formulate 
and illustrate the risk assessment method and identifies further extensions as future work. 

3.2 VALUE-CENTRIC DESIGN FOR DISTRIBUTED SYSTEMS 

Systems engineering increasingly relies on value-centric methods to guide conceptual design activities. 
These methods build on rational decision-making theory to guide design decisions to maximize system 
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value (Collopy and Hollingsworth, 2011) rather than minimizing cost to meet requirements. Traditional 
tradespace exploration methods enumerate a design space and evaluate one or more design attributes 
including value/utility to visualize a set of alternatives (Ross et al. 2004). The central feature of value-
centric methods is a value function in Eq. (1) to map elements from a design space 𝒟 to a scalar quantity 
interpreted as utility, net present value, or some other measure of preference. 

𝑉:𝒟 → ℝ, 𝑉 = 𝑉(𝑑) (1) 
  
Value functions for distributed architectures benefit from an alternative design space representation. A 
revised form in Eq. (2) maps a composite design space with up to 𝑛 constituent systems, each with its own 
design space 𝒟𝑖, to a scalar value. From this perspective, the distributed architecture may be  large, but 
not fundamentally different from a centralized architecture. 

𝑉: (∏𝒟𝑖

𝑛

𝑖=1

) → ℝ, 𝑉 = 𝑉(𝑑1, … , 𝑑𝑛) (2) 

 
However, two additional issues arise in valuing distributed architectures and particularly from distributed 
control or autonomy among constituent systems. First, well-established results such as Arrow’s 
Impossibility Theorem clearly explain how and why group preferences cannot generally be transformed 
into consistent aggregate preferences (Hazelrigg, 1996). Rather, one must maintain 𝑁 individual value 
functions by mapping the design space to a vector value in Eq. (3). Multi-actor value functions lead to 
strategic behaviors and generally limit the existence of a globally optimal solution. 

𝑉: (∏𝒟𝑖

𝑛

𝑖=1

) → ℝ𝑁 , 𝑉𝑖 = 𝑉𝑖(𝑑1, … , 𝑑𝑛) (3) 

 
Second, the focus of this project, distributed architectures introduce interactive effects for individual 
values 𝑉𝑖 as a function of others’ decisions 𝑑𝑗≠𝑖. Essential uncertainty of others’ decisions contributes a 

fundamental source of risk in distributed systems: the system may not perform as anticipated due to the 
inherent lack of control across system boundaries. Even in cases where a distributed system is controlled 
by a single central actor, anomalous operations exhibit similar dynamics where the anticipated design 
does not perform as expected due to failures of individual components. 
 
Traditional systems engineering methods treat risk as uncertainty or variation in value which can be 
analyzed with Monte Carlo sampling of a stochastic value function. However, this approach is 
computationally intense, particularly for distributed systems, due to combinatorial factors of the design 
space coupled with pairwise interactions between interdependent components. More importantly, 
however, this type of risk should not be considered as an explicit attribute to be traded during concept 
evaluation, but rather only as uncertainty on other attributes (Abbas and Cadenbach, 2016). 
 
In contrast, this work seeks to codify strategic risk as a type of design instability instead of uncertainty on 
value. Even designs with high expected value may be unstable due to interactive effects. Risk analysis 
should be a fundamental part of conceptual design; however, it may presently be omitted in tradespace 
analysis due to computational tractability and methodological issues. This leads to overly optimistic and 
fragile results which focus only on the upside potential of distributed systems without sufficient 
recognition of the downside risk contributed by additional interdependencies. Program managers and 
systems engineers will benefit from the development of quantitative risk metrics and associated 
methodologies for their use in multi-architectural tradespace analysis. 
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3.3 GAME THEORY AND EQUILIBRIUM SELECTION 

Game theory is a branch of economics which studies strategic decision-making among multiple interacting 
players. A game is defined by a set of available decisions (strategies) 𝒞𝑖 for each player and corresponding 
payoffs or resulting utilities under interactive effects. The value function in Eq. (4) maps strategy decisions 
for each player to utilities for each player. 

𝑉: (∏𝒞𝑖

𝑁

𝑖=1

) → ℝ𝑁 , 𝑉𝑖 = 𝑉𝑖(𝑐1, … , 𝑐𝑁) (4) 

 
Binary games only consider two strategies per player, i.e. 𝒞𝑖 = {𝜙𝑖, 𝜓𝑖}. Table 2 shows the normal form 
notation of a binary game with 𝑁 = 2 players and payoffs 𝑉𝑖 resulting from various strategy pairs. 
   
Table 2. Normal Form for a Binary Strategic Game and an Example Stag Hunt Game 

 𝜙2 𝜓2   𝐻𝑎𝑟𝑒 𝑆𝑡𝑎𝑔 

𝜙1 
𝑉1(𝜙1, 𝜙2) 

𝑉2(𝜙1, 𝜙2) 

𝑉1(𝜙1, 𝜓2) 

𝑉2(𝜙1, 𝜓2) 
𝐻𝑎𝑟𝑒 

2 

2 

4 

0 

𝜓1 
𝑉1(𝜓1, 𝜙2) 

𝑉2(𝜓1, 𝜙2) 

𝑉1(𝜓1, 𝜓2) 

𝑉2(𝜓1, 𝜓2) 
𝑆𝑡𝑎𝑔 

0 

4 

5 

5 

 
Nash equilibria are stable strategy sets under interactive effects and often considered solutions to games 
because of this stability feature. Bipolar games are a subclass of binary games with two Nash equilibria 
defined by strategies 𝜙 = (𝜙1, … , 𝜙𝑁) and 𝜓 = (𝜓1, … , 𝜓𝑁). A Stag Hunt is a classic example of a two-
player bipolar game in Table 2. Strategy pairs where both players choose hare (𝜙1, 𝜙2) and both choose 
stag (𝜓1, 𝜓2) are Nash equilibria. In the above case, a common stag strategy yields 5 payoff for each player 
while a common hare strategy yields only 2 each. However, a player can pursue a hare alone and earn a 
total payoff of 4 while pursuing stag alone sends a player home hungry. Both strategies are equally stable 
from an equilibrium perspective but have different payoff and risk characteristics. 
 
Harsanyi and Selten (1988) and Selten (1995) develop theory for equilibrium selection in bipolar games 
based on the concept of risk dominance. Similar to how some equilibria may exhibit payoff dominance, 
risk dominance objectively captures resistance to losses. Selten (1995) proposes a quantitative metric to 
measure risk dominance in bipolar games with linear incentives called the weighted average log measure 
(WALM). A positive WALM indicates the payoff dominated equilibrium is risk dominant while a negative 
WALM indicates the payoff dominant equilibrium is also risk dominant.  
 
Schmidt et al. (2003) simplify WALM to the form in Eq. (5) for games with two symmetric players. 

𝑅(𝜙, 𝜓) = ln (
𝑉𝑖(𝜙𝑖 , 𝜙𝑗) − 𝑉𝑖(𝜓𝑖 , 𝜙𝑗)

𝑉𝑖(𝜓𝑖 , 𝜓𝑗) − 𝑉𝑖(𝜙𝑖 , 𝜓𝑗)
) (5) 

 
For the Stag Hunt game in Table 2, WALM is shown to be positive in Eq. (6) indicating 𝜙 risk dominates 𝜓. 
This result can be interpreted as the large losses associated with deviating from 𝜙 provides more stability 
than the smaller deviation loss associated with 𝜓. In the absence of subjective information, players may 
reasonably choose to hunt hare as the risk-dominant strategy. 

𝑅(𝜙, 𝜓) = ln (
2 − 0

5 − 4
) = ln (

2

1
) ≈ 0.69 (6) 

 
For greater generalizability to asymmetric games with 𝑁 ≥ 2 players, Selten’s WALM of risk dominance is 
defined in terms of an abstraction called a biform uniquely determined by an influence matrix 𝐴 capturing 
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interdependencies between players and a vector of normalized deviation losses 𝑢. Together, these factors 
assign losses to deviations from a baseline strategy. Equation (7) defines WALM risk dominance for 
generalized games (Selten, 1995) where 𝑤𝑖 represent influence weights for each player. 

𝑅(𝜙, 𝜓) = ∑𝑤𝑖(𝐴) ln (
𝑢𝑖

1 − 𝑢𝑖
)

𝑁

𝑖=1

 (7) 

 
At its core, risk dominance deals with resistance to deviation losses 𝐿𝑖 experienced from switching 
strategies in Eq. (8) where the notation 𝜙 = (𝜙1, … , 𝜙𝑁) indicates all players choose strategy 𝜙 and 𝜙−𝑖 
indicates all except player 𝑖 choose strategy 𝜙. Formally, deviation losses may be subject to complex 
behavioral factors such as diminishing sensitivity and loss aversion (Tversky and Kahneman, 1992); 
however, for clarity this work expresses deviation losses as a simple difference between payoff values. 

𝐿𝑖(𝜙) ∝ 𝑉𝑖(𝜙) − 𝑉𝑖(𝜙−𝑖), 𝐿𝑖(𝜓) ∝ 𝑉𝑖(𝜓) − 𝑉𝑖(𝜓−𝑖) (8) 
 
Normalized deviation losses 𝑢𝑖 in Eq. (9) transform the quantity to a unit scale. 

𝑢𝑖 =
𝐿𝑖(𝜙)

𝐿𝑖(𝜙) + 𝐿𝑖(𝜓)
, 1 − 𝑢𝑖 =

𝐿𝑖(𝜓)

𝐿𝑖(𝜙) + 𝐿𝑖(𝜓)
 (9) 

 
Influence weights measure the importance of one player on others’ stability. In the class of games studied 
by Selten, the weights 𝑤𝑖(𝐴) are a function of an influence matrix 𝐴 which captures the degree of 
influence players have on each other for choosing between strategies. Weights can be interpreted as the 
eigenvector of 𝐴𝑇 rescaled to unit norm corresponding to the eigenvalue of 1 which is equivalent to the 
stationary stochastic distribution for the Markov chain with state transition probabilities 𝑎𝑖𝑗. 

 
The only possible solution for two player games is 𝑤𝑖(𝐴) = 𝑤𝑗(𝐴) = 0.5 which leads to the Schmidt et 

al.’s simplification in Eq. (5) for symmetric players. However, for more general cases, influence matrix 
elements 𝑎𝑖𝑗  can be computed in Eq. (10) by measuring how deviations in player 𝑗’s strategy influence 

player 𝑖’s payoff relative to player 𝑖’s own effect via global deviation losses. 

𝑎𝑖𝑗 =
𝑙𝑖𝑗(𝜙) + 𝑙𝑖𝑗(𝜓)

𝐿𝑖(𝜙) + 𝐿𝑖(𝜓)
 (10) 

  

Pairwise deviation losses 𝑙𝑖𝑗  are computed in Eq. (11) by considering combinations of players where 𝒦 =

𝒫({1,… ,𝑁} ∖ {𝑖, 𝑗}) is the power set of all players except 𝑖 and 𝑗 with cardinality |𝒦| = 2𝑁−2. 

𝑙𝑖𝑗(𝜙) ∝
1

|𝒦|
∑ (𝑉𝑖(𝜙−𝑘) − 𝑉𝑖(𝜙−𝑘𝑗))

𝑘∈𝒦

, 𝑙𝑖𝑗(𝜓) ∝
1

|𝒦|
∑ (𝑉𝑖(𝜓−𝑘) − 𝑉𝑖(𝜓−𝑘𝑗))

𝑘∈𝒦

 
  

(11) 

3.4 MULTI-ACTOR VALUE FUNCTIONS AND STRATEGIC DESIGN GAMES 

A strategic design game based on the multi-actor design framework in Grogan et al. (2016) distinguishes 
between two levels of decisions: strategy decisions 𝑐𝑖 ∈ 𝒞 govern collective behavior between actors and 
design decisions 𝑑𝑖 ∈ 𝒟𝑖 specify system configurations. A corresponding multi-actor value function for 𝑁 
design actors and 𝑛 design decisions in Eq. (12) maps design and strategy decisions for each actor to a 
vector of real-number values interpreted as von Neumann-Morgenstern utilities. 

𝑉: (∏𝒟𝑖

𝑛

𝑖=1

) × 𝒞𝑁 → ℝ𝑁 , 𝑉𝑖 = 𝑉𝑖
𝑐1,…,𝑐𝑁(𝑑1, … , 𝑑𝑛) ∀ 𝑖 (12) 

 
While the design spaces 𝒟𝑖 may be large or unbounded and unique to each actor, the strategy space 𝒞 =
{𝜙,𝜓} is limited to a few options common to all actors, namely choosing between independent action (𝜙) 
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or collective action (𝜓). In the context of distributed systems, independent means monolithic, 
disconnected, or defective while collective means distributed, connected, or anticipated. 
 
A strategic design game benefits from a few special conditions. For simplicity, this section assumes actor 
𝑖 controls strategy decision 𝑐𝑖 and design decision 𝑑𝑖  such that 𝑁 = 𝑛. If there are no interaction effects 
between independent players, described by Grogan et al. (2016) as a perfectly limited case, the multi-
actor value function can be replaced by a single-actor value function in Eq. (13) when player 𝑖 chooses an 
independent strategy 𝑐𝑖 = 𝜙 or all other players choose an independent strategy 𝑐𝑗 = 𝜙 ∀ 𝑗 ≠ 𝑖. 

𝑉𝑖
𝑐1,…,𝑐𝑁(𝑑1, … , 𝑑𝑛) ≈ 𝑉𝑖(𝑑𝑖) if 𝑐𝑖 = 𝜙 or 𝑐𝑗 = 𝜙 ∀ 𝑗 ≠ 𝑖 (13) 

 
Perfectly limited cases allow local design optimization in Eq. (14) under an independent strategy. 

𝒱𝑖
𝜙
= max

𝑑∈𝒟𝑖

𝑉𝑖(𝑑𝑖) , 𝑑𝑖
𝜙
= argmax

𝑑∈𝒟𝑖

𝑉𝑖(𝑑𝑖) (14) 

 
A second notational simplification in Eq. (15) aggregates all players participating in a collective strategy. 

𝑉𝑖
𝑐1,…,𝑐𝑁(𝑑1, … , 𝑑𝑛) ≈ 𝑉𝑖

𝜓({𝑑𝑘: 𝑐𝑘 = 𝜓}) (15) 

 
Thus, a strategic design game can be represented using multi-actor value functions parameterized by 
candidate collective designs (𝑑1, … , 𝑑𝑛) using the simplified notation above for independent and collective 
alternatives. Table 3 shows a normal form game parameterized for 𝑁 = 3 players. 
 

Table 3. Normal Form Perfectly Limited Strategic Design Game for Three Players 

 𝑐2 = 𝜙 𝑐2 = 𝜓 

 

𝑐2 = 𝜙 𝑐2 = 𝜓 

𝑐1 = 𝜙 

𝒱1
𝜙

 

𝒱2
𝜙

 

𝒱3
𝜙

 

𝒱1
𝜙

 

𝑉2(𝑑2) 

𝒱3
𝜙

 

𝒱1
𝜙

 

𝒱2
𝜙

 
𝑉3(𝑑3) 

𝒱1
𝜙

 

𝑉2
𝜓(𝑑2, 𝑑3) 

𝑉3
𝜓(𝑑2, 𝑑3) 

𝑐1 = 𝜓 

𝑉1(𝑑1) 

𝒱2
𝜙

 

𝒱3
𝜙

 

𝑉1
𝜓(𝑑1, 𝑑2) 

𝑉2
𝜓(𝑑1, 𝑑2) 

𝒱3
𝜙

 

𝑉1
𝜓(𝑑1, 𝑑3) 

𝒱2
𝜙

 

𝑉3
𝜓(𝑑1, 𝑑3) 

𝑉1
𝜓(𝑑1, 𝑑2, 𝑑3) 

𝑉2
𝜓(𝑑1, 𝑑2, 𝑑3) 

𝑉3
𝜓(𝑑1, 𝑑2, 𝑑3) 

 𝑐3 = 𝜙 𝑐3 = 𝜓 

 
Using the strategic design game notation, simplified deviation loss functions are redefined in Eq. (16). 

𝐿𝑖(𝜙) ∝ 𝒱𝑖
𝜙
− 𝑉𝑖(𝑑𝑖), 𝐿𝑖(𝜓) ∝ 𝑉𝑖

𝜓(𝑑1, … , 𝑑𝑛) − 𝒱𝑖
𝜙

 (16) 

  

For games with 𝑁 = 3 players, as in Table 3, the pairwise deviation loss functions reduce to Eq. (17). 

𝑙𝑖𝑗(𝜙) ∝ 0, 𝑙𝑖𝑗(𝜓) ∝
1

2
[(𝑉𝑖

𝜓
(𝑑𝑖 , 𝑑𝑗) − 𝑉𝑖(𝑑𝑖)) + (𝑉𝑖

𝜓
(𝑑𝑖 , 𝑑𝑗 , 𝑑𝑘) − 𝑉𝑖

𝜓(𝑑𝑖 , 𝑑𝑘))] (17) 

  

3.5 EXAMPLE APPLICATION CASE 

To illustrate the proposed method to assess risk dominance in distributed systems, consider the following 
application case based on Orbital Federates, a stylized model of distributed Earth-observing space systems 
(Grogan and de Weck, 2015) paired with an existing simulation implemented in Python. The simulation 
model acts as a multi-actor value function by mapping design and strategy sets (inputs) to net present 
value earned by each player over a simulated lifetime (outputs). The model includes stochastic features 
to capture uncertainty in demands such that results must be sampled using Monte Carlo methods. While 
many model details are clearly fictional, Orbital Federates has been developed with similar features to 
space systems to help understand strategic player behavior. 
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The design scenario in Table 4 considers 𝑁 = 3 players who design, build, and operate space systems to 
collect and downlink data to satisfy demands and earn revenue. Each player chooses between a 
monolithic strategy of independent operations and a distributed strategy allowing exchange of data 
services. The monolithic alternative excludes participation by player 1 and includes small standalone 
observing spacecraft for players 2 and 3 who specialize in synthetic aperture radar (SAR) and visual light 
(VIS) sensors, respectively. Distributed designs consider an opportunistic data exchange policy where 
inter-satellite link (ISL) and space-to-ground (SGL) services are priced at a fixed cost of 100. Distributed 
design A includes participation by player 1 with a data relay spacecraft and SGL receiver and ISL adoption 
among all three players. Distributed design B eliminates the ISL technology option and establishes an 
independent observing spacecraft for player 1 with the SGL receiver. 
 

Table 4. Orbital Federates Design Space 

Player Monolithic Design Distributed Design A Distributed Design B 

1 

 

None. 

𝒱1
𝜙
= 0 

 
Small satellite with inter-

satellite link (ISL) and open 

space-to-ground link (oSGL).  

Ground station with oSGL. 

𝑉1(𝑑1𝐴) = −1100 

𝑉1
𝜓(𝑑1𝐴, 𝑑2𝐴) = −572 

𝑉1
𝜓(𝑑1𝐴, 𝑑3𝐴) = −653 

𝑉1
𝜓(𝑑1𝐴, 𝑑2𝐴, 𝑑3𝐴) = 100 

 
Small satellite with SAR sensor 

and open space-to-ground link 

(oSGL).  

Ground station with oSGL. 

𝑉1(𝑑1𝐵) = −104 

𝑉1
𝜓(𝑑1𝐵 , 𝑑2𝐵) = 83 

𝑉1
𝜓(𝑑1𝐵 , 𝑑3𝐵) = 33 

𝑉1
𝜓(𝑑1𝐵 , 𝑑2𝐵 , 𝑑3𝐵) = 271 

2 

 
Small satellite with SAR sensor 

and proprietary space-to-

ground link (pSGL).  

Ground station with pSGL. 

𝒱2
𝜙
= −39 

 
Medium satellite with SAR 

sensor, inter-satellite link (ISL) 

and proprietary and open space-

to-ground links (pSGL and oSGL).  

Ground station with pSGL. 

𝑉2(𝑑2𝐴) = −389 

𝑉2
𝜓(𝑑1𝐴, 𝑑2𝐴) = 440 

𝑉2
𝜓(𝑑2𝐴, 𝑑3𝐴) = −255 

𝑉2
𝜓(𝑑1𝐴, 𝑑2𝐴, 𝑑3𝐴) = 536 

 
Medium satellite with SAR 

sensor and proprietary and 

open space-to-ground links 

(pSGL and oSGL).  

Ground station with pSGL. 

𝑉2(𝑑2𝐵) = −288 

𝑉2
𝜓(𝑑1𝐵 , 𝑑2𝐵) = 141 

𝑉2
𝜓(𝑑2𝐵 , 𝑑3𝐵) = −288 

𝑉2
𝜓(𝑑1𝐵 , 𝑑2𝐵 , 𝑑3𝐵) = 150 



 

Report No. SERC-2018-TR-105                                                                                                                                                                 April 30, 2018 

22 

3 

 
Small satellite with VIS sensor 

and proprietary space-to-

ground link (pSGL).  

Ground station with pSGL. 

𝒱3
𝜙
= 30 

 
Medium satellite with VIS 

sensor, inter-satellite link (ISL) 

and proprietary and open space-

to-ground links (pSGL and oSGL).  

Ground station with pSGL. 

𝑉3(𝑑3𝐴) = −320 

𝑉3
𝜓(𝑑1𝐴, 𝑑3𝐴) = 386 

𝑉3
𝜓(𝑑2𝐴, 𝑑3𝐴) = −158 

𝑉3
𝜓(𝑑1𝐴, 𝑑2𝐴, 𝑑3𝐴) = 639 

 
Medium satellite with VIS 

sensor and proprietary and 

open space-to-ground links 

(pSGL and oSGL).  

Ground station with pSGL. 

𝑉3(𝑑3𝐵) = −220 

𝑉3
𝜓(𝑑1𝐵 , 𝑑3𝐵) = 391 

𝑉3
𝜓(𝑑2𝐵 , 𝑑3𝐵) = −161 

𝑉3
𝜓(𝑑1𝐵 , 𝑑2𝐵 , 𝑑3𝐵) = 378 

 
Value function outputs shown in Table 4 evaluate expected net present value over a 24-turn game using 
a discount rate of 2% per turn sampled using 1000 seeded runs of the Orbital Federates Simulation – 
Python (OFSPY) executable. The monolithic design requires only one value function evaluation while each 
distributed design requires five function evaluations to consider all combinations of two or more 
cooperating players and the single case with zero or one cooperating players. Preprocessing configures 
OFSPY inputs to consider favorable spatial locations for player’s spacecraft for each function evaluation. 

3.5.1 ANALYSIS OF DISTRIBUTED ALTERNATIVE A 

This section analyses distributed design A compared to the monolithic alternative. Table 5 frames a 
strategic design game for the distributed design alternatives A. Note that this design scenario constitutes 
a bipolar game with Nash equilibria (𝜙, 𝜙, 𝜙) and (𝜓, 𝜓, 𝜓). 
 

Table 5. Strategic Design Game for Distributed Designs A 

 𝑐2 = 𝜙 𝑐2 = 𝜓 

 

𝑐2 = 𝜙 𝑐2 = 𝜓 

𝑐1 = 𝜙 

0 

−39 

30 

0 

−389 

30 

0 

−39 
−320 

0 

−255 
−158 

𝑐1 = 𝜓 

−1100 

−39 

30 

−572 

440 

30 

−652 

−39 
386 

100 

536 
639 

 𝑐3 = 𝜙 𝑐3 = 𝜓 

 
From the above data, the deviation losses can be calculated using Eq. (16) with results in Eq. (18).  

[𝐿𝑖(𝜙)] = [

𝐿1(𝜙)

𝐿2(𝜙)

𝐿2(𝜙)
] = [

1100
350
350

] , [𝐿𝑖(𝜓)] = [

𝐿1(𝜓)

𝐿2(𝜓)

𝐿2(𝜓)
] = [

100
575
609

] (18) 

 
Pairwise deviation losses can be calculated using Eq. (17) with results in Eq. (19). 

𝑙𝑖𝑗(𝜙) = 0 ∀ 𝑖 ≠ 𝑗, [𝑙𝑖𝑗(𝜓)] = [

0 𝑙12(𝜓) 𝑙13(𝜓)

𝑙21(𝜓) 0 𝑙23(𝜓)

𝑙31(𝜓) 𝑙32(𝜓) 0

] = [
0 640 560

810 0 115
751.5 207.5 0

] (19) 
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Next, the interaction matrix can be calculated using Eq. (10) with results in Eq. (20). 

𝐴 = [

0 𝑎12 𝑎13
𝑎21 0 𝑎23
𝑎31 𝑎32 0

] = [
0 0.533 0.467

0.876 0 0.124
0.783 0.217 0

] (20) 

 
Eigenvector analysis of the transposed influence matrix 𝐴𝑇 yields the eigenvector corresponding to the 
eigenvalue of 1 (rescaled to unit norm) in Eq. (21).  

𝑤(𝐴) = [

𝑤1(𝐴)

𝑤2(𝐴)

𝑤3(𝐴)
] = [

0.455
0.296
0.249

] (21) 

 
Bringing these results together in Eq. (22), the result shows the monolithic strategy 𝜙 is risk dominant.  

𝑅𝜓(𝑑1𝐴, 𝑑2𝐴, 𝑑3𝐴) = 𝑤1(𝐴) ln (
𝐿1(𝜙)

𝐿1(𝜓)
) + 𝑤2(𝐴) ln (

𝐿2(𝜙)

𝐿2(𝜓)
) + 𝑤3(𝐴) ln (

𝐿3(𝜙)

𝐿3(𝜓)
) 

= 0.455 ln (
1100

100
) + 0.296 ln (

350

575
) + 0.249 ln (

350

609
) = 0.80 

(22) 

 
Analysis of distributed design A shows the monolithic strategy is more stable for player 1 because of large 
downside losses incurred if other players chose independent action. This risk arises because player 1 has 
no independent source of revenue to recover the high cost of the distributed design. However, the 
distributed strategy is more stable for players 2 and 3 because large upside gains realized from shared 
data services outweigh the additional cost of larger spacecraft and additional hardware. Influence analysis 
identifies player 1 as the most influential which can be explained by their central role in both providing 
shared inter-satellite link (ISL) relay and space-to-ground (SGL) downlink services via the spacecraft and 
ground station, respectively. Players 2 and 3 have similar weights of 0.296 and 0.249 reflecting their 
symmetry in operational mission. Given player 1’s aversion to the distributed strategy and strong 
influence, the monolithic strategy is risk dominant and the distributed strategy is prone to failure due to 
disengagement by player 1. 
 

3.5.2 ANALYSIS OF DISTRIBUTED ALTERNATIVE B 

Design B takes two actions to relieve strategic risk and attempt to make the distributed strategy risk 
dominant. First, it reduces the scope (and potential payoffs) of the distributed strategy by eliminating 
inter-satellite link (ISL) services to reduce the initial cost of spacecraft and hardware. Second, it provides 
player 1 an independent source of revenue by hosting an instrument to complete data contracts. 
 
Table 6 frames a strategic design game for the distributed design alternatives B. Note that this design 
scenario constitutes a bipolar game with Nash equilibria 𝜙 = (𝜙, 𝜙, 𝜙) and 𝜓 = (𝜓,𝜓, 𝜓). 
 

Table 6. Strategic Design Game for Distributed Designs B 

 𝑐2 = 𝜙 𝑐2 = 𝜓 

 

𝑐2 = 𝜙 𝑐2 = 𝜓 

𝑐1 = 𝜙 

0 

−39 

30 

0 

−288 

30 

0 

−39 
−220 

0 

−288 
−161 

𝑐1 = 𝜓 

−104 

−39 

30 

83 

141 

30 

33 

−39 
391 

271 

150 
378 

 𝑐3 = 𝜙 𝑐3 = 𝜓 
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From the above data, the deviation losses can be calculated using Eq. (16) with results in Eq. (23).  

[𝐿𝑖(𝜙)] = [

𝐿1(𝜙)

𝐿2(𝜙)

𝐿2(𝜙)
] = [

104
249
250

] , [𝐿𝑖(𝜓)] = [

𝐿1(𝜓)

𝐿2(𝜓)

𝐿2(𝜓)
] = [

271
189
348

] (23) 

 
Pairwise deviation losses can be calculated using Eq. (17) with results in Eq. (24). 

𝑙𝑖𝑗(𝜙) = 0 ∀ 𝑖 ≠ 𝑗, [𝑙𝑖𝑗(𝜓)] = [

0 𝑙12(𝜓) 𝑙13(𝜓)

𝑙21(𝜓) 0 𝑙23(𝜓)

𝑙31(𝜓) 𝑙32(𝜓) 0

] = [
0 212.5 162.5

433.5 0 4.5
575 23 0

] (24) 

 
Next, the interaction matrix can be calculated using Eq. (10) with results in Eq. (25). 

𝐴 = [

0 𝑎12 𝑎13
𝑎21 0 𝑎23
𝑎31 𝑎32 0

] = [
0 0.566 0.434

0.989 0 0.011
0.961 0.039 0

] (25) 

 
Eigenvector analysis of the transposed influence matrix 𝐴𝑇 yields the eigenvector corresponding to the 
eigenvalue of 1 (rescaled to unit norm) in Eq. (26).  

𝑤(𝐴) = [

𝑤1(𝐴)

𝑤2(𝐴)

𝑤3(𝐴)
] = [

0.494
0.288
0.218

] (26) 

 
Bringing these results together in Eq. (27), the result shows the distributed strategy 𝜓 is risk dominant.  

𝑅𝜓(𝑑1𝐵 , 𝑑2𝐵 , 𝑑3𝐵) = 𝑤1(𝐴) ln (
𝐿1(𝜙)

𝐿1(𝜓)
) + 𝑤2(𝐴) ln (

𝐿2(𝜙)

𝐿2(𝜓)
) + 𝑤3(𝐴) ln (

𝐿3(𝜙)

𝐿3(𝜓)
) 

= 0.494 ln (
104

271
) + 0.288 ln (

249

189
) + 0.218 ln (

250

348
) = −0.46 

(27) 

 
Analysis of distributed design B shows the distributed strategy is more stable for players 1 and 3 and the 
monolithic strategy is more stable for player 2. The goals of reducing upfront costs and providing a second 
source of revenue successfully changed the strategic risk posture of player 1. However, the loss of the 
inter-satellite link (ISL) relay services tips player 2 towards a stable independent solution. Influence 
analysis still identifies player 1 as the most influential with weight 0.494. Similar to design A, this can be 
explained by the player’s central role in providing shared downlink services via the ground station and the 
influence is greater than in design A because other players lack the relay components to interact with 
each other directly. Combining these factors, player 1’s contributions outweigh player 2’s contributions 
and the distributed strategy is risk dominant. In the event that player 2 disengages, players 1 and 3 still 
enjoy moderate returns from the distributed strategy. 

3.5.3 DISCUSSION OF RESULTS 

This analysis illustrates how “robust-yet-fragile” features can emerge from engineering design and how 
strategic risk assessment can mitigate fragility. If successful, distributed design A provides superior value 
for all three players by taking advantage of new technology and operational concepts. However, focusing 
on maximizing upside potential can yield unstable design solutions prone to failure. Player 1 experiences 
greater potential losses from distributed design A compared to others and is most likely to disengage from 
a distributed strategy. Distributed design B reduces the level of technological ambition and establishes an 
independent value stream. While its potential payoffs are smaller than design A, design B exhibits superior 
strategic stability and is robust to disengagement by player 2, the most likely to disengage from a 
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distributed strategy. These results echo Maier’s (1998) principles for system-of-system architecting 
emphasizing stable intermediate forms and ensuring cooperating among all actors. 
 
There are several extensions to this analysis which could be studied further. This case only investigates 
comparative analysis between two distributed architectures under a single collective strategy; however, 
similar analysis could be applied to a tradespace of a potential architectures or collective strategies. For 
example, the players could enumerate a set of alternative design architectures and several collective 
strategies with varying policies governing pricing, link availability, or other features to compare with the 
monolithic alternative which can be analyzed separately using existing systems engineering optimization 
methods. As a scalar metric, WALM risk dominance can compare the degree of stability (or instability) in 
a candidate architecture and strategy pair relative to a baseline monolithic or independent alternative. 
 
A multi-actor value function is the key requirement for WALM risk dominance analysis. However, 
complete analysis requires 2𝑁 −𝑁 function evaluations to assess each collective architecture/strategy 
pair. Thus, care must be taken to narrow the candidate architecture/strategy set to a minimum size to 
avoid lengthy computational burdens, especially when considering a stochastic model such as OFSPY. 

3.6 EXTENSIONS AND OPPORTUNITIES 

As demonstrated in the example application case, strategic design games and measures of risk dominance 
can inform concept selection in systems engineering. These methods help to assess inherent risks in 
decentralized architectures resulting from strategic instabilities of aligning decisions across independent 
actors. By applying WALM risk dominance analysis during conceptual design, systems engineers can 
identify, avoid, or rework distributed design alternatives with high but unstable payoffs compared to 
monolithic alternatives. This perspective may help to avoid costly development programs having 
structural problems likely leading to schedule and cost growth and, ultimately, cancellation. If scaled up 
to larger application cases, this research project could change how distributed systems are conceived and 
evaluated in conceptual design. Future work must proceed in two parallel directions. 
 
First, additional theoretical work is required to assess the significance of violating assumptions of linear 
incentives or consider alternative metric definitions for cases with nonlinear incentives. Linear 
assumptions are unlikely to hold in most engineering projects because marginal contribution of each 
player tend to increase with collective size (i.e. there are increasing returns to scale in many distributed 
systems). Future work is also required to identify rigorous but practical means to quantify deviation losses 
in accordance with rational and behavioral economic theory. The simplified method of taking the value 
difference employed in this project may be adequate; however, additional exploration is required. 
 
Second, additional practical or applied work is required to validate the proposed method in a realistic 
system context. In particular, a real-world system must be identified as being a bipolar game to benefit 
from risk dominance measures; however, many distributed systems are likely representable as bipolar 
games due to the framing of upside potential and downside risks in a strategic design game. Furthermore, 
a real-world application case would critically rely on a multi-actor value function to quantify value of 
varying levels of participation. Due to the relative novelty of this problem framing, a subsequent research 
project would likely require additional effort to either develop a suitable model or modify an existing one 
(e.g. using preprocessing and/or post-processing) to yield required outputs. 
 
As a theoretically-grounded project, much of the risk of a future research project has been minimized 
through this incubator project. The overall theory of equilibrium selection appears internally consistent 
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and complicated but understandable to engineering managers. Quantities such as deviation losses, 
influence matrix elements, and weighting factors can be calculated for a general class of problems using 
the equations developed in this project. Remaining risks mostly deal with the framing of a particular design 
problem as a bipolar game, availability of a multi-actor value function, and combinatorial scaling. Given 
the successes of the formulation of WALM risk dominance in simplified but not trivial problems similar to 
Orbital Federates, the next step of research would scale up to a more realistic system. 
 
Provided access to an existing or actively-developed value model, an appropriate level of support would 
total approximately $350k over two years to support a full-time research assistant, travel for sponsor 
meetings and presentation of results at domain conferences, computation time on cloud platforms, and 
release time for the principal investigator. A midpoint review would establish the validity of a multi-actor 
value function to assess preference for multiple players and the overall framing of the design problem as 
a bipolar game. A final review would establish the validity of a game-theoretic risk analysis to assess a 
multi-architecture tradespace of candidate designs and collective strategies for distributed systems 
compared to a monolithic or independent alternative. 
 
There exists potential synergy with a related project at NASA’s Goddard Space Flight Center led by Dr. 
Jacqueline Le Moigne. The Tradespace Analysis Tool for Constellations (TAT-C) is a simulation modeling 
tool to quantify the performance of distributed spacecraft missions (Le Moigne et al., 2017). In the 
terminology of this project, it serves as distributed system value function similar to Eq. (2). While it 
presently addresses a subset of needs for strategic risk assessment, potential extensions may be able to 
transform it into a multi-actor value function to assess collective strategies for Earth-observing spacecraft 
missions. There exist some interesting existing application cases, such as the Afternoon Constellation, a 
collection of spacecraft which gather spatially and temporally correlated datasets, and potential 
coordination between U.S. and European medium-resolution land imaging platforms (Landsat and 
Sentinel-2) which gather overlapping data using similar orbital geometries to benefit from cross-
validation. A strategic risk assessment method similar to that described in this project may help to identify 
stable designs among national and international government agencies and commercial partners. 
 
Distributed system architectures provide an opportunity to achieve greater performance compared to 
monolithic alternatives; however, this project demonstrates a careful analysis of strategic risk is critical to 
identify stable design alternatives. Game-theoretic methods such as Selten’s WALM risk dominance can 
help systems engineers assess and mitigate threats to distributed architectures during conceptual design. 
Understanding of both the upside potential of nominal operations as well as the downsides associated 
with failures or anomalous operations help assess sources of strategic risk. With additional support and 
development, this research has the potential to transform how distributed systems are perceived during 
conceptual design and avoid pursuing inherently unstable concepts. 
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4 PROGRAM PROTECTION SYSTEM SECURITY AND TRUST EXTENDING FLEXIBLE CONTRACTS FOR MISSION ASSURANCE 

– AZAD MADNI, UNIVERSITY OF SOUTHERN CALIFORNIA 

 
Abstract.  Mission assurance focuses on reducing uncertainty in the ability of systems to successfully 
complete missions despite disruptions. Current approaches to MA tend to rely exclusively on information 
available at design time. In other words, they do not take into account incoming situation awareness data 
from the operational environment. More recent approaches attempt to combine risk management with 
shared situation awareness data from the operational environment. However, these approaches tend to 
be inflexible when the system needs to operate in partially observable environments. This paper presents 
a closed-loop, model-based, approach to mission assurance. The approach employs: probabilistic models 
to account for uncertainty arising from partial observability, incremental information availability, and 
noisy sensors; a flexible contract construct that introduces flexible assertions into traditional contracts to 
adapt to changes in the operational environment while still supporting formal verification and testing to 
some degree; and reinforcement learning to increase confidence in probabilistic system models.  The 
overall approach is discussed within the context of resilient multi-UAV swarm operations.  
 
The proposed approach using Heilmeier Criteria is summarized below:  

1. What are we trying to do?  
a. Develop a formal model-based approach for closed loop assessment of mission assurance 

and reliability  
2. How is it done today? What are the limits of current practice?  

a. Mission assurance uses data available solely at design time (“open loop assessment”). 
Operational situational awareness data during mission execution is not used to update 
initial MA assessment.  

3. What’s new in our approach? Why do we think it will be successful?  
a. Based on resilience contract, a hybrid modeling construct, that combines formal and 

probabilistic models that supports model-based system verification and flexibility to cope 
with disruptions. Approach strikes a balance between system verification and flexibility, 
the two key requirements for mission assurance. Approach is based on a combination of 
two proven modeling approaches. We have mission assurance expert working with us 
from day one.  

4. Who cares?  
a. The space industry, DoD, automotive and aerospace industries  

5. If we are successful, what difference will it make?  
a. More accurate assessment of mission assurance and reliability leading to better decision 

making in the face of disruption.  
6. What are the risks and payoffs?  

a. Partial observability and noisy sensors pose a problem for system modeling. We 
overcome these problem through online reinforcement learning. Payoffs are accurate 
assessment of MA and reliability in safety-critical and mission-critical systems.  

7. How much will it cost?  
a. Cost to prototype will be $260K per year for 2 years.  

8. How long will it take?  
a. Two years to demonstrate overall concept with progress demos along the way 

9. What are the mid-term and final exams to check for success? How will progress be measured?  
a. Mid-term: probabilistic system model using Markov Decision Process (full observability); 

final exam: probabilistic system model using Partially Observable Markov Decision 
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Process (POMDP). Demonstration of MDP and POMDP models on a DoD-relevant 
problem (e.g. autonomous ground vehicles).  
 

4.1 INTRODUCTION 
Mission Assurance (MA) is concerned with reducing uncertainty in the ability of systems to accomplish 
missions in the face of disruptions [1], [2], [3]. MA has historically been a part of a variety of engineering 
sub-disciplines including: high availability systems, failure analysis, performance engineering, quality 
assurance, reliability assessment, redundancy management, security engineering, hazard identification, 
software engineering, systems engineering, and safety engineering [4], [5]. 
 
Existing methods for MA are based on information available exclusively at design time (Jabbour and 
Muccio, 2010). Recently, various MA approaches have been proposed to improve on existing methods. 
Some of the more popular approaches for MA in federated environments combine standardized risk 
management with shared situation awareness among entities involved in executing operational missions 
[4]. However, these approaches tend to be inflexible when the system needs to operate in partially 
observable environments. 
 
This paper presents a model-based MA approach that accounts for uncertainties arising from partial 
observability of the operational environment, and employs reinforcement learning based on incoming 
data (i.e., observations) from the operational environment to progressively determine system states.  
This paper is organized as follows. Section 2 presents the current approach to MA. Section 3 presents the 
flexible contract construct for real-time MA based on operational situation awareness data. Section 4 
presents a closed-loop approach to MA based on flexible contracts. Section 5 presents real-time MA 
concept of operations for a simple system. Section 6 discusses the technical underpinnings of the overall 
approach. Section 7 presents concluding comments and future developments to realize the proposed 
approach in operational settings. 
 

4.2 CURRENT MA APPROACH   
MA today is a sequential, design time process (Figure 1).  In other words, it does not reflect real-time 
situational awareness data that could potentially contribute to more accurate MA assessment. Figure 1 
presents a simplified, high level view of the current approach to mission assurance. Several key 
considerations such as reliability, safety, performability, quality assurance, parts, materials, processes, 
and domain-specific considerations such as radiation effects in space missions which are all part of MA, 
are not explicitly represented to prevent cluttering the figure.  
 
The traditional MA approach, based on the analysis of dynamic system characteristics, employs methods 
such as: bottom up evaluation of component faults (e.g., failure modes effects analysis); worst case circuit 
analysis; single event effects analysis; and reliability analysis. MA predicts how likely the system will 
provide the required level of service in its operational environment.  
 
Thus, the key question is how valid can predictions be that are based solely on information available at 
design time. While these predictions are useful for conducting trade-studies and identifying potential risk 
areas, it is questionable whether they reflect the realities of the operational environment. To begin with, 
system behavior cannot be reliably predicted because the system’s environment and operational context 
cannot be fully controlled. Furthermore, it is difficult to discern all the states that a system might be in. As 
a result, it is difficult to tell whether the system is performing satisfactorily (i.e., within safe states regime), 
is in trouble (i.e., in unsafe states), or heading into potential trouble (i.e., about to enter unsafe states). 
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Thus, online assessment of MA becomes essential to understand a system’s overall state and health 
status, and guide decisions about its operational use.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1. Current Approach to Mission Assurance 

 
An illustrative example of MA for a simple system (Figure 2) is presented next. The simple system 
comprises a prime computer (P) and a redundant computer (R) that are cross-strapped to sensor and 
actuator interfaces. 
 
 
 
 
 
 
 

Figure 2. A Simple System 
 

For this example, traditional MA typically involves analyzing a static block diagram (e.g., fault trees that 
are used to evaluate potential causes of mission failure in a top down fashion). A fault tree for the system 
in Figure 2 is shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Fault Tree for simple system 
With respect to this problem, reliability is defined by the equation: 
Rsys = Rsens * Ract * (2*Rcomp – R2comp) 
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In this equation, Rsys = reliability of system 
                Rsens = reliability of sensors 
                Ract = reliability of actuators 
                (2*Rcomp – R2comp) = reliability associated with one of 2 computers not working 
 
However, such traditional MA methods do not exploit sensed data from the operational environment 
during the conduct of the mission. The latter is needed for accurate, real-time, MA assessments. 
Specifically, what is needed is a flexible, closed loop approach that reduces uncertainty by progressively 
learning system states from sensed data. This recognition led to the creation of the Flexible Contract (FC) 
construct [6], [7], [8], [9], [10]. 
 

4.3 THE FLEXIBLE CONTRACT CONSTRUCT 
 
A traditional (i.e., inflexible) design contract is a formal modeling construct defined by: assert-guarantee 
pairs, and rigorous concepts such as composition, abstraction, and refinement. The assert-guarantee 
construct states that system/component properties are guaranteed under a set of assumptions about the 
environment. A traditional contract enables rigorous step-wise refinement and supports modularity and 
hierarchy. It is capable of representing conditions on continuous and discrete components. Design 
contracts are used for requirements validation, conflict detection and resolution, and identification of 
redundant or incomplete requirements. 
 
A flexible contract (FC) is a system modeling construct based on Markov Decision Process {6], [7], [8], [9], 
[10]. It extends the deterministic design contract through flexible assertions. It is suitable for probabilistic 
modeling and is capable of handling both observable and unobservable states. Implemented as a Partially 
Observable Markov Decision Process (POMDP), a FC supports in-use learning, uncertainty handling, and 
pattern recognition. While developed at design time, the FC is trained during actual use (“learning”). 
 
More formally, FCs extend the concept of invariant contracts which are defined by a pair  of assertions, C 
= (A, G), in which A is an assumption (pre-condition) made on the environment and G is the guarantee 
(post-condition) a system makes if the assumption is met. More precisely, invariant contracts describe a 
system that produces an output from set  𝑜 ∈ { 𝑜0, 𝑜1, …  𝑜𝑜 −1}  ⊆ 𝑂  when in the state  𝜎  ∈ {𝑠0, 𝑠1, …  𝑠𝑠−1} 
⊆ Σ  for an  input 𝑖 ∈ {𝑖0, 𝑖1, …  𝑖𝑖−1} ⊆ I where O is the set of all outputs, Σ is the set of all system states, and 
I is the set of all inputs. Systems defined by invariant contracts are compatible with formal analyses 
methods that enable rigorous design and validation. However, invariant constructs are not well-matched 
with unknown and unexpected disruptions that might result from unpredictable swarm environments, 
internal faults, prolonged system usage, and previously undiscovered interactions with the operational 
environment. Flexibility is introduced within the “sense-plan-act” construct shown in Fig. 4. This construct 

comprises iterations of: sensing the environment and system status (Sense ≡ assumption); planning 

action that maximize the likelihood of achieving a goal (Plan), and executing those actions (Act ≡ 

guarantee). The environment and system health are sensed and assessed after each action. The planning 
function determines whether to continue with the current plan if the actions accomplish the desired 
outcome, or otherwise make changes.  
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Figure 4. Flexibility is implemented with Sense, Plan, and Act Cycle 
 

From a computational perspective, flexibility is introduced through POMDP, which accommodates 
observable, unobservable, and unknown states. A POMDP models a decision process in which system 
dynamics are assumed to be a belief Markovian Decision Process (MDP), a memoryless decision process 
with transition rewards. A belief MDP comprises the 4-tuple: 
 β = infinite set of belief states 
 α = finite set of actions 

 (𝑏, 𝑎)  =   ∑𝑠∈𝑆 (𝑠) (𝑠, 𝑠′𝑎) Expected reward at b (s) on transition from s to s’ given 𝑎 

 Λ (𝑏′|𝑏, 𝑎) = ∑𝑜∈𝑂 Λ (𝑏′|𝑏, 𝑎, 𝑜) Λ (𝑜|𝑎, 𝑏) Transition function 

 
In the transition function, a belief represents an understanding of a system state, 𝑠 ∈ 𝑆, with uncertainty. 
The MDP has a policy, π, which describes how to select actions for a belief state based on maximizing a 

goal defined by the reward function, 𝜌, within some time period, that is, 𝜋: 𝑠 ∈ 𝑆 → 𝑎 ∈ 𝛼. We define the 

expected utility of executing π when started from s as 𝑈𝜋(𝑠). An optimal policy 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑈𝜋(𝑠) 
maximizes the expected utility of an action. 
 
Expected utility may be computed iteratively using a number of methods including a dynamic 
programming approach in which a discount factor, γ, where 0 ≤ 𝛾 < 1, is used to penalize future rewards 
and is based on the “cost” for not taking immediate action. The kth value of (𝑠) is computed iteratively 
using Eq. (1). The optimal policy is determined by finding the policy that maximizes 𝑈𝜋(𝑠) for each policy 
𝜋𝑖. 

𝑈0
𝜋(𝑠) = 0 

𝑈1
𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠)) 

… 

 𝑈𝑘
𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠)) +  𝛾∑ Λ (𝑠′|𝑠, 𝜋(𝑠))𝑈𝑘−1

𝜋

𝑠′
 (𝑠′) 

 
As noted earlier, in a POMDP model, some states are not observable (hidden) because of uncertainties 
about the current system state and the outcomes of actions due to imperfect information (e.g., noisy 
sensors). The FC approach begins with a naïve model of system behavior comprising known (designed) 
states and transitions, as well as predicted anomalous states and transitions. For the UAV swarm, the 
naïve model is refined over time by observing UAV swarm behavior as actions are taken. 
 
Post deployment, swarms perform one or more missions defined by mission scenarios. Each scenario 
comprises a set of mission phases that are further refined into a collection of detailed task behaviors that 
are allocated to the vehicles in the UAV swarm to accomplish mission objectives. Mission scenarios are 
defined by instantiating meta-states and transitions shown in Fig. 5. After initialization, the swarm 
transitions to a Planning state within mission operations. Planning takes stock of swarm health, mission 
objectives, risks, and prior knowledge of the operational environment to create an initial set of mission 
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phases and individual vehicle tasks. Thereafter, the swarm transitions to Cruise in which each vehicle 
positions itself for making observations. Vehicles typically make observations during Cruise and provide 
the information collected back to Planning. The swarm may encounter faults that require deciding how to 
best to accomplish the mission or select a secondary (less ambitious) mission when the primary mission 
becomes unachievable. The swarm enters the Observation state when it arrives at its desired locations 
and begins intelligence gathering and operational mission data collection. 
 
Fig. 5 shows that the swarm may return to Cruise between observations, or may transition to degraded 
or unsafe operation. Fig. 5 includes restoration transitions that may return the swarm to a fully 
operational capability after a fault, or may place the swarm into a degraded state by marshalling surviving 
swarm resources. 

 
Figure 5.  Mission meta-states 

 
The swarm may return to the Planning state after concluding the mission, if there is adequate time and 
resources remaining to prosecute another mission. Additionally, Planning may be needed when restarting 
a disrupted or an aborted mission depending on when the disruption occurs during task execution, and 
where the swarm is in relation to ongoing observations. The Planning function may also modify missions 
as a result of “interesting” observations. For example, a vehicle that detects a threat may request 
confirmation from another vehicle that has been tasked with observing a different geographic sector. 
Similarly, a vehicle might request support from another vehicle if a sensor needed for a particular 
observation has failed, or is found to be untrustworthy. 
 
Fig. 6 shows the structure of a FC that implements the transitions shown in Fig. 5. A belief state estimate 
is derived  from  environmental  and  health  sensors  and  used  to  evaluate  which  actions  to  take  as  
previously described. The actions are then mapped onto tasks. 
 
A POMDP is a MDP, in which the system state is not directly observable, but probabilistically inferred from 
available sensory measurements. Thus, next action determination is not based on the current state, but 
on the current probability distribution. Thus, computationally there is a major distinction between MDP 
and POMDP. MDP assumes perfect knowledge of state, is relatively easy to specify, and is computationally 
tractable. POMDP, on the other hand, does not require perfect knowledge of state, is a bit more difficult 
to specify, and computationally intractable with respect to optimality. However, POMDP treats all sources 
of uncertainty uniformly, and allows for information gathering actions. Several approaches have been 
proposed in the literature to solve POMDP [12] [13] [14] [15]. One class of solutions is locally optimal in 
Gaussian belief spaces [16] [17]. 
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In sum, with POMDP, each belief is a probability distribution. Thus, each value in a POMDP is a function 
of an entire probability distribution. This property is problematic, because probability distributions are 
continuous, and belief spaces are large and complex. So, the real value of POMDPs is in finite worlds with 
finite state, action, and measurement spaces, and finite time horizons. In these cases, the value functions 
can be effectively represented by piecewise linear functions. 
 
A POMDP transitions from one state to the next by evaluating a belief state and determining the “best” 
action to take in the most likely system state. It is initialized by invariant assertions that represent 
traditional design contracts for a system. As the system operates, the emission and transmission 
probabilities and actions are updated (get “trained”) to reflect real world operational dynamics. Figure 6 
presents a graphical depiction of a generalized FC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Generalized Flexible Contract 
 
As shown in this figure, the upper light blue portion represents the deterministic (i.e., known) parts of the 
system. These are defined by invariant (i.e., traditional) contracts such as “if X, then Y.” The bottom light 
green portion depicts the unknown and uncontrolled “hidden” part of the system, which is represented 
probabilistically by a POMDP. This portion of the model, which is learned during actual system use, is akin 
to learning on the job. The initially postulated hidden states may or may not exist, and their probabilities 
are initially unknown. As observations are made during operation, these hidden states are “filled in” along 
with their emissions (outputs) that occur when the system is in those states. There are a few techniques 
to perform these calculations [18].  
 
Intuitively, one can surmise how these techniques work. If the system is not in state S1 or S2 or S3 or S4, 
then it must be in one of the hidden states. The frequency with which the system goes into a hidden state 
determines the transition probability and the observations made in that state determine the emission 
probabilities.  
 
The action policy determines the needed action at each state by evaluating a reward or penalty function. 
For example, the options might include:  continue, stop, take an action that avoids an obstacle, put the 
system into a safe operational mode, notify the support team, and so forth.  
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4.4 CLOSED LOOP MA APPROACH 
 
The closed-loop, FC-based, MA concept is depicted in Figure 7. A FC comprises a state estimator, a MA 
evaluation system (which evaluates factors such as reliability, availability, safety, and risk), and a response 
policy. The state estimator determines the belief state probability distribution from observations made 
and actions taken. MA is then evaluated from the belief distributions. The Response Policy determines 
the optimal action to take as a function of the state estimation and MA evaluation. Each belief estimate 
is associated with the system’s MA metrics (e.g., reliability, safety, risk). The probabilities are then 
evaluated for each belief estimation, for example: 

 P (system is sound) =  Prob (system is in a known “good” state) 

 P (system has failed) =  Prob (system is in a known “failed” state) 

 P (system is in a risky state) =  Prob (system is in an unknown or un-designed for state) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Flexible Contract Approach to Mission Assurance 
 
An exemplar hypothetical progression of belief states based on observations and actions taken is visually 
depicted in Figure 8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Graphical Depiction of Belief States Progression 
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As shown in this figure, initially all belief states are equally probable. When an observation “a” is made, 
the State Estimator updates the belief states making state S1 the most probable. When an observation 
“d” is subsequently made, the belief evaluation function makes state S4 the most likely. Finally, an 
observation “a” is made which makes S1 again the most likely. If state S4 = “failed,” for example then the 
reliability R= 1-P (S4).  
 

4.5 POMDP CONCEPT OF OPERATIONS FOR EXEMPLAR PROBLEM 
 
Returning to the simple system (Figure 2), we now examine the state model which is used for calculating 
reliability. The simple system comprises a prime computer (P) and a redundant computer (R) that are 
cross-strapped to sensor and actuator interfaces. An initial Markov model for a repairable system derived 
from invariant contracts is shown in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Markov Model for Exemplar Problem 
 

In this model, the system is initially in state S1 (i.e., all systems working). From this state, the system can 
transition to other states based on failure and repair rates, denoted by λi and μj. For example, the system 
transitions from state S1 to S2 if one of the computers fail with the failure rate λ1. The system transitions 
from state S1 to state S3 at the rate λ2 = (1- λ1) if either the sensor, actuator, or both fail. The system 
transitions from state S2 to state S3, at the rate if the remaining computer fails or the sensor, actuator, or 
both fail.   The reliability of the system is the sum of the probabilities of being in S1 or S2, or equivalently, 
the probability of not being state S3. Availability is the ratio of time when not in S3 to the total time. 
 
We now address the problem of incorporating a hidden state into the Markov model. For simplicity, we 
add a single hidden state (H1) to the system model as shown in Figure 10. S1 now has a failure rate of λ4 

to H1 and H1 has a failure rate λ6 to S2, and λ5 to S3. Because H1 is hidden, the transitions rates into and 
from H1 are learned during system operation and/or test. 
 
The “step-through” of states occurs as follows. Once the POMDP model is trained, we observe system 
outputs, evaluate the state we believe the system is most likely in, and take the action having the highest 
reward (or least penalty) for that state. For example, if the system is most likely in state S1, then it 
continues operating in that state in the absence of component/system failure. If the system is in state S2, 
it continues operating and requests a computer repair. An emergency repair is requested if system is in 
state S3. If the system is in the hidden state, H1, then it might continue monitoring its health for a period 
of time. If the system transitions to S1, S2, or S3 during the wait period, then the above actions are taken. 
If the system stays in H1, during wait period then maintenance personnel are called to investigate. If 
maintenance personnel determine that H1, is “good,” then the state diagram and actions are updated, 
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otherwise the action in H1 is changed to “schedule repair.” If the system state is ambiguous (i.e., two or 
more states are equally probable with the highest probability of occurrence), then the policy could either 
assume the worst, and take the associated action, or continue sampling outputs in the hope that the 
system state disambiguates. Table 1 summarizes the logic associated with stepping through the states. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Introducing Flexibility in System Model 
 
Table 7. Stepping Through States 
 

 After training, we observe system outputs, evaluate the state we most likely believe system is in 
and take appropriate action, e.g.: 

 if system is in S1, then continue operating 

 if system is in S2, then continue operating and schedule a computer repair 

 if system is in S3, then schedule an emergency repair 

 If system is in H1, then monitor what occurs for a period of time 

 if system transitions to S1, S2, or S3 during wait period, take above actions 

 if system stays in H1 during wait period, then schedule a maintenance check 

 if the check indicates H1 is “good,” then update state diagram and actions: otherwise, 
change action in H1 to schedule repair 

 If system state is ambiguous (i.e., two or more states are equally probable and have highest 
probability), then: 

 collect additional observations and retrain state model – which might require adding 
new states, and schedule a maintenance check as above, or 

 assume the worst and take the associated action 
 
In sum, incorporating flexibility in MDP consists of: introducing hidden states in MDP representation 
thereby making it a POMDP model; relaxing time-invariance restriction of the state space and action 
space; adding an evaluation metric to determine best action; and introducing the concept of time (e.g., 
temporal constraints/changes in probabilities that impact occurrence of events).  
 
 
 

4.6 AN ILLUSTRATIVE EXAMPLE  
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We now discuss the different system modeling elements within the context of multi-UAV swarm control. 
These include: traditional contracts; flexible contracts, control flow model; swarm control architecture; 
and iterative Bayesian belief update. 
 
Traditional (i.e., inflexible) Contracts. These are “assert-guarantee” pairs derived from system 
requirements and expected system behavior. Table 2 shows two invariant contracts using linear 
temporal logic terminology.  
 
Table 8. Invariant Contracts 

 Contract #1: At the next instant, if obstacle ahead, then turn left 

 Contract #2: At the next instant, if no obstacle ahead, then continue path 
 
 
Flexible Contracts.  Invariant contracts can be made flexible by relaxing the assertions to account for 
uncertainty. The assumptions in a flexible contract are represented by belief states, while the action 
policies replace guarantees in the traditional contract. Accommodating disruptions is accomplished by 
including belief states that represent environmental hazards and fault conditions and including 
contingency or mitigation policies. For example, Table 3 shows a simple penalty function that is associated 
with a threat being possibly to the right or to the left of a UAV. If  belief estimation determines that the 
probability of the threat on the left is 0.95 then the penalty for making a left turn is 8.5 but the penalty 
for making a right turn in -96, meaning there is a reward for turning right and a penalty for turning left. 
 
Table 9. Penalty Function Calculation and Decision 
 

 A simple penalty function: 

 P(leftThreat) * 10 + P(rightThreat) * (-100) + (1 – (P(rightThreat) + P(leftThreat))) * (-1)  

 If P(leftThreat) = 0.95, P(rightThreat) = .01, and P(can’t decide) = 0,04, then: 

 penalty = .95 (10) + .01 (-100) + .04 (-1) = 9.5 – 1 -.04 = 8.49, if turn left 

 penalty = .01 (10) + .95 (-100) + .04 (-1) = 1 + 95 - .04 = -95.94, if turn right 

 Want to turn right because penalty for turning right is negative (i.e., reward), but penalty for 
turning left is positive 

 
Control Flow Model.  System behavior is captured using the control flow model shown in Figure 11. Fig. 
11 shows transition “guards” or conditions that must be true for the transition to occur, e.g.: 
 b (failed) ≥ 0.95 is the threshold to transition from “normal motors” to “failed motors.” 
Belief state estimates are derived from observations about the system, and used by the Auto Plan function 
that determines next actions to take. 
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Figure 11. Control Flow Model 
 
An exemplar architecture that implements Figure 11 using software agents is shown in Figure 12.  This 
figure shows that environment sensor outputs, the MDP model, and the policy feed the state estimator 
which produces an updated set of belief values, and triggers an action for the UAV swarm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Multi-UAV Swarm Control Architecture 
 
Iterative Belief Update. The system’s behavior reflects its beliefs based on latest observations. For 
example, suppose an UAV swarm finds itself in an environment in which it needs to avoid obstacles while 
being mindful of unknown threats. In this instance, the UAV swarm needs to veer left or veer right to avoid 
an obstacle which may be either to the left or the right of the swarm If the UAV swarm guesses correctly, 
it can avoid the threat. If the UAV swarm guesses wrong (i.e., it decides to veer left and the threat is 
located on the left, or it decides to veer right and the threat is located on the right), then the swarm is 
likely to suffer damage. The potential actions that the swarm can take are: veer left, veer right, or continue 
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on the current path making further observations of the threat. The algorithm for summing potential 
outcomes based on path taken is rooted in Bayesian Belief update with normalized rewards and penalties. 
Figure 13 presents a pictorial of iterative Bayesian Belief update and the formula for computing beliefs 
based on Bayesian Belief Network. The system starts with a 50-50 belief that the threat could be to the 
left or the right. The system makes an observation which suggests that a potential threat is to the left. So, 
the system’s Bayesian engine moves the belief to the left as depicted in this diagram. This move indicates 
that there is greater belief that the threat is to the left. Eventually, the system concludes that the belief 
that the threat could not be to the right because it does not observe anything to the right. Belief updating 
occurs in accord with Bayesian analysis using observation and current state. The state history is contained 
in the current state. The “a” are actions, the “o” are observations, the “b” are beliefs, and the “S” are 
states.   Belief state changes results from observations and actions taken. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Iterative Belief Update 
 

4.7 CONCLUDING COMMENTS 
 
The MA function is concerned with reducing uncertainty in the ability of a system (or SoS) to successfully 
complete its mission despite running into disruptions (Madni and Jackson, 2009; Goerger et al., 2014; 
Madni et al., 2017b). Current approaches to MA tend to rely exclusively on information available at design 
time. This is a clear limitation of the traditional approach. This paper has presented a closed-loop, model-
based approach based on flexible contracts and reinforcement learning. Specifically, the approach 
employs probabilistic modeling to account for uncertainty arising from partial observability, and 
incremental availability of information. It employs a flexible extension of invariant contracts from 
contract-based design to accomplish some level of system verification and testing while having the ability 
to adapt to changes. It employs reinforcement learning to reduce uncertainty in the knowledge of system 
state and health status. The key concepts associated with this approach were presented in this paper 
within the context of multi-UAV swarm operations.  
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Summary: Heilmeier Criteria 

1. What are you trying to do? Develop automated ways of tracking risk that are based on the real 
reasons of systems engineering failures. 

2. How is it done today, and what 
are the limits of current practice? 

Current approaches are ineffective at best. Organizations, despite 
following best practices, cannot consistently achieve success. Imposing 
more rules and reporting requirements has not increased success 
probability. 

3. What’s new in your approach and 
why do you think it will be 
successful? 

Our approach is based on automatically tracking the real reasons and 
root causes of systems engineering failures so that we can provide 
practitioners actionable data. 

4. Who cares? If successful, our work will help reduce the probability of systems 
engineering failures, freeing engineers on all types of complex systems 
to innovate and create truly revolutionary systems. 

5. If you’re successful, what 
difference will it make? 

6. What are the risks and the 
payoffs? 

The primary risk is that we do not obtain data. Therefore, we propose to 
use student project data in the first year, to prove our concept. In 
subsequent years, versions of our tool can be deployed inside 
organizations in such a way that the research team does not have to see 
the failure data. The potential payoff is a tool that can help 
organizations predict incipient failures. 

7. How much will it cost? We propose one year of effort to develop the prototype, using one 
computer science student, and one systems engineering student. This 
effort will cost approximately $120K. 

8. How long will it take? 

9. What are the midterm and final 
"exams" to check for success?  How 
will progress be measured? 

Since we will be using student project team data, the academic year 
provides an appropriate set of milestones. By the end of the first 
semester of the project, our goal is to have collected three months’ 
worth of input signals, interim failure data (e.g., missed milestones), and 
final failure/success data (e.g., did the team project satisfy performance 
objectives?). Over the next two semesters, we will continue collecting 
data and also predicting failures. Our project will be successful if we can 
predict at least half of interim and final failures. 

 

5.1 OUR VISION AND ROADMAP 
 
Anecdotes and statistics on the failures of systems engineering have become a sure-fire way of attracting 
attention and lamentation during presentations. No-one is immune to the failure disease and in particular 
past success is no guarantee of future performance—organizations that have succeeded spectacularly in 
one project will fail just as spectacularly in the next project. 
 
In response to these dire statistics, new methods, processes, and tools are continuously proposed and 
implemented, including numerous new methods of risk identification, tracking, and management. Yet the 
frequency of failures shows no signs of decreasing, and, meanwhile, engineering creativity in large 
complex systems seems to be stifled. Rather than the revolutionary creations our 20th century 
counterparts foresaw appearing in the 21st century, we have limited ourselves to evolutionary 
improvements. 
 
Why do these methods not help as much as we hoped? One possible reason, is the reliance on extensive 
data creation, collection, and tracking. When projects are under pressure, activities that are seen as non-
essential to the core task will not be performed, or, worse, will be performed in a cursory compliance-
oriented fashion, potentially leading to misleading data and erroneous conclusions about the state of risk. 
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What if we could, instead, do all this risk tracking and reporting with existing information? Our proposed 
effort leverages two main ideas: (1) risk assessment based on the “real reasons” for systems engineering 
failures, and (2) combining existing data with Wisdom of the Crowd (WoC) indicators to uncover the 
correlations between various (unreliable) traditional and crowd-derived measures and the measurable 
outcome (success, failure, or delay).  
 
Figure 1 summarizes our vision of a tool to help organizations track and manage the risks of project 
failures. The tool is built around state-of-the-art relational deep learning (Meng et. al., 2018), together 
with contextual bandit techniques (Lin et al., 2010), using a combination of enterprise data, and “Wisdom 
of the Crowds” data that employees enter into a mobile device app. The code is continually refined using 
each organization’s own data. 
 

 
Figure 1: Envisioned Final Product 

 
 

Figure 2 shows our roadmap for achieving this vision. The red text represents the activities for the first 
year. During the first year, we propose to identify potential input data (see Section 5.3), develop an initial 
version of the WoC app (see Section 5.2), and train the first generation of the machine learning software 
(see Section 5.4). We propose to collect training data from student projects at Purdue, ranging from 
design-build-test classes to student run organizations such as the Solar Car Challenge. Student projects 
provide a convenient microcosm of “the real world” while insulating us from the risk of being unable to 
obtain data. 
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Figure 2: Overview of our proposed approach to develop the failure prediction tool 

 
The blue text represents activities for future work, should the first year be successful. Assuming we have 
shown that we can successfully predict failures in student organizations, we will use this success to 
“market” our idea to potential industrial or other (e.g., DoD, NGO) partners. In the first part of our planned 
future work, we will expand the input data set, to reflect the broader range of data available in actual 
organizations (see Section 5.3), as compared to student organizations. Then, we will deploy our app in our 
partner organization(s) to collect data, based on which we will predict failures (thus providing value to our 
partner(s)), and subsequently refine the machine learning code and input data set. 
 
A note about terminology: Both accidents and project failures are “undesired and unplanned (but not 
necessarily unexpected) event[s] that result in (at least) a specified level of loss” (Leveson, 1995). Here, 
we use the term “accident” to refer to those events that directly result in loss of life, injury, or damage to 
property. We use the term “project failures” for all other undesired project events, such as failure to 
achieve mission objectives, budget or schedule overruns, cancellations, and quality or performance issues. 
 
The remainder of this chapter describes the work we have completed thus far, and next steps. 
 

5.2 RELATIONAL DEEP LEARNING WITH FEW DATA POINTS 
In complex cutting-edge projects, neither traditional data tracking nor even Big Data analysis is able to 
consistently and accurately pinpoint issues. Failures, even though they may appear simple on the surface 
(the team should have had a contingency plan!), are often the result of a complex network of decisions, 
many of them locally and temporally rational. Modeling and predicting such complex events requires 
complex models; and complex models need large amounts of historical data to be able to produce 
accurate predictions and insights; cutting-edge projects do not have an abundance of historical data (and 
even when data is available, it may be hard to collect and put into appropriate formats). Project 
complexity also limits the usability of methods to ameliorate these data availability issues (e.g., transfer 
learning). 
 
In such complex scenarios, one can augment existing data with “wisdom of the crowd” side information. 
Wisdom of the crowd (WoC) refers to the hypothesis that the collective opinion of a large number of non-
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experts (e.g., a novice engineer) is better than the opinion of a single expert (say, an experienced 
manager). For instance, employees give their best assessment of the timeline and budget of a project, 
given their knowledge of the system. These assessments are then combined with a machine learning 
algorithm to predict the probability that the project will be successful or the system will fail. 
 

 
Figure 3: Neural network prediction model with contextual bandit algorithm for question selection. Our interpretable neural 
network (Meng et al. 2018) learns which patterns of answers related WoC questions and measurable company data predict 
failures. The particular structure of our model requires a orders of magnitude less data than traditional neural networks 
(tens of examples will be enough to train a first-generation model). 

 
Hard-to-game WoC: Unfortunately, with bonuses and salaries depending on contracts, it is challenging to 
ensure employees truthfully report their project estimates (private information). Moreover, employees 
that have close relationships might give similar assessments and the collected data may be incomplete, 
further increasing the influence of these correlations. Correlations and biases must be accounted for in 
the final predictions. We address these limitations in two ways: (1) by asking some questions that are 
highly correlated with the predicted outcome but are hard to “game” (see Section 5.3), and (2) using new 
techniques developed by PI Ribeiro (Meng et al. 2018) to make predictions using complex relational 
patterns (Figure 3). The machine learning model can automatically learn which patterns in the WoC 

answers, combined with company data, tends to predict failure. 
 

Initially, too many potential WoC questions: We show in Section 5.3 how we can identify a large pool of 
potential questions. However, no team member is willing to answer hundreds of questions every week. 
We need to balance the number and frequency of promising questions with our need for information. 
Here, we will borrow from a widely successful technique used for online testing and advertisement: 
contextual bandits (Lin et al., 2010). A/B testing is a technique for comparing two different versions of, 
say, a web page. The current web page design is the null hypothesis, and the proposed design is the 
alternative hypothesis (so it’s like between-subject design). So, the default (“A”) webpage might have the 
shopping cart icon in the lower right corner, while the alternative webpage (“B”) has the icon on the top 
right corner. The test then is to see which placement results in higher buying rates. However, when faced 
with thousands of potential questions (i.e., thousands of hypotheses to test), A/B testing is prohibitively 
expensive, as it requires too many answers (trials). Contextual bandits, on the other hand, integrate the 
learning algorithm (e.g., our relational deep learning method (Meng et al., 2018)) with a dynamic 
question-asking mechanism. This approach allows us to have a large pool of potentially useful questions, 
but dynamically predict the few questions that better help our model estimate outcomes (and, similarly, 
adapt the pool of questions for different organizations). In online advertisement, this boils down to 
showing online ads that will more likely result in purchases. In news organizations, this amounts to 
showing front-page news items that are more likely to be clicked. In our setting, this will result in deciding 
which questions we should ask. Our contextual bandit will use off-the-shelf Natural Language Processing 
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tools to learn a model that translates the question sentences into the improvement in accuracy obtained 
when the question is asked. 
 

5.3 IDENTIFYING POTENTIAL SYSTEMS ENGINEERING FAILURE SIGNALS 
Machine learning models are powerful but also data-hungry, so we will need a large set of signals. 
Generating this set of signals is the primary challenge of this work. We propose identifying these inputs 
using three different approaches: (1) identifying the factors underlying the real reasons for failures, (2) 
using systems archetypes to identify dysfunctional cases of local rationality, and (3) using cognitive biases 
to identify potentially irrational and destructive actions. 
 
In related work on an NSF CAREER grant, PI Marais found that most systems engineering failures, even 
those in new, one-of-a-kind high-tech systems, do not involve previously unknown phenomena, or black 
swans [Sorenson and Marais, 2016]. As appealing as the black swan metaphor is, the real reasons for most 
failures are, in fact, rather prosaic and predictable white swans, as shown in Table 1.  
 
Table 1: The real reasons for systems engineering failures. Adapted from Aloisio and Marais (2017) 

Cause Definition 

Failed to supervise Actor(s) in the organization failed to supervise people or a process properly. 

Lost tacit knowledge when 
employee departed 

Personnel quit, were moved to a different project, or retired, and the organization 
failed to sustain the knowledge base without these persons. 

Failed to provide 
resources 

Actor(s) in the organization failed to provide adequate resources to a department; 
for instance, maintenance, marketing, or safety. 

Failed to consider design 
aspect 

Actor(s) in the organization failed to consider an aspect in the system design. In 
many cases, this causal action describes a design flaw, such as a single-point failure 
or component compatibility. 

Used inadequate 
justification 

Actor(s) in the organization used inadequate justification for a decision. 

Failed to form a 
contingency plan 

Actor(s) in the organization failed to form a contingency plan to implement if an 
unplanned event occurred. 

Lacked experience Actor(s)’ lack of experience or knowledge led to the failure. For example, an 
inexperienced manager who was placed in charge of a large project. 

Kept poor records Actor(s) in the organization kept poor records of a process, such as maintenance.  

Subjected to inadequate 
reviews 

Actor(s) in the organization did not review documentation or other work 
sufficiently to capture errors and deficiencies.  

Inadequately 
communicated 

Actor(s) in the organization failed to communicate with each other such that 
personnel were confused with the information they were given, had to “fill in the 
gaps” in the information they were given, or not notified about important 
information at all. 

Conducted poor 
requirements engineering 

Actor(s) in the organization did not lay out the needs, attributes, capabilities, 
characteristics, or qualities of the system well. 

Failed to consider human 
factor 

Actor(s) in the organization failed to consider a human factor in system 
development. This causal action describes, for example, failing to consider human 
factors in specifying procedures or physical design. 
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Cause Definition 

Failed to inspect Actor(s) in the organization failed to inspect a crucial component. 

Subjected to inadequate 
testing 

One or more actors in the organization subjected a component or subsystem to 
inadequate testing. This causal action captures inadequate tests as well as 
adequate tests performed inadequately. 

Managed risk poorly Actor(s) in the organization failed to identify, assess, formulate, or implement a 
proper mitigation measure.  

Violated procedures Actor(s) in the organization violated a procedure pertaining to the system, such as a 
maintenance or operation procedure. 

Violated regulations Actor(s) in the organization violated a regulation pertaining to the system. 

Did not learn from failure Actor(s) in the organization did not take past failures into account and a similar 
problem occurred. 

Created inadequate 
procedures 

Actor(s) in the organization developed a deficient procedure, for instance 
maintenance, manufacturing, or emergency procedures. 

Did not allow aspect to 
stabilize 

Actor(s) in the organization did not allow a system aspect like personnel, design, or 
requirements to stabilize before moving forward with the project. 

Conducted maintenance 
poorly 

Actor(s) in the organization failed to perform maintenance on a component or 
subsystem.  

Enforced inadequate 
regulations 

A regulator (e.g., the FAA) enforced deficient regulations. This causal action 
captures writing deficient regulations as well as implementing regulations poorly. 

Failed to train Actor(s) in the organization failed to train other actors in the organization, such as 
operations personnel or maintenance personnel. 

 
These findings mean that we already know in part what we need to look for—we just need to determine 
which data, or signals, will alert us to the presence of these real reasons. Figure 4 shows how we propose 
to use the real reasons to seed our initial set of inputs, eventually discarding them as the code learns to 
use the input data to predict failures. We differentiate here between factors and signals. Factors are units 
of information that we hypothesize may lead to one or more of the real reasons. Signals are pieces of data 
that may alert us to the presence of the factors. Signals may already be collected by organizations, or, 
may be obtained using our WoC app.  
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Figure 4: Our approach uses the “real reasons” to help identify potentially useful input data. Over time, the code will make 
direct links from the input data to the real reasons. 

 
Figure 5 shows two examples of potential signals of poor requirements engineering, one of which we 
propose to obtain using the WoC app, and the second of which is already tracked by organizations. 
 

 
Figure 5: The machine learning code uses signals to predict the presence of real reasons. We identify potential signals by 
working backwards from the real reasons to factors to signals. 

 
We propose to identify a set of potential factors and signals by surveying the organizational and human 
factors literature, as well as surveying enterprise software tools. For example, Table 2 shows examples of 
factors we identified from the literature, and how they might relate to the “created deficient 
requirements” real reason. 
 
Table 2: Potential factors affecting “conducted poor requirements engineering” identified from the literature 

Factor and Definition Mechanism 

Proactivity (Kirkman and Rosen, 1999): 
Proactive individuals show initiative, are 
willing to take action and affect their 
environment, and show perseverance. 

Proactive team members may put in more effort to identify 
missing requirements that would otherwise be missed. 
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Factor and Definition Mechanism 

Neuroticism (Virga et al., 2014): Neurotic 
individuals are associated with low emotional 
stability, experience frustration, anxiety, 
depression, and negative emotions. 

General teamwork and ability to solve problems can be negatively 
impacted by neurotic members. 

Stress level (Dietz et al., 2017): High level of 
stress is associated with increased anxiety, 
negative emotions, distraction, conflict, and 
loss of team orientation. 

Stress may negatively impact cognitive performance and result in 
incomplete tasks. 

Individual experience and experience working 
together (Reagans et al., 2005): The level of 
proficiency of employees as well as the 
collective ability to exchange knowledge. 

People with a lot of experience may be better at identifying 
hidden requirements. 

Team Tenure (Smith et al., 1994): The 
duration a team has been working together. 

An engineering team that has been working together for a long 
time may be more thorough and methodical during the 
requirement generation process. 

Team size (Smith et al., 1994): The number of 
members in a team. 

Larger team sizes may correlate with more thorough 
requirements generation. 

Budget Uncertainty (Yan, 2005): Refers to 
deviation from the initial budget estimate, 
due to external funding sources and 
associated risk. 

Uncertain budget can affect time allocated to a phase of a project 
and thus may result in deficient requirement generation. 

Leadership style (Cummings et al., 2010): 
Distinction between leadership that focuses 
on the relationships and people, and 
leadership that focuses on the tasks. 

Certain leadership styles might improve teamwork in the 
organization, which in turn may help the team create better 
requirements (an activity best done in teams). 

Parts expenditure (Mathieu et al., 2006): The 
percentage of budget associated with 
replacing faulty or unsuitable parts. 

Many faulty parts may be a sign of poor requirements 
specification (e.g., good part used in wrong way, or poor quality 
part). 

# Parts failing in operation (comparing to 
other design teams/products) 

More parts failing may be correlated to deficient requirement 
generation during the design phase. 

# Design iterations per unit time (in 
comparison to previous/similar projects) 

More iterations may be correlated with having to update 
requirements and hence update designs. 

 
Next, we will identify potential signals for each factor. Some factors are already tracked by organizations, 
while others are known but not necessarily tracked in a convenient manner. Table 3 shows examples of 
potential signals for several factors related to “conducted poor requirements engineering”. Some signals 
are obtained directly from existing data (e.g., “number of changes to estimated budget”, while others we 
will attempt to elucidate in a more subtle manner (e.g., “How many times did you ask your team members 
a “why” question today?”). 
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Table 3: Potential signals for factors for “conducted poor requirements engineering” 

Factor Signal 

Proactivity How many times did you ask your team members a “why” question today? 

Neuroticism Are you more excited or more worried about this project? 
 
How many times today did you feel frustrated by your team members or by 
other members of our organization? 

Stress level Were you able to focus on this project as much as you would like today? 

Individual experience and 
experience working together 

How many times today did you or your team have to look outside your team 
for advice or guidance on how to do a particular item? 
 
Did you learn anything new today in your technical discipline? 

Team Tenure How many of the people that you worked with today have you known for 
more than 1 year? (less than 1/3, 1/3 to 2/3, more than 2/3) 

Team size How many members are there in your team? 

Budget Uncertainty Number of changes to estimated budget to date. 

Leadership style Does your team leader know what you did for fun this weekend? 
 
Does your team leader know which tasks you are most proud of? Does your 
team leader know which tasks you worry about the most? 

Parts expenditure Percentage of parts budget spent to date. 

Number of parts failing in 
operation 

Number or percentage of failed parts. 

 
However, questions such as these will not provide enough or good enough data. People may answer 
inaccurately for understandable reasons (for example, you may not want to tell your boss that you are 
feeling stressed). Can unorthodox questions, such as “did you have breakfast this morning?”, help 
determine whether a project is in potential trouble? Online companies, such as Google, Facebook, and 
Amazon, rely on unorthodox signals to predict user behavior. For instance, (De Choudhury et al. 2013) 
shows how the structure of someone’s Twitter follower/followee network structure can help predict 
depression. 
 
The root causes of failures can often be related to perfectly rational work incentives introduced for various 
reasons (see, for example, Braun, 2002; Marais et al., 2006). For example, if a team is given bonuses for 
coming in under budget, the team, might, consciously or unconsciously, decide to buy cheaper low-quality 
parts or skip steps in a process. Such a response though clearly undesired, is arguably rational, given the 
incentives. Organizational behavior archetypes provide a potentially useful starting point for identifying 
these locally rational but ultimately destructive behaviors. Table 4 shows examples of safety archetypes 
identified by PI Marais and potential Signal Questions. 
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Table 4: Examples of safety archetypes and potential signal questions. 

Archetype Description Signal Question 

Eroding Goals When performance does not reach a stated 
goal, managers may move the goal over time 
to one that appears to be more attainable, 
rather than determining why the organization 
did not reach the particular goal. 

If your team redefined any goals 
today, did that make you feel 
better about meeting your overall 
project objective? 

Complacency When things have been going well, people 
tend to become complacent. 

Did you worry more today than 
yesterday? 

Stagnant Risk 
Management Practices 

When technological advances are not 
accompanied by concomitant understanding of 
the associated risks, risk may increase. 

Did you update any of your risk 
assessments today? 

Unintended Side 
Effects of Fixes 

Poorly thought out fixes may have unintended 
side effects.  

Did your team experience new 
problems today as a result of a 
previous fix to a problem? 

Fixing Symptoms 
Rather Than Root 
Causes 

Fixes to problems that only address the 
symptoms may worsen or prolong the original 
problem. 

Were you disappointed today 
because a problem that you 
thought had fixed, had instead 
continued or gotten worse? 

The Vicious Cycle of 
Bureaucracy 

When organizations respond to problems with 
more rules and bureaucracy, employees may 
become apathetic or alienated.  

How many times today were you 
frustrated by rules or bureaucracy? 

 
Rationality therefore doesn’t always guarantee desired behavior, but, clearly irrationality is not the 
answer either! Behavioral economists have identified a vast array of cognitive biases (Tversky and 
Kahneman, 1975), which we will use to design simple easy-to-answer questions that aim to ferret out 
potentially harmful instances of irrationality. More recently, researchers have shown how these biases 
can affect engineering decision making (e.g., Smith and Bahill, 2010; Bohlman and Bahill, 2013). Behavioral 
economics can also help get better signals, by asking questions in clever ways. For example, we might ask 
“What do other team members think about X”, where the third person perspective is used as a proxy for 
the subject’s own expectations. Table 5 shows examples of how we will use these cognitive biases to 
identify potential signal questions. One of the advantages of this approach to uncovering signals is that 
many of the questions do not have a “correct” answer, thus making it harder for employees, perhaps well-
meaning, to put a rosy tint on things, or to intentionally or subconsciously “hide” information. 
 
Table 5: Selected cognitive biases and potential signal questions. 

Bias Description Signal Question 

Ambiguity effect 
(Baron, 2000) 

The tendency to avoid options for which 
missing information makes the probability 
seem "unknown". 

How many times today did you say or 
think “I don’t know”? 

Anchoring or focalism 
(Zhang et al., 2007) 

The tendency to rely too heavily, or "anchor", 
on one trait or piece of information when 
making decisions (usually the first piece of 
information acquired on that subject). 

Is your first activity in the morning 
related to your main project? 

Automation bias 
(Goddard et al., 2011) 

The tendency to depend excessively on 
automated systems which can lead to 

From 1 (almost never) to 5 (all the 
time), how often does the key 
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Bias Description Signal Question 

erroneous automated information overriding 
correct decisions. 

automated system needed in your 
project fail? 

Bandwagon effect 
(Coleman, 2003) 

The tendency to do (or believe) things 
because many other people do (or believe) 
the same. 

How many arguments did your team 
have today? 

Confirmation bias 
(Oswald and Grosjean, 
2004) 

The tendency to search for, interpret, focus 
on and remember information in a way that 
confirms one's preconceptions. 

How many things did you learn today 
that surprised you? 

Courtesy bias 
(Ciccarelli and 
White, 2012) 

The tendency to give an opinion that is more 
socially correct than one's true opinion, so as 
to avoid offending anyone. 

How many times today did you “bite 
your tongue”? 

Focusing effect 
(Kahneman, 2006) 

The tendency to place too much importance 
on one aspect of an event. 

What is the most important decision 
your team made today? 

Irrational 
escalation/sunk cost 
fallacy (Drummond, 
1998) 

The phenomenon where people justify 
increased investment in a decision, based on 
the cumulative prior investment, despite new 
evidence suggesting that the decision was 
probably wrong. 

Over your career, what proportion of 
ideas have you thrown out? (less than 
1/3, 1/3 to 2/3, more than 2/3) 

Law of the instrument 
(Brislin, 1980) 

An over-reliance on a familiar tool or 
methods, ignoring or under-valuing 
alternative approaches. "If all you have is a 
hammer, everything looks like a nail." 

Looking at just today, the methods 
and tools you have on this project are 
(1) insufficient, (2) adequate, (3) more 
than good enough. 

Loss aversion 
(Kahneman, 1991) 
 

The disutility of giving up an object is greater 
than the utility associated with acquiring it. 

Roughly how many ideas did your 
team discard today? 

Normalcy bias 
(Kuligowski and 
Gwynne, 
2010) 

The refusal to plan for, or react to, a disaster 
which has never happened before. 

On a scale of 1 (not at all) to 5 (all 
day) how much time did your team 
spend thinking about how things 
might go wrong? 

Not invented here 
(Katz and Allen, 1982)  

Aversion to contact with or use of products, 
research, standards, or knowledge developed 
outside a group. 

How many ideas did you find today 
from outside your team? 

Optimism bias (Baron, 
2000) 

The tendency to be over-optimistic, 
overestimating favorable and pleasing 
outcomes. 

What kind of TV shows do you like to 
watch? [comedies/dramas/detective] 

Overconfidence effect 
(Hilbert, 2012) 

Excessive confidence in one's own answers to 
questions. 

How confident do you feel that your 
answers to the questions in this app 
are “right”? 

Status quo bias (Baron, 
2000) 

The tendency to like things to stay relatively 
the same. 

When was the last time you ordered 
something new at your favorite 
restaurant? 

Parkinson's Law of 
Triviality (Forsyth, 
2009) 

The tendency to give disproportionate weight 
to trivial issues. 

How many discussions about trivial 
matters did you have today? 

 

5.4 CASE STUDY: STUDENT TEAMS 
In Section 1.3 we showed how we will identify a large pool of potential signal question, and in Section 1.4 
we discussed how we will use machine learning techniques to use these signals to predict failures. One 
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crucial ingredient for the machine learning code is a set of linked signals and failures. Failure data can be 
difficult to obtain, because, for understandable reasons, organizations do not like to share such 
information. However, they may be more willing to do so if we can demonstrate that our approach has 
the potential to help. Therefore, we propose here to demonstrate the potential of our approach using 
student projects at Purdue University. Purdue offers many opportunities for students, either via large 
technical organizations such as the American Institute of Aeronautics and Astronautics (AIAA) or via the 
technical curriculum, to participate in smaller-scale engineering projects that include designing, 
manufacturing, testing, or operating engineering equipment. Through these phases students get exposed 
to real-life situations and work in teams to solve problems, while making weekly progress with meetings 
and sessions. Others have also used student courses or teams to obtain useful information about how 
engineers work. For example, Bohlman and Bahill (2013) used data from systems engineering courses to 
identify mental mistakes engineers make while creating tradeoff studies.  
 
This approach offers several advantages: 

1. We have ready access to such teams (pending IRB approval). 
2. There are several potential teams with which we can work (reducing risk of not getting any data) 
3. The teams are doing “real engineering”. 
4. The students have diverse backgrounds (educational, national, and personal), reflecting what 

industry looks like. 
Purdue has several potential teams each year, for example: 
 

 Most years, Purdue’s AAE department runs a two-semester undergraduate course where students 
design an experiment that will fly on NASA’s “vomit comet”. This year, the team will develop an 
experiment to participate in NASA’s Micro-g Neutral Buoyancy Experiment Design (Micro-g NExT) 
Challenge. The students will design, build, and test a tool or device that addresses a current space 
exploration challenge. Test operations are conducted in the simulated microgravity environment of 
the NASA Johnson Space Center Neutral Buoyancy Laboratory (NBL). The project proposals are due in 
November 2017 with the teams testing their equipment in late spring 2018.  

 Purdue’s AAE department also presents a varying range of design-build-test and design-build-fly 
classes every semester, including several offerings at undergraduate and graduate levels. This coming 
Spring, students in the aircraft senior design class will build model airplanes. 

 Purdue Solar Racing is a student-run organization at Purdue University that designs, builds, and races 
solar-powered vehicles in national and international competitions. The multidisciplinary team consists 
of a diverse set of students who work in business, operations, and engineering functions. The team is 
currently working on their tenth vehicle, named Renatus. 

 Purdue’s Chapter of the Association for Computing Machinery (ACM) offers students the opportunity 
to participate in Special Interest Groups (SIGs) which specialize in different areas of computer science, 
such as mobile applications, artificial intelligence, game development, high performance computing, 
multimedia, operating systems, or security. Each year, the SIGs recruit new members as returning 
ones give guidance and lead team projects. The students work on a project year-round before 
presenting it to corporate partners. One of the groups allows students to work on projects with the 
goal of participating in collegiate-level robotics competitions. 
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5.5 CONCLUSION 
Systems engineering failure and more broadly project management failures continue to plague industry 
and government. Proper upfront systems engineering (e.g., thorough requirements engineering) has 
resulted in significant improvements, but, unfortunately, organizations often deviate from these 
practices, often for locally and temporally rational reasons (e.g., to meet scheduled milestones). Even 
organizations with many past successes are not guaranteed future success. Many suggested methods for 
managing risk are based on closely monitoring the organization or development process, but these same 
methods may exacerbate the problem by diluting employee resources from the main task. Here, we have 
proposed an alternative approach to both the data collection and failure prediction tasks. First, rather 
than asking people to fill out time-consuming data such as detailed spending projections, we ask them a 
series of relatively simple questions that do not require looking anything up (e.g., roughly how many ideas 
did your team discard today? Many of our questions do not have a “correct” answer; we anticipate that 
such questions will result in greater transparency, because they are harder to game, intentionally or 
unintentionally. Second, rather than trying to explicitly model the relationships between these input 
signals and project risk, we propose to use deep relational learning to predict failures. This code requires 
an initial set of training data. Because it can be difficult to obtain such data, we propose to train the first-
generation model using student project data. Subsequent generations can be trained within 
organizations. Our approach will allow organizations to partner with us while keeping sensitive data 
private, and, as an added benefit, the code can be automatically tailored to best predict failures within a 
particular organization. 
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6 SYSTEMIC SECURITY AND THE ROLE OF HETERARCHICAL DESIGN IN CYBER-PHYSICAL SYSTEMS – TOM MCDERMOTT, 
CO-PI VAL SITTERLE, GEORGIA TECH 

 

6.1 OBJECTIVES OF THE RESEARCH 

Defense systems in operation and in development today are increasingly what we call cyberphysical in 
nature.  Cyberphysical systems (CPS) combine sensors and actuators to perceive and act in the physical 
world with communication to enable information and data flow and computation to drive decision making 
and control the physical actuation.  While CPS offer the potential for tremendous new capabilities, their 
‘cyber-ized’ computation and communication backbone coupled with readily available technological 
advances makes them vulnerable to classes of threats previously not relevant for many defense systems.   
Cyberattacks are now a tremendous concern for the future of military operations, and this has spawned 
a drive to intentionally design “cyber resilience” into these systems at the early stages in ways that are 
amenable to comparative analysis and verification within the systems engineering process.  Recent 
studies from Rand [1] and a 2016 Defense Science Board [2] are especially relevant to the design and 
evolution of CPS for defense.  Both noted similar limitations in current processes, namely that current 
policies, guidance, and practice still assume stable and predictable operational environments and lack 
methods to consider the dynamics between rapidly changing threats and system configurations. 
 
The overarching goal of the proposed research program is to advance the theory and practice of systems 
security design and analysis for cyberphysical systems in ways that will specifically address the concerns 
noted above.  We distinguish security from the broader concept of resilience in that security focusses on 
protecting defense systems from sentient adversaries.  Cyber systems are generally designed by initially 
specifying critical and other necessary functionality.  The high-level functionality is decomposed into 
specific functional capabilities, and system requirements derive from these functional needs.  Boehm and 
Kukreja [3] distinguish between functional and non-functional requirements as what the system does and 
how well it does those things, respectively.  The –ilities, or system qualities (SQs) of a system such as 
maintainability, changeability, survivability, etc. are best understood through their relation to the non-
functional (i.e., performance) requirements.  From this perspective, security is another non-functional 
quality.  Security is assessed based on how well a given security design pattern protects the system as 
intended – without adversely impacting the critical functional capabilities. 
 
With that understanding, this research proposes to develop a holistic approach integrating the CPS, attack 
vector(s), and security implementation(s) into a unified ecosystem whereby we may evaluate how well 
security design choices preserve critical system functionality necessary for mission success.  Further, the 
frameworks and methods created and matured in this effort will serve as a direct compliment to existing 
model-based systems engineering (MBSE) processes and tools and, in turn, themselves be executable 
within a toolset that enables systems engineers to produce, navigate, and understand the complexity and 
scope of the problem.  The penultimate goal is to extend our executable ecosystem model to assurance 
test framework and patterns. Such extension will enable the community to maintain explicit knowledge 
of vulnerabilities and corrective patterns in design models and begin to build standard libraries of test 
strategies reusable across different security design and evaluation efforts. 

6.2 CURRENT PRACTICE AND ITS LIMITATIONS 

As described in the SERC System-Aware Cyber Security effort [4], cyber system protection may be 
achieved through any number of implementable techniques that provide capabilities to respond to certain 
types of threats (e.g., detect when a system asset has been compromised, isolate a compromised asset, 
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restore an asset to an original state, etc.) that are similarly applicable to CPS.  These techniques may be 
represented as design patterns, each contextually relevant to a given threat type, and are ideally reusable 
from one system to another.  Security is realized by incorporating these design patterns into the system, 
thereby generating an adapted system architecture with new or improved, threat-specific capabilities.  
Together, multiple security design patterns form the security architecture.   
 
There are two primary reasons why selecting security measures and evaluating their effectiveness are so 
difficult.  Firstly, each of these implementations provides distinct security capabilities at a cost (e.g., 
implementation cost, additional resource cost, collateral impacts cost, etc.).  For any given CPS, multiple 
security design patterns may be implemented, which may alter the original system architecture minimally 
or substantially depending on individual characteristics.  The decision problem posed by security design is 
very non-linear and quite complex.  Secondly, and directly related to that last point, CPS are heterarchical 
in nature.  They are comprised of numerous, heterogeneous elements acting both independently and 
interdependently.  Unlike traditional defense systems, they are spatial and logical in scale and complex in 
their behavior dynamics.  Because of this complexity, traditional decomposition and predictive methods 
are insufficient.  Further, the interdependency makes a threat to a critical system function inseparable 
from the original system.  The system, the threat, and the security implementation change the initial 
system structure and functional behavior, producing and entirely new system with new dynamics. 

6.2.1 EMPHASIS ON STRUCTURE OVER FUNCTION AND A CONFLATION OF -ILITIES 

The extensive focus on structural system representations alone is a critical weakness in current methods.  
Even a recent DARPA BAA [5] emphasizes “structural design patterns” to help meet cyber requirements, 
calling out physical elements such as load balancers and redundant elements as examples.  In all complex 
systems, however, form and function are intrinsically linked.  A system’s structural characteristics and 
what processes and behaviors are possible within and as produced by that system are not separable.  The 
structural bias results in an overt conflation of resilience (in the broader sense) with robustness or 
reliability.  Reliability theory evaluates the impact of failures due to independently occurring natural 
events or system component failures and their cascading effects typically based on intrinsic system 
measures such as mean time to or between failure (MTTF or MTBF, respectively).  Resilience metrics in 
related fields such as homeland security, however diverse [6], commonly treat resilience as an explicit 
relationship between system performance and time, thus conflating notions of reliability with resilience.  
This approach is also applied to systems of systems (SoS) analyses treating disruptions as a function of 
constituent system reliability [7]. 
 
Even many graph-based methods evaluate resilience of complex systems based on structural properties.  
For example, approaches like random node or edge removal are used to determine the impact on 
structural properties such as connectedness [8].  There has been a huge emphasis on how structural 
statistical properties of a network topology will be affected by additions (growth or augmentation) and 
removals (failures or attacks) of nodes and links, and particularly how networks can be more robust 
against the latter [9].  Those additions and removals are typically assumed as perturbations coming from 
external sources, not incorporated into the dynamics of the network itself.  The literature is also replete 
with studies on dynamics of networks, meaning how a network changes its structure over time.  This is 
distinct from studies of dynamical processes on networks that are most common in immunology to study 
disease propagation or idea dissemination in social sciences [8, 10, 11].  These latter studies will be 
addressed as foundational to our approach in Section 6.3. 
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6.2.2 LACK OF INTEGRATION BETWEEN CURRENT MBSE, THREAT ANALYSES, AND SECURITY 

Engineers traditionally view threats and uncertainties as stability and/or robustness issues instead of 
security concerns, and current MBSE methods consequently evolved to support these perceptions.  The 
International standard OMG Systems Modeling Language (SysML), for example, was specifically 
developed to support function-oriented systems development.  SysML and its parent Unified Modeling 
Language (UML) provide for structural component descriptions and generalized functional blocks with the 
functional view often in the form of an activity diagram.  They have a foundational basis, however, that is 
the key challenge most relevant to our discussion: current model-based system design paradigms are 
based entirely on notions of decomposition and composability.  These models are also system-centric, 
meaning they contain no notion of external threats.  While natural threats may loosely be addressed via 
measures of reliability, sentient threats (i.e., security) must be defined as constructs completely external 
to the system in question and are not captured in SysML or UML system views. 
 
Security is concerned with coordinated attacks by an intelligent, adaptive, and rational adversary.  CPS 
may be vulnerable if they are reachable logically, not just physically.  Attack tree analysis is the most widely 
accepted method to assess how an attacker can gain access via the cyber aspect of these assets and 
subsequently exploit system functions.  An attack tree represents adversary perspectives and decomposes 
a high-level objective (i.e., “compromise the system”) into possible paths through which an attacker could 
exploit a specific system feature.  By themselves, however, attack trees – even with human-supported 
feasibility assessment and prioritization – do not merge likely threat vectors with the system in question. 
 
Fundamentally, the objective of a cyber-attack is to gain unauthorized access to, modify, or disable a 
system.  CPS attacks are distinguished by a primary focus on regulating (controlling) the state of physical 
processes.  This notion is not normally exploited and has only recently been considered by most security 
analyses.  Most security efforts for cyber-physical systems have followed an analogous paradigm to that 
of cyber systems, focusing on protecting the perimeter of supervisory networks controlling the embedded 
processors.  Security measures include typical IT security firewalls, anti-virus packages, data encryption, 
access control, and user authentication. Yet once an attacker penetrates the supervisory network, they 
often find little or no security or validation schemes on the embedded process controller.  This allows the 
attacker to modify the behavior of the embedded processor and consequently the physical process [12]. 
 
As a community, we need a modeling paradigm that holistically unifies traditional MBSE with outputs of 
attack tree analyses and design alterations resulting from security implementation.  Complimenting these 
existing processes with methods that embrace the natural complexity or our resultant ecosystem may 
reveal emergent behaviors, economies and diseconomies of scale, and consequences we would otherwise 
not see.  Additionally, augmenting our design and analysis process to elucidate structure-function 
relationships in a formal modeling paradigm will traceably capture how the functional dynamics of our 
system are changed by considering the entire ecosystem.  In turn, this formal model will enable us to 
explore consequences of attacks that penetrate our perimeter protection in un-anticipated ways, moving 
security analyses beyond the limits of approaches described above.  Finally, the model can inform and be 
augmented with system assurance test models that capture the context of the attack for formal test. 

6.3 RESEARCH APPROACH 

Our challenge is to define a methodology and process that is repeatable for each unique CPS 
representation that enables us to rationally compare and select security implementations (a) in the early 
stages of design, ‘designing in security’, and (b) is also applicable to already designed systems for which 
a security solution is needed.  The inextricable structure-function connection is widely appreciated in 
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research pertaining to living systems, and will be a core premise of our approach.  Namely, by adding 
consideration of the threat(s), and protection(s), we create a new system structure with new functional 
dynamics.  A system’s structural characteristics and what processes and behaviors are possible both within 
and as produced by that system are not separable.  System security analysis via heterarchical models that 
unify these topological-functional dependencies may better inform CPS protection strategies than 
hierarchical WBS structures and component lists. 
 
Our research will consequently make two central assumptions.  Firstly, we can create functional 
abstractions of attacks and countermeasures, whereby attacks reduce or disable desired system 
functionality and protection methods increase or enable functionality.  Secondly, modeling the original 
system together with these abstractions as a directed graph supportive of simulation will reveal important 
behavioral dynamics across the CPS, threat, and protection elements.  The original system components, 
functional representation, and assets critical to realizing those functions will derive from existing MBSE 
system component models, functional architectures, and activity and/or N2 diagrams.  However, graph 
theoretic measures based on aggregate statistics alone do not adequately characterize a system in terms 
of its throughput, performance, and vulnerabilities.  Networks may have identical degree distributions, 
for example, and yet fundamentally different structures functional performance [13].  Key to the ability 
of our directed graph to elucidate relationships and performance behaviors will be its amenability to 
dynamic simulation (i.e., dynamic processes on graphs).  To achieve this, we will borrow concepts 
developed for ecological physics, neurology, and other living sciences. 

6.3.1 PHASE 0 – PILOT BACKGROUND REVIEW AND FOUNDATIONAL CONCEPT DEVELOPMENT 

The Phase 0 pilot effort began by investigating the potential for a model-based approach to CPS protection 
using heterarchical models to capture threats and associated system vulnerabilities.  In contrast, to 
structural topologies where size represents spatial extent or physical dispersion CPS scale will encompass 
logical and flow-based (e.g., signal, power, etc.) extent across the numerous assets required to realize the 
necessary functions.  The original notion was to cast CPS graphs as directed acyclic graphs (DAGs), a 
common approach for flow-based functional models.  CPS differ very much from the simple-pairwise 
relationships traditionally modeled for many systems as their flow and logic relationships are directional.  
DAG representations were also used in [14] to investigate the potential for graph models to serve as a 
structural framework for system-aware cyber security architecture selection.  CPS, however, are not 
acyclic.   

 
 

Figure 6-1 illustrates the cyclic nature of an individual CPS and group configuration.  Higher-level functional 
capabilities are often achieved through local network structures that, while still directed, also contain 
cycles.  While we can transform a cyclic structure into an acyclic one by duplicating node types and adding 
them in appropriate places, this will not produce a functional topology representative of our problem.  In 
fact, the cycles in CPS are often important sources of vulnerability (e.g., an attacker tricks the system into 
staying locked into a given functional state or cycle).  Moreover, the pilot research found that unlike most 
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studies investigating attacks in uncorrelated, scale –free graphs or assume all nodes are identical [8, 10, 
11], our final graph models are not random or statistically evolved and should exhibit different dynamic 
characteristics.  Phase 0 findings provided refined direction for the research, which will be expanded upon 
in the following sections.  Phase 1 will contain the most detail, and the ensuing phases will be described 
as necessary maturations of this work. 

6.3.2 PHASE 1 – DEVELOP METHODOLOGICAL FOUNDATIONS 

The aim of Phase 1 is to develop the methodological foundations whereby we may begin to answer, “How 
do we connect the functional representations into the same ecosystem model in a way that produces 
meaningful consequences in the modes when executed upon – did our security design pattern 
implementation work or not?”.  Our research must therefore address three primary challenges. 

 
 

Figure 6-1:  Abstract representation of a CPS group configuration 

 

Task 1.  We need to effectively extract necessary system threat, and protection information from the 
respective MBSE or attack tree structures in a way that enables repeatable, automated generation of a 
graph structure with the correct functional specification and relationships.  The goal for this task is to 
automatically extract semantic descriptions from each entity type (cyber system functional component or 
asset, protection pattern functional capability or asset, threat functional capability) that will be included 
in the graphical model with respect to entity class, relationships with other entities of any class, and type 
of relationship (i.e., logical flow, information flow, causal dependency). With these characteristics derived 
from the functional model extracted from the system description, attack graphs, and a library of 
protective functional patterns, this will serve as the basis for a repeatable, directly executable model 
modification approach.  The result of this task is a complete ecosystem model that is now comprised of 
the original (unprotected) cyber system, the threat functional capabilities and attack vectors revealing the 
critical cyber assets they will target, and the security functional architecture via one or more security 
design patterns showing how (functional capabilities) and where (cyber assets or threat assets).  Our 
ecosystem model is contextual with respect to the threat and protection spaces. 
 
We envision this process to begin from a CPS description including its functional capabilities and 
associated critical assets already specified and annotated in an MBSE paradigm such as SysML or UML. 
These assets are those elements required to realize a given functional capability, and may be logical 
elements, software elements, data elements, gates, etc.  Designers will frequently add hardware 
components as necessary to this picture as needed to support the system assets.  Systems are 
decomposed via standard work breakdown structures (WBS) into a structural model that defines a 
hierarchy of system, hardware, and software configuration items and components.  As a first step, we 
need to semantically extract the original CPS functional information from the relevant activity and/or 
block diagrams into a form that may be used to create a directed graph.  The nodes will represent the 
functional capabilities and their critical cyber assets.  The edges (links between nodes) will represent a 
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logical flow, information flow, or causal connectivity.  Both direct and indirect connections can be 
consequential, together producing cascading effects in the event of a disruption. 
 
Similarly, our approach will build from an existing attack tree generation and analysis process already 
conducted against the critical cyber assets.  We envision the effort as a compliment and consumer of 
attack vectors and their libraries as well as security design patterns already being investigated by the SERC 
System Aware Cybersecurity effort.  For this research, we need to develop a semantic mapping of attack 
vector descriptors to targeted assets to create a modified version of our original graph.  Threat functions 
will be new nodes and edges will connect the threats to the targeted CPS functional asset.  Security design 
patterns are subsequently implemented alongside and on selected CPS functions to counter or mitigate 
the threat posed by an attack.  They are also specified and annotated in the MBSE tool.  We need to 
extract a semantic mapping of security design patterns to (a) their functional capabilities, (b) the cyber 
assets they require to achieve their functional capabilities, (c) the critical cyber assets and/or functions 
they will protect, and potentially if applicable (d) the specific threat functional capabilities and/or threat 
cyber assets they are designed to detect or counter through direct connective action.  In graph form, (a) 
and (b) will be captured as nodes while (c) and (d) will be captured as edges.  Notice that these edges, by 
definition, require the original cyber system functional model to exist. 
 
Task 2.  We must develop node and edge functional/property motifs that make our ecosystem graph 
executable and meaningful with respect to answering our research question.  These motifs should be 
detailed enough to produce the needed overall system behavior but generalizable enough by type to be 
reusable and allow us to produce similarly executable graphs at much greater scale.  Unlike the random 
or statistically generated graphs studies in other fields, we must develop techniques best suited and 
modifiable for simulating the impacts of highly correlated threats and protection implementations on 
functional capabilities of a system.  This research task will develop ways to specify parameters in our 
graphical model that, when executed via discrete simulation, produce “consequences” most relevant and 
meaningful to the CPS security problem.  A key take away from the science fields mentioned previously is 
that different graph topologies radically alter the dynamics possible.  Our different graph topologies may 
analogously alter the effectiveness of establishing security for our system under threat(s).  The difficulty 
in modeling CPS is the number of different node types or classes more so than the number of nodes.  To 
make executable models of CPS scalable, we need to devise motifs, algorithmic representations that 
represent the behaviors and decision processes of each distinct class.  Various graph properties may be 
assigned in ways that capture dynamic impact to best represent the problem, specifically node and/or 
edge state descriptions and weights. 

 Node states and capacities.  Nodes may be in one of a certain number of possible states during a 
simulation depending on the input they receive from their neighbors and pre-specified growth or 
decay characteristics of those states.  A node capacity can be expressed as a direct function of its 
state to represent how much of something (e.g., signal strength, data quality, etc.) a given node 
possesses.  State and capacity can modulate the level of influence a given node propagates to its 
dependent nodes, producing a cascading effect.  Final capacities of the original CPS nodes 
(perhaps as a function of their state), for example, may quantify “how well” that functionality is 
preserved. 

 Edge states and weights.  Edge state is analogous to node state, except that edge state represents 
on or off connectivity, the degree of connectivity, and any latency, decay, or growth associated 
with the connectivity.  For example, an edge may change its strength (weight) at a certain rate 
once its parent node has expressed a certain state or capacity.  Edge weights represent edge 
capacities or proxies for measures of connection strength.  Together these concepts help shape 
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the propagation dynamics of the cyber system and can potentially capture impact of a connective 
vulnerability type as well.  
 

These techniques will, together with the graph’s final structure, govern the spreading dynamics of the 
impact of the threat(s) and security implementation(s) and, consequently, the final state of the cyber 
system’s functional capability.  Rules governing node and edge states will derive from the node or edge 
type (i.e., node class) and relational nodes defined by a Markov blanket [13].  A key aspect of the work 
will be to simplify the relational state rules as much as possible to still reflect an abstraction of the 
contextual cyber system behavior over time.  Figure 6-2 illustrates these concepts. 
 
Task 3.  We need to identify and design an approach using a real system, likely via hardware-in-the-loop 
emulation, whereby we may validate the research concept. While it is impractical to impractical to test 
the full operating envelope of our simulation backed by hardware test and evaluation, simulation like 
what we propose does not eliminate the need for testing using physical systems.  Complex systems such 
as CPS ecosystems are not explicitly predictable, even when using first principles approaches.  We are not 
trying to produce quantitatively accurate models in terms of expressing voltages, gains, inductances, etc.  
Rather we are striving to create functional abstractions of our system, using final node and edge states 
after graph simulation, that can accurately reveal whether critical system functions are preserved or not 
in the face of defined threats.  Initial validation will be logical, conducted using designed models to verify 
they perform as expected.  Second-level validation will need to compliment a CPS design or analysis effort 
using hardware-in-the-loop emulation.  We propose two options that together would validate the 
conceptual development.  Firstly, the research team has had discussions with SERC member University of 
Virginia about the possibility of supporting their existing RT on smart munition systems for the US Army.  
This effort will encompass system description, threat attack vector specification, and protective patterns.  
It is also envisioned to include HWIL emulation. Additionally, GTRI has in-house cyber emulation 
capabilities that may also serve effectively as a validation testbed. 
 

 
Figure 6-2:  Illustration of directed graph (here acyclic) in a 2D lattice.  In (a), node X8 is conditionally dependent on its 

parents (in blue), children (in green), and co-parents of those children (in orange).  In (b), the state of X8 and an outgoing 
edge are expressed as functions of its inputs with functional rules based on node classes within its Markov blanket. 

6.3.3 PHASE 2 – MATURE AND EXPAND METHODOLOGICAL FOUNDATIONS 

Phase 2 will build from and mature the research developed in Phase 1 across three task areas. 
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Task 1.  We need to mature the processes and structures developed in tasks 1 and 2 from Phase 1 to 
become semi-automated so that we may scale our approach across various CPS problems.  Even with 
humans in the loop of the process of identifying attack vectors, prioritizing attacks, and selecting defensive 
protection patterns to implement, the constructs with which we represent our system and the 
corresponding analytical methods must be executable in a computational environment to produce the 
efficiencies at scale that are necessary for this problem.  For this task, we will mature our methods to 
accomplish that vision.  Additionally, the conceptual validation proposed in Phase 1 will be continued and 
matured under this task. 
 
Task 2.  To elucidate the structure-function relationship further, we can derive functional 
representations directly from structural (i.e., component) topologies that may reveal different 
behavioral dynamics or vulnerabilities.  We need to understand and characterize how these insights 
might be applied to the overall problem to make a difference in our security approach.  In a structural 
cyber topology, the nodes will represent hardware, software, or logical components.  Edges will represent 
a logical flow, information flow, or causal connectivity.  Both direct and indirect connections can be 
consequential, together producing cascading effects in the event of a disruption.  We need to understand 
how the structure of our cyber system and its security implementation constrains (or promotes) the 
dynamics that can occur on that network.  Does our structural design architecture produce the necessary 
functionality we need?  We may produce these insights using community detection in graphs based on 
information theoretic approaches frequently applied to social and biological systems.  In these methods, 
relationships (edges) represent “flow” and the focus is on discovering the dynamic interdependence of 
system elements connected by the edges.  A known structural representation already exists as a starting 
point for these methods.  As a baseline we follow previous work [15, 16] using random walks as a proxy 
for information flow to discover the essence of a graph flow patterns induced by the structural 
architecture.  There are some key aspects of the approach we should address and will be vital to our 
problem:  1) What is the relationship between this functional mapping and that derived from the MBSE 
process?  The mapping view is derived directly from the synthesis of structure and directional flow.  We 
need to explore the differences that may arise and explain how they relate to produce a meaningful 
interpretation.  2) What can our mapping reveal about vulnerabilities that we did not know before?  This 
structure-function mapping is not a dynamic simulation of our graph but a discovery of functional 
communities and their relationships driven (or constrained) our directional structure.  This may reveal 
very different perceptions of fault or failure modes not discernible in the original topology.  3) Do 
structural design changes preserve functionality for our system?  As we change security implementations 
or create different designs to satisfy the security requirements, we change our system topology.  We may 
evaluate different design attributes such as redundancy, diversity, segmentation, distributed-ness, etc., 
and their impact to our security effectiveness.  Tuning our mapping process may reveal whether we retain 
the same functional mapping or produce a different one.  If different, we need to relate this to what we 
changed.  This latter concept relates directly to a measure of resilience.  Did our design decisions preserve 
functionality for our system?  4) Can we use this approach to determine “how much” of a design attribute 
we may need?  To make design decisions, we need to know how much redundancy, diversity, distributed-
ness, etc. produce a meaningful difference in our security performance.  This may aid decision trades.  
Adding redundancy, for example, should not change our end functionality.  Does it, via our community 
discovery?  Diversity will add structural components and, consequently, new edges to our graph.  
Distributed-ness will add new edges.  Our approach to functional community discovery may reveal what 
impacts on functional characteristics that the degree of these attributes included in a design may produce. 
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Task 3.  We need to associate the inputs and outputs of our research with current processes to prioritize 
threats and security implementations through a decision tool where we can perform trades on the 
effectiveness, ease, and “cost” parameters associated with each.  Each of the protective 
implementations provides distinct security capabilities, but at a cost.  This cost is reflected in 
implementation cost, resource cost (i.e., the cost of any additional resources needed by the system for 
that implementation), and a more abstract cost reflecting the set of collateral impacts to the rest of the 
system.  Whereas Information technology systems have few functional-structural constraints, 
cyberphysical systems are likely to be more constrained with a more tenable set of protections.  For any 
given CPS, multiple security design patterns may be selected for implementation, altering the original 
system architecture minimally or substantially as discussed earlier.  It will be imperative that we prioritize 
threats and security implementations through a decision tool where we can perform trades on the 
effectiveness, ease, and “cost” parameters associated with each.  This will enable us to narrow down our 
threat and security implementation spaces for further analysis.  Otherwise our architectural possibilities 
may be innumerable.  We need to identify specific outputs of our research process and how they may 
feed into existing decision analysis methods and tools so that the “cost” of security may be evaluated. 

6.3.4 PHASE 3 – EXTENSION TO ASSURANCE AND TRANSITION 

Phase 3 is contingent upon the success of the previous phases.  It will focus on two key aims:   

Task 1.  How can we formally extend and implement the process into an integrated toolset or family of 
related, modular tools that manage and assemble in a semi-automated way the necessary ecosystem 
information extraction, model construction, and node and edge property assignment (i.e., discrete 
functional models) to enable simulation?  The goal is to produce reusable system models and specify the 
associated function libraries, component libraries, and standards necessary to support the semi-
automated process.  As part of this task, we need to evaluate and – if deemed feasible – pilot a library 
search capability that can partially automate the assembly of a new meta-model from existing component 
libraries containing key CPS components and/or associated functions, common threat vectors and 
associated attack libraries, and libraries of security design patterns. 
 
Task 2:  How can we extend the process to support model-based system assurance (MBSA)?  The same 
functional model building activity developed by the previous Phases can also be used to build a test 
framework, essentially a separate functional “harness” that can be attached to portions of the functional 
model.   Here the attacks are replaced by actual test functions (fuzzers) that evaluate vulnerabilities of the 
system.  Threat patterns can be evaluated by test inputs that actually propagate through the system, and 
the test framework can simulate multiple attack inputs.  In contrast to the system view, current methods 
typically test only one software component at a time.  While this specific task will not sufficiently address 
the inherent complexity of the system, it may provide a foundation from which the community can 
gradually build libraries of more complex system tests. 

6.3.5 RESEARCH TEAM QUALIFICATIONS TO ENSURE PROJECT SUCCESS 

GTRI excels at advancing systems engineering and analysis of complex defense systems using open-source 
technologies to build integrated toolsets based on modular open architecture software frameworks.  The 
GTRI team includes researchers well versed in complexity, MBSE standards, processes, and methods 
development, discrete simulation, and cybersecurity.  To complete this effort, we envision the funding 
will directly support collaboration with the cyber-security efforts and analytic workbench efforts ongoing 
at SERC members University of Virginia and Purdue University respectively. 
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6.4 RELEVANCE OF THE RESEARCH 

New approaches to address cybersecurity and program protection planning in development and 
operational use of military CPS are an obvious concern and a top priority for all DoD agencies.  However, 
this research specifically focuses on the complex interactions between threats, well-intended protection 
patterns, and the resultant system behaviors that may or may not be what was intended.  Our overarching 
goal is to create methods that link to existing processes and answer how well the original functional 
capabilities of the cyber are preserved in the face of the threat(s) given the augmentation with the 
security design pattern(s).  Our dynamic graphical model will permit us to explore and understand the 
structure-function relationships inherent in our ecosystem that produce those outcomes and link our 
security choices to a trades-based decision process relating cost and level of security success.  Additionally, 
our approach provides the structure to visibly or quantifiably reveal the inherent diseconomies of scale 
that can result from over protection.  Succinctly, the research offers an approach to help answer ‘How 
can we evaluate the “best” security designs for a cyberphysical system?’ in a way that builds from and 
compliments existing MBSE and security processes.  “Best” in this sense refers to providing the necessary 
security to the overall CPS – a dynamic concept within an operational context – within available resources 
to do so.  This is a cross-cutting project across three SERC Thematic Areas: Systems Engineering and 
Management Transformation, Trusted Systems, and Enterprise Systems-of-Systems. 

6.5 RISKS, MITIGATIONS, AND PAYOFFS 

Our central hypothesis is that a functional abstraction of the entire security ecosystem (i.e., the initial CPS 
design, attack vectors, and security design pattern implementations) can effectively produce an 
executable graph that will traceably reveal whether and how well a given security implementation serves 
its purpose as well as any unintended consequences it may produce.  Risk: The risk is that the high-level 
of abstraction inherent to functional models is not sufficient to accomplish this purpose.  Mitigation: This 
is the fundamental research question for this effort. and the hypothesis will be confirmed or refuted at 
the end of Phase 1.  Risk: The consistency and completeness of system descriptions in SysML vary by 
practitioner.  Annotation detail specifying critical functional assets and relationships may not be captured 
to a sufficient level in a given use case.  Mitigation: The research team has extensive experience with 
SysML tables, query structures, and plug-ins to commercial packages that will enable us to (a) extract the 
necessary system information to support our approach, and (b) guide the MBSE descriptive process in 
ways that directly support security design and evaluation.  Risk:  The research needs a real problem or 
emulation testbed to perform conceptual validation.  Mitigation:  GTRI has in-house resources that may 
help address this need, and we have approached the lead SERC partner for smart munitions is agreeable 
to our assistance on that effort pending Army approval.  If realizable, then that effort provides a real 
system with real data and a targeted emulation task to assist with conceptual validation  
 
In terms of payoffs, the methods we propose are applicable to both early stage and more mature designs 
for which a security analysis is needed.  They are similarly extensible to use cases where CPS systems are 
networked together to provide a greater physical capability extent.  Our approach has the potential to 
answer critical questions that are not adequately addressed through the currently disparate processes. 

6.6 BUDGET 

Although precise figures have yet to be calculated, the estimated budget is $345K for Phase 1 and a total 
of $345K for a comprehensive Phase 2 program consisting of targeted efforts for maturation across the 
multilevel framework that are driven by the results from Phase 1.  An optional Phase 3, to be undertaken 
based on the success of Phases 1 and 2, consists of extending the processes and tools into existing 
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processes and application for wider use.  The projected budget for Phase 3 is $290k.  Thus, the total budget 
for the overall research program, including Phase 3 and the $20K for Phase 0, is approximately $1 million.  

6.7 TIMELINE 

Phase 0 of this effort was completed during the incubation project period and lasted 2 months from 
funding was received until this report was produced. Phase 1, Phase 2, and Phase 3 are each projected to 
last 12 months.  The total timeline outside of the pilot is projected at 3 years. 

6.8 PROJECT EVALUATION AND MEASUREMENT 

By the end of Phase 1, we expect to produce a minimal viable demonstration of our approach and a 
comprehensive description or our underlying conceptual advances for the SERC and DoD sponsors.  By 
the end of Phase 2 – within 2 years - we aim to produce and validate strong theoretical foundations, and 
prototype processes and tools capable of being demonstrated on realistic problems and integrated into 
existing complimentary MBSE and attack modeling processes.  Within 3 years, at the end of Phase 3, we 
expect to see significant validation of both our theory and tools in pilot applications at realistic scales and 
associated complexity as well as extend our approach to support CPS assurance. 
 
Progress will be measured by annual technical review assessments made by key stakeholders across the 
SERC, DASD(SE), and complimentary RT stakeholders such as AARDEC.  These reviews will include a 
description of the conceptual advances and methods, processes, and tools that can support their 
application to real problems as well as relevant demonstrations.  The findings and results will be vetted 
with the stakeholder community for any necessary course-alteration and transition planning. 
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7 TRUSTED AUTONOMY – METHODS FOR TEST AND EVALUATION – GARY WITUS, WAYNE STATE 

Model-Based Assurance Arguments for Verification and Validation of Autonomous Behavior 
Requirements for Autonomy-Enabled Systems 

7.1  PROBLEM AND NEED 
 
Autonomy-enabled systems (AES) are a DoD priority within the technology offset strategy.   
 
AES present new challenges for Systems Engineering.  In AES, some traditionally human cognitive 
operations - choices, interpretation, adaptation, interaction etc. – are transferred from a human operator 
to a machine.  Human operators are trained and selected, after an initial 18 to 22 years of life experience, 
operators are able to recognize unusual situations, drive in traffic, and adjudicate conflicting guidelines 
such as “drive slower in the rain” and “drive faster under fire.” They are expected to adapt and apply the 
unit’s tactics, techniques and procedures (TTP) to execute the mission plan and accomplish the mission 
objectives – as appropriate for the situation as it develops.  In AES, requirements substitute for training 
and selection. 
 
Trusted autonomy and a trustworthy AES requires that the system is able to integrate and operate as an 
effective as part of the autonomy-enabled unit.  Trustworthiness is more than simply being safe and 
effective.  The team leader must employ the system effectively as part of a manned-autonomous team, 
and the manned and autonomous elements must interact smoothly to execute the TTP to accomplish the 
mission.  Military operations are inherently unsafe.  A faster, more effective operation is a safer operation.   

 The team leaders, operators, and adjacent team members understand the capabilities and 
limitations of the AES, how it will act and perform over the range of missions and situations 

 The AES does not limit the team’s ability to execute operations employing the unit’s TTP, or limit 
the team leader’s ability to assign tasks assuming that the appropriate TTP will be used and used 
effectively  

 The AES is competent to perform its autonomous functions effectively, and improves the team’s 
operational effectiveness over the range of missions, operation plans, and particular situation 

 
AES are machines, sophisticated machines, but machines nonetheless.  Their capabilities and behaviors 
must be expressed as system requirements and acceptance criteria in system acquisition.   This includes 
the autonomous “cognitive” functions that will enable the AES to operate as part of an autonomy-enabled 
unit with humans and AES working together.   
 
The SE community currently lacks MPT to develop and verify system requirements for the “cognitive” 
autonomy capabilities, and lacks MPT to assess designs to inform technology-selection and source-
selection decision makers vis the acceptance criteria.  Despite this, DoD, and TARDEC in particular, 
recognize that AES will enter the acquisition process.  Acquisition agencies will be required to develop 
requirements and acceptance criteria, and to assess designs to inform technology-selection and source-
selection decisions. 
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Historically, in software intensive systems, errors in requirements – incorrectness, inconsistency, 
incompleteness – are the greatest source of development time and cost overrun (see figure 7.1).  This 
relationship is likely to be even more skewed for AES. Although not well-documented, unsuitable 
requirements – not the ability of engineered solutions to satisfy the requirements – has been a major 
cause of program terminations (the EFV, the DIVADS gun, the Shillelagh missile, the Sheridan tank, and 
others are examples worthy of study as to what went wrong). 
 

 
 
Fig. 7.1:  Software Fault Introduction and Rework Costs over the Development Lifecycle.  From “Test and 
Evaluation of Autonomous Systems in a Model Based Engineering Context,” by M. Nolan (Raytheon), A. 

Fifarek and J. Hoffman (USAF AFRL), March 2016 
 
Effective SE MPT for AES autonomous capability requirements TEVV should have the following 
characteristics: 

 A “user-friendly” framework to express behavior requirements (the term “behavior” is used 
broadly to refer to any action taken by the AES to include goal selection and adaptation as well as 
physical and communication actions) 

 Behavior requirements can include both prescriptions and prohibitions 
o Prescriptions specify what the AES should do under what conditions – including internal 

goal setting actions, so the prescriptions can represent desired outcomes 
o Prohibitions specify what actions should not be taken under what conditions, and what 

outcomes are to be avoided 

 The behavior requirements can be refined and expanded over the acquisition lifecycle 

 The requirements for situation awareness and underlying perception capabilities are derived from 
the behaviors 

 The requirements for execution and underlying actuation and communication are derived from 
the behaviors 
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 The behaviors representation is such that the behavior set can be analyzed to identify conflicts, 
inconsistencies, ambiguities, and gaps 

 The behaviors representation is suitable to be incorporated into dynamic models of the military 
operations, including the behaviors of other friendly and unfriendly agents, in order to assess 
operational outcomes 

 The individual behavior requirements, the assessment of the set of behaviors, and the assessment 
of the operational outcomes all feed a rigorous method to produce an aggregate evaluation of 
the AES trustworthiness (effectiveness, robustness, and compatibility with unit TTP), and support 
diagnosis of the evaluation 

 

7.2  TECHNICAL SOLUTION 
 
The solution framework for autonomous behavior requirements is illustrated in figure 7.2.    
 

 
Fig. 7.2:  Model-Based Autonomous Behavior Requirements TEVV Framework 

 
Assurance Arguments 
 
The assurance argument paradigm is the integrating framework that “rolls up” the hierarchy of claims and 
sub-claims with their supporting model-based evidence and assumptions.  At the top level, claims are 
about the effectiveness and team compatibility over some range of operations and situations. 
 
Assurance arguments are an increasingly-used approach to assess safety, effectiveness, security, 
reliability and similar properties that cannot be proven by formal means and for which statistical data 
and/or test data are unavailable or insufficient for the range of conditions.  They are especially suitable 
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early in the development process when decisions must be made and justified prior to engineering 
development.   
 
Properly formulated, assurance arguments identify key assumptions, as well as information that is needed 
early in the acquisition lifecycle to make informed capability choices, requirements, and source selection 
decisions.  Extended assurance arguments can potentially provide way to integrate diverse types of 
evidence accrued over the development lifecycle. 
 
Various forms of the assurance argument approach are being developed and applied:  by the FAA for 
safety critical systems [1], by NASA for “one-shot” satellite and launch systems [2] and for systems using 
Artificial Nets [3], by medical device manufacturers and the FDA [4], cybersecurity development [5], and 
hazard and safety analysis [6].  DARPA has released a solicitation for “Assured Autonomy” to develop 
assurance arguments for adaptive learning in real-time [7].  
 
The assurance argument approach has been criticized for lack of a rigorous formalism for combining 
evidence of different types, sub-claims, and assumptions in the argument.  There have been some 
attempts to bring greater rigor by linking evidence to models [8], and by formalizing the types of assurance 
arguments to use for different types of claims [9].   
 
The proposed approach brings enhanced rigor to the assurance argument model by explicitly tracking the 
scope and credibility of sub-claims, evidence and assumptions (figure 7.3).  The scope is the range of 
conditions of the claim, and credibility is the confidence that the claim is true over the range of conditions.  
The scope and credibility of a claim are composed from the scope and credibility of its support, according 
to the calculus appropriate to the logical nature of the decomposition. 
 

  
Fig. 7.3:  Extended Assurance Argument Paradigm 
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Evidence comes from multiple sources:  (1) detailed simulations, virtual exercises, subsystem testing, etc., 
(2) an operational dynamics model, (3) a model of the behavior deconfliction, arbitration, and 
composition, and (4) the set of behavior requirements.  The operational dynamics model framework, the 
behavior executive model, and the behavior requirements format are within the scope of the proposed 
SE MPT.  The detailed simulations etc. are not.  The experimental designs used to generate evidence from 
virtual and constructive simulations and tests are key factors in characterizing the scope and credibility of 
the experimental results. 
 
Generic AES Functional Architecture 
 
The technical solution is based an implementation-agnostic functional architecture for the autonomy 
component of an AES (figure 7.4).  The architecture is shows the central role of the behavior executive 
responsible for arbitrating among conflicting behaviors, composing compatible behaviors, and detecting 
situations for which the AES has no appropriate behavior.  The behavior executive is a central part of an 
operating AES.  The behavior executive is also the key tool to analyze inconsistencies, gaps, ambiguities 
and incorrect behavior requirements. 
 

 
 

Fig. 7.4:  Implementation-Agnostic AES Functional Architecture 
 
The behavior requirements specify what the AES should do when (prescriptions for actions and outcomes) 
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controlled based on feedback from situation awareness precepts.  The behavior specification drives the 
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 A distance metric specifying the activation level as a function of the distance been the template 
condition and the perceived situation 

 A consequence action expressed in terms of the conditions, so that the actions will be 
automatically tailored to the perceived situation 

This two-level structure with an outer constraint loop (prohibitions) and an inner prescriptive loop is an 
emerging best practice for safety assurance in complex and autonomous systems [10].  The behavior that 
the AES will exhibit, and its operational effectiveness, depends on how behaviors are composed and 
conflicts are resolved, and cannot be predicted from behaviors requirements individually.   
 
The behavior requirements will almost certainly be incomplete and inconsistent.  It is not reasonable to 
expect that all possible combinations of situations will be explicitly accounted for in the behavior 
requirements.  The conditions for the prescription and prohibition behaviors will specify when they should 
and should not be applied, but the conditions as specified will not have all the details.  Different behaviors 
can be activated at the same time by different aspects of the situation (e.g., it can be raining and sunny at 
the same time).  The activation level of a behavior is a measure of how close the current situation matches 
the template for the behavior.  The behavior executive uses the activations levels of the behaviors and 
their relative importance to arbitrate and compose the action that the AES will take.     
 
The behavior executive is used for behavior checking – exploring the space of conditions to detect 
conflicts, ambiguities, gaps and incorrect behaviors.  The SE MPT will have a behavior checking tool that 
explores the space of conditions, examining (1) combinations of conditions drawn from different 
behaviors, and (2) situations that have intermediate values between different behaviors.   

 Conflict is when two behaviors are activated that produce conflicting consequences (either in 
immediate action, or outcome consequence) 

 Ambiguity is when multiple behaviors have nearly equal activation levels and importance 

 A gap is when no behaviors have significant activation 

 Incorrect behaviors are when the outcome conflicts with prescribed or prohibited outcomes 

The behavior executive is the key tool to find conflicts, gaps, and ambiguities among the behavior 
requirements.  It is used inside a behavior checking loop.  An operational model is used inside the behavior 
executive to forecast outcomes.  
 
Operational Dynamics Model 
 
The operational dynamics model is where the actions of the AES and other agents are played out to assess 
conflicts between outcomes (prescribed or prohibited) and actions/activities (prescribed or prohibited).   
 
Behavior requirements include prescribed and prohibited combinations of actions/activities subject to the 
tactical situation.  This does not need an operational dynamics model.  When behavior requirements are 
expressed in terms of outcomes to seek or avoid, i.e. goals not actions/activities, then an embedded 
operational dynamics and outcome model is needed. 
 
The operational dynamics model is needed to identify conflicts in of action behaviors with outcome goal 
& constraint behaviors.  (In the implementation-agnostic framework, behaviors are situationally 
dependent, prescribing and proscribing actions, combinations of actions, and outcomes of executive 
adjudication of actions vis outcomes). 
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Detecting when a set of behaviors leads to a prohibited outcome requires an embedded model of the 
operational dynamics and outcomes.  The operational model is used inside the behavior executive to 
detect conflicts between outcomes, prohibitions and goals.     
 
The behavior executive is the central tool used by the behavior-checking function to identify 
inconsistency, gaps, ambiguity, etc. among the requirements.  At the simplest level, it does not project 
outcomes, and excludes behavior goals and constraint activation in reference to outcomes.   
 
The operational dynamics model is needed when some behavior requirements are expressed in terms of 
prescribed and prohibited outcomes.  For the purposes of behavior requirements TEVV, the operational 
dynamics model needs to reflect the behavior requirements with expected “mechanical” or 
“deterministic” physical response. It is not a detailed simulation of performance, but rather an “expected 
value” model of “what happens when A does X, and how does it fit into the operation TTP.” 
  
Even in “simple” convoy operations there are complex situation awareness and decision behaviors related 
to lane change, maintaining formation, etc., over the variations of road and weather conditions, mission 
priorities, neutral and adversarial actors, breakdowns and mutual support, with heterogonous units and 
formations (manned, weaponized, etc.), the challenge of actions to expect when (behavior requirements) 
is hard.  Behavior requirements will be in conflict.  How requirements are expressed and conflicts resolved 
is essential to asking for a system that will be operationally effective. 
 
Finite-state machines (FSM, sometimes also called state-transition models) can be an effective approach 
for operational dynamics modeling.  Agents – friendly, unfriendly, and automated – are engaged in 
activities or actions.  The actions take time to complete.  Multiple actions occur in parallel, and the 
probability that one action or another completes next depends on the relative rates.  FSM are well-suited 
for simple operational concepts, threat interactions, TTP and behaviors. 
 
A criticism of FSM is that can become unmanageable when there is an attempt to have broad scope and 
high resolution simultaneously.  Complexity can be managed with extended hierarchical FSM.  A state at 
one level of the hierarchy is decomposed into a more detailed FSM network, whose inside is invisible at 
the higher level.  Another approach to managing complexity for multi-agent operations is to use 
hierarchical FSM to model agent behaviors, and let a computational engine rather than a specific model, 
generate the states of the world from the actions and activities of the individual agents. 
 
The use of a first order model, or any model for that matter, relies on assumptions and has its own 
credibility and scope of application. 
 
In work in this area, most recently supporting military utility analysis on the DARPA Ground Vehicle 
Experimental Technologies (GVX-T) program, a version of hierarchical FSM modeling proved effective and 
useful (figure 7.5).   
 
Stateflow models are a further extension in which the rate of transition processes depends on the levels 
of resources, and processes & events change the levels of resources.  This formulation requires a first-
order model of the rate of transition events based on the levels of resources, and the 
consumption/production of resources in states and at transitions.  Stateflow models have been effectively 
used to represent opponent populations with discrete commanders’ decisions for operational 
effectiveness analysis [11].  The level of detail of stateflow models may be much greater than what is 
needed for behavior requirements TEVV. 
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Fig. 7.5:  Example Node in a Hierarchical Stateflow Model of a Military Operation 

 
FSM and stateflow models can become complex if there is an attempt to have both high resolution and 
broad scope in the same model.  In some cases, complexity can be managed by hierarchical modeling.  In 
team and adversarial relations, parallel multi-agent modeling reduces the complexity to single agent 
behavior.   
 
Additional research and development is needed to specify the appropriate format for an operational 
dynamics model.  The Ptolemy II system provides a sound theoretical basis for hierarchical heterogeneous 
models of computation [12]. 
 

7.3  PROGRAM PLAN 
 
The project will refine and integrate the assurance argument calculus model, the behavior requirements 
model, operations dynamics model, and the behavior executive model.  It will produce an automatic 
behavior-checker using the behavior executive, behavior requirements and operations dynamics models 
to identify inconsistencies, gaps, ambiguities, and incorrect behaviors. 
 
Co-Development Partner 
 
We propose to work with TARDEC as co-developer and transfer partner for the SE MPT, with 
developmental testing application in their autonomous convoy project.  TARDEC has endorsed the 
collaboration.   
 

From Preceding Stage

To Next Stage, 
Not Having Come 

Under Fire

To Next Stage, 
Having Come 

Under Fire

Red Searching,
Blue Driving on 
Planned Route,

LOS

Red Searching,
Blue Driving on 
Planned Route,

NLOS

Red Firing,
Blue Driving on 
Planned Route,

LOS

Red Firing,
Blue Driving on 
Escape Route,

LOS

Red Searching,
Blue Waiting in 

Protected Position, 
NLOS

Red Acquires Blue 
& Begins Firing

Blue Locates Red & 
Begins Escape to 

Protected Position

Enter in NLOSEnter in LOS

Pause for Red 
to Resume 
FOR Search 

over

End of Stage Reached

Blue Killed

Inputs: transition rates 

or mean time for a 

transition event to occur, 

absent competing 

processes 

Outputs: probabilities 

of ending in the different 

absorbing states, and 

the expected times to 

termination  



 

Report No. SERC-2018-TR-105                                                                                                                                                                 April 30, 2018 

77 

TARDEC has a current Science and Technology (S&T) project for an autonomy-enabled convoy system.  
The project has dual objectives to (a) produce a demonstration system, and (b) to develop and test SE 
MPT for autonomy-enabled systems.  TARDEC recognizes that development of SE MPT for AES is needed 
in parallel with AES technology development.   The US Army RDECOM S&T has allocated additional funding 
to this project beyond what has been committed from TARDEC core funding.  In RT148, TARDEC’s 
autonomous convoy project funded a project on MPT to trace and analyze modeling and simulation (M&S) 
in model-based engineering workflow for AES.   
 
In the autonomous convoy project, TARDEC is developing and testing M&S requirements and capabilities 
to support system concept and requirements development – the turquoise region of figure 7.2 (detailed 
simulations, virtual exercises, developmental testing, etc.)  
 
TARDEC is using a version of “Early Synthetic Prototyping” (ESP) warfighter experiments to explore how 
warfighters will interact with and use autonomous systems and work as part of an autonomy-enabled-
units.  The goal is to use early virtual experiments to test and inform operational concepts for AES, 
requirements, and benefits.  The SE challenges include (a) design of virtual experiments, (b) data mining 
from virtual experiments, and (c) understanding the credibility and limitations of findings. 
 
Complementary Funding 
 
In September, we submitted a proposal to the Automotive Research Center (ARC) – TARDEC’s university 
arm, led by University of Michigan, of which WSU is an active member.  The ARC is focused on M&S – 
what M&S is needed to address acquisition challenges and opportunities, and how to integrate it into 
system acquisition.  At the beginning of the summer, TARDEC gave the ARC the challenge of developing 
research proposals to support development and acquisition of autonomy-enabled ground vehicles. 
 
ARC proposals always include Government and Industry oversight participants to help ensure military and 
dual-use relevance.  Our proposal to the ARC has oversight participation from DASD-SE, the TARDEC 
autonomous convoy team, and a Tier 1 automotive supplier with an R&D program in SE for autonomous 
safety functions.   
 
The proposed WSU project is to finalize and implement a rigorous and extended assurance argument 
model (the yellow top level of figure 7.2) for AES.  The scope of the ARC proposal does not include anything 
below the yellow “Assurance Argument Paradigm” in figure 7.2.  The scope was to develop and implement 
the MPT rigorous assurance arguments, and demonstrate them, in the autonomous convoy project 
context.     
 
The scope focused on developing the hierarchy of claims and considerations needed to: 

 Help develop RFP solicitation packages to ensure the Government gets information needed to 
make source-selection decisions, and inform bidders how the information will be used (in order 
to avoid protests) 

 Probe limitations of the behavior requirements 

 Compare competing bids and diagnose strengths and limitations on a level playing field 

Over the Spring/Summer/Fall we participated in a series of four full-day workshops hosted by the ARC on 
M&S for AES.  The workshops were attended by TARDEC, academic researchers from the six ARC 
universities, and the automotive industry.  We continued our engagement with the TARDEC autonomous 
convoy team on SE for autonomy-enabled convoys and convoy vehicles.   
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Based on the presentations and comments by TARDEC, and the “brainstorming” of M&S opportunities 
and needs by the academics, we are confident that the research in our proposal to the ARC and in this to 
the SERC are  

 Highly relevant 

 Not duplicative or overlapping with other ARC research topics 

Schedule and Milestones 
 

 Year 1 
o Produce & demonstrate initial software implementation of rigorous assurance argument 

paradigm in Matlab 
o Develop high-level of the assurance arguments for major capability claims for trustworthy 

AES, using TARDEC’s autonomous convoy project as a case study, to include sub-claims, 
evidence, and assumptions with corresponding composition calculus 

o Define information interfaces between the assurance argument model and the 
operations dynamics model; select the initial paradigm for the operations dynamics 
modeling  

o Specify the initial behavior requirements expression “language” 
o Produce initial requirements for the behavior executive 

 Year 2  
o Refine/extend software implementation of rigorous assurance argument paradigm as 

needed 
o Demonstrate and assess high-level of the assurance arguments for major capability claims 

for AES, using TARDEC’s autonomous convoy project as a case study, using the software 
implementation of rigorous assurance argument paradigm  

o Implement operations dynamics model framework, with and demonstrate it for selected 
convoy operations 

o Implement behavior requirements expression model, with example behaviors for 
selected convoy TTP 

o Illustrate derivation of situation awareness requirements 
o Produce draft guidelines and pseudo-code for the behavior executive and behavior 

checking software 

 Year 3 
o Finalize initial versions of software tools 
o Conduct and document TEVV analysis of the behavior requirements 
o Hold a workshop to assess value, practicality and suitability of the MPT 
o Plan and execute transfer of  software tools and user’s manuals, MPT documentation  

Funding Request 
 
The total funding request for the full project is $160K/year to WSU, over 3 years.   
 
The WSU ARC proposal is for $80K/year over 3 years.  Funding review is in process, with announcements 
expected in March 2018.   
 
If the ARC proposal is funded by TARDEC, its scope can be excluded from the proposal to the SERC.   
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If the ARC/TARDEC provides $80K/year to WSU, then the need from SERC/DASD-SE is for $80K/year to 
WSU. 
 

7.5  CONCLUSIONS AND RECOMMENDATIONS 
 
AES an important area for the technology offset strategy.  It is an area of high interest to our long-term 
co-development partner, TARDEC.   
 
SE MPT to reduce AES development time is vital to effective technology offset.  Incorrect, incomplete, and 
inconsistent autonomous behavior requirements are an expected source of time and cost overrun.  TEVV 
of the autonomous behavior requirements is a leverage point to minimize rework and delay. 
 
We have a co-development partner, TARDEC, and an S&T demonstration project on which to apply the SE 
MPT. 
 
There is potential cost-sharing from TARDEC though the WSU proposal to the ARC. 
 
The proposal is practical and relevant.  It addresses current needs of acquisition agencies, with TARDEC 
as an example, to develop MPT for “cognitive” behavior requirements TEVV, in consideration of the 
difficulties in specifying AES behaviors.   
 
The proposed project build on R&D we have been doing across multiple projects, and is an opportunity to 
bring the lessons and techniques together into a coherent whole.  The technical approach extends MPT 
that we have used effectively on the DARPA Ground Vehicle Experimental Technology (GVX-T) program.  
The MPT under proposed development are evolutionary, step-wise improvements on and integration of 
existing tools and foundations. 
 
The bottom line:  Shorten AES development time by use SE MPT to assess the inconsistencies, gaps, 
ambiguities, incompatibilities, and incorrectness in the autonomous behavior requirements 
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8 IDENTIFYING AND MEASURING MODULARITY VIOLATIONS IN CYBER-PHYSICAL SYSTEMS – LU XIAO, CO-PI 
MICHAEL PENNOCK, STEVENS INSTITUTE OF TECHNOLOGY 

 

8.1 PROBLEM STATEMENT, MOTIVATIONS, AND OBJECTIVES  
In recent years, cyber-physical systems (CPS) have achieved widespread application in diverse areas 
including: civil infrastructure, energy, healthcare, transportation, automotive, smart appliances, and 
others [Rajkumar et. al. 2010]. Usually cyber-physical systems are composed of diverse subsystems 
consisting of both physical and software components developed by different vendors. These components 
are deeply intertwined at various levels of abstraction (e.g. data flow, physical connections, and logical 
connections etc.) under changing contexts to achieve the desired functionalities and the respective quality 
attributes, such as performance, security, scalability, maintainability, etc. With the advance of technology, 
the recognition of new consumer needs, and the detection of deficiencies in current systems, components 
need to be upgraded, replaced, and fixed---frequently, in many domains. The key question is: can the 
upgrade, replacement, or problem fix happen quickly and without disrupting the rest of the system? 

To address this issue, stakeholders, such as the US Department of Defense, have increasingly emphasized 
modular and open approaches to system development. According to Baldwin and Clark [2000], modularity 
allows for both independence of structure and integration of functions in large and complex systems. The 
goal of modularity is to improve interoperability, facilitate system evolution and technology insertion, and 
foster competition. Requirements such as the Modular Open Systems Approach (MOSA) have been 
imposed on acquisition efforts.  However, it can be difficult for the stakeholders to assess whether the 
resulting architectures and systems are truly modular. In other words, can modules in a CPS actually be 
upgraded, replaced, and fixed in a plug-and-play manner without affecting one another to maximally 
leverage the benefits of modularization? In the traditional software engineering field, it has been 
observed that it is often not the case. Modules without any explicit structural dependencies were seen 
frequently changing together when new features or bug fixes were implemented. Wong et. al. [2009] call 
this phenomenon a Modularity Violation (MV). Studies of real-life open source projects indicate that up 
to 85% of bug-fixing efforts in a software system involve modularity violations [Xiao et. al. 2016]. An in-
depth analysis revealed that modularity violations usually result from and imply latent connections among 
software modules. For example, it could be an implicit assumption regarding the usage of time units in 
two modules [Schwanke et. al. 2013]. In software systems, the consequences of modularity violations 
could be higher bug-rates (when the assumptions are not consistent among different parties) [Mo et. al. 
2015] and increased maintenance costs (in order to keep the assumptions consistent) [Xiao et. al. 2016]. 
It is possible that that modularity violations could be even more harmful in cyber-physical systems. 
Modularity violations, derived from the latent relationships among software and hardware components, 
prevent the long-term evolution, maintenance, and success of cyber-physical systems. In particular, due 
to the inflexibility and high cost of evolving hardware modules, modularity violations in cyber-physical 
systems could more easily lead to vendor-lock-in compared to a pure software environment.  

The objective of this research is to develop techniques, metrics, and models that would allow stakeholders 
to detect, measure, and understand modularity violations in developed and acquired cyber-physical 
systems. We organize modularity violations in cyber-physical systems into three different types: 1) 
software vs. software, 2) software vs. hardware, and 3) hardware vs. hardware. The first type of 
modularity violation has been extensively investigated in prior work [Wong et. al. 2009; Schwanke et. al. 
2013; Xiao et. al. 2014; Ran et. al. 2015; Xiao et. al. 2016]. There, the approach to identify and measure 
modularity violations relies on the analysis of source code and operational data such as maintenance 
activity records. These are automatically and comprehensively tracked in version control systems.  The 
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challenge to extending this type of analysis to identify modularity violations involving hardware is the lack 
of systematic records of operations involving hardware components. Unlike, software projects that use 
standard version control systems to keep track of who made what changes to which parts at what time 
and for what reason, changes to hardware components are not always tracked in similar detail or are not 
as easily accessible. 

Given these limitations, the question naturally follows, could a subset of hardware modularity violations 
be inferred from an analysis of records of software changes? More specifically, some software changes 
may be a consequence of hardware related modularity violations. If that were the case, analysis of version 
control systems could be used to detect some hardware related modularity violations outright and flag 
other potential violations for further investigation. The issue is whether or not there is actually enough 
information in a version control system to infer a hardware modularity violation. To evaluate the feasibility 
of this idea, the incubator phase of this project involved the analysis of two open source cyber-physical 
systems: OpenWrt and MD-PnP, which aim to develop a common software infrastructure for the Internet 
of Things (IoT) and medical systems respectively. To analyze these systems, we developed a keyword-
based heuristic to help us identify software-hardware modularity violations, where the software artifacts 
change due to hardware related issues. We identified 70 software source files that are potentially involved 
in software-hardware level modularity violations because the changes made to these files involved 
hardware related concepts. We conjecture that hardware-related concepts that propagate changes to 
software artifacts imply a potential modularity violation at the software-hardware level. Consequently, 
the incubator demonstrated the feasibility of identifying potential modularity violations in a cyber-
physical system by analyzing a software version control system. 

 Given that the incubator established the plausibility of the analysis, several additional steps are required 
to achieve the ultimate goal of developing methodologies, metrics, and tools to detect and assess 
modularity violations in cyber-physical systems. First, the incubator focused on source files as the unit of 
analysis. However, in practice, the definition of a module will depend on the nature of system and the 
goals of different stakeholders. In some systems, stakeholders may be willing to trade modularity for 
performance. In other cases, it may be a matter of perspective. For example, low-level developers may 
view modules as hands-on and manageable working elements to implement functional details (e.g. a 
particular source file and a particular hardware board). In comparison, a project owner views modules as 
cohesive functional components to deliver the product value and competitiveness. Thus, there is a need 
to be able to handle modules of different granularity in the analysis. Second, the keyword-based heuristic 
developed for one project domain may not be applicable to a project in another domain. Third, there is 
not yet an explanatory model that helps stakeholders to understand the reasons and context behind the 
modularity violations. Without such explanatory model, it is difficult for stakeholders to mitigate current 
and future violations. 

To achieve the ultimate goal of allowing the stakeholders to detect, measure, and understand modularity 
violations in cyber-physical systems, we propose the following activities: 

 Develop strategies to decompose a CPS into modules of different granularities. The 
investigationof modularity violations first relies on the understanding of what is a “module”. We 
argue that the scope/granularity of modules is determined by the stakeholder who views the 
system for addressing a particular concern [Kruchten 1995].  

 Develop a systematic approach to identify modularity violations in CPS. This approach should be 
able to scale up or scale down to different module granularity levels. This approach should also 
be adaptive and generally applicable to different problem domains.  
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 Develop a software-based proof-of-concept demonstrator to evaluate the effectiveness of the 
approach developed above.  
 

8.2 CURRENT PRACTICE AND ITS LIMITATIONS 
 

8.2.1 MODELING CPS AND ITS LIMITATIONS 

The term “cyber-physical systems” emerged around 2006, when it was coined by Helen Gill at the National 
Science Foundation [Lee 2015]. Gill defined a cyber-physical system (CPS) as an integration of computation 
with physical processes.  However, one of the challenges to designing and managing cyber-physical 
systems is that there are techniques to represent either the cyber processes or the physical processes, 
but not both [Baheti and Gill 2011]. From the “cyber” perspective, there are different techniques to 
represent the architecture of software systems, such as architecture description languages, UML models, 
and component models. From the physical perspective, there are different traditional engineering 
techniques to model the development of physical systems. One study on architecting cyber-physical 
systems found that, currently, researchers tend of focus on a specific attribute of interest rather than 
assessing the cyber-physical architecture as a whole [Malavolta, et al. 2015].  
  
However, there are some instances of research that take a more holistic approach to architecting cyber-
physical systems. Rajhans, et al. [2009] contributed a new cyber-physical architectural style to present the 
interconnections and interactions between physical and cyber components. They defined three related 
families of general components and connectors pertaining to the cyber domain, the physical domain, and 
their interconnections. From the architectural assessment perspective, Sinha [2014] developed a 
theoretical framework for structural complexity quantification and its implications for the design of cyber-
physical systems. Derler et al. [2012] focused on the challenges of modeling cyber-physical systems that 
arise from the intrinsic heterogeneity, concurrency, and sensitivity to timing of such systems. They 
described some promising approaches that use domain-specific ontologies to enhance modularity and 
jointly model of the functional and implementation architectures. Finally, Cristalli et al. [2016] provides a 
representative example of a modular approach to developing a cyber-physical system through their 
modular design for a Smart Robotic Cell, composed by several interconnected sub-systems.   
 
What all of the above have in common is a focus on designing cyber-physical systems to be modular.  
However, there is no guarantee that the realized system will exhibit the intended modularity.  The need 
to assess the actual modularity of a cyber-physical system is particularly acute.  As Lee [2008] points out, 
cyber-physical systems have always been held to a higher reliability and predictability standard than 
general-purpose computing. Without reliability and predictability, cyber-physical systems will not be 
applied in safety-critical domains like traffic control, automotive safety, and healthcare. While a modular 
design is just one approach to improve reliability, predictability, and maintainability; when it is employed, 
one would like to know how well that was achieved.  While approaches to assess modularity in pure 
software systems have been developed, to the best of the investigators’ knowledge no approaches have 
been developed that specifically address the unique challenges of assessing the modularity of cyber-
physical systems. Thus, the question is whether existing approaches from the software domain can be 
adapted to the cyber-physical domain. 
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8.2.2 MODULARITY VIOLATION DETECTION IN SOFTWARE SYSTEMS AND ITS LIMITATIONS 

The term modularity violation was first proposed by Wong et al. [2009] to describe the phenomenon 
where independent software modules frequently change together during the evolution of a system in the 
process of fixing bugs or adding features. Methodologies and tools [Xiao et. al. 2014] have been built for 
analyzing modularity violations in software systems. The identification of a modularity violation follows 
three steps:  

1. Reverse-engineering the modular structure of a software system from the code base: The modular 
structure of a software system can be calculated based on the structural dependencies among 
software entities. Xiao et al. developed a new architectural representation, called Design Rule 
Space (DRSpace) modeling to capture the modular structure of a software system as multiple 
overlapping design spaces [Xiao et al. 2014], applying Baldwin and Clark’s [2000] design rule 
theory. The modular structure can be visualized in the form of a DSM (Design Structure Matrix). 
The items in the DSM represent software entities, the cells represent the structural dependencies 
among entities. The entities can be clustered into modules based on selected dependency types 
for supporting analysis of different focuses. 

2. Extracting the evolutionary coupling (i.e. the number of co-changes) between software modules: 
This can be calculated based on the data recorded in version control systems, which automatically 
keep track of all the changes made to software entities, in terms of who at what time made what 
changes to which entities/modules for what reason. Analyzing such data helps to extract the 
evolutionary coupling between any two software entities: how many times they are modified 
together in the course of maintenance activities. The more frequently two entities are modified 
together, the stronger is their evolutionary coupling---implying latent connections. 

3. Calculating the discrepancy between the above two data sets to point to modularity violations 
among software modules:  If two software entities/modules are structurally independent 
according to step 1, but they have high evolutionary coupling according to step 2, there is a 
potential modularity violation.  

According to prior empirical studies of industry software systems, modularity violations usually indicate 
implicit assumptions shared among software modules. For example, it could be an implicit assumption 
regarding the usage of time units in two modules [Schwanke et al. 2013]. In software systems, the 
consequences of modularity violations could be higher bug-rates (when the assumptions are not 
consistent among different parties) and increased maintenance costs (in order to keep the assumptions 
consistent) [Mo et al. 2015; Xiao et al. 2016]. 

However, the above-mentioned approach is limited in that it only addresses software systems 
implemented in a single programming language. Complex hybrid systems are composed of multiple 
heterogonous hardware and software sub-systems. Such systems are particular difficult to analyze 
because of data inconsistency and heterogeneity among the various sub-systems. This incubator phase of 
this research tested the feasibility of leveraging software maintenance data to infer hardware related 
issues that are indicative of software-hardware modularity violations. We propose to formalize and 
extend this approach to be applicable to a wide range of domains. 

8.3 RESEARCH APPROACH 
 
The research effort is divided into two phases. The first phase is to evaluate the feasibility of inferring 
software-hardware modularity violations from software maintenance actions. This incubator phase, 
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lasting from July 2017 to November 2017, has been completed. The second phase is to formalize and 
generalize the concepts developed during the incubation phase. This phase consists of 3 parts: 1) examine 
the criteria to decompose a CPS into modules of different levels of granularities for addressing separate 
concerns of stakeholders; 2) build a domain concept learning approach, leveraging natural language 
processing techniques, to identify CPS modularity violations in different domains; and 3) Incorporate the 
results from the previous two parts into a decision framework and develop a software-based 
demonstrator system to identify CPS modularity violations. 

  

8.3.1 RESULTS OF THE INCUBATOR STUDY 

As discussed earlier, the identification of modularity violations in a CPS is a challenge because 
maintenance operations on hardware components are not as comprehensively recorded as in traditional 
software systems. However, we hypothesized that software components that are changed frequently due 
to hardware related concepts are indicative of potential modularity violations.  

As a case study for feasibility, we chose two real life software infrastructures, OpenWrt and MD-PnP, for 
cyber-physical systems. OpenWrt is a Linux based core that is commonly used to support the Internet of 
Things (IoT). The MD PnP provides the software infrastructure for plug-and-play medical devices to 
improve patient safety. The following table summarizes basic facts of these projects. Table 10 shows the 
scale (measured by number of files, methods, and lines of code), the development team size, and the age 
(measured by the number of revisions and starting time). We chose these projects because they are 
industry scale projects offering sufficient research data. 

Table 10: Case Study Projects 

Project #Files #Methods LOC #Developers #Revisions History 

OpenWrt 1052 6061 163114 137 38099 Since 2004 

MD PnP 866 7872 73616 12 1605 Since 2013 

 

Based on our analysis of these two projects, we made the following observations that show the feasibility 
of identifying meaningful modularity violations in a CPS based on maintenance data from the software 
side. In what follows we will use OpenWrt to present the findings. 

8.3.1.1 Observation 1: the OpenWrt is more modularized than about 90% of the 129 (commercial 

and open source) traditional software systems we studied before 

First, we want to understand how well OpenWrt is modularized. To do that, we reverse-engineered the 
code base of the projects. Figure 1-a shows an overview of the modular structure identified in OpenWrt, 
represented in the form of a DSM [Clark and Baldwin 2000]. This DSM is square matrix showing the 
structural dependencies among source files in OpenWrt. The rows and columns represent source files, 
and a black dot represent a structural dependency from the row to the column. To get an overall 
understanding of how modularized OpenWrt is based on the structural dependencies among source files, 
we calculated two metrics: 1) the Propagation Cost and 2) the Decoupling Level, based on the DSM. 

Propagation Cost proposed by MacCormack et al. [2006] measures the density of the n-transitive closure 
of the DSM. The maximum value is 100%, meaning that every element is connected (directly or 
transitively) to another element in the system. The lower the value, the less coupled the system is. This 
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implies that the system is composed of independent modules. The PC value for OpenWrt is only 1.4%, 
which is lower than about 90% of the 129 (commercial and open source) traditional software systems 
we studied before. 

Decoupling Level proposed by Ran et. al. [2016] measures how well a system is decomposed into small 
and manageable modules that can evolve independently from each other. The highest possible value is 1, 
meaning the system is perfectly modularized (which is not likely in practice). The DL value for OpenWrt 
is 0.78. This is also higher than 90% of the 129 software projects we studied before. 

The implication is that the software components in this particular CPS are more modularized compared 
to traditional software systems. We conjecture that this is because the hardware components in a CPS 
increase the overall complexity of the system relative to pure software systems. Increasing the modularity 
of the software may be a way to cope with that complexity. Furthermore, by talking to IoT experts, we 
realized that the first priority of the software components is to stay concise to reach the quality goals of 
energy and cost efficiency in IoT systems. 

 

 

                                     Figure 1-a                                                  Figure 1-b 

Figure 1:  

1-a: the overview of the modular structure 

1-b: the overview of changes made to the system 

8.3.1.2 Observation 2: Software-Software modularity violations in OpenWrt include hardware 

related information in the naming conventions of the involved source files. 

We applied the approach described in Section 8.2.2 [Xiao et. al. 2014; Mo et. al. 2015] to identify software-
software level modularity violations. The goal was to determine whether software-software level 
modularity violations in CPS systems imply hardware related issues. If so, the hardware concepts are 
potential causal factors of modularity violations among software components in a CPS. As shown in Figure 
1-b, we calculated the evolutionary coupling among source files in OpenWrt. The evolutionary coupling 
between two source files is the number of times the two files change together in the revision history. Each 
red dot in Figure 1-b indicates the evolutionary coupling between the file on the row and the file on the 
column. Actually, the weight of most of the evolutionary coupling in Figure 1-b is below 4, indicating 
software source files do not change together frequently. We computed the discrepancy between Figure 
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1-a and Figure 1-b, which resulted in Figure 2, containing 23 source files that exhibit evolutionary coupling 
above 4, but are structurally independent from each other. We consider these 23 source files as potential 
modularity violations, which indicates shared but latent assumptions among them.  

Further inspection of the naming conventions of the source files indicate that they share hardware-related 
concepts. For example, from row 1 to row 10, the naming of the files all contain “mips”, which is a typical 
microprocessor architecture for CPS. In addition, row 20 to 23 shows that the file names all contain 
“firmware”, which is held in non-volatile memory devices, such as ROM or flash memory. Based on these 
observations, we conjecture that the hardware concepts are actually the causal factors of these software-
software level modularity violations in OpenWRT. 

 

Figure 2: 23 files involved in software-software MV 

8.3.1.3 Observation 3: Hardware-related concepts are the main contributing factors to Software-

Hardware MV in OpenWrt.  

Reasoning based on observation 2, we infer that hardware related concepts could also be the contributing 
factors for software-hardware MV. That is, software components that change frequently due to hardware 
related concepts. As an example, we find this comment when developers changed a software entity: “set 
chip type directly in ar8216_id_chip”, where chip is obviously a hardware term.  We assume it is less likely 
the other way around: software concepts contribute to hardware changes, because it is, in most cases, 
more affordable to change software components.  

We manually extracted 16 key words from the commit messages and hardware devices supported by 
OpenWrt. The details are shown below in Figure 3, containing keywords, like “radio”, “WiFi”, “zigbee”, 
etc. By matching these manually extracted keywords in developers’ change comments (which are usually 
used to explain why they made the change), we identified 71 source files in OpenWrt (of the 1052 total 
files) are potentially involved in software-hardware MV.  

 
Figure 3: 16 manually extracted 

key words 

 

{"radio", "WiFi", "zigbee", "btle", "mips", "ramips", 
"mtd",  "broadcom", "routerboot", "router", 

"firmware", "bluetooth", "energy", "power", "soc", 
"chip"} 
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Figure 4 shows the change-proneness levels of the 71 files involved in modularity violations versus the 
average files in OpenWrt. The data show that these 71 files are twice likely to change compared to average 
files. Therefore, the hardware related concepts could be the main contributing factor to changes made to 
software modules. 

 

Figure 4: Hardware concepts are important change factors 

We made similar observations in MD PnP. However, we found that the keywords identified for OpenWrt 
do not directly apply to MD PnP. The reason is that these two projects are in two completely different 
problem domains. OpenWrt is for supporting IoT. Therefore, the keywords are mostly related to network 
devices and sensors. However, MD PnP is in the medical domain. Therefore, the proper keyword sets to 
identify MV are completely different. This finding motivated us to propose the application of natural 
language processing mentioned previously. Doing so will enable an analysis approach applicable to cyber-
physical systems in different domains.  

8.4  PROPOSED WORK IN THE NEXT PHASE 
Motivated by the observations and limitations identified in the incubator phase, we propose the following 
research activities for the second phase:  

8.4.1 EXAMINE THE CRITERIA TO DECOMPOSE A CPS INTO MODULES  

In the incubator phase, we treated source files as the granularity of a module. This is appropriate from 
the perspective of a low-level developer. However, a project owner views modules as cohesive functional 
components to deliver the product value and competitiveness. This results in a very different definition 
of a module. From that perspective, a module may contain many source files, and the project owner may 
not be concerned with modularity violations among source files within a given module. 

The goal of this research task is to investigate the pertinent criteria to decompose a CPS into modules of 
different granularity levels. We propose investigate the following approaches for defining a module: 

 Modules for atomic working tasks: each module can be mapped to a working task of developers. This 
was the strategy tested in the incubator phase. The study based on this strategy has provided 
meaningful insights for modularity. 

 Modules based on coupling: each module is composed of a group of atomic modules that are 
structurally coupled with each other. This strategy helps project managers to understand the high-
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level modules that map to sub-systems/sub-projects for different vendors to maximize the benefits 
of modularization. 

 Modules based on cohesion: each module is composed of atomic modules that share semantic 
similarities and thus are likely to serve a cohesive purpose. This strategy serves to help understand 
the functional modules of a system. 

 Modules based on the system architecture: These modules are identified from the top-down based 
on design documents or stakeholders’ perceptions. This helps stakeholders to understand whether 
a sub-system that was designed to be modular actually is. 

 
Based on the approach of interest, we can calculate and evaluate the decomposition of modules in a CPS. 
From there the analysis of modularity can be adapted to each approach. 

 

8.4.2  BUILD A “DOMAIN CONCEPT LEARNER” TO IDENTIFY MODULARITY VIOLATIONS IN DIFFERENT DOMAINS  

Based on the approaches to identify modules in a CPS, we can scale-up and scale-down the modularity 
violation analysis to address different levels of modular granularity. However, as mentioned earlier, in the 
incubator phase, we realized that the keyword heuristics developed for one project domain may not be 
applicable to another project domain. Therefore, this activity aims to develop a systematic approach that 
can be applied to different problem domains.  

We plan to develop a “Domain Concept Learner” that leverages natural language processing techniques. 
The inputs to the concept learner are supporting wiki-pages or documents that record domain-related 
hardware components. For example, OpenWrt maintains a “Table of Hardware” 
(https://wiki.openwrt.org/toh/start) on the wiki-page. We can then build a Topic Model to summarize 
the key hardware concepts, keywords, and the associated probabilities of keywords referring to hardware 
concepts.  

Using the resulting concept dictionary under different domain contexts and hardware environments, we 
can apply the approach to identify potential modularity violations to CPS projects in different domains. 

8.4.3 BUILD DECISION FRAMEWORK AND DEMONSTRATOR 

Last but not least, we plan to incorporate the methods developed in prior steps into a decision framework 
to increase their utility for decision makers.  This decision framework will accommodate the detection and 
analysis of modularity violations at different modular granularities and in different problem domains. The 
ultimate goal is to provide decision making support to improve modularity where appropriate and achieve 
the associated benefits.  

https://wiki.openwrt.org/toh/start
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Figure 5: Decision Framework Overview 

 
Figure 5 shows the overview of the decision framework for analyzing modularity violations, increasing 
awareness, and supporting decision making. The framework contains three processing components as the 
output of the above research activities.  

 Module Decomposer:  Takes the project repository and user’s decomposition strategy as input to 
calculate a modular decomposition based on user’s preferences. 

 Domain Concept Learner: Takes the hardware supporting documentation, such as wiki pages or 
design documents as input to learn the topic model of the domain hardware concepts.  

 MV Analyzer: Leverages the calculated hardware concepts and the modular decomposition as 
input to identify potential Modularity Violations involving hardware concepts. The stakeholder will 
see the potential modularity violations identified in their projects. This will enable them to be 
aware of potential modularity violations and understand the underlying hardware concepts that 
triggered changes to software modules. The ultimate goal is to help stakeholders to make re-
structuring decisions to maximize the benefits of modularization. 
 

8.5  RELEVANCE OF THE RESEARCH 
Since the term first emerged in 2006, cyber-physical systems have achieved widespread application in 
diverse areas, such as civil infrastructure, healthcare, transportation, and national defense. In particular, 
the application of cyber-physical systems in the national defense domain is highly relevant to DoD 
(Department of Defense). It has been recognized that the design, modeling, maintenance of cyber-
physical systems is more challenging than for traditional engineering systems, due to the intrinsic 
heterogeneity and nondeterministic nature of the interactions among cyber and physical components 
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[Lee 2015; González  2015; Jantunen et. al. 2016]. Existing engineering techniques either focus on the 
cyber side or the physical side, but not both. The proposed work tackles one aspect of this problem by 
identifying the latent connections between the cyber and physical aspects of the system. More 
specifically, it would identify the shared concepts that potentially propagate maintenance actions 
between the cyber and the physical sides. The incubator study results have shown the feasibility of this 
approach, and revealed that it is more likely that the direction of propagation is from the physical side to 
cyber side. Therefore, this research offers stakeholders in DoD a new approach to understand how the 
cyber and physical sides interact and impact each other.  

In addition, DoD has increasingly emphasized modular and open approaches to system development. The 
goal of modularity is to improve interoperability, facilitate system evolution and technology insertion, and 
foster competition. Requirements such as the Modular Open Systems Approach (MOSA) have been 
imposed on acquisition efforts.  However, it can be difficult for the stakeholders to assess whether the 
resulting architectures and systems are truly modular. In other words, can modules in a CPS actually be 
upgraded, replaced, and fixed in a plug-and-play manner without affecting one another? The proposed 
research helps stakeholders to answer this question based on the analysis of the modular structure with 
tunable granularity that fits specific stakeholders’ concerns. Any identified latent connections between 
cyber and physical modules could prevent the upgrade, replacement, or maintenance of as-known 
“modules” in a plug-and-play manner. Our research considers these latent connections as modularity 
violations because the structure of a cyber-physical system is no longer truly modular. Modularity is not 
purely for the sake of modularity, but for achieving the benefits, such as interoperability and to foster 
competition. The latent connections among modules in cyber-physical systems can easily result in vendor-
lock-in, reduce competition, and increase cost. Therefore, this research is highly relevant to the goal of 
the Modular Open Systems Approach emphasized by DoD. 

8.6 EXPECTED CONTRIBUTION 
The ultimate goal of this research is to help stakeholders of a cyber-physical system gain an understanding 
of the system’s modular structure, and reveal the associated modularity violations within that system. 
This serves to support decision making, in terms of whether a re-design or re-structuring is needed. This 
research expects to offer the following concrete contributions: 

 A tunable granularity analysis of the modular structure of a given cyber-physical system. Different 
levels of granularity address the concerns of stakeholders at different organizational levels. For 
example, low-level developers view the modular structure at the level of workable atomic tasks. 
Product owners view the modular structure at the cohesive functional level, where each module is 
composed of a set of related atomic elements. This study will result in a flexible and tunable strategy 
to decompose a complex system into modules based on different modularity strategies. 

 A systematic approach to identify potential modularity violations by analyzing cyber maintenance 
actions that are due to physical concepts. This approach will be applicable to different problem 
domains leveraging an automated domain concept learner. This approach will help identify 
modularity violations that potentially lead to vender-lock-in and high maintenance costs for 
stakeholders, without requiring the stakeholders to need prior in-depth knowledge of the system 
domain. 

 A software-based demonstrator combining the above modular structure analysis and modularity 
violation identification techniques to support decision making. This demonstrator will facilitate 
decision making regarding whether to re-design or re-structure certain modules of a cyber-physical 
system.  
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8.7 RISKS AND PAYOFFS  
 
There are two known risks to the execution of the proposed research:  

1. If there is a lack of high quality data, it will be impossible to develop the decomposition 
approaches or train the domain concept learner. The intent of the incubator phase was to 
mitigate this risk. In the incubator, we have identified and evaluated data sets for two open 
source cyber-physical systems and found that they provide useful data for this study. We plan to 
further leverage these data sets to perform more in-depth research. These projects are in the 
domains of IoT and healthcare, which emphasize efficiency and safety, two desirable qualities in 
cyber-physical systems for the DoD. As the project proceeds we will continue to seek out 
additional data sets to exercise the resulting methods more broadly. 

2. If the domain concept learner fails to isolate the key terms from a domain, the detected 
modularity violations will be unreliable. To evaluate and tune the domain concept learner, we 
will rely on assistance from subject matter experts.  For MD PnP, the Co-PI of this project, Dr. 
Michael Pennock has prior experience modeling medical systems and has access to experts in 
the medical field. For OpenWRT, there are faculty members at Stevens that have led research 
projects in the IoT domain. They will be qualified to assess the quality of the domain concept 
learner outputs for OpenWRT.  Finally, as MD PnP and OpenWRT are both open source projects, 
we will be able to reach out to the developers and project managers of the projects for their 
feedback. 

 
If these risks can be overcome, the payoff will be a semi-automated tool that would enable DoD and other 
Government program managers to evaluate conformance to modularity requirements for procured 
systems, and consequently, reduce the risk of vendor lock-in.  

8.8 BUDGET  
The current estimated budget for Phase 2 is $250K per year for two years. The primary cost is expected 
to be labor consisting of release time for the PI and Co-PI, student assistants to conduct the empirical 
aspects of the research, and research assistant/scientist support to develop the software demonstrator. 

8.9 TIMELINE  
Phase 1: the incubator feasibility study has been completed. In Phase 2, we plan to spend one quarter on 
each of the four modular decomposition approaches listed in Section 0. Once the decomposition 
approaches are finalized, we expect the development of the domain concept learner will take 
approximately 3 quarters. In parallel, we will begin development of the decision framework demonstrator 
starting from the 4th quarter of the second phase and lasting until the end of the project. 

Research 

Phase 

Task Description 17 18 19 

Q3 

Q4 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

1 Feasibility Incubation  

Case Study 
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2 Atomic Level Modular 
Structure Analysis 

         

Modular Analysis based on 
Coupling 

         

Modular Analysis based on 
Cohesion 

         

Modular Analysis at System 
Architecture Level 

         

Domain Concept Learner          

Build Decision Framework 
and Demonstrator 

         

 

8.10 PROJECT EVALUATION AND MEASUREMENT  
 
In order to evaluate the utility of the approach, we will apply the software demonstrator to a test cyber-
physical system development project. By design, this test project will not be used to develop the methods 
or the software demonstrator. In other words, it will not be part of the “training” data set. We plan to 
identify a suitable project over the course of the research that would be sufficiently different from the 
training set to serve as a realistic test. Alternatively, we could work with the customer to identify a project 
of immediate interest that could be evaluated assuming that it does not require extensive engineering 
level modifications to the demonstrator due to differences in programming language, version control 
systems, etc. They will then be able to compare the results produced by the demonstrator to actual data 
or subject matter expert knowledge to make an independent assessment of the utility of the approach. 
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