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ABSTRACT

Between 2005 and 2015, the world population grew by 11% while hard drive capacity grew
by 95%. Increased demand for storage combined with decreasing costs presents challenges
for digital forensic analysts working within tight time constraints. Advancements have been
made to current tools to assist the analyst, but many require expensive specialized systems,
knowledge and software. This thesis provides a method to address these challenges through
distributed analysis of raw forensic images stored in a distributed file system using open-
source software. We develop a proof-of-concept tool capable of counting unique bytes in a
116 TiB corpus of drives in 1 hour 41 minutes, demonstrating a peak throughput of 18.33
GiB/s on a 25-node Hadoop cluster. Furthermore, we demonstrate the ability to perform
email address extraction on the corpus in 2 hours 5 minutes, for a throughput of 15.84 GiB/s,
a result that compares favorably to traditional email address extraction methods, which we
estimate to run with a throughput of approximately 91MiB/s on a 24-core production server.
Primary contributions to the forensic community are: 1) a distributed, scalable method to
analyze large data sets in a practical timeframe, 2) a MapReduce program to count unique
bytes of any forensic image, and 3) a MapReduce program capable of extracting 233 million
email addresses from a 116 TiB corpus in just over two hours.
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CHAPTER 1:
Introduction

Forensic analysts are facedwith an increasing variety, quantity and complexity of data which
they must analyze in a limited time. Information critical to investigations, moreover, is no
longer limited to the standard personal computer. Today, we see users with multiple devices
such as laptops, desktops, tablets and cell phones, each with increasing storage capacity. In
addition to the devices a typical user possesses already, there are also many devices a user
comes in contact with that may contain information crucial to a forensic analyst. Wearables,
external hard drives, smart home devices and cloud-based services all add to the volume
and variety of data that must be examined.

1.1 Motivation
The primary motivations for this thesis are to reduce the time digital forensic analysts
devote to executing tools and to reduce the cost of a forensic investigation. Both are closely
related, since reducing time to execute tools directly reduces overall cost. However, costs
also include the tools themselves, as well as the time required to learn those tools and the
hardware required to execute them. Any improvement in these areas will help bring digital
forensic tools and capabilities to agencies and companies of a greater variety of budgets and
manpower sizes. Additionally, our research is motivated by the need to bring simplicity to
DF tools and allow forensic analysts to be experts at forensic examination instead of experts
at understanding the tools.

Previous efforts to address these motivations resulted in DF tools becoming significantly
more complex and parallelized on a single system while becoming costly to execute. Efforts
to achieve higher throughput have focused primarily on increased parallelization on stan-
dalone, multicore systems. This trend is nearing its limits. In 2004, Roussev and Richard
described in detail the need for distributed digital forensics [1]; then six years later Garfinkel
reiterated “the coming digital forensics crisis” of growing storage size and insufficient time
to analyze this data [2]. As late as 2016 the SANS Institute wrote that there have been
“few efforts to discuss managing the increased volume, variety and velocity of incoming
data as a big data issue” by way of motivating their proof of concept tool using Apache
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Spark to extract strings of significance [3]. During the same time, especially in commercial
industry, we have seen a dramatic increase of scalable cluster based algorithms designed
for the purpose of handling growing volumes of data.

With these motivating factors, this thesis aims to address the following research questions:

1. Can theMapReduce paradigmbe leveraged to provide a distributed computingmethod
to reduce digital forensic tool execution time and cost?

2. What best practices should be used to implement a MapReduce approach to digital
forensics?

3. Is the MapReduce solution to digital forensics scalable enough to keep up with
growing volumes of data?

1.2 Relevance and Contributions
The work in this thesis is relevant primarily to the digital forensic community which is
currently facing a data volume challenge: the amount of data available surpasses our
capability to analyze it. This thesis provides a new capability to the forensic community by
using a parallel processing method that has already demonstrated performance benefits in
processing of textual data. We develop tools to bring those benefits to forensic tasks dealing
with raw binary disk images.

We provide an InputFormat class that facilitates the analysis of raw binary images using
MapReduce for parallelization. We also provide two MapReduce programs that illustrate
the benefits of using MapReduce to tackle the growing data volume challenge. Finally, we
perform timing measurements for data ingest, analyzing 116TiB of data to count byte values
and extraction of significant email addresses.

Results from this work can help government agencies (federal, state or local) evaluate the
benefits of a Hadoop cluster at their site. These results may be used further in corporate
law offices or the courts by allowing them to complete a full analysis of all devices many of
which may contain over several TiBs of storage capacity. As cloud computing continues to
grow tools developed in this research may become more critical if the need to perform full
analysis arises.
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Digital forensics is a key tool used by the military to investigate cyber security incidents
and to quickly process digital media and devices acquired from adversaries in the course
of operations. Specifically the Navy benefits from intelligence acquired from digital media
as a result of this research. Providing this intelligence quickly could mean a go or no go
decision for an operation depending on the intelligence acquired. In addition to gathering
intelligence the Navy benefits from enhanced ability to examine attacks against their own
information systems.

1.3 Thesis Outline
This thesis is organized as follows. Chapter 2 provides background information and ter-
minology on topics required for understanding our research, including concepts in digital
forensics, Big Data, Hadoop MapReduce and High Performance Computing. It also pro-
vides specifics regarding the use of MapReduce for our research. Chapter 3 covers previous
work in digital forensic tools, Hadoop storage and processing of binary images, distributed
digital forensics tools and data mining in digital forensics. Our Methodology and Results
will be covered in Chapter 4 and Chapter 5. In Chapter 6, we lay out our conclusions and
suggest future work that remains.
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CHAPTER 2:
Background

This chapter aims to define the foundational concepts that underpin our research. We
begin by introducing digital forensics (DF) and its history and present a sketch of the
progression of digital forensic tools leading up to our work. In this section, we describe
the bulk data analysis approach and explain why we chose to extend it. Next, we review
some of the concepts and definitions of Big Data and describe how these relate to our goal
of processing 116TiB. We then move to tools and methods to process large data sets of
digital evidence, first defining MapReduce, a Big Data paradigm that allows processing of
hundreds to thousands of tebibytes (TiB) or pebibyte (PiB). Finally, we define and compare
two common distributed computing frameworks, High Performance Computing (HPC) and
Hadoop MapReduce. Our aim is to move digital evidence processing into a distributed
environment; therefore, it is important to understand these two common approaches. An
understanding of each of these topics builds the foundations that are needed to understand
our research methods and results.

2.1 Binary Unit Symbols
This thesis uses the International Electro-technical Commission (IEC) standard to represent
sizes of files and storage systems. This standard is different than the International System of
Unites (SI) because it uses base 2 instead of base 10. The IEC standard measures a gibibyte
(GiB) to be 230 whereas the SI standard measures a gigabyte (GB) to be 109 though the
two are seen to be used interchangeably. The different values between the two standards is
subtle with smaller units such as KiB and MiB, but as units increase this difference grows
exponentially and may no longer be inferred from context [4]. For example, the exact
difference between using GiB versus GB is 73,741,824 bytes.

2.2 Digital Forensics: Definition and History
Before its infancy (in what Mark Pollitt labels as “pre-history” or pre-1985) the closest thing
to digital forensics, as it is defined today, were early system audits—reviews of system usage,
efficiency and accuracy of data processing to detect fraud [5]. In the next several paragraphs
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we review in detail digital forensics history (summarized in Figure 2.1). Pollitt describes
this period as dominated by “ad hoc” volunteer based individuals [5] since no dedicated
organizations existed. Investigations during this period were experiments with system
administration tools, which as both Pollitt and Garfinkel point out, are best represented in
Cliff Stoll’s, The Cuckoo’s Egg [2], [5] [6]. Before the Computer Fraud and Abuse Act of
1984 made computer hacking a crime, there was a greatly reduced desire to perform audits
or DF investigations since corporations with main-frames did not have clear legal grounds
to prosecute.

1984

1985

1986

1993

1995

2001

2005

2007

Pre-History  
-System Audits 

-Ad-hoc 
-Experimental 
System Admin 

tools 
-Volunteer 
Individuals

Infancy  
-Law Enforcement Growth 

-Remains informal volunteers

Childhood 
-Growth of dedicated Experts 
-Formal definition presented 
-Large technology growth 
-Everyone has email, cell 

phones, networks

Adolescence 
-Growth in 
Academics 

-Formal tools, 
training and 
education 

-Dedicated DF 
tools and Teams

Computer 
Fraud and 
Abuse Act

Stoll’s 
Investigation 344% Increase in Storage 541% Increase in Storage

1st DFRWS

Figure 2.1. Overview of Digital Forensics Tool History. Illustrates common
themes during each time period leading to the current state. As you progress
from left to right, tools and digital forensics become more formalized with
dedicated tools and training.

During this “Infancy” period of 1985 to 1995, as Pollitt labels it, we see a large growth of
digital forensics in the Law Enforcement community a group already familiar with stan-
dards for how evidence must be collected, preserved, and presented. With agencies in this
group such as the Internal Revenue Service (IRS) and Federal Bureau of Investigation (FBI)
all creating computer investigation teams and conferences [5] we see how terms such as
“preservation,” “collection” “documentation,” “presentation,” “evidence” and “reconstruc-
tion” appear in the definition of digital forensics. Many of these agencies have a strong

6



background in traditional forensic science which is defined using many of the same terms.
Though many of the tools of this period still were home-grown, the practice of applying
them to digital forensics, as well as the introduction of commercial digital forensic products,
became more widespread during this time [5].

In the “childhood” era, from 1995 to 2005, we see an “explosion of technology” become
the primary driver for the increased need for dedicated digital forensic experts and tools [5].
Early in the era, we see greater law enforcement involvement due to an uptick in child
pornography cases. But it is not until the turn of the century where we start to see
explosive growth in technology. In Hilbert and Lopez’s review of the world’s storage and
communication capacity they estimate a 344% growth between 1993 and 2000 [7]. The
following period, 2000 to 2007, had a growth of 541% [7]. This growth, or turning point,
in technology is significant because it shows that storage capacity and communication
moved from exclusively corporate and law enforcement organizations to everyone. During
this turning period in 2001, at the first Digital Forensic Research Workshop (DFRWS)
[8], Digital Forensics was formally defined as: “The use of scientifically derived and
proven methods toward the preservation, collection, validation, identification, analysis,
interpretation, documentation and presentation of digital evidence derived from digital
sources for the purpose of facilitating or furthering the reconstruction of events found to be
criminal, or helping to anticipate unauthorized actions shown to be disruptive to planned
operations.” As Hilbert and Lopez observe, the “Internet revolution began shortly after
the year 2000,” and this “multiplied the world’s telecommunication capacity by a factor of
29” [7]. This explosion of technology was the driving factor behind digital forensics gaining
importance in criminal investigations. This was because “everyone had an email address, a
cell phone, [and] relied on the Internet, and most homes and businesses had networks” [5].

Starting in 2005, digital forensics moves into what Pollitt labels its “adolescence period” [5].
The previous era can be categorized as the realization and recognition of the need for digital
forensics and consequent development of requirements in the field. The adolescence period
is where we see those requirements come to fruition with an explosive growth into the
academic community. This period marks a point where research funds are dedicated to
digital forensics and universities and vendors everywhere are offering formal training. In
addition, the volume of examined data reaches petabyte scale, as was the case with the FBI’s
Computer Analysis and Response Team (CART) [5]. Garfinkel describes this period as the
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“golden age” with regard to growth in professionalization. An updated count shows there
are now 16 universities offering certificate programs, five offering associates degrees, 16
offering bachelor programs, 14 offering masters, and three doctoral programs, according to
the Digital Forensics Association [2], [9] .

The result of more research funds and formal programs has been the development of two
primary methods to examine digital evidence: file-based and bulk data analysis. File-based
tools are widely used by examiners because they are easy to understand. These tools can
parse the file system, the partition table of a single pdf header and “operate by finding,
extracting, identifying and processing files” [10]. These tools rely heavily on the specific
metadata of the filesystem which can limit the available pieces of digital evidence they may
process. A complementary method is bulk data analysis, which does not require knowledge
or metadata from the filesystem. In contrast to its counterpart, bulk data analysis examines
data of interest by scanning for content, not files [10]. This data is extracted and reported as
necessary regardless of being associated with a complete file or not. The advantage to this
method is that it allows tools to examine any digital storage image. File Carving is a specific
example of bulk data analysis although it only extracts content that can be assembled into
files [10]. Between these methods, we chose the bulk data analysis method and specifically
the tool bulk_extractor to port to a MapReduce cluster.

2.3 Digital Forensics: Tools and Terminology
A review of digital forensics tool history is a broad topic to cover. In this section we focus
on the tools and concepts that used throughout this research. The first is a review of what
bulk_extractor does since this is the tool we use to extract email addresses in a MapReduce
environment. Then introduce a digital forensics file format and the data set chosen for this
research. Finally, a review of a termweighting concept used to analyze results is introduced.

2.3.1 bulk_extractor
Bulk_extractor is a digital forensics program written in C++ that extracts features such as
email addresses, credit card numbers and URLs. A feature is a pseudo-unique identifier,
such as an email Message-ID, that has been extracted from digital media. We define pseudo-
unique identifer as “an identifier that has sufficient entropy such that within a given corpus

8



it is highly unlikely that the identifier will be repeated by chance” [11]. Extracted features
are stored in feature file lists and may also be used to create histogram files which provide
added value for a forensic analyst attempting to determine what the disk image was used
for. Because bulk_extractor ignores file system structure, it can implement a highly parallel
approach to processing different parts of the image. This process of dividing up a disk
image is what gives bulk_extractor its performance advantage. Further, this characteristic
makes it an excellent candidate for use with a MapReduce paradigm.

2.3.2 E01 and libewf
"E01" files or Expert Witness File (EWF) format is considered by many to be the de
facto standard for disk images. This file format is proprietary and owned by Guidance
Software who develops the digital forensics tool EnCase. This file format is used to create
a compressed bit-by-bit copy of a disk prefixed with "Case Info" header and checksums for
every 32KiB as well as a MD5 checksum for the entire bitstream copy [12]. Though this
file format is proprietary, the open source community has reverse-engineered the software
to create the libewf library [13]. The libewf library contains several tools for working with
EWF files, such as ewfacquire to write data from drives to EWF files and ewfexport to
export data in EWF files to raw format.

This format allows for the image to be broken up into multiple manageable segment files that
can be stored across storage media that are individually smaller than the complete original
drive size. The ewfacquire man page states that segment file size defaults to 1.4 GiB and
can be controlled at acquisition time with a max size of 7.9 EiB. The first segment file is
always .E01 with subsequent segment files being .E02, .E03 and so forth for the complete
drive image.

2.3.3 Real Data Corpus
The Real Data Corpus (RDC) is a collection of devices including hard drive images, flash
memory drives and CDROMs [14]. The devices in this collection were purchased on the
secondary market in non-United States countries across the world. Images in the RDC are
bit-by-bit copies of the drives when they were acquired and therefore may contain a wealth
of information that forensic analysts may find on hard drives.
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The uncompressed size of the RDC used in our research is 116TiB with 3,096 separate
images, each ranging in size from a few GiBs to one TiB images. The RDC is the data
set we chose to develop our tools against. The importance of this is that the RDC contains
actual or “real” images of devices used by humans. It is important to develop our tools
against a data set size and content that may actually be encountered by forensic analysts to
make sure they perform correctly in real-world scenarios.

2.3.4 Term Frequency-Inverse Document Frequency
In digital forensics it is often critical to quickly determine whether a forensic artifact is
significant to the case. One such method, borrowed from text mining techniques, is Term
Frequency-InverseDocument Frequency (TF-IDF). TF-IDF is a statisticalweightingmethod
developed primarily for information retrieval that provides a weight value to illustrate how
strongly a word is correlated to a document in a corpus [15] [16]. TF-IDF is composed
of two parts; the TermFrequency(TF) part and the Inverse Document Frequency(IDF) part.
TF is the number of times a word (or, in this application, an email address) occurs in a
document (or forensic image). IDF is the logarithm of total documents in the corpus divided
by number of documents that contain the word. The TF-IDF weighted value of an email
address is the product of the TF and IDF, and describes the strength of the relationship
between a particular email address and a disk image in the RDC.

2.4 Big Data
The term, “Big Data,” means different things to different audiences. A generic definition
of Big Data suggested by Sam Madden is “too big, too fast, or too hard for existing tools
to process” [17]. This definition leaves considerable room for interpretation, however. In
2001, Doug Laney proposed the widely-cited definition for Big Data which depends on the
three V’s [18]:

Data Volume: The size of the dataset.
Data Velocity: The rate of flow or how fast data is produced or processed.
Data Variety: The type(s) of data in the dataset.

Laney’s three V criteria remain in use today, with Gartner reiterating them in 2012 [19] [20],
though NIST has proposed adding one more V: Variability (i.e., The change in velocity of
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structure) [21]. The three V definition still depends on the time period: volume today may
not be considered “too big” 10 years from now with tools available then. Today, large data
volumes would be considered hundreds or thousands of terabytes (TB) or petabytes (PB)
and in some cases even exabytes (EB).

Two prominent challenges exist with big data sets: storing the data and processing the data
when, when these tasks exceed the limitations of traditional file systems and computers. An
example data set, the CERN Large Hadron Collider(LHC), generated over 100PiB in 2013
with the bulk archived to tape. Though, 13PiB of it is stored on a disk pool system [22].
Storage of a data set this size requires some sort of parallel distributed file system due
to traditional file system and hard drive limitations. The next challenge is processing the
data, but the traditional strategy of “bring the data to the code” is simply not feasible with
large data sets [23]. Big data storage and processing solutions, discussed in later sections,
such as Google File System (GFS), Hadoop Distributed File System (HDFS), Hadoop and
MapReduce (MR) are designed to address these storage and processing challenges with a
“bring the code to the data” approach [23]. The big data approach assumes that size of
processing code is drastically smaller than the data set, which is true in most cases.

Current digital forensics tools are not capable of processing large collections of disk images,
such as the RDC, in an acceptable time period. Time to process larger volumes of digital
evidence has remained the same or decreased during investigations. Common digital
forensics tools EnCase [24], Forensic Took Kit (FTK) [25] and The SleuthKit (TSK) [26]
are all considered traditional digital forensics tools capable of using multiple cores of one
highly specialized machine using the “bring the data to the code” approach. Of these tools,
FTK is the only that offers a distributed approach, but it is limited to a maximum of four
specialized computer processing systems, one master and three workers. The three worker
systems are similar to the traditional FTK install except they are installed in distributed
mode [25]. These three additional systems function as workers for the primary master,
which functions as the head of distributed processing.

2.5 MapReduce Paradigm
Analyzing a large data set using traditional computing methods is not feasible. Even with
increased multiprocessing capabilities common digital forensics tools are still not sufficient
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for the data sets of today. Today’s tools are still predominately limited to one highly
specialized computer and even with continued advances in CPU speeds they are still limited
by I/O speed, which has seen far less impressive performance improvements [1]. Roussev
et. al argue that successful next-generation digital forensics tools will employ methods to
distribute the I/O limitations to multiple machines capable of potentially processing tens of
thousands of image thumbnails [1], [27].

One possible distribution method is MapReduce. MapReduce is a scalable tool capable of
processing large data sets using low-end computer systems in parallel [28]. TheMapReduce
programmingmodel was originally developed at Google and later became the basis the open
source version, Hadoop [29], [30]. This programming model follows a divide and conquer
approach, which breaks up a large job (i.e., dataset) into smaller chunks that are then
processed in parallel.

A MapReduce job is composed of two functions: Map and Reduce. Appendix D contains
pseudo-code for these functions taken from Dean and Ghemawat’s work [29]. The Map
function is written by the user and takes an input pair and produces a set of intermediate
key/value pairs. Prior to passing all intermediate pairs to a reduce function the key/value
pairs are grouped on the same intermediate key, then all pairs with same intermediate key
are passed to the same reduce function. The Reduce function, also written by the user, takes
as input the intermediate key and its values, which are merged to produce a smaller set of
values. Map functions are executed in parallel across a cluster of machines by partitioning
the input data into a number of input splits. The number is typically driven by the block
size of the data stored in Hadoop Distributed File System (HDFS). The number of Reduce
functions is controlled by the user specifications, which are also executed in parallel across
a cluster.

An overview of MapReduce job execution is shown in Figure 2.2 from Dean and Ghemawat
[29]. We summarize their description in the following steps:

1. MapReduce splits up the input files into chunks based on their HDFS data block size.
The default data block size is 128 mebibytes (MiB) [31], but can be controlled by the
user upon importing data files into HDFS.

2. Once the number of input splits (also equal to the minimum number of mapper tasks)
and reducer tasks is determined, the master assigns these tasks to idle datanodes in
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the cluster. The master is aware of which datanodes contain which chunk of the input
files and will make the best effort to assign mapper tasks to those datanodes. This
strategy achieves the goal of data-local execution, which we expand on later.

3. A worker is assigned a mapper, which reads the contents of the input split, parses the
key/value pairs, then executes the user-defined map function on the value.

4. The intermediate key/value pair result from a mapper is written to the local disk and
the worker notifies the master of this location. The master then sends the location to
workers assigned a reducer task.

5. A reducer task performs a remote read of this intermediate file where it is sorted by
intermediate keys. It then executes the user-defined reduce function on this sorted
data.

6. The reduce function output is written to the final output file.

TheMapReduce program is complete once all map and reduce tasks are finishedwith reduce
output files containing combined results.

We chose MapReduce processing and the Apache Hadoop Framework for our research
because it provides a parallel processing solution for data-intensive applications. Further-
more, a MapReduce program is naturally parallel [32] thus eliminating the need for the user
to struggle with the details of parallelizing the process [28]. Thus MapReduce provides
parallel data analysis access to any forensic analyst with little to no parallel programming
knowledge. Additionally, MapReduce and the Apache Hadoop Framework provide a cost
effective solution to parallel processing compared to traditional High Performance Comput-
ing (HPC). The Apache Hadoop Framework is a cost effective solution for a few reasons: it
is open source with no licensing costs, installed on inexpensive commodity hardware and
requires minimal training to write Map and Reduce functions.
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Figure 2.2. Overview of the Execution of a MapReduce Program. Starting
from top to bottom then left to right with InputSplits of a file the figure
proceeds through the execution of the map phase, where the output is written
to local files. These files are read remotely in step 5 by the reducer, which
executes the reduce phase on them producing final output for the program.
Source: [29].

2.6 Hadoop and HDFS Architecture
Before creating the MapReduce programming model, a team at Google designed a dis-
tributed file system called Google File System (GFS). GFS is a reliable file system dis-
tributed across commodity hardware used for large data set analysis [33]. The Hadoop
framework is the open source software implementation of both the GFS and MapReduce
concepts. We have already discussed the details of MapReduce processing and here we will
discuss the architecture of HDFS and the specific implementation at the Naval Postgraduate
School (NPS).
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Next-gen digital forensics tools need to deploy distributed methods for both storage and
processing. MapReduce handles the processing aspect while HDFS handles the storage
aspect. The significance of a distributed parallel file system, such as HDFS, to our research
is that it distributes the I/O limitations of current digital forensics tools to several other
computer systems. HDFS’s purpose is to allow multiple chunks of a single input file to
be read and processed, using MapReduce, in parallel, therefore distributing I/O across the
cluster and decreasing overall processing time.

Similar to GFS, the design goals of HDFS are: store very large files, implement a write-
once, read-many-times pattern, and use commonly available hardware with high node
failure rate [32], [33]. Like many other distributed file systems, HDFS stores metadata and
application data separately. HDFS uses a NameNode and DataNodes to store metadata and
application data, respectively. This can be thought of as a Master and worker relationship
as shown in Figure 2.2.

AHadoop cluster consists of aminimumof oneNameNode and potentially tens to thousands
of datanodes, though a secondary NameNode may also be used as backup due to its crucial
role in the architecture. Unlike other distributed file systems, HDFS uses block replication
for data protection against node failure. This different approach provides durability andmore
opportunities for computation near the data, which is critical for data local computing [34].
Specifically, HDFS by default uses large 128MB block sizes and replicates each block of
data three times across datanodes in the cluster, though these values can be set by the user
on a file-by-file basis [34]. Figure 2.3 is an illustration of this replication and block size for
a sample file. A Real Data Corpus (RDC) [14] 160 GiB disk image stored with a 512MiB
block size would be replicated across three datanodes. We discuss in Chapter 4 why the
512MiB block size was chosen.
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Figure 2.3. File Representation in HDFS. During data ingestion into HDFS a
file is broken into chunks. These chunks are then replicated by default three
times across the available datanodes in HDFS. By default, three copies are
made. For example, the green chunk in the figure above is replicated across
datanodes 2 and 3 to preserve fault tolerance in the case datanode1 fails.

The Hadoop cluster NameNode manages HDFS attributes such as location of chunks and
their mapping to files as well as permissions; therefore any read request for a file must first
go through the NameNode [33]. It is important to note that the NameNode manages HDFS
all in memory, thus the NameNode is likely to have more memory and smaller hard drive
space than datanodes. This design inherently creates some degree of overhead during set up
of a MapReduce program and is one reason why we chose a 512MB block size, since this
choice reduces the number of map tasks the NameNode has to manage. The NameNode
receives updates from all datanodes in the cluster via heartbeats and if NameNode fails to
receive an update in ten minutes it marks this datanode and the block replicas as unavailable.
Because there are two other replicas, any jobs on this datanode will be resubmitted to other
datanodes where a replica exists while the NameNode will schedule the creation of new
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replicas to maintain three replicas.

2.7 HPC and MapReduce Trade-offs
Distributed processing and storage typically means one of two approaches: High Perfor-
mance Computing (HPC) or MapReduce. Both attempt to solve complex large problems
but with subtle differences. HPC aims to solve problems that require extensive computation
of complex equations on a dataset that is potentially, but not typically large. MapReduce
aims to solve problems that are data-intensive. Generically, HPC solves problems that are
seen to be CPU-bound while MapReduce solve problems that are seen to be I/O-Bound. In
their attempt to solve different complex problems each make intentional trade-offs, which
we review in this section.

Traditional High Performance Computing (HPC) uses many high end nodes in parallel
to run advanced applications that are not capable of running on a single system. HPC
originated from the need for compute-intensive applications [35]. It relies heavily on a
centralized parallel file system that is accessed by compute nodes with limited local storage
via a high-end network using technologies such as Infiniband. Reliance on this parallel
filesystem and accompanying high-end network can have high costs up front as well as
high maintenance especially when looking to scale. That is not to say HPC is obsolete; in
fact, in recent years HPC has made significant advancements in terms of compute-intensive
applications, just as Hadoop has done with data-intensive applications.

A serious comparison of HPC andMapReduce must distinguish between the fundamentally
different approaches taken by each in terms of data locality. It is trivial to see with HPC’s
central parallel file system that locality does not exist where computations occur. That is
storage of data is separate from computing on the data and HPC uses a “bring the data to
the code” method [23]. With smaller data sets and high-end networks, this approach works,
but with larger and growing datasets (e.g. Real Data Corpus, 116TiB) this move takes time
even with high-end networks. MapReduce approaches the problem with a “bring the code
to the data” method. The code of data-intensive applications is much smaller than the data
they are processing.

Another important difference between the two approaches is resource scheduling and fault
tolerance. HDFS achieves fault tolerance by using block replication across datanodes,
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whereas HPC typically uses redundant array of independent disks (RAID). Both imple-
mentations have drawbacks, RAID large capacity rebuilds can days to weeks whereas block
replication requires two or more times storage space [36]. The additional storage capacity
requirement for replication is mitigated by low cost of hard drives. Because of these dif-
ferent strategies, the impact of a node failure on a given active job is also different. With
HPC, many times node failure means the whole job must be started from the beginning,
whereas with MapReduce and its YARN (Yet Another Resource Negotiator) task scheduler
only those mappers or reducers whose data block is on the failed node must be submitted
using one of the replicated blocks [37].

From a user’s perspective a significant difference between HPC and Hadoop MapReduce is
the level of programming knowledge required. HPC programming uses Message Passing
Interface (MPI) libraries, which puts the responsibility on the user to “manage communica-
tions, synchronization, I/O, debugging, and possibly checkpointing/restart operations” [37].
A MapReduce programmer is only provides a Map and Reduce function. This represents a
significant reduction in the complexity of the interface.
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CHAPTER 3:
Related Work

Our research seeks to provide a scalable Digital Forensic tool using the MapReduce frame-
work. To do that we build upon previous research and digital forensic tools, as well as work
that attempts to improve performance with distributed solutions. In this chapter we review
the previous work from these perspectives:

1. Does it provide a performance solution to increasing data set size?
2. Does it add more complexity to the tool for analysts?
3. Is it tested against a large dataset(>1TiB)?
4. Are the costs acceptable? In this context, cost is not limited to monetary cost but

includes cost of knowledge required for an analyst.

See Table 3.1 for an overview of these answers. We divide our review of previous work into
three categories:

1. Current state of digital forensics tools.
2. Requirement for distributed tools.
3. Existing distributed approaches.
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Table 3.1. Summary of Related Work
Solution Does it improve per-

formance for large
dataset?

Does it
add com-
plexity?

Is it tested against
large dataset
(>1TiB)?

What are the costs?

Roussev Breaking
Performance Wall
(DELV)

Yes Yes No Specialized knowledge and mon-
etary cost of high-end network
switch

EnCase No Yes No Highly specialized knowledge and
restricted to specificmedia and file
formats

Sleuthkit No Yes No Highly specialized knowledge and
restricted to specificmedia and file
formats

Forensic Toolkit
(FTK)

Yes, with ProcessMan-
ager

Yes No Highly specialized knowledge and
restricted to specificmedia and file
formats, limited to maximum of 3
specialized machines

pyflag No Yes No Highly specialized knowledge and
restricted to specificmedia and file
formats

Data Reduction No No No Lost evidence

MPI MapReduce
(MMR)

Yes Yes No MPI knowledge and complexity
required for analyst

Sleuthkit Hadoop Inferred, no evidence
to support

Yes No Not enough info on solution. In-
complete implementation.

Massive Threading
w/GPUs

Yes Yes No Complexity and knowledge cost to
learn GPU programming, mone-
tary cost of specialized GPUs

Parallel GPU in GPU
memory

Yes Yes No Complexity and knowledge cost to
learn GPU programming, mone-
tary cost of specialized GPUs

Tarari Processor Yes Yes No Complexity and knowledge cost
to learn Tarari processor program-
ming

HPC password crack-
ing

Yes Yes Not applicable for
password cracking

MPI knowledge and complexity
required for analyst

z-algorithm search
w/MPI

Yes Yes Not Applicable MPI knowledge and complexity
required for analyst

forensic cloud Yes Yes No MPI knowledge and complexity
required for analyst

Netherland XI-
RAF/HANSKEN

Yes Yes Yes Complexity and knowledge of cus-
tom XIRAF system

DFaaS Index Search
MapReduce

Yes No Yes Added complexity for web-based
interface, but not backendMapRe-
duce Computations

20



This chapter is not an all-encompassing review of digital forensics tools. Rather, we provide
a progression of digital forensics tools research that aims to solve the volume problem and
improve performance. We start with the current state of digital forensics tools, most of
which are single system bound. We then review research that examines and defines a
requirement for distributed solutions. The closing sections are more directly related to our
research and review specific attempts to distribute digital forensics tools and several data
mining approaches used.

3.1 Current State of Digital Forensics
We begin with a review of the current state of digital forensic tools, their successes as well
as their limitations when attempting to analyze a data set size of 116TiB, such as the Real
Data Corpus. The volume increase in Digital Forensics has had dramatic impacts on the
research and tools used. Quick and Choo provide a thorough survey of these impacts as
well as proposed solutions but group distributed processing with other topics that appear to
require additional research [38].

One of the earliest works to recognize the volume growth challenge is Richard and Roussev’s
paper in 2004, after observing that FTK takes 60 hours to open an 80GB case [1]. They do
not attribute this performance to bad implementation of the FTK tool. Rather, they view
their results as a warning sign to all digital forensics tools. Richard and Roussev state that
a specialized solution is better than a generic distributed one and developed a prototype,
DELV, with an approximate 2600% time improvement over FTK. In 2006, Richard and
Roussev describe what the next generation of digital forensics tools must accomplish,
primarily focusing on the issue of scale due to data volume and the fact that current tools are
constrained to a single workstation, which are bounded in computation cycles [27]. Their
prototype, DELV, demonstrates the benefits distributed digital forensics has over current
tools. The performance improvements of this prototype come at the cost of increased
complexity, monetary expense and knowledge it requires for any analyst to implement and
use. Specifically, considerable expertise is required to understand and learn their custom
communication protocol. The authors mention that no specialized libraries such as PVM
(Parallel Virtual Machine) or MPI (Message Passing Interface) were used, but the creation
of a specialized solution adds to complexity and to the knowledge the analyst must acquire.
Richard and Roussev’s work provides the foundational case against current digital forensics
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tools and the DELV prototype provides a coordinator/worker architecture we build on.

The DELV prototype provides a great starting point, and in 2009 Nance et al. define a
research agenda to address data volume [39]. This trend continues for the next several
years. In 2010, Garfinkel states in his next 10 years of research that some tools today can
process terabyte sized cases, but are unable to create a concise report of features [2]. We
add that those tools capable of working with a terabyte case can take days to weeks on a
single specialized workstation. His point is further illustrated with Raghavan’s 2013 review
of current digital forensics research stating that popular digital forensics tools, EnCase,
Sleuthkit, FTK and pyflag are “highly specialized” and “fine-tuned” to specific storage
media and fail to address the “single largest challenge” going forward, data volume [40].
In 2015, mentions of vast volumes of data as a challenge still exist with most solutions
focusing on reduction of data, which could lead to missed data in an investigation [41].

The most popular tools today are EnCase [24], FTK [25], Autopsy and Sleuthkit [26]. All
perform well at specific, isolated tasks, but the available detailed comparisons of the tools
primarily focus on formats and file systems they can read, whether they provide searches
and what searches they can perform. We recognize these are valid points to compare
against, but in terms of how each perform with large data sets, little analysis has been
performed. Some articles provide details of each of these tools’ features [42] and some
perform analysis by executing tools against actual images [43], but the images they test
on are limited in size with the largest being 15GiB. Of these tools, AccessData’s FTK is
the only to distribute the workload with its Processing Manager, but it is limited to three
additional systems [44], [45]. Though it is limited, the performance improvements show
promise for distributed tools going forward.

This capability for FTK was released with version 3.0.4 in 2009 along with actual test
results shown in Table 3.2. These results provide strong evidence for the case for distributed
forensic solutions, but also highlight the fact that they are dated considering many modern
images are much larger than 160GiB.
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Table 3.2. AccessData FTK Distributed Test Results. Source: [46]
Image Size of Data Set Time w/Single Node Time w/Distributed Processing

Image #1 100GB 9.08 hours 2.13 hours
Image #2 160GB 8.57 hours 1.68 hours
Image #3 140GB 13.48 hours 5.63 hours
Image #4 75GB 6.96 hours 2.75 hours

3.2 Call for Scalable Digital Forensics
Taking 60 hours to process an 80GB image is unacceptable by today’s standards considering
typical consumer hard drives are nowmeasured in the hundreds to thousands ofGBs. Digital
forensic tools must advance and scale to analyze this growing data volume and continue to
provide critical insights into investigations as it has in the past.

Richard and Roussev’s call for distributed digital forensics in 2004 was reiterated in 2016
when Lillis et al. [47] categorized distributed processing, HPC and Parallel Processing in
their future research chapters. As the driving justification for distributed processing, Lillis
et al. point to Roussev et al. [48] 2013 findings that with current software it would require
120-200 cores to keep up with commodity HDDs. It is implied that this means multiple
systems must be used since no single CPU contains this many cores. Roussev et al. findings
build on Roussev’s previous work with scalable open source tools in 2011 where he again
points to a lack of distributed tools, such as Google’s MapReduce Framework, to address
the scalability problem, which Lillis et al. conclude has not received sufficient attention by
researchers in digital forensics [49].

Both Richard and Roussev and Lillis et al. define a model to follow and tools that could
potentially be used, but they do not offer implementations. Rather provides foundations
to many of the implementations for scalable digital forensics tools, which we discuss in
the next section. One of the models we aim to implement and build on is described in an
AccessData whitepaper [50], which suggests using legacy hardware to distribute processing
and reduce time. In this respect, it advocates for principles similar to those followed by
Hadoop MapReduce which uses commodity hardware for parallel processing.

Similarly, Ayers’ work describes a set of requirements for second generation tools which
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include parallel processing and fault tolerant data storage [51]. Both are achieved with
the Hadoop MapReduce implementation we propose and align with Ayers’ proposal to
use super computers and parallel file systems. Roussev’s proposed distributed prototype,
DELV, is another building block for many of the existing distributed approaches. Each of
these approaches attempts to achieve many or all of the requirements Roussev defines for
Distributed Digital Forensics (DDF). Those requirements stipulate that a distributed digital
forensic system must be [1]:

1. Scalable Able to employ tens to hundreds of machines which should lead to near
linear performance improvement.

2. Platform-independent. Able to employ any unused machine on local network.
3. Lightweight. In terms of efficiency and easy administration such that extra work to

install, run and distribute data should be negligible.
4. Interactive. Capable of allowing interaction with partial results while distributed

processing is executing.
5. Extensible. It should be easy to add new functions with little to no additional effort

and skills over sequential case.
6. Robust. It must ensure the same level of confidence as sequential case when a worker

node fails.

Our distributed approach satisfies and improves on the work Roussev laid out with DELV.
The achievements of our work are based on these requirements, whichwe review and discuss
in later chapters.

3.3 Current Attempts to Scale and Distribute
This section reviews existing distributed approaches to digital forensics. We divide these
existing approaches into four categories and review what each attempt has accomplished:

1. MapReduce Attempts
2. Hardware Attempts
3. HPC Attempts
4. Cloud-Based Attempts

Each of these attempts is examined based on the previously defined questions:
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1. Does it provide a performance solution to increasing data set size?
2. Does it add more complexity to the tool for analysts?
3. Are the costs acceptable?

3.3.1 MapReduce Attempts
MPI MapReduce (MMR) [52] relates directly to our research. Roussev et al. develop a
platform to useMPIwithMapReduce that achieves super-linear speedup for indexing related
tasks, linear speedup for CPU bound processing and sub-linear speedup for I/O-bound tasks.
These results show great promise and inspire confidence in using MapReduce for digital
forensics related tasks. Though this work produces promising results, it is implemented on
a three node cluster (12 cores total) and only tested against relatively small files (less than
2GB). Furthermore, it adds a layer of complexity: the analyst is expected to have a “fairly
good understanding of distributed programming” [52]. The addition of MPI complexity
does not meet the extensibility requirement, and implementation on three nodes does not
demonstrate scalability.

In addition to the above MPI MapReduce implementation, another project that uses the
MapReduce paradigm to improve performance is Sleuth Kit Hadoop. The goal of this
project is to incorporate The Sleuth Kit into a Hadoop cluster [53]. Initial efforts were
funded by U.S. Army Intelligence Center of Excellence, but there has not been an official
release, and the latest source code commit coming in 2012. Miller et al. [54] state this project
has three phases — ingest, analysis, and reporting— but do not mention any empirical
results, only that TSK and Hadoop “together benefit from increased processing power from
parallelization.” The authors did not attempt to install this framework, but felt it significant
to mention as related work using MapReduce in a digital forensics setting. Even without
official release and frequent updates, this project shows potential to provide a lightweight
solution that satisfies the scalability, platform-independence, lightweight and robustness
requirements.

Hadoop and MapReduce Scalability
MapReduce has the ability to easily add datanodes, extendingHDFS capacity and processing
on data stored in HDFS. Gunther et al. state that the Hadoop framework ensures that
MapReduce applications shown to work on a small cluster(less than 100 datanodes) can
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scale to arbitrarily large clusters (several thousand datanodes) [55]. Many corporations
maintain Hadoop clusters containing several thousand data nodes with Petabytes of HDFS
capacity, but the question of scalability for distributed forensics depends on whether it
provides near linear performance improvement.

Various related works on Hadoop scalability found great performance benefits are achieved
by scaling Hadoop clusters, though many suggest these performance improvements depend
on the application. For instance, Appuswamy et al. [56] test 11 different jobs and find
that doubling cluster size improves performance for six jobs. Generally, they conclude that
scaling out, or adding more cluster nodes, worked better for CPU-intensive applications.

Furthermore, Li et al. [57] compared scale-out and scale-up strategies for HDFS and local
file systems. Scaling-up means improving the components in existing datanodes instead of
adding more datanodes. Li et al. conclude that scaling out performs best for I/O-intensive
applications with small files and that scaling out HDFS outperforms scaling up HDFS in
three of the seven applications tested. Overall, Hadoop scaling provides application speedup,
but predicting the exact performance improvements for a given job remains difficult.

3.3.2 Hardware Attempts
Massive multi-threading [58] attempts to utilize new hardware graphics processing units
(GPU) to improve file carving. Marziale et al. results demonstrate significant performance
improvements executing Scapel file carver with GPUs versus multicore CPUs. Scapel [59]
is a file carver that extracts files based on known byte patterns. This is done without
assistance from the file system, which gives it the ability to extract data from unallocated
spaces in the file system. Specifically, a 150% speedup is measured using a massively multi-
threaded GPU-enabled scalpel over a multicore-threading CPU-enabled scalpel running on
a 100GiB disk image. These results show promise for using GPU-based solutions in digital
forensics, but the authors point out that there is added difficulty in GPU programming [58].
Therefore, while this approach does improve performance, it does so at the cost of added
complexity and specialized knowledge. We therefore argue it does not meet the extensibility
requirement. Additionally, this work is limited to a single workstation with one GPU, which
requires additional storage and may degrade performance when processing a dataset such
as the RDC, where disk images may range up to 1TiB.
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Additional work with GPU’s is explored in [60] and performance gains from parallelizing
hash-based data carving. The work of Collange et al. in parallelizing hash-based carving
demonstrates that the most effective use of GPU’s occurs when data is stored in the GPU
memory as opposed tomainmemory or on disk. Their results illustrate the benefit of parallel
GPU processing over serial CPU processing and build upon the results from Marziale et
al. This comes at the monetary cost of GPUs as well as knowledge and complexity costs
associated with GPU programming.

Lee et al. [61] propose another hardware based approach to improve search performance
in digital forensics. They propose using the Tarari content processor for improved search.
The implementation improves performance by a factor of five over tools such as EnCase.
Though this implementation, similar to GPU approaches, improves performance it remains
limited to a single workstation and was tested only on small file sizes. Similar to GPU
programming, we argue the performance gains are negated by the complexity required to
program new functions and to actually scale to a full dataset the size of the RDC.

3.3.3 HPC Attempts
High-performance computing (HPC) clusters are alternatives to MapReduce’s distributed
parallel processing. HPC uses a model to divide a data set into smaller parts and share
the workload amongst multiple cluster nodes communicating via some message passing
technique. Bengtsson [62] provides a survey of how an HPC Linux cluster is used to
speedup password cracking. This work demonstrates a type of forensic problem that can be
divided up and leverage HPC for performance gains. Early work with HPC demonstrates its
possibilities to improve current digital forensics tools performance, but require a great deal
of specialized of knowledge to program. In addition, scaling to large datasets is expensive.

Additional HPC work done in uses MPI calls to improve performance by a factor of six for
z algorithm, a linear time pattern searching algorithm [63]. This work provides solutions
for the growing data volume problem but require an analyst with extensive MPI knowledge.

3.3.4 Cloud-Based Attempts
Another avenue being explored to combat the data volume challenge is Digital Forensics as
a Service(DFaaS) using a cloud platform. Miller et al. [54] reiterate NIST’s cloud definition
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to be, “a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources.” Miller et al. define the process, model and flow
of a “forensicloud” where they test performance of a workstation cluster, virtualized cluster
and HPC backend for processing compared to a single node of each type. Results from this
illustrate distributing processing workload reduces run time by 50% for each cluster type.
Miller et al. conclude that the virtualized cluster performed the best, but attribute this to
HPC lacking fast access storage device similar to the virtualized cluster. We point out this
research was tested with a single file of 40GiB uncompressed which is an improvement over
previous tests but still needs further testing considering today’s standard is 500GiB or 1TiB
hard drives.

Similar cloud forensics work is being performed at the Netherlands Forensic Institute (NFI)
where they are using Hadoop MapReduce for backend processing. Much of this work is
based around an XML Information Retrieval Approach to Digital Forensics (XIRAF) [64],
[65], [66] system and its successor HANSKEN. The initial design for XIRAF was not to
process petabytes of data and as such required improvements when it attempting to [67].
Predominantly improvements in the extraction service to now use Hadoop MapReduce to
drastically reduce time from 24 hours per terabyte to three terabytes per hour. In van Beek’s
2016, update a key lesson from implementing MapReduce was to “bring computing power
to the data” [68]. This work is similar to achievements our work provides, but is focused on
providing a front end cloud service.

A case study of DFaaS [69] found linear speedup proportional to the number of datanodes
in a Hadoop cluster when processing large datasets, larger than 56GiB. Lee et al. report the
ability to perform bigram frequency analysis on 1TiB of data in about 2 hours. Their work
demonstrates advantages MapReduce has when applied to a web-based search service,
which allows for remote upload of an analyst’s image file. The backend MapReduce
analysis portion of this work aligns directly with our research to use MapReduce to improve
performance digital forensics tools.

Another project that describes itself as “running forensic workloads on cloud platforms,” is
a platform developed at Google called Turbinia: Cloud-scale forensics. There is not much
published on this project, only the source code, which indicates reliance on an existing
Hadoop cluster [70].
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Several of the works mentioned above attempt to solve the growing data set problem, but
our literature review found many fall sort of providing empirical evidence their solutions
succeed with large data sets. Several use various MapReduce implementations to meet
distributed digital forensics requirements. Additionally, some solutions come with a cost
of increased analyst knowledge of specialized fields such MPI programming and hardware
component programming.
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CHAPTER 4:
Methodology

Many of the previous attempts to create scalable forensic solutions mentioned in Chapter
3 are developed using small sample files to perform experiments. Though prior work to
improve and ultimately distribute digital forensics tools has shown promising results, many
add complexity for the analyst or have not been tested against large datasets such as the Real
Data Corpus (RDC) (see 2.3.3.) This work builds on these prior results. Additionally we
chose to not use complex programming languages such as hardware chip programming or
MPI that require additional skills and training for the developer.

To demonstrate the advantages of our approach, we develop a tool for scalable and execution
of a bulk_extractor email scanner on a Hadoop cluster and measure tool performance for
processing large disk image data sets. Specifically, our tool adapts the Hadoop platform to
large-scale forensic analysis. TheMapReduce paradigm requires the analyst to only develop
two functions, a Mapper and a Reducer, using a common language, Java. These functions,
in combination with our InputFormat Class for binary images, are sufficient to demonstrate
successful execution of a massively parallel bulk_extractor on the RDC with significant
performance improvements.

This chapter describes the steps taken to develop and implement our solution. First, proof
of concept work is done via a virtualized Hadoop cluster. We then perform a review of
the requirement to develop a custom InputFormat class to read and process binary images
in HDFS. Next, we convert the RDC from E01 format to raw format and import it into
HDFS. The reason for this conversion is that raw is a much simpler format to work with
when developing an InputFormat class to read this data. After this, we develop a byte
counting program that we use to tune MapReduce parameters as well as the InputFormat
Class. Finally, we successfully write and run a MapReduce bulk_extractor email scanner
against RDC data set on NPS Hadoop Cluster, Grace.

4.1 Infrastructure
This section discusses details of hardware and software used to perform our experiments.
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4.1.1 Virtualized Hadoop Cluster
During the research design phase we built a small virtualized Apache Hadoop cluster for
preliminary testing. This cluster was built in NPS’ DEEP laboratory and consisted of one
NameNode and six slave DataNodes each with 1GiB of RAM andminimal hard drive space.
Each of these nodes had Centos 7 installed and Apace Hadoop 2.6.0 installed following
Apache’s install steps [71]. This virtualized cluster was built to demonstrate proof-of-
concept of early designs, therefore performance gains or losses were not measured.

One of the early questions when examining MapReduce for distributed digital forensics was
how binary disk images should be stored in HDFS. The format of the files in our dataset
are raw bitwise images of hard drives, which is common practice in the digital forensics
community, but not the default or ideal format for MapReduce jobs. This motivated writing
the custom InputFormat class, discussed further in Section 4.2.2.

4.1.2 Grace Hadoop Cluster
The Hadoop cluster at the Naval Postgraduate school, “Grace,” contains 2 NameNodes with
24 datanodes for processing. Each NameNode contains 252 GiB RAM and 40 proces-
sors with hyper-threading. Datanodes contain 504 GiB RAM, 24 processors with hyper-
threading, and 12 5.5TiB hard drives for a total HDFS capacity of 1.5PiB. The cluster
configuration is illustrated in Figure 4.1. However, each datanode is configured to make
only 256GiB of RAM and 80 vcores available for MapReduce jobs. This means there are
1,920 (80 × 24) task slots in our cluster meaning at any one time there can be only 1,920
Mappers or Reducers executing. Therefore, if a MapReduce job has more than 1,920 tasks,
Mapper or Reducers, they will complete in waves.

4.2 Preparation
This section discusses preparatory steps once a Hadoop Cluster is installed before exper-
iments can be performed. We provide details on the dataset format and development of
necessary code, including rawInputFormat and two MapReduce programs: byteCount and
bulk_extractor MapReduce.
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Figure 4.1. NPS Grace Cluster Architecture. Grace cluster at NPS is config-
ured with 24 datanodes, each with 504GiB RAM and 12 5.5TiB hard drives.
However, only 256GiB of RAM and 80 vcores per datanode are available for
Hadoop processing.

4.2.1 Converting E01 to Raw Images in HDFS
E01 file format is the most popular file format used for digital forensics because of its com-
pression and segment file usage. These features are useful for storing forensic evidence, but
for our purposes the format and segment files added additional complexity and processing.
Therefore, it was necessary to convert the RDC from E01 files to raw format when import-
ing them into HDFS. This was done at the expense of storage space. Raw images lose the
E01 block level compression and this results in approximately 2.1 times more storage space
causing an expansion from 59TiB to 116TiB. The final storage footprint to store the raw
images of the RDC is roughly 385TiB when the two replicas are factored in for each block.
NPS’ Hadoop Cluster has 1.5PiB of HDFS storage capacity; therefore, this conversion was
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not a problem.

Conversion from E01 to raw format is a time consuming process, especially for a large data
set, such as the RDC. At NPS, in addition to the Hadoop cluster, Grace, there is a traditional
HPC cluster, Hamming. To speed up the conversion we used Hamming to export to raw
using ewfexport and input the raw file into HDFS on Grace in parallel. Success of this
approach was dependent on both Hamming and Grace having a shared parallel file system
as well as network access between them. Full HPC job scripts to do this may be found in
Appendix A.

To convert the E01 files we submit a SLURM [72] job for each file in the RDC. SLURM is a
resource manager commonly used in HPC clusters. It manages job submission to any of the
various compute nodes in the cluster based on job resource requirements. This SLURM job
creates an array of all the files in the RDC, excluding ones that were found to be corrupt and
not able to be converted. This array is then used to submit ewfexport commands for each
file with a maximum of five running at one time to avoid overloading this file system. The
converted raw file is placed on a shared file system between Grace and Hamming; where
an ssh session to a Grace node is initiated and performs an hdfs put operation on the
converted file to import the file into HDFS. Cleanup is then performed to remove the raw
converted file from the shared file system.

4.2.2 The rawInputFormat
The virtual cluster was used to initially determine that a custom InputFormat class, which
we name rawInputFormat, was needed for the RDC. A detailed discussion of why and how
this class was written follows below.

Why Create a New InputFormat Class?
Hadoopwas originally developed for processing large quantities of text, therefore the default
InputFormat is TextInputFormat [32]. AMapReduce job requires data input to be in the form
of key-value pair records. How these pairs are determined is defined in the InputFormat class
that the MapReduce job uses. Specifically, the RecordReader makes this determination.

TextInputFormat treats each line in the file as a record, where the key is byte offset in the
file and the value is the contents of that line. Records are created via LineRecordReader,
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which creates a record any time a newline or carriage return is encountered in the file. This
logic is excellent for text files, but a disk image is a stream of bits that may have few or no
newline or carriage return characters. For instance, a newline could be in the first several
bytes of a disk image, but then not appear for the rest of the disk image. Attempts to use
the default TextInputFormat and the LineRecordReader in the virtualized cluster fail when
the space between newlines exceeds max record size. This max size is set to two GiB as
seen in the lines of code below, taken from the Apache Hadoop source code [73]. Note that
Integer.MAX_VALUE is 2,147,483,647 bytes.

1 .

2 .

3 .

4 public void initialize(InputSplit genericSplit ,

5 TaskAttemptContext context) throws

IOException {

6 FileSplit split = (FileSplit) genericSplit;

7 Configuration job = context.getConfiguration();

8 this.maxLineLength = job.getInt(MAX_LINE_LENGTH , Integer.

MAX_VALUE);

9 start = split.getStart();

10 end = start + split.getLength();

11 final Path file = split.getPath();

12 .

13 .

14 .

This behavior is unpredictable for binary disk images without detailed inspection of the file
and therefore not suitable for our use case. Several other InputFormat exists within Hadoop.
However, the majority focus on processing textual data and are similarly unsuitable.

Hadoop also contains support for binary input formats. Two InputFormats support binary
input: SequenceFileInputFormat and FixedLenghInputFormat. SequenceFileInput-
Format and specifically SequenceFileAsBinaryInputFormat were designed to address
scenarios where plain text is not suitable. Sequence files are flat files that consist of binary
key-value pairs with some header information where keys and values are user-defined at
sequence file creation time [32]. Use of this InputFormat requires some preprocessing to
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convert RDC files into a sequence file format. Eventually, such a format might serve as
a replacement for E01 on HDFS. A benefit of this approach is support for compression.
However, we leave this for future work.

FixedLengthInputFormat is used to read fixed-width binary records from a file [32].
This InputFormat does not require the pre-processing that Sequence Files require. The
data set may be stored as a raw binary disk image in HDFS where the only pre-processing
time is the time to import to HDFS. This InputFormat requires the programmer or analyst
to set the recordLength during job set up. A requirement of this InputFormat is that total
file size be evenly divisible by the recordLength. Otherwise the program will throw an
error. This requirement is explicitly defined in the FixedLengthRecordReader source
code. This InputFormat comes closest to meeting our needs for binary input data with-
out additional pre-processing, with the only drawback being that many files will not be
evenly divisible by the recordLength. Review of this InputFormat led to the creation of
rawInputFormat and rawInputRecordReader (See Appendix B for code) which are
based on FixedLengthInputFormat [74].

How was RawInputFormat Developed?
Every InputFormat contains two parts: the inputFormat and the RecordReader. The input-
Format performs the following tasks for each job [75]:

1. Validate input-specification
2. Split the input file(s) into logical InputSplits, each which is assigned to a Mapper
3. Provide the RecordReader implementation to be used to create input records from the

logical InputSplit for Mapper processing.

The RecordReader creates records, which are the key-value pairs presented to the Mapper
and Reducer tasks. Every RecordReader is composed of the following methods:

1. close()
2. getCurrentKey()
3. getCurrentValue()
4. getProgress()
5. initialize()
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6. nextKeyValue()

Processing the RDC with FixedLength InputFormat works until the MapReduce program
encounters a record that is less than the recordLength, which typically occurs at the end of
the image file.

Review of the FixedLengthInputFormat [74] and specifically the FixedLengthRecordReader
code revealed the lines of code listed below from the nextKeyValue() method cause the
MapReduce job to fail for partial records. Because Apache Hadoop is open source and uses
the Apache 2.0 License we were able to take this code and modify it for our use case.

1 .

2 .

3 .

4 if (numBytesRead >= recordLength) {

5 if (!isCompressedInput) {

6 numRecordsRemainingInSplit --;

7 }

8 } else {

9 throw new IOException("Partial record(length = " + numBytesRead

10 + ") found at the end of split.");

11 }

12 .

13 .

14 .

Modifications to the above code were to remove the “else” section, lines 8 to 11, to allow
the program to continue using the partial record as a valid record. In addition, line 6, which
creates a byte array of size recordLength, introduces a more subtle problem that must be
addressed. This byte array is initialized to zero, which is default java behavior for byte
arrays.

1 public synchronized boolean nextKeyValue() throws IOException {

2 if (key == null) {

3 key = new LongWritable();

4 }

5 if (value == null) {
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6 value = new BytesWritable(new byte[recordLength]);

7 }

However, in the nextKeyValue() method, this byte array is populated with contents read
from the input file and the zeros are overwritten except when partial a record is encountered,
in which case the record will only partially populate the byte array with valid data, leaving
the rest populated with zeros. In the context of parsing for emails using a bulk_extractor,
scanner this does not present a problem as it will not necessarily add or miss emails, and
only adds additional processing time. However, for tasks such as the ByteCount program
described in Section 4.2.3, this behavior distorts the results. The outcome is a histogram
that contains significantly more zeros and overall bytes than are actually in the input files.

To resolve this problem, we add a variable, globalSplitSize, which is set to the actual
number of bytes read not the recordLength. This variable replaces the recordLength variable
in line 6 in the above excerpt. This creates and initializes a byte array to the exact size of
the content, leaving no extra zeros at the end when partial records are encountered. See
Appendix B for complete copy of the rawInputFormat and rawInputRecordReader with
these modifications that allow MapReduce to process binary disk images stored in HDFS.

4.2.3 byteCount
The MapReduce byteCount program is modeled after the Hadoop WordCount program. Its
primary purpose was to develop and test the rawInputFormat class. It was also chosen as a
sample program to measure performance, as a minimal working example of an analytical
program that must read and process every byte of our binary dataset. We therefore also used
the byteCount tool to obtain estimates on optimal parameter settings and time required to
process the Real Data Corpus (RDC).

Tuning and development of byteCount directly correlated to development of theMapReduce
bulk_extractor program. The general approach of the byteCount program is to accept as
input key-value pairs where value is the content of an HDFS file the size of the InputSplit.
The map function receives this input, reads value contents into a byte array object then
iterates over the array converting each byte to its decimal representation and incrementing
the count for that byte. Meaning, if byte 65 (decimal) is encountered in the byte array, then
the value at index position 65 of the Int Array of counts is increased by one.
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In this program, the Int Array functions similar to a dictionary, where key is the byteValue
or index position and the value is the frequency that byte occurs. A HashMap was not used
due to the extreme additional memory overhead.

An important difference between byteCount and MapReduce WordCount is instead of
sending each byte value and the count “one” to a Reducer, the byte value and the total count
of that byte for the InputSplit is sent. This is because there are many more occurrences of
bytes in a 512MiB InputSplit than words in a typical line of text in an InputSplit. Therefore,
this strategy reduces the number of writes to the reducer from 536,870,912, for a 512MiB
InputSplit, to 256—only one for each byte value. The Reducer receives the inputs and then
processes them by summing the values for each unique byte key.

4.2.4 bulk_extractor MapReduce
Our primary goal is to implement the bulk_extractor email scanner using the MapReduce
paradigm. To achieve this, we rely on the be_scan library. Be_scan is a C++ library
developed at NPS that isolates bulk_extractor’s scanner functionality and exposes a Java
API, which allows bulk_extractor C++ libraries to be used within a Java MapReduce
program. We use this tool to create bulk_extractor MapReduce, a MapReduce job similar
toWordCount, except our program counts the unique email addresses found in an InputSplit
and builds a histogramof email address. Once email addresses are extracted, further analysis
can then be performed.

To use the be_scan library, a MapReduce job needs to load and distribute it to Mappers
for execution. Prior to writing the MapReduce job, the be_scan library must be installed.
(Detailed steps are available in the be_scan online documentation [76].) The installation
creates the library that contains interfaces to call the bulk_extractor email scanner from
Java. Once build and installation are completed, libraries located in the build directory
under the .libs directory will need to be copied to the MapReduce project root directory
to make them available during compilation of the MapReduce job. The locations where
these files should be placed in this project are shown in Figure 4.2.
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Figure 4.2. MapReduce Bulk Extractor Project Tree. Java project tree
showing the .libs directory containing be_scan libraries. The edu direc-
tory contains Java program developed and be_scan. The beScanner di-
rectory contains class files when beScan.java is compiled. beScan.java
is a MapReduce program containing user developed map and reduce func-
tions. beScanner.jar is the jar file created from the contents in edu and
beScanner that is used during Hadoop job submission.

In addition to the be_scan libraries, the edu directory tree needs to be created and populated
with be_scan and rawInputFormat content as illustrated in Figure 4.2. The be_scan di-
rectory contents are from the be_scan build directory, specifically java_bindings/edu/.
rawInputFormat contains the rawInputFormat and rawInputRecordReader found in Ap-
pendix B. The beScanner directory contents and beScanner.jar are created at compile
time of the MapReduce bulk_extractor program found in Appendix E.
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4.3 Experiments
This section discusses steps taken for our experiments. The four experiments are tuning
Hadoop job parameters to determine suitable HDFS blocksize. Then we test throughput of
converting E01 format to raw and execution of byteCount and bulk_extractor MapReduce
to provide a rate if MiB/sec for each. Then, we analyze the results from byteCount and
bulk_extractor MapReduce to demonstrate insights they can provide.

4.3.1 Determining an Appropriate HDFS Blocksize
The virtualized Hadoop cluster provided a platform to examine default behavior of the
system when processing and storing a binary image. In the absence of processing concerns,
storage of the files in HDFS is handled transparently and requires no special configura-
tion. This is because HDFS chunks files based on the dfs.blocksize value in the hdfs-
default.xml configuration file. This configuration parameter’s default value is 128MiB, but
is configurable at cluster install as well as when files are imported to HDFS. The signifi-
cance of this is discussed below. This blocksize chunking of a file is shown in Figure 2.3.
Therefore, regardless of file format, a file stored in HDFS is chunked based on block size,
which correlates to the number of Mappers a MapReduce job creates.

In addition to determining that a custom InputFormat would be required, this cluster is used
to determine an appropriate blocksize for the RDC in the Grace cluster. This parameter
is extremely important because it affects several other settings down stream. First, a
MapReduce job determines InputSplit size based on the HDFS block size [32]. InputSplits
are logical divisions of the data which, by default, correspond to HDFS blocks read into
memory and passed to Mappers. Specifically, InputSplit size is determined via Equation
4.1 below:

InputSplitSize=max(minimumSize, min(maximumSize, blockSize)) (4.1)

As a result, InputSplit size is generally the same as blocksize. These splits are further divided
into logical records, where a record is simply a key-value pair that the map function executes
on. By default, a Mapper is created for each InputSplit. Thus, the blocksize determines
both the number of InputSplits thus determines how many Mappers the MapReduce job
will need to execute.
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InputSplit size may be customized on a per job basis, meaning a job may have larger In-
putSplit size without changing physical blocksize, but this is done at the expense of losing
data locality. In other words, setting InputSplit size to a value that does not divide evenly
into the blocksize may cause Mappers to execute on data that is stored on different dataN-
odes, requiring network read/writes, which degrade overall job performance. Therefore,
determining an appropriate data blocksize directly affects the total number of Mappers, data
local Mappers and job performance.

Our approach to narrow in on an appropriate blocksize was to store a 1TiB sample file
in HDFS with four different blocksizes —128MiB, 512MiB, 1024MiB, 1536MiB and
2048MiB— then execute the byteCount MapReduce program against each of these files.
Measurements that were taken follows: number of mappers, average execution time per
Mapper and overall job performance time. The initial experiment was performed on the
virtualized cluster but was also repeated on hardware Hadoop cluster Grace. On Grace an
additional experiment was performed to measure the same items except the MapReduce
bulk_extractor was used against the same 1TiB sample file. This was done to demonstrate
the blocksize chosen was appropriate as well as how a different task in the Mapper affects
Mapper run times.

4.3.2 Measuring Throughput
Part of measuring throughput is to measure total overhead time including dataset prepara-
tion. This preparation represents a one-time conversion cost, and might be mitigated by
a process that imports images directly to HDFS. However, since many image collections
are currently stored in E01 format, this preparation cost should be acknowledged. For our
work, converting the RDC from E01 requires a significant amount of time. To reduce
this overhead, we performed ewfexport experiments on a sample 8GiB disk image on
Hamming changing only the number of threads ewfexport uses. We measure the time
taken and the transfer rate for 4, 8, 16 and 32 threads to determine the optimal parameter to
convert the RDC.

An additional overhead item is the time to import the converted raw disk image into HDFS.
Wemeasure this by the total time take to import a sample 1TiB RDC disk image. This value
is then used to calculate and estimate to import the RDC after it has been converted. We
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discuss how Hamming is used to reduce this overall time by running multiple conversions
and imports in parallel. We also measured the speedup this parallelization produced.

ByteCount Throughput
We measure the success of the rawInputFormat class is done by executing a MapReduce
program using it. We execute the byteCount program six times and measure the complete
time taken to process the RDC and provide an average run time. This time includes
setup time of all Mappers and Reducers and is collected from the Hadoop job monitoring
application webpage.

Earlier implementations of byteCount ran significantly longer than the final version we
developed. To diagnose performance problems we execute two standalone Java programs
that mimic byteCount’s Mapper. Each uses different methods of record keeping for byte
values; Int Array and HashMap. We execute these two programs against a sample 512MiB
disk image and measure the memory overhead of each implementation.

Bulk_Extractor Throughput
Similar to byteCount, bulk_extractor MapReduce is executed six times and we measure the
complete time taken to process the RDC and provide an average run time. We compare the
run time of standard bulk_extractor to the bulk_extractor MapReduce on the same 160GiB
disk image to demonstrate performance gains with MapReduce.

4.3.3 Measuring Byte Frequency in the RDC
Though byteCount was designed initially to demonstrate a proof-of-concept for working
with disk images on anHDFS cluster, the histogram of byte frequencies is produces provides
insight into the distribution of byte values in the RDC. This information may be useful
for developing baseline probabilities for analysis or anomaly detection. We analyze the
histogram to explain why significant byte values may occur more frequently in the RDC.

To characterize the distribution, we use a basic histogram to plot each byte value. We
further analyze the results by grouping byte values by frequency. This is plotted to further
demonstrate byte values of significance in theRDC.Finally, we plot a cumulative distribution
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function to show the proportion of the dataset that is composed of the most frequently
occurring byte values.

4.3.4 Analysis of Email Address Distribution in the RDC
The bulk_extractor MapReduce program is designed to extract email addresses from the
RDC. In addition to measuring the time taken to execute this program on the RDC we also
use it to study the distribution of the email addresses it finds, a task that is difficult to do
in reasonable time using conventional methods. The total number of email addresses, top
email domains and top email addresses are reported and analyzed. We produce a histogram
of email addresses, which we use to identify and explain the most frequently occurring
addresses.

We examine whether there is a correlation between the most frequently occurring address,
its higher frequency and the underlying distribution of images with respect to country of
origin. We are able to determine using public methods that the most frequent email address
is for a website in a specific country. We use metadata information recorded with the drive
images to determine how many drives in the RDC are from a particular country.

Additionally, we calculate TF-IDF for the most frequent email address for two disk images
in the RDC. This score gives insight into how strongly an email address is correlated to a
particular disk image in the RDC. Finally, we examine domain name frequency and perform
a comparison of the most frequent email addresses and email domains to illustrate that the
most frequent email address does not belong to one of the top 10 most frequent domains.
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CHAPTER 5:
Results

This chapter reports and analyzes results from our four experiments. We begin with
the determination of a sufficient HDFS blocksize in Experiment 1. We discuss the E01
conversion and import timings obtained in Experiment 2, as well as the throughput of the
byteCount and bulk_extractor MapReduce programs run on the Grace cluster. Next, we
examine the byte frequency the RDC produced by the byteCount program in Experiment
3. The final section analyzes the distribution of email addresses in the RDC collected from
Experiment 4.

5.1 Experiment 1: Determining an Appropriate HDFS
Blocksize

The RDC dataset files are typically multiple GiBs with many over 100GiB. We determined
512MiB is a suitable blocksize for the RDC, and performs better than the HDFS default
128MiB blocksize. This decision is based on Apache recommendations that each map task
run at least one minute, a guideline that produces the right amount of parallelism when
accounting for task setup overhead [77].

Timing analysis of the byteCount program against different blocksizes, where the blocksize
and recordLength are equal is shown in Table 5.1. These measurements are based on six
runs for a roughly 1TiB file. Performance measurements in this table show that as blocksize
and subsequently average Mapper time increases the Mapper throughput increases, which
reduces the total time job execution time. A 1536MiB blocksize and record length provide
the best throughput on a single 1 TiB file.

Table 5.1. ByteCount Timing for Equal Blocksize and RecordLength
BlockSize # of Mappers Avg. Mapper Time

(6 runs)
Avg. Mapper
Throughput (6 runs)

Avg. Total Job Time
(6 runs)

128 MiB 7453 11sec 11.63 MiB/sec 2m 31s
512 MiB 1863 15sec 34.13 MiB/sec 1m 11s
1024 MiB 932 22sec 46.54 MiB/sec 51sec
1536 MiB 621 26sec 59.07 MiB/sec 55sec
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Table 5.2. Bulk_Extractor MR Timing for Equal Blocksize and
RecordLength

BlockSize # of Mappers Avg. Mapper Time
(6 runs)

Avg. Mapper
Throughput (6 runs)

Avg. Total Job Time
(6 runs)

128 MiB 7453 11sec 11.63 MiB/sec 2m 29s
512 MiB 1863 16sec 32 MiB/sec 1m 12s
1024 MiB 932 25sec 40.96 MiB/sec 42sec
1536 MiB 621 24sec 64 MiB/sec 43sec

Table 5.3. Bulk_Extractor MR Timing for 1536MiB Blocksize Multiple
Record Lengths
Record Length # of Mappers Avg. Mapper Time

(6 runs)
Avg. Mapper
Throughput (6 runs)

Avg. Total Job Time
(6 runs)

128 MiB 7453 27sec 4.74 MiB/sec 42sec
512 MiB 1863 23sec 22.26 MiB/sec 36sec
1024 MiB 932 - - -
1536 MiB 621 24sec 64 MiB/sec 43sec

Tests for larger sizes were not performed because the max size of a Java byte[] array is
2GiB. Similar to the scenario described in Section 4.2.2, this is because data read from
the InputSplit (sized record length) is stored in an array which by default is indexed with
integers, which Java sets the max to 2,147,483,647 bytes. See Appendix D and E lines 37
and 49, respectively. Based on the testing performed here and the goal of finding a suitable
HDFS blocksize, we chose a 512MiB blocksize as suitable for the RDC and leave increasing
the record length for future work.

Similar timing analysis of the bulk_extractor MapReduce program is collected and is shown
in Table 5.2. The results are the same as the byteCount program though bulk_extractor
MapReduce is performing a more advanced task, extracting not just reading and counting
items. Compared to byteCount results we see closely similar timings for average Mapper
time of the same blocksize. Both of these tables demonstrate that the default 128MiB
blocksize is not suitable for the RDC and datasets that have larger individual files, such as
hundreds of GiBs.

A note to mention in both Tables 5.1 and 5.2 is that, as expected, changing the block size
changes the number of mappers.

To further test our 1536MiB blocksize, we changed the record size for only bulk_extractor
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MapReduce and timings are shown in Table 5.3. Two insights are gained from this table;
blocksize and record have best throughput when they are equal and recordlength must be a
multiple of the blocksize. A 1536MiB blocksize and record length show the best throughput
even though 512MiB record length completes faster on average. The record length must
be a multiple of the blocksize, which 1024MiB is not; therefore, it is not tested. Further
explanation can be found later in Section 5.2.2 and Figure 5.1

This analysis on blocksize to record length performance is not exhaustive and should be
explored further in future work. The optimal choice will depend on the dataset as well as
the type of processing performed. Furthermore, changing the block size is time intensive
because it changes the physical block storage whereas changing record size is a logical
change of the data via job configuration. Our preliminary study demonstrates that 1536MiB
is a reasonable choice for the blocksize; however, changing the InputSplit size directly is
another way to achieve larger InputSplits and bringMapper runtime closer to the one minute
guideline.

Additional methods to achieve larger InputSplits and fewer mappers to run closer to 1
minute, such as changing InputSplit size, exist. This is based on Equation 4.1, where
minimumSize cab be set to be greater than block size on the command line during job
submissions via the following, which will effectively increase the InputSplit size:

-D mapreduce.input.fileinputformat.split.minsize=<value in bytes>

Setting this value keeps the physical blocksize the same but increases the InputSplit which
increases the record(s) the map function must process. This comes at the cost of a mapper
running on a data block which is not local. Therefore, this data would have to be brought
to the code which conflicts with the concepts presented in big data to bring the code to the
data.

This analysis of the virtualized cluster and later the Grace cluster on the effect that blocksize,
record length and InputSplit have on job performance indicates that these three parameters
should remain equal for best performance and parallelization. Therefore, the Real Data
Corpus (RDC) is stored on Grace HDFS with both a 512MiB and 1536MiB blocksize.
Though all further Hadoop jobs and timings were executed with 512MiB record size and
default InputSplit size, 512MiB, determined from the block size. Though 1536MiBprovides
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better throughput on a single file our work and testing showed that 512MiB performed better
on the RDC.

5.2 Experiment 2: Measuring Throughput
Here, we measure the throughput of three items; dataset ingest into HDFS, byteCount
throughput and bulk_extractor MapReduce throughput. Specifically, we measure time
taken to export E01 to raw and import into HDFS and provide timings of each. Then we
time results for both byteCount and bulk_extractor MapReduce on the entire RDC.

5.2.1 Timing Ewfexport to Grace and HDFS
Exporting files from E01 to raw is an extremely CPU and I/O intensive task due to having
to decompress the data and rewrite them to the file system. We use NPS’ Hamming cluster
to convert multiple E01 files at the same time on different compute nodes via the command
below.

1 /home/tjandrze/thesisbin/bin/ewfexport -vv -q -j 8 -f raw -t /work/

tjandrze/npsdata/$TARGET_FILE -S 0 -o 0 -B 0 $INPUT -l /work/

tjandrze/logs/$TARGET_FILE.errors

Breaking down this command, the -vv sets the verbosity level to two to provide more
information for any errors while the -q quiets the display of standard output. The -f sets
the output format to raw while -t tells the program what the target file to convert is. The
-S, -o and -B each specify segment file size in bytes, offset to begin and bytes to export,
respectively. Each set to zero which allows for dynamic setting of the E01 segment file
size and number of bytes to export and start export at byte offset zero (i.e., start from the
beginning). The -l flag sets the path to log any errors. The most significant flag that was
skipped is the -j flag which sets the number of concurrent processing jobs or threads to use
in the export.

Performance differences between runs using 4, 8, 16 and 32 threads on a sample 8 GiB
file is shown in Table 5.4. As shown, using more threads does not necessarily improve
performance, likely due to resource contention. In fact, using only 8 threads has the best
performance on a Hamming compute node with a transfer rate of 174 MiB/s which is far
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Table 5.4. Ewfexport Performance on 8GiB File
Number of threads Time taken Transfer rate
4 56 seconds 146 MiB/s
8 55 seconds 149 MiB/s
16 47 seconds 174 MiB/s
32 54 seconds 151 MiB/s

below what is expected for an HPC cluster. Because extensive debugging of the HPC
cluster configuration is beyond the scope of this thesis, we instead submitted SLURM jobs
to convert multiple images at once to decrease the total time.

To determine time estimates of export and import into HDFS, we chose a larger file and
we report those results here. The 8 GiB sample file used to determine if the number
of threads improved performance is small compared to many of the files in the RDC.
Therefore, we used a sample RDC file, IN8001-1000.E01, which converts to file IN8001-
1000.E01_1469874896.raw. This file is roughly 1TiB in size and takes roughly 81 minutes
to export to raw format. Roughly, this means it would take 9,396 minutes to convert the
complete 116 TiB RDC to raw sequentially. Once converted this sample RDC file is put into
HDFS on Grace using the Hadoop command below, which takes an additional 185 minutes.
Running sequentially on the entire RDC would take approximately 23,578 minutes or 16
days. The estimated total time to convert and import the RDC sequentially is therefore
32,974 minutes or 22 days. Using Hamming to convert and import up to five images at a
time is estimated to take a fifth of the time or 6,594 minutes.

The authors recognize this amount of time to convert to raw is a significant amount of
preprocessing time; therefore, results from this thesis work best with files already in raw
format or for analysts who have time and resources to convert larger data sets to raw format.

5.2.2 Throughput of ByteCount and Bulk_Extractor MapReduce
Using the rawInputFormat in the byteCount program takes an average of 1 hour 48 minutes
(over six runs) to process the RDC’s 116TiB using a 512MiB record Length and InputSplit.
This execution created 240,313 map tasks with 235,122 of those being data local. This run
time creates an average throughput of 18,770 MiB/sec as shown in Table 5.5. Similar test
for bulk_extractor MapReduce completed in an average of 2 hours 5 minutes on six runs
to process the RDC. Therefore the throughput of the bulk_extractor MapReduce is 16,217
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MiB/sec, is shown in Table 5.5.

To compare these results, we attempted to run the standard bulk_extractor on a sample disk
image. The standard bulk_extractor we use is turning off all other scanners except the email
one. A 160GiB is used for a direct comparison. Using bulk_extractor MapReduce, the job
takes 34 seconds while the standard bulk_extractor on the same file takes 30 minutes using
24 cores.

Table 5.5. ByteCount and Bulk_Extractor Throughput
Job Type Avg. Time taken(6 runs) Throughput
byteCount 1h 48mins 18,770 MiB/sec

bulk_extractor
MapReduce

2h 5mins 16,217 MiB/sec

The throughput and execution times of both byteCount and bulk_extractor demonstrate that
using MapReduce significantly outperforms over traditional digital forensics techniques.

The rawInputFormat was developed as the foundation for both byteCount and bulk extractor.
Its primary function is to read the binary input files and create records for the map function.
Recall Figure 2.3 which illustrates how the physical blocks of a raw disk image are stored
in HDFS. When these blocks are read by a Hadoop job, rawInputFormat determines the
logical division of the data.

We illustrate in Figure 5.1 that rawInputFormat logically divides the blocksize of 512 MiB
further into an InputSplit and then to a Record, which is then passed to aMapper. Following
the results of Experiment 1, we set blocksize, InputSplit, and record Length to the same
value, but these values may be changed, as described in Section 5.1. The distribution of
files in HDFS to a processing Mapper is controlled by rawInputFormat and specifically by
setting the InputFormat class during Hadoop job configuration as seen below:

job.setInputFormatClass(rawInputFormat.class);

Something learned, but not necessarily a result, from the byteCount program that is im-
plemented in the MapReduce bulk_extractor program is the method to keep track of bytes.
It serves as a reminder that exceeding memory limitations is very easy to do. A common
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raw disk image file in local storage

0 1 2 3 4 n

1. hadoop put command breaks into 512MiB blocks at physical level

1 2 3 54 n…

datanode1 datanode4
datanode3

datanode2

2. rawInputFormat breaks a block into  
512MiB logical InputSplits.

MapReduce Program:

rawInputFormat: Mapper:

3. rawInputRecordReader further divides into  
512 MiB logical records(key/value pairs)  

sent to Mapper.

4. Receives 512MiB records and  
processes each record.

Figure 5.1. File Representation to a Mapper. A file is physically divided into
512MiB blocks by the hadoop fs -put command. Blocks are stored on
datanodes which are read by a MapReduce program. MapReduce program
specifies rawInputFormat is used which logically divides the block into In-
putSplits which the rawInputRecordReader divides into records sent to the
Mapper for processing.

approach is to use a dictionary type data structure where the byte value is the key and
the frequency is the value. Java’s implementation of a dictionary data structure is the
HashMap [78]. The HashMap implementation for Integers creates large number of Integer
objects which require a minimum of 16 bytes of memory.

For a 512MiB sample file, which reflects the InputSplit or Mapper size of the MapReduce
byteCount program, this equates to roughly 318MiB ofmemory or 38% of the total memory
used by the program. We illustrate in Figure 5.2 the Integer object is the second largest
memory consumer of the program, behind the object holding the actual data. Using a
HashMap object in the MapReduce program each mapper requires 38% more memory, or
approximately 62% the size of the InputSplit. This is a significant amount of overhead if
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Figure 5.3. Memory Profile of Int Array. This figure is sorted by size (far
right column). That Java byte[] object consumes 99% of the total memory
for the program. The second largest memory consumer is int[] which is
used for indexing the array, but is significantly less, 0.5%, compared to 38%
used by the HashMap memory in Figure 5.2.

the goal is not necessarily fast lookup times. Across the 1,920Mappers on the Grace cluster
this amounts to nearly 600GiB of additional memory overhead.

Figure 5.2. Memory Profile of HashMap. This figure is sorted by size (far
right column). This is the size in memory each class or Java object is using.
With over 16 million instances the Java Integer object used for record
keeping in a HashMap object takes up 38% of total memory. The byte[]
object is the object which stores the contents of the record read from file,
and therefore is expected to be the largest memory consumer.

An alternative to Java HashMap is to use a lower level implementation of a dictionary data
structure. That is to create an Int Array of length 256. The index position of the array is
the key and the element at that index position is the value. This approach reduces total
memory for a 512MiB file from 875,810,190 bytes to 540,337,183 bytes or roughly the
memory footprint of the Integer objects in the HashMap implementation. This reduction
is illustrated in Figure 5.3 and demonstrates the actual data read in consumes 99% of the
memory as expected.

The effectiveness of rawInputFormat is best represented by the successful execution of
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byteCount and bulk_extractor since this demonstrates successful execution of a Hadoop
job on binary images in HDFS. Therefore, the next two subsections analyze results and
successful execution of byteCount and bulk extractor on the RDC.

5.3 Experiment 3: Byte Frequency in the RDC
The byteCount programprovides several insights into the operation ofMapReduce programs
using rawInputFormat. Its output is a histogram of unique bytes in the RDC. In addition to
generating a histogram, this MapReduce program helps illuminate details of memory usage
and limitations of two Java objects, IntArray and HashMap. A third achievement from the
byteCount program is the actual frequency results from executing the byteCount program.
Appendix F contains two complete tables of these results, one sorted by byte values and the
other by byte frequency.

A basic histogram of the results graphed using log scale for the yaxis is shown in Figure 5.4.
This figure illustrates that there are some byte values with significantly higher frequencies
than others. Knowing these bytes and understanding the difference may provide insight
useful for detecting anomalies or making predictions about data.

To better clarify the trends in the data, we present a different representation of the byteCount
results in Figure 5.6. This figure groups the byte values based on the frequency that byte
occurs. As figure makes clear, in the Real Data Corpus 132 of the 256 possible byte values
have frequencies that fall between 200 and 300 billion. Notably only six byte values occur
more than 500 billion times in the RDC with three of those occurring more than one trillion
times. Those byte values are 48, 1, 32, 0, 246, and 255. Combined, they represent over
half of the total space. This is illustrated by the Cumulative Distribution Function shown
in Figure 5.5. A Cumulative Distribution Function of the byte frequencies can be found in
Figure 5.5 illustrating that over half of the RDC is empty space. The impact these last six
values and in particular the byte value 0 has in the RDC is shown in Figure 5.5 and Table
5.6. These illustrations show that 48.2% of the RDC is any other byte value besides 0 or
255.
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Figure 5.4. Byte Count Results Histogram Log Scale. Every byte value, 0-
255, plotted on a log scale. The far left line is the count for byte value 0 while
the far right is byte value 255 with several spikes in between corresponding
to byte values 1, 32, 48 and 246 all above 500 billion

Figure 5.5. Byte Count Cumulative Distribution Function. From left to
right along the x-axis are byteCount values sorted by frequency with their
respective cumulative percentage along the y-axis. The first values along
the x-axis are 0, 255 and 246 are the order of byte found in Table 5.6. A
complete order of these values can be found in Appendix F.
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Table 5.6. Highest Frequency Bytes Percentage
ByteValue Byte Frequency % of RDC
48 570,435,823,506 0.44%

32 716,338,085,559 0.55%

1 734,295,502,830 0.57%

246 1,351,928,628,522 1.05%

255 3,183,095,937,209 2.47%

0 63,273,879,033,072 49.27%

Values of the highest frequency bytes in the RDC are shown in Table 5.6. These values
occur more frequently and the authors theorize this is based on common default values
representing empty space. That is, prior to any writing to disk these spaces on the hard
drive are initialized to some value. Any non-empty space means a deliberate change
occurred (i.e., a write of data). This empty space can be thought of as the background of a
picture, defaulting to some pre designated color, and the non-empty space in the foreground
reflects some positive change such as adding subjects to the picture.
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Figure 5.6. Byte Count Grouped Results. ByteCount histogram of bytes
grouped into 100 billion frequency bins. Arrows annotate that bytes 48, 1,
32, 246, 255 and 0 are the only byte values to occur more than 500 billion
times in the RDC. While the majority of byte values occur between 200 and
300 billion times.

The highest occurring byte values by far are 0 and 255. From the default empty space point
of view these values are expected as 0 is the first and easiest initialization value while 255,
all 1s in binary representation, would be the inverted initialization. These two values also
are the most frequently used values in formatting and wiping hard drives, where the hard
drive is completely overwritten with these values. The next most frequent byte value is 246.
The hexadecimal representation of this is 0xF6. This hexadecimal value is a filler value that
older implementation of the File Allocation Table (FAT) file system uses in the data region
for unused parts. Additionally this hexadecimal value is also used in many disk overwriting
tools to overwrite disk data with 0xF6 instead of 0x00 or 0xFF. The byte value of 1 is the
next most common, which is the simplest non-zero initialization value used. The byte value
32, which represents the “space” character in ASCII, is used frequently in documents. Byte
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value 48 represents the ascii character zero.

A Cumulative Distribution Function of the byte frequencies can be found in Figure 5.5
illustrating that over half of the RDC is empty space. The impact these last six values and
in particular the byte value 0 has in the RDC is shown in Figure 5.5 and Table 5.6. it can be
seen in these tables that 48.2% of the RDC is any other byte value besides 0 or 255.

5.4 Experiment 4: Analysis of Email Address Distribution
in the RDC

Executing bulk_extractor MapReduce against the RDC extracts 223,332,658 total email
addresses of which 12,882,638 are unique and 12,673,155 occurring less than 100 times.
The most frequent email address, by a large margin, extracted from the RDC is “jan-
glo@yahoogroups.com” which occurs 2,155,155 times. Email addresses that occur more
than 500,000 times in the RDC are shown in Table 5.7.

Seven out of the 12,882,638 unique email addresses occurred more than one million times,
while 4,580,427 addresses occurred only once which is shown in Figure 5.7. Those seven
email addresses are listed in Table 5.7. Additionally, seven of the top 15 email addresses
that appear over 500,000 times the authors deem are personal email addresses. This is an
anomaly that might be investigated further to determine if these addresses correspond to
malicious users or persons of interest in an investigation. An additional anomaly in Figure
5.7 is the significantly higher number of email addresses occurring between 101 and 1,000
times. This may be because this range contains 899 frequency values due to the way we
binned the results, but may be worth further investigation.

For instance, the top email address “janglo@yahoogroups.com” is an online community
for Israel’s English speakers and in 2007 it was one of the most active Yahoo Groups [79].
The fact this email address occurs significantly more in the RDC may be attributed to there
being 288 of the 3,088 hard drives in the RDC beginning with IL or Israel’s country code.
The IL country code drives are the third most frequent in the RDC behind only China (CN)
and India (IN) with 745 and 667, respectively as illustrated by Table 5.8. Furthermore,
these 288 drives account for 36.5TiB out of the total 116TiB. In contrast, the 745 CN drives
in the RDC only account for 1.3TiB of the RDC and IN drives only 9.9TiB.
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Table 5.7. Real Data Corpus Top Email Addresses
Domain Frequency
janglo@yahoogroups.com 2,155,155
CPS-requests@verisign.com 1,392,629
singmed@singmet.com.sg 1,390,464
personal email address 1 [redacted] 1,289,389
marketing@pacific-conferences.com 1,241,982
janglo-unsubscribe@yahoogroups.com 1,135,928
personal email address 2 [redacted] 1,016,310
list@shemesh.co.il 803,363
personal email address 3 [redacted] 670,526
premium-server@thawte.com 666,195
ubuntu-devel-discuss@lists.ubuntu.com 653,370
personal email address 4 [redacted] 652,213
personal email address 5 [redacted] 618,299
personal email address 6 [redacted] 601,005
personal email address 7 [redacted] 521,085

Different frequency groups in which email addresses occurred is illustrated in Figure 5.7.
The majority of email addresses extracted occurred fewer than 100 times. These results in
the hands of a forensic analyst provide direction to investigate the significance of each of
those email addresses that occur frequently in 116TiB Real Data Corpus. Applications of
these results include: triage, probabilistic whitelisting and anomaly detection.

Table 5.8. Real Data Corpus Country Codes
Country Code Frequency
CN 745

IN 667

IL 288

SG 225

TH 188

MX 171

PS 139

AE 87

PK 84

MY 78

BD 57

CA 53

AT 44

DE 41

BS 34

Country Code Frequency
UK 26

RS 24

CZ 22

HU 22

GH 20

PA 17

MA 11

TR 10

HK 8

BA 7

EG 7

GR 7

JP 4

CH 2

To further investigate the significance of the relationship between an email address in the
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Real Data Corpus(RDC) and to a specific drive, we can calculate its Term Frequency-
Inverse Document Frequency (TF-IDF) value. Using “janglo@yahoogroups.com” and
hard drives “IL008-0003.E01_1469968220.raw” and “IL009-0004.E01_1469964873.raw”
as examples, we find the TF-IDF values indicate this email is strongly correlated
with the “IL009-0004.E01_1469964873.raw” image and much less with the “IL008-
0003.E01_1469968220.raw” image.

Figure 5.7. Bulk Extractor Grouped Results. The majority of email addresses
found in the RDC occur less than 100 times while only seven email addresses
occur more than one million times. The trend of fewer emails occurring more
frequently is expected, but the jump for emails occurring between 101 and
1,000 times may be worth further study.

The TF-IDF score of the “IL008-0003.E01_1469968220.raw” drive is 0.00003258
while the TF-IDF of the “IL009-0004.E01_1469964873.raw” drive is 0.257225. The
email address appears on 59 drives, but only once out of the 52,751 email ad-
dresses in “IL008-0003.E01_1469968220.raw,” as opposed to 1,551,910 times in “IL009-
0004.E01_1469964873.raw.” The significance of these scores to an analyst is they may
start their investigation of the email address, “janglo@yahoogroups.com,” with the “IL009-
0004.E01_1469964873.raw" drive, but we already know it is not very interesting because
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it occurs too many times. However, if we have an email from this address to another
email address the TF-IDF of the other email address will likely outweigh the TF-IDF of
“janglo@yahoogroups.com.” This insight may assist an analyst prioritize drives to examine.

The above calculations illustrate that “janglo@yahoogroups.com” is much more significant
in IL009-0004.E01_1469964873.raw. A forensic analyst can take the frequencies from
this MapReduce bulk extractor program and calculate TF-IDF on an email address that is
already prevalent in an investigation to determine potential hard drives to examine further.
Or the analyst may calculate the TF-IDF of every email address extracted for every drive
in the investigation. Appendix G contains a sample python program to calculate TF-IDF
values based on the results from this MapReduce bulk extractor program.

In addition to specific email address frequency in the RDC, the distribution of email do-
mains are also items which may provide analysts further insight into a disk image during
an investigation. The two most frequent email domains in the RDC are “gmail.com” and
“hotmail.com” with 612,900 and 681,258 occurrences, respectively, while only 11 do-
mains occurred more than 100,000 times. Table 5.9 contains a listing of the domains
with over 100,000 occurrences in the Real Data Corpus. This table does not count du-
plicate email addresses in the same domain. That is, the 2,155,155 occurrences of “jan-
glo@yahoogroups.com” are counted as one occurrence for the "yahoogroups.com" domain.

Table 5.9. Real Data Corpus Top Unique Email Domains
Domain Frequency
hotmail.com 681,258

gmail.com 612,900

yahoo.com 492,479

capgemini.com 281,564

db.com 270,220

francenet.fr 250,790

aol.com 184,269

aig.com 157,046

yahoo.co.in 146,747

AIG.com 109,518

corp.capgemini.com 102,930

Extracting email addresses in an average of 2h 5mins from a large dataset such as the
RDC puts results into an analyst’s hands quickly. In addition, the collection-scale statistics
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that MapReduce bulk_extractor makes available can contribute to better decision-making
and automate triage capabilities, including dynamic creation of whitelists containing email
addresses that are not relevant or extremely relevant to an investigation depending on the
scenario. The MapReduce program thus provides enhanced ability to extract emails and
quickly get pertinent results to the analyst for further investigation at a scale that could take
days to weeks to process using traditional methods.
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CHAPTER 6:
Conclusions and Future Work

In this final chapter, we review the goals, results and contributions of our research. We look
back at and respond the research questions presented in Chapter 1. After summarizing our
results and contributions, we close with some recommendations on future research on this
topic.

6.1 Conclusions
Our primarymotivationwas to provide a distributed tool for forensic analysts to reducemon-
etary costs, time and specialized knowledge required for a forensic investigation of a large
dataset. To achieve this goal, we develop a Hadoop InputFormat class capable of handling
raw disk images and we use this InputFormat class to implement bulk_extractor MapRe-
duce, a massively parallel email address extraction tool using the MapReduce paradigm.
During the process of achieving these goals, we also develop an additional forensic tool,
a MapReduce program to count bytes in the Real Data Corpus, which may be used to
determine baseline probabilities in future research.

MapReduce provides an inherently distributed foundation that hides many of the complex-
ities required in other distributed processing methods. The hiding of traditional distributed
computing complexities greatly reduces monetary and knowledge costs often associated
with scaling. Traditional digital forensics and distributed processing tools require very
specialized systems and software, which may unnecessarily burden an analyst performing
the complex digital forensic analysis often required. Hadoop and MapReduce can help to
reduce this burden, as well as reducing infrastructure costs by running on cost-effective
commodity hardware.

This thesis made the following contributions:

1. We perform exploratory analysis of the feasibility of using aHadoop cluster andHDFS
to store raw disk images and study block level parameter impacts onMapReduce jobs.

2. We provide a method for conversion of the Real Data Corpus from a E01 format to a
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raw format for storage in HDFS in a practical timeframe.
3. We develop a new InputFormat for processing raw disk images stored inHDFSwith an

average throughput of 18,770MiB/sec and 16,217MiB/sec on the RDC for byteCount
and bulk_extractor, respectively.

4. We developed aMapReduce byteCount program capable of analyzing 116TiB dataset
in an average time of 1h 41mins. This new tool may be useful for developing improved
triage and anomaly detection tools in the future.

5. We developed a MapReduce bulk_extractor email scan program capable of analyzing
116TiB dataset in an average of 2h 5mins. We therefore provide a quick, cost-effective
distributed tool that can directly aid a forensic investigation.

In light of the above results, we recommend MapReduce clusters as a viable solution to
scale digital forensics tools. Our work demonstrates the ability to analyze the 116TiB
Real Data Corpus in 2h 5mins on a 25-node Hadoop cluster. This result suggests that our
approach will scale with growing datasets. Additionally, our system satisfies five out of the
six requirements for distributed digital forensics (DDF) defined in Chapter 3. We revisit
these requirements below and evaluate our work with respect to each:

1. Scalable. The MapReduce paradigm allows for the quick and easy addition of new
datanodes without impact to currently running cluster. Our work did not focus on
measuringwhether scaling outHadoop provided near linear improvements, but several
relatedworksmentioned inChapter 3 discuss these improvements. They conclude that
scaling out Hadoop provides improvement, but the scale of improvement is dependent
on each Application. Our work demonstrates a major performance improvement over
traditional methods showing that a non-distributed bulk extractor using 24 nodes
completed in 30minutes compared to 34 seconds utilizing bulk_extractorMapReduce.

2. Platform-independent. Hadoop and MapReduce are designed to run on commodity
and spare hardware. The only requirements are the operating system must be a
compatible Linux operating system and have the same version of Java installed on all
nodes. We argue that our tools and results could be made available through a web
interface.

3. Lightweight. Installation of a Hadoop cluster has minimal requirements and steps.
Installation of a fully-distributed cluster requires assigning environment variables and
configuring a minimum of 4 files up to 6 files depending on the environment. Once
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these files are configured the final step is to format the HDFS then start Hadoop
services. For this research, installation of Hadoop 2.6 on a 6 node virtualized
cluster took a few hours until the cluster was capable of running provided example
MapReduce jobs. We acknowledge that purchasing time and physical hardware setup
will add to this time. With its minimal node requirements and short turn around to
execution, this makes MapReduce a very lightweight solution compared to many of
the existing attempts to distribute digital forensics.

4. Interactive. In the example we developed, interacting with the results during job
execution is not possible. This is because the method and order in which Mappers
and ultimately Reducers execute. Specifically, Reducer tasks do not begin executing
until 80% of map tasks are complete. Therefore, there are no results to interact with
until Reducers begin executing. This value is configurable, but the authors did not
explore the impact to performance if this is increased or decreased.

5. Extensible. Adding a new function or MapReduce job requires a developer to write
two functions, a mapper and reducer. Additionally, creating a custom input format,
such as rawInputFormat in this thesis, requires two files.

6. Robust. Default configuration of a Hadoop cluster is to have three block replicas
at all times. These replicas allow for continued data availability if a datanode fails.
Additionally, these replicas allow for a higher level of parallelism to ensure one
datanode does not become a bottle neck during job execution. This means that if
a node fails the MapReduce job tracker detects this via failed heartbeat responses
and automatically spawns a new Mapper or Reducer using one of the block replicas.
Block replicas provide analysts with the confidence that if a node fails data on its hard
drives is not lost.

Finally, we review and provide answers to out motivating questions from Chapter 1:

1. Can theMapReduce paradigmbe leveraged to provide a distributed computingmethod
to reduce digital forensic tool execution time and cost?
Yes. We have shown that using MapReduce provides significant performance gains
in terms of reduce time and cost. The time to execute on a sample 160GiB file
dropped to under one minute compared to 30 minutes using traditional methods.
Reduced execution time directly contributes to reduced cost. In addition, we argue
that our approach will lead to reduced tool development costs by avoiding complex
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programmingmodels needed to achieve similar performance benefits using traditional
HPC. Additionally, MapReduce and Apache Hadoop software is open-source with no
annual fees for usage and upgrades, and can be readily modified to perform forensics
analysis.

2. What best practices should be used to implement a MapReduce approach to Digital
Forensics?
The first best practice is to select an appropriate blocksize prior to storage of data in
HDFS. This blocksize directly contributes to number of Mappers and how many of
those are datanode local, which are key items to achieve optimal parallelization. We
recommend a 512MiB blocksize for the RDC.
A second best practice is to be aware of what the Mapper writes to a Reducer. This
process writes to a temporary local disk file which the Reducer will read from. There-
fore, reducing the amount of times and data a Mapper must write can greatly reduce
the program execution time. We recommend implementing a combiner function,
similar to that used by the byteCount program, within the Mapper to reduce these
writes.
A third best practice is to carefully monitor memory requirements of each aspect of a
MapReduce job. The Application Manager, Mapper and Reducer each have different
parameters for tuningmemory. To set these correctly, it is important to understand that
container memory allocation is not the actual Java process memory available. Rather,
it is actually less because of the container’s own memory requirements. Moreover,
one must understand that the Java object usage in a MapReduce program affects what
these parameters should be if they need to change from the default.

3. Is the MapReduce solution to digital forensics enough to keep up with growing digital
forensics data volumes?
Yes. MapReduce is a solution to the growing digital forensics volume crisis. MapRe-
duce is open-source which greatly lowers the cost compared to other distributed
solutions. Additionally, MapReduce is designed to work on commodity hardware
which is less expensive. Many analysts may already have intermediate programming
knowledge which is easily transferable to MapReduce programs. MapReduce’s es-
sential difference from traditional distributed computing is its strategy of bringing the
code to the data. As disk image size increases and more devices are included in an
investigation this strategy is increasingly necessary, since moving this data set around
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becomes more and more of a burden.

6.2 Future Work
While our research provides proof-of-concept tools to conduct a byte count and extract email
address features on a 116TiB data corpus within 2h 5m, there is much work that remains
before this approach can be integrated into a production analysis system. Some areas
for improvement include creation of additional bulk extractor scanners, further tuning of
blocksize, InputSplit size and record length parameters, adaptation of other digital forensics
tools to utilize rawInputFormat. In addition, future work might explore creation of an
InputFormat to work with E01 file format. Progress made in these areas will further push
digital forensics tools into the distributed processing paradigm that is needed to address
growing data volume challenges.

Our work provides basic analysis of some elementary features of a disk image by counting
unique bytes and extracting email addresses. Future work could build on these features
to develop higher-level analytics. For example, cross drive analysis should be explored
to determine correlation between drives. Features acquired from other bulk_extractor
scanners, such as URLs and credit card numbers, could contribute to this analysis. In
addition, incorporating byte offsets of the artifacts could provide a detailed starting point
for developing analysis. High-level analytical tools utilizing MapReduce should benefit
from performance gains and collection-scale processing capabilities.

The goal of this work is to determine feasibility of MapReduce as a viable solution to the
growing data volume challenge. Therefore minimal time was spent determining optimal
tuning parameters for MapReduce programs, though we perform some preliminary work in
this direction. Therefore, improvements may be made from using additional optimization
of Hadoop and MapReduce parameters such as blocksize, InputSplit size, record length and
memory usage.

Bulk_extractor is a digital forensic tool that is capable of extracting many features, but
there are an abundance of additional tools that cover different aspects of an investigation
and could also benefit from a massively parallel approach. MapReduce implementation
of other tools will advance the start-of-the-art by increasing the number of tools capable
of analyzing larger datasets and performing large cross drive analysis. These tools could
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utilize the rawInputFormat developed in this research.

A final area of improvement is to develop an InputFormat class capable of processing E01
file format. The majority of the forensic community is familiar with and uses this format,
therefore the capability to run the bulk_extractor email scanner from this research could
be improved by requiring less storage space in HDFS. Decreased storage space means less
costs associated with a Hadoop cluster. In addition to an E01 format InputFormat class,
future work into quicker methods to import data into HDFS should be explored to reduce
pre-processing time.
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APPENDIX A:
Converting E01 to Raw

NPS’s Real Data Corpus is stored in E01 format. This format works to save storage
space, but adds additional complexities for our research. Therefore we spent time up front
converting all files in the RDC to raw format prior to import into HDFS. We realize this
requires a large amount of pre-processing and as such we utilized NPS’s Hamming cluster.
Below are bash job scripts we utilized to achieve this task. We also note that this method
of converting is unique to NPS’s HPC environment, which has a shared parallel file system
mounted to both Hamming and Grace clusters.

A.1 e01ConvertSlurm.sh
To convert E01 to raw the libewf library is required [13]. After conversion, the RDC size
is 128 TiB stored in HDFS.

1 #!/bin/bash

2 #

3 #SBATCH --nodes=1

4 #SBATCH --ntasks-per-node=16

5 #SBATCH --time=24:00:00

6 #SBATCH --mem-per-cpu=10gb

7 #SBATCH --output=/home/tjandrze/outputs/array_%A_%a.out

8 #SBATCH --error=/home/tjandrze/errors/array_%A_%a.error

9 #SBATCH --array=1-3089%5

10
11 ##### array=1-TotalNumberOfFiles%5

12
13 hostname; date

14
15 #filelist created via find /work/DEEP/corpus/nus/drives/ -type f -

size +0c -name "*.E01" >filelist

16 INPUT=$(sed -n "$SLURM_ARRAY_TASK_ID"p /home/tjandrze/filelist)

17 echo $INPUT

18 TARGET_FILE=$(basename $INPUT)_$(date +%s)

19 echo $TARGET_FILE
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20
21 /home/tjandrze/thesisbin/bin/ewfexport -vv -q -j 8 -f raw -t /work/

tjandrze/npsdata/$TARGET_FILE -S 0 -o 0 -B 0 $INPUT -l /work/

tjandrze/logs/$TARGET_FILE.errors

22 wait

23 echo $INPUT >>/work/tjandrze/logs/TARGET_FILE.log

24
25 ssh $(host grace|head -1|awk ’{print $NF}’) "/home/tjandrze/hdfsCopy

.sh /work/tjandrze/npsdata/$TARGET_FILE.raw"

26 wait

A.2 hdfsCopy.sh
1 #!/bin/bash

2 /usr/bin/hdfs dfs -put $1 /user/tjandrze/DEEP/input/

3 wait

4 /bin/rm -f $1

5 wait

6 /bin/rm -f $1.info
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APPENDIX B:
rawInputFormat Class

This appendix contains the source code of the two Java files written to allow MapReduce
jobs to process binary disk images stored in HDFS.

B.1 rawInputFormat.java
1 /**

2 * This code was modified from the original Apache Hadoop

FixedLengthInputFormat.java

3 * code. As such, a copy of the Apache License, Version 2.0 may be

obtained at

4 *

5 * https://www.apache.org/licenses/LICENSE -2.0.

html

6 *

7 *

8 *

9 */

10
11 import java.io.IOException;

12 import java.io.InputStream;

13
14 import org.apache.hadoop.classification.InterfaceAudience;

15 import org.apache.hadoop.classification.InterfaceStability;

16 import org.apache.hadoop.conf.Configuration;

17 import org.apache.hadoop.fs.FSDataInputStream;

18 import org.apache.hadoop.fs.FileSystem;

19 import org.apache.hadoop.fs.Path;

20 import org.apache.hadoop.fs.Seekable;

21 import org.apache.hadoop.io.BytesWritable;

22 import org.apache.hadoop.io.LongWritable;

23 import org.apache.hadoop.io.compress.CodecPool;

24 import org.apache.hadoop.io.compress.CompressionCodec;

25 import org.apache.hadoop.io.compress.CompressionCodecFactory;

26 import org.apache.hadoop.io.compress.CompressionInputStream;
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27 import org.apache.hadoop.io.compress.Decompressor;

28 import org.apache.hadoop.mapreduce.InputSplit;

29 import org.apache.hadoop.mapreduce.JobContext;

30 import org.apache.hadoop.mapreduce.RecordReader;

31 import org.apache.hadoop.mapreduce.TaskAttemptContext;

32 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

33 import org.apache.hadoop.mapreduce.lib.input.LineRecordReader;

34 import org.apache.commons.logging.LogFactory;

35 import org.apache.commons.logging.Log;

36
37 public class rawInputFormat extends FileInputFormat <LongWritable ,

BytesWritable > {

38 public static final String FIXED_RECORD_LENGTH = "

fixedlengthinputformat.record.length";

39
40 public static void setRecordLength(Configuration conf, int

recordLength) {

41 conf.setInt(FIXED_RECORD_LENGTH , recordLength);

42 }

43
44 public static int getRecordLength(Configuration conf) {

45 return conf.getInt(FIXED_RECORD_LENGTH , 0);

46 }

47
48 @Override

49 public RecordReader <LongWritable , BytesWritable >

createRecordReader(InputSplit split, TaskAttemptContext

context) throws IOException , InterruptedException {

50 int recordLength = getRecordLength(context.

getConfiguration());

51 if (recordLength <= 0) {

52 throw new IOException("Fixed record length "

+ recordLength + " is invalid. It should

be set to a value greater than zero");

53 }

54 return new rawInputRecordReader(recordLength);

55 }

56
57 @Override
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58 protected boolean isSplitable(JobContext context, Path file)

{

59 final CompressionCodec codec = new

CompressionCodecFactory(context.getConfiguration

()).getCodec(file);

60 return (null == codec);

61 }

62 }

B.2 rawInputRecordReader.java
1 /**

2 * This code was modified from the original Apache Hadoop

FixedLengthInputFormat.java

3 * code. As such, a copy of the Apache License, Version 2.0 may be

obtained at

4 *

5 * https://www.apache.org/licenses/LICENSE -2.0.

html

6 *

7 *

8 *

9 */

10
11 import java.io.IOException;

12 import java.io.InputStream;

13
14 import org.apache.hadoop.classification.InterfaceAudience;

15 import org.apache.hadoop.classification.InterfaceStability;

16 import org.apache.hadoop.conf.Configuration;

17 import org.apache.hadoop.fs.FSDataInputStream;

18 import org.apache.hadoop.fs.FileSystem;

19 import org.apache.hadoop.fs.Path;

20 import org.apache.hadoop.fs.Seekable;

21 import org.apache.hadoop.io.BytesWritable;

22 import org.apache.hadoop.io.LongWritable;

23 import org.apache.hadoop.io.compress.CodecPool;

24 import org.apache.hadoop.io.compress.CompressionCodec;

25 import org.apache.hadoop.io.compress.CompressionCodecFactory;

26 import org.apache.hadoop.io.compress.CompressionInputStream;
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27 import org.apache.hadoop.io.compress.Decompressor;

28 import org.apache.hadoop.mapreduce.InputSplit;

29 import org.apache.hadoop.mapreduce.lib.input.FileSplit;

30 import org.apache.hadoop.mapreduce.JobContext;

31 import org.apache.hadoop.mapreduce.RecordReader;

32 import org.apache.hadoop.mapreduce.TaskAttemptContext;

33 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

34 import org.apache.hadoop.mapreduce.lib.input.LineRecordReader;

35 import org.apache.commons.logging.LogFactory;

36 import org.apache.commons.logging.Log;

37
38 public class rawInputRecordReader extends RecordReader <LongWritable ,

BytesWritable > {

39 private static final Log LOG = LogFactory.getLog(

rawInputRecordReader.class);

40
41 private int recordLength;

42 private long start;

43 private long pos;

44 private long end;

45 private int globalSplitSize;

46 private long numRecordsRemainingInSplit;

47 private FSDataInputStream fileIn;

48 private Seekable filePosition;

49 private LongWritable key;

50 private BytesWritable value;

51 private boolean isCompressedInput;

52 private Decompressor decompressor;

53 private InputStream inputStream;

54
55 public rawInputRecordReader(int recordLength) {

56 this.recordLength = recordLength;

57 }

58
59 @Override

60 public void initialize(InputSplit genericSplit ,

TaskAttemptContext context) throws IOException {

61 FileSplit split = (FileSplit) genericSplit;

62 Configuration job = context.getConfiguration();

63 final Path file = split.getPath();
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64 if ( ((int) split.getLength()) > recordLength){

65 globalSplitSize = recordLength;

66 }

67 else {

68 globalSplitSize = (int) split.getLength();

69 }

70 initialize(job, split.getStart(), split.getLength(),

file);

71 }

72
73 public void initialize(Configuration job, long splitStart ,

long splitLength , Path file) throws IOException {

74 start = splitStart;

75 end = start + splitLength;

76 long partialRecordLength = start % recordLength;

77 long numBytesToSkip = 0;

78 if (partialRecordLength != 0) {

79 numBytesToSkip = globalSplitSize -

partialRecordLength;

80 }

81
82 final FileSystem fs = file.getFileSystem(job);

83 fileIn = fs.open(file);

84
85 CompressionCodec codec = new CompressionCodecFactory

(job).getCodec(file);

86 if (null != codec) {

87 isCompressedInput = true;

88 decompressor = CodecPool.getDecompressor(

codec);

89 CompressionInputStream cIn = codec.

createInputStream(fileIn, decompressor);

90 filePosition = cIn;

91 inputStream = cIn;

92 numRecordsRemainingInSplit = Long.MAX_VALUE;

93 LOG.info("Compressed input; cannot compute

number of records in the split");

94 }

95 else {

96 fileIn.seek(start);
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97 filePosition = fileIn;

98 inputStream = fileIn;

99 System.out.println("end: " + end + " start:

" + start + " numBytesToSkip: " +

numBytesToSkip);

100 long splitSize = end - start -

numBytesToSkip;

101 //globalSplitSize = (int) (end - start -

numBytesToSkip);

102 numRecordsRemainingInSplit = (splitSize +

recordLength -1)/recordLength;

103 if (numRecordsRemainingInSplit < 0) {

104 numRecordsRemainingInSplit =0;

105 }

106 LOG.info("Expecting " +

numRecordsRemainingInSplit + " records

each with a length of "

107 + recordLength + " bytes in the

split with an effective size of "

+ splitSize

108 + " bytes");

109
110 }

111 if (numBytesToSkip != 0) {

112 start += inputStream.skip(numBytesToSkip);

113 }

114 this.pos = start;

115 }

116
117 @Override

118 public synchronized boolean nextKeyValue() throws

IOException {

119 if (key == null) {

120 key = new LongWritable();

121 }

122 if (value == null) {

123 value = new BytesWritable(new byte[

globalSplitSize]);

124 }

125 boolean dataRead = false;
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126 value.setSize(globalSplitSize);

127 byte[] record = value.getBytes();

128 if (numRecordsRemainingInSplit > 0) {

129 key.set(pos);

130 int offset = 0;

131 int numBytesToRead = globalSplitSize;

132 int numBytesRead = 0;

133 while (numBytesToRead > 0) {

134 numBytesRead = inputStream.read(

record, offset, numBytesToRead);

135 if (numBytesRead == -1) {

136 break; //EOF

137 }

138 offset += numBytesRead;

139 numBytesToRead -= numBytesRead;

140 }

141 numBytesRead = globalSplitSize -

numBytesToRead;

142 pos += numBytesRead;

143 if (numBytesRead > 0) {

144 dataRead = true;

145 if (numBytesRead >= globalSplitSize)

{

146 if (!isCompressedInput) {

147 numRecordsRemainingInSplit

--;

148 }

149 }

150 }

151 else {

152 numRecordsRemainingInSplit = 0L;

153 }

154 }

155 return dataRead;

156 }

157
158 @Override

159 public LongWritable getCurrentKey() {

160 return key;

161 }
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162
163 @Override

164 public BytesWritable getCurrentValue() {

165 return value;

166 }

167
168 @Override

169 public synchronized float getProgress() throws IOException {

170 if (start == end) {

171 return 0.0f;

172 }

173 else {

174 return Math.min(1.0f, (getFilePosition() -

start) / (float)(end - start));

175 }

176 }

177
178 @Override

179 public synchronized void close() throws IOException {

180 try {

181 if (inputStream != null) {

182 inputStream.close();

183 inputStream = null;

184 }

185 }

186 finally {

187 if (decompressor != null) {

188 CodecPool.returnDecompressor(

decompressor);

189 decompressor = null;

190 }

191 }

192 }

193
194 public long getPos() {

195 return pos;

196 }

197
198 private long getFilePosition() throws IOException {

199 long retVal;
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200 if (isCompressedInput && null != filePosition) {

201 retVal = filePosition.getPos();

202 }

203 else {

204 retVal = pos;

205 }

206 return retVal;

207 }

208 }
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APPENDIX C:
WordCount Pseudo-code

This appendix contains pseudo-code for a MapReduce program. The most common basic
MapReduce program is a word count program which is demonstrated in the below code.
Full Source code for aMapReduceWordCount programmay be found at the Apache tutorial
webpage [80].

C.1 Word Count Pseudo-Code
1 map(String key, String value):

2 // key: document name

3 // value: input split contents

4 for each word in value:

5 write(word, 1)

6
7 reduce(String intermediateKey , Iterator intermediateValues):

8 // key: a word

9 // values: list of counts

10 for each value in values:

11 sum += value

12 write(key, sum)
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APPENDIX D:
MapReduce ByteCount

This appendix contains complete code for the MapReduce byteCount program using both
Int Array and HashMap.

D.1 Int Array ByteCount
Below is the code used to implementMapReduce byteCount program utilizing the Int Array.

1 package bytes;

2
3 import java.io.IOException;

4 import java.io.*;

5 import java.util.HashMap;

6 import java.util.Map;

7 import java.util.Iterator;

8 import java.util.Set;

9
10 import org.apache.hadoop.conf.Configuration;

11 import org.apache.hadoop.fs.Path;

12 import org.apache.hadoop.io.IntWritable;

13 import org.apache.hadoop.io.Text;

14 import org.apache.hadoop.io.BytesWritable;

15 import org.apache.hadoop.io.LongWritable;

16 import org.apache.hadoop.mapreduce.Job;

17 import org.apache.hadoop.mapreduce.Mapper;

18 import org.apache.hadoop.mapreduce.Reducer;

19 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

20 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

21
22 // LOGGING

23 import org.apache.commons.logging.Log;

24 import org.apache.commons.logging.LogFactory;

25
26 // TOOL

27 import org.apache.hadoop.util.Tool;

28 import org.apache.hadoop.util.ToolRunner;
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29 import org.apache.hadoop.conf.Configured;

30
31 public class ByteCountIntArray extends Configured implements Tool {

32 private static final Log LOG = LogFactory.getLog(

newByteCount.class);

33
34 public static class byteMapper extends Mapper<Object,

BytesWritable , IntWritable , LongWritable > {

35 public void map(Object key, BytesWritable value,

Context context) throws IOException ,

InterruptedException {

36
37 byte[] byteArray = value.getBytes();

38
39 int[] intArray = new int[256];

40
41 for (int j=0; j< byteArray.length; j++){

42 int byteValue = byteArray[j] & 0xFF;

43 intArray[byteValue] += 1;

44 }

45
46 for(int i=0; i<=255; i++) {

47 context.write(new IntWritable(i),

new LongWritable(intArray[i]));

48 }

49 }

50 }

51
52 public static class ByteSumReducer extends Reducer<

IntWritable , LongWritable , IntWritable , LongWritable > {

53
54 private LongWritable result = new LongWritable();

55
56 public void reduce(IntWritable key, Iterable<

LongWritable > values, Context context) throws

IOException , InterruptedException {

57
58 long sum = 0;

59 for (LongWritable val : values) {

60
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61 sum += val.get();

62 }

63 result.set(sum);

64 context.write(key, result);

65 }

66 }

67
68 public static void main(String[] args) throws Exception {

69 int res = ToolRunner.run(new Configuration(), new

newByteCount(), args);

70 System.exit(res);

71 }

72
73 @Override

74 public int run(String[] args) throws Exception {

75 Configuration conf = this.getConf();

76 conf.setInt(rawInputFormat.FIXED_RECORD_LENGTH ,

536870912);

77 Job job = new Job(conf, "byte count");

78 job.setJarByClass(newByteCount.class);

79 job.setInputFormatClass(rawInputFormat.class);

80 job.setMapperClass(byteMapper.class);

81 job.setCombinerClass(ByteSumReducer.class);

82 job.setReducerClass(ByteSumReducer.class);

83 job.setMapOutputKeyClass(IntWritable.class);

84 job.setMapOutputValueClass(LongWritable.class);

85 job.setOutputKeyClass(IntWritable.class);

86 job.setOutputValueClass(LongWritable.class);

87 FileInputFormat.addInputPath(job, new Path(args[0]))

;

88 FileOutputFormat.setOutputPath(job, new Path(args

[1]));

89 return job.waitForCompletion(true) ? 0 : 1;

90
91 }

92 }
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D.2 HashMap Byte Count
Below is the code used to implement MapReduce byteCount program utilizing a Java
HashMap. Note that this approach is not recommended and we include it only for purposes
of reproducing our memory analysis.

1 package bytes;

2
3 import java.io.IOException;

4 import java.io.*;

5 import java.util.HashMap;

6 import java.util.Map;

7 import java.util.Iterator;

8 import java.util.Set;

9
10 import org.apache.hadoop.conf.Configuration;

11 import org.apache.hadoop.fs.Path;

12 import org.apache.hadoop.io.IntWritable;

13 import org.apache.hadoop.io.Text;

14 import org.apache.hadoop.io.BytesWritable;

15 import org.apache.hadoop.io.LongWritable;

16 import org.apache.hadoop.mapreduce.Job;

17 import org.apache.hadoop.mapreduce.Mapper;

18 import org.apache.hadoop.mapreduce.Reducer;

19 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

20 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

21
22
23 // LOGGING

24 import org.apache.commons.logging.Log;

25 import org.apache.commons.logging.LogFactory;

26
27 // TOOL

28 import org.apache.hadoop.util.Tool;

29 import org.apache.hadoop.util.ToolRunner;

30 import org.apache.hadoop.conf.Configured;

31
32 public class ByteCountHashMap extends Configured implements Tool {

33 private static final Log LOG = LogFactory.getLog(

newByteCount.class);

34
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35 public static class byteMapper extends Mapper<Object,

BytesWritable , IntWritable , LongWritable > {

36 private final static IntWritable one = new

IntWritable(1);

37 public void map(Object key, BytesWritable value,

Context context) throws IOException ,

InterruptedException {

38
39 HashMap<Integer, Integer> combinedMap = new

HashMap<Integer, Integer >();

40 byte[] byteArray = value.getBytes();

41 for (int j=0; j< byteArray.length; j++){

42 int byteValue = byteArray[j] & 0xFF;

43 if (combinedMap.containsKey(

byteValue)){

44 int val = combinedMap.get(

byteValue);

45 combinedMap.put(byteValue ,

val+1);

46 } else {

47 combinedMap.put(byteValue ,

1);

48 }

49 }

50 for (Map.Entry<Integer, Integer> entry :

combinedMap.entrySet()){

51 context.write(new IntWritable(entry.

getKey()), new LongWritable(entry

.getValue()));

52 }

53 }

54 }

55
56 public static class ByteSumReducer extends Reducer<

IntWritable , LongWritable , IntWritable , LongWritable > {

57
58 private LongWritable result = new LongWritable();

59
60 public void reduce(IntWritable key, Iterable<

LongWritable > values, Context context) throws
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IOException , InterruptedException {

61
62 long sum = 0;

63 for (LongWritable val : values) {

64 sum += val.get();

65 }

66 result.set(sum);

67 context.write(key, result);

68 }

69 }

70
71 public static void main(String[] args) throws Exception {

72 int res = ToolRunner.run(new Configuration(), new

newByteCount(), args);

73 System.exit(res);

74 }

75
76 @Override

77 public int run(String[] args) throws Exception {

78 Configuration conf = this.getConf();

79 conf.setInt(rawInputFormat.FIXED_RECORD_LENGTH ,

536870912);

80 Job job = new Job(conf, "byte count");

81 job.setJarByClass(newByteCount.class);

82 job.setInputFormatClass(rawInputFormat.class);

83 job.setMapperClass(byteMapper.class);

84 job.setCombinerClass(ByteSumReducer.class);

85 job.setReducerClass(ByteSumReducer.class);

86 job.setMapOutputKeyClass(IntWritable.class);

87 job.setMapOutputValueClass(LongWritable.class);

88 job.setOutputKeyClass(IntWritable.class);

89 job.setOutputValueClass(LongWritable.class);

90 FileInputFormat.addInputPath(job, new Path(args[0]))

;

91 FileOutputFormat.setOutputPath(job, new Path(args

[1]));

92 return job.waitForCompletion(true) ? 0 : 1;

93
94 }

95 }
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APPENDIX E:
MapReduce Bulk_Extractor Email Scanner

Below is MapReduce job code to execute be_scan email scanner on a Hadoop cluster using
our rawInputFormat class as well be_scan and the Java interfaces to execute C++ bulk
extractor libraries.

E.1 MapReduce Bulk Extractor Email
Usage of this code requires be_scan [76] to be installed.

1 package beScanner;

2
3 import java.io.IOException;

4 import java.io.*;

5 import java.util.HashMap;

6 import java.util.Map;

7 import java.util.Iterator;

8 import java.util.Set;

9 import java.util.Arrays;

10 import java.net.*;

11
12 import org.apache.hadoop.conf.Configuration;

13 import org.apache.hadoop.fs.Path;

14 import org.apache.hadoop.io.IntWritable;

15 import org.apache.hadoop.io.Text;

16 import org.apache.hadoop.io.BytesWritable;

17 import org.apache.hadoop.io.LongWritable;

18 import org.apache.hadoop.mapreduce.Job;

19 import org.apache.hadoop.mapreduce.Mapper;

20 import org.apache.hadoop.mapreduce.Reducer;

21 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

22 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

23 // LOGGING

24 import org.apache.commons.logging.Log;

25 import org.apache.commons.logging.LogFactory;

26 // TOOL

27 import org.apache.hadoop.util.Tool;
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28 import org.apache.hadoop.util.ToolRunner;

29 import org.apache.hadoop.conf.Configured;

30
31 import org.apache.hadoop.filecache.DistributedCache;

32
33 public class beScan extends Configured implements Tool{

34
35 private static final Log LOG = LogFactory.getLog(beScan.

class);

36
37 public static class beScanMapper extends Mapper<Object,

BytesWritable , Text, IntWritable > {

38 private final static IntWritable one = new

IntWritable(1);

39 private Text emailAddress = new Text();

40
41 public void setup (Context context) throws

IOException , InterruptedException {

42 System.load((new File("libbe_scan_jni.so")).

getAbsolutePath());

43
44
45 }

46
47 public void map(Object key, BytesWritable value,

Context context) throws IOException ,

InterruptedException {

48
49 byte[] buffer1 = value.getBytes();

50
51 edu.nps.deep.be_scan.BEScan scanner = new

edu.nps.deep.be_scan.BEScan("email",

buffer1, buffer1.length);

52 edu.nps.deep.be_scan.Artifact artifact;

53
54 artifact = scanner.next();

55 while(!artifact.getArtifact().isEmpty()) {

56 emailAddress.set(artifact.

getArtifact());

57 context.write(emailAddress , one);
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58 artifact = scanner.next();

59 }

60
61 }

62 }

63
64 public static class beScanReducer extends Reducer<Text,

IntWritable , Text, IntWritable > {

65 private IntWritable result = new IntWritable();

66
67 public void reduce(Text key, Iterable<IntWritable >

values, Context context) throws IOException ,

InterruptedException {

68 int sum = 0;

69 for (IntWritable val : values) {

70 sum += val.get();

71 }

72 result.set(sum);

73 context.write(key, result);

74 }

75
76
77
78 }

79
80 public static void main(String[] args) throws Exception {

81 int res = ToolRunner.run(new Configuration(), new

beScan(), args);

82 System.exit(res);

83 }

84
85 @Override

86 public int run(String[] args) throws Exception {

87 Configuration conf = this.getConf();

88 conf.setInt(rawInputFormat.FIXED_RECORD_LENGTH ,

536870912); //512MB recordlength in bytes

89 Job job = new Job(conf, "BE Scanner");

90 job.setJarByClass(beScan.class);

91 job.setInputFormatClass(rawInputFormat.class);

92 job.setMapperClass(beScanMapper.class);
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93 job.setCombinerClass(beScanReducer.class);

94 job.setReducerClass(beScanReducer.class);

95 job.setMapOutputKeyClass(Text.class);

96 job.setMapOutputValueClass(IntWritable.class);

97 job.setOutputKeyClass(Text.class);

98 job.setOutputValueClass(IntWritable.class);

99 job.addCacheFile(new URI("hdfs://hadmin -1-33a.ib.

grace.cluster:8020/user/tjandrze/libraries/

libbe_scan_jni.so.0.0.0#libbe_scan_jni.so"));

100 FileInputFormat.addInputPath(job, new Path(args[0]))

;

101 FileOutputFormat.setOutputPath(job, new Path(args

[1]));

102 return job.waitForCompletion(true) ? 0 : 1;

103
104 }

105 }
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APPENDIX F:
MapReduce ByteCount Results

F.1 MapReduce ByteCount Result Table
Tables F.1 and F.2 represent the byte frequency of RDC sorted byte value.
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Table F.1. ByteCount Bytes 0-171
Byte Byte Frequency
0 63273879033072

1 734295502830

2 492826566372

3 396546091375

4 418845885918

5 304600414267

6 311225415223

7 297314486824

8 383449628710

9 269047851725

10 314633894433

11 238842543530

12 308563927742

13 266646197630

14 237917722531

15 323117437993

16 360945179962

17 261242861971

18 234532691466

19 215301111128

20 259932073057

21 230464240083

22 207649976670

23 203098395553

24 258054441375

25 205818201769

26 200500276838

27 195976403880

28 221392688465

29 194063668849

30 203476380924

31 242456459054

32 716338085559

33 246711736634

34 272952917264

35 233399290430

36 300116349930

37 205697393972

38 204778101364

39 202296568445

40 237301150880

41 206961539210

42 205008623311

Byte Byte Frequency
43 208262015370

44 226331516762

45 262526671948

46 244307775869

47 242232684273

48 570435823506

49 313376899440

50 284049867514

51 316623710149

52 268118049361

53 271161518976

54 246400508982

55 240258653642

56 267028280773

57 258790573407

58 254980940211

59 226880224354

60 231737096390

61 250906563340

62 231281848497

63 269076544603

64 322847361867

65 381184286916

66 285567000946

67 255479826947

68 299021992591

69 331932759619

70 284496812692

71 212823478273

72 249992756974

73 238283995524

74 206024019414

75 193535564813

76 236437080955

77 255381638768

78 222511180999

79 218734828494

80 333183376938

81 225563655700

82 242013408285

83 274087125110

84 245774913872

85 292283580950

Byte Byte Frequency
86 238808219211

87 230021555544

88 221676764015

89 200052280236

90 343891098770

91 189972894685

92 213905952188

93 205651869281

94 195784862524

95 228363625902

96 241785533639

97 347070445994

98 228608146027

99 274455994215

100 275612396625

101 417524034178

102 257105817870

103 227034040195

104 260822368387

105 324512093963

106 251447347901

107 208445958642

108 279799172447

109 241032252997

110 304882106113

111 325175921573

112 360203249171

113 206924937414

114 323885123209

115 311799164908

116 405259365557

117 310507668844

118 220185426010

119 222407823807

120 228475496218

121 218501476201

122 192490271846

123 193647647178

124 209355960882

125 213903634895

126 267102555096

127 313306384399

128 382474487276

Byte Byte Frequency
129 228893989146

130 204847502458

131 270808291723

132 224393496505

133 244748668795

134 193602304291

135 181532065531

136 215686178542

137 278700923711

138 189534177745

139 437057702605

140 198706678259

141 264790855826

142 182229736158

143 184412321291

144 261594198865

145 185318395286

146 190125549635

147 179250282358

148 229802166020

149 186327318058

150 177424112083

151 170208157286

152 185414780978

153 182176365894

154 180400694730

155 169175419877

156 189023810848

157 176640016113

158 184337867667

159 180232454755

160 225115980730

161 190363757989

162 178868639615

163 185549236917

164 187438626304

165 189423408651

166 172556552337

167 178992659289

168 196724030281

169 180324147161

170 452140606558

171 181537150838
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Table F.2. ByteCount Bytes 171-255
Byte Byte Frequency
172 183661904540

173 228051795035

174 171957407832

175 186286053543

176 204189250266

177 178553934662

178 171937232247

179 167760651990

180 178876375387

181 184174144724

182 180061894867

183 178037748743

184 199695598008

185 185354406872

186 176627881743

187 209864245870

188 182104933905

189 193525142486

190 190401123812

191 209960099080

192 317879908575

193 216022687611

194 205709445265

195 215753105461

196 207957114211

197 177536990396

198 195581530751

199 208917252438

200 260518703062

201 199832353182

202 239798425278

203 176828509880

204 258770747154

205 181881426338

206 185358064624

207 185940839466

208 209475741946

209 182396071346

210 184046843323

211 180889000885

212 181009463175

213 178366056202

Byte Byte Frequency
214 182086893190

215 177173773497

216 191614166918

217 174139708899

218 212875371499

219 185191974683

220 188479780145

221 183443165147

222 185375289755

223 212584923600

224 263962689583

225 228236840319

226 193868862363

227 186513348817

228 190268468446

229 183085039581

230 180708548368

231 196235299639

232 315853574905

233 219261485825

234 190758707589

235 210061514770

236 208605731649

237 184839959887

238 188117519609

239 210693355629

240 261548387121

241 209865464453

242 201474835858

243 199179267256

244 203441996386

245 192772838665

246 1351928628522

247 217676577968

248 239968603243

249 242029718491

250 204641541837

251 225354199703

252 257422593513

253 245280015393

254 292508008283

255 3183095937209
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F.2 MapReduce ByteCount Frequency Sorted Table
Tables F.3 and F.4 below represent the byte frequency of RDC sorted byte frequency.
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Table F.3. ByteCount 150 Least Frequent Bytes
Byte Byte Frequency
179 167760651990

155 169175419877

151 170208157286

178 171937232247

174 171957407832

166 172556552337

217 174139708899

186 176627881743

157 176640016113

203 176828509880

215 177173773497

150 177424112083

197 177536990396

183 178037748743

213 178366056202

177 178553934662

162 178868639615

180 178876375387

167 178992659289

147 179250282358

182 180061894867

159 180232454755

169 180324147161

154 180400694730

230 180708548368

211 180889000885

212 181009463175

135 181532065531

171 181537150838

205 181881426338

214 182086893190

188 182104933905

153 182176365894

142 182229736158

209 182396071346

229 183085039581

221 183443165147

172 183661904540

210 184046843323

181 184174144724

158 184337867667

143 184412321291

237 184839959887

Byte Byte Frequency
219 185191974683

145 185318395286

185 185354406872

206 185358064624

222 185375289755

152 185414780978

163 185549236917

207 185940839466

175 186286053543

149 186327318058

227 186513348817

164 187438626304

238 188117519609

220 188479780145

156 189023810848

165 189423408651

138 189534177745

91 189972894685

146 190125549635

228 190268468446

161 190363757989

190 190401123812

234 190758707589

216 191614166918

122 192490271846

245 192772838665

189 193525142486

75 193535564813

134 193602304291

123 193647647178

226 193868862363

29 194063668849

198 195581530751

94 195784862524

27 195976403880

231 196235299639

168 196724030281

140 198706678259

243 199179267256

184 199695598008

201 199832353182

89 200052280236

26 200500276838

Byte Byte Frequency
242 201474835858

39 202296568445

23 203098395553

244 203441996386

30 203476380924

176 204189250266

250 204641541837

38 204778101364

130 204847502458

42 205008623311

93 205651869281

37 205697393972

194 205709445265

25 205818201769

74 206024019414

113 206924937414

41 206961539210

22 207649976670

196 207957114211

43 208262015370

107 208445958642

236 208605731649

199 208917252438

124 209355960882

208 209475741946

187 209864245870

241 209865464453

191 209960099080

235 210061514770

239 210693355629

223 212584923600

71 212823478273

218 212875371499

125 213903634895

92 213905952188

19 215301111128

136 215686178542

195 215753105461

193 216022687611

247 217676577968

121 218501476201

79 218734828494

233 219261485825

Byte Byte Frequency
118 220185426010

28 221392688465

88 221676764015

119 222407823807

78 222511180999

132 224393496505

160 225115980730

251 225354199703

81 225563655700

44 226331516762

59 226880224354

103 227034040195

173 228051795035

225 228236840319

95 228363625902

120 228475496218

98 228608146027

129 228893989146

148 229802166020

87 230021555544

21 230464240083
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Table F.4. ByteCount 106 Most Frequent Bytes
Byte Byte Frequency
62 231281848497
60 231737096390
35 233399290430
18 234532691466
76 236437080955
40 237301150880
14 237917722531
73 238283995524
86 238808219211
11 238842543530
202 239798425278
248 239968603243
55 240258653642
109 241032252997
96 241785533639
82 242013408285
249 242029718491
47 242232684273
31 242456459054
46 244307775869
133 244748668795
253 245280015393
84 245774913872
54 246400508982
33 246711736634
72 249992756974
61 250906563340
106 251447347901
58 254980940211
77 255381638768
67 255479826947
102 257105817870
252 257422593513
24 258054441375
204 258770747154
57 258790573407
20 259932073057
200 260518703062
104 260822368387
17 261242861971
240 261548387121
144 261594198865
45 262526671948
224 263962689583
141 264790855826
13 266646197630
56 267028280773
126 267102555096
52 268118049361
9 269047851725

Byte Byte Frequency
63 269076544603
131 270808291723
53 271161518976
34 272952917264
83 274087125110
99 274455994215
100 275612396625
137 278700923711
108 279799172447
50 284049867514
70 284496812692
66 285567000946
85 292283580950
254 292508008283
7 297314486824
68 299021992591
36 300116349930
5 304600414267
110 304882106113
12 308563927742
117 310507668844
6 311225415223
115 311799164908
127 313306384399
49 313376899440
10 314633894433
232 315853574905
51 316623710149
192 317879908575
64 322847361867
15 323117437993
114 323885123209
105 324512093963
111 325175921573
69 331932759619
80 333183376938
90 343891098770
97 347070445994
112 360203249171
16 360945179962
65 381184286916
128 382474487276
8 383449628710
3 396546091375
116 405259365557
101 417524034178
4 418845885918
139 437057702605
170 452140606558
2 492826566372

Byte Byte Frequency
48 570435823506
32 716338085559
1 734295502830
246 1351928628522
255 3183095937209
0 63273879033072
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APPENDIX G:
Calculate TF-IDF Python Program

Below is a sample python program to calculate TF-IDF values for an email address and
hard drive image in the RDC. This program relies on the results from the Mapreduce bulk
extractor program in a CSV file.

G.1 Calculate TF-IDF
1 #!/usr/bin/python

2 import sys

3 import csv

4 import math

5
6 email = ":" + sys.argv[1]

7 fileName = sys.argv[2]

8
9 emailDict = {}

10 fileDict = {}

11 drivesInCorpus = 3088.0

12
13 with open(’/path/to/mapreduce/bulk/extractor/results.csv’, mode=’r’)

as infile:

14 reader = csv.reader(infile)

15 for row in reader:

16 if email in row[0]:

17 emailDict[row[0]] = row[1]

18 if fileName in row[0]:

19 fileDict[row[0]] = row[1]

20
21 numDrivesEmailFoundIn = float(len(emailDict))

22 emailFrequency = float(emailDict[fileName + email])

23 totalEmailsInDrive = 0.0

24 for key, value in fileDict.iteritems():

25 totalEmailsInDrive += float(value)

26 inverseDocFreq = math.log10(drivesInCorpus/numDrivesEmailFoundIn)

27 termFreq = emailFrequency/totalEmailsInDrive
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28 tf_idf = termFreq * inverseDocFreq

29 print(sys.argv[1] +" in " + fileName + " has a TF-IDF value of: ")

30 print(tf_idf)
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APPENDIX H:
Writing Bulk_Extractor MapReduce

The general flow of this MapReduce job is as follows. The Mapper portion will accept
as input key-value pairs, where value is the contents of a disk image inputSplit from a file
read from HDFS. The Mapper then loads the be_scan library which is used to extract email
addresses from the bytes stored as the value. Any email address found is sent to the Reducer
which counts each unique email address, similar to theWordCount program counting words
in Appendix C.

The record size of value is customizable using the FIXED_RECORD_LENGTH parameter.
This program sets the parameter to the same size as the data blocksize, 512MiB, in the job
configuration portion. This value was chosen because initial analysis demonstrated better
performance when record size and data blocksize were the same, though this analysis was
not exhaustive.

The Mapper function will load libbe_scan_jni.so from a user specified HDFS path.
This program loads libbe_scan_jni.so from /user/tjandrze/libraries/ which is
populated with libbe_scan_jni.so.0.0.0 from the be_scan build directory using the
hdfs dfs -put command. To make this library available in the path of the MapReduce
job, Hadoop DistributedCache [81] is required. This will distribute the library from the
HDFS path to each datanode at runtime to the path of the running Mappers, which then
load the library. The distribution and loading of the library is done via the commands
listed below. Line 1 utilizes distributedCache to distribute the library while line 4 loads this
library into the Mapper.

1 job.addCacheFile(new URI("hdfs://hadmin -1-33a.ib.grace.cluster:8020/

user/tjandrze/libraries/libbe_scan_jni.so.0.0.0#libbe_scan_jni.so

"));

2
3 public void setup (Context context) throws IOException ,

InterruptedException {

4 System.load((new File("libbe_scan_jni.so")).getAbsolutePath

());

5 }
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With the library loaded into the MapReduce job, the map function is able to successfully
use the BEScan and Artifact classes found in the edu directory from Figure 4.2. The map
function code below calls the BEScan class and the Artifact class, which extract email
addresses via the distributed be_scan library. Line three stores the bytes of value into a
byte array which is sent as an argument during scanner object creation in line five. Line six
defines a new Artifact object where an artifact is what is returned from the scanner(i.e., an
email address for the email scanner). Line eight uses the next() method from the BEScan
class which directs the program to search for the next artifact (email address). In this case
it is to find the first artifact, if one exists in value. Lines nine through 12 loop through
each non-empty artifact and set the Text() object and emailAddress to the contents of the
artifact. This is required because the Mapper can only write or send to the Reducer Hadoop
writable types, and Artifact is not a Hadoop writable type. Similar to the wordCount
program, line 11 writes the email address and a “one,” which is sent to the Reducer. The
loop continues by directing the scanner to locate the next artifact. This continues until all
bytes in the value are read.

1 public void map(Object key, BytesWritable value, Context context)

throws IOException , InterruptedException {

2
3 byte[] buffer1 = value.getBytes();

4
5 edu.nps.deep.be_scan.BEScan scanner = new edu.nps.deep.

be_scan.BEScan("email", buffer1, buffer1.length);

6 edu.nps.deep.be_scan.Artifact artifact;

7
8 artifact = scanner.next();

9 while(!artifact.getArtifact().isEmpty()) {

10 emailAddress.set(artifact.getArtifact());

11 context.write(emailAddress , one);

12 artifact = scanner.next();

13 }

14 }

The Reducer function receives as key-value pair the Text() emailAddress object as the key
and an IntWritable() object set to the number one. These keys and values are received
from the Mapper functions, which write them to intermediate local files. They are then
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reduced or summed on all identical email addresses as seen in lines three through five. The
Reducer then writes the unique email address and count to the output directory specified by
the user.

1 public void reduce(Text key, Iterable<IntWritable > values, Context

context) throws IOException , InterruptedException {

2 int sum = 0;

3 for (IntWritable val : values) {

4 sum += val.get();

5 }

6 result.set(sum);

7 context.write(key, result);

8 }
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