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Single photons to multiple octaves:  
Engineering nonlinear optics in micro- and nano-structured media 

# FA9550-12-1-0110 
For the period 04-01-2012 to 03-31-2015 

M. M. Fejer, P.I. 
Stanford University 

I. Introduction 

This final technical report summarizes progress in a three-year program with AFOSR support under 
#FA9550-12-1-0110. This program is a continuation of research carried out under AFOSR awards, FA9550-
05-1-0180, F49620-99-1-0270 and F49620-02-1-0240.  

There were two main topics in the proposed work: few-photon nonlinear optics, and generation and 
amplification of ultrafast pulses. Both efforts took advantage of microstructured nonlinear media, in 
particular quasi-phasematched interactions in periodically-poled ferroelectrics and orientation-patterned 
semiconductors. Guided-wave interactions were used in some cases to further enhance the wave-mixing 
efficiency, especially for low-power devices. Because errors in fabrication of waveguides and QPM gratings 
are unavoidable, understanding the effects of such errors on device performance was important for both few-
photon and ultrafast devices, and so became another important component of the work.  

This report will be structured as a brief summary of the results of the key results described in the 16 
supported publications (also appended at the end of the report), along with outlooks for future work in those 
areas. It is divided into three sections: ultrafast interactions, few-photon interactions, and imperfect nonlinear 
structures.  

II. Technical Report

II.1 Ultrafast pulse amplification

The generation of energetic few-cycle pulses in the mid-IR is of interest for applications such as high-
harmonic generation and molecular dynamics. While amplification of few-cycle pulses in the near-IR to 
millijoule levels and above is now well developed in laser amplifiers based on Ti:sapphire and various Yb 
hosts, the lack of suitable mid-IR hosts has led to investigation of optical parametric chirped-pulse 
amplification (OPCPA) as method to generate energetic few-cycle pulses in this spectral region. In our 
previous three-year program, we showed that the bandwidth and phase response of quasi-phasematched 
optical parametric amplifiers (OPA) can be engineered fairly arbitrarily through the use of aperiodic quasi-
phasematching, i.e. using chirped QPM gratings to broaden the phasematching and hence the gain spectrum, 
as well as to manipulate the spectral phase of the generated pulses. The student who worked on this project 
here at Stanford subsequently became a post-doc in Ursula Keller’s group at the ETH Zurich, with whose 
group we continued this work bringing it to fruition as the highest average power (at the time) source of few-
cycle mid-IR pusles. This work is described in  
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C. Heese, C.R. Phillips, L. Gallman, M.M. Fejer, and U. Keller, “Role of apodization in optical 
parametric amplifiers based on aperiodic quasi-phasematching gratings,” Opt. Express  20, pp. 
18066-71 (July 2012) 

C. Heese, C.R. Phillips, B.W. Mayer, L. Gallmann, M.M. Fejer, U. Keller, “75 MW few-cycle mid-
infrared pulses from a collinear apodized APPLN-based OPCPA,”  Opt. Express 20, pp. 26888-94 
(November 2012). 

C.R. Phillips, J.S. Pelc, M.M. Fejer, “Parametric processes in quasi-phasematching gratings with 
random duty cycle errors,” JOSA-B 30, pp. 982-93 (April 2013). 

B.W. Mayer, C.R. Phillips, L. Gallmann, M.M. Fejer, U. Keller, “Sub-four-cycle laser pulses 
directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 µm,” Opt. Lett. 
38, pp. 4265-68 (Nov. 2013) 

C.R. Phillips, B.W. Mayer, L. Gallmann, M.M. Fejer, U. Keller, “Design constraints of optical 
parametric chirped pulse amplification based on chirped quasi-phase-matching gratings,” Opt. 
Express 22, pp. 9627-58, (April 2014). 

Recently a system using a PPLN waveguide OPA to generate a carrier-envelope-offset-free gigahertz 
frequency comb tunable from 2.5-4.2 µm requiring two orders of magnitude less pump power than 
conventional methods was demonstrated for use as a seed for subsequent high-pulse-energy devices. This 
work is described in  

A.S. Mayer, C.R. Phillips, C. Langrock, A. Klenner, A.R. Johnson, K. Luke, Y. Okawachi, M. 
Lipson, A.L. Gaeta, M.M. Fejer, U. Keller, “Offset-Free Gigahertz Mid-infrared Frequency Comb 
Based on Optical Parametric Amplification in a Periodically Poled Lithium Niobate Waveguide,” 
Phys. Rev. Applied 6, art. no. 054009 (November 2016). 

The work on power scaling of mid-IR OPAs has continued at ETH Zurich subsequent to the completion of 
this AFOSR program. The current goal of the work is demonstration of a 50-W average power (50 kHz, 1 
mJ) of 3.5 µm pulses of ~30-fs duration, a carrier-envelope-phase stabilized source whose combination of 
high repetition rate, high pulse energy, and few-cycle duration that would be of exceptional value for high-
field and high-harmonic generation experiments in the mid-IR.  

In the area of microstructured semiconductors, we have, in collaboration with the Sorokina group at the 
Norwegian University of Science and Technology (NTNU) demonstrated generation of mid-IR frequency 
combs with femtosecond degenerate synchronously pumped optical parametric oscillators in both orientation 
patterned GaAs (OP-GaAs) and orientation patterned GaP (OP-GaP), and compared performance between 
these novel microstructured materials. In OP-GaP three cycle pulses at 4.2 µm were generated with ~60% 
slope efficiency, the best performance to date for a source in this spectral range. A paper on this work 
acknowledging AFOSR support is in draft.  

We are also currently exploring the use of tightly confining PPLN waveguides in collaboration with the 
Loncar group at Harvard under NSF support to accomplish dispersion engineering in travelling-wave quasi-
phasematched frequency-comb generation of the type discussed in the proposal for # FA9550-12-1-0110. 
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II.2 Few-photon nonlinear devices 
 
In our previous AFOSR program we demonstrated various devices based on efficient mixing of single 
photons at frequency ωs with a classical pump at frequency ωp in order to up- or down-shift the carrier 
frequency of the photon (ωout = ωs ± ωp) while maintaining its coherence properties. Common applications 
are upconversion of IR photons to enable detection with convenient single-photon detectors in the near-
IR/visible (e.g. silicon avalanche photodiodes) or downconversion of visible or near-IR photons from ions, 
NV centers, or quantum dots to 1.5 µm for transmission down optical fibers for quantum communication 
schemes.  
 
Another useful feature of these devices is that they can manipulate the spectral or temporal structure of the 
converted photons. For example, a pulsed pump serves as a time-gated mixer. We took advantage of this 
feature to both down-convert 911-nm single photons from a quantum dot to 1.5 µm and to gate the mixing 
process with a ~10 ps window. The latter served to erase which-path information and enable the 
entanglement of a photon with the spin of a quantum-dot. Aspects of this work, done in collaboration with 
Yoshihisa Yamamoto’s group at Stanford, were described in  
 

K. De Greve, L. Yu, P.L. McMahon, J.S. Pelc, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. 
Schneider, M. Kamp, S. Hofling, R.H. Hadfield, A. Forchel, A M.M. Fejer, Y. Yamamoto, 
“Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” 
Nature 491, p. 421 (November 2012) 

 
K. De Greve, P.L. McMahon, L. Yu, J.S. Pelc, C. Jones, C.M. Natarajan, N.Y. Kim, E. Abe, S. 
Maier, C. Schneider, M. Kamp, S. Hofling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, 
“Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair,” Nature 
Communications 4, art. 2228 (July 2013)  
 
K. De Greve, P.L. McMahon, L. Yu, J.S. Pelc, C. Jones, C.M. Natarajan, N.Y. Kim, E. Abe, S. 
Maier, C. Schneider, M. Kamp, S. Hofling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, 
“Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair,” Nature 
Communications 4, art. 2228 (July 2013) 
 

Another use of time-gated mixing is to increase the timing resolution or the counting rate beyond that 
obtainable from the detector properties alone. An example of this use, two-channel up-conversion mixing to 
double the possible counting rate for single photons in a silicon APD, an experiment carried out in 
collaboration with Tang et al at NIST-Gaithersburg is discussed in  
 

J.S. Pelc, P.S. Kuo, O. Slattery, L.J. Ma, X. Tang, M.M. Fejer, “Dual-channel, single-photon 
upconversion detector at 1.3 µm,” Opt. Express 20, pp. 19075-87 (August 2012).  
 

An issue with these devices is that inelastic scattering of the classical pump can produce spontaneous photons 
at longer wavelengths that are indistinguishable from the single signal photons, and hence are a noise source 
in the mixing process. Both Raman processes and spontaneous parametric fluorescence (phasematched due 
to errors in the domain patterning, discussed in the following section) can both contribute to this undesired 
inelastic scattering. The most convenient way to evade these scattering processes is through the use of a 
pump whose wavelength is longer than the signal input or output photons, so that the noise photons do not 
exist in spectral ranges of interest. Two experiments using a 1950-nm Tm:fiber laser as a pump for low-noise 
up-conversion of 1.5-µm band photons in the range of silicon APDs, one as an ultrasensitive time-domain 
reflectometer (detecting defects over a 217-km range) and the other as an ultrasensitive single-pixel 
spectrometer are reported in 
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G.L. Shentu, Q.C. Sun, X. Jiang, X.D. Wang, J.S. Pelc, M.M. Fejer, Q. Zhang, J.W. Pan, “217 
km long distance photon-counting optical time-domain reflectometry based on ultra-low 
noise up-conversion single photon detector,” Opt. Express 21, pp. 24674-79 (Oct. 2013). 
G.L. Shentu, J.S. Pelc, X.D. Wang, Q.C. Sun, M.Y. Zheng, M.M. Fejer, Q. Zhang, J.W. Pan, 
“Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 
21, pp. 13986-13991 (June 2013). 

 
Such a long-wave pump imposes limitations on the possible mixing process, since frequencies of the signal 
and output photons cannot differ by more than a factor of two if the pump photon is kept as the longest 
wavelength of the three photons involved. A solution to this issue described in the proposal is to use a 
cascaded process, where the pump photon first mixes with the signal photon to produce an intermediate 
frequency photon (ωint = ωs ± ωp), and then a second pump photon mixes with the intermediate frequency 
photon to generate the output, so that (ωout = ωs ± 2ωp). With this cascaded scheme, visible photons can be 
interconverted with 1.5 µm photons with minimal spontaneous scattering noise. A waveguide device using a 
2.1-µm pump to down-convert red (650 nm) to 1.5 µm photons to by such a cascaded mixing process in a 
novel “U-bend” configuration was reported at CLEO this year (paper FTh4A.4), and is in draft as a 
publication which will acknowledge AFOSR support.  
 
A more extreme example of nonlinear optics with few photons was the demonstration of summing of 
photons from two independent heralded sources in a PPLN waveguide. In addition to being an extreme 
example of nonlinear optics at the quantum level, these experiments show prospects for heralding of 
maximally entangled photon pairs created at a distance, and photon triplets for study of exotic quantum 
optical phenomena, especially if the more highly nonlinear waveguides under development with the Loncar 
group at Harvard mentioned earlier become available.  
 

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J.S. Pelc, C. Langrock, M.M. Fejer, H. 
Zbinden, R.T. Thew, N. Gisin, “Nonlinear interaction of independent single photons based on 
integrated nonlinear optics,” Nature Communications 4, art. 2324 (August 2014). 
 
T. Guerreiro, A. Martin, B. Sanguinetti, J.S. Pelc, C. Langrock, M.M. Fejer, N. Gisin, H. Zbinden, N. 
Sangouard, R.T. Thew, “Nonlinear Interaction between Single Photons,” Phys. Rev. Lett. 113, art. no. 
173601 (Oct. 2014). 
 

These sorts of quantum frequency conversion devices developed under AFOSR support are now widely 
viewed as essential for practical quantum information networks. We now have a program under DARPA 
support to improve and transfer the basic PPLN waveguide technology to a commercial vendor, AdvR, Inc.. 
More advanced devices are being developed in collaboration with the Institute for Quantum Optics in 
Innsbruck under ARL support. Under NSF support we are investigating tightly confining waveguide 
architectures based on ion-sliced PPLN waveguides that would offer order-of-magnitude increases in 
conversion efficiency compared to the proton-exchange waveguides we have been using to date, as well as the 
possibility of dispersion engineering to manipulate spectral and temporal behavior of the devices.  
 
II.3 Design and tolerances for QPM devices  
 
Aperiodic QPM gratings arise both as a design tool, for engineering the spectral response of nonlinear mixing 
devices, and as a result of unavoidable errors that occur in the fabrication of quasi-phasematching gratings. 
The resulting deviations of the spectral behavior of nonlinear mixing processes in these non-ideal devices can 
have serious effects on the performance of devices based on them. We therefore undertook theoretical and 
experimental studies to quantify the effects of such errors, to understand whether they could explain 
observed degradation of device performance, and to enable setting of fabrication tolerances for future device 
designs.  
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The design of aperiodic gratings, in particular ones that adiabatically turn on and turn off the nonlinear 
mixing process, are essential to avoid spectral ripples that would otherwise result from the abrupt transitions 
in the mixing efficiency. Various approaches and resulting design rules for such adiabatic gratings are 
discussed in  
 

C.R. Phillips, C. Langrock, D. Chang, Y.W. Lin, L. Gallmann, “Apodization of chirped quasi-
phasematching devices,” JOSA-B 30, pp. 1551-68 (June 2013). 

 
Small random errors in the duty-cycle of QPM gratings do not significantly affect the conversion near the 
spectral peak of the phasematching, but do add a very broad spectral pedestal that causes a small, but in some 
contexts significant, nonlinear mixing efficiency to occur for processes that would be forbidden in a perfect 
QPM grating. The most important manifestation of these weak “disorder phasematched” processes is the 
parametric fluorescence noise that arises in quantum frequency conversion devices. Detailed theoretical 
predictions for such noise pedestals as well as other manifestations such as distortion of transfer functions for 
ultrafast devices were investigated in 
 

C.R. Phillips, J.S. Pelc, M.M. Fejer, “Parametric processes in quasi-phasematching gratings with 
random duty cycle errors,” JOSA-B 30, pp. 982-93 (April 2013). 

 
Another type of fabrication error that can arise in waveguide devices is geometric inhomogeneity along the 
length of the waveguide. These errors can distort the shape of the spectral response of the mixing process, 
especially in the vicinity of the phasematching peak, and so are in some sense complementary to the effects 
arising from duty cycle errors in the QPM grating. An experimental technique for characterizing these 
spectral distortions, and inferring the geometrical errors in the waveguides that must exist to cause these 
distortions, was developed based on measuring the complex amplitude of the generated pulse to allow 
computation of the complex transfer function of the device, given the complex spectrum of the input pulse. 
From this transfer function, the errors in the waveguide geometry can be computed via an inverse Fourier 
transform. The method is described in  
 

D. Chang, C. Langrock, Y.W. Lin, C.R. Phillips, C.V. Bennett, M.M. Fejer, “Complex-transfer-
function analysis of optical-frequency converters,” Opt. Lett. 39, pp. 5106-09 (September 2014). 
 

Even in hypothetical perfectly fabricated devices, undesired mixing products in ultrafast nonlinear 
interactions can occur, even highly phase-mismatched processes, due to so-called “localized fields” that 
depend on the interplay of group-velocity mismatch, phase mismatch, and pump depletion. A model for 
these effects, its experimental verification, and methods to reduce the strength of the “localized fields” are 
presented in  
 

Derek Chang, Yu-Wei Lin, C. Langrock, C.R. Phillips, C.V. Bennett, M.M. Fejer, “Phase-
mismatched localized fields in A-PPLN waveguide devices,” Opt. Lett. 41, pp 400-3 (January 
2016). 
 
 

III. Summary 
 
We report results in three areas involving nonlinear devices in microstructured media: ultrafast pulse 
generation, especially carrier-envelope-phase-stable pulses and frequency combs in the mid-IR, quantum 
frequency conversion devices, and general design and tolerance models for quasi-phasematched devices. A 
total of 17 papers were published, including one Nature, two Nature Communications, one Physical Review 
Letter, and four Optics Letters. Four graduate students were supported, three of which obtained Ph.D.’s 
during the reporting period. 
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Prospects for continued progress in these fields by extending the design concepts and fabrication methods 
developed here are excellent. Our work resulted in the then-highest efficiency and highest average power 
generation of femtosecond mid-IR pulses, and is on the way to scaling to 50 W average powers at millijoule 
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Abstract: We experimentally demonstrate and analyze two different 

techniques for apodizing the nonlinear coupling in aperiodically poled 

MgO:LiNbO3 (APPLN) used in an ultrabroadband optical parametric 

chirped pulse amplifier (OPCPA). With an adiabatic increase of the 

nonlinear coupling, a smooth gain spectrum and spectral phase is preserved 

during amplification in such media. The two approaches we explore are 

poling period apodization (PPA) and duty cycle apodization (DCA). For the 

first implementation of the apodized APPLN amplifier we use a constant 

chirp-rate in the grating k-vector. The nonlinear coupling is apodized over 

10% of the total length at each side of the APPLN chip. This allows us to 

achieve high-intensity output pulses with clean temporal structure. 

©2012 Optical Society of America 
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1. Introduction 

There is a growing interest in high-intensity ultrashort laser pulses at wavelengths which 

cannot directly be accessed with laser oscillators. Long wavelengths in the mid-infrared are of 

special interest for the investigation of the wavelength scaling of non-perturbative laser-matter 

interactions [1]. A common technique to reach these spectral regions is to convert available 

laser radiation to the desired spectral region by nonlinear frequency mixing [2]. A very 

popular class of such sources exploits the second-order nonlinear susceptibility, χ2, for 

implementing parametric amplification schemes. Parametric processes are particularly 

interesting for high-power applications, because in principle no energy needs to be deposited 

in the amplification medium and thus thermal load is kept at a minimum. 

One promising χ2 medium is aperiodically poled lithium niobate (APPLN) to custom 

design the quasi-phase matching (QPM) for broadband operation [3]. For parametric 

amplification with such non-uniform QPM structures we can engineer the gain spectrum and 

spectral phase over an almost arbitrary bandwidth [4], and we can effectively suppress back-

conversion upon saturation of the pump [5]. With a linearly chirped grating we have achieved 

more than 800-nm amplification bandwidth at µJ-level output pulse energy [6]. However, 

such a simple linearly chirped QPM design cannot maintain a smooth spectral phase of the 

amplified pulse, because of the abrupt onset of the nonlinear coupling at the edges of the 

grating [3]. 

 

Fig. 1. Measured temporal pulse intensities (solid blue line) and phase (dashed red line) after 

amplification in an unapodized linear (a), a poling period apodized (b), and a duty cycle 

apodized (c) APPLN amplifier using a SHG-FROG [7]. 

2. Apodization of nonlinear interaction 

In this paper we experimentally demonstrate two methods to improve a linearly chirped QPM 

grating to obtain a smooth spectrum and spectral phase after amplification. These methods 

thus yield pulses with clean temporal profiles holding almost all the energy in the main pulse 

(see Fig. 1). Both methods are based on the idea to gradually turning on and off the nonlinear 

coupling between the pump, signal and idler fields at the edges of the grating. This adiabatic 

approach is also referred to as apodization [3]. One method smoothly detunes the poling 

period away from the phase-matching condition (poling period apodization, PPA). Another 

method varies the duty cycle away from the 50% condition necessary for first order QPM 

(duty cycle apodization, DCA) [8, 9]. To our knowledge, this is the first practical 
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implementation of an optical parametric amplifier (OPA) that uses apodization techniques to 

preserve a smooth spectral phase as required for few-cycle pulse generation [10, 11]. 

 

Fig. 2. QPM structures used in the amplifier: (a) linear grating (no apodization), (b) 

apodization by poling-period change (PPA) and (c) duty cycle apodization (DCA). The blue 

solid line represents the poling period whereas the duty cycle is plotted as a red dashed line. 

With QPM the wave-vector mismatch ∆k can be minimized for efficient energy transfer 

between the interacting waves. This is achieved by an additional k-vector Kg provided by the 

quasi-phasematching grating: ∆k = kp – ks – ki – Kg. In uniform QPM gratings with a fixed 

poling period Λg = 2π/Kg, ∆k = 0 is achieved for only a single frequency. In APPLN Kg(z) is 

varied along the grating to produce perfect phase-matching points (PPMP) for many 

frequencies at differing spatial positions [3]. In our case the linear chirp has the form 

Kg0(z) = Kgc – κ′ (z – L/2), with Kgc phase-matching the center frequency. In a QPM grating of 

finite length and with just a linear chirp profile, there is an abrupt turn-on of the nonlinear 

coupling between the interacting waves at the edges of the crystal. This abrupt change results 

in oscillatory structures in the spatial frequency spectrum of the grating. As discussed in Ref 

[3], such modulations lead to a ripple in the optical frequency spectrum of the output signal 

and idler waves in a high-gain OPA device. This is the direct origin of the ripples in the gain 

spectrum and the oscillatory spectral phase contributions. 

To avoid such distortions of the amplified pulses, the nonlinear coupling is turned on and 

off adiabatically at the start and end of the QPM grating. We have chosen smooth tanh-shaped 

apodization profiles. A possible implementation of the nonlinear coupling apodization is to 

rapidly detune the poling period from the phase-matched conditions otherwise found toward 

the ends of the grating. This method is referred to as poling-period apodization (PPA). A 

possible PPA implementation uses a grating vector of the form: 
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Apodization begins at a distance of lr = 1 mm from the edges of the grating with a width of 

wr = 0.5 mm and extends all the way to the edges on either side of the grating as shown in 

Fig. 2(b). The total length of the grating is L = 10mm and Ka = 5 cm
–1

 determines the degree 

of phase-mismatch at the edges of the grating. Kapod(z) increases monotonically towards 
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Kapod(0) = 1 and Kapod(L) = 1 at the edges and is zero in the middle, leaving the linearly 

chirped center unmodified. 

Another apodization method, which we refer to as duty-cycle apodization (DCA), is to 

adiabatically change the duty cycle away from the usual 50% used in first-order QPM [9, 12]. 

In this context, duty cycle refers to the ratio of the lengths of two neighboring ferro-electric 

domains with opposite poling. In conventional, periodically poled devices, a duty cycle of 

50% (equal length of neighboring domains) is chosen since this maximizes the amplitude of 

the first Fourier order of the grating, and hence the conversion efficiency. The variation of the 

duty cycle D(z) along the propagation direction takes the following form: 
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d d
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The distance to the end of the grating is indicated by ld = 0.75 mm and the width of the 

apodizing hyperbolic tangent function is wd = 1 mm (Fig. 2(c)). With DCA the nonlinear 

coupling of the interacting waves cannot be turned off completely. Even for very small duty 

cycles approaching zero, zero order QPM result in a finite coupling. We just reduce the duty 

cycle so far, that in numerical simulations a smooth spectral gain is achieved. 

One difficulty of the DCA lies in the manufacturing of the very short ferroelectric 

domains (Λmin = D(L)Kg(L) = 2.6 µm) that need to be realized toward the edges of the grating. 

In comparison, the smallest grating period that occurs with poling period apodization is 

Λmin = 14.8 µm, which is much easier to realize. However, the smallest periods occur at the 

edges of the grating structure, where apodization is only completing the switch-off of the 

coupling that started with longer periods towards the center of the grating. Manufacturing 

errors at these most extreme values do therefore not significantly affect the quality of the 

overall apodization effect. 

3. Experimental demonstration 

We investigated the influence of the amplification process in APPLN on the spectral phase in 

the context of a few-cycle mid-infrared (MIR) two-stage OPCPA [6, 13]. A mode-locked 

femtosecond 1.56-µm fiber laser seeds the first OPA with 160 pJ pulse energy. The pulses are 

temporally stretched with a sequence of a 2-prism and a grating stretcher to a duration of 

~3 ps and overlapped with our 1-µm pump beam. The pump system consists of an industry-

grade 12-ps passively mode-locked master-oscillator 

 

Fig. 3. SHG-FROG traces of pulses after amplification in linearly chirped APPLN. (a) without 

apodization (b) with rapid-poling-period-change apodization and (c) with duty-cycle 

apodization. Breakup into multiple sub-pulses occurs without proper apodization of the 

nonlinear coupling. 
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power amplifier system operating at 100 kHz repetition rate with 120 µJ pulse energy (Time-

Bandwidth Products Inc., Duetto). Part of the Duetto output is further amplified to 460 µJ by 

a Nd:YVO4 slab amplifier [14, 15]. The pulse train of this laser is stabilized to the pulse train 

of the seed laser with a phase locked loop (PLL) yielding a timing jitter of less than 150 fs 

rms. 

The 1.56 µm signal beam is amplified in two subsequent OPA stages. The 3.4 µm idler 

wave is kept only after the last stage. With the help of the prism and grating stretchers we are 

able to precisely pre-compensate the total dispersion mismatch between the stretcher section 

and the 150-mm-long Al2O3 bulk compressor. Pump and seed beams are overlapped in the 

first and second OPA stage at pump intensities of 3.2 GW/cm
2
 2

1/
( 250µm)

e
r =   and 

4.7 GW/cm
2
 2

1/
( 400µm)

e
r =  , respectively. In both stages we use a L = 10 mm long, 1-mm-

thick APPLN chip made from MgO-doped lithium niobate (Crystal Technology, LLC). A 

chirp-rate of κ′ = –250 cm
–2

 is used to achieve a broad phase-matching spectral window 

ranging from 2.71 to 4.24 µm. 

We examined three different quasi-phase matching gratings implemented in APPLN with 

linear chirp and no apodization (a), rapid-poling-period-change apodization (b) and duty cycle 

apodization (c) (see Fig. 2). The poling quality in the OPA section of the QPM grating 

common to all three designs is excellent, which can be attributed to the moderate change in 

poling period in this region. The output pulse energy after the first OPA is 3.0 nJ, 2.5 nJ, and 

1.8 nJ, respectively. The pulses are pre-amplified in OPA1 just enough to enable 

characterization by second harmonic generation frequency-resolved optical gating (SHG 

FROG) after amplification in OPA2 to ~1 µJ (gain < 30 dB). This operation point of OPA1 is 

well in the unsaturated pump regime. In our QPM grating designs, we used a moderate range 

of periods in order to facilitate more reliable fabrication, and the QPM duty cycle is limited by 

the poling process. The imperfections in nonlinear coupling apodization resulting from these 

factors become exaggerated by pump depletion effects. We therefore avoided excessive pump 

saturation in both amplifiers to minimize these distortions. This enables us to properly study 

the impact of our apodization schemes on pulse quality. For all measurements identical 

gratings are used in OPA1 and OPA2. The influence of the apodization can be directly seen in 

the FROG trace (see Fig. 3). In the case of no apodization, breakup into multiple sub-pulses in 

the time-frequency domain occurs. By the use of either type of apodization the pulse energy is 

contained in one contiguous area. In the case of duty-cycle apodization some remaining side-

lobes are present. This can be attributed to the more difficult poling of the small ferroelectric 

domains in the apodization section at both ends of the grating and the resulting manufacturing 

errors. 

After reconstruction of the temporal pulse profile, the difference becomes even more 

pronounced (see Fig. 1). Without apodization non-polynomial spectral phase contributions of 

the amplification process cause the energy to be spread over many overlapping sub-pulses. 

5. Conclusion and outlook 

We have experimentally demonstrated the importance of nonlinear coupling apodization in 

aperiodic QPM for OPA applications. An adiabatic turning-on and turning-off of the coupling 

can be achieved by either tapering off the duty cycle of the QPM periods on either side of the 

QPM structure or by dephasing the waves through a smooth variation of the QPM periods. 

Our data shows a significant improvement in pulse quality through both apodization 

techniques. Due to the easier manufacturing and thus better device quality, poling-period 

apodization is found to yield slightly better results. 

With APPLN one can overcome the bandwidth limitations of conventional PPLN in a 

collinear OPCPA [16, 17] and the common energy-bandwidth trade-off for few-cycle pulse 

amplification [5]. Amplification in a linear chirped QPM grating can distort the pulse 

structure of few-cycle pulses. With a proper apodization non-polynomial spectral phase 
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contributions can be easily avoided. The presented concept of apodized quasi-phasematched 

amplification is not limited to APPLN, but can be implemented in any QPM material. By 

choosing a proper range of grating k-vectors, pulses can be amplified within the whole 

transparency range of the selected crystal. 

With apodized QPM in APPLN we expect to significantly raise the output energy and 

peak intensity of our high-power MIR OPCPA system while maintaining clean pulses. This 

will allow us to explore the non-perturbative regime of laser-matter interaction at long 

wavelength. 
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Abstract: We demonstrate a two-channel, upconversion detector for 
counting 1300-nm-wavelength photons. By using two pumps near 1550 nm, 
photons near 1300 nm are converted to two spectrally distinct channels near 
710 nm using sum-frequency generation (SFG) in a periodically poled 
LiNbO3 (PPLN) waveguide. We used spectral-conversion engineering to 
design the phase-modulated PPLN waveguide for simultaneous quasi-
phasematching of two SFG processes. The two channels exhibit 31% and 
25% full-system photon detection efficiency, and very low dark count rates 
(650 and 550 counts per second at a peak external conversion efficiency of 
70%) through filtering using a volume Bragg grating. We investigate 
applications of the dual-channel upconversion detector as a frequency-
shifting beamsplitter, and as a time-to-frequency converter to enable higher-
data-rate quantum communications. 

©2012 Optical Society of America 

OCIS codes: (040.5570) Quantum detectors; (190.4410) Nonlinear optics, parametric 
processes; (270.5565) Quantum communications. 
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1. Introduction 

Single-photon upconversion detectors for counting 1.3- and 1.5-m-wavelength photons are 
attractive alternatives to direct detection by either InGaAs avalanche photodiodes (APDs) or 

superconducting single-photon detectors (SSPDs). The 1.3- and 1.5-m wavelengths are of 
interest for optical-fiber-based quantum communication systems as silica fibers have 
minimum attenuation in these wavelength windows. Upconversion detection is based on 
highly efficient sum-frequency generation (SFG) that converts near-infrared photons to 
shorter-wavelength photons that can be detected by Si APDs, which offer higher detection 
efficiencies and lower dark count rates than their InGaAs-based counterparts [1–5]. InGaAs 
APDs are generally gated to reduce dark counts and avoid after-pulsing, which may also limit 
the speed at which events can be detected. SSPDs can also be used to detect near-infrared 
photons with very good sensitivity and dark count rates [6–9], but they require cryogenic 
operating temperatures, and are therefore of limited utility in practical quantum 
communications systems. 

Upconversion detectors have been used for a number of applications. Improved system 
performance of a quantum key distribution system has been shown using 1306-nm 
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upconversion detectors [10]. Multiwavelength sampling using an upconversion detector has 
been used to increase temporal resolution of the detector system [11]. The upconversion 
process has been shown to preserve phase coherence [12] and temporal correlations up to 
fourth order [13]. Frequency upconversion has enabled a quantum information interface 
between widely separated wavelengths [14] and erasing of frequency distinguishability 
between two single photons [15]. Upconversion is a useful tool for hybrid quantum systems 
such as those combining quantum dots with photonic qubits [16, 17]. 

Here, we demonstrate a single-photon upconversion detector that has two spectrally 
distinct channels. Through quasi-phasematching (QPM) and spectral-conversion engineering 
[18], we can achieve efficient upconversion to multiple wavelengths in a single periodically 
poled lithium niobate (PPLN) waveguide. Specifically, we engineer the PPLN waveguide for 

two simultaneous SFG processes: 1302 nm + 1556 nm  709 nm and 1302 nm + 1571 nm  
712 nm. We observed 70% conversion efficiency for both channels in the PPLN waveguide 
(including waveguide coupling losses), which led to system photon-detection efficiencies 

greater than 25%. In addition to sensitive detection of 1.3-m signal photons, such a device 
acts like a beamsplitter or demultiplexer for the signal photons. We explore applications of 
this additional functionality for improving system performance. We show higher count rates 
before the onset of saturation, and better timing resolution by using time- to wavelength-

division multiplexing. Simultaneously, we show ultra-low dark count rates (<700 s
1

 at peak 
conversion efficiency) for both channels by narrowband filtering using a volume Bragg 
grating. 

2. Theory 

Consider a waveguide in which the following SFG processes can be simultaneously quasi-
phasematched: 
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 (1) 

A single-photon signal at 0  can undergo simultaneous sum-frequency generation with N 

strong pumps at frequencies 1p  to pN . Considering the simplest, non-trivial case of N = 2, 

the coupled wave equations for the electric fields, ja  (normalized such that 
2| |ja  has units 

of photons per second), are 
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where norj pjP   and 
nor  is the normalized efficiency defined in Ref [5]. The pumps at 

1p  and 2p  are assumed to be undepleted (valid for the weak input signals considered 

here), both processes are phasematched (which can be achieved using a phase-modulated 
QPM grating described below), and the propagation losses are negligible. By taking the 
second derivative with respect to z of the first equation and substituting the second two 
expressions, we obtain 

#171751 - $15.00 USD Received 2 Jul 2012; revised 26 Jul 2012; accepted 27 Jul 2012; published 3 Aug 2012
(C) 2012 OSA 13 August 2012 / Vol. 20,  No. 17 / OPTICS EXPRESS  19077

DISTRIBUTION A: Distribution approved for public release.



 
2

2 20

1 2 02
( ) .

d a
a

dz
      (3) 

Substituting 2 2

1 2    , this equation is solved by 

 
0 ( ) cos sin .a z A z B z      (4) 

We solve the remaining two equations and insert the initial conditions 
0 (0)a , 

1(0)a , and 

2 (0)a  to yield: 
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where /j j    are the normalized coupling constants. Equation (5) can be easily 

generalized for N pumps where  
1/2

2

jj
     and 2 1jj

  . 

In an ideal device with no loss and 1 2(0) (0) 0a a  , complete signal-photon conversion 

is obtained when L = /2. For the trivial case of one strong pump, 100% conversion is 

achieved when the pump power is 2 2

nor/ 4pP L  and corresponds to the case when one 

photon at 
0  is annihilated to produce one photon at the sum frequency 

1 . For multiple 

pumps at 100% conversion, a single photon at 
0  is annihilated while a sum-frequency 

photon at j  is produced with probability
2

j . The multi-channel upconverter acts like a 

beamsplitter that routes the signal photon to N possible outputs corresponding to different 

frequencies 
j . The splitting ratio is variable and depends on the choice of pump power for 

each channel. At L = /2, the device behaves as a quantum frequency converter [19] that 

translates the quantum properties of the photons at 
0  to photons at 

j . 

In real-world devices, there are losses and incomplete conversion. For quantum 
information applications, the effects of loss and incomplete conversion are similar. The key 
exchange rate in a quantum key distribution system is reduced by system losses, whether they 
result from link losses, detector inefficiencies or incomplete upconversion. The effect of loss 
on two-photon interference measurements (which are the basis for many quantum 
entanglement experiments) is to reduce visibility and increase background noise counts, but 
the correlation signature is preserved. The multi-channel upconverter acts like a lossy 
beamsplitter where incomplete conversion contributes to the system loss. 

3. QPM design and fabrication 

To fabricate a multichannel upconversion device, we employed the QPM phase-modulation 
technique developed by Asobe and associates [18]. The phase-modulation technique is one of 
several techniques [20, 21] that have been developed in order to engineer the phasematching 
profile of a device. In the phase-modulation technique, one starts with a QPM grating with 

period G. The QPM pattern is modulated by a phase-modulation function (z) that is 

periodic in z with period ph. The phase modulation consist of shifting position of a domain 
boundary zn with respect to its nominal location zn,0 of a periodic grating so that the 

modulation phase is (z) = 2(zn – zn,0)/G. Using Fourier analysis, it can be shown that QPM 
peaks are obtained when the relation 
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is satisfied for integer m. 
jk , 

0k , and 
pjk  are the wavevectors for sum-frequency 

j , signal 

0 , and pump 
pj , respectively. We used a simplex convex optimization algorithm to 

successfully optimize (z) to phasematch two simultaneous SFG processes corresponding to 

m =  + 1 and 1; for the two-peaked QPM tuning curve, the desired form of (z) is found to 
be a rectangle function. A calculated QPM tuning curve is shown in Fig. 1a. We found that 

ph varied inversely with the wavelength difference between the two QPM peaks. We 

computed the k  values from simulated dispersion data for reverse-proton exchange (RPE) 

[22] PPLN waveguides. Setting m =  + 1 and 1 in Eq. (6), we can solve for the required 

poling period G and phase-modulation period ph for a given pair of wavelengths. For 

channel separations (defined as  = p2 – p1) of 5, 10, and 15 nm, we found that the 

required phase-modulation periods ph were 7.1, 3.94, and 2.56 m, respectively. 

We fabricated two-channel upconversion RPE PPLN waveguides for SFG between a 1.3-m 

signal and two 1.55-m-band pumps, with G = 13.5 m. The 52-mm-long devices were 
antireflection coated for wavelengths of 1310 and 1550 nm at the input between LiNbO3 and 
optical fiber, and for 1310, 1550, and 710 nm at the output between LiNbO3 and air. The 
devices were fiber pigtailed at the inputs and were measured to have total optical throughputs 

of 1.3 dB at 1550 nm and 2.4 dB at 1319 nm. The tuning curve vs. pump wavelength of a 

device measured with the signal wavelength fixed to 0 = 1319 nm is shown in Fig. 1b. The 
conversion efficiencies of the two channels (at 1533 nm and 1548 nm pump wavelengths) are 
nearly equal. Lower-efficiency side peaks for odd m were also observed, which are a 
consequence of the phase-modulation design. 

 

 

Fig. 1. (a) Theoretical and (b) measured SFG conversion efficiency for the two-channel, phase-

modulated PPLN waveguide with signal wavelength fixed at 0 = 1319 nm. 
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4. Experiments 

We first characterized the performance of each channel of the upconversion detector by 
measuring the photon detection efficiency (PDE) and dark count rate (DCR) using continuous 
wave (CW) pumping. We then explored the multiplexing capabilities of the device for several 
applications. These applications can be separated into two categories: use of the multi-
channel device as a beamsplitter and as a switch. We used the dual channel device as a 
beamsplitter to exceed the saturation-limited maximum count rate of a single detector. Using 
the device as a switch, we demonstrated increased clock rate above the jitter-limited clock 
rate of a single-channel upconversion detection system. 

4.1 Photon detection efficiency and dark counts 

A diagram of the experimental setup is shown in Fig. 2. In order to pump both upconversion 

channels simultaneously, two pump lasers were used: one in the C-band ( < 1568 nm) and 

one in the L-band ( > 1568 nm). The two pumps were combined with a C/L-band 
wavelength division multiplexer (WDM) and amplified in a 0.5W erbium-doped fiber 
amplifier (EDFA). The EDFA was followed by a 1300/1550 WDM acting as a filter to reject 
1310-nm noise produced in the EDFA, as has been described in Ref [4]. The amplified pumps 
were combined with a 1310-nm signal laser attenuated down to single-photon-level and sent 
into the fiber-pigtailed, phase-modulated PPLN waveguide. Polarization controllers were 
used for both pumps and the signal to align the input light to the z-axis of the PPLN 
waveguide, which supports only e-polarized light. 

 

Fig. 2. General experimental setup. The strong, two-color pump near 1.5 m is combined with 
the signal near 1310 nm in the PPLN waveguide with phase-modulated QPM grating. The 
output is separated by a volume Bragg grating (VBG) and sent to two silicon avalanche 
photodiodes (Si APD). PC, polarization controller; WDM, wavelength-division multiplexer; 
EDFA, erbium-doped fiber amplifier; VATT, variable attenuator; AL, aspheric lens; BPF, 20-
nm band-pass filter. 

Following the waveguide, an anti-reflection-coated aspheric lens (AL) was used to 
collimate the output radiation from the waveguide. To separate the outgoing pump light and 

filter the two up-converted channels at 1 and 2, we used a volume Bragg grating (VBG). In 
reflection, the VBG acts as a narrowband filter, where the reflected wavelength depends 
sensitively on the angle of incidence. We measured the full-width-half-maximum (FWHM) 
reflection bandwidth of the VBG to be 0.04 nm. The VBG was aligned such that the long-

wavelength channel at 2 was reflected back through the input facet of the VBG (see Fig. 2). 

The upconverted light at 1 passed through the VBG and was redirected back into the VBG 

using a mirror at a slight angle so that high reflection of 1 was achieved through the second 
surface of the VBG. One key advantage of using the VBG filter compared to an earlier 
approach using a holographic diffraction grating [11] is that narrowband wavelength 
selectivity, and therefore very low noise counts, can be achieved using a very small footprint. 
The two upconverted channels were then sent to two Si APDs (PerkinElmer SPCM-AQR-14). 
We used a 20-nm bandpass filter at the entrance to each Si APD to block any stray light or 
parasitic pump-second-harmonic radiation. An unintended consequence of the phase-
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modulated QPM design was the appearance of several accidental second-harmonic generation 

QPM peaks. We chose the pump wavelengths, p1 and p2, such that these undesired peaks 
were avoided. 

The measured CW system photon detection efficiencies and dark count rates for both 
channels are shown in Fig. 3. The PDEs and DCRs were measured with only one pump 
present at a time. The signal wavelength was fixed to 1302 nm so that channel 1 corresponded 

to the SFG process 1302 nm + 1556 nm  709 nm, while channel 2 corresponded to 1302 

nm + 1571 nm  712 nm. For the PPLN waveguide itself, we observed 70% peak external 
conversion efficiency in both channels, a value which included input and output coupling 
losses. The optical path following the PPLN waveguide had higher loss for channel 1 than 
channel 2, primarily due to traversing the VBG twice; we estimated 45% and 32% loss for the 
optical path after the waveguide for channel 1 and 2, respectively, which includes loss from 
the 20-nm band-pass filter. Combined with the 65% PDE of the Si APD [23], the system peak 
photon detection efficiencies were 25% for channel 1 and 31% for channel 2 (see Fig. 3a). 

The solid lines in Fig. 3a represent fits to 2

0( ) sin ( / 2 / )tot p p maxP P P   , where 
tot  is 

the PDE, pP  is the pump power, and 
maxP  is the pump power at maximum conversion. 

135maxP   mW is nearly the same for channels 1 and 2, as we expected from the nearly equal 

peak heights in Fig. 1b. 

At maximum conversion, the dark count rates are 550 s
1

 and 650 s
1

 for channels 1 and 2, 
respectively. The DCRs at low pump power are dominated by the intrinsic DCRs of the Si 
APDs. The dark count rates observed here represent substantial improvements compared to 

other CW 1.3-m-band upconversion detectors that showed 1.5 × 10
4
 s
1

 [3] and 2.5 × 10
3
 s
1

 
[4] DCRs. Our low DCRs are due to the very narrowband reflectance of the VBG. In this 
system, the noise is primarily due to upconverted anti-Stokes Raman photons generated by 
the strong pump, which fill the PPLN upconversion acceptance bandwidth [3–5]. The VBG 
acts as a filter narrower than the QPM acceptance bandwidth, so that most of the noise 
photons are eliminated. There is a tradeoff between system speed and noise performance. The 
narrow VBG (24 GHz) and QPM acceptance (46 GHz) bandwidths set a limit to the response 
rate of the system; broadening both of these bandwidths would allow faster rates at the 
expense of greater total noise counts. 
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Fig. 3. Measured (a) photon detection efficiencies and (b) dark count rates for channel 1 (1302 

nm + 1556 nm  709 nm) and channel 2 (1302 nm + 1571 nm  712 nm). The intrinsic dark 

count rates of the Si APDs are about 100 s1. 
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4.2 Classical beamsplitter applications 

When both pump frequencies are present at the same time, the dual-channel upconverter with 
VBG output filter acts like a classical beamsplitter that probabilistically divides the input to 
two outputs. Photons at 1302 nm are frequency-converted by the device and sent to the 709- 
or 712-nm output paths. Beamsplitters have many uses in quantum optics. We demonstrated 
application of our device for splitting high-count-rate signals onto two Si APDs to enable 
single-photon count rates above the dead-time-limited value of a single detector. 

The maximum count rate of an APD is related to the dead time of the detector, D. As the 

incident photon rate Rinc begins to approach 1/D, the detector begins to saturate [23]. 

Consider a single photon at 0 incident at the input of the dual-channel upconverter device. 
The pump powers Pp1 and Pp2 can be chosen such that with 50% probability, the photon is 

converted to 1 or 2. Therefore, much like a classical beamsplitter, the dual-channel 

upconverter will probabilistically divide the incident 1.3-m signal to the two upconverted 
channels that can be detected by two APDs. 

We measured the saturation of a Perkin-Elmer SPCM by varying Rinc and measuring the 

count rate R of a single detector (Fig. 4). The input signal rate Rinc at 0 = 1302 nm was 
controlled by a programmable optical attenuator in 2 dB increments from a level of 41 
photons/s to 2 × 10

9
 photons/s. With only pump 1 turned on, we measured the count rates for 

both channels (R1 and R2). R2 was very low and reflected detector dark counts and cross-talk 
counts. The count rate R1 is shown as blue circles in Fig. 4. The solid blue curve is a 
simulation of the expected counting statistics of coherent light (with Poissonian photon arrival 

statistics) assuming a detector dark count rate D = 250 s
1

 and a dead time of 67 ns. By 
comparing the rates R1 and R2 with only pump 1 turned on, we observed a very low channel 

crosstalk of 44 dB, which is likely due to a combination of amplified spontaneous emission 
(ASE) from the EDFA and imperfect isolation of the VBG channels. 

With both pumps turned on, we then set the pump powers Pp1 and Pp2 such that, including 
free-space losses, equal count rates were obtained at the two detectors. We measured the 
summed count rate Rs = R1 + R2 at the same overall conversion efficiency as in the pump-1-
only case. The observed Rs versus Rinc is plotted as green squares in Fig. 5, along with a 
simulation of the counting statistics. We see that at low Rinc, the dual-channel case has a DCR 

 

Fig. 4. Measured count rates for a single detector (blue dots) and a combined, dual-channel 
detector (green squares) as a function of input signal rate Rinc. The maximum, saturated count 
rate for the dual-channel system is twice that of the single detector, but the dark count rate is 
also doubled. The solid curves are simulated counting statistics for coherent light. 
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of approximately 2D and saturates at 2Rmax, where D is the DCR for a single channel and Rmax 
is the maximum, dead-time-limited count rate obtained with one detector. From this result, we 
extrapolate that for an N-pump upconverter, the system count rate would saturate at NRmax at 
the expense of increased DCR of ND. 

4.3 Demultiplexing applications 

In the previous section, we discussed application of a multichannel upconverter as a classical 
beamsplitter when the pump sources are simultaneously on. In that demonstration, the 
splitting of an input signal to multiple output ports happened probabilistically. If, however, 
the two pumps were controlled in time using external modulators, one may achieve 
deterministic control of the output channel for a particular time bin by, for example, switching 
the pumps on and off sequentially. Such a multichannel detector can be used to switch the 
output from one channel to another like a router or demultiplexer. One application of such 
functionality is to achieve higher speeds by using multiple Si APDs. 

High speed detectors are of interest for quantum key distribution (QKD) systems. The 
exchange rate of the secret key is much slower than the system clock rate due to post-
selection protocols [24, 25]. The quantum-key transmission rate is further reduced by losses 
and other errors, especially in long-distance transmission systems. Hence, increasing the 
system clock rate can enable faster QKD systems over longer distances. The speed limitation 
for such systems is typically caused by the detectors. For a system based on upconversion 
detection using a continuous-wave pump, timing jitter in the Si APD limits the temporal 
resolution. Pulsed pumps can be used to increase the temporal resolution. Picosecond [26] 
and femtosecond [27] pump pulses generated by mode-locked lasers have been used to 
demonstrate fast optical sampling. However, these schemes are based on varying the delay of 
the sampling pulse and collecting data over a number of repeated waveforms, which is not 
possible in a communications system. Alternatively, the pump pulses can be used to 
demultiplex a fast data train into multiple slower trains that can be resolved with slower 
detectors. Such a scheme is analogous to a frequency-converting, optical time-division 
multiplexer [28], which was used to quadruple the data rate by combining four wavelength 
channels. 

High-speed upconversion detection using time- to wavelength-division multiplexing has 
previously been demonstrated using a short, PPLN waveguide [11]. The 1-cm waveguide 
used in Ref [11]. was chosen to permit two spectrally distinct pumps to fit under the same 
phasematching peak. The FWHM pump-acceptance bandwidth was 2.5 nm centered at 1549.6 
nm, which allowed the use of pumps at 1549.2 nm and 1550.0 nm, but produced low 
conversion efficiency due to the 1-cm length of the QPM grating. One major advantage of the 
phase-modulated PPLN waveguide used here is the higher photon detection efficiency for 
both channels. Our 52-mm-long device showed up to 31% system PDE (see Fig. 4a) while the 
10-mm-long waveguide in Ref [11]. had only 7% maximum PDE, limited by the available 
pump power. We were able to reach the point of maximum signal conversion at 135 mW 
pump power, while Ref [11]. had insufficient pump power to reach the maximum conversion 
point. The phase-modulated QPM technique used here can provide a scalable approach to 
increase the number of channels. High conversion efficiency for each channel is obtained 
without decreasing channel spacing, which would make the spectral filtering of the output 
channels more difficult. 

The dual-channel device allows access to higher data rates. Let det be the shortest time bin 
allowed by a Si APD while still maintaining acceptably low inter-symbol interference (ISI); 

using the dual-channel upconversion device, a faster train of signal pulses with time bin det /2 
can enter the device and interact with a two-color pump consisting of interleaved pumps 

pulses at p1 and p2. The period of the pump pulses at each wavelength is det. A train of 
upconverted pulses is generated in the PPLN waveguide, where pulses in adjacent time slots 
have different wavelengths, which can be spectrally separated using a dispersive optic (here, a 
VBG) and sent to two Si APDs. The phase-modulated PPLN waveguide and VBG together 
act like a time-division demultiplexer that produces two trains of pulses, each at half the 
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signal clock rate. The dual-channel upconverter therefore allows detection of a train of signal 

pulses whose rate is twice larger than the detector-limited rate (1/det). 
A detailed diagram of the experimental setup is shown in Fig. 5. The two pumps and 

signal are modulated by electro-optic intensity modulators (IMs) using the timing diagram 
shown in Fig. 6 (with 1.6 GHz clock rate). The electrical pulses driving the IMs are produced 
with a data generator, which is also used to trigger the time-correlated single-photon counting 
(TCSPC) system. The optical pulses are combined and sent to the phase-modulated PPLN 
waveguide. The two-color SFG output is filtered and separated with the VBG and detected 
with two Si APDs. 

 

Fig. 5. Experimental setup for the dual-wavelength demultiplexing experiment. A fast train of 
signal pulses interacts in the PPLN waveguide with a two-color pump pulse train consisting of 

alternating pulses at p1 and p2 to produce SFG pulses that can be spectrally separated with the 
VBG. The pulses arrive at each Si APD at half the rate of the original signal pulse train. A data 
generator drives the electro-optic intensity modulators (IM) and also triggers the time-
correlated single-photon counting (TCSPC) system. A 1% tap coupler is placed after the 
EDFA and used to monitor the power, optical spectrum and temporal characteristics of the 
pump pulses. The resulting dual-channel SFG pulses are separated and filtered by the VBG 
and routed to two Si APDs. 

 

Fig. 6. Pulse timing diagram for detection of high-clock-rate signals via multi-wavelength 
sampling. The signal pulses have 625 ps period (1.6 GHz rate), while the two pump pulse 
trains each have 1.25-ns period (800 MHz rate). The pump pulse trains are staggered such that 
signal pulses overlap with alternating pump pulses. 
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We first measured the timing jitter of a single APD. This was done by sending pump and 
signal pulses (of FWHM 330 ps and 220 ps, respectively) to the PPLN waveguide once every 
12.5 ns. With widely spaced pulses, the tails of the detected SFG can be easily distinguished 
(see Fig. 7a, green dots). We observed FWHM of 310 ps and full-width at 1% maximum 

(FW1%M) of 1.0 ns. The floor of background counts around 33 dB is due to residual pump 
and signal transmission from imperfect extinction of the electro-optic modulators. 

The black dots in Fig. 7a show the upconverted signal with signal pulses arriving at 1.6 
GHz and a continuous-wave pump. We see ISI such that adjacent time slots cannot be well 
distinguished. By using the dual-wavelength upconversion device and pulsing the two pumps 
according to the timing diagram in Fig. 6, we obtain the timing histograms shown in Fig. 8b. 
The effective data rate in each channel is lowered to 800 MHz, and there is much less inter-
symbol interference and greater ease in distinguishing data in each channel. 

As an example application for data transmission, we sent a test code sequence to the dual-

wavelength upconversion detector (Fig. 8). The test sequence is encoded in the signal at 0 
and shown in Fig. 8b, while the response histograms for channels 1 and 2 are plotted in Figs. 
8a and 8c, respectively. Figure 8d shows the result of sending all the data to channel 1 (pump 
1 is held continuously on); data in adjacent time slots are merged. When the signal data is 
―0,‖ both channels show a small amount of feed-through (manifested as a small increase in 

counts at the center of the time bin), which is caused by incomplete extinction of the 1.3-m 
signal intensity modulator. 
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Fig. 7. (a). Single-channel, up-conversion detector response to a 1.6 GHz clock-rate pulse train 
showing significant inter-symbol interference (black), and response to a single pulse (green) 
showing FW1%M of 1.05 ns. (b) By using the dual-channel, upconversion detector and 
alternating channel 1 and 2 pumping, the data rate in each channel is halved and the data can 
be resolved. 
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Fig. 8. Timing histogram of dual-wavelength upconversion detector for (a) Channel 1 and (c) 

Channel 2 to test sequence (b) encoded in the signal at 0. (d) Response of Channel 1 to the 
signal code sequence with a continuous-wave pump showing significant ISI. 

5. Conclusion and future work 

We have demonstrated a dual-wavelength, high-efficiency upconversion single-photon 
detector with extremely low dark count rates. The system is based on a PPLN waveguide with 
a phase-modulated QPM grating where the output light is filtered by a volume Bragg grating. 

We measured total-system photon detection efficiencies (dark count rates) of 25% (550 s
1

) 

and 31% (650 s
1

) for channels 1 and 2, respectively. We showed that the dual-channel 
upconversion detector can be used both as a probabilistic beamsplitter and as a deterministic 
switch. When used as a beamsplitter, multiple Si APDs can be used to count the upconverted 
photons, thereby increasing the saturation-limited count rate. With pulsed pumping, the 
device worked as a router that deterministically switched the output from one channel to 
another. We showed an increase in clock rate beyond the rate limited by the timing jitter of a 
single Si APD. As a beamsplitter, we expect the dual-channel device to preserve photon 
statistics and enable g

(2)
 measurements of classical and non-classical light. With more 

channels, higher order temporal correlation functions may be measured using the device. 
When used as a router, the dual-channel device is a fast switch whose switching time is only 
limited by the electro-optic modulators controlling the pumps since optical frequency 
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conversion is instantaneous [29]. We envision this technique may be useful as a rapid switch 
between measurement bases in a quantum key distribution system. While we have here used 
two pumps with different optical frequencies to switch between two output modes, it is also 
possible to use different spatial modes in combination with a mode-selective device to 
achieve the same switching functionality [30]. 

Multichannel upconversion and sampling are examples of discrete time-to-frequency 
conversion. There has been growing interest in time-to-frequency converters for their 
applications in time microscopes [31–33], where ultrafast waveforms can be magnified in 
time such that they can be detected directly using high speed electronics. An extension of the 
multiple discrete wavelength sampling presented here would be to investigate continuous 
wavelength sampling using a chirped pump pulse (with, for example, a linearly varying 
instantaneous frequency as a function of time) to upconvert a weak input signal with rapid 
temporal variations. Each temporal slice of the input waveform is linearly mapped onto the 
frequency of the upconverted light. If a diffraction grating or other dispersive element is used 
followed by a single-photon detector array [34], one can map each temporal slice of the input 
waveform onto an individual detector element, enabling potentially much higher timing 
resolution than that provided by an individual detector element. This technique is 
advantageous over the single-pixel, ultrafast upconversion approach studied in Ref [27], as it 
can sample the entire waveform in a single shot. Such a single-shot, high-time-resolution 
detector system would have applications in pulse-position-modulated, weak-pulse optical 
communications, where the time-to-frequency converter enables narrower temporal bin 
widths and higher data rates. 
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Quantum-dot spin–photon entanglement via
frequency downconversion to telecom wavelength
Kristiaan De Greve1{, Leo Yu1*, Peter L. McMahon1*, Jason S. Pelc1*, Chandra M. Natarajan1,2, Na Young Kim1, Eisuke Abe1,3,
Sebastian Maier4, Christian Schneider4, Martin Kamp4, Sven Höfling1,4, Robert H. Hadfield2, Alfred Forchel4, M. M. Fejer1

& Yoshihisa Yamamoto1,3

Long-distance quantum teleportation and quantum repeater tech-
nologies require entanglement between a single matter quantum bit
(qubit) and a telecommunications (telecom)-wavelength photonic
qubit1–5. Electron spins in III–V semiconductor quantum dots are
among the matter qubits that allow for the fastest spin manipula-
tion6,7 and photon emission8,9, but entanglement between a single
quantum-dot spin qubit and a flying (propagating) photonic qubit
has yet to be demonstrated. Moreover, many quantum dots emit
single photons at visible to near-infrared wavelengths, where silica
fibre losses are so high that long-distance quantum communication
protocols become difficult to implement10. Here we demonstrate
entanglement between an InAs quantum-dot electron spin qubit
and a photonic qubit, by frequency downconversion of a spon-
taneously emitted photon from a singly charged quantum dot to
a wavelength of 1,560 nanometres. The use of sub-10-picosecond
pulses at a wavelength of 2.2 micrometres in the frequency down-
conversion process provides the necessary quantum erasure to
eliminate which-path information in the photon energy. Together
with previously demonstrated indistinguishable single-photon
emission at high repetition rates11,12, the present technique advances
the III–V semiconductor quantum-dot spin system as a promising
platform for long-distance quantum communication.

A quantum communication network1 will consist of stationary
matter qubits and flying photonic qubits. The two key technologies
for quantum communication networks are quantum teleportation
from a photonic qubit to a matter qubit or vice versa, and a quantum
repeater to create and store the entangled states of remote matter
qubits. These two core technologies rely on the ability to create entan-
glement between a matter qubit and a photonic qubit over long dis-
tances, followed by a Bell state measurement that transforms the matter
qubit–photonic qubit entanglement into the teleportation of a given
unknown quantum state, or into matter–matter entanglement13–18.
Matter–photon and matter–matter entanglement generation have been
shown in several ionic4,16,17 and atomic2,5,18 systems, while matter–
photon entanglement was recently observed in nitrogen-vacancy dia-
mond colour centres3. However, these systems suffer from low photon
collection efficiencies and relatively long optical recombination times,
which can only partially be overcome by cavity-quantum electro-
dynamic (cavity-QED) solutions1. In addition, none of them use tele-
com-wavelength (1.5mm) photons that would allow long-distance
entanglement distribution. Combining a solid-state monolithic cavity-
QED system with a fast quantum emitter19–21 could solve the low
photon yields. In the InAs quantum-dot system, subnanosecond
optical recombination times have previously led to the demonstration
of high single-photon rates when the quantum dots are embedded in
high-quality optical cavities8,9,20,21. Moreover, spin control of charged
InAs quantum dots was shown to be feasible on picosecond timescales

while preserving spin coherence6,7,22, making it a promising candidate
as a quantum network technology. However, spin–photon entangle-
ment has yet to be established in this system, and its emission wave-
length does not match the low-loss wavelength range of silica fibres. In
this work, we address both these challenges with an ultrafast frequency
downconversion technique based on a periodically poled lithium nio-
bate (PPLN) waveguide device23. Its timing resolution enables demon-
stration of entanglement between a single InAs quantum-dot spin
qubit and a photonic qubit at 910 nm, while the target wavelength
(1,560 nm) would permit long-distance quantum communication.

The physical system used in our experiment is presented in Fig. 1a–d.
It consists of a single electron-doped InAs quantum dot, embedded in a
low-Q microcavity (see also Methods). With an external magnetic field
oriented in the Voigt geometry (perpendicular to the growth direction/
optical axis), two L-systems are formed, where an optically active,
excited state is coupled to each of two ground states. The excited states
are so-called trion states, as they consist of three particles: two electrons,
paired into a singlet state, and an unpaired hole (j"#Yæ and j"#Xæ). Both
trion states are connected to each of the electron spin states, j#æ and j"æ,
in aL-configuration. TheseL-systems have been extensively studied24,
and were previously used for initialization25 and coherent manipula-
tion of the electron spin states6,7,22,26. The optical selection rules are
indicated in Fig. 1a, and were verified by polarization-selective photo-
luminescence (Fig. 1b). In addition, initialization, rotation and measure-
ment of the spin state of the quantum dot are realized, using all-optical
techniques as reported previously6,7 (see Fig. 1c, d and Methods). By
selectively exciting one of the trion states, for example, the j"#Xæ-state,
spontaneous emission decay in a L-system leads to entanglement
between the emitted photon and the electron spin3,4:

yj i~ 1ffiffiffi
2
p :j i6 iH; vzdvj iz ;j i6 V ; vj ið Þ ð1Þ

Here dv refers to the difference in energy (colour) of the emitted
photons, determined by the electron Zeeman energy, and H and V to
their polarization (see Fig. 1c); v refers to the frequency (wavelength)
of the V-polarized photon (910.10 nm). Previous coherent spin
manipulation experiments6,7 relied on a relatively large Zeeman split-
ting dv between the respective electron spin states, both for high-
fidelity spin initialization and readout, and for ultrafast coherent
control of the spin through a combination of stimulated-Raman tran-
sitions and Larmor precession. In the present experiment, this energy
separation is set at about 2p3 17.6 GHz (external magnetic field
B 5 3 T, Fig. 1d), leaving room for which-path information to leak
out into the environment via the photon energy, which makes veri-
fication of entanglement between the polarization of the photon and
the electron spin challenging. Upon detection of an emitted photon in
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the rotated polarization basis (say, js1æ-photon) at time t1, the result-
ing spin state evolves as follows:

yspin,sz tð Þ
���

E
~

1ffiffiffi
2
p eidv t{t1ð Þ :j i{ ;j i
� �

ð2Þ

Owing to the large Zeeman splitting, a small uncertainty Dt1 in the
photon’s arrival time can result in a large uncertainty in the phase of
the spin state (dv 3Dt1) and therefore a reduction in the entangle-
ment visibility. Lowering the magnetic field further reduces the fidelity
of the single-photon-based spin readout6 and is therefore not a viable
option in our experiment. Previous experiments in ionic4 and NV-
diamond systems3 relied on the speed (timing jitter) of commercial
single-photon detectors to fix the phase of the coherent spin preces-
sion, or, equivalently, to act as a quantum eraser27 of the relatively small
energy difference between different branches of the L-system (Sup-
plementary Information). Such high bandwidth/fast detection tech-
niques have also been employed to increase visibility in photon–photon
interference experiments12. However, the much larger energy difference
in our system requires a more advanced quantum eraser technique.

In order to tackle the large energy difference, we use a frequency
downconversion technique that converts a single 910-nm photon into
a single 1,560-nm photon with sub-8-ps timing resolution; this
extreme timing resolution is sufficient to erase the which-path fre-
quency information. The technique consists of mixing the single
910-nm photon with a few-picosecond pump light pulse at 2.2mm
in a PPLN waveguide device, producing a 1,560-nm photon via the
process of difference-frequency generation (Methods). After narrow-
band filtering at 1,560 nm, the frequency-downconverted photon can
be detected on a superconducting nanowire single-photon detector28

(SNSPD) conditional on the exact overlap of the single 910-nm photon
and the 2.2-mm pump pulse. The detection of the 1,560-nm photon
therefore heralds a time-accurate measurement of the 910-nm
photon: only if the 910-nm photon entered the PPLN waveguide
exactly at the same time as the 2.2-mm pulse can a 1,560-nm photon
be generated.

The system diagram of the conversion set-up is indicated in Fig. 2a.
Using cross-correlation with a bright, 3-ps 910-nm pulse (Fig. 2b), we
can infer a timing resolution of 8 ps or better for the PPLN waveguide
device (Methods). As 8 ps correspond to an effective bandwidth of more
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Figure 1 | Level structure of quantum dot and
spin manipulation. a, Level structure of an
electron-doped quantum dot, with the magnetic
field in-plane (Voigt geometry, boxed). V and H
refer to linear polarizations, either perpendicular to
(V) or parallel (H) to the magnetic field. Blue and
orange arrows refer to the electron and (trion-)
hole states, respectively. b, Verification (by
polarization-selective magnetophotoluminescence)
of the polarization selection rules of the studied
electron-doped quantum dot. c, Level structure and
optical spin manipulation scheme used. dv, Larmor
precession frequency (2p3 17.6 GHz for B 5 3 T);
v, frequency of a V-polarized photon (wavelength
910.10 nm for B 5 3 T); c.w., narrowband,
continuous wave laser used for initialization and
readout; Veff, effective spin Rabi frequency resulting
from manipulation by detuned (D 5 300 GHz),
circularly polarized optical pulses6,7. d, Ramsey
interference experiment, demonstrating coherent
control of the electron spin qubit. Blue, raw data, for
p/2-p/2 interference; green, least squares fit. For a
3 T magnetic field, the Larmor precession frequency
dv 5 2p3 17.6 GHz. Inset, pulse scheme used.

–10 –5 0 5 10
0

0.5

1

Delay (ps)

C
o

u
n
ts

 (
a
.u

.)

0 5 10 15
0

200

400

600

800

1,000

Time (ns)

1
,5

6
0
-n

m
 c

o
u
n
ts

 (
a
.u

.)2.2 μm 2.2 μm 

910 nm    (3 ps) 1,560 nm
910 nm single photon

1,560 nm

2.2 μm + 910 nm 

2.2 μm only 

a

cb

HWP

QWP

PBS

HWP

Single 910-nm photons

from quantum dot

PPLN waveguide PPLN waveguide

V

SM fibre PPLN waveguide

910 nm

2,200 nm

Pulsed pump source

1,560 nm

8 ps

BPF

Photon detection

SNSPD

Figure 2 | Ultrafast conversion to 1,560 nm.
a, Schematic overview of the conversion technique
used (Methods). The 910-nm photon polarization
is measured, with high timing accuracy, by a
combination of a polarization analysing stage, a
PPLN downconverter and an SNSPD. PBS,
polarizing beamsplitter; HWP, half-wave plate;
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1,560 nm bandpass filter. b, Timing resolution of
the 1,560-nm conversion technique, measured by
cross-correlating the 2.2-mm conversion pulse with
a classical, 3-ps pulse at 910 nm (inset). From these
data, we can infer a sub-8-ps resolution for the
arrival time of a single photon from the quantum
dot. c, Performance of the conversion technique at
single-photon levels, measured using an SNSPD.
For single, 910-nm photons at the input (blue
trace), the residual noise (red trace) can be seen to
be well below the single-photon level (Methods).
Inset, cross-correlation set-up.
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than 100 GHz, this is more than sufficient to erase the information
inherent in the Zeeman energy of 17.6 GHz at 3 T (Supplementary
Information). In addition, the conversion and filtering technique results
in almost noise-free signal transduction to the telecom band, as shown
in Fig. 2c. We measure the polarization state of 910-nm photons using a
polarization analysing stage consisting of a quarter-wave plate and a
half-wave plate and a polarizer, followed by a single downconversion
set-up that provides the necessary timing accuracy (filtering) in order
to verify entanglement at 910 nm. The polarization selective operation
of PPLN waveguides does not permit a full photonic polarization qubit
at 910 nm to be directly downconverted to a polarization qubit at
1,560 nm. However, and as a straightforward extension of the work
presented in this Letter, mapping the polarization qubit into a dual-rail
qubit29, using two separate time-resolved downconverters, would realize
a spin-entangled 1,560-nm qubit, suitable for long-distance quantum
communication10 (Supplementary Information).

We analyse spin–photon entanglement using a combination of the
time-resolved conversion technique and previously established spin
initialization, manipulation and readout techniques6,7. Using 3-ps-
long, 1-nm red-detuned optical pulses in a Ramsey interferometry
set-up, we can completely control the state of any arbitrary electron
spin superposition, with fidelities around 95% for the particular
quantum dot used in this work (Supplementary Information). The spin
state is measured using an optical pumping scheme6,7, which is also used
to initialize the system into the j"æ-state. Both processes emit a single

910-nm H-polarized photon that can be detected after frequency and
polarization filtering from the optical pumping laser6,7 (Fig. 3a and
Methods). For a 13-ns spin interrogation time, readout and initializa-
tion fidelities of $96% can be inferred from the time-resolved emission
decay, mainly limited by residual leakage of the continuous-wave laser
used for optical pumping (Supplementary Information). The full con-
trol sequence of the optical pulses is indicated in Fig. 3b, and consists of
three stages. First, the system is initialized into either the j#æ-state or the
j"æ-state by a combination of optical pumping and spin rotation with a
p-pulse. Then, a 100-ps optical p-pulse resonant with the j#æ–j"#Xæ-
transition (or j"æ–j"#Xæ-transition) excites to the trion state, after
which spontaneous emission occurs into the electron spin states. The
difference between the spontaneous emission decay time (600 ps) and
the excitation pulse duration (100 ps) allows for temporal filtering of
the spontaneously emitted single photons. In addition, for the classical
correlation measurements (see below), cross-polarization filtering can
be used to further suppress noise from the reflection of the 100-ps
excitation laser. The spontaneously emitted single photons are then
sent to a polarization analysing stage, after which they are converted to
1,560 nm using the PPLN waveguide, and detected by an SNSPD. The
next stage of the experiment consists of the spin analysis, which is
performed through a combination of spin rotations (these implement
an effective measurement basis change) and the optical pumping/read-
out cycle. We measure the correlations between the polarization of the
910-nm photon and the spin state through a timing histogram analysis
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Figure 3 | Quantum-dot manipulation scheme for spin–photon
entanglement verification. a, Schematic overview of the quantum-dot
manipulation techniques used in the experiment. ‘100 ps’ indicates the
resonant, 100-ps laser pulse used to excite the system into the |"# Xæ-state; ‘c.w.’
indicates the continuous wave (c.w.) laser used for initialization into the |"æ-
state, and for readout of the |#æ-state. dv, Spin Larmor precession frequency;
Veff, effective spin Rabi frequency, resulting from manipulation by 3-ps,
detuned optical pulses6,7. For the classical correlation measurements,
manipulation of the spin using the H-branch was used as well, whereas the
entanglement result was obtained using only V-branch pumping. b, Timing

diagram of the pulse sequence used in the experiment. Note the three cycles
used in the experiment: initialization through optical pumping and spin
rotation, generation of entanglement using 100-ps laser pulses and
spontaneous emission decay, followed by ultrafast photon conversion to a
telecom wavelength, and spin measurement through a combination of spin
rotation (measurement basis change), optical pumping and single-photon
detection. The cycle time of a single shot of the experiment was chosen to be
either 39 or 52 ns. c, Schematic diagram of the set-up used in the experiment.
EOM, electro-optic modulator; NPBS, non-polarizing beamsplitter. See text for
other components.
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of the photons detected in the conversion and measurement cycles
(Fig. 3c and Methods).

Using our time-resolved downconversion technique, we measure
the classical (computational basis) correlations between the spin along
the magnetic field axis (z), and the H–V polarization of the photon

(Fig. 4a). For an H-polarized photon, we measure an excellent correla-
tion with the j"æ-spin-state in the subsequent spin measurement cycle.
Likewise, for a V-polarized photon, we see a strong correlation with the
j#æ-spin-state. We can directly compare these correlations with the
ones obtained without ultrafast downconversion, using a commercial
single-photon detector (Fig. 4b). The results are in good agreement,
and differ only due to small amounts of residual noise in the down-
conversion process (Supplementary Information).

Verification of entanglement requires observation of correlations in
a rotated basis of the photon polarization and the spin as well. When
we measure the photon in the circular polarization basis (js1æ, js2æ),
we measure the spin in the basis of ?j i~ 1ffiffiffi

2
p :j iz ;j ið Þ and

/j i~ 1ffiffiffi
2
p :j i{ ;j ið Þ. After detection of a js1æ (js2æ)-downconverted

photon at time t1, the spin is projected into the jræ-state (jRæ), which
subsequently evolves in time due to Larmor precession:

yspin tð Þ
���

E
~

1ffiffiffi
2
p ei dvð Þ t{t1ð Þ :j i+ ;j i
� �

ð3Þ

Here dv corresponds to the Zeeman frequency of 2p3 17.6 GHz.
By scanning the arrival time of a p/2 spin rotation pulse in a Ramsey
interferometer6,7 (Fig. 4c and Methods) we can trace out this coherent
oscillation, and verify entanglement. From the minima and maxima of
these coherent oscillations, we can derive, as in Fig. 4d, the photon–
spin correlations for js1æ (js2æ) downconversion. For a particular
photon polarization (js1æ, js2æ) and arrival time of the p/2 spin rota-
tion pulse, a correlation can be measured, as expected. Subsequently
changing the arrival time of the p/2-pulse by half a Larmor period
results in an anticorrelation (see also Fig. 4c). Together, these results
demonstrate spin–photon entanglement. We estimate the entangle-
ment fidelity3,4 to be 0.8 6 0.085 (Methods and Supplementary
Information), which exceeds the classical limit of 0.5 by more than
three standard deviations3,4.

Whereas our entanglement verification technique relies on time-
resolved frequency conversion, resulting in filtering out only those
910-nm photons that exactly overlap with the arrival time of the
2.2-mm pump pulse, a more generic downconversion technique with
a continuous wave pump laser at 2.2mm and coincidence detection of
two photons from separate quantum-dot sources could be used in
future experiments in order to obtain spin–spin entanglement17 (Sup-
plementary Information).

We have demonstrated high-fidelity spin–photon entanglement in
a single InAs quantum dot using an ultrafast downconversion tech-
nique to the lowest-loss telecom wavelength (1,560 nm). When com-
bined with ultrafast control of InAs quantum-dot electron spins6,7 and
fast radiative decay of indistinguishable single photons from such
quantum dots embedded in optical cavities11,12,20,21, our results should
enable quantum state transfer from a flying qubit to a stationary
qubit or vice versa, and entanglement distribution between two remote
matter qubits in long-distance quantum networks.

We note that, contemporaneously with this work, another group
verified spin–energy entanglement between an InAs quantum-dot
electron spin and a spontaneously emitted photon at 966 nm (ref. 30).

METHODS SUMMARY
Quantum dot and optical control. All results are obtained from a single quantum
dot, emitting at 910 nm, embedded in a planar microcavity7. An external magnetic
field in Voigt geometry splits the electron spin and trion states (Fig. 1a). A 0.68 NA
aspheric lens focuses the pump and rotation lasers onto the sample. The coherent
manipulation techniques are identical to those reported previously7, with fidelities
(initialization, readout, coherent rotation) around 95% or higher (Supplementary
Information). After initialization, the j"#Xæ-state is excited by a 100-ps mode-
locked-laser pulse, synchronized with the spin-rotation laser. Photoluminescence
is collected in a confocal set-up, and split into two branches. One branch is cross-
polarized and sent through a double-monochromator onto a single-photon counter
(SPCM) for spin-state analysis. The other branch is sent to a polarization analysing
stage, after which it is sent to the downconversion set-up.
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Figure 4 | Spin–photon entanglement verification. a, Classical
(computational basis) spin–photon correlations, measured through
downconversion to 1,560 nm. The black arrows (see also b, d) refer to the spin
orientation in the computational (vertical arrows) or rotated (horizontal
arrows) basis. b, Classical (computational basis) spin–photon correlations,
measured at 910 nm, without downconversion. c, Spin–photon entanglement:
on time-resolved detection of a s1,2-downconverted photon, the electron spin
starts precessing due to the electron Zeeman energy (Larmor precession). By
changing the arrival time of the subsequent p/2-pulse, this coherent spin
precession can be mapped into a Ramsey fringe, where the population in the
|#æ-state oscillates as a function of time, and depends on the helicity of the
downconverted photon (the Ramsey fringes for opposite helicities are in anti-
phase). This oscillatory spin signal then results in an oscillatory, periodic
coincidence count rate between the downconverted single photon and the spin-
measurement photon. Blue, raw data from histogram analysis; green, least-
squares, sinusoidal fit to the data. Inset, relative timings used. 2.2mm indicates
the 2.2-mm conversion pump pulse; p/2 shows the p/2 spin rotation pulse; c.w.
indicates the continuous wave (c.w.), spin measurement laser at 910 nm.
d, Spin–photon correlations in the rotated bases, demonstrating entanglement.
Error bars, 61 s.d. (a–d), due to Poissonian statistics (nevents < 50–100).
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Downconversion, data acquisition and processing. The 2.2-mm light pulses
needed for conversion are generated in a PPLN chip by mixing 3-ps, 911-nm
pulses from the spin-rotation laser with narrowband, continuous wave 1,560-
nm light. A PPLN waveguide converts 910-nm photons into 1,560-nm photons,
conditional on overlap with the 2.2-mm pulses. An SNSPD subsequently detects
the 1,560-nm photons. The SPCM and SNSPD signals are combined on a timing
analyser, which allows for signal gating in post-processing. The noise in the con-
version process is well below the single-photon level (between 4:1 and 10:1 signal-
to-noise ratio). The correlation data are obtained from the coincidences between
the downconverted single photons and the single photons used for spin detection,
through post-processing of the data stream from the timing analyser, and normal-
ized to uncorrelated events (Supplementary Information). The entanglement
fidelity analysis follows the same procedure used in ion-trap4 and NV-diamond3

spin–photon entanglement experiments, and is estimated to be around 0.8 6 0.085,
well above the classical limit of 0.5.

Full Methods and any associated references are available in the online version of
the paper.

Received 7 June; accepted 12 September 2012.

1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
2. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities.

Nature 484, 195–200 (2012).
3. Togan, E. et al. Quantum entanglement between an optical photon and a solid-

state spin qubit. Nature 466, 730–734 (2010).
4. Blinov, B.B.,Moehring,D. L.,Duan,L.-M.&Monroe, C.Observationof entanglement

between a single trapped atom and a single photon. Nature 428, 153–157 (2004).
5. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum

interface. Science 317, 488–490 (2007).
6. Press,D., Ladd,T.D., Zhang,B.&Yamamoto, Y.Completequantumcontrol of a single

quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).
7. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4,

367–370 (2010).
8. Pelton, M. et al. Efficient source of single photons: a single quantum dot in a

micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).
9. Moreau, E. et al. A single-mode solid-state source of single photons based on

isolated quantum dots in a micropillar. Physica E 13, 418–422 (2002).
10. Takesue, H. et al. Quantum key distribution over a 40-dB channel loss using

superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007).
11. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable

photons from a single-photon device. Nature 419, 594–597 (2002).
12. Patel, R. B. et al. Two-photon interference of the emission from electrically tunable

remote quantum dots. Nature Photon. 4, 632–635 (2010).
13. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum

communication with atomic ensembles and linear optics. Nature 414, 413–418
(2001).

14. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of
imperfect local operations in quantum communication. Phys. Rev. Lett. 81,
5932–5935 (1998).

15. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node.
Nature 454, 1098–1101 (2008).

16. Stute, A. et al. Tunable ion-photon entanglement in an optical cavity. Nature 485,
482–485 (2012).

17. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance.
Nature 449, 68–71 (2007).

18. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in
remote atomic ensembles. Nature 438, 828–832 (2005).

19. Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant
enhancement of the zero-phonon emission from a colour centre in a diamond
cavity. Nature Photon. 5, 301–305 (2011).

20. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290,
2282–2285 (2000).

21. Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single
photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

22. Kim, D., Carter, S. G., Greilich, A., Bracker, A. S. & Gammon, D. Ultrafast optical
control of entanglement between two quantum-dot spins. Nature Phys. 7,
223–229 (2011).

23. Pelc, J. S., Langrock, C., Zhang, Q. & Fejer, M. M. Influence of domain disorder on
parametric noise in quasi-phase-matched quantum frequency converters.
Opt. Lett. 35, 2804–2806 (2010).

24. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled
In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

25. Xu, X. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot
by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

26. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state
spectroscopy. Nature 459, 1105–1109 (2009).
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METHODS
Device design. The quantum-dot sample used is similar to the ones used prev-
iously to investigate ultrafast optical control and single spin echoes7. Compared to
those experiments, the dot density was reduced, and the wavelength used was blue-
shifted (910 nm). An asymmetric, low-Q cavity (10 nm FWHM, centred at
910 nm) redirects the spontaneous emission preferentially in one direction,
increasing collection efficiency and reducing required peak powers for coherent
control7. An external magnetic field (Voigt geometry, perpendicular to the optical
axis) splits both the electron spin states and the excited, trion states. The resulting
L-systems are indicated in Fig. 1a, and the polarization selection rules are verified
by means of polarization-selective photoluminescence (half-wave plate and polar-
izing beamsplitter, Fig. 1b).
Spin control and single-photon collection. The quantum-dot device is cooled to
1.6 K inside a superconducting magnetic cryostat (Oxford Spectromag; the mag-
netic field used varies between B 5 3 and 6 T). A 0.68 NA aspheric lens inside the
cryostat focuses the pump and rotation lasers onto the sample, which is scanned
relative to the lens by means of slip-stick piezo-electric positioners (Attocube
Systems). The coherent manipulation techniques used are identical to those
reported previously7. A narrowband c.w. laser (New Focus Velocity) is used for
spin initialization and readout, resonant to the j#æ–j"#Xæ-transition (910.10 nm for
a 3 T magnetic field), and switched on and off by a fibre-based EOM (EOSpace).
The interrogation time is 13 ns, with an initialization and readout fidelity of about
96% or higher (Supplementary Information). Coherent spin rotations are per-
formed in a Ramsey-interferometry set-up, using pulses from a mode-locked laser
(3-ps pulse duration, centre wavelength 911 nm, Spectra-Physics Tsunami), which
are delayed relative to each other through a retroreflector on a motorized stage.
Individual pulses are selected through free-space EOMs (Conoptics), which are
double-passed in order to increase the extinction ratio. The selective excitation of
the j"#Xæ-state before spontaneous emission is realized through a combination of
optical pumping into the j"æ-state, rotation by an optical p-pulse into the j#æ-state,
followed by the application of a 100-ps pulse (opticalp-pulse) from another mode-
locked laser (Spectra-Physics Tsunami), resonant with the j#æ-j"#Xæ-transition.
This laser is synchronized with the rotation laser (Spectra-Physics Lok-to-Clock
system). Accurate polarization control limits the probability of excitation into
the j"#Yæ-state to less than 1%. Another fibre-optic modulator allows for pulse-
picking of the 100-ps excitation pulses. The single-photon photoluminescence is
collected in a confocal set-up, and split into two branches by a non-polarizing
beamsplitter. One branch is cross-polarized with respect to the initialization and
optical pumping lasers, and sent through a double-monochromator onto a single-
photon counter for spin-state analysis (Perkin-Elmer SPCM; 20% quantum
efficiency, 170 Hz ungated dark count rate). The other branch is sent to a polari-
zation analysing stage (quarter- and half-wave plate and polarizer), after which it is
coupled into single-mode fibres and sent to the downconversion set-up. The
polarization analysing stage is carefully calibrated, in order to account for residual
birefringence in the setup. All EOMs are controlled by mutually synchronized
pulse-pattern generators (76 MHz Tektronix and 10 GHz Anritsu PPG), that are
themselves synchronized to the repetition rate of the mode-locked lasers. In con-
trast to previous experiments, no software-based lock-in technique was used.
Instead, spatial, polarization, wavelength and time-filtering are used to separate
reflected light from the single photons.
Downconversion set-up. The 2.2-mm light pulses needed for conversion are
generated by a difference-frequency generation (DFG) process that mixes the
3-ps, 911-nm pulses from the mode-locked laser with narrowband, c.w. 1,560-nm
light in an MgO-doped, PPLN chip. The 1,560-nm light is modulated by a fibre-optic

modulator, and amplified by erbium-doped fibre amplifiers. After wave mixing,
the residual 1,560-nm and 911-nm light is filtered out through a combination of
dichroic and absorptive filters. The resulting pulse width depends on the exact
power and wavelength used for the DFG process, but is measured to be between
3 and 8 ps.

A PPLN waveguide efficiently converts 910-nm, spontaneously emitted
photons to 1,560-nm photons, conditional on overlap with the 2.2-mm pulses.
Residual scattered light from the 910-nm and 2.2-mm branches is eliminated
through a fibre-Bragg grating and a long-pass filter. The 1,560-nm photons are
subsequently detected on an SNSPD, maintained at 2 K, with 14% system detec-
tion efficiency, 40-Hz ungated dark count rate and 100-ps FWHM timing jitter.
Timing analysis is performed on a timing analyser (PicoQuant Hydraharp), used
in time-tagged time-resolved (TTTR) mode, which allows for accurate gating of
the signals of both the SPCM and the SNSPD in post-processing, thereby dras-
tically reducing the effects of dark counts. The overall signal-to-noise ratio is
limited by residual leakage of the 2.2-mm light, dark counts within the timing
response of the SNSPD, and residual reflected light from the 100-ps excitation
pulses, but is in general well below the single-photon level (signal-to-noise ratio
ranging between 4:1 and 10:1 for the experiments described in this work). The
timing of the 2.2-mm light is chosen such that the subsequentp/2-pulse arrives well
within the T�2 -dephasing time of the quantum dot; similar results can be obtained
for times up to microseconds by implementing a spin echo technique to overcome
shot-to-shot dephasing7.
Data analysis and entanglement fidelity. The correlation data obtained in this
work are the result of a histogram analysis, performed on the coincidence count
rate between the downconverted single photons, and the single photons used for
spin detection (Supplementary Information). The coincidence count rate is
obtained through post-processing of the TTTR data stream, and comparing the
coincidences within the same experimental run to those in subsequent, uncor-
related ones. The repetition rate is set at 39 or 52 ns, and the 0.1% single photon
efficiency and time-gated frequency downconversion result in a 1,560-nm single-
photon detection and entanglement generation rate of some 2–5 Hz. In combina-
tion with another 0.1% single-photon detection efficiency in order to detect the
spin state, this results in an average coincidence rate of some 2–5 mHz. We
emphasize that these losses are predominantly due to the inefficiency of extracting
a single photon from the quantum dot, which can be significantly improved by
accurate cavity design8. The conversion process in itself, while lossy due to the
aggressive time-filtering in order to obtain good timing resolution, is rather effec-
tive, with internal quantum efficiencies estimated above 80%, and filtering losses of
several dB maximum.

The entanglement fidelity analysis follows the same procedure used in the
ion-trap4 and NV-diamond3 spin–photon entanglement experiments:

F§F1zF2,

F1~
1
2

rH:,H:zrV;,V;{2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rH;,H;rV:,V:

p� �
,

F2~
1
2

rsz/,sz/{rsz?,sz?zrs{?,s{?{rs{/,s{/

� �
:

Here rH",H" etc. refer to elements of the spin photon density matrix, which can
be associated with the observed correlations in our experiment. For the values
obtained in our work, F1 5 0.44 6 0.06, F2 5 0.36 6 0.06, from which we obtain a
bound on the quoted fidelity: F $ 0.8 6 0.085.
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Abstract: We present an ultra-broadband optical parametric chirped-pulse 
amplification (OPCPA) system operating at 3.4 µm center wavelength with 
a peak power of 75 MW. The OPCPA system is split into a pre- and a 
power-amplifier stage. Both stages are based on apodized aperiodically 
poled MgO:LiNbO3 (APPLN). The collinear mixing configuration allows 
us to manipulate the spectral phase of the output mid-infrared pulses by 
sending the near-infrared seed pulses through a pulse shaper. The system 
delivers clean 75-fs pulses with record-high 700 mW average power, 
corresponding to 7 µJ of pulse energy at a repetition rate of 100 kHz. 
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OCIS codes: (140.7090) Ultrafast lasers; (190.4970) Parametric oscillators and amplifiers; 
(140.3580) Lasers, solid-state. 
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1. Introduction 

Mid-infrared (MIR) pulses are of great interest for strong-field experiments, offering a 
possibility to study the wavelength scaling of light-matter interaction in the non-perturbative 
regime [1–5]. For instance, with high harmonic generation (HHG), electrons are accelerated 
in the electric field of one half-cycle of the laser pulse before recollision with the atom [5]. 
With a long wavelength, for example in the mid-infrared (MIR), acceleration takes place over 
a longer time interval and results in higher recollision energies at a given optical intensity. 
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This single aspect already illustrates the intrinsic difference between long- and short-
wavelength laser-matter interactions. 

A direct application of wavelength scaling in a strong-field process can be found in HHG 
spectroscopy [6] The measured HHG spectra can be used to derive information about electron 
or proton dynamics on the attosecond timescale. One difficulty for the extension of this 
technique to larger and more relevant molecules is the low ionization potential Ip usually 
found in these systems. At short optical wavelengths, saturation effects of the ionization 
process constrain this technique to the investigation of molecules with high Ip. This constraint 
can be overcome by the use of MIR laser pulses, which should enable the study of a much 
wider range of molecules, in particular biomolecules [7]. 

For efficient HHG there are constraints on both the peak intensity and total energy of the 
laser (as well as other system parameters). In order to make high signal-to-noise (SNR) 
measurements with the generated photons, it is therefore useful to move to higher repetition 
rates (e.g. 100 kHz) than are used in conventional chirped pulse amplification (CPA) and 
optical parametric CPA (OPCPA) systems, which usually operate at ≤1 kHz [8–20]. High 
repetition rates also enable the measurement of fast-degrading samples. 

Generating the required high-intensity ultrashort pulses in the MIR is challenging due to 
the lack of suitable broadband gain media. OPCPA is a promising approach [21, 22], but there 
is a limited selection of suitable nonlinear crystals for MIR operation. Furthermore, operating 
an OPCPA system at high-repetition rate places stringent requirements on both the peak and 
average power of the pump (tens of MW and tens of W, respectively), while still requiring 
high stability and good beam/pulse quality. At present, the most promising pump lasers for 
meeting these requirements are mode-locked 1-µm diode-pumped solid-state lasers [23–25]. 
Developing an approach to broadband MIR OPCPA that is compatible with these lasers is 
therefore of great importance for the HHG applications described above. 

Since the first demonstration of OPCPA [26], several approaches to obtain broad 
bandwidths have been explored. One way to obtain broadband OPA is to operate at 
wavelength- and polarization-degeneracy. For example, in Ref [8], 400-µJ, 2.1-µm, 20-fs 
pulses were obtained from a 1-kHz OPCPA system. However, degenerate operation 
constrains the wavelengths involved, limiting the range of HHG pump wavelengths that can 
be studied. Broadband operation can also be obtained by noncollinear OPA (NOPA) [10], but 
there are few suitable nonlinear crystals available in the MIR, the generated idler is spatially 
and angularly dispersed, and such schemes can also have the drawback of quite high 
experimental complexity. 

If a sufficiently short signal-idler coupling distance (i.e. a high gain rate) can be obtained, 
broad bandwidths are possible with non-degenerate collinear OPCPA. Such high gain rates 
are obtained with periodically poled MgO:LiNbO3. For example, in Ref [17], 1-µJ, 3.6-µm, 
<100-fs pulses were obtained at 100 kHz. However, the bandwidth possible with this 
approach is limited by the damage threshold of the crystal [27]. 

With the high degree of engineerability supported by quasi-phasematching (QPM) [28–
30], this bandwidth limitation can be overcome while still maintaining a collinear and non-
degenerate interaction. In Refs [31–34], a new approach to OPCPA based on aperiodic 
(chirped) QPM gratings was proposed. In this approach, there is essentially no intrinsic limit 
on the optical bandwidth, since a very wide range of QPM periods and crystal lengths can be 
reliably (lithographically) fabricated, thereby phasematching all frequencies of interest. 
Therefore, it is possible to utilize power-scalable 1-µm pump lasers without compromising 
the bandwidth of the OPA process. Additionally, the QPM grating can be engineered to tailor 
the spectral gain and phase over a large bandwidth [32], and high conversion efficiency is 
possible via adiabatic frequency conversion [34]. 

In Ref [19], we demonstrated the first OPCPA system based on this technique, using 
aperiodically poled MgO:LiNbO3 (APPLN) to generate 1.5-µJ, 3.4-µm, 75-fs pulses at 100 
kHz, with seed-limited pulse duration. In this paper, we present the extension of this 
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technique to 7-µJ energy levels by significant improvements in system and APPLN device 
designs. In section 2, we describe our OPCPA system and present our experimental results. In 
section 3 we describe the APPLN OPCPA devices, and in section 4 we provide details on the 
dispersion compensation scheme. 

2. Experimental setup and results 

 

Fig. 1. Optical setup of the 2-stage OPCPA delivering 75-MW pulses. After the 2nd stage, the 
MIR idler is extracted and compressed to 75 fs duration by propagation through 150 mm bulk 
silicon (90% transmission). The spectral phase of the idler can be controlled by the pulse-
shaper placed in the seed beam. During the OPA process, the spectral phase of the NIR seed is 
transferred to the MIR idler. 

Our experimental setup is shown in Fig. 1. Compared to our previous MIR source [19], we 
changed the seed concept [35], integrated a home-built pump laser [25] into the OPCPA, and 
improved the APPLN devices [36]. The amplification system consists of a pre-amplifier 
(denoted OPA1) and a power amplifier (denoted OPA2). With the modified seed approach, 
we seed OPA1 with a near-infrared (NIR) signal, and seed OPA2 with the amplified signal 
output of OPA1. The generated MIR idler of OPA2 is then kept and sent into the pulse 
compressor. In our previous system, MIR seed pulses were generated from low-energy input 
pulses through difference frequency generation in a fan-out QPM grating [35]. In our new 
system, a commercial 1.56-µm femtosecond laser is used directly as the NIR seed to OPA1, 
corresponding to a significant reduction in system complexity. 

The most significant advantage of this NIR seeding approach is efficiency: we found a 
material combination which allowed for bulk compression of the MIR pulses (with 90% 
transmission efficiency) while still compensating for second- and third-order dispersion of the 
stretched pulses. This efficiency is twice that of our previous prism-based compressor design 
[19]. Another significant benefit of the new seed concept is that the only elements that must 
be placed in the output MIR idler are a collimation lens and the bulk Si compressor. All other 
optical components in the amplifier path are optimized and aligned at the more standard and 
easier to detect 1 µm pump and 1.5 µm seed wavelengths, which allows for more precise and 
efficient alignment of the system. 

In addition, at the telecommunication seed wavelength, many well-developed optical 
components are available. For example, we use a spatial light modulator (SLM) for high 
repetition rate pulse shaping. The use of such standard components is consistent with the 
overall design goal for the system: We aim at developing a reliable system that is useful for 
strong-field physics experiments on a daily basis. The NIR seeding approach is enabled by 
the collinear APPLN OPCPA geometry: since both the signal and idler pulses are collinear 
with the pump, they are usable for subsequent experiments or amplification. In contrast, in a 
non-collinear configuration, a useable idler (generated wave) can only be obtained by non-
trivial compensation of its spatial chirp. 

The pump source for OPA1 is a turn-key industrial laser (Time-Bandwidth Products Inc., 
Duetto) which operates at 1.064 µm and delivers 12-ps pulses at a repetition rate of 100 kHz, 
with an average output power of up to 11 W. Up to 8 W of this laser is used for OPA1, while 
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the remaining power is sent into a home-built Nd:YVO4 slab amplifier to generate the pump 
pulses for OPA2 [25]. This slab amplifier yields a maximum power of up to 46 W (466 µJ at 
12 ps pulse duration when operating at 100 kHz). 

The pulse train of the pump laser oscillator is electronically stabilized to that of the seed 
laser with a phase locked loop (PLL). Our locking scheme yields a residual timing jitter of 
less than 150 fs rms, which is very small compared to the pump and stretched seed pulse 
durations. By setting the phase of the PLL we can control the delay between the pulses of the 
two oscillators by up to ± 1 ns. This approach allows us to control the overlap of seed and 
pump without any moving mechanical parts. 

 

Fig. 2. (a) Pump-power dependence of OPA1 and OPA2. The maximum measured idler power 
after OPA1 is 26 mW (solid blue line), and there is no measurable OPG output (10 µW 
measurement threshold). The maximum idler power after both OPA2 and the bulk-
compression stage is 700 mW, corresponding to 7 µJ (solid red line). We obtained an (over-
)estimate of 72 mW for the optical parametric generation (OPG) background by blocking the 
seed pulses (dashed red line). This measurement is discussed further in section 3. (b) 
Reconstructed temporal pulse profiles from SHG-FROG after compression with 150-mm of 
bulk silicon. The inset shows the corresponding spectrum. 

Before OPA1, the 1.56-µm seed pulses from the femtosecond fiber laser are stretched to 
approximately 2.6 ps by a two-prism silicon stretcher and a SLM-based pulse shaper. The 
holographic gratings used in this pulse shaper have a groove density of 600/mm; the dispersed 
pulses are collimated by an 800-mm cylindrical lens before passing through the SLM shown 
in Fig. 1. The energy of the stretched pulses reaching OPA1, after both the pulse shaper and 
the prism stretcher, is 87 pJ. 

To support the required broadband output (as well as future bandwidth scaling) we use 
apodized, aperiodically poled MgO:LiNbO3 for both OPA1 and OPA2. The QPM grating 
design is discussed in section 3. The pump and seed beams are collinearly overlapped in both 
amplification stages, with peak pump intensities of 6.8 GW/cm2 (1/e2 radius w = 250 µm) and 
9.4 GW/cm2 (w = 400 µm) in OPA1 and OPA2, respectively. The output idler power of the 
OPAs as a function of incident pump power is depicted in Fig. 2(a) (solid lines). The OPA2 
curve was measured after collimation and compression, and hence shows that a final output 
pulse energy of 7 µJ is achieved. We characterized the output pulses using second harmonic 
generation (SHG) frequency resolved optical gating (FROG) [37]. The FROG-reconstructed 
temporal profile of the output pulses is depicted in Fig. 2(b), showing a pulse duration of 75-
fs; this duration appears to be seed-limited. The corresponding power spectrum is shown as a 
function of wavelength in the inset. 

3. Apodized APPLN amplifiers 

In both amplifier stages we use 10-mm-long, 1-mm-wide, uncoated APPLN chips. The QPM 
chirp rate is given by κ’ = -dKg/dz, where Kg(z) is the local grating k-vector. A chirp rate of 
κ’ = −2.5 mm−2 is used to achieve a broad phase-matching spectral window ranging from 2.71 
to 4.24 µm. The negative chirp rate was chosen since it yielded a higher beam quality than a 
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positive chirp. The sign of the chirp rate can play a role in effective lensing effects which 
occur during the parametric frequency conversion process [38]. These and other relevant 
effects will be discussed in more detail in future work. Another important property of the chip 
is the apodization. To avoid accumulation of spectral phase ripples or other high-order phase 
contributions during the amplification process, the nonlinear coupling is turned on and off 
adiabatically (smoothly and sufficiently slowly) at the input and output ends of the QPM 
grating [39]. The apodization is realized by rapidly varying the poling period (poling period 
apodization), resulting in dephasing of the three-wave mixing process (effectively reducing 
the nonlinear coupling). The grating profile is depicted in Fig. 3. 

 

Fig. 3. Poling structure for the APPLN OPA devices used in both stages. An apodized linearly 
chirped QPM grating is used to ensure a smooth gain spectrum. The linear chirp rate is κ’ = 
−2.5 mm−2. The nonlinear coupling is turned on and off adiabatically at both ends, over a 
distance ~10% of the total length of the grating, by rapidly varying the poling period 
(increasing the magnitude of the chirp rate). The nominal QPM duty cycle is 50%. 

With these apodized gratings, we obtain clean temporal pulse profiles after the bulk 
compressor, with almost all the pulse energy in the main pulse. Before designing this high-
power, few-cycle OPCPA, we studied the effect of apodization on the pulse structure [36]. 
Without apodization the temporal structure breaks up into multiple sub-pulses, reducing peak 
intensity. 

The focusing geometry is an important parameter of the OPCPA system design. APPLN 
OPAs can be affected by non-collinear gain guided modes [33]. If these modes exist, they can 
be amplified throughout the whole crystal, in contrast to collinear signal beams which 
experience gain only in the vicinity of its perfect phase-matching point [31]. Such gain guided 
modes are seeded by quantum noise and can therefore result in an increased optical 
parametric generation (OPG) background. With sufficient pump peak power that a large spot 
size with adequate intensity to support the collinear gain can be obtained, this gain guiding 
process can be suppressed at a given peak intensity, since the noncollinear beam components 
are dephased before they leave the large pump beam [33]. This high peak power is now 
available from our upgraded pump source. In the range of available pump powers we do not 
see a significant background from OPG. We estimated an upper limit for the OPG by 
blocking the seed before OPA1. The remaining output power of OPA1 is below the 
measurement threshold of 10 µW. When directed into OPA2, this small amount of OPG is 
amplified to 72 mW at full pump power of 30 W [red dashed line in Fig. 2(a)]. In the seeded 
case, we expect this small remaining background to be decreased substantially as a result of 
pump depletion. 

4. Dispersion compensation 

After amplification the pulses must be compressed in time. We designed the NIR pulse 
stretcher such that MIR pulse compression could be performed in a bulk crystal, thereby 
keeping the MIR losses as low as possible. During the OPA process, the spectral phase of the 
signal is transferred to the idler. Because both the phase and frequency shift of spectral 
components of the generated idler wave are inverted with respect to the signal seed wave, the 
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sign of the group delay dispersion (GDD) is reversed, but the sign of the third order 
dispersion (TOD) is maintained. Note that there are also additional contributions to the GDD 
and TOD of the generated idler wave due to the use of chirped QPM gratings, as discussed in 
[32]. 

Our stretching system for the 1.56-µm seed yields positive GDD and negative TOD. The 
3.4-µm idler is generated with a negative GDD which is then compensated by the positive 
GDD of the bulk Si compressor placed after the OPCPA output. Two pieces of antireflection-
coated bulk Si with a combined length of 150 mm are used. We were able to compress the 
3.4-µm-pulses to 80 fs duration with a total transmission of 90% by using this seed stretching 
and Si bulk compressor combination. 

To enable additional fine control of the dispersion, we placed a SLM-based pulse shaper 
in the seed beam path [40]. We used this shaper to pre-compensate the residual TOD on the 
idler, resulting in the seed-limited pulse duration of 75 fs shown in Fig. 2(b). More generally, 
with such a pulse shaper we can deliver the shortest possible pulses to an experimental target 
by pre-compensating for material dispersion occurring along the propagation to each specific 
experiment (vacuum chamber entrance windows, etc.). This approach therefore simplifies the 
operation of the laser for various applications. 

5. Conclusion 

In conclusion, we have demonstrated an OPCPA system for few-cycle pulse generation in the 
mid-infrared. The concept of seeding the OPCPA with the signal at 1.56 µm allows us to use 
standard optical components up to the 3.4 µm-idler extraction occurring after the final OPA 
stage. This design choice makes bulk compression with 90% efficiency possible. We achieve 
75 fs pulse duration (<7 optical cycles) at 7 µJ output energy, corresponding to 700 mW of 
average power at a repetition rate of 100 kHz. To verify the usefulness of this source for 
strong-field experiments, we focused the 3.4-µm, 75 MW beam with an aspherical lens (EFL 
= 4 mm) into a gas target at ~100 mbar. Successful ionization of Xe, Ne and He confirms 
focusability to intensities >1014 W/cm2. 

To our knowledge, this system is the first practical implementation of an OPCPA that uses 
apodized APPLN for the generation of clean, high-energy few-cycle pulses. By upgrading our 
pump source we have shown the energy scalability of the technique. In the next step we will 
replace our seed source in order to obtain broader bandwidths. With APPLN OPCPA devices, 
it should be possible significantly increase the bandwidth. With realistic improvements to the 
system, we therefore expect to generate few-cycle pulses with even higher energies. 
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Random duty cycle (RDC) errors in quasi-phase-matching (QPM) gratings lead to a pedestal in the spatial-
frequency spectrum that increases the conversion efficiency for nominally phase-mismatched processes. Here,
we determine the statistical properties of the Fourier spectrum of the QPM grating in the presence of RDC errors.
We illustrate these properties with examples corresponding to periodic gratings with parameters typical for
continuous-wave interactions, and chirped gratings with parameters typical for devices involving broad optical
bandwidths. We show how several applications are sensitive to RDC errors by calculating the conversion
efficiency of relevant nonlinear-optical processes. Last, we propose a method to efficiently incorporate RDC errors
into coupled-wave models of nonlinear-optical interactions while still retaining only a small number of QPM
grating orders. © 2013 Optical Society of America

OCIS codes: 190.4410, 190.4360, 230.7405, 190.4970.

1. INTRODUCTION
In a wide variety of experiments using quasi-phase-matching
(QPM) gratings, multiple nonlinear conversion processes can
occur simultaneously, whether by design [1–8] or as a natural
(and possibly parasitic) consequence of the desired device
configuration [9–27]. Such parasitic processes can play an im-
portant role in many contexts, including frequency conversion
of quantum states of light [8–13], optical parametric oscilla-
tors (OPOs) [14–20], optical parametric amplification (OPA)
[21–23], and QPM supercontinuum generation [24–27]. The
types of parasitic processes considered in this paper are nomi-
nally phase-mismatched nonlinear interactions, which, in
QPM gratings with random variations in the duty cycle, can
occur with efficiencies significantly higher than would be
expected given an ideal QPM grating and a large phase
mismatch [28,29].

In periodically or aperiodically poled lithium niobate (PPLN
and APPLN, respectively), these nonidealities typically corre-
spond to the ferroelectric domain boundaries not lying at their
ideal (designed) positions [29,30]. When the errors in the
domain boundary positions have stationary statistics (as is
typically the case for lithographically defined QPM patterns),
and in particular when these errors are independent and iden-
tically distributed (IID), they are termed random duty cycle
(RDC) errors [29]. While these RDC errors usually have only
a weak effect on the conversion efficiency near the QPM peak,
they give rise to a “pedestal” in the spatial-frequency spectrum
of the grating. Away from the phase-matching peak of the
ideal structure, this QPM noise pedestal is relatively flat sta-
tistically (i.e., after averaging over an ensemble of imperfect
QPM gratings), unlike the Fourier spectrum of the ideal gra-
ting (which, for example, has approximately a sinc2 form for a
periodic grating). This pedestal can lead to an increase in
the conversion efficiency of parasitic, nominally phase-
mismatched processes compared to that expected in a perfect

grating. It is therefore important to model RDC errors so that
experiments can be designed that are not excessively sensi-
tive to their effects.

In this paper, we analyze RDC errors in detail, and consider
several applications where they can play a significant role. In
Section 2, we first develop a general formalism for describing
the QPM gratings with RDC errors, including those with arbi-
trary nominal duty cycle and chirp profiles. In Subsections 2.B
and 2.D, we derive the statistical properties of the QPM noise
pedestal itself. Our treatment readily yields results for pulsed
interactions and also for backward-generated waves: these
cases are discussed in Subsections 2.C and 2.E, respectively.
In Section 3, we discuss the QPM noise pedestal for the cases
of periodic and linearly chirped gratings. The results for these
two cases will be relevant to a large fraction of QPM gratings
used in practical devices.

In Section 4 we investigate a number of applications where
RDC errors can play a significant (and possibly unexpected)
role. We consider the following applications: dark count rates
in quantum-state frequency translation, two-photon absorp-
tion (TPA) in high power optical parametric chirped pulse am-
plification (OPCPA), nonlinear losses in OPOs, cascaded
processes in OPOs, and supercontinuum generation. This list
is not intended to be exhaustive, but is representative of the
importance of RDC-related effects and of how these effects
can be evaluated in various different practical contexts. To
analyze some of these applications, we extend the formalism
of Section 2 to account for more complicated interactions,
while maintaining the same overall statistical approach. For
highly nonlinear interactions, however, a purely analytical
approach is usually insufficient, particularly when ultrashort
pulses are involved. Therefore, we also discuss in Appendix A
how RDC errors could be incorporated into existing
general numerical modeling tools used to simulate QPM
interactions.
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2. QPM GRATINGS WITH RDC ERRORS
In this section, we calculate the ensemble-averaged statistical
properties of the spatial-frequency pedestal that arises due to
RDC errors. We consider a three-wave difference-frequency
generation (DFG) process involving monochromatic plane
waves with negligible signal gain and pump depletion. Our re-
sults are directly applicable to second-harmonic generation
(SHG) and sum-frequency generation (SFG), provided that
depletion of the input waves can be neglected.

A. Transfer Function
Under the above assumptions, the generated idler is given by a
transfer function that is related to the spatial Fourier trans-
form (FT) of the QPM grating [31]. In this subsection, we
derive this transfer function and express it in a form suitable
for subsequent statistical analysis. The propagation equation
for the idler envelope is given by [32]

dAi

dz
� −i

ωid�z�
nic

A�
s Ape−iΔkz; (1)

where subscripts �i; s; p� correspond to the idler, signal,
and pump, respectively. ωj is the carrier frequency of
wave j, and nj is the refractive index evaluated at ωj . The
envelopes Aj are defined in relation to the electric field as
E � �1∕2�PjAj exp�i�ωjt − kjz�� � c:c: (complex conjugate),
where summation is performed over j � i, s, p and kj �
ωjnj∕c. The phase mismatch is defined as Δk � kp − ks − ki,
and d�z� � �d0 is the value of the relevant second-order non-
linear coefficient based on the χ�2� tensor and the polarization
directions of the interacting fields, and is inverted periodically
or aperiodically in the QPM grating.

The idler field Ai can be written in a form normalized to the
value it would take at the output of an ideal periodic grating,
with no RDC errors, satisfying first-order QPM (for which the
domain size would be given by ΛD � π∕Δk):

Ai � −i
2L
π

ωid0
nic

A�
s Apai; (2)

where ai is the normalized idler field and L is the length of the
QPM grating. With this definition, Eq. (1) can be written as

dai
dz

� π

2L
d�z�
d0

e−iΔkz ≡ g�z�e−iΔkz; (3)

where the normalized grating profile g�z� is implicitly defined
in Eq. (3), and g�z� � 0 for z < 0 and z > L. By integrating
Eq. (3), it can be seen that the normalized idler output
ai�L� is the spatial FT of g�z�, ~g�k�, evaluated at spatial fre-
quency k � Δk. We define the FT of a function f �x� as
~f �k�≡ F �f �x���k� � R

f �x�e−ikxdx, with tilde denoting a quan-
tity expressed in the frequency domain. The square magnitude
of ~g gives the idler intensity relative to the “maximum” inten-
sity achievable in a QPM grating of the same length, assuming
that the pump and signal [or first harmonic (FH) in the case of
SHG] are undepleted. By writing g�z� as a sum of individual
domains, ~g�k� can be written as

~gz�k� � i
π

2kL

XN
n�1

�−1�n�e−ikz�n� − e−ikz�n−1��

� i
π

kL

"
e−ikz�0� � �−1�Ne−ikz�N �

2
�

XN−1

n�1

�−1�ne−ikz�n�
#
; (4)

where z is a vector which specifies the domain boundary po-
sitions. The notation ~gz is used to indicate the domain boun-
dary vector z being considered. We refer to ~gz�k� as the
normalized transfer function.

Next, we approximate the contributions from the first and
last QPM domains (those related to the positions z�0� and
z�N �), in order to write ~gz�k� in a simpler form as a summation
of complex exponentials. The resulting (approximate) nor-
malized transfer function is given by

~gz�k� ≈ i
π

kL

XN
n�1

�−1�ne−ikz�n�: (5)

Comparing Eqs. (4) and (5), we see that the approximation is
perfect for an ideal grating satisfying first-order QPM, and in
general its error is comparable to the contribution from a
single domain.

We denote the ideal vector of domain boundary positions
(those obtained in the absence of any RDC errors) as z0. In an
ideal periodic grating, z0�n� � nΛD for domain length ΛD. For
a phase-matched interaction in such an ideal periodic grating,
k � Δk � π∕ΛD, in which case the summand in Eq. (5) is sim-
ply unity for each term, and so j~gz0�π∕ΛD�j � 1, consistent
with the expected result. We assume that the components
of z0�n� are fixed by the nominal grating design, and that
the deviations �z�n� − z0�n�� of the domain boundaries from
their ideal positions are IID. Note also that, in a real structure,
the position and length of the first and last QPM domains will
depend on the crystal polishing process; we neglect these and
similar issues here.

B. Ensemble-Averaged Noise Pedestal and Efficiency
Reduction
Following [29], we assume IID errors in the domain boundary
positions. We assume a normal distribution for each of
these positions with mean z0�n� and variance σ2z, i.e.,
z�n� ∼N �z0�n�; σ2z�. The variance in the length ln � z�n�−
z�n − 1� of each domain, σ2l , is related to the variance of the
domain boundary positions, σ2z, by σ2l � 2σ2z. A schematic of
such RDC errors is illustrated in Fig. 1. As described in
Section 1, RDC errors are typically associated with litho-
graphically defined QPM patterns: the lithographic pattern en-
sures long-range order of the grating (and hence prevents
period errors [29]), but any local fluctuations can lead to per-
turbations in the positions of the domain boundaries. After
fabrication, the domains are fixed for any given grating;

Fig. 1. (Color online) Schematic of a QPM grating with RDC errors.
Vertical dashed lines indicate the ideal, equally spaced domain boun-
dary positions. Elements of the domain boundary vectors z (random)
and z0 (ideal) are indicated.
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therefore, in any particular experiment, a single vector z ap-
plies. However, since the errors are random from one grating
to the next, it is useful to calculate the expected behavior of an
ensemble of devices with identically distributed errors.

As shown in [29], the ensemble-averaged mean of the nor-
malized transfer function is given by

h~gz�k�i � e−k
2σ2z∕2 ~gz0�k�; (6)

where the ensemble averaging is performed over random vec-
tors z, and the relation

heikzi � e−k
2σ2z∕2eikhzi (7)

for scalar z has been used in each term of the sum. From
Eq. (6), the expected value of the transfer function is reduced
compared to that of the ideal transfer function. For example,
the phase-matched DFG conversion efficiency averaged over
many different QPM gratings with RDC errors, given by
hj~gz�Δk�j2i for DFG phase mismatch Δk, would in this case
be reduced by a factor exp�−Δk2σ2z� compared to first-order
QPM in an ideal grating.

In addition to reducing the peak conversion efficiency, RDC
errors give rise to additional spatial-frequency components far
from nominal phase matching. To see this behavior we look at
the ensemble-averaged value of j~gz�k�j2, which, with Eq. (5), is
given by

hj~gz�k�j2i �
�
π

kL

�
2
*XN
m�1

XN
n�1

�−1�n−me−ik�z�n�−z�m��
+

�
�
π

kL

�
2
"
N�1 − e−k

2σ2z�

� e−k
2σ2z

XN
n�1

XN
m�1

�−1�n−me−ik�z0 �n�−z0 �m��
#
; (8)

where the second relation can be found by separating the first
relation into terms in the summand with m � n and m ≠ n:
those with m � n are independent of z�n� and hence do not
acquire an exp�−�kσz�2� factor. The pair of summations in
the second relation yields the magnitude squared of the ideal
transfer function, ~gz0 [see Eq. (5)]. Therefore, we can write
Eq. (8) in a more compact and convenient form:

hj~gz�k�j2i � e−k
2σ2z j~gz0�k�j2 � N

�
π

kL

�
2
�1 − e−k

2σ2z�; (9)

where the second term is a noise pedestal in spatial frequency
that originates from the RDC errors. We will refer to this ped-
estal as the QPM noise pedestal. The factor N associated with
this pedestal is accurate provided that there are enough do-
mains N that terms O�1�, which are missing in Eq. (5) due
to the approximations made on the edge terms, can be ne-
glected. For very thin crystals with small N , these edge terms
would not be negligible.

For periodic QPM gratings with a 50% duty cycle, there is a
particularly simple analytical form for the ideal transfer
function when the edge terms are included. Assuming that
z�n� � nΛD and defining Δk1 � k − π∕ΛD, it can be shown
that [33]

j~gz0�k�j2 �
�
π

2
sinc

�
kΛD

2

��
2
�
sin�NΔk1ΛD∕2�
N sin�Δk1ΛD∕2�

�
2
: (10)

The first factor in square brackets represents the reduced
Fourier amplitudes in higher orders of the QPM grating rela-
tive to the first-order. The second factor is a “comb of sinc’s,”
which gives rise to tuning curves at each odd order of QPM.
Equation (10) is analogous to the intensity function for multi-
slit diffraction [33].

In more general cases involving aperiodic QPM designs,
simple analytical solutions to ~gz0 analogous to Eq. (10) are
often unavailable. For such cases, the Fourier spectrum
can be written as a sum over the harmonics of the fundamen-
tal spatial frequency of the grating. For an aperiodic grating
that varies slowly enough with z that a sensible local spatial
frequency can be defined, it is convenient to write this sum in
terms of a local phase function ϕ�z� and duty cycle D�z� as

d�z�
d0

≡ sgn�cos�ϕ�z�� − cos�πD�z���

≡ �2D�z� − 1� �
X∞

m�−∞
m≠0

2 sin�πmD�z��
πm

exp�imϕ�z��: (11)

The first relation corresponds to the assumption that
d�z�∕d0 � �1, as is the case, for example, for 180 deg domains
in ferroelectrics, and the second relation is a trigonometric
identity. The grating phase profile ϕ�z� is linear in position
for periodic gratings, quadratic for linearly chirped gratings,
and so on. When simple closed-form expressions for the
summation in Eq. (5) are not available, one can use Eq. (11)
to re-express the right-hand side of Eq. (3) as a sum of the
contributions from the relevant QPM orders, whose individual
Fourier spectra may have simple closed-form solutions. For
example, these individual Fourier spectra correspond to sinc
functions for periodic gratings, and to error functions for lin-
early chirped gratings [31,34].

Writing gz�z� from Eq. (3) using Eq. (11) and taking the FT
results in a series of terms for the normalized transfer func-
tion. These terms are given by

~g�m�
z �k� � 1

mL
sin�πmD�

Z
L

0
exp�i�mϕ�z0� − kz0��dz0; (12)

where a constant value of D�z� has been assumed; this
assumption is possible because random errors in the domain
boundaries can in general be represented by ϕ�z�. ~gz�k� is
found by summing ~g�m�

z �k� over all indices m ≠ 0, and then
adding the normalized transfer function ~gdcz �k� that corre-
sponds to the zeroth-order of the QPM grating. This term is
independent of ϕ�z� and is given by [31]

~g�dc�z �k� � π

2
�2D − 1�e−ikL∕2 sinc

�
kL
2

�
: (13)

Equation (9) thus provides a way to evaluate the ensemble-
averaged transfer function for arbitrary grating structures.

C. Transfer Function Applied to Pulsed Interactions
The normalized transfer function ~gz�k� can be directly applied
to pulsed interactions, provided that certain conditions
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relating to the phase mismatch are met. For pump, signal, and
idler pulses with nonoverlapping spectra, the total electric
field can be written in the frequency domain as

~E�z;ω�u�ω� � 1
2

X
j

~Aj�z;ω� exp�−ik�ω�z�; (14)

where u�ω� denotes the Heaviside step function, and Aj are
analytic signals containing only positive Fourier components.
We will always assume here that both the pump and signal
propagate linearly, i.e., ~Aj�z;ω� � ~Aj�0;ω� for j � s and
j � p; therefore, the z-arguments of As and Ap will be sup-
pressed. With these envelope definitions, the evolution of
each (positive) spectral component of the idler is given by [31]

d ~Ai�ω�
dz

� −i
ωd�z�
nic

Z
∞

0

~Ap�ω� ω0� ~A�
s �ω0�e−iΔk�ω;ω0�z dω

0

2π
; (15)

where the frequency-dependent phase mismatch is given by

Δk�ω;ω0� � k�ω� ω0� − k�ω� − k�ω0�: (16)

When analyzing pulsed interactions, we denote the carrier
frequencies as ωj for wave j, and the carrier wave vectors as
kj � k�ωj� (assuming the same polarization for each wave).
Consider a case where the signal and pump have comparable
group velocities, such that the temporal walk-off of the signal
and pump pulses is negligible during propagation. This condi-
tion implies that vs ≈ vp, where the frequency-dependent
group velocity is given by v−1g � dk∕dω, and vj � vg�ωj�. If
in addition neither the signal nor the pump pulses disperse
significantly [i.e., if group velocity dispersion (GVD) is negli-
gible over the spectral bandwidth of the pulses], the general
frequency-dependent phase mismatch can be approximated
as [31]

Δk�ω;ω0� ≈ kp − ks �
ω − ωi

vp
− k�ω�; (17)

which depends only on the driven idler frequency ω but not
the intermediate frequency ω0. With this approximation, the
integral in Eq. (15) can be simplified as a convolution. Further-
more, because each idler spectral component is driven by a
particular phase mismatch, integration versus z yields a func-
tional form proportional to ~gz�Δk�ω��:

~Ai�ω� � −i
2L
π

ωd0
n�ω�c ~gz�Δk�ω��

× F �Ap�z � 0; t�As�z � 0; t����ω�: (18)

It is useful to calculate the idler fluence Wi correspond-
ing to this electric field, which is given by Wi ≈
�niϵ0c∕2�

R jAi�t�j2dt��niϵ0c∕2�
R j ~Ai�ω�j2dω∕�2π�. Since each

spectral component of ~Ai is, in this approximation, pro-
portional to ~gz�Δk�ω��, the fluence is an integral involving ~g
evaluated at different spatial frequencies, and, hence, these
can each be ensemble averaged separately. If we assume that
the dominant contribution to hj~gz�Δk�ω��j2i is the QPM noise
pedestal over all the idler frequencies ω of interest (i.e., that
we are interested in a parasitic process rather than a nomi-
nally phase-matched one), and that variations of this pedestal
are small over this same frequency interval, then, with the

result for ~gz from Eq. (9) inserted into Eq. (18), the
ensemble-averaged idler fluence is given by

hWii ≈
2ϵ0ω2

i d
2
0LΛD

nic
1 − e−Δk�ωi�2σ2z

Δk�ωi�2Λ2
D

×
Z

jAp�z � 0; t�As�z � 0; t��j2dt: (19)

The condition that the signal and pump negligibly walk off
each other does not always apply, but Eq. (19) still provides
a useful estimate of the importance of parasitic processes
phase matched by the QPM noise pedestal. With analogous
starting assumptions, similar results can be obtained for other
types of interactions, such as pulsed SHG.

D. Fluctuations in the QPM Noise Pedestal
In some experimental configurations, the fluctuations in
j~gz�k�j2 as a function of spatial frequency k, and, hence, phase
matching for the corresponding optical frequency, may be im-
portant. For example, for pulsed interactions of the type dis-
cussed in Subsection 2.C, the output spectrum will fluctuate
along with ~gz�Δk�ω��. These fluctuations can be quantified via
the variance of the spatial FT of the grating. Calculation of this
variance through ensemble averaging is, as with the mean, sig-
nificantly simplified by approximating the contributions of the
edge terms. In this subsection, we therefore assume that N is
large enough that ~gz is well-approximated by Eq. (5).

By evaluating the second- and fourth-order moments
hj~gz�k�j2i and hj~gz�k�j4i, the standard deviation ση of the nor-
malized transfer function can be determined. As with hj~g2z ji in
Eq. (8), hj~g4z ji can be calculated by splitting the corresponding
quadruple summation up into terms with different numbers of
distinct indices, ensemble averaging, and rearranging the re-
sult in terms of ~gz0 . After some algebra, we find that

hj~gz�k�j4i ≈ 2N2

�
π

kL

�
4�
1 − e−�kσz�

2
�
2

� 4N
�
π

kL

�
2
�1 − e−�kσz�

2�e−�kσz�2 j~gz0�k�j2

� e−2�kσz�
2 j~gz0�k�j4: (20)

If we keep only the N2 noise-pedestal term in this equa-
tion, then the standard deviation ση can be approximated
according to

ση ≈ N
�
π

kL

�
2
�1 − e−k

2σ2z �: (21)

This approximation applies for large N and values of k for
which the ideal transfer function j~gz0�k�j2 is negligible. We
note that the standard deviation in Eq. (21) is the same as
the mean hj~gzj2i, as would be expected for a random walk
process for the generated idler field. The magnitude of the
spatial Fourier spectrum of a particular grating with RDC
errors is thus with high probability within a few times the
ensemble-averaged mean.

In addition to the variance, it may be important to know
how rapidly the spectrum of a particular QPM grating varies
with its spatial frequency. Since the rate of change in spatial
frequency is related to the real-space bandwidth of the
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structure (i.e., the grating length L), changes to the spatial-
frequency spectrum occur over a characteristic k ∼ 2π∕
L scale.

E. Generation of Backward Waves
The presence of RDC errors can enhance the generation of
backward waves as well as the forward waves we have con-
sidered so far. One way to approach this problem is with a
transfer matrix formalism [35], in which backward waves
are generated as a consequence of the nonuniformities in the
nonlinear susceptibility, in particular due to the (a) periodic
inversions of d�z�. A more straightforward approach, which is
appropriate if the linear susceptibility is uniform (as is typi-
cally the case in QPM media), is to solve the evolution equa-
tion for backward wave components. For monochromatic and
plane-wave idler components propagating in either the same
or the opposite direction to the collinear pump and signal
waves, evolution through the QPM grating is governed by
the equations

dA���
i

dz
� ∓i

ωid�z�
nic

A�
s Ape−iΔk�z; (22)

where Δk� � kp − ks∓ki. A
���
i denotes the forward (�) and

backward (−) components of the idler wave. Equation (22),
which is a more general version of Eq. (1), can be integrated
straightforwardly for both idler components. In the absence of
any external idler inputs or any reflections from the input and
output facets of the crystal, the result is that

�
a�−�i �z � 0�
a���
i �z � L�

�
�

�
~gz�Δk−�
~gz�Δk��;

�
; (23)

where each a���
i is related to A���

i according to Eq. (2):
A���
i � −i�2L∕π��ωid0��nic�−1A�

s Apa
���
i . Equation (23) means

that the idler emitted from a QPM grating with perfect antire-
flection (AR) coatings on the input and output facets is pro-
portional to the normalized transfer function, evaluated at the
phase mismatch associated with each direction of idler propa-
gation (either forward or backward). In practice, the inequal-
ities �Δk�σz�2 ≪ 1 and �Δk−σz�2 ≫ 1 often apply, meaning
that the QPM noise pedestal is in the approximately flat region
for the forward wave, but is proportional to 1∕Δk2− for the
backward wave, based on Eq. (9). In LiNbO3 for a DFG proc-
ess involving a 1.064 μm pump and a 1.55 μm signal with
σz � 1 μm, Δk−σz ≈ 7.9, while Δk�σz ≈ 0.2.

When using AR-coated samples, Eq. (23) could, for exam-
ple, be used to determine the feedback into the pump laser(s)
as a result of RDC errors. However, for the remainder of this
paper, we focus on the much stronger, copropagating compo-
nents corresponding to ~g�Δk��.

3. RDC ERRORS: EXAMPLES
In order to illustrate the mean properties of QPM gratings with
RDC errors determined in Subsection 2.B, in this section we
evaluate the spectrum of some example uniform (periodic)
and chirped (aperiodic) QPM gratings.

A. Periodic QPM Gratings
First, we consider in Fig. 2 an example periodic case with RDC
errors similar to those typically observed in practice [12]. We

assume a grating of length 5 cm with nominal spatial fre-
quency Kg � 2 × 105 m−1 (period 31.4 μm, comparable to
the periods required for 1.064 nm-pumped IR devices), and
RDC errors σz � 1 μm. The red curve shows the spectrum
j~gz�k�j2 for a particular example of a grating with RDC errors.
The black curve shows an ensemble average over 50 such
spectra. The blue curve shows the ideal transfer function
j~gz0 j2. The inset shows the grating spectrum on a linear scale
around first-order QPM. For the spatial frequencies shown,
the pedestal is approximately flat. Furthermore, the ideal
sinc2-like functional form shown in the inset is almost unaf-
fected by the RDC errors. QPM gratings with these types of
RDC errors were analyzed experimentally and theoretically
in [12].

To understand Fig. 2 in more detail, Eq. (10) can be rewrit-
ten in terms of the grating k-vector Kg � π∕ΛD (where the
nominal grating length L � NΛD). In the vicinity of first-order
QPM (k∕Kg ≈ 1), and for RDC errors small enough that
�kσz�2 ≪ 1, Eqs. (9) and (10) can be approximated and com-
bined to yield [12]

hj~g�k�j2i ≈ 1
N
�1 − e−k

2σ2z � � e−k
2σ2z sinc��k − Kg�L∕2�2: (24)

In this equation, the QPM noise pedestal dominates for
frequencies sufficiently detuned from the peak that the
sinc2 profile is significantly less than 1∕N relative to its peak.
For the RDC errors and QPM periods typically present in
PPLN crystals [12], the prefactor �1 − exp�−k2σ2z�� ∼ 0.05,
thereby leading to a QPM noise pedestal of order 0.05∕N
lower than the peak of j~gz0�k�j2 (i.e., the peak of the “tuning
curve”).

Away from first-order QPM, ~gz exhibits a number of fea-
tures in addition to those shown in Fig. 2. To illustrate these
features, we next consider in Fig. 3 an example periodic gra-
ting with large RDC errors. We assume parameters L � 5 cm,
σz � 3 μm, and grating k-vector Kg � 2 × 105 m−1 (QPM
period ≈31.4 μm). Spatial frequencies up to grating order
10 are plotted.

The solid blue curve shows the ideal sinc-like transfer func-
tion (no RDC errors). The yellow curve shows the spectrum
j~gz�k�j2 for a particular example of a grating with domain
boundaries z subject to normally distributed errors with
σz � 3 μm. The black curve shows the analytically calculated
ensemble average given by Eq. (9). Because of the large
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Fig. 2. (Color online) Fourier spectra j~g�k�j2 with parameters σz �
1 μm and a 5 cm crystal, and Kg0 � 2 × 105 m−1 (≈31.4 μm period).
The inset shows j~g�k�j2 on a linear scale in the vicinity of first-order
QPM; the effects of RDC errors cannot be seen on this linear scale.
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assumed RDC errors, the higher-order QPM peaks are re-
duced substantially compared to those of the ideal grating
[since �kσz�2 is large at these spatial frequencies]. Further-
more, since �kσz�2 ≪= 1, the pedestal is not flat at high spatial
frequencies; the dashed blue curve is proportional to 1∕k2, and
is scaled according to Eq. (8) so as to show the predicted
asymptotic behavior of the pedestal for jkσzj large enough that
exp�−k2σ2z� ≪ 1. Finally, the red curve shows an ensemble
average over 50 spectra, showing the same features as the
analytically calculated black curve.

B. Chirped QPM Gratings
In periodic QPM gratings, there is a trade-off in the grating
length between efficiency and bandwidth; additionally,
three-wave nonlinear interactions are subject to backconver-
sion after reaching maximum depletion for one of the waves
[36]. With chirped QPM gratings, both of these issues can be
avoided simultaneously [37]. The simplest case of a chirped
grating corresponds to a linear variation in grating k-vector
with position. An example is shown in Fig. 4 (parameters
given in the caption). The red curve shows a single spectrum
j~gzj2, the black curve shows an ensemble average over 50 such
gratings, and the blue curve shows j~gz0 j2.

The ideal Fourier spectrum is broadened and reduced in
peak amplitude compared to that of an unchirped grating
of the same length. As a result, compared to a periodic grating

of the same length and subject to the same RDC errors, the
magnitude of the QPM noise pedestal can be considerably
closer to the peaks (or “passband”) of the ideal transfer func-
tion. Additionally, since the k-space bandwidth in a (highly)
chirped grating scales with the grating order, higher grating
orders are closer still to the pedestal: there is an approximate
1∕k3 scaling of j~gz0�k�j2 for ideal chirped QPM gratings. This
1∕k3 scaling originates from a factor of 1∕k2 from Eq. (9) and a
factor of 1∕k from the k-space broadening [the exp�imϕ�z��
factor for grating orderm in Eq. (12)], together with Parseval’s
theorem.

This scaling can be seen in Fig. 4 and, as a result, j~gj2 is
comparable to the QPM noise pedestal in the vicinity of
fifth-order QPM: with these 1 μmRDC errors, only the first and
third grating orders are above the pedestal. Note, however,
that for a fixed first-order QPM conversion efficiency and a
fixed spatial-frequency bandwidth of the first Fourier order of
the grating, the efficiency of processes phase matched by the
noise pedestal is comparable for both chirped and unchirped
devices. These conditions apply in practice, given constraints
on the conversion efficiency and optical bandwidth, to both
chirped and unchirped gratings.

4. APPLICATIONS
In this section, we discuss some specific, representative
applications in which the QPM noise pedestal is particularly
important.

A. Quantum-State Frequency Translation
Second-order nonlinear interactions can be used to imple-
ment frequency conversion of quantum states of light
[38,39]. With QPM technology, these quantum frequency con-
version (QFC) processes can be performed efficiently with
moderate-power continuous-wave (CW) sources. While QFC
can in principle be noiseless [38], it has been found that, for
pump wavelengths shorter than one of the quantum-state
frequencies of interest, the QPM noise pedestal results in
an enhancement of nominally phase-mismatched parametric
fluorescence [11] and, hence, in the generation of noise pho-
tons. When photons generated by parametric fluorescence
overlap spectrally with the frequency bands occupied by
the signal, the ultrasensitive frequency converter cannot dis-
tinguish between the signal and noise photons, which leads to
a reduction in the fidelity of the QFC process.

In a 1064 nm pumped single-photon upconversion detector
for a 1.55 μm band signal, a noise count rate of approximately
8 × 105 counts∕s was observed [9]. Theoretical analysis of the
RDC-error-enhanced parametric fluorescence noise for this
system [based on Eq. (24)] shows that the observed dark
count rate is consistent with σz ≈ 3.2 μm [11], which, in turn,
is consistent with the observations of lower-than-expected
conversion efficiency compared to an ideal QPM grating [9],
again predicted by Eq. (24). In [12], RDC errors of σz ≈ 0.3 μm
were measured directly. A pedestal in SHG conversion effi-
ciency was also observed, and was consistent with Eq. (24)
given the measured RDC errors.

RDC error tolerances for achieving a certain conversion ef-
ficiency and dark count rate (due to parametric fluorescence)
have been derived [11]; these tolerances can be quite stringent
for single-photon conversion devices. Spontaneous Raman
scattering is another important source of dark counts in
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Fig. 3. (Color online) Fourier spectra for a large, 3 μm, mean error
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QFC [13]. Both these sources of dark counts can be sup-
pressed significantly by use of a long wave pump [8].

B. Optical Parametric Chirped Pulse Amplification
RDC errors can be an important consideration in OPCPA of
mid-IR pulses using MgO:LiNbO3 QPM gratings. With an in-
tense pump pulse and a sufficiently long grating, significant
parasitic SHG of the pump can occur due to RDC errors.
The intense second harmonic (SH) can in turn lead to TPA
and subsequent strong thermal lensing and photorefractive
effects, which are detrimental to the OPCPA process. To
estimate the severity of this SHG-TPA process, some further
analysis beyond that given in Section 2 is required. In this
subsection we investigate this process, choosing parameters
relevant for OPCPA based on chirped (aperiodic) gratings
[21–23].

If diffractive effects are neglected, the two-photon-
absorbed SH intensity is given, for small absorptions, by

Iabs�z� �
Z

z

0
βTPAISH�z0�2dz0; (25)

where βTPA is the TPA coefficient and ISH is the SH intensity. It
is convenient to approximate this integration as a summation
over the ensemble-averaged intensities within each domain,

hIabsi ≈
�XN
q�1

ΛD;qβTPAISH�z�q��2
�
≈ βTPAI2max

L
N

�XN
q�1

j ~h�q�z �k�j4
�
;

(26)

where ΛD;q is the length of domain q. In the second form of
Eq. (26), we have approximated each ΛD;q factor in the sum
according to ΛD;q ≈ ΛD ≡ L∕N , on the assumption that the to-
tal range of QPM periods is relatively small. ~h�q�z �k� is the nor-
malized SH amplitude at position z�q�, obtained analogously to
Eq. (5) as

~h�q�z �k� � π

kL

Xq
n�1

�−1�ne−ikz�n�; (27)

and hence ~gz � ~h�N�
z . The “maximum” SH intensity, denoted

Imax, is the SH intensity that would be predicted for a perfectly
quasi-phase-matched interaction in an ideal periodic grating
if pump depletion effects were neglected, and is therefore
given by

Imax � nSHϵ0c
2

				 2π ω1deff
nSHc

A2
FHL

				2: (28)

In order to evaluate Eq. (26), we need to find hj ~h�m�
z j4i. Only

slight modifications to Eq. (20) are required to account for the
fact that here we are integrating only up to z�m�, not z�N � � L.
We therefore find that

hj ~h�m�
z �k�j4i ≈ 2m2

�
π

kL

�
4
�1 − e−�kσz�

2�2

� 4m
�
π

kL

�
2
�1 − e−�kσz�

2 �e−�kσz�2 j ~h�m�
z0 �k�j2

� e−2�kσz�
2 j ~h�m�

z0 �k�j4: (29)

To estimate the SH TPA, we keep only the noise pedestal term
in each ~h�m�

z [the first term in Eq. (29)], under the assumption
that the SHG process is highly phase mismatched. By substi-
tuting Eqs. (28) and (29) into Eq. (26), summing over the in-
tensity absorbed within each domain, and assuming N3 ≫ N2,
the following expression for the total, ensemble-averaged TPA
can be obtained:

hIabsi ≈
2
3
βTPAI2ΛΛD

�
L
ΛD

�
3
�
πσz
ΛD

�
4
�
1 − e−k

2σ2z

k2σ2z

�2

; (30)

where ΛD is the average domain length, and IΛ �
Imax�ΛD∕L�2 is the “maximum” intensity from a single domain
of size ΛD; this latter substitution is made so that Eq. (30)
gives the grating-length dependence of hIabsi explicitly. For
sufficiently small errors, the final factor in parentheses is
equal to 1. Equation (30) indicates that Iabs is proportional
to σ4z, L3, and I4FH (in the context of OPCPA, this FH intensity
would correspond to the pump intensity); in comparing differ-
ent OPCPA devices, it may be worth noting also that
Iabs ∝ σ4z�IFHL�4∕L.

We next evaluate Eq. (30) with relevant parameters. We as-
sume the following system based on [21–23]: the pump wave-
length is 1.064 μm, the material is MgO:LiNbO3, the average
domain size is ΛD � 14.94 μm (corresponding to OPA for a
3.5 μm idler), and the crystal length is 10 mm. The SHG phase
mismatch determines the spatial frequency at which Eq. (30)
should be evaluated, and hence k � 9.317 m−1. We assume
RDC errors such that σz � 1 μm [11]. The TPA coefficient
of LiNbO3 at 532 nm (λp∕2) is βTPA � 0.38 cm∕W [40], the ef-
fective nonlinear coefficient for 1064 nm SHG involving the
d33 tensor element is deff � 25.2 pm∕V [41], and the dispersion
relation is given in [42]. For a first calculation, we assume a
CW pump with an intensity of 10 GW∕cm2. With these param-
eters, we find from Eq. (30) that hIabsi ≈ 2.865 GW∕cm2 (a
remarkably large fraction of the pump).

To estimate the thermal load in the presence of a pulsed
pump beam, the SH absorption must be integrated over both
space and time. As in Subsection 2.C, a general procedure for
such a calculation can be obtained by use of the transfer func-
tion approach of [31] (for DFG) and [43] (for SHG). In the case
of SHG, provided that GVD of the FH can be neglected, the SH
is driven in the frequency domain by the FT of the square of
the FH envelope, F �AFH�t�2�. Here, we can assume a pump of
long enough duration that group velocity mismatch and
dispersive effects are negligible, and hence the ensemble-
averaged total absorbed energy at the SH is obtained by inte-
grating the local absorbed intensity over space and time,

hUabsi � hI�pk�abs i
ZZZ

Ī4FH�x; y; t�dxdydt; (31)

where ĪFH ≡ IFH∕Ipk denotes the normalized FH intensity
(maximum equal to 1) and I�pk�abs denotes the absorbed intensity
at the peak of the pulse (intensity Ipk). For Gaussian pulses in
space and time (1∕e2 radiusw, FWHM duration τ), the integral
in Eq. (31) is given by

ZZZ
Ī41�x; y; t�dxdydt �

�
π

8

�
3∕2 w2τ
















2 ln�2�
p : (32)
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For the example considered above, hI�pk�abs i � 2.865 GW∕cm2.
If we assume a Gaussian pump beam with a FWHM duration
of 12 ps and an energy of 300 μJ (corresponding to a beam
radius of 387 μm for a peak intensity of 10 GW∕cm2),
Eq. (31) implies an ensemble-averaged absorbed energy of
7.18 μJ. At a repetition rate of 100 kHz (30 W pump power),
this implies a thermal load of 718 mW, which is very large.
Thus, SHG followed by TPA can lead to a significant thermal
load on the crystal. With RDC errors of σz � 0.5 μm instead of
1 μm, the predicted thermal load is reduced by almost an order
of magnitude, to 81 mW. Sufficient care should therefore be
taken in fabricating such QPM devices to obtain submicrom-
eter RDC errors. Note also that, with half the peak intensity
(5 GW∕cm2), the thermal load is reduced by a further factor of
16, to 5 mW.

C. Optical Parametric Oscillators: Nonlinear Loss
OPOs enable the generation of widely tunable and high power
coherent light across the visible and infrared spectral regions
[44–50]. RDC errors may play an important role in OPOs, par-
ticularly when there are high resonating intensities. In the
presence of the nominal pump, signal, and idler waves (ωp,
ωs, and ωi, respectively) components of the nonlinear polari-
zation are also generated at other, related frequencies, such as
the SH frequencies 2ωj . The most intense wave in a low-loss
OPO not close to threshold is typically the resonant signal.
SHG involving this wave constitutes a nonlinear loss mecha-
nism, which for certain cases, in particular for pulsed inter-
actions, could be significant.

Consider first a CW singly resonant OPO (SRO) case, as-
suming that the nonlinear losses are small and perturbative.
The steady-state signal intensity, and hence the pump
depletion, is determined by the number of times the pump in-
tensity is above oscillation threshold pump intensity [18,51];
we denote this number as Np (to distinguish between this
quantity and the number of domains in the grating, N). For
a low-loss cavity, the amplitude of the signal is given by
the implicit relation

sinc2�Γs� � N−1
p ; (33)

where the pump depletion factor Γs is given by

Γ2
s �

ωiωp�2d0∕π�2jAsj2L2

ninpc2
: (34)

Optimal pump depletion for the SRO occurs at Np � �π∕2�2; at
this value, Γs � π∕2. The SH field can be determined in the
same way the idler was determined in Section 2, by substitut-
ing the value of jAsj resulting from Eq. (33) into Eq. (2) (with
suitable modifications to the coupled-wave equations for SHG
instead of DFG [52]) to find the “maximum” signal SH (for a
phase-matched first-order QPM interaction), and then apply-
ing Eq. (8) to find the actual SH field in terms of the RDC
errors. We also allow for the possibility of different tensor
elements for the SHG- and OPO-gain processes (dSHG and
dOPO, respectively), and denote the signal-SHG phase mis-
match as Δks � k�2ωs� − 2k�ωs�. Taking the ratio of the signal
and ensemble-averaged SH intensities, we arrive at the
following expression for the nonlinear loss:

aNL � Γ2
s

N

�
πσz
ΛD

�
2 1 − e−Δk

2
sσ

2
z

Δk2sσ2z

ninp

nsnSH

ω2
s

ωiωp

�
dSHG
dOPO

�
2
≡ Γ2

sa0;

(35)

where we have introduced the loss term a0 for convenience.
We assume pump and signal wavelengths of 1.064 and
1.55 μm, respectively, a MgO:LiNbO3 QPM grating operated
at 150°C, ΛD ≈ 15 μm (for the nominal OPO process), and
Δks � 3.34 × 105 m−1 (for the parasitic signal SHG process).
Choosing the remaining parameters as Γs � π∕2, L � 5 cm,
and σz � 1 μm, and dSHG � dOPO, Eq. (35) yields aNL ≈
4.5 × 10−3%, negligible in comparison to the losses of most
CW OPOs (which typically have total cavity losses of order
1% or more [15,48]).

For certain pulsed OPOs, however, the energy lost due to
signal SHG may be more significant. An analogous form of
Eq. (19) that applies for SHG of a pulsed signal is given by

hWSHi �
2ϵ0ω2

sd20LΛD

nSHc
1 − e−Δk

2
sσ

2
z

Δk2sΛ2
D

Z
jAs�z � 0; t�2j2dt: (36)

Assuming a Gaussian resonant signal pulse, the ratio of the
SH and signal fluences (and hence the nonlinear loss) can
be expressed, after some algebra, as

aNL � 2−1∕2Γ2
s;pka0; (37)

where Γs;pk is Γs defined in Eq. (34), evaluated at the peak in-
tensity of the signal pulse, and a0 is given implicitly by
Eq. (35). Note that, if we also integrate over space assuming
nondiffracting Gaussian beams, a total nonlinear loss of aNL �
2−3∕2Γ2

s;pka0 is obtained. If the peak intensity is significantly
larger than the intensity required to achieve high conversion
efficiency in a CW OPO, then there will be an increase in the
nonlinear loss. Furthermore, for short-pulse OPOs, the crystal
length and, hence, the number of domains N appearing in
Eq. (35), may be reduced substantially compared with typical
CW OPO designs. If we assume Γs � π, L � 3 mm, σz � 1 μm,
and consider a MgO:LiNbO3 OPO utilizing the d31 tensor
element for gain but with an e-wave resonant signal [17], then
SHG of this signal via the d33 tensor element will occur in ad-
dition to the desired three-wave mixing process (amplification
of the signal by the pump). Assuming values for these tensor
elements based on the 1.313 μm SHG measurements in [41],
and using the 2−3∕2 prefactor above in calculating aNL, a total
nonlinear loss of aNL � 2.1% is obtained. For a nominally low-
loss OPO cavity, this additional loss would be very significant.

Based on the above analysis, we can conclude that, for cer-
tain short-pulse OPOs, in particular those with low losses and
short crystal lengths, RDC errors can lead to a significant non-
linear loss. Nonlinear losses limit the cavity enhancement that
can be achieved, and may also lead to instabilities, a reduction
in conversion efficiency, and other detrimental effects
(although such effects are beyond the scope of this paper).

We note also that there is another loss, denoted aL, due to
the SFG process involving the signal and pump waves
(ωs � ωp). Although aL can be significantly enhanced by
RDC errors, this loss will be of order aL ∼ aNLatotal, where
atotal denotes the total cavity losses; this scaling arises by
assuming that the signal intensity in an above-threshold
OPO is of order 1∕atotal times larger than the pump intensity.
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Therefore, loss via signal-pump SFG should be negligible in
most cases.

D. Optical Parametric Oscillators: Cascaded Processes
In addition to the signal SHG process discussed above, many
other “cascaded” spectral components beyond the desired
pump, signal, and idler waves can be generated in OPOs
(and other nonlinear devices). For infrared OPOs, some of
these cascaded components lie in the visible spectrum and
can sometimes serve as a clear indication of parametric oscil-
lation. The amount of power generated at visible wavelengths
can be surprisingly high, given that the corresponding mixing
processes are (usually) nominally phase mismatched. RDC
errors explain how these frequencies can be generated with
appreciable powers, particularly for pulsed OPOs.

As an example, consider an SRO. As discussed in
Subsection 4.C, in the presence of RDC errors, a relatively in-
tense SH can be generated by the resonant signal. This signal
SH can in turn sum with the pump to yield SFG spectral com-
ponents ω � 2ωs � ωp; this nominally phase-mismatched SFG
process can also be enhanced in the presence of RDC errors.
For 1064 nm-pumped OPOs with a resonant wavelength be-
tween 1.3 and 4 μm, ω � 2ωs � ωp lies in the visible spectrum.
Note that, for short-wave-resonant SROs, ωs � ωp also lies in
the visible and can be expected to be more efficient than the
2ωs � ωp spectral component. Here we consider this 2ωs � ωp

component for several reasons: (1) it will be visible in almost
any 1064 nm-pumped OPO, (2) it involves two simultaneous
processes, both of which will typically be dominated by the
QPM noise pedestal, and is therefore a good example to illus-
trate an extension of the mathematical approach of
Section 2, and (3) for typical OPO parameters, this wave
can actually have a small but nonnegligible power that is
several orders of magnitude above the power that would
be predicted in the absence of RDC errors.

To estimate the intensity of this spectral component, sim-
ilar integrals to those discussed in Subsection 4.B can be
performed. The equations that determine the SFG process
are given by

dASH

dz
� −i

ωsd�z�
nSHc

A2
seiΔksz; (38a)

dASF

dz
� −i

ωSFd�z�
nSFc

ApASHeiΔkSFGz; (38b)

where Ap and As are determined by the steady-state OPO
solutions. For simplicity, we assume that both Ap and As

are z-independent (pump depletion is neglected for the
purposes of calculating the SFG process).

The sum frequency (SF) is driven by the product ASH�z�Ap.
Assuming As and Ap are known, ASH can be calculated first via
Eq. (38a) and substituted into Eq. (38b) to calculate ASF. jASFj2
therefore contains many terms, which must be ensemble aver-
aged separately, as in previous subsections. These calcula-
tions yield, after some algebra, an ensemble-averaged
normalized SFG intensity given by

hjaSFj2i ≈
1

N2

�
2π2

ΔkSFGΔksΛ2
D

�2

×
h
1� e−�Δk

2
SFG�Δk2s �σ2z − e−Δk

2
sσ

2
z − e−Δk

2
SFGσ

2
z

i
; (39)

where ΔkSFG � k�ωp � 2ωs� − k�2ωs� − k�ωp� (and Δks �
k�2ωs� − 2k�ωs�). aSF is normalized to the value that would
be obtained if both the SFG and signal SHG processes satis-
fied first-order QPM in an ideal grating and pump depletion
effects are neglected, and hence

ASH � −
2ωSFωsd20L

2

π2nSHnSFc2
Ap�0�As�0�2aSF: (40)

With Eq. (40), the ensemble-averaged SF intensity can be
expressed as

hISFi
Ip

� n2
i np

nSHnSF

�
ωsωSF

ωiωp

�
2
Γ4
s Ī2s jaSFj2; (41)

where Γs is defined in Eq. (34) and Īs is the signal intensity
normalized to its peak.

The SF intensity may be integrated over space to yield an
average power. Consider a MgO:LiNbO3 with crystal length
5 cm, QPM period ≈30 μm, pump and signal wavelengths of
1064 and 1550 nm, respectively, spot sizes of 70 μm, pump
power of 10 W, and resonant signal power of 200 W. If diffrac-
tion and pump depletion effects are neglected for simplicity
and RDC errors with σz � 1 μm are assumed, the correspond-
ing power PSF ≈ 10 μW. This is a relatively high power for a
CW process involving two cascaded processes, both of
which are nominally highly phase mismatched; in the absence
of RDC errors and far from phase matching for both
processes, the generated power would be several orders of
magnitude less.

As in Subsections 4.B and 4.C, the conversion efficiency
can be substantially increased for pulsed interactions, and
can be estimated from Eq. (41) provided that group velocity
mismatch effects can be neglected. From the Γ4

s dependence
of hISFi, any increase in Γs;pk beyond π∕2 for pulsed OPOs will
rapidly increase the cascaded SFG efficiency.

E. Supercontinuum Generation
In supercontinuum generation [24–27], very high intensities
are involved over substantial propagation lengths. As a result,
RDC errors can lead to the efficient generation of sum-
frequency components (2ω, 3ω, 4ω, and so on, for optical fre-
quency ω). Depending on the particular configuration, these
interactions can be viewed as useful (generating carrier
envelope offset frequency signals) or as parasitic (removing
energy from the FH part of the pulse and thereby reducing
the rate of self-phase-modulation responsible for the con-
tinuum generation). However, the assumptions made in
Subsection 2.C to model pulsed interactions do not apply
(since the FH envelope changes substantially). In principle,
the various nonlinear processes can be solved fully numeri-
cally with no approximations on d�z�. However, numerical
methods typically assume a smooth grating spatial profile,
with only a finite number of QPM orders. In Appendix A,
we discuss how RDC errors can be sensibly incorporated into
the “Fourier-filtered” propagation schemes used for pulsed
interactions, by suitable perturbations of the grating phase
profile ϕ�z� appearing in Eq. (11). The procedure we discuss
should allow the parasitic processes of the types discussed in
this section to be (approximately) accounted for when mod-
eling highly nonlinear QPM devices.
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5. CONCLUSIONS
In this paper, we investigated the statistical properties of QPM
gratings with normally distributed errors in the boundary
positions. While the use of lithographic fabrication techniques
ensures the long-range order of the grating (thereby prevent-
ing QPM period errors), local fluctuations in the boundary
positions are still possible. Based on Eq. (9), the resulting
ensemble-averaged square-magnitude of the spatial FT of
the grating, hj~gz�k�j2i, can be described by the FT of the ideal
grating structure with an exponential amplitude reduction
factor corresponding to the variance of the domain boundary
positions, plus a spatial-frequency pedestal whose mean and
variance are approximately flat for small spatial frequencies k.
This pedestal can enhance the conversion efficiency of nomi-
nally phase-mismatched processes.

For certain pulsed interactions, a transfer function ap-
proach can be applied, yielding a generated output optical
spectrum that is proportional to the spatial-frequency spec-
trum of the QPM grating, with a mapping Δk�ω� between
spatial and optical frequencies determined by the phase mis-
match. For more complicated pulsed interactions, RDC errors
can be incorporated into numerical simulations by perturbing
the grating phase function. In addition to the effects on
forward-propagating waves, we also considered the case of
backward-generating waves in random QPM gratings. When
reflections can be neglected, the normalized backward-
generated wave has the same form as the forward wave, but
evaluated at the spatial frequency associated with backward
phasematching, Δk− � kp − ks � ki.

RDC errors can play an important role in a number of
applications utilizing QPM gratings. We considered several
example device configurations, including QFC, OPCPA, and
OPOs. For systems involving high intensities (where RDC
errors can lead to high conversion efficiency of parasitic proc-
esses), very low intensities (where only a small RDC-error-
induced enhancement in parasitic nonlinear processes can
scatter too much light into wavelength ranges of interest),
and low-loss cavities (where RDC-enhanced nonlinear loss
mechanisms limit the achievable cavity enhancement), RDC
errors can be a critical consideration. For some applications,
RDC-related parasitic processes can be suppressed by system
design, while, for other applications, improvements in QPM
fabrication are required. Our analysis allows RDC errors
and their effects to be understood analytically and modeled
numerically, and should therefore be of use in a wide range
of applications.

APPENDIX A: RDC ERRORS IN PULSED
SYSTEMS
As discussed in Section 4, RDC errors can be particularly im-
portant in pulsed systems, where the intensities can be much
higher than in CW systems. When the two input pulses for a
SFG or DFG process experience negligible depletion and have
long enough durations that group velocity walk-off and GVD
effects between those two pulses can be neglected, the analy-
sis of Subsection 2.C applies, and the generated field can be
expressed in terms of ~gz�Δk�ω��. However, often depletion
and dispersion effects cannot be approximated in this way.
In these situations, equations governing the nonlinear interac-
tion must often be solved numerically.

One way to solve these equations is to propagate the elec-
tric field through each successive QPM domain individually,
accounting for the discrete reversals in the sign of d�z�. How-
ever, this layer-by-layer approach differs significantly from
the numerical methods often used to model pulsed QPM
interactions, in which the grating is first expanded in a (local)
Fourier series given in Eq. (11), and only the dominant (slowly
varying, strongly interacting) terms in the series are
retained [26,53].

An alternative way to describe RDC errors mathematically
is by a perturbation of the grating phase ϕ�z� appearing in
Eq. (11), since a change in this phase corresponds to a shift
in the domain boundary positions. For a given nonideal QPM
structure, there are an infinite number of possible ϕ�z� pro-
files for which Eq. (11) is satisfied. Of these profiles, we would
(ideally) choose the one(s) for which exp�iϕ�z�� has the nar-
rowest spatial-frequency bandwidth, so that the relevant prop-
erties and statistics of the grating can be described by a small
number of harmonic terms in Eq. (11). Rather than select this
ideal but unknown choice for a given grating, here we discuss
heuristic choices of ϕ�z� that maintain the important proper-
ties of the QPM noise pedestal.

To analyze phase profiles ϕ�z� with random perturbations,
we define ϕ0�z� to be the phase profile of the ideal structure,
such that the random phase perturbation is given by

δϕ�z�≡ ϕ�z� − ϕ0�z�: (A1)

Each time ϕ�z� passes through π∕2 or 3π∕2 corresponds to a
reversal in the sign of d�z�. To avoid artificially introducing
extra domains via δϕ, ϕ�z� should be increasing, i.e.,
dϕ∕dz > 0. Although this assumption could be violated for
large enough δϕ�z�, one way to maintain the monotonicity
of ϕ�z� (with high probability) is by limiting the magnitude
and rate of variation of δϕ�z�. We note that a somewhat similar
issue applies when assuming normally distributed discrete
RDC errors defined by δzn ≡ z�n� − z0�n� when calculating
~gz�k�, as in Section 2: with normally distributed errors, there
is a finite probability that jδznj > ΛD (which would lead to
unphysical situations, such as domains with negative length).
When dealing with large RDC errors, other statistical
assumptions could be made in order to avoid these types
of issues.

The shift δzn in domain boundary n due to RDC errors is
given, implicitly, by ϕ�zn0 � δzn� − ϕ0�zn0� � 0. This condition
can be re-written as

δϕ�zn0 � δzn� � −�ϕ0�zn0 � δzn� − ϕ0�zn0�� ≈ −Kg�z�δzn;
(A2)

where the latter relation assumes a constant or slowly varying
grating k-vector Kg�z�, where Kg�z�≡ dϕ0∕dz. The phase pro-
file should share (approximately) the statistical properties of
δzn; at a fixed z, δϕ�z� should thus be normally distributed,
and δϕ�z� should be negligibly correlated with δϕ�z� δx�
for jδxj > πKg�z�−1 (to ensure independent domain boundary
errors).

Phase profiles with the these properties can be constructed
with a Gaussian filter of white noise. Consider a filter with
form h�z� ∝ exp�−�z∕w�2� with spatial width w. The resulting
standard deviation of the phase δϕ�z� after filtering is given by
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σδϕ. Based on the above considerations, the parameterwmust
satisfy

σδϕ ≪ Kgw ≪ π; (A3)

where the first condition leads to the monotonicity of ϕ�z�,
and the second condition leads to weak correlations between
neighboring domains. Equation (44) can be satisfied only for
small RDC errors (i.e., small σδϕ).

The assumption of normally distributed RDC errors may
not always be accurate. Furthermore, the statistical properties
of the QPM noise pedestal might sometimes be less important
than generating a noise pedestal that has the correct magni-
tude, extends over the relevant spatial-frequency region (de-
fined by the optical frequencies involved), and can be applied
to numerical simulations. In such cases, use of a non-Gaussian
filter may be more expeditious. For example, consider a sinc
filter with spatial-frequency extent 2Kg. With δϕ�z� deter-
mined via convolution with this filter, the Fourier spectrum
of each QPM order, ~g�m�

z �k� [Eq. (12)], extends over a range
2Kg; summing over all QPM orders, a reasonably flat QPM
noise pedestal is produced. This sinc filter yields a noise
pedestal at all spatial frequencies after summing over all gra-
ting orders, while only requiring a single grating order to be
included for any given nonlinear interaction (i.e., the odd-
integer value of m that minimizes jmKg − Δkoptj, where
Δkopt represents the phase mismatch of the process being
modeled).

When a narrow spectral region of the QPM noise pedestal is
of interest, a corresponding narrower bandwidth spatial filter
for ϕ�z� might be used; this case is illustrated in Fig. 5.
Although the δϕ�z� corresponding to this approximately
band-limited noise power spectrum violates the assumed
statistical independence of the QPM domains, the reduction
in required spatial resolution compared to the Gaussian
filter is substantial. In general, provided that a smooth and
continuous ϕ�z� can be specified for any individual numerical
simulation, useful descriptions of RDC errors can be incorpo-
rated efficiently and straightforwardly into standard numeri-
cal models of pulsed nonlinear interactions in QPM media.
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Chirped quasi-phasematching (QPM) optical devices offer the potential for ultrawide bandwidths, high conversion
efficiencies, and high amplification factors across the transparency range of QPMmedia. In order to properly take
advantage of these devices, apodization schemes are required. We study apodization in detail for many regimes of
interest, including low-gain difference frequency generation (DFG), high-gain optical parametric amplification
(OPA), and high-efficiency adiabatic frequency conversion (AFC). Our analysis is also applicable to second-
harmonic generation, sum frequency generation, and optical rectification. In each case, a systematic and opti-
mized approach to grating construction is provided, and different apodization techniques are compared where
appropriate. We find that nonlinear chirp apodization, where the poling period is varied smoothly, monotonically,
and rapidly at the edges of the device, offers the best performance. We consider the full spatial structure of the
QPM gratings in our simulations, but utilize the first order QPM approximation to obtain analytical and semi-
analytical results. One application of our results is optical parametric chirped pulse amplification; we show that
special care must be taken in this case to obtain high gain factors while maintaining a flat gain spectrum. © 2013
Optical Society of America

OCIS codes: (190.4360) Nonlinear optics, devices; (230.7405) Wavelength conversion devices; (190.4970)
Parametric oscillators and amplifiers; (320.7080) Ultrafast devices.
http://dx.doi.org/10.1364/JOSAB.30.001551

1. INTRODUCTION
Chirped (aperiodic) quasi-phasematching (QPM) gratings
have received attention for various optical frequency conver-
sion schemes, including difference frequency generation
(DFG), optical parametric amplification (OPA), sum fre-
quency generation (SFG), optical parametric oscillators
(OPOs), and many other applications [1–23]. Their main role
so far has been to broaden the phasematching bandwidth
compared to conventional periodic QPM gratings, without
the need to use short crystals with reduced conversion effi-
ciency, tighter focusing, or higher intensities. This broadening
can be understood through a simple spatial frequency argu-
ment: due to dispersion, there is a mapping between phase-
matched frequency and grating k-vector; in chirped QPM
gratings, the grating k-vector is swept smoothly over the range
of interest, thereby broadening the spatial Fourier spectrum of
the grating and hence the phasematching bandwidth.

For continuous wave (cw) interactions involving the
generation of a weak wave from two undepleted waves, the
generation of the output wave can be described in terms of
the spatial Fourier transform of the QPM grating evaluated
at the spatial frequency corresponding to the phase mismatch
associated with the three-wave interaction [2]. This type of
interaction corresponds, for example, to negligible pump
depletion and low signal amplification in OPA, or to second-
harmonic generation (SHG) with negligible pump depletion.
Since the nonlinear polarization is abruptly turned on at the
edges of the nonlinear crystal, this QPM transfer function
exhibits an interference effect associated with the corre-
sponding high spatial frequency components. Such a spectral
ripple is highly undesirable in most applications.

In order to remove the spectral ripple, apodization tech-
niques may be employed to bring some measure of
the effective nonlinearity smoothly to zero [1,24–27]. Several
schemes have been proposed, including deleted domains,
duty cycle variation, waveguide tapering [24], the use of non-
linear chirp profiles [1], and step-chirp designs [26].

In the context of apodization, we take linearity to mean that
the output wave of interest is linear in the nonlinear coeffi-
cient d�z�. In many cases of practical interest, the assumption
of linearity does not hold. For example, in high-gain OPA
employing chirped QPM gratings, apodization is particularly
important [1]. Furthermore, relatively recently it has been
shown that saturated nonlinear interactions in chirped QPM
gratings can exhibit high efficiencies due to an adiabatic
following process [7,8]. As a result of this process, for
three-wave mixing (TWM) processes involving input pump
and signal waves and a generated idler wave, the ratio of
pump output and input intensities approaches 0 with respect
to both the input signal and pump intensities, i.e., approaches
100% pump depletion. This behavior, termed adiabatic fre-
quency conversion (AFC), occurs for interactions that are
both plane wave and monochromatic, provided that the
QPM grating is sufficiently chirped.

In this paper, we study apodization for various different
types of operating regimes of interest to chirped QPM devices,
including low-gain and low-efficiency interactions such as
DFG, high-gain OPA interactions, and even AFC. We show
how apodization profiles can be constructed systematically,
and how their construction can be connected with the under-
lying structure of the TWM process in an intuitive way. This
approach enables high performance, limited only by the
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inherently discrete QPM grating structure. We analyze all of
the designs presented in detail numerically, in particular tak-
ing into account the full nonlinear evolution of the coupled
waves in the actual discrete QPM structure (as opposed to as-
suming a simplified first order QPM interaction). Our study
will enable the continued development of many different
chirped QPM devices and technologies.

In Section 2, we establish the CWEs that will be used in the
remaining sections. In Section 3, we solve these equations for
the simple case of DFG in a chirped QPM grating, highlighting
the connection between these solutions and the eigenmodes
of the relevant CWE. In Section 4, we determine and compare
apodization profiles for the linear cases [corresponding to
DFG, SFG, SHG, optical rectification (OR), etc.]. In Section 5,
we consider the case of high-gain OPA in chirped QPM
devices, and establish and compare apodization techniques.
In Section 6, we introduce AFC, and show in detail how these
interactions can be analyzed and understood using the
geometrical analysis of TWM processes developed in [28].
In Section 7, we develop apodization procedures for AFC via
this geometrical analysis. We give an example apodization
profile designed for the case of a moderate-gain, high-pump-
depletion OPA device. Our results show that for all of the
above types of interactions, and particularly for OPA and AFC,
nonlinear chirp apodization offers significant advantages over
other approaches, such as deleted domain apodization (DDA).
Last, we conclude and discuss several important practical as-
pects of our results in Section 8.

2. COUPLED WAVE EQUATIONS
In this section, we introduce the equations governing arbitrary
TWM processes in QPM devices. We consider plane wave,
quasi-cw interactions, for which each signal frequency mixes
with a single pump and idler frequency. Even for non-cw inter-
actions, this assumption is very useful for studying TWM proc-
esses, for example, in optical parametric chirped pulse
amplification (OPCPA) systems.

A. Three-Wave Mixing
In the quasi-cw approximation, the evolution of the electric
field in the QPM grating is given by the coupled wave equa-
tions (CWEs) [29]:

dAi

dz
� −i

ωid0

nic
d̄�z�A�

s Ape
−iΔk0z; (1a)

dAs

dz
� −i

ωsd0

nsc
d̄�z�A�

i Ape
−iΔk0z; (1b)

dAp

dz
� −i

ωpd0

npc
d̄�z�AiAse

�iΔk0z; (1c)

where subscripts i, s, and p denote quantities associated with
the idler, signal, and pump envelopes, respectively. The nor-
malized nonlinear coefficient d̄�z� is defined in terms of the
spatially varying nonlinear coefficient d�z� as d̄�z� �
d�z�∕d0, where d0 is the nonlinear coefficient in the unmodu-
lated material. ωj is the angular optical frequency of wave j

(these satisfy ωp � ωi � ωs), and nj is refractive index of
wave j. The material phase mismatch Δk0 is given by

Δk0 � kp − ks − ki, where kj � ωjnj∕c is the wavevector for
wave j. The electric field envelopes Aj are assumed here
for simplicity to contain only a single frequency component,
and are defined such that the total electric field is given by

E�z; t� � 1
2

X
j

Aj�z� exp�i�ωjt − kjz�� � c:c:; (2)

where c.c. denotes complex conjugate.
Note that when pulsed interactions are analyzed within the

quasi-cw limit, a set of CWEs similar to Eqs. (1) should be
found, and expressed in the frequency domain, since the
coupling coefficients �ωjd0�∕�njc� and phase mismatch Δk are
frequency dependent.

B. Quasi-Phasematching
Equations (1) apply for arbitrary spatial profiles of the nonlin-
ear coefficient d�z�, provided that backward waves can be
neglected. In a QPM grating, d � �d0. Because of this con-
straint, it is possible to write arbitrary QPM grating profiles
in a Fourier series:

d̄�z�≡ d�z�
d0

� sgn�cos�ϕG�z�� − cos�πD�z��� (3a)

� �2D�z� − 1� �
X∞

m � −∞
m ≠ 0

2 sin�πmD�z��
πm

exp�imϕG�z��;

(3b)

where D�z� and ϕG�z� are the grating duty cycle and phase
functions, respectively. Often, D�z� ≈ 0.5 by design, due to
QPM fabrication limitations [30], minimization of photorefrac-
tive effects [31–33], and also in order to maximize the ampli-
tude of the first Fourier order (m � �1) in Eq. (3), but we
consider more general cases here. In chirped QPM gratings,
the phase function can be expressed as

ϕG�z� � ϕG�zi� �
Z

z

zi

Kg�z0�dz0; (4)

where Kg�z� is the smooth and continuous local grating
k-vector (or local spatial frequency), and ϕG�zi� is a chosen
initial phase. zi and zf denote the positions of the input
and output ends of the grating. Note that we do not assume
zi � 0, and therefore the exp�−ikjz� phase factors in Eq. (2)
must be accounted for in determining the input envelopes
Aj�zi� given a known input electric field E�zi; t�.

In an interaction where only one Fourier order of the QPM
grating is close to the phasematching condition, d̄�z� can be
approximated by considering only the�mth terms in Eq. (3b).
In particular, for a first order QPM interaction, Eqs. (1)
become

dAi

dz
� −iκi�z�A�

s Ape
−iϕ1�z�; (5a)

dAs

dz
� −iκs�z�A�

i Ape
−iϕ1�z�; (5b)

1552 J. Opt. Soc. Am. B / Vol. 30, No. 6 / June 2013 Phillips et al.

DISTRIBUTION A: Distribution approved for public release.



dAp

dz
� −iκp�z�AiAse

�iϕ1�z�: (5c)

In these equations, the coupling coefficients κj�z� are given by

κj�z� �
ωjd0

njc

2
π

sin�πD�z��; (6)

and the accumulated phase mismatch ϕ1�z� is given by

ϕ1�z� � ϕ1�zi� �
Z

z

zi

Δk1�z0�dz0; (7)

where the local phase mismatch is given by

Δkm�z� � kp − ks − ki −mKg�z�; (8)

for integer m (the QPM order), and ϕ1�zi� corresponds to the
relative phase between the three envelopes and their driving
terms at the input of the device. Usually, one of the envelopes
is initially zero, and in such cases ϕ1�zi� has no effect on the
dynamics. The first order QPM approximation is often very ac-
curate in practical situations, as wewill show later in this paper.

C. Normalized Coupled Wave Equations
For the purposes of analysis and numerical simulations, it is
often useful to normalize Eqs. (5). The photon flux of wave j

is proportional to �nj∕ωj�jAjj2. Motivated by energy conserva-
tion, and in particular by the Manley–Rowe relations, we in-
troduce dimensionless envelopes aj whose square magnitudes
are proportional to these photon fluxes. These envelopes are
implicitly defined with

Aj �
�����
ωj

nj

r ����������������������������X
n

nn

ωn

jAn0j2
s

aj: (9)

In these definitions, An0 is the envelope of wave n at the input
to the grating. With these definitions, Eqs. (5) become

dai

dz
� −ig�z�γa�s ape−iϕ1�z�; (10a)

das

dz
� −ig�z�γa�i ape−iϕ1�z�; (10b)

dap

dz
� −ig�z�γaiase�iϕ1�z�; (10c)

where g�z� � sin�πD�z��, and the coupling coefficient γ is
given by

γ �
����������������
ωiωsωp

ninsnp

r ��������������������������X
j

nj

ωj

jAj0j2
s

2d0
πc

: (11)

ϕ1�z� is defined in Eq. (7). The input conditions for Eqs. (10)
satisfy, in all cases,

X
j

jaj�zi�j2 � 1: (12)

Furthermore, we could also introduce a dimensionless
propagation coordinate ζ � γz; however, for clarity we work
with physical units instead. An analogous set of normalized
CWEs could be obtained, accounting for the full spatial
dependence of the QPM grating [d̄�z� � �1]. The only
differences would be substituting g�z� → πd̄�z�∕2, and
ϕ1�z� → Δk0z [see Eqs. (1)].

3. LOW-GAIN, LOW-DEPLETION DEVICES
To begin our study, we first consider cases in which only the
generated idler wave in Eqs. (10) changes substantially; the
other two envelopes propagate linearly, i.e., without depletion,
amplification, or nonlinear phase shifts, and hence are con-
stant. This type of configuration, while quite simple, is appli-
cable to many different types of devices, and can help guide
intuition for more complicated cases. We will always assume
in this paper that one of the waves is zero at the input of the
grating. For definiteness we choose this to be the idler wave,
but our results apply to other cases, with minor modifications.

The generated wave, found by integrating Eq. (1a), can be
expressed as

Ai�zf � � −i
ωid0

nic
A�
s ApF �d̄�z���Δk0�; (13)

where the F denotes the Fourier transform, defined as
F �f �z���k� � R

∞
−∞ f �z� exp�−ikz�dz. Eq. (13) holds for arbitrary

QPM structures, for which d̄�z� � �1 within the interval
�zi; zf � and d̄�z� � 0 elsewhere. An important consequence
of this Fourier transform relation is that in a device of finite
length, the idler spectrum acquires a ripple, due to interfer-
ence associated with the abrupt changes in d̄�z� at zi and zf .
The same argument applies if we consider only the first Fou-
rier order of the grating, as in Eqs. (5) and (10). In Section 4,
we discuss apodization functions to suppress such spectral
ripples. In this section, we show solutions for the particular
case of a linearly chirped QPM grating, and use that solution
to introduce a heuristic for constructing apodization functions
for general chirped QPM gratings.

A. Analytical Solution
For a linearly chirped grating, given by Kg�z� � Kg�zi� −
Δk0�z − zi� for constant chirp rate Δk0. In this case, the phase
ϕ1�z� in Eqs. (10) is given by

ϕ1�z� � ϕ1�zi� �
Δk0

2
��z − zpm�2 − �zi − zpm�2�; (14)

where zpm is the phasematched point, satisfying Kg�zpm� �
Δk0. Assuming ϕ1�zi� � 0 and a constant QPM duty cycle
[g�z� � g0 � constant for zi ≤ z ≤ zf ], we integrate Eq. (10a)
to obtain a normalized output idler field under the first order
QPM approximation. The result is

ai�z� � −
1
2
a�s apeiπ∕4eiΔk

0�zpm−zi�2∕2

���������������
2πγ2g20
Δk0

s

×

�
erf

� ���
2

p
eiπ∕4

��������
Δk0

p
�zpm − zi�

�

�erf
� ���

2
p

eiπ∕4
��������
Δk0

p
�z − zpm�

��
; (15)
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where erf is the error function. Based on Eq. (15), the gener-
ated idler (at z � zf ) exhibits a significant ripple in amplitude
and phase as a function of zpm, and hence as a function of
phase mismatch Δk0 (based on the mapping between Δk0
and zpm), and thus on optical frequency ω (based on the map-
ping between Δk0 and ω). A mathematically simple way to
suppress this ripple is by extending the QPM grating length
L to infinity, i.e., zi → −∞ and zf → �∞. In these limits,
the (asymptotic) output idler field is given by

a
�L→∞�
i �

8<
:−i

���������������
2πγ2g20
jΔk0j

s
e−iπ sgn�Δk

0�∕4e
�
iΔk

0
2 �zpm−zi�2

�

� γg0
Δk1�zf �

e

�
iΔk

0
2 ��zpm−zi�2−�zf −zpm�2�

�
−

γg0
Δk1�zi�

9=
;a�s ap;

(16)

where Δk�zf �−1 → 0 as zf → ∞, and similarly Δk�zi�−1 → 0 as
zi → −∞. The second and third terms in this equation, whose
phase oscillates rapidly compared to that of the first term,
eventually vanish, yielding a magnitude that is independent
of zpm (and hence frequency). In this case, the nonlinear in-
teraction is turned on and off smoothly by the gradual transi-
tion from large to small phase mismatch; the result is an
apodized interaction.

Further insight can be gained by examining Eq. (10a). In the
case of a constant grating duty cycle and a constant, finite
phase mismatch, Eq. (10a) supports idler eigenmodes: solu-
tions whose magnitude is independent of z. We define these
eigenmodes in the general case [with varying g�z� and Δk�z�,
but still maintaining the assumption of constant signal and
pump envelopes] as

a
�eig�
i �z� � γg�z�

Δk1�z�
a�s ape−iϕ1�z�: (17)

If Δk�z� and g�z� are constant, this eigenmode is a solution to
Eq. (10a). Based on Eq. (16), we also define the “zeroth-order”

idler as a
�0�
i � −i

���������������������������
2πγ2g20∕jΔk0j

q
a�s ape−iπ sgn�Δk

0�∕4. With these

definitions, Eq. (16) can be written in the following form:

a
�L→∞�
i �zf � � a

�0�
i e−iϕ1�zpm� � a

�eig�
i �zf � − a

�eig�
i �zi�; (18)

with spectral ripples essentially originating from the nonzero
values of the idler eigenmode at the input and output ends of

the device (a�eig�i �zi� and a
�eig�
i �zf �, respectively). This form

usually applies even for gratings with monotonic but spatially
varying chirp rates and can, in these more general cases, be
understood via the stationary phase approximation [34].
Apodization can thus be viewed as reducing the magnitude
of idler eigenmode to zero (or close to zero) sufficiently
slowly. The connection between eigenmodes of the TWM in-
teraction and apodization is quite general, and even applies for
other, more complicated types of interactions [7], as we dis-
cuss in Section 7. Such eigenmodes are also connected with
the cascaded phase shifts acquired during phase mismatched
χ�2� interactions [35]. To illustrate Eq. (18) and its accuracy,
we show in Fig. 1 the propagation of the idler as a function
of z for a particular linearly chirped grating.

B. Adiabaticity Heuristic
In this subsection, we will use Eqs. (17) and (18) to develop a
heuristic criterion by which apodization profiles can be con-
structed. These apodization regions will be appended to the
ends of a nominal grating profile (e.g., linearly chirped); we
illustrate different types of apodization in Section 4.

The essential idea is to impose changes in g�z� and Δk1�z�
such that the ratio g�z�∕jΔk1�z�j ≪ 1 at z � zi and z � zf , and
for this change to be slow enough that the idler eigenmodes
Eq. (17) are still accurate local solutions to Eq. (10a). Inspecting
Eq. (17), away from zpm, the eigenmodes have a slowly varying
amplitude and rapidly varying phase. Our heuristic is to main-
tain this structure (phase varying much more rapidly than
relative changes in amplitude), which leads to the condition

����
�

γg

Δk1

�
−1 d

dz

�
γg

Δk1

����� ≪
���� ddz �e−iϕ1 �

����: (19)

In a QPM device supporting a wide spectral bandwidth, this
condition must be met for all the spectral components of inter-
est, and hence for all values of zpm, at all positions zwithin both
the input and output apodization profiles. Evaluating the deriv-
atives in Eq. (19) and replacing the ≪ by ≤ϵ for “small” ϵ > 0,
we thus find, within the apodization regions,

max
ω

	����1g dgdz − 1
Δk1

dΔk1
dz

���� − ϵjΔk1j


≤ 0; (20)

where maximization with respect to ω is performed over the
spectral range of interest. This equation can be used to con-
struct differential equations for apodization profiles in which
Kg�z�, g�z�, or both, or a related quantity, are varied nonlinearly
with position. In Section 4, we consider specific apodization
examples based on this adiabaticity equation.

|a
i|2

|∆k’|1/2(z-zpm)

Exact idler
Estimate

−15 −10 −5 0 5 10 15

10
−4

10
−2

10
0

Fig. 1. Evolution of the idler ai in a linearly chirped QPM grating, for
a DFG interaction. The solid (blue) line shows the numerical solution
of Eq. (10a), corresponding to (and indistinguishable from) the ana-
lytical solution given by Eq. (15). The dashed (black) line shows the
asymptotic solution corresponding to Eq. (18). A normalized propaga-
tion coordinate, given by ξ �

�����������
jΔk0j

p
�z − zpm�, is used. The idler in

each curve is normalized to ja�0�i j2 [defined by Eqs. (16) and (18)].

The dashed (black) curve shows �a�eig�i �z� − a
�eig�
i �zi�� for ξ < −0.5,

and �a�eig�i �z� − a
�eig�
i �zi� � a

�0�
i exp�−iφ1�zpm��� for ξ > 0.5. The input,

phasematching, and output points correspond to ξ � −15, ξ � 0,
and ξ � 15, respectively. Because of the way the figure has been
normalized, there are no other free parameters in the calculation.
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4. QPM APODIZATION TECHNIQUES
In this section, we use Eq. (20) to construct apodization
regions for nominally chirped QPM devices, and compare dif-
ferent apodization techniques. We assume that there is a nomi-
nal, unapodized chirp profile Knom�z� that has already been
chosen, and show how to determine apodization profiles that
are appended to the ends of this nominal profile in order to
suppress the spectral ripples that would otherwise occur.

A. Nonlinear Chirp (NLC) Apodization
First, we consider nonlinear chirp apodization (NLCA). In
this case, there is a constant duty cycle, dg∕dz � 0, but a spa-
tially varying chirp rate dΔk1∕dz. Therefore, Eq. (20) can be
written as

sc
dKg

dz
� ϵmin

ω
f�Δk0�ω� − Kg�z��2g; (21)

where sc � −sgn�Δk0� is the sign of the grating chirp rate, and
we have replaced the ≤ with� (assuming that the inequality is
strict for the extrema of the spectrum). Eq. (21) can be ex-
pressed in a more explicit form by distinguishing between
the input and output ends of the grating, and by treating Kg

as the integration variable rather than z (which is possible since
we assume monotonic chirp functions):

sc
dKg

dz
�

	
ϵ�K− − Kg�2 if Δk�z;ω� > 0;
ϵ�K� − Kg�2 if Δk�z;ω� < 0;

(22)

where K− � minω�Δk0�ω�� and K� � maxω�Δk0�ω�� (with min
and max performed over the frequency range of interest).
Within each apodization region, Eq. (22) can be solved analyti-
cally, yielding the following implicit equation:

1
Kg�z� − K�

−
1

Kb;� − K�
� ϵsc�z − zb;��; (23)

where zb;� and Kb;� represent boundary conditions. These
boundary conditions can be determined from the fact that
we append apodization regions to a nominal QPMprofile, under
the assumption that Kg and dKg∕dz must be continuous at the
apodization boundaries. These boundaries are therefore the
points at which the chirp rate in Eq. (22) equals the nominal
chirp rate. Explicitly, for a nominal profile Knom�z� and chirp
rate dKnom∕dz≡ Knom;z, zb;� and Kb;� are the solutions to the
following equations:

Knom;z�zb;�� � ϵsc�K� − Kb;��2; (24a)

Kb;� � Knom�zb;��: (24b)

Given the solution to Eq. (24), we can now specify the full form
of the grating:

Kg�z� �

8>><
>>:
K− � �ϵsc�z − zb;−� � �Kb;− − K−�−1�−1 for Kg�z� < Kb;−:

Knom�z� for Kb;− ≤ Kg�z� ≤ Kb;�:

K� � �ϵsc�z − zb;�� � �Kb;� − K��−1�−1 for Kg�z� > Kb;�:

(25)

Note that the equation for Kg�z� in the apodization regions
diverges with respect to z. Therefore, for a real grating, initial
and final values of Kg�z� must be chosen. In choosing these
values, we must bear in mind that the final values of
γ�ω�g�z�∕Δk1�z;ω� determine the fidelity of the apodization,
but only to the extent that the first order QPM contribution
(m � 1) dominates. The existence of other QPM orders means
that, eventually, increases in Δk no longer suppress spectral
ripple. In an extreme case of Kg�z� passing through phase-
matching for third-order QPM, for example, the spectral ripple
could actually be made worse. The limits on Kg�z� are thus
determined by a trade-off between apodization fidelity, fabrica-
tion constraints, higher-order-QPM contributions, and poten-
tially other issues as well. We expect that in most practical
cases, these issues will not substantially limit the performance
of the apodized device. Note also that, in a practical device, it
may be useful to reduce the chirp rate at the edges of the gra-
ting so that the range of Kg�z� is not sensitive to changes in
crystal length that occur during polishing. We discuss this
further in Subsection 8.B.

In Subsections 4.B and 4.C, we discuss two other apodiza-
tion techniques. In Subsection 4.D, we show example apodiza-
tion profiles and corresponding idler spectra (Fig. 2).

B. Duty Cycle Apodization
Another approach to suppressing spectral ripples is by apod-
izing g�z� instead of Δk1. In principle, changes in g�z� can be
implemented via changes in the QPM duty cycle D�z�. There-
fore, we refer to this approach as duty cycle apodization
(DCA). For this case, we can again assume a known, nominal
chirp function (e.g., a linear chirp), and substitute this func-
tion into Eq. (20). Analogously to Eq. (21), we find the follow-
ing differential equation for g�z�, suitable for a finite and
monotonic nominal chirp rate:

sg0
1
g

dg

dz
� min

ω

(
−sg0

1
Δk0�ω� − Kg�z�

dKg

dz

×

"
1 −

����������������������������������������������
1� ϵ2

�Δk0 − Kg�z��4
�dKg∕dz�2

s #)
; (26)

where sg0 � sgn�dg∕dz�. This equation can be used to deter-
mine g�z� in a similar way to the NLCA case discussed in
Subsection 4.A, but we omit the mathematical details here.

C. Deleted Domain Apodization
In lithographic poling, it is often challenging in practice to ob-
tain a custom duty cycle function, due to the dynamics of the
poling process [30], particularly for MgO:LiNbO3 poling [36].
Instead, the voltage waveform used for poling is usually chosen
to yield as close to a 50% duty cycle as possible. Such gratings
are also advantageous in order to suppress photorefractive
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effects [31], including recently identified pyroelectrically
induced beam distortions [32,33].

If duty cycle modulation is not possible, a continuously
varying first order QPM coefficient g�z� cannot be achieved.
An alternative approach is to use a discrete approximation to
the desired continuous g�z� profile, as demonstrated in [24].
In this scheme, QPM domains are “deleted” (not inverted) in
order to reduce the effective duty cycle of the grating, aver-
aged over many periods. Therefore, we call this approach de-
leted domain apodization (DDA). To express this approach
mathematically, we assume that the grating has N periods
with center positions zn and length ln�n � 1;…; N�, and either
50% (gn � 1) or 0% (gn � 0) duty cycle. The spatial profile of
the grating is then given by

d̄�z� � 1 −
X
n

2gnΠln∕2�z − zn�; (27)

where Πl�z� is the rectangle function (with width l and
center 0). The integral of �1 − d̄� should then be a good
approximation to the target profile g�z�:

X
n

gn

Z
z

zi

2Πln∕2�z0 − zn�dz0 ≈
Z

z

zi

g�z0�dz0: (28)

A simple way to obtain each gn from this approximate relation
is to initially assume gn � 1, and then reverse the sign of gn�1

whenever, for a position z ≈ zn � ln∕2, the left hand side of
Eq. (28) exceeds the right hand side.

D. Comparison and Discussion
In this subsection, we compare the three apodization tech-
niques described in Subsections 4.A–4.C (NLCA, DCA, and
DDA, respectively). We choose an example with the following
parameters. The grating center spatial frequency Kg0 �
3 × 102 mm−1 (≈21 μm period), nominal length Lnom �
10 mm, nominal bandwidth ΔkBW � 20 mm−1, and positive
chirp rate Δk0 � �ΔkBW∕Lnom � 2 mm−2. Apodization pro-
files are found via the preceding differential equations, and
we choose ϵ � 0.5 in each case (for ϵ > 1, the apodization
fidelity decreases). For the NLCA example, the range of
k-vectors, jKg�zf � − Kg�zi�j � 200 mm−1, and the apodized
grating length is L � zf − zi � 14 mm. For the DCA and DDA
examples, g�zf � � g�zi� � 0.052, and the apodized grating
length is L � zf − zi � 16 mm. The resulting idler spectrum
for phase mismatches in the vicinity of first order QPM is
shown in Fig. 2. The NLCA profile is found according to
Eq. (25); the DCA profile according to Eq. (26), and the
DDA example is determined from the DCA profile combined
with Eq. (28).

The NLCA and DCA cases show the best ripple suppres-
sion, while the DDA case still has a substantial ripple in this
example. The NLCA ripple is limited by the range of QPM peri-
ods and presence of higher order QPM terms. In cases where
precise control of the duty cycle is not possible over a wide
range of periods, even orders of the grating will contribute
as well, so second-order QPM contributions represent one
possible limiting factor for the NLCA approach. These issues
are difficult to quantify in general, so we have restricted the
example to a range of Kg�z� far from higher-order QPM. The
DCA ripple will be limited by the range of duty cycles that can
be fabricated reliably. This range is typically quite restricted,

and therefore the high performance of the DCA example may
not be achievable in practice. Furthermore, the length of the
apodization region will usually be longer for DCA compared
with NLCA.

While DDA is not limited by duty cycle fabrication issues,
the DDA example exhibits poorer performance than DCA,
due to the non-negligible k-space bandwidth, compared to
the nominal grating k-vector. Consequently, the implicit
assumption of a small change in relative phase between the
idler and its driving polarization between the remaining unde-
leted domains does not hold. More specifically, to achieve a
low effective nonlinearity, there must be a large gap between
undeleted domains. Since all of the spectral components of
interest are phase mismatched in the apodization regions for
a chirped grating, this gap can correspond to a large relative
phase shift between the idler and its driving polarization. Such
large phase shifts likely prevent the interference that would,
for the case of a smooth duty cycle modulation, (almost) com-
pletely suppress the input and output eigenmodes (and hence
the spectral ripples). This issue is particularly important for
gratings with a broad k-space bandwidth, such as the example
shown in Fig. 2. On the other hand, for periodic QPM gratings,
such as those discussed in [24], the underlying assumption of a
slowly varying relative phase holds very well, and DDA is
effective in such cases.
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Fig. 2. Apodization examples for DFG, calculated numerically via
Eq. (1a), using the full d̄ � �1 grating structure. (a) Nonlinear chirp
apodization (NLCA), (b) duty cycle apodization (DCA), (c) deleted
domain apodization (DDA) with a domain profile determined from
the DCA example in (b). The parameters are given in the text.
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Since DCA is challenging in terms of fabrication and
DDA exhibits reduced performance, the NLCA approach will
be favorable in most chirped QPM-grating cases. These
conclusions are especially valid in more complicated inter-
actions involving high gain or pump depletion. An example of
the poorer performance of DDA compared with NLCA in a
high-gain interaction is shown in Section 5.

In each of the above apodization approaches, the absolute
scale of the amplitude ripple remaining in the apodized device
is determined by fabrication and QPM constraints, such as the
presence of higher-order QPM contributions, and is indepen-
dent of grating length. In contrast, the scale of the “zeroth-
order” term [a�0�i in Eq. (18)] increases with grating length
for a given bandwidth, since in a longer device the chirp rate
can be reduced. Therefore, the relative scale of the ripples is
reduced in longer devices. Note, however, that the range of
group delays associated with any remaining spectral ripples
is not reduced, and may increase.

5. OPTICAL PARAMETRIC AMPLIFICATION
We now turn our attention to high-gain and high-efficiency
devices. In this section, we consider chirped QPM OPA. Such
devices have several advantageous properties, including
the potential for high gain, almost arbitrary gain bandwidth,
tailorable gain and phase spectra, and high conversion effi-
ciency [1,4,5,7]. They have been used in a mid-infrared OPCPA
system, enabling broad bandwidth, high power, and high-
repetition rate operation [9,10].

A critical consideration in obtaining high-fidelity amplifica-
tion from these devices is apodization. Without apodization,
there is a pronounced ripple in gain and phase; this ripple
can be much more severe than in the linear cases (e.g., DFG),
due to the high gain involved. The presence of such a ripple
can be explained heuristically by the abrupt turn-on and turn-
off of nonlinear coupling between the signal and idler fields at
the edges of the device, in analogy to the simpler case of DFG.
Here, we build on the theoretical work presented in [1] to
show how optimal OPA apodization profiles can be con-
structed. Our approach is similar in spirit to the one presented
in Section 4 for DFG apodization.

A. Overview of Chirped QPM OPA
We first give a brief theoretical description of chirped QPM
OPA interactions, under the assumption of a cw (or quasi-
cw) pump wave, which is undepleted and much stronger than
the signal and idler waves (jaij ≪ japj and jasj ≪ japj). In this
case, the amplification of each signal spectral component
(and corresponding idler component) is governed by
Eqs. (10a) and (10b). By defining new envelopes bj according

to aj�z� � g�z�1∕2 exp�−iϕ1�z�∕2�bj�z� for j � i and j � s, the
following second-order equation can be obtained from
Eqs. (10a) and (10b) [1]:

d2bs

dz2
� Q�z�bs; (29)

where the “potential” Q�z� is given by

Q � −�γg�2 � 1
2
d

dz

�
g0

g

�
−
iΔk0

2
−
1
4

�
g0

g
− iΔk

�
2
; (30)

where f 0 � df∕dz for function f �z�. This potential is position
dependent (via g�z� and Kg�z�) and frequency dependent
(via γ�ω� and Δk0�ω�).

Equation (29), which is in standard form, is amenable to
complex Wentzel–Kramers–Brillouin (WKB) analysis. This
analysis yields several important results for device operation
[1]. In particular, for smoothly chirped gratings, the signal in-
tensity gain can be approximated according to

ln�Gs�ω�� ≈ 2
Z

zf

zi

Re

���������������������������������������������������������������������
�g�z�γ�ω��2 −

�
Δk0�ω� − Kg�z�

2

�
2

s
dz;

(31)

which, in the case of a constant grating chirp rate
(Δk0 � ∂Δk∕∂z) and a 50% duty cycle (g � 1), yields Gs �
exp�2πγ2∕jΔk0j� for spectral components within the gain band-
width. Equation (31) shows that gain occurs for each spectral
component ω over the spatial region for which the signal-idler
coupling, g�z�γ�ω�, is sufficiently large compared with the
phase mismatch, Δk�z;ω� � Δk0�ω� − Kg�z�. Outside this
spatial region, the signal and idler waves are oscillatory.
The points where the integrand in Eq. (31) is zero are called
turning points. The gain bandwidth can be determined from
Eq. (31) as the range of frequencies for which both turning
points lie within the grating. For the case of a linear grating
chirp, this bandwidth is given implicitly as the range of
frequencies ω whose phase mismatch Δk0�ω� lies within
the following range:

	
ω∶�Δk0�ω� − Kg0� ∈

�
−
jΔk0Lj

2
� 2γ�ω�;�jΔk0Lj

2
− 2γ�ω�

�

;

(32)

for center grating k-vector Kg0.
Outside the gain region, the waves are oscillatory versus

position, leading to fluctuations of the output waves versus
frequency, and consequently a ripple in the output spectrum
(since the oscillations of different spectral components have
different phase). These properties are illustrated in Fig. 3,
where we show the propagation of a single spectral compo-
nent. The figure shows both an unapodized and an apodized
case. Apodized and unapodized gain spectra are shown later,
in Fig. 4, after we have discussed an apodization scheme.

B. Apodization Constraint for Chirped QPM OPA
The oscillatory behavior shown in Fig. 3 can be understood as
interference associated with the two complex WKB global
asymptotic solutions of Eqs. (29) (see, for example, the appen-
dices of [1]). The role played by these global solutions in the
context of amplitude oscillations is twofold: first, the assumed
input conditions to the device (zero idler, finite signal) imply
that the signal consists of a complex linear superposition of
these two global solutions. Second, the global solutions them-
selves are oscillatory. Given such oscillations, frequency-
dependent changes in the phasematched point lead to oscil-
lations in the gain spectrum.

These spectral oscillations can be suppressed by sup-
pressing oscillations in the WKB solutions, which is achieved
by the condition jν�z�j ≫ 1 for z � zi and z � zf , where ν is
defined as
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ν�z�≡ Δk1�z�
2γg�z� : (33)

The jν�zi�j ≫ 1 condition ensures that the input conditions
correspond to one of the two global solutions (very small con-
tribution from the other solution) [Eqs. (C4) and (C5) of [1]].
The jν�zf �j ≫ 1 condition suppresses ripples on this global
solution [Eq. (C3) of [1]].

These conditions are also quite closely related to the idler
eigenmodes of Eq. (17). Indeed, for large phase mismatches,
Eqs. (10a and 10b) support two local signal-idler eigenmodes
whose amplitudes would be constant with respect to
position in the case of a constant and large phase mismatch
and constant duty cycle. These eigenmodes may be deter-
mined by substituting ai � ai0 exp�i R z

zi
ϕi�z0�dz0� and as �

as0 exp�i
R
z
zi
ϕs�z0�dz0� into Eqs. (10a and 10b), neglecting

derivatives of aj0�z�, and solving for ϕi�z�, ϕs�z�, and

jas0�z�∕ai0�z�j2. While these eigenmodes are not solutions
to Eqs. (10a and 10b) in the case of a varying phase mismatch,
they provide some insight into the more complicated dynam-
ics supported by the WKB solutions described above.

For large phase mismatches, one of these two eigenmodes
has a small signal component, while the other has a small idler

component. The rate of signal-phase accumulation, φs�z�,
differs between these two eigenmodes, leading to amplitude
oscillations unless the signal and idler fields correspond to
only one of the eigenmodes. In the limit where ν�zi�−1 � 0, the
input conditions (zero idler) are matched to one of the two
eigenmodes, thereby suppressing ripples near the start of the
grating [region zi ≤ z ≪ zpm of the apodized example in Fig. 3]
since the magnitude of this eigenmode varies slowly as ν is
decreased, but does not vary over the fast Δk−1 length scale
associated with the local phase mismatch Δk. Note that the
different length-scales in phase-mismatched TWM inter-
actions have been analyzed using multiple-scale analysis
in [37].
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Fig. 3. Propagation example for OPA in a linearly chirped QPM gra-
ting, showing the signal and idler as a function of normalized position.
The gain factor λR � 2.2. The position has been normalized to the
dephasing length, Ldeph � 2γ∕jΔk0j. The normalized grating length is
given by L∕Ldeph � 8. The phasematching point zpm is located at
the middle of the grating. The dashed lines show the evolution of
the signal and idler in a apodized grating with the same parameters;
oscillations in ai�z� and as�z� near z � zi and z � zf are suppressed in
this case. For this example, we apodize via the chirp rate and duty
cycle simultaneously to reveal the idler evolution under idealized in-
put conditions; (b) shows the fields on a linear scale to better indicate
how the oscillations are suppressed near the output of the grating in
the apodized case, but not the unapodized case; the signal and idler
magnitudes are indistinguishable on this linear scale due to the high
gain involved.
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Fig. 4. Chirped-QPM OPA apodization examples. (a) Grating
k-vector profile for a NLCA example, (b) normalized grating chirp rate
corresponding to (a), and (c) signal gain spectrum. The dashed lines in
(b) show min��Δk1∕γ0�2�ϵ, with minimization performed with respect
to signal wavelength (restricted to the target gain bandwidth that
spans the 1450–1650 nm range). This figure indicates that the optimal
normalized chirp rate in the apodization region approximately satis-
fies jΔk0j � min�Δk21�ϵ. The dashed lines in (c) indicate analytical es-
timates of the fluctuations in the gain due to the finite value of jγ0∕Δk1j
at the ends of the grating, as described in the text. The gain spectra
for DCA and corresponding DDA examples are also shown in (c), for
comparison.
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After the amplification region (z ≫ zpm), the fields can
be thought of as consisting of a linear combination of the
two local eigenmodes. In the limit where ν�zf �−1 � 0, the
signal-component of one of the two eigenmodes is brought
to zero at the end of the grating, thereby suppressing signal-
amplitude oscillations [region zpm ≪ z ≤ zf of the apodized
example in Fig. 3].

The jν�zi�j−1 � 0 and jν�zf �j−1 � 0 conditions can be
achieved, in principle, by extending the nominal grating chirp
profile to infinity. In practice, this condition can be achieved
(with high fidelity) by apodization. In performing such apod-
ization, jν�z�j in Eq. (33) should be increased slowly enough
that the local WKB solutions remain accurate; if ν�z� is
changed too rapidly, there will be coupling between the two
asymptotic solutions of Eqs. (10), again leading to interfer-
ence. As such, a sufficient criterion is to maintain the validity
of the WKB approximation within the apodization regions.
This condition corresponds, for an individual spectral compo-
nent ω, to the following inequality [38]:

���� dQdz 1

Q3∕2

���� ≤ ϵ; (34)

for “small” ϵ. This condition should be maintained for all spec-
tral components of interest [i.e., all within the amplification
bandwidth associated with Eq. (31)].

C. Nonlinear Chirp Apodization for OPA
In this subsection we use Eq. (34) to determine apodization
profiles for undepleted-pump, chirped QPM OPAs. As before,
we start from a nominal grating design, such as a linear chirp
profile. Apodization regions are then appended to this nominal
design, with the grating k-vector and duty cycle properly
matched at the joining points. With Eq. (34), these apodization
regions can be made as short as possible. This condition will
help with meeting any maximum grating length constraints. In
the context of OPAs, an even greater benefit is that optimized
apodization profiles will ensure that parasitic effects, such as
pump SHG and other unwanted processes, can be avoided or
suppressed in the apodization regions by having a chirp rate
that is as high as possible within as short a length as possible.

Equation (34) yields an implicit differential equation in z

which, as stated, is difficult to solve. A much simpler equation
is obtained by writing g�z� and the chirp rate Kz ≡ dKg∕dz as
functions of Kg, and integrating versus Kg. This approach is
possible because we assume thatKg�z� is monotonic, and g�z�
is monotonic within each individual apodization region. For
notational convenience, in the following analysis we suppress
the g subscript on Kg. We mainly consider NLCA rather than
DCA or DDA for the reasons discussed in Subsection 4.D,
and therefore assume that g�z� is constant versus position.
For simplicity, we also assume that γ�ω� � γ0 is frequency-
independent, although in practice this assumption is not
necessary.

With the above assumptions, the following equation can be
obtained from Eqs. (30) and (34):

�
dKz

dK

�
2
≤ min

Δk0

	
4ϵ2

K2
z

����
�
Δk
2

�
2
− γ20 � i

Kz

2

����3 − Δk2



≡min
Δk0

ff �Δk0; K;Kz�g; (35)

where Δk�z;ω� � Δk0�ω� − K�z�. The minimization in
Eq. (35) with respect to Δk0�ω� is performed over the desired
amplification bandwidth of the device. The function f has
been introduced as a shorthand to identify the dependence
of the inequality on Δk0 (and hence on optical frequency).

Close to the turning points satisfying Δk0 − K � �2γ0,
f �Δk0; K;Kz� is negative (unless ϵ is chosen to be too large,
e.g., ϵ ≫ 1), which means that jdQ∕dzj > ϵjQ3∕2j. If we move
far enough from these turning points (toward the edges of the
nominal grating profile) then equality is obtained. We wish to
find a pair of grating k-vectors at which to begin the apodiza-
tion region; these are denoted Kapod;s and Kapod;e for the start-
regions and end-regions of the grating, respectively. These will
be the k-space points at which inequality in Eq. (35) is satisfied
for the whole spectral range of interest. The minimization in
Eq. (35) will correspond to either the minimum or maximum
value of Δk0�ω� across this spectral range. Beyond these
k-vectors, it is possible to chirp the grating more rapidly while
still satisfying Eq. (34). We therefore assume that the inverse
grating profile, z�K�, corresponds to a nominal chirp profile
znom�K� for K between Kapod;s and Kapod;e, and is determined
via Eq. (35) outside this region.

Based on the above discussion, we first determine Kapod;s

and Kapod;e by solving the following pair of equations:

min
Δk0

ff �Δk0; Kapod;j ; Kz;nom�g �
�
dKz;nom

dK

�
2
; (36a)

min
Δk0

�jΔk0 − Kapod;jj� ≥ 2γ0; (36b)

for j � s and j � e, where subscript “nom” denotes the nomi-
nal grating profile. For a linearly chirped grating, Kz;nom�K� is
constant. Eq. (36a) arises from Eq. (35), while Eq. (36b) en-
sures that the Kapod;j lie outside the amplification region for
all of the spectral components involved.

It is convenient to define the k-space domain of the nominal
grating:

dom�Knom� � fK :min
j
�Kapod;j� ≤ K ≤ max

j
�Kapod;j�g: (37)

We now use Kapod;j to find the entire grating profile by first
solving the following equations for K�z� and Kz�K�:

K�z� � Knom�z�; K ∈ dom�Knom�; (38a)

dKz

dK
� sKz

min
Δk0

�
���
f

p
�; K ∉ dom�Knom�; (38b)

where sKz
� sgn�dKz;nom∕dK�, and with the initial conditions

for Eq. (38b) given by

Kz�Kapod;j� � Kz;nom�Kapod;j�: (39)

Equations (38a) and (38b) yield Kz�K� over the entire
grating spatial frequency profile. We can thus determine
z�K� by
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z�K� �
Z

Kf

Ki

Kz�K�−1dK; (40)

and then invert this function to find Kg�z�.
An example implementation of this design procedure is

shown in Fig. 4. For this example, we select a specific exper-
imental configuration. We assume anMgO:LiNbO3 OPA device
at 150 °C, designed to amplify signal components between
1450 and 1650 nm using a narrow-bandwidth 1064 nm
pump. The corresponding range of idler wavelengths is
3000–4000 nm. For illustration purposes, we assume a nondis-
persive coupling coefficient γ, with γ�ω� � γ0. We choose a
gain coefficient λR;p � γ20∕jΔk0j � 2.2. The range of phase
mismatches corresponding to the signal bandwidth is
ΔkBW ≈ 16.6 mm−1. This value originates from the material
phase mismatches of Δk � 219.7 and 203.1 mm−1 for signal
wavelengths of 1450 and 1650 nm, respectively. According
to Eq. (31), a linear chirp rate Δk0 and nominal grating length
Lnom satisfying jΔk0Lnomj � ΔkBW � 4γ0 are required in order
to fully amplify this bandwidth. Therefore, given values of
Lnom, ΔkBW, and λR;p, the values of γ0 and jΔk0j can be deter-
mined. Here, we choose Lnom � 10 mm, which yields γ0 ≈
2.4 mm−1 and Δk0 � �2.62 mm−2.

To construct an apodization profile, we assume a positive
chirp rate (Δk0 > 0), a symmetric grating profile, set ϵ � 1, and
solve Eq. (38). It is useful to introduce a parameter δ to
describe the range of grating k-vectors,

����Kg�zf � − Kg�zi�
2γ

���� ≤ δ; (41)

where we choose δ � 45 for the present example. This value
is chosen to yield large values of jνj defined in Eq. (33) at
the ends of the device, while still remaining far from
higher-order QPM. For our example, Kg�zi� ≈ 319.5 mm−1

and Kg�zf � ≈ 103.3 mm−1.
The k-vector profile is shown in Fig. 4(a). In Fig. 4(b), the

grating chirp rate is compared to Δk2, illustrating that optimal
normalized chirp rate is approximately proportional to the
square of the minimum phase mismatch. The output gain spec-
trum as a function of wavelength is shown in Fig. 4(c). We
show DCA and DDA examples for comparison to the NLCA
case. For each of these simulations, we assume the full grating
structure (d̄ � �1) and integrate Eqs. (1) numerically, for each
spectral component, within each successive QPM domain.

The finite value of δ−1 defined above as well as higher-order
QPM contributions result in a ripple in the gain for the NLCA
example. Under the assumption of a first order QPM interac-
tion, the ripple is such that j ln�Gs� − 2πλR;pj ≤ 4δ−1 for
frequencies within the amplification region [1]. In a real gra-
ting, there are also small contributions from the other orders
of the QPM grating. The dashed black lines in Fig. 4 are
bounds on the gain ripple found by analytically summing
all such contributions, showing excellent agreement with the
full numerical NLCA simulations. The gain spectra for the
DCA and DDA examples are also included. The DCA example
was specified heuristically, with an amplitude profile deter-
mined via hyperbolic tangent functions; it shows comparable
performance to NLCA, but requires large modulation of the
QPM duty cycle. The DDA example was derived from the DCA
example, and shows a significant reduction in apodization

quality compared with both DCA and NLCA. For these DCA
and DDA examples, the chirp rate is linear. Note that with no
apodization, the ripple is huge, with gain varying by a factor of
4 across the passband (from ≈0.5 × 106 to ≈2 × 106).

6. ADIABATIC FREQUENCY CONVERSION
We next consider adiabatic frequency conversion (AFC). This
type of interaction can occur in chirped QPM gratings when
the coupling between the three waves is sufficiently strong,
and enables high pump conversion efficiency across a very
broad range of phase mismatches and intensities. In this sec-
tion, we first show how AFC can be analyzed and understood
in general TWM configurations. In Section 7, we develop an
apodization procedure for AFC devices via an approach sim-
ilar to the DFG and OPA cases considered above.

In AFC, instead of reaching a maximum at a certain input
intensity, the pump depletion can increase monotonically with
respect to the input intensity of either the pump or signal wave,
or both [7,8]. Rather than back-convert after the point of maxi-
mum pump depletion, the fields adiabatically follow a local
nonlinear eigenmode that evolves with the grating period. If
the grating is sufficiently chirped, then at the input to the
device, the relevant eigenmode corresponds to zero idler (i.e.,
to the input conditions),while at theoutput this eigenmodecor-
responds to zero pump (the desired output condition of full
pump depletion). This adiabatic following process is possible
provided that the coupling rate γ between the fields is strong
enough (at a given chirp rate Δk0), or if the chirp rate is slow
enough (at a given coupling rate). The required coupling rate
also depends on the input conditions, as we will discuss.

Before considering AFC and nonlinear eigenmodes in more
detail, we discuss in Subsection 6.A a reformulation of
Eqs. (10) based on [28], in which TWM interactions are de-
scribed geometrically. This geometric analysis provides many
insights into the structure of various TWM processes, espe-
cially AFC, as we will show.

A. Geometric Analysis of Three-Wave Mixing
Interactions
In [28], the geometrical analysis was motivated by the
Hamiltonian structure of the TWM equations. Furthermore,
[28] considered general QPM interactions, corresponding to
d̄ � �1. Here, we briefly recapitulate the formulation given
in more detail in [28], and give the modifications required
for first order QPM interactions.

First, reduced field variables X , Y , and Z can be defined
according to

X � iY � aiasa
�
pe

iϕ1�z�

Z � japj2; (42)

The phase of X � iY specifies the relative phase between the
envelopes aj and their driving polarizations in the CWEs
[Eqs. (10)], and hence the direction of energy transfer. The
remaining variable Z specifies the pump photon flux. These
variables can be treated as specifying a real-valued “position”
vector W in an abstract 3-space, defined as

W � �X; Y; Z�T : (43)

During propagation,W evolves according to the evolving com-
plex envelopes aj , but is constrained to lie on a surface whose
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shape is determined by the input conditions. This surface is
given by the implicit relation φ � 0, where

φ � X2 � Y 2
− Z�Z − K ip��Z − Ksp�; (44)

and where the constants K ip and K sp are Manley–Rowe invar-
iants, given by

Kjp � jajj2 � japj2; (45)

for j � i and j � s. With the envelope definitions and
input conditions considered here, with zero input idler,
K sp � 1 and K ip � jap�zi�j2 ≤ 1. It is convenient to introduce
a parameter ρ describing the ratio of input photon fluxes:
ρ≡ jas�zi�∕ap�zi�j2. For cases with an input signal that
is much larger than the pump (ρ ≫ 1, and hence
0 ≤ Z ≤ Kip ≪ 1), φ � 0 is (approximately) a sphere. For
other input conditions (ρ ≫∕ 1), the conserved surface
φ � 0 is not spherical, but remains closed and convex [28].

The evolution of W is given by

dW
d�γz� � ∇H ×∇φ; (46)

where ∇ � �∂∕∂X; ∂∕∂Y; ∂∕∂Z�T , and where the local
Hamiltonian H, which is discussed in more detail in [28],
can be expressed as

H � gX � Δk
2γ

�Z − �K ip � K sp��: (47)

This local Hamiltonian is position-dependent in the case of a
chirped QPM grating. Eq. (46) implies thatW is constrained to
remain on the implicit surface φ � 0, since the “force” acting
on W is perpendicular to the local surface normal ∇φ.

B. Solution for Uniform QPM Gratings
The geometrical approach of [28], an important result of
which is reproduced in Eq. (46), greatly simplifies the inter-
pretation of many TWM problems. For example, during
propagation in a uniformly phasematched medium, W is
constrained to lie on the intersection between a plane
(H � constant) and a convex surface (φ � 0), and hence
on a ring (or a single point). The distance required to fully tra-
verse the ring is the period associated with the Jacobi-elliptic
analytical solutions of the there-wave mixing problem, de-
rived in [39]. Much of the complicated structure of these
analytical solutions can thus be visualized with this geomet-
rical construction.

Furthermore, Eq. (46) reveals the existence of the local
nonlinear eigenmodes discussed above. The existence of such
eigenmodes is well known [35], but the geometric description
provides a particularly convenient framework for their study,
and the interpretation of their role in spatially nonuniform
structures, such as chirped gratings.

These eigenmodes, which we denote as Wm, satisfy
dW∕dz � 0, and hence correspond to the two points for
which ∇H is normal to the surface φ � 0 (the points where
∇φ is in the same direction as�∇H). Because φ � 0 is closed
and convex, there are two and only two such points. These
eigenmodes can also be viewed as generalizations of the

eigenmodes we discussed in Subsections 3.A and 5.B for
the specific cases of DFG and OPA, respectively.

To illustrate the nonlinear eigenmodes and the evolution of
W, we show in Fig. (5) a propagation example for a uniformly
phasematched device. In this example, the black arrow points
in the direction of ∇H; its location has been chosen so that
the point where it touches the conserved surface φ � 0 cor-
responds to a nonlinear eigenmode. Since the medium is
uniform (constant g and Δk1, and other QPM orders are ne-
glected), this eigenmode is fixed, and hence represents a true
eigenmode of the TWM interaction. In a chirped device, the
direction of ∇H, and hence the local nonlinear eigenmode
Wm, would be swept from the top to the bottom of φ � 0
as ν � Δk1∕�2γg� [see Eq. (33)] is swept from �ν ≫ 1
to ∓ν ≫ 1.

C. Solution for Chirped QPM Gratings
We next consider the AFC solutions supported by chirped
QPM gratings, for which the reduced field vector W�z� can
follow the nonlinear eigenmodes Wm�z�. Since Wm �
�Xm Ym Zm �T are points where∇H ×∇φ � 0, they can be
found, for any given value of ν, by solving the following set of
equations:
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Fig. 5. (a) Solution to an example TWM problem, visualized with the
geometric description of [28] [and Eq. (46) in particular]. The param-
eters for this example are K ip � jap�zi�j2 � 0.9, g � 1 (50% duty
cycle), and Δk1∕γ � 1. The surface shown is φ � 0, and the curve
(blue) represents the trajectory of W. Since Δk1 and g are both con-
stant in this example, the curve lies on a plane H � constant. W is
initially at the top of the surface (Z ≡ japj2 � K ip � 0.9), and the di-
rection of W (with increasing z) is shown by the blue arrow on the
curve. The direction of ∇H is also shown (black arrow). The point
where this arrow touches the surface is a nonlinear eigenmode asso-
ciated with the chosen parameters (i.e., a point where ∇H is in the
direction of the surface normal to φ � 0, ∇φ). In this unchirped
example, the field vector W orbits around the fixed eigenmode Wm.
In (b), the photon fluxes jaj j2 are shown for comparison. One period
of these fluxes corresponds to a complete traversal of the blue curve
in (a); position is normalized to γ, defined in Eq. (11).
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φ � 0; (48a)

∂φ
∂Z

� ν
∂φ
∂X

; (48b)

Y � 0; (48c)

where Eq. (48a) ensures that the eigenmode is consistent with
the input conditions, and Eqs. (48b) and (48c) follow from the
forms of ∇H and ∇φ.

Because φ � 0 is convex for all input conditions, the ei-
genmodes always evolve through chirped QPM gratings in a
similar way. The relevant nonlinear eigenmode initially corre-
sponds to low idler energy, and is swept smoothly (by chang-
ing g and Δk1) to one corresponding to low pump energy.
If the sweep rate is slow enough (conditions for which are
discussed in Subsection 7.A), the fields follow this eigenmode,
and as a result most of the pump energy is transferred to
the signal and idler waves. To parameterize the solutions

for linearly chirped gratings, we introduce normalized
coupling factors λR � γ2∕jΔk0j, λR;p � �1� ρ�−1γ2∕jΔk0j, and
λR;s � �1� 1∕ρ�−1γ2∕jΔk0j. For an undepleted-pump OPA
(ρ → 0), the signal gain is given by jas�zf �∕as�zi�j2 �
exp�2πλR;p� [1]. For a constant-signal DFG or SFG interaction
(ρ → ∞), the pump depletion is given by jap�zf �∕ap�zi�j2 �
exp�−2πλR;s� [8].

To illustrate the AFC process, we show in Fig. 6 the trajec-
tory of the reduced field vector W (solid lines) and the local
nonlinear eigenmode Wm (dashed lines) for four example
cases, with the following parameters: (b) λR;s � 1 and
Kip � 10−3, (c) λR;s � 2 and Kip � 10−3, (e) λR;p � 2 and
Kip � 0.9, and (f) λR;p � 10 and K ip � 0.9. The structure of
φ � 0 is shown in Figs. 6(a) and 6(d) for the input conditions
Kip � 10−3 (0.1% of input photons in the pump, 99.9% in the
signal) and K ip � 0.9 (90% of input photons in the pump, 10%
in the signal), respectively.

For both choices of K ip, the adiabatic following process re-
quires a large coupling factor λR; for smaller λR, a ripple in the
components ofW [solid lines in Figs. 6(b), 6(c), 6(e), and 6(f)]
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Fig. 6. Propagation of field vector W and eigenmode vector Wm [the solid and dashed lines, respectively, in (b), (c), (e), and (f)], illustrating the
adiabatic following process arising from Eq. (46). The left column is for K ip ≡ jap�zi�j2 � 10−3 (strong input signal), while the right column is for
K ip � 0.9 (strong input pump). The first row [(a) and (d)] are cuts through the surface φ � 0 in the plane Y � 0, corresponding to these two input
conditions. The second and third rows show the evolution of the field vectors (versus coordinate ζ � γz) under these input conditions, for two
different coupling factors: λR;s � �1; 2� for (b) and (c), respectively, and λR;p � �2; 10� for (e) and (f), respectively. In (b), (c), (e) and (f), the x curve
is on the bottom, y in the middle, and z on the top.

1562 J. Opt. Soc. Am. B / Vol. 30, No. 6 / June 2013 Phillips et al.

DISTRIBUTION A: Distribution approved for public release.



around Wm (dashed lines) is introduced. Such ripples occur
when the chirp rate is too rapid for the fields to follow the
local eigenmode; they are thus indications of nonadiabaticity.
For the strong-signal case (K ip � 10−3), the amplitude of these
ripples scales as exp�−2πλR;s�; for the strong-pump case
(K ip � 0.9) the behavior is more complicated, but a fast decay
of the ripple amplitude with respect to λR;p is still obtained at
large λR;p. At larger values of the coupling factors, the fieldsW
can be seen in Fig. 6 to follow the local eigenmode Wm more
closely (the ripple amplitude is reduced).

A ripple in W�z� also occurs if the fields are not
launched properly into the input eigenmode, i.e., if jν�zi�j is
not large enough: unless jν�zi�j−1 � 0, the input conditions
(jai�zi�j � 0) are different from that of the input eigenmode
(jaij ≠ 0). These ripples are not noticeable in Fig. 6 because
we have introduced an apodization profile to ensure that
jν�zi�j and jν�zf �j are very large.

7. ADIABATIC FREQUENCY CONVERSION:
APODIZATION
A. Adiabaticity Condition Based on Geometric Picture
The AFC solutions illustrated in Subsection 6.C are obtained
for all input conditions provided that the grating is sufficiently
chirped, and the chirp rate is sufficiently slow. In order to
make use of these solutions in a practical setting, it is impor-
tant to determine how rapidly the grating can be chirped while
still maintaining adiabaticity. In this section, we determine a
heuristic constraint for the QPM chirp rate. If this constraint is
satisfied, then the adiabatic following process can occur (with
a certain fidelity).

As ν is varied (by changing Δk1, g or both), the local eigen-
mode Wm changes, but always remains in the X–Z plane
(since Ym � 0). When the reduced field vector W is in the
X–Z plane, each of the envelopes aj is �π∕2 radians out of
phase with its driving term in Eq. (10), which implies that
djajj∕dz � 0; this is why Wm lies in the X–Z plane. Further
physical insight into the meaning of this X–Z plane can be
gained by considering an unchirped device:W passes through
the X–Z plane at points where the direction of energy flow
changes (e.g., at points where the pump is fully depleted, just
before the onset of back-conversion).

In order for adiabatic following to occur, the reduced var-
iable Z must keep up with the corresponding component Zm

of the local eigenmode, and hence it is necessary that

dZ

dz
≈
dZm

dz
: (49)

To satisfy this condition, W must be sufficiently separated
from the X–Z plane: from the form of dW∕dz [Eq. (46)],
dZ∕d�γz� � 2gY , and therefore the required magnitude of Y
increases with dZm∕dz, while dZm∕dz increases with the
chirp rate.

Since φ � 0 is convex, an angle θ∥ in the X–Z plane asso-
ciated with the local eigenmode can be defined according to

tan�θ∥� �
∂φ∕∂Z
∂φ∕∂X

����
W�Wm

� ν; (50)

To see why the latter equality holds, recall that ν � Δk∕�2γg�,
Ym � 0, and that the eigenmodes Wm are points for which

∇φ � � ∂φ∕∂X ∂φ∕∂Y ∂φ∕∂Z � is parallel or antiparallel to
∇H � � g 0 Δk∕�2γ� �. Based on the curvature of φ � 0,
an angle θ

⊥
associated with the value of Y can be defined

according to

Y � R
⊥
�Wm� sin�θ⊥�; (51)

where R
⊥
is the local radius of curvature (RoC) of the surface

in the direction perpendicular to the X–Z plane. In order for
the interaction to be adiabatic, we expect that the condition
jθ

⊥
j ≪ 1 must be satisfied in addition to dZ∕dz ≈ dZm∕dz,

since in the limit of an infinitely slow chirp rate, Y → 0 and
hence θ

⊥
→ 0. Additionally, this angular condition implies

a small relative separation of the fields from the local
eigenmode, in analogy to conventional adiabatic following
processes [40].

With the conditions jθ
⊥
j ≪ 1 and dZ∕dz � dZm∕dz, it is

possible to obtain a heuristic constraint on the chirp rate re-
quired for the adiabatic following process that in turn can be
used to construct apodization profiles. To obtain this con-
straint, first consider the local curvatures of φ � 0. Formulas
for the curvatures of surfaces specified by implicit equations
are given in [41]. We denote the in-plane (X–Z plane) curva-
ture as k∥ (RoC R∥ � −k−1∥ ), and the curvature in the orthogo-
nal direction as k

⊥
(RoC R

⊥
� −k−1

⊥
). After some algebra it

can be shown that, at Wm, these curvatures are given by

k∥ � −
2

j∇φj
Ḡ�Zm� � ν2

1� ν2
; (52a)

k
⊥
� −

2
j∇φj ; (52b)

where the parameter Ḡ�Z� is given by

Ḡ�Z� � 1� K ip − 3Z: (53)

Given sgn�ν�zi��, the relevant local eigenmode and hence
k∥ and k

⊥
are functions of only ν.

An expression for the evolution of the local eigenmode is
also required. With Eqs. (48a) and (48c), Xm can be expressed
in terms of Zm. Substituting this result into Eq. (48b), an
implicit equation for Zm is obtained, of the form f �Zm�ν�; ν� �
0 for function f . By taking the derivative of this f � 0 equation
with respect to ν, it can be shown that

dZm

dν
� −sgn

�
dν

dz

� j∇φj
2�Ḡ�Zm� � ν2��1� ν2�1∕2 ; (54)

where the sgn prefactor assumes ν�ζ� is monotonic. With
the above relations and the condition dZm∕dz � dZ∕dz, the
inequality jθ

⊥
j ≪ 1 can be expressed as

���� d

d�γz�

�
Δk
2γg

����� ≪ 2gq�ν�; (55)

where the function q�ν� is defined as

q�ν� � �1� ν2�1∕2�Ḡ�Zm�ν�� � ν2�: (56)
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Equation (55) is the required adiabaticity condition that we
will use to determine AFC apodization profiles. The right hand
side is a function only of ν, and hence of Δk1 and g. It is
interesting to note that, if we define a new propagation coor-

dinate Ξ � R
z
zi

���������������������������������������������
�2γg�z0��2 � Δk1�z0�2

p
dz0, then Eq. (55) can be

expressed in an intuitive, purely geometrical form:

���� dθ∥dΞ

���� ≪ k∥

k
⊥

. (57)

The form of Ξ arises from Eq. (46): the rate of change of Wm

has an overall scaling with j∇Hj �
�����������������������������������
�γg�2 � �Δk∕2�2

p
.

We have also found that the fidelity of Eq. (55) is consis-
tent with the values of the output pump depletion predicted
by numerical simulations of the CWEs for well-apodized gra-
tings operating in the highly nonlinear, highly saturated re-
gime, as a function of the coupling factor λR � γ2∕jΔk0j that
we defined in Subsection 6.C. Such consistency helps to
support the use of Eq. (55) as an adiabaticity criterion
for constructing apodization profiles and for estimating
how slow the chirp must be in order for adiabatic following
to occur.

Further insight can be gained by considering the region
around jνj ≈ 1. In the undepleted-pump limit (in which adia-
batic following does not occur), the signal is amplified in
the region where jνj < 1 [1]. Since this limit can be described
accurately by the complexWKBmethod, the points jνj � 1 are
referred to as turning points. For small signal input compared
to the pump (small ρ), the turning point closest to the input
side of the grating is also an important point in the adiabatic
following process: as K ip is increased toward unity (ρ → 0),
the ratio k∥∕k⊥ → 0 near this turning point, and hence, in or-
der to maintain adiabaticity, the chirp rate must be very slow,
based on Eq. (57). Physically, the signal must experience a
large enough gain to begin depleting the pump over a small
region near jνj � 1 in order to follow the eigenmode. The geo-
metrical explanation for this requirement, provided by
Eq. (57), is that the rate at which the eigenmode is swept
in the X–Z plane, and hence the required value of Y , scales
with k−1∥ , while the deviation of the angle θ

⊥
from zero scales

(for a given value of Y) with k
⊥
.

B. AFC Apodization Procedure
We will design apodization profiles such that adiabaticity is
maintained, as in previous sections. As before, we also assume
that there is a known nominal grating profile to which we
append apodization regions. For the reasons discussed in
Subsection 4.D, we consider NLCA and not DCA or DDA,
and therefore assume g � 1. If a range of spectral components
are present, then ν and Wm depend on both frequency and
position. Based on Eq. (55) and assuming g � 1, we can obtain
the following equation for the grating chirp rate within the
apodization regions:

���� dKg

dz

���� � 2ϵγ2 min
ω

�q�ν�z;ω���; (58)

where ν�z;ω� � �Δk0�ω� − Kg�z��∕�2γ�ω�� is defined in
Eq. (33), q�ν� is defined in Eq. (56), and minimization is per-
formed over the spectral range of interest. When q�ν� is small,

a slow grating chirp rate is required. We show in Fig. 7 the
form of q�ν�−1 for several values of ρ: for small ρ, the minimum
of q becomes very small, necessitating a very slow chirp
rate.

Based on Fig. 7 and for a positive QPM chirp rate, the mini-
mum of q is between ν � −1 (obtained for the high-gain OPA
limit) and ν � 0 (for the strong-signal, weak-pump DFG limit).
Consider positions z for which ν�z;ω� is outside of this
interval at the edges of the nominal grating profile for all
frequencies ω of interest. At these positions, q�ν� is smallest
for the spectral component(s) for which jνj is smallest. The
apodization regions will begin at points for which this condi-
tion holds.

In this section, we will use subscripts − and� to denote the
input and output apodization regions, respectively. For a given
value of ϵ, we wish to find apodization boundaries zi;� for
which ν�zi;�;ω� lies outside the interval described above
for all ω in the spectral range of interest, and for which
Eq. (58) is satisfied for the nominal grating profile. The
spectral components for which jνj is smallest at these apod-
ization boundaries are denoted ω�, and hence satisfy
jν�zi;�;ω��j � minω�jν�zi;��;ω�j. The corresponding values
of ν are given by νi;� � ν�zi;�;ω��. Thus for z � zi;� and
Kg�z� � Knom�z�, Eq. (58) is satisfied, and the relevant
frequency is ω � ω�.

We now introduce position-dependent but frequency-
independent variables derived from ν according to

ν��z� �
Δk0�ω�� − Kg�z�

2γg�z� ; (59)

that satisfy ν��zi;�� � νi;�. ν��z� are substituted into Eq. (58)
to yield a differential equation,

����dν�dz
���� � ϵγq�ν��; (60)

that can be solved straightforwardly by numerically integrat-
ing with respect to ν�. Given ν��z�, the grating profile Kg�z� is
determined via Eq. (59).

C. AFC Apodization Example
In this subsection, we apply the procedure described in
Subsection 7.B to construct an apodization profile for an
AFC device. We choose ρ � 0.2, corresponding to a case
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Fig. 7. q�ν�−1 [q defined in Eq. (56), ν defined in Eq. (33)], shown for
several values of ρ, assuming a positively chirped grating. For small ρ,
the maximum of q−1 occurs near the first turning point (jνj � 1) and
diverges as ρ → 0.
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with a strong pump and moderate-strength signal, in order to
illustrate that AFC, and our apodization approach, is effective
even when substantial signal gain occurs. We choose a nomi-
nally linear grating chirp profile, with λR � γ2∕jΔk0j � 5,
and select ϵ � 1∕�2λR� so that the apodization regions are
‘as adiabatic’ as the nominal profile. As in previous sections,
we select a nominal grating profile sufficient to support a
bandwidth from 1450 to 1650 nm with a 1064 nm pump wave-
length, assume a MgO:LiNbO3 device and, in this case, fix
γ � γ0 � 3.5 × 103. The apodization regions are found by solv-
ing Eq. (60), as described above, for chosen initial and final
values Kg�zi� and Kg�zf �, respectively.

The simulation is shown in Fig. 8. The pump depletion as a
function of signal wavelength is shown in Fig. 8(a) for apo-
dized (NLCA) and unapodized cases. For the apodized case,
a very high pump depletion is maintained over the entire
target spectrum. In the unapodized case, only a moderate ef-
ficiency is predicted, and there are substantial fluctuations in
efficiency over the target spectrum. The apodized grating
profile is shown in Fig. 8(b), indicating that the apodization
regions take up only a relatively small fraction of the device’s
total length, as in our preceding examples. In practice, achiev-
ing high conversion efficiencies will involve a trade-off involv-
ing achievable input parameters, amplification of quantum
noise, and suppression of unwanted parasitic effects, such as
pump SHG [42]. In particular, to achieve a high conversion
efficiency at moderate coupling factor λR, the ratio of signal
and pump photon fluxes at the input the device, ρ, should not
be too small. This trade-off between λR, ρ, and efficiency was
considered in [7].

8. DISCUSSION AND CONCLUSIONS
A. Summary
In this paper, we have considered apodization of chirped QPM
gratings in detail. Without apodization, such devices exhibit a
substantial ripple in spectral amplitude and phase, which is
highly disadvantageous to many applications.

We studied most of the main operation regimes of interest.
These regimes include the linear regimes of DFG, SFG, SHG,
OR, etc., inwhich only the generatedwave is changing substan-
tially; the case of high-gain OPA, in which there is only minor
pump depletion; and the case of AFC, in which all of the
waves change substantially but remain close to the position-
dependent and frequency-dependent nonlinear eigenmode of
the TWMprocess throughout the device. In eachof these cases,
the structure of the eigenmodes of the unchirped QPM interac-
tion play an important role. We showed, for all of these oper-
ating regimes, how apodization profiles can be constructed
systematically in order to reach performance limited only by
inherent discretization associated with the QPM grating struc-
ture. We did not consider SHG with non-negligible pump
depletion, but the geometrical analysis of Sections 6 and 7
could be applied to that case aswell, and hencewe expect adia-
batic SHG to occur in properly apodized QPM gratings. Wewill
consider this SHG case and its applications in future work.

We considered different types of apodization, including non-
linear chirp apodization (NLCA), QPM duty cycle apodization
(DCA), and deleted-domain apodization (DDA). In principle,
comparable performance is achieved by NLCA and DCA.
However, DCA is challenging in terms ofQPM fabrication since
all the domains typically must be created in a single poling
event, and the dynamics governing the domain sizes are com-
plicated and difficult to control. Furthermore, DCA typically
requires a somewhat larger apodization region. The DDA ap-
proach exhibits substantially reduced performance, that we
showed for the casesofDFGandOPA.WhileDDA iswell suited
to long, unchirped QPM devices, it exhibits poorer perfor-
mance for chirped QPM devices due to the broad spatial
frequency bandwidth of the grating. For the above reasons,
we believe that NLCA will usually be the best method of apod-
izing all types of chirped QPM devices. This conclusion is con-
sistent with our experimental findings [10]. Furthermore,
NLCA has the potential to be the least susceptible to photore-
fractive damage related issues due to its 50%duty cycle [31–33].

In designing apodization profiles, we made sure to maintain
the nominal or desired profile of the device for the spectral
range of interest. This approach means that nominal grating
profiles supporting favorable properties, such as a broad
bandwidth or an engineered group delay spectrum, can first
be designed [4] and then apodization regions can be appended
systematically in order to achieve the desired performance
with optimal fidelity. For the case of AFC, this involved con-
structing a systematic approach to visualizing such devices
based on the elegant geometrical description of TWM proc-
esses introduced in [28]. Our analysis showed how to both
understand and design general AFC devices, even when sub-
stantial signal gain and pump depletion are involved simulta-
neously. The geometrical description also shows clearly why
it is difficult to achieve high gain and efficiency simultane-
ously in AFC devices.

When simulating the QPM designs presented, we used full
nonlinear CWEs of the actual discrete QPM grating structures,
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without restricting our analysis to the first order QPM
approximation. These simulations thus established that the
first order QPM approximation is indeed very accurate, even
for the more complicated cases of OPA and AFC.

B. QPM Fabrication Considerations
In simulations not shown, we tested the dependence of the
devices on the fabrication resolution by “snapping” all of
the domain boundaries to a fixed grid of a chosen spacing.
We found for the examples presented here (center period
≈30 μm) that even for a grid spacing of up to 1 μm, there is
almost no change in device performance. This result means
that the typical fabrication grids of 0.1 μm used in lithographic
poling are more than sufficient, even for devices with a
shorter range of QPM periods. It should be noted, however,
that unavoidable random duty cycle (RDC) errors in the QPM
grating can enhance the efficiency of unwanted parasitic
effects and should not be ignored [42,43].

We emphasize that our procedure for constructing the QPM
grating from a designed phase and duty cycle profile, given in
Eq. (3), in general makes the device insensitive to the discrete
nature of the QPM domains, since it ensures that the higher
spatial frequencies of the grating are always separated by an
integer number of “carrier frequencies” of the grating, and
therefore have minimal overlap with the first Fourier order.

For fabricating apodized gratings, it is important to note
that there is typically some uncertainty in the actual crystal
length due to variations in the amount of material lost during
polishing. Unless care is taken, these fluctuations could end
up removing the most highly phase mismatched parts of the
device, since the grating period is increased very rapidly over
a short distance at the edges of the grating. One way to resolve
this issue is by having an unpoled gap between the ends of the
crystal and the ends of the designed grating. However, such
unpoled regions will introduce an additional spectral ripple
and can be very disadvantageous in the context of photore-
fractive effects, as mentioned above [31–33]. Instead, one
could make simple modifications to the apodization proce-
dures presented here to ensure a slow chirp rate at the edges
of the grating (i.e., the chirp rate is first increased rapidly, then
decreased again near the edges of the grating, while still sat-
isfying the required inequalities and maintaining a monotonic
Kg�z� profile). In this way, the range of spatial frequencies
present on the device can be made insensitive to the polishing
process.

If there is a single poling event, and if it can be assumed that
the domains are independent of each other and their position
on the wafer, then the local duty cycle will be determined by
the local period. This period dependence of the duty cycle
could, in principle, be accounted for in the design, at least
to the extent that it is known. One could express the duty
cycle D as a function of grating k-vector Kg, and substitute
the resulting form g�Kg�z�� into the inequalities we discussed.
Since these subtleties are determined mainly by QPM fabrica-
tion issues rather than QPM device physics, we did not discuss
them in detail here, but they could be accounted for with
minor extensions of the methods presented.

C. Spatiotemporal Apodization
In this paper, we have not considered solitons and solitary
waves either in the spatial or temporal domain [44]. AFC

offers the potential for high conversion efficiency across
a nonuniform spatial and temporal profile, but parasitic
processes associated with overdriving the center of the
beams present a potential limitation of this approach. There-
fore, some applications could benefit significantly from
approaches, such as adiabatic soliton evolution [45]. Since
many of our results draw on concepts of local eigenmodes,
they are likely to apply to such interactions as well, but analy-
sis of these cases is beyond the scope of this paper. Instead,
based on practical considerations, we have used plane wave
models in order to obtain results that are not reliant on or
strongly constrained by diffractive effects. Nonetheless, care
should be taken in order to avoid excessive excitation of
three-wave modulation instabilities that can be associated
with three-wave nonlinear eigenmodes [44]; these and other
spatial effects relevant to the design of highly nonlinear
chirped QPM devices will be the subject of future work.

An alternative way of viewing such spatiotemporal effects
is as a means of QPM apodization. That is, to have beams or
pulses that are initially nonoverlapping in space or time, re-
spectively, and fully walk across each other’s spatial or tem-
poral profiles as they propagate through the nonlinear crystal.
In this way, components generated by mixing between these
two beams/pulses will be apodized, since the interaction is
smoothly turned on and off via walk-off. In principle, one
could also use beams that diffract strongly within the crystal
so that the intensities are low at the input and output ends and
increase slowly toward the focus.

A drawback of such schemes is that they could strongly
influence the desired interaction, or change it entirely. We
have found, for example, that excessive group velocity
walk-off can lead to additional spectral ripples in nonlinear
chirped QPM interactions, such as AFC. Furthermore, walk-
off based schemes will necessitate significantly longer crys-
tals at a given optical intensity, and hence will exacerbate
any unwanted parasitic effects that scale with the device
length. Therefore, while spatiotemporal apodization schemes
may find use in some contexts, we have not considered them
in detail here.

One case that is of interest and can be suitably engineered
is waveguide-coupling-based apodization, as discussed in [24].
Having the two input waves initially in different waveguides
and then adiabatically coupled to each other is analogous,
in this context, to a smooth modulation of g�z� from ≈0 to
≈1, and therefore may be of continued interest for wave-
guide-based apodization, particularly since DDA, the pre-
ferred approach from [24] for apodizing periodic gratings,
is less suited to chirped QPM devices. For example, one could
imagine combining a NLCA scheme with a waveguide-
coupling-based amplitude apodization to further suppress
spectral ripples beyond the limits imposed here by the
discrete nature of the QPM grating.

D. Conclusions
The difficulty in fabricating duty-cycle-modulated QPM gra-
tings, combined with the high versatility of chirped QPM gra-
tings, means that such devices will continue to play a central
role in QPM technology. In addition to efficient frequency
conversion, our apodization techniques could be applied to
efficiently excite nonlinear eigenmodes at a chosen finite
phase mismatch; for example, in the context of cascaded χ�2�
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interactions. The systematic study of device operation and
apodization we have presented here should therefore be of
critical importance to the continued development of QPM
technology and its applications.
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Abstract: We demonstrate up-conversion single-photon detection for the 
1550-nm telecommunications band using a PPLN waveguide, long-
wavelength pump, and narrowband filtering using a volume Bragg grating. 
We achieve total-system detection efficiency of around 30% with noise at 
the dark-count level of a Silicon APD. Based on the new detector, a single-
pixel up-conversion infrared spectrometer with a noise equivalent power of 
−142 dBm Hz-1/2 was demonstrated, which was as good as a liquid nitrogen 
cooled CCD camera. 
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1. Introduction 

Single-photon detectors (SPD) operating in the 1.55-μm telecom band are a core part of 
quantum communication over optical fiber [1]. Currently, SPD performance limits the 
transmission distance and key rate of fiber based quantum key distribution (QKD) [2–8]. 

Current telecom band commercial SPDs based on InGaAs/InP avalanche photodiodes 
(APDs) suffer from low efficiency about 10% and large dark-count rate of 103 count per 
second (cps) [9]. In contrast, the efficiency of Silicon APD working in the visible to NIR 
windows is up to 65% and the dark count rate is can be lower than 100 cps. Up-conversion 
detectors [10–14] utilizing sum-frequency generation (SFG) in periodically poled lithium 
niobate (PPLN) waveguide or bulk crystals can convert the telecom-band photons into the 
near infrared window and then detect them with a Silicon APD. The detection efficiency of 
PPLN waveguide-based up-conversion detectors can be higher than 40% [12]. However, for 
early implementations pumped at short pump wavelengths, the noise count rate of the detector 
reached 105 cps [12, 13]. Monochromator based filtering has been exploited to decrease the 
noise. However, due to the low throughput of the monochromator, the detection efficiency 
also reduced dramatically [15]. 

Noise in up-conversion detectors mainly comes from spontaneous parametric down 
conversion (SPDC) and spontaneous Raman scattering (SRS) when the strong pump goes 
through the waveguide. A recent experiment demonstrated that a long wave pump can 
suppress both spontaneous processes [16,17] without dramatically reducing the detection 
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efficiency. Here, we combine the long wave pump and a high efficiency narrow-band filter, 
volume Bragg grating (VBG) [18, 19]. 

Meanwhile, based on up-conversion detector, up-conversion spectrometer has been 
invented to measure the infrared spectrum, whereby the pump wavelength is tuned and the 
phase-matching acceptance bandwidth of the upconverter acts as a frequency selective 
element [20]. The spectrometer had a noise equivalent power (NEP) of −128 dBm Hz-1/2 [21] 
and found an immediate application in testing quantum dot with a wavelength of 1.3 µm [22]. 
Based on our up-conversion detector, we improved the NEP by one order of magnitude due to 
noise reduction, i.e. −142 dBm Hz-1/2, which is as good as the liquid nitrogen cooled CCD 
camera based spectrometer [23]. Furthermore, the narrow-band VBG helps to improve our 
spectrometer’s resolution into 0.16 nm. 

2. Upconversion detector 

We fabricated PPLN waveguides via the reverse proton exchange technique. The waveguides 
are 52-mm long and are poled with a quasi-phase-matching (QPM) period of 19.6μm. The 
waveguides incorporated mode filters designed to match the mode size of SMF-28 optical 
fiber and were fiber pigtailed with coupling losses of approximately 0.7 dB, and had a total 
fiber-to-output-facet throughput of −1.5 dB for the telecom band signal. The waveguides were 
antireflection coated to avoid interference fringes and improve the system throughput. 

A schematic of our experimental setup is shown in Fig. 1. We used a single longitudinal 
mode Thulium fiber laser (TDFL) and amplifier (TDFA) manufactured by AdValue 
Photonics (Tucson, AZ) as the pump source for this experiment. The laser amplifier emits an 
average power of approximately 800 mW with a wavelength of 1950 nm. The pump-laser 
power was controlled by adjusting the pump current of TDFA, and noise emission from the 
pump laser was blocked using a 1.55-μm/1.9-μm wavelength division multiplexer (WDM). 

 

Fig. 1. Schematic of the noise-free up-conversion single photon detector. BS: beam splitter, 
M1-M3: mirrors. 

A cw, single-frequency, tunable telecom-band external cavity diode laser (ECDL) 
provided the signal at a wavelength of 1.55 μm. We used a variable attenuator, a 1/99 tap 
coupler and a calibrated detector to monitor the input signal power. The signal was combined 
with the pump in another 1.55-μm/1.9-μm WDM and coupled into the PPLN waveguide 
through the fiber pigtail. The waveguide only supports TM-polarized light so the 
polarizations of both the pump and the signal are controlled by polarization controllers (PCs) 
respectively before entering the waveguide. A Peltier cooler based temperature-control 
system is used to keep the waveguide’s temperature at 56°C to maintain the phase-matching 
condition. 

The generated SFG photons are collected by an AR-coated objective lens, and are 
separated from the pump by a dichroic mirror (DM). The residual pump is transmitted 
through the DM and analyzed by an optical spectrum analyzer (OSA). A 945nm short pass 
filter (SPF) and a 857nm band pass filter (BPF) are used to block the second and higher order 
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harmonic of the pump. A VBG with a 95% reflection efficiency is exploited to further 
suppress the noise from SRS. In our setup, VBG filter’s spectral bandwidth is 0.05 nm at a 
center wavelength tunable near 864nm (full width at half maximum), corresponding to a 
bandwidth of 0.16 nm at the signal wavelength, which is narrower than our waveguide’s 
acceptance bandwidth of 0.5 nm, which helps to reduce the SRS noise. Finally, the SFG 
photons are collected and detected by a Silicon APD (SAPD), whose detection efficiency is 
up to 45% at 860 nm and dark count rate is 25 cps. 

The experimental result is shown in Fig. 2(a). We tune the pump power by adjusting the 
variable attenuator and record the detection efficiency and noise count rates. When the pump 
power is set at 58 mW [24], the detection efficiency was 28.6%, with a noise count rate of 
100 cps. When the pump power is set at 20 mW, the noise is reduced to to 25 cps, while the 
detection efficiency is still 15%. This performance is achieved by combining the long-wave 
pump and VBG narrow band filtering techniques. In order to show the contribution of each 
technique, we also measure the dark count and efficiency curve without VBG. We change the 
VBG with a prism, which is a standard configuration [12] and cannot reduce the SRS noise. 
The result is shown in Fig. 2(b). 

 

Fig. 2. The detection efficiency (green line, triangle) and noise count rate (blue line, square) 
versus pump power, which is measured just after the waveguide. (a) with VBG, (b) without 
VBG. 

3. Spectrometer 

Previous research utilized the PPLN waveguide’s acceptance bandwidth as a filter in the 
frequency domain [20,21]. Scanning the pump wavelength, the center wavelength of this 
filter, allows us to trace out the spectrum of the signal light. In order to realize the up-
conversion spectrometer, we slightly changed the setup in Fig. 1 by replacing the 1950 nm 
seed fiber laser with a 1.9-μm band tunable ECDL. By adjusting the grating inside the 1.9-μm 
band ECDL, the emission spectrum of pump could be scanned from 1920 nm to 1980 nm, and 
thus the spectral range of the up-conversion spectrometer is from 1532.9 nm to 1570.9 nm. 

One of the advantages of our spectrometer is its low NEP ( 2 /NEP Dυ η=  ). Here, η 

represents detection efficiency and D represents dark count rate. In our experiment, we set the 
pump power at 30 mW and the detection efficiency, dark count rate and NEP are 20%, 60 Hz 
and −142 dBm, respectively. 

In previous experiments, the resolution of the spectrometer is determined by the spectral 
acceptance of the PPLN waveguide [20,21]. Here, our spectrometer’s resolution is decided by 
the VBG’s spectral bandwidth for the signal wavelength, 0.16 nm. A point to note here is that 
the upconverted wavelength will change with different signal wavelength. For measurements 
of signals over total bandwidth greater than 3.09 nm, the angle of the VBG must be adjusted 
such that its reflection resonance tracks the changing upconverted wavelength. This can be 
achieved by mounting the VBG on a motorized rotation stage. 
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In order to test our up-conversion spectrometer, we used the light from a 1.55-μm 
multimode laser diode as the signal for the spectral measurements. The experimental results 
are shown in Fig. 3(a). We first took a spectral measurement (shown in dark solid line) of the 
1.5-μm laser diode using the commercial OSA when the output power of the laser diode was 
−15 dBm. Before injecting the signal into the up-conversion spectrometer, we set the input 
signal power to −98.9 dBm, corresponding to approximately 1 million photons per second, by 
adjusting the tunable attenuator. We set the pump power at 30 mW and scan the pump laser 
and achieve a raw spectrum as shown in Fig. 3(a) (red dot line) [21]. Then we use a standard 
Jansson-Van Cittert iteration deconvolution method [25] with VBG’s spectral curve (shown 
in the Fig. 3(c)) [21] to achieve the real spectrum (green dotted line). The number of iterations 
in our deconvolution process is one hundred. 

 

Fig. 3. Spectrum detected by the OSA (dark solid line), raw spectrum (red dot line), 
deconvolved spectrum (green dotted line) by up-conversion spectrometer. (a) Input signal 
power of −110 dBm. (b) Input signal power of −135 dBm. (c) Reflection spectrum from the 
VBG. Double-Y axis is used in (a). Left Y axis represents the number of photon detection 
events for the up-conversion spectrometer, while right Y axis represents the optical intensity 
measured by OSA. 

In order to verify the NEP of our up-conversion spectrometer, the peak of the spectrum 
was still measured well down to an input power of −135 dBm and the spectrum was Fig. 3(b). 

4. Conclusion 

We utilized a long-wavelength pump and VBG filter to achieve a high efficiency and ultralow 
noise up-conversion single photon detector. The new detector can be directly used in a QKD 
system to improve its performance. Based on the detector, we demonstrate an up-conversion 
spectrometer with a NEP of −142 dBm Hz-1/2 and a resolution of 0.16 nm. Moreover, the 
ultralow noise frequency conversion technique can find other important applications [26], for 
example, erasing the frequency difference between two photons to enable interference 
measurements [27] and bridging the quantum memory with the telecom band wavelength 
[23,28–31]. 
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Entanglement between stationary quantum memories and photonic qubits is crucial for future

quantum communication networks. Although high-fidelity spin–photon entanglement was

demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively

parallel, scalable networks are most realistically conceivable, entanglement fidelities are

typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled

pairs from lower-fidelity precursors can act as a remedy, but the required overhead

scales unfavourably with the initial entanglement fidelity. With spin–photon entanglement as

a crucial building block for entangling quantum network nodes, obtaining high-fidelity

entangled pairs becomes imperative for practical realization of such networks. Here we report

the first results of complete state tomography of a solid-state spin–photon-polarization-

entangled qubit pair, using a single electron-charged indium arsenide quantum dot.

We demonstrate record-high fidelity in the solid-state of well over 90%, and the first

(99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement

distribution in solid-state quantum repeater networks.
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O
ver the past two decades, entanglement between remote
quantum systems has had a key role within the nascent
field of quantum information1,2, particularly so in

quantum communication. Not only can entangled states be
used for the generation of unconditionally secure cryptographic
keys1; an entangled pair of quantum systems can be used as a
resource to teleport quantum states3. In addition, entanglement is
self-propagating: under certain, well-understood conditions, two
pairs of entangled states can be used to generate a new
pair, by performing joint Bell-state measurements4 on one state
of each pair—in a process known as entanglement swapping5.
This process can be used to generate remote entanglement
between stationary quantum memories that never interacted, by
performing a probabilistic, partial Bell-state measurement
through two-photon interference of the photonic part of two
entangled pairs, each consisting of the quantum memory and a
photonic qubit6. The resulting state from the post-selective
process is one in which the quantum memories are entangled.
Using such a scheme, in combination with local Bell-state
measurements, gives rise to a quantum relay, where entanglement
propagates along a chain of nodes7,8. Quantum repeaters, built in
this way, are crucial for developing long-distance quantum
communication networks9–11. Such schemes rely on the
generation and/or existence of high-fidelity entangled states and
intermediate Bell-state measurement; as otherwise errors would
propagate and quickly make the end states fully mixed (classical).
Perfect entanglement and Bell-state measurement, of course, do
not exist in practice. The canonical solution to this problem,
entanglement purification12–14, consists of the distillation of
high-fidelity entangled states out of lower-fidelity precursors. The
combination of entanglement purification with a quantum relay
of remotely entangled quantum memories is the essence of a
quantum repeater7,8, where many parallel, sacrificial links are
used to generate remote entanglement in a nested protocol
that combines entanglement purification with entanglement
swapping. The number of parallel links required depends, in a
nonlinear way, on the initial fidelity of the entangled pairs8,
and deteriorates rapidly with decreasing initial state fidelity.
This immediately leads to a particular conundrum: although
high-fidelity entanglement and quantum operations have been
demonstrated for well-isolated systems such as trapped ions15–17

and atoms10,11, such systems do not lend themselves easily to the
sort of large-scale parallelism that would be required to overcome
their residual errors. Conversely, in the solid-state, where massive
parallelism appears more realistic, the fidelity of quantum
memory–photon entanglement in nitrogen-vacancy diamond18

and optically active quantum dots19–21 has so far remained rather
poor, which would require ever-larger overheads in terms of
parallelism to correct for the local imperfections.

In this work, we present results from a solid-state spin–photon
entanglement setup that we previously21 used to demonstrate a
proof-of-principle, and with which we placed a bound on
entanglement fidelity of F40.8. We have optimized the setup,
and now demonstrate, via full state tomography (which has not
been previously reported for any solid-state spin–photon
experiment at optical frequencies20–21), a record-high solid-state
spin–photon entanglement fidelity, with levels approaching,
or in some cases surpassing, reported ion–photon15,17 and
atom–photon22,23 entanglement fidelities.

Results
Spin–photon entanglement via optimized quantum erasure.
We use a single InAs quantum dot electron spin as the stationary
qubit24,25 (see Fig. 1a). A magnetic field in the Voigt geometry (in-
plane, perpendicular to the growth direction, B¼ 3T) provides a

natural quantization axis, and allows for optical initialization26

and ultrafast, high-fidelity optical control25. In addition,
interference between the spontaneous emission decay pathways
in the resulting L-systems results in entanglement between the
spin and the photon19–21, see Fig.1b. The large magnetic field
results in a Zeeman energy splitting, do, of 2p� 17.6 GHz.
Conversely, the equivalent frequency difference between the
H- and V-polarized branches of the spontaneous emission
decay, do, can result in frequency-which-path information
leaking out to the environment21,19. By mixing a short gating
pulse with the single photon in a nonlinear crystal (a periodically
poled lithium niobate (PPLN) waveguide21,27, see Fig. 1c), we can
postselect for the photon’s exact arrival time, with sub-8 ps timing
resolution and with negligible background noise. The bandwidth
of this detection scheme, about 100 GHz, greatly exceeds the
frequency-which-path information of 17.6 GHz; this scheme is
therefore inherently incapable of distinguishing the frequency
difference, resulting in quantum erasure. As the timing resolution
is not infinite, the environment can nevertheless still obtain some
partial information, yielding a theoretical fidelity bound of about
95%. The quantum dot manipulation scheme and the system
diagram are indicated in Fig. 1d,e. We first initialize the system by
a 13-ns optical pumping pulse25,26. Then, a 100-ps optical p-pulse
excites the quantum dot into the "#*j i-state, after which
spontaneous emission results in spin-polarization entanglement.

Complete tomography of the spin–photon entangled qubit
pair. We perform joint, time-resolved measurements on the
polarization state of the photon (polarization analysing stage in
Fig. 1e), and the spin state. The latter can be measured by a
combination of a few-picoseconds, high-fidelity, all-optical spin
rotation pulse25,28 and another optical pumping pulse to read out
the spin in its computational ( #j i, "j i) basis. Together, this allows
us to perform complete state tomography of the entangled spin–
photon-polarization qubit pair29,30, and enables us to compare
the experimentally obtained entangled state with the theoretical,
ideal spin-polarization entangled state (assuming no errors and
perfect frequency quantum erasure—see Supplementary Note 1):

Cidealj i ¼ 1ffiffiffi
2
p ð "j i � iHj i þ #j i � Vj iÞ: ð1Þ

In quantum state tomography, one aims to reconstruct the
density matrix, rreconstructed of the experimentally obtained
quantum state by means of a set of linearly independent
measurements29,30. This density matrix approaches the
theoretical one, rideal¼ Cidealj i Cidealh j, with the difference
vanishing in the limit of arbitrarily small errors in both the
generation process and the measurement performed to
reconstruct the density matrix.

For a two-qubit system, and assuming proper normalization, a
minimum of 15 linearly independent measurements is required to
reconstruct the density matrix: rreconstructed¼ 1=4�

P
i;j ri;jsi � sj,

where si,sj refer to the Pauli operators of the respective qubits
(s0¼ I, the identity operator). As the Pauli operators are the
generators of quantum mechanical qubit rotations, the coefficients
ri,j¼Tr[rreconstructedsi�sj] are related to the joint measurement of
both qubits after applying single qubit rotations on both of them29.
In particular, the joint measurement is calculated through
comparing the coincidence counts between our spin and photon
measurement devices, and comparing them to the coincidences
obtained in different, uncorrelated events. For our photonic
polarization qubit, we measure both in the {H,V} computational
basis, and in two rotated bases, by means of
our polarization analysing stage: sþ ¼ ðHþ iVÞ

� ffiffiffi
2
p

; s� ¼
�

ðH� iVÞ
� ffiffiffi

2
p
g and Dþ ¼ ðHþVÞ

� ffiffiffi
2
p

;D� ¼ ðH�VÞ
� ffiffiffi

2
p� �

.
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For the spin qubit, we change the measurement basis by applying a
rotation pulse (p or p/2) with the appropriate delay to change the
rotation axis25; the bases we measure in are: #; "f g,  xf
¼ ð" � #Þ

� ffiffiffi
2
p

; !x ¼ð" þ #Þ
� ffiffiffi

2
p
g,  y ¼ð" � i #Þ

� ffiffiffi
2
p

;!y
�

¼ð" þ i #Þ
� ffiffiffi

2
p
g. Each coincidence measurement results in a

conditional probability, using which the ri,j can be computed. From
the 36 potential joint measurement settings resulting
from these states, we choose a subset of 16 (15þ 1), that
are linearly independent, which results in a straightforward,
direct reconstruction of an initially unnormalized density matrix
using the above definition and arithmetic manipulation—see
Supplementary Note 2. Normalization of the density matrix
then follows from a simple division by the trace, as suggested by
James et al.30.

The result of this direct reconstruction is indicated in Fig. 2,
where we compare the thus obtained density matrix with the ideal
one. The overlap with the ideal state, Cideal j rreconstructed j Cidealh i
yields a fidelity of 92.7%. However, due to measurement errors,
this density matrix is non-physical (non-positive); in particular,
one of the eigenvalues is negative: � 0.19.

MLE reconstruction of the spin–photon density matrix. This
drawback of direct reconstruction is commonly avoided by using

a different reconstruction procedure. It is possible to enforce a
physical, positive-semi-definite density matrix as an output, and
to use a maximum likelihood estimation (MLE) procedure to find
a density matrix that is most compatible with the experimental
data30. Using numerical optimization, density matrices
rMLE¼TwT=TrðTwTÞ that form a best fit with the
measurement results are sought. Such density matrices are
properly normalized (have trace¼ 1), are strictly non-negative
and Hermitian, and can therefore be regarded as physical30

(see Supplementary Note 3).
Figure 3 shows the density matrix obtained from the MLE

procedure. The fidelity is calculated using the same definition as
for the direct reconstruction: FMLE¼ Cideal jrMLE jCidealh i. The
non-zero measurement uncertainties (Poissonian counting
statistics21) imply that the fidelity of the reconstructed state will
also have an uncertainty associated with it. To quantify this
uncertainty, we calculated the MLE-reconstruction for a range of
possible input measurements, randomly sampled from the
distribution of the possible measurement results, using a Monte
Carlo method—see Supplementary Note 3. The resulting
histogram (probability distribution) of the calculated fidelity is
indicated in Fig. 3c, where 100,000 simulated noisy measurement
results are used to calculate the MLE-obtained fidelity. We obtain
a mean fidelity of 92.1% (median: 92.7%), with a standard
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deviation of 3.2%. The theoretical upper bound, determined
by the timing resolution of the time-resolved conversion
technique21, is around 95%, and is therefore close to being
satisfied; residual errors in the pulse control of the spins account
for most of the remaining difference (see Supplementary Note 1).
Using the same methods, we calculated a concurrence of
0.908 (s.d.: 0.051), a tangle of 0.826 (s.d.: 0.086), an entangle-
ment of formation of 0.87 (s.d.: 0.069) and a linear entropy of
0.107 (s.d.: 0.06).

Discussion
The entanglement fidelity becomes critically important if one
intends to connect such multiple matter–light quantum interfaces

to make a quantum repeater7,8. For each link in a repeater
network, the photons from two spin–photon pairs interfere to
produce a spin–spin Bell-state16, where the spin qubits are stored
in separate repeater nodes at either end of the channel (see Fig. 4a).
The repeater node would have two or more photon-based
interfaces to communication links and local quantum gates
between spins and spin-state read-out in each repeater node
transfer information through the network. To overcome errors,
these local operations could also distil a high-fidelity Bell-state (say
FZ0.995) from multiple lower-fidelity pairs of entangled qubits13.

When two spin–photon pairs with fidelity Fsp interfere, the
resulting spin–spin entanglement fidelity Fss is lower-bounded by
FssZ(Fsp)2, assuming perfect interference between the photons.
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Furthermore, it is known that entanglement distillation of
EPR-Bell-states (Einstein-Podolsky-Rosen) has a ‘threshold’
lower bound of Fss40.5 to increase fidelity at the output13.
From this simple ansatz, we can draw two conclusions. First, and
again assuming perfect photonic interference, using two spin–
photon entangled pairs with measured fidelity Fsp41/

ffiffiffi
2
p

E0.71
will always result in a spin–spin entangled pair with fidelity
Fss40.5, which is above the threshold for purification.
Conversely, for spin–photon fidelities below 0.71, it is not
generally true that such a purifiable spin–spin entangled pair can
be created. Although some lower-fidelity spin–photon states
result in spin–spin entangled states that can be purified, more
information about the particular state (via the knowledge of the
full density matrix) would be required–see Supplementary
Discussion. In this sense, 0.71 can be seen as an unconditional
threshold for the spin–photon entanglement fidelity—a sufficient
condition for scalability. To the best of our knowledge, this
experiment is the first one in any solid-state system to
unambiguously demonstrate (at the 99.9% confidence level) a
spin–photon fidelity above this threshold.

Second, and more importantly, the efficiency of entanglement
distillation, which directly has an effect on the communication
rate, increases as Fsp-1. This effect can be seen clearly by the
simulation results in Fig. 4b. Here we calculate the average net
communication rate of high-fidelity (FZ0.995) spin–spin
entangled pairs by distillation from noisy spin–photon Bell
states8. If one compares the performance of the two systems
starting from Fsp¼ 0.9 versus Fsp¼ 0.8, the former has a higher

communication rate by a factor of 10, illustrating the dramatic
effect of improved spin–photon entanglement fidelity. For our
experiment, the Monte Carlo uncertainty analysis used revealed
that our spin–photon state has a fidelity above the threshold of
1/

ffiffiffi
2
p

with 99.9% certainty, and that our entangled state has a
fidelity greater than 0.9 with 81.4% certainty (Supplementary
Table S1).

In conclusion, we demonstrated a full tomographic analysis of
high-fidelity spin–photon entanglement in a solid-state system
using InAs quantum dots. The resulting fidelity would allow for
efficient distillation of purified entangled states, and represents a
milestone in the quest to build quantum networks.

Methods
InAs quantum dot device. We used a Si-d-doped quantum dot (QD) sample,
similar to previous devices21. The dot density was reduced, and the emission blue-
shifted (910 nm). We obtained excellent collection efficiency by means of an
asymmetric, low-Q cavity (10 nm full width at half maximum, centred at 910 nm)
that reduces photon loss from the spontaneous emission into the substrate. An
external magnetic field perpendicular to the growth direction (Voigt geometry)
splits the electron spin states as well as the excited, trion states. Figure 1a indicates
the resulting L-systems, and the polarization selection rules were verified by means
of polarization-selective photoluminescence (half-waveplate and polarizing
beamsplitter)25,28. We screened the device and selected those quantum dots with
the cleanest selection rules, to suppress residual errors.

Experimental setup. A superconducting magnetic cryostat (Oxford Spectromag;
the magnetic field used was varied between B¼ 3 and 6 T) cooled the devices to a
base temperature of 1.5 K. A 0.68-NA aspheric lens inside the cryostat focused the
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pump and rotation lasers onto the sample, which was scanned relative to the lens
by means of slip-stick piezo-electric positioners (Attocube Systems). We used
similar coherent manipulation techniques as those reported previously25. A
narrowband continous-wave-laser (New Focus Velocity) was used for spin
initialization and read-out, resonant to the #j i- "#*j i-transition (910.10 nm for a
3-T magnetic field); fibre-based electro-optic modulators (EOM, EOspace) were
used to switch the laser light on and off. We used a Ramsey-interferometry setup
for coherent spin rotations, using pulses from a modelocked laser (3 ps pulse
duration, centre wavelength 911 nm, Spectra-Physics Tsunami), which were
delayed relative to each other through a retroreflector on a motorized stage. Pulse-
picking was realized using free-space EOMs (Conoptics), which were double-
passed to increase the extinction ratio. The selective excitation of the "#*j i-state
prior to spontaneous emission was realized through a combination of optical
pumping into the "j i-state, rotation by an optical p-pulse into the #j i-state,
followed by the application of a 100-ps pulse (optical p-pulse) from another,
synchronized, modelocked laser (Spectra-Physics Tsunami with Lok-to-Clock
system), resonant with the #j i- "#*j i-transition. Pulse-picking of the 100-ps
excitation pulses required another fibre-optic modulator. For the single-photon
photoluminescence, we built a confocal setup, split into two branches by a non-
polarizing beamsplitter. One branch was cross-polarized with respect to the
initialization and optical pumping lasers, and sent through a double-
monochromator onto a single-photon counter for spin-state analysis (Perkin-
Elmer single-photon counting module; 20% quantum efficiency, 170 Hz ungated
dark count rate). The other branch was sent to a polarization analysing stage
(quarter- and half-waveplate and polarizer), after which it was coupled into
single-mode fibres and sent to the downconversion setup. We carefully calibrated
the polarization analysing stage, to account and compensate for residual
birefringence in the setup. All EOMs were controlled by mutually synchronized
pulse-pattern generators (76 MHz Tektronix and 10 GHz Anritsu PPG), themselves
synchronized to the repetition rate of the modelocked lasers. Spatial, polarization,
wavelength and time-filtering sufficed for separating reflected light from the
single photons.

Quantum erasure via frequency conversion. For the 2.2-mm light pulses needed
for conversion, we used a difference-frequency generation process that mixed the
3-ps, 911-nm pulses from the modelocked laser with narrowband, continous-wave
1560-nm light in an MgO-doped, PPLN chip. The 1560-nm light was modulated
by a fibre-optic modulator, and amplified by erbium-doped fibre amplifiers. The
residual 1560-nm and 911-nm light was filtered out through a combination of
dichroic and absorptive filters. The resulting pulse width depended on the exact
power and wavelength used for the difference-frequency generation process, but
was measured to be between 3 and 8 ps.

Conditional on exact temporal overlap, a PPLN waveguide efficiently converted
910-nm, spontaneously emitted photons to 1560-nm photons. To eliminate
residual noise from the 910 nm and 2.2 mm branches, we installed a fibre-Bragg
grating and a long-pass filter. The 1560-nm photons were subsequently detected on
a superconducting nanowire single-photon detector, maintained at 2 K, with 14%
system detection efficiency, 40-Hz ungated dark count rate and 100-ps full width at
half maximum timing jitter. Timing analysis was performed on a timing analyser
(Hydraharp, PicoQuant GmbH), used in time-tagged time-resolved mode, which
allows for accurate gating of the signals of both the single-photon counting module
and the superconducting nanowire single-photon detector in post-processing,
thereby drastically reducing the effects of dark counts. The timing of the 2.2-mm
light was chosen such that the subsequent p/2-pulse arrives after 70–100 ps, which
is well within the T�2 -dephasing time of the quantum dot (1.5 ns), though spin-echo
techniques could be used to overcome this limitation.

Correlation analysis. The correlation data that were used in the tomographic
reconstruction algorithms, were the result of a histogram analysis, performed
on the coincidence count rate between the downconverted single photons,
and the single photons used for spin detection. The coincidence count rate was
obtained through post-processing of the time-tagged time-resolved datastream,
and comparing the coincidences within the same experimental run to those
in subsequent, uncorrelated ones. The repetition rate is set at 39 or 52 ns, and
the 0.1% single-photon efficiency and time-gated frequency downconversion
resulted in a 1560-nm single-photon detection and entanglement generation
rate of approximately 2–5 Hz. In combination with another 0.1% single-photon
detection efficiency to detect the spin state (this efficiency is the result of all losses
between the QD and the detector, including efficiency of collecting a photon from
the QD into the optical path; losses from subsequent spatial, polarization and
frequency filtering, finite detector quantum efficiency), this resulted in an
average coincidence rate of approximately 2–5 mHz. We emphasize that these
losses are predominantly due to the inefficiency of extracting a single photon
from the quantum dot, which could be significantly improved by accurate cavity
design. The conversion process in itself, although lossy due to the aggressive
time-filtering to obtain good timing resolution, was rather effective, with
internal quantum efficiencies estimated above 80%, and filtering losses of
several dB maximum.
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Abstract: We demonstrate a photon-counting optical time-domain
reflectometry with 42.19 dB dynamic range using an ultra-low noise
up-conversion single photon detector. By employing the long-wave pump
technique and a volume Bragg grating, we achieve a noise equivalent power
of −139.7 dBm/

√
Hz for our detector. We perform the OTDR experiments

using a fiber of length approximate 217 km, and show that our system
can identify defects along the entire fiber length in a measurement time of
13 minutes.
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5. P. Eraerds, M. Legré, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: Advantages and limitations,”

J. Lightwave Technol. 28, 952–964 (2010).
6. E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, and H. Takesue, “1.5 μm photon-counting optical time-

domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate
waveguide,” Opt. Lett. 31, 727–729 (2006).

7. J. Hu, Q. Zhao, X. Zhang, L. Zhang, X. Zhao, L. Kang, and P. Wu, “Photon-counting optical time-domain
reflectometry using a superconducting nanowire single-photon detector,” J. Lightwave Technol. 30, 2583–2588
(2012).

8. C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise
waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 102, 191104 (2013).

#195158 - $15.00 USD Received 5 Aug 2013; revised 23 Sep 2013; accepted 24 Sep 2013; published 8 Oct 2013
(C) 2013 OSA 21 October 2013 | Vol. 21,  No. 21 | DOI:10.1364/OE.21.024674 | OPTICS EXPRESS  24674

DISTRIBUTION A: Distribution approved for public release.



9. M. Legre, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on
1.55 μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).

10. G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow
noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21, 13986–13991 (2013).

11. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “1.5- μm single photon counting using
polarization-independent up-conversion detector,” Opt. Express 14, 13067–13072 (2006).

12. S. A.Castelletto,I. P. Degiovanni, V. Schettini, and A. L.Migdall, “Reduced deadtime and higher rate photon-
counting detection using a multiplexed detector array,” J. Mod. Opt. 54, 337-352 (2007)

1. Introduction

Optical time-domain reflectometry (OTDR) is a commonly used measurement technique for
fiber network diagnosis. By detecting the Rayleigh backscattered light of a pulse launched
into fiber under test (FUT), one can get information about the attenuation properties, loss and
refractive index changes in the FUT [1, 2]. Conventional OTDRs using linear photodetectors
are widely used, but their performance is limited by the high noise equivalent power (NEP) of
the p-i-n or avalanche photodiodes used in these systems. Photon-counting OTDRs (ν-OTDR),
which employ single photon detectors instead, have been the subject of increased attention,
becauase they offer better sensitivity, superior spatial resolution, an inherent flexibility in the
trade-off between acquisition time and spatial precision, and the absence of the dead zones.

Several ν-OTDR systems have been demonstrated with InGaAs/InP avalanche photodiode
(APD) operated in Geiger-mode [3, 4]. But in these demonstrations, the InGaAS/InP APDs
used suffer from noise issues caused by large dark current and after pulsing [5]. Time gated op-
eration of the detectors is used in these ν-OTDR measurements to reduce the noise. However,
a consequence of time gated operation is that it only allows part of the fiber to be measured
at a time, so the measurement time is longer than that using free running detectors by almost
3-order of magnitude [6]. Recently, ν-OTDRs based on free running superconducting single
photon detectors (SSPD) have been reported [7, 8]. Thanks to the low NEP of SSPD, which
is about −140.97 dBm/

√
Hz, a dynamic range of 37.4 dB is achieved in a total measurement

time of about 10 minutes [8]. However, the superconducting nanowire is operated in a bulky
liquid helium cryostat to reduce the thermal noise. Up-conversion single photon detectors that
consist of a frequency upconversion stage in a nonlinear crystal followed by detection using a
silicon APD (SAPD), provide an elegant room-temperature free-running single-photon detec-
tion technology, and have been successfully applied in ν-OTDR systems [6, 9]. Recent results
include a two-point resolution of 1 cm [9] and a measurement time more than 600 times shorter
[6]. But these systems are not appropriate for long-distance fiber measurements, for the NEP
of these up-conversion single photon detectors is about 2-order of magnitude larger than that
of the SSPD. The high NEP means that much longer measurement times are required to obtain
the same signal-to-noise (SNR) ratio at the end of the ν-OTDR trace.

In a recent paper, we demonstrated an ultra-low noise up-conversion single photon detector
by using long-wavelength pump technology, and a volume Bragg grating (VBG) as a narrow
band filter to suppress the noise[10]. The up-conversion single photon detector we used in the
experiment has a NEP of about −139.7 dBm/

√
Hz. Here, we employ the ultra-low noise up-

conversion single photon detector and a high peak power pulsed laser, and present a ν-OTDR
over fiber of 217 km length. With measurement time of 13 minutes, we achieve a dynamic
range of 42.19 dB. The distance resolution of our system is about 10 cm; while the two-point
resolution is about 100 m.

2. Experimental Setup

The experimental setup is shown in Fig. 1. Laser pulses with central wavelength of 1549.87 nm
are launched into the FUT through an optical circulator. The peak power can be adjusted using
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Fig. 1. Schematic of the experimental setup. ASG: analog signal generator, PPG: pulse
pattern generator, PFG: pulse function arbitrary noise generator, TCSPC: time correlated
single-photon counting system, VATT: variable optical attenuator, Circ: optical circulator,
FUT: fiber under test, DM: dichroic mirror, PC: polarization controller, SPF: 945 nm short
pass filter, BPF: 857 nm band pass filter, VBG: volume Bragg grating.

a variable optical attenuator (VATT). The FUT consists of two fiber spools of length 108.47 km
and 108.48 km sequentially. The back scattered light is coupled into the third port of the cir-
culator, and then detected by the ultra-low noise up-conversion single photon detector. The
output of SAPD is fed into a time correlated single-photon counting system (TCSPC), which is
operated in time-tagged time-resolved (TTTR) mode.

An analog signal generator acts as a clock of the whole ν-OTDR system by feeding a 10 GHz
signal into “clock in” plug of a pulse pattern generator (PPG), and a 10 MHz signal as external
reference of a pulse function arbitrary noise generator (PFG). The PPG’s output is used to
control the pulse laser, while its auxiliary output connected with TCSPC module to provide a
20 MHz synchronized clock. The output of PFG is used to switch the SAPD off temporarily
during a repetition period of laser pulse, when we need to measure the FUT by sections.

The up-conversion single photon detector we used for this experiment, shown in the dash box
of Fig. 1, is fully described in [10]. The signal light and 1952.39 nm pump laser are combined
by a 1950 nm/1550 nm WDM and coupled into the z-cut PPLN waveguide through the fiber
pigtail. A polarization controller is used to adjust the pump laser to the TM mode, for the PPLN
waveguide only supports Type-0 (ee → e) phase matching. A Peltier temperature controller is
used to keep the waveguide’s temperature at 60.8 ◦C to maintain the phase-matching of the sum
frequency generation (SFG) process. The generated SFG photons are collected by an AR-coated
objective lens, and separated from the pump by a dichroic mirror (DM). A VBG, a 945 nm short
pass filter (SPF) and a 857 nm band pass filter (BPF) are used to suppress the noise. Finally,
the SFG photons are collected and detected by a SAPD. The dark count rate of the SAPD we
used is about 60 Hz. Thanks to the long-wavelength pump and the narrow band VBG filter, we
can suppress the dark count rate of the up-conversion single photon detector to 80 Hz while the
detection efficiency is 15%, which corresponds to an NEP of about −139.7 dBm/

√
Hz. This

condition is set as the operation point in our experiment.
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Fig. 2. Measurement of optical fiber of 217 km length performed by our ν-OTDR system.
The pulse width is 1 μs. N is the counts of back scattered photons, N0 is the count at the the
initial point of the trace. The blue trace and violet trace are obtained in the first step and the
second step of measurement, respectively. The position of the two peaks, 108.47203 km
and 216.95422 km, coincides with the length of the two fiber spools. The black horizontal
line shows the RMS noise level of the trace,which is about −39.19 dB. The intersection and
slope of the extrapolated trace (red line) are 3 dB and 0.195 dB/km, respectively. The inset
shows the comparison between the corrected trace (green) and the trace measured directly
(blue).

3. Long distance ν-OTDR Application

In long distance ν-OTDR applications, if the pulse extinction ratio is poor and there is still
light in the pulse interval, the back scattered photons of the light will cause non-negligible
noise. Therefore the laser pulse extinction ratio is also crucial for a good signal noise ratio. To
take advantage of the our low NEP of up-conversion detector, we expect the noise to be below
the noise level of the detector. This requires a extremely high pulse extinction ratio of more than
100 dB. This is achieved by providing a small reversed bias voltage to the laser diode; we have
confirmed that the emission between laser pulses is below our detection limit . The maximum
peak power of our laser pulse is about 23 dBm. The repetition frequency is chosen according to
the length of FUT. For a 217 km-long fiber, the round trip time of laser pulses in it is 2.14 ms.
So the repetition frequency of the laser pulse must be lower than 452 Hz and in our experiment,
we set the laser pulse repetition frequency at 400 Hz. The pulse width of the laser is set at 1 μs.

The measurement is divided into two steps. The repetition frequency and pulse width are
unchanged in the two steps. In the first step, we attenuated the peak power to about 5 dBm and
perform a 3minute ν-OTDR measurement. Due to the fiber loss, the counts of back scattered
photons become smaller than the detector noise at about 120 km of the FUT. We only record
the 0−120 km ν-OTDR trace of FUT in the first step. And then, we manually adjust the laser
peak power to 23 dBm, and perform a 10 minutes measurement of the remaining fiber. Because
the peak power is high, there will be a great amount of photons reflected by the input surface
and backscattered by the initial several kilometers of the FUT. To protect the SAPD, we apply
a TTL signal to the SAPD gate input. The frequency of the signal is 400 Hz and the duty cycle
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of the signal is 60%. The low TTL level is applied to the SAPD gate input to switch it off after
the pulses are launched into the FUT. Thus, we only get the ν-OTDR trace from 100 km to the
end of FUT in the second step. The two sections are jointed into one according to their time
delays, as shown in Fig. 2.

The up-conversion single photon detector in the experiment is polarization dependent. The
strong fluctuation of the ν-OTDR trace in Fig. 2 corresponds to the polarization state revolution
when the light propagates through the fiber, and can be used to study the polarization properties
of fiber. The polarization induced fluctuation can be eliminated by using a polarization scram-
bler [9] or a polarization independent up-conversion single photon detector [11]. The cross talk
and Fresnel reflection of the optical circulator will induce a very high peak in the ν-OTDR
trace, which is not useful for diagnosing the FUT. Furthermore, the high peak will induce a fol-
lowing dip in the ν-OTDR trace due to the dead time of SAPD and TCSPC. In order to avoid
this, we adjust the high peak’s polarization so that it has a very low probability to be recorded
by our polarization dependent OTDR.

In Fig. 2, N is the counts of back scattered photons, N0 is the count at the the initial point
of the trace. Thus 10log10(N/N0) represents the total loss in the round trip of the fiber. As
is common in OTDR experiments, we plot 5 log10(N/N0), which represent single-pass loss
through the fiber. The dead time of the SAPD used in the experiment is about Td = 60 ns,during
which, the photons will not be recorded successfully. So the measured counting rate is smaller
than the actual one. Here we utilize a standard way to make the correction [12]. So when
the measurement time T � Td , the counting rate registered per time bin reduces to Cr(t)T =

Cact(t)T −Cact(t)T ∑Cr(t
′
), where Cr(t) is the registered counting rate per time bin, Cact(t) is

the actual counting rate without dead time effect and the summation means the total counting
rate of time bins of time interval [t −Td , t]. The actual counts can be corrected as Cact(t)T =

Cr(t)T

1−∑Cr(t
′
)
. It is obvious that the difference between measured and true actual counting rate is

small when the counting rate is very low. In the first step of our experiment, the count rate
is more than 7× 105 Hz for the beginning of the ν-OTDR trace. As shown in inset of Fig.
2, we correct the measurement trace (with a color of blue) with the above formula and the
achieved trace (with a color of green) coincidences with the extrapolated trace (with a color
of red) obtained by a linear fit of measured trace. The slope of the extrapolated trace indicates
the attenuation of fiber of 0.195 dB/km. The intersection of the extrapolated trace is the actual
value of the trace at the initial point, which is about 3 dB. The trace of experiment can be
distinguished from the noise obviously at the end of the fiber. The root mean square (RMS)
noise level is calculated from the data at the tails of the trace. The dynamic range is about
42.19 dB, which is determined by the difference between the intersection of the extrapolated
trace and the RMS noise level.

One important parameter of OTDR is the distance resolution. It is the ability of the OTDR to
locate a defect along the FUT, especially, the ability to locate the end of the FUT. The timing
jitter of the detector Δt determines the distance resolution ΔL. The distance resolution can be
estimated as ΔL = vgΔt/2, where vg is the group velocity of light in fiber. From our detector
timing jitter of 500 ps we compute a distance resolution of approximately 5 cm. In order to
demonstrate the spatial resolution experimentally, we cut 20 cm fiber off at the end of the
second fiber spool, and perform the experiment again as described above. The last reflection
peaks of the two ν-OTDR traces are shown in Fig. 3. As shown in the Fig., the laser pulse is
not broadened after transmitting through 217 km fiber. The leading edges of the two peaks, as
shown in inset of Fig. 3, are separated with a 20 cm distance which coincides with the length
of the cutting off fiber. According to the Fig., the experimental distance resolution is about
10 cm, which is larger than the expected resolution of 5 cm. The difference is caused by the
fluctuation of the counts, which can be improved by extending the measurement time. Note that
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Fig. 3. Counts of last reflection peaks of ν-OTDR trace of the 217 km fiber (blue line) and
after the 20 cm fiber is cut off at the end (green line), which are represented by the right
y-axis and left y-axis, respectively. The amplitude of the two peaks are different because
the cutting surfaces of fiber end are not identical. The inset shows the enlarged view of the
leading edge of the two peaks.

the distance resolution is different than the two-point resolution, which is minimum distance
between the defects that can be discriminated. The two-point resolution we can achieve is about
100 m, which is determined by the 1 μs pulse width we used in our experiment. Using shorter
pulses will improve two-point resolution. But meanwhile, shorter pulses with a constant peak
power means less photons in the pulse, which will decrease the measuring range and resolution.

4. Conclusion

In conclusion, we have presented the implementation of a ν-OTDR over 217 km-long optical
fiber. It is based on an ultra-low noise up-conversion single photon detector, and the NEP of
the detector is suppressed to −139.7 dBm/

√
Hz by using long-wavelength pump technology

and a VBG as a narrow band filter. We also use laser pulses of 23 dBm peak power to reduce
the measurement time. This apparatus can achieve a dynamic range of 42.19 dB and distance
resolution of about 10 cm at the distance of 217 km in measurement time of 13 minutes.
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We generate sub-four-cycle pulses (41.6 fs) with 12 μJ of pulse energy in the mid-infrared spectral range (center
wavelength 3.4 μm) from a high-repetition-rate, collinear three-stage optical parametric chirped-pulse amplifier
(OPCPA) operating at 50 kHz. Apodized aperiodically poled MgO:LiNbO3 crystals with a negative chirp rate are
employed as gain media to achieve ultrabroadband phase-matching while minimizing optical parametric genera-
tion. The seed pulses are obtained via a 1.56 μm femtosecond fiber laser, which is spectrally broadened in a
dispersion-shifted telecom fiber to support 1000 nm bandwidth idler pulses in the mid-infrared. © 2013 Optical
Society of America
OCIS codes: (140.0140) Lasers and laser optics; (190.4970) Parametric oscillators and amplifiers; (190.7110) Ultrafast

nonlinear optics.
http://dx.doi.org/10.1364/OL.38.004265

Recent developments in the generation of higher-order
harmonics (HHG) show a clear trend towards the appli-
cation of coherent and bright light sources operating at
long wavelengths, enabling the generation of XUV- or
multi-hundred-electron volt (eV) and even kiloelectron
volt (keV) soft x-ray pulses [1,2]. Long-wavelength ultra-
short laser pulses thus enable new capabilities for multi-
dimensional spectroscopy and studies on atomic and
molecular dynamics [3–6], in both the mid-infrared and
XUV regions. To achieve high signal-to-noise ratios in the
sensitive detection schemes used for many applications,
light sources with high average photon flux are needed.
In particular, higher repetition rates than those of con-
ventional Ti:sapphire-based systems (which mainly oper-
ate in the few-kilohertz regime) are strongly favored. The
development of suitable optical parametric amplifier
(OPA)- and optical parametric chirped-pulse amplifier
(OPCPA)-based sources is progressing rapidly, with re-
ported systems operating at central wavelengths near
1.8 μm [7–9], 2 μm [10–12], 3 μm [13,14], 3.4 μm [15,16],
and 4 μm [17].
In this Letter, we present a collinear, high-repetition-

rate, mid-infrared OPCPA system operating at a center
wavelength of 3.4 μm based on aperiodically poled lith-
ium niobate (APPLN) OPA devices. The collinear inter-
action in such quasi-phase-matching (QPM) devices in
contrast to noncollinear phase-matching in bulk crystals
gives an idler output without an angular chirp. Compared
with our previous work [16], this new system has been
fully redesigned to account for recent developments in
the theory of these devices [18,19], and to suppress para-
sitic spatial effects [20]. The new system design solves
the seed bandwidth limitations of our previous system
[16], greatly reduces optical parametric generation
(OPG), and maintains good quantum conversion effi-
ciency (≈24.5%) of the final OPA stage.
The new system delivers sub-four-cycle pulses [41.6 fs

full width at half-maximum (FWHM)], without being lim-
ited by the damage threshold of the gain crystals, or by

the bandwidth of the seed pulses provided by our fiber
laser (in contrast to our previous result [16]). In particu-
lar, we show for the first time, to the best of our knowl-
edge, the bandwidth capabilities of aperiodically poled
MgO:LiNbO3 amplification devices by demonstrating
1000-nm-wide gain while maintaining compressible out-
put idler pulses.

In such aperiodic (or chirped) QPM gratings, the gra-
ting k vector is swept smoothly and monotonically
through phase-matching for all of the spectral compo-
nents of interest. Signal and idler spectral components
experience gain in the vicinity of their local phase-
matching points. A unique aspect of this approach to
OPCPA is that the gratings can support almost arbitrary
phase-matching bandwidths with the potential for cus-
tomized gain profiles [21,22], good conversion efficien-
cies [18,23], and access to bandwidths beyond those
possible with conventional birefringent phase-matching
techniques without operating at the crystal damage
threshold. Furthermore, the system complexity is kept at
a minimum by the collinear nature of the OPCPA chain.
These properties make our approach an excellent route
towards relatively compact systems offering intense
few-cycle mid-infrared pulses for attosecond science.

Our OPCPA system is shown schematically in Fig. 1.
We first generate a broadband seed source around

Fig. 1. Schematic overview of the mid-infrared OPCPA setup.
DM, dichroic mirror; DM1, reflective 1064 nm/transmissive 1560
and 3400 nm; DM2, reflective 1560 nm/transmissive 3400 nm.
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1.56 μm, amplify this pulse in the OPCPA chain, and ex-
tract the generated idler pulse after the final OPCPA
stage. As the primary seed source for the system, we
use a mode-locked femtosecond fiber laser operating at
λ � 1.56 μm with a bandwidth corresponding to 65-fs
transform limited pulse energy of 3.1 nJ at 80 MHz rep-
etition rate (250 mW average power). Since our goal is to
generate few-cycle infrared idler pulses, we first need
to generate the required seed bandwidth in the near-
infrared spectral range before seeding the OPCPA
system. For this purpose, the pulses are first compressed
to their transform limit via a pair of silicon prisms in a
double-pass configuration. For our new spectral broad-
ening system, the pulses are collimated with a pair of
standard lenses and then coupled into a 1-m-long
dispersion-shifted (DS) telecom fiber (DCF3, Thorlabs
Inc.) with a zero-dispersion wavelength of ≈1.6 μm.
This fiber operates in the normal dispersion regime, in
contrast to the anomalous dispersion regime, which
can be utilized for soliton pulse compression. The ini-
tially compressed input pulse is thus spectrally broad-
ened while it is temporally dispersed through the fiber.
This configuration avoids the modulation instability re-
gime while still utilizing convenient off-the-shelf telecom
fiber technology.
At the output of the spectral broadening fiber, the seed

pulse supports more than 250 nm of signal bandwidth. To
provide an OPCPA seed, the polarization of the spectrally
broadened pulse is optimized with a half-wave plate
(HWP) and then stretched by a 4f pulse shaper in a
double-pass configuration. The pulse shaper consists
of two metallic plane folding mirrors, two plane-concave
cylindrical mirrors with a radius of curvature (ROC) of
−800 mm, and two holographic transmission gratings
with 600 lines∕mm. The gratings exhibit a single-pass ef-
ficiency of greater than 85% at the design wavelength of
1.55 μm. A double-pass configuration of a subsequently
arranged pair of silicon prisms provides the third-order
dispersion (TOD) required to compress the final output
pulses.
The spectrum after the 4f pulse shaper and the pair of

silicon prisms is shown in Fig. 2(a) (“seed” curve, black
solid line). The pulse energy available to seed the first
OPCPA stage (depicted as OPA1 in Fig. 1) is 92.5 pJ.
The spectral ripples seen in Fig. 2(a) originate from the
imperfect pulse profile used to seed the DS fiber: while
spectral broadening in the positive dispersion regime can
in principle provide smooth output spectra, in our case,
the pulses are already partially distorted by the nonlinear
broadening that also occurs in the erbium-doped fiber
amplifiers (EDFAs) of the fiber laser system itself. We
confirmed this conclusion via numerical modeling of
the spectral broadening process in the DS fiber using
standard techniques [24,25], assuming the frequency re-
solved optical gating (FROG)- reconstructed pulses emit-
ted by the fiber laser as input to the model. During the
OPA process, any modulations of the seed spectrum
are transferred to the generated idler spectrum.
The primary pump source for our OPCPA system is an

industrial laser (Time-Bandwidth-Products Inc., Duetto)
operating at 1.064 μm and delivering 12 ps pulses at a rep-
etition rate of 50 kHz and average output power of up to
10 W. The output of this laser is split in two parts. One

part is further amplified by a Nd:YVO4 Innoslab-type am-
plifier [26], to provide a higher-power pump for the final
OPA stage. The remaining part is collinearly overlapped
with the seed in OPA1 via a dichroic mirror, denoted DM1
in Fig. 1 (transmissive for the seed at 1560 nm and reflec-
tive for the pump at 1064 nm). The average pump power
reaching OPA1 is 5.7 W (113 μJ), and it is focused to a
spot size of 315 μm (1∕e2 radius), corresponding to an
intensity of 4.9 GW∕cm2. The pump output after the un-
coated OPA1 crystal is split from the signal and idler out-
puts by another dichroic mirror DM1. In the new layout
of our OPCPA chain, this pump is then reused to seed
OPA2, providing a power of 3.8 W. The pump is refocused
in OPA2 to an intensity of 6.7 GW∕cm2 (1∕e2 radius of
220 μm) and collinearly overlapped with the signal output
of OPA1 (∼1.56 μm), which is split from the idler by
dichroic mirror DM2 after the first amplification stage.
The gain of the preamplification part of the system (i.e.,
between the OPA1 input and the OPA3 input) corre-
sponds to 42.8 dB.

The spectra of the seed and the amplified signals are
shown in Fig. 2(a). Note that the amplified spectra also
contain the unamplified 80 MHz background from the
seed source. With respect to these spectra, there is evi-
dence of gain narrowing, due to the non-flat-top pump
temporal profile, reducing the amplification for signal
spectral components below 1.475 μmand above 1.625 μm.

The third and final amplification stage, denoted OPA3,
is pumped by the output of our Innoslab amplifier [26].
The pump power reaching the OPA3 crystal is 15.2 W,
corresponding to 304 μJ. The signal output of OPA2 is
used as the seed for this stage, and the generated mid-
infrared idler around λ � 3.4 μm is extracted afterwards
as the final output of the system. Dichroic mirrors DM1
and DM2 are used to combine and split up the waves.

In OPA3, we use amoderate peak intensity of the pump
so as to not drive the crystal too strongly. A consequence

Fig. 2. (a) Signal spectra. Spectra of the seed (black line) and
the amplified signal after OPA1 and OPA2, respectively (red and
blue lines). An offset has been added to the seed curve for
clarity. (b) Normalized mid-infrared idler spectra after OPA2
(red) and OPA3 (blue), respectively.
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of pumping the crystal too strongly is the onset of beam
fanning, likely due to photorefractive effects driven by
parasitic green light, which is generated primarily due
to random duty cycle variations in the QPM grating
[19]. To use all of the available pump power in the 1-mm-
aperture APPLN devices, we use elliptical foci for the
pump and signal beams. To obtain the required beam
sizes, we employ both spherical and cylindrical lenses
(indicated by “cyl.” in Fig. 1), forming one spherical
and one cylindrical telescope. The pump beam is focused
to an intensity of 4.4 GW∕cm2 (1∕e2 width of 700 μm in
the horizontal dimension corresponding to the direction
of the crystal c axis, 1∕e2 width of 1700 μm in the vertical
dimension). The resulting idler spectra of OPA2 and
OPA3 are shown in Fig. 2(b). The spectra are measured
with an imaging grating spectrometer.
In all stages we use newly designed uncoated

MgO:LiNbO3 crystals, each having an 11-mm long, 1-mm
by 3-mm wide, apodized APPLN grating design with a
chirp rate of κ � −2.5 mm−2 (corresponding to a decreas-
ing period versus position) in order to achieve a broad
phase-matching in a spectral window spanning the 3 to
4 μm spectral range. Concerning apodization, we have
studied the importance of apodization profiles for such
chirped QPM devices experimentally [27], and have re-
cently shown how they can be implemented systemati-
cally for a wide range of parametric interactions [18].
For idler compression after OPA3, we utilize propaga-

tion through a bulkmedium.Our compressor consists of a
50-mm long rodof coated sapphire,with the length chosen
as a trade-off between efficiency and gain narrowing in the
preamplifier OPCPA stages. Note that adjustment of
the dispersion compensation primarily takes place on
the seed pulse in the near-infrared spectral range. Due
to the phase-reversal properties of OPA, the even-order
spectral phase components of the idler inherit, approxi-
mately, the even-order components of the seed spectral
phase with a flipped sign, whereas the sign of odd-order
components of the idler phase is not flipped [21]. The com-
bination of the applied seed phase, which utilizes the 4f
pulse shaper and pair of silicon prisms described above,
and idler propagation through the bulk sapphire after the
finalOPA stage enables compensation of the idler spectral
phaseup to fourth order.With this approach,wewere able
to compress the chirped 3.4 μmpulses to 41.6 fs (sub-four-
cycles), with 12 μJ of pulse energy after collimation and
compression. The compressed pulses were characterized
with mid-infrared second-harmonic generation (SHG)-
FROG, as shown in Fig. 3. With respect to the retrieved
spectrum, we believe the discrepancy compared to the
measured spectrum originates from the spectral depend-
ence of SHG conversion efficiency and beamsplitter
characteristics over the large bandwidth supported by
the idler spectrum. However, the 68.8 fs FWHM of the
autocorrelation signal provides additional evidence for
the sub-four-cycle duration of our pulses.
It is important to note that inside the APPLN grating,

the generated idler power is approximately 948 mW
(≈19 μJ). This value was calculated when accounting for
all linear losses encountered from the optical elements
after OPA3, including Fresnel losses from the end
facet of the uncoated APPLN grating. We estimate a
corresponding internal conversion efficiency (number

of idler photons at the end of the QPM grating divided
by the number of pump photons at the input) of 24.5%.
With respect to the overall gain in the system, the net
amplification between the OPA3 input and compressor
output corresponds to 11.8 dB.

In order to develop a working OPCPA system using
APPLN devices, several important design constraints
must be met that go beyond using QPM gratings to sup-
port a sufficient phase-matching bandwidth. For exam-
ple, with a given phase-matching bandwidth and OPA
gain, the noncollinear gain guided modes discussed in
[20] can be fully suppressed with a sufficient pump peak
power, thereby suppressing excess OPG. By the design of
the system layout and the APPLN gratings, the presence
of OPG has been minimized. Specifically, by operating
our system at 50 kHz and reusing the OPA1 transmitted
pump for OPA2, we are able to satisfy this pump peak
power constraint in each stage, and also ensure sufficient
seed power for OPA3 without excessively saturating
OPA1 and OPA2.

The remaining OPG background was characterized
first by measuring the idler output power while operating
the amplification chain in an unseeded configuration and
also by a spectral characterization of the OPG. The spec-
tra of the amplified idler (seeded case) and the OPG
(unseeded case) are shown in Fig. 4. Note the different
scales for the idler spectrum of OPA3 and the idler OPG
spectrum. In both cases the amount of amplified quantum
noise accounts for less than 2.5% of the total idler power,
and this value represents an overestimate of the actual
OPG in the seeded system. This value is a substantial im-
provement compared to the background in our previous
OPCPA system [16] and to reported OPG levels of other
comparable systems [10–12]. To the best of our knowl-
edge, this is the lowest OPG background within output
pulses delivered by a high-repetition-rate, mid-infrared
OPCPA reported so far, and proves that the excess quan-
tum noise amplification discussed in [20] for this type of
gain medium can be fully suppressed by appropriate
system design.

Fig. 3. (a) Measured SHG-FROG spectrogram of the com-
pressed 41.6 fs mid-infrared pulse. The FROG error for a grid
size of 512 by 386 points is 0.0116. (b) Retrieved spectrogram
and (c) retrieved temporal intensity and phase. The inset shows
the retrieved spectrum and spectral phase.
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In addition to redesigning the OPCPA stages to mini-
mize OPG while improving bandwidth and maintaining
conversion efficiency, the sign of the pulse chirp was also
flipped (we now use a sapphire compressor instead of a
silicon compressor [16]). This change was made in order
to optimize the OPCPA temporal dynamics. Furthermore,
in addition to being more convenient experimentally,
seeding the power amplifier stage (OPA3) with the signal
rather than the idler helps to suppress unwanted proc-
esses such as idler SHG. The details of this and other
subtle aspects of our system design are beyond the scope
of this Letter, andwill be discussed further in futurework.
In conclusion, we have demonstrated a 50 kHz, mid-

infrared light source delivering 41.6 fs record-short
pulses directly from such a high-repetition-rate OPCPA
at 3.4 μm central wavelength. The system provides a com-
pressed pulse energy of 12 μJ. Additionally, good internal
conversion efficiency of 24.5% was achieved and the OPG
background was minimized by the redesign of the seed-
ing and amplification scheme. The internal conversion ef-
ficiency is an indication that the power amplifier stage
OPA3 is operating in a strongly saturated regime, with
the potential to eventually access the fully saturated adia-
batic frequency conversion limit [18]. So far, we are using
1-mm by 3-mm wide APPLN gratings. In recent years,
wide-aperture samples have become available [28],
allowing QPM technology to support very high energies.
In combination with new developments in high-power ul-
trafast amplifiers [29,30], this technology should enable
high-power and high-repetition-rate few-cycle pulse gen-
eration in the mid-infrared.
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We have demonstrated upconversion detection at the single photon level in the 2 μm spectral window using a
pump wavelength near 1550 nm, a periodically poled lithium niobate (PPLN) waveguide, and a volume Bragg
grating (VBG) to reduce noise. We achieve a system photon detection efficiency of 10%, with a noise count rate
of 24,500 counts per second, competitive with other 2 μm single photon detection technologies. This dete-
ctor has potential applications in environmental gas monitoring, life science, and classical and quantum
communication. © 2013 Optical Society of America
OCIS codes: (190.7220) Upconversion; (190.4410) Nonlinear optics, parametric processes; (270.5570) Quantum

detectors.
http://dx.doi.org/10.1364/OL.38.004985

The detection of weak infrared signals at wavelengths
near 2 μm is an enabling technology in fields such as envi-
ronmental gas monitoring and life science [1–3], as many
important chemical compounds have fundamental ab-
sorption bands located in this wavelength range due to
vibrational or rotational transitions [3,4]. For example,
CO2 has an absorption band near 2 μm, the line strength
of which is at least 70 times bigger than the absorption
band located near 1.6 μm [5]. Therefore, the measure-
ments of CO2’s absorption at the 2 μm band can increase
the altitude resolution compared with the 1.6 μm band,
and is more suitable for the lower troposphere [5]. How-
ever, traditional mid-infrared detection systems are not
sensitive enough for those applications. In environmental
gas monitoring, a detection sensitivity at least on the or-
der of ∼1 ppm (parts per million) is desired for CO2, to
define spatial gradients from which sources and sinks
can be derived and quantified, as well as annual increases
in its rate of concentration [5]; whereas, CO requires a
detection sensitivity equivalent to ∼100 ppb (parts per
billion) [6]. Monitoring warming gases with detection
sensitivity at these levels can advance the study of global
warming and its influences for life on Earth [7]. In life
science, the on-line detection of several chemical com-
pounds in exhaled human breath may help doctors with
disease evaluation and non-invasive treatments. For ex-
ample, exhaled NO can be utilized as a biomarker for
asthma [8], however, it requires a detection sensitivity
at the level of ∼1 ppb. Also, exhaled ammonia is a poten-
tial non-invasive indicator for liver [9] and kidney
function, as well as peptic ulcer diseases.
Furthermore, hollow core-photonic bandgap fibers

(HC-PBGF) have been proposed to provide a 100-fold
enhancement of the overall capacity of broadband core
networks; recent results suggest that the lowest propaga-
tion losses occur at wavelengths near 2 μm [10].
In summary, it can be seen that many fields can benefit

from single photon detection at the 2–15 μm wavelength
region. However, of the broadly employed InGaAs/InP

avalanche photodiodes (APDs) to detect near infrared
single photons, to the best of our knowledge no commer-
cial detectors exist for wavelengths longer than 1.7 μm.
Although commercial superconducting single photon
detectors (SSPDs) exist, reported detection efficiencies
(DE) are approximately 3% at a temperature of 2 K [11].
Furthermore, SSPD’s applications are limited due to for
the need for bulky cryogenic cooling and exquisite tem-
perature control. We have, therefore, expanded the appli-
cation of frequency upconversion detectors [12–18] to
the 2 μm band. In frequency upconversion, signal pho-
tons interact with a strong pump in a PPLN waveguide
to produce converted photons in the visible to near-
infrared region, which can be detected by a Silicon
APD (SAPD) with a high DE and low dark count rates
(DCRs).

In this Letter, we have demonstrated a room tem-
perature single photon upconversion detector at the
2 μm band, with a detection efficiency of approxima-
tely 10%.

We fabricated PPLN waveguides via the reverse proton
exchange technique [19]; the waveguides are 52 mm long
and are poled with a quasi-phase-matching (QPM) period
of 19.6 μm. The waveguides were designed with single
mode filters to match the SMF-28 single mode optical
fiber, with a fiber pigtail at the input, and were antireflec-
tion-coated to avoid interference effects and improve
system throughput. A schematic of our experimental
setup is shown in Fig. 1. A cw, single-frequency, tunable
telecom-band external cavity diode laser (ECDL) and an
erbium-doped fiber amplifier (EDFA) were utilized as
the pump source for this experiment. The pump pro-
duced a maximum average power of approximately 1 W.
The pump was filtered using a 1550 nm∕1950 nm wave-
length division multiplexer (WDM), a 1550 nm∕980 nm
WDM and a manually tunable optical filter to remove
amplified spontaneous emission noise, and other spuri-
ous output. A 1∕99 beam splitter (BS) was utilized to
monitor the pump power.

December 1, 2013 / Vol. 38, No. 23 / OPTICS LETTERS 4985

0146-9592/13/234985-03$15.00/0 © 2013 Optical Society of AmericaDISTRIBUTION A: Distribution approved for public release.

http://dx.doi.org/10.1364/OL.38.004985


A single longitudinal mode thulium fiber laser (TDFL)
and amplifier (TDFA) were employed as the signal
sources near 1950 nm. Then, a variable attenuator, five
spliced 1∕99 BSs, and a thermal power meter with a
sensitivity of 1 μW, were utilized to control and monitor
the input signal power. The total input photon number
and time gate were set as 1 MHz and 1 ns, respectively.
Therefore, the average photon number per time gate was
10−3. The signal was combined with the pump in a
1550 nm∕1950 nm WDM. The polarization of both signal
and pump fields were aligned to the TM mode of the
PPLN waveguide using polarization controllers. Also, a
Peltier cooler-based temperature control system was em-
ployed to keep the waveguide’s temperature at 60°C,
thereby maintaining the phase-matching condition. The
signal, pump, and SFG wavelengths are 1950, 1550,
and 864 nm, respectively.
The phase-matching bandwidth of our waveguide was

0.3 nm, which was mainly decided by the length of the
QPM gratings. To increase the bandwidth, one can reduce
the length of the waveguide, or fabricate a chirped one.
At the waveguide output, the sum-frequency generation

(SFG) photons were separated from the pump by a
dichroic mirror (DM) after being collected by an AR-
coated objective. A 945 nm short-pass filter (SPF), a
785 nm long-pass filter (LPF), and a 857 nm BPF were
then used to block the second and higher order harmon-
ics of the pump. Additionally, we used a volume Bragg
grating (VBG) [18,20] with a 95% reflection efficiency
and a 0.05 nm bandwidth to further suppress noise gen-
erated in the waveguide. Finally, the SFG photons were
collected and detected by a SAPD, which had a DE of ap-
proximately 45% at 860 nm, with the DCRs around 25 cps.
The main experimental results are shown in Fig. 2. We

tuned the pump power by adjusting the variable attenu-
ator and recorded DE and noise count rates at each tuned
pump power point. The DE is calculated by dividing the
number of detected counts after noise count rate subtrac-
tion and detector linearity correction by the number of
signal photons before the WDM. When the pump power
was set at 300 mW, the DE was 10.25%, with a noise count
rate of 24,500 cps. DE data is fitted with a sine square
function [14], while the noise count rate is fitted with
a polynomial curve to guide the eye.
The PPLN waveguide had a total fiber-to-output-facet

throughput of 4.5 dB for the 2 μm signal. The losses in the

combination WDM and free space light were measured
as 1 dB and 0.8 dB, respectively. In combination with
SAPD’s DE, which is approximately 45%, the theoretical
DE should be around 10%, which is consistent with our
measurement.

To ascertain the conversion efficiency of the signal
photons in the PPLN waveguide in our experiment, we
measured the depletion [21] of the input signal as a func-
tion of the pump power by coupling the light exiting the
waveguide into an optical spectrum analyzer (OSA) and
comparing the observed signal levels when the pump is
turned on, versus off. A signal depletion level of 23.5 dB
was observed, corresponding to an internal conversion
efficiency of 99.6%. Our measurement of the signal
depletion, in logarithmic units, is shown in Fig. 3. The ex-
perimental data fits the theory [21] very well.

The noise is mainly due to spontaneous Raman scatter-
ing (SRS). SRS can produce photons either redshifted or
blueshifted from the pump as Stokes or anti-Stokes
sidebands, generated with an intensity ratio determined
by a Boltzmann factor owing to the thermal occupation
of phonons [17]. The ratio of the rate RaS of anti-Stokes
Raman photons for a medium pumped at ωa to Stokes
photons RS for a medium pumped at ωb, with
ωb − ωa � Δω, is given by

Fig. 1. Schematic of the upconversion single photon detector
at 2 μm. BS, beam splitter; M1-M2, mirrors.

Fig. 2. DE (purple triangles) and noise count rate (blue
squares) versus pump power. DE is fitted.

Fig. 3. Signal depletion versus pump power.

4986 OPTICS LETTERS / Vol. 38, No. 23 / December 1, 2013

DISTRIBUTION A: Distribution approved for public release.



RaS

Rs
�

�
ωb

ωa

�
3
exp

�
−

hΔω
2πkT

�
: (1)

It was shown in [14] that, for an upconversion detector
with λp � 1.32 μm and λ1 � 1.55 μm, the ratio of noise
counts is consistent with this Boltzmann factor when
the roles of the signal and pump are interchanged. In our
experiment, the noise count rate was near 150 at the DE
peak power when the pump and signal were inter-
changed, and the ratio calculated from Eq. (1) was ap-
proximately 150. Therefore, a noise count rate of
24,500 cps at the DE peak is reasonable.
We have demonstrated the upconversion detection

near the 2 μmband with reasonable DCRs and a relatively
high DE compared with existing single photon detectors
at this wavelength, which has potential applications in
many fields. To further improve the performance of this
detector, we can employ long wavelength pump [17]
and cascade frequency conversion to reduce the noise,
as well as increasing the DE. A narrower band VBG could
continue to reduce the noise. Note that the fiber coupling
in the experimentwas optimized for 1550 nmnot 1950 nm.
Therefore, it is possible to redesign the mode filter to at-
tain ∼1 dB input coupling losses.
Note added in proofs:We note that related experiment

has been reported in Ref. [22].
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Abstract: Chirped quasi-phase-matching (QPM) gratings offer efficient,
ultra-broadband optical parametric chirped pulse amplification (OPCPA) in
the mid-infrared as well as other spectral regions. Only recently, however,
has this potential begun to be realized [1]. In this paper, we study the
design of chirped QPM-based OPCPA in detail, revealing several important
constraints which must be accounted for in order to obtain broad-band,
high-quality amplification. We determine these constraints in terms of
the underlying saturated nonlinear processes, and explain how they were
met when designing our mid-IR OPCPA system. The issues considered
include gain and saturation based on the basic three-wave mixing equations;
suppression of unwanted non-collinear gain-guided modes; minimizing and
characterizing nonlinear losses associated with random duty cycle errors
in the QPM grating; avoiding coincidentally-phase-matched nonlinear
processes; and controlling the temporal/spectral characteristics of the satu-
rated nonlinear interaction in order to maintain the chirped-pulse structure
required for OPCPA. The issues considered place constraints both on the
QPM devices as well as the OPCPA system. The resulting experimental
guidelines are detailed. Our results represent the first comprehensive
discussion of chirped QPM devices operated in strongly nonlinear regimes,
and provide a roadmap for advancing and experimentally implementing
OPCPA systems based on these devices.

© 2014 Optical Society of America

OCIS codes: (190.4970) Parametric oscillators and amplifiers; (190.4975) Parametric pro-
cesses; (190.4420) Nonlinear optics, transverse effects in; (190.4360) Nonlinear optics, devices;
(320.7110) Ultrafast nonlinear optics.
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1. Introduction

Quasi-phase-matching (QPM) has been an enabling technology for many frequency conversion
schemes and their applications. An important advantage of QPM over conventional birefrin-
gent phase-matching (BPM) is the additional capability to design frequency converters having
desired properties, such as a broad bandwidth with a custom amplitude or phase profile, while
still utilizing the largest nonlinear coefficient of the QPM material. Such capabilities have been
made possible by lithographic fabrication techniques, which enable accurate construction of
non-uniform QPM gratings containing a wide range of spatial frequency content. Chirped QPM
gratings, in which the grating k-vector is varied smoothly and monotonically through the length
of the device, have proven to be particularly useful in ultrafast optics, since the corresponding
phase-matching bandwidth can be made almost arbitrarily large while maintaining a smooth
spectral phase profile.

Chirped QPM gratings have been widely deployed in frequency conversion schemes in-
volving second-harmonic generation (SHG), difference frequency generation (DFG), sum
frequency generation (SFG), optical parametric oscillators (OPOs), and related applications
[1–25]. Their main role historically has been to broaden the phase-matching bandwidth com-
pared to conventional periodic QPM gratings, without the need to use short crystals with re-
duced conversion efficiency, tighter focusing, higher intensities, operation close to the damage
threshold, or other potential drawbacks. Quite recently, new applications of chirped QPM grat-
ings have emerged, in particular high-gain optical parametric amplification (OPA) [1–6], and
high-efficiency adiabatic frequency conversion (AFC) [6–11]. Together, these processes reveal
the possibility of achieving essentially arbitrary-bandwidth, high-efficiency optical parametric
chirped pulse amplification (OPCPA) within the transparency window of QPM media, while
simultaneously suppressing gain-narrowing effects [12]. Such an approach is an important tool
for OPA and OPCPA development [1,18,26–33], as well as for the emergent field of attosecond
science [34–40], offering high-intensity few-cycle pulse generation at high repetition rates and
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in new wavelength regions from comparatively simple and collinear experimental geometries,
utilizing power-scalable 1-μm pump lasers [41, 42]. This potential has motivated the develop-
ment of our mid-IR OPCPA system, which has most recently enabled generation of sub-four-
cycle pulses in the mid-IR directly from the OPCPA output [1].

While obtaining arbitrary phase-matching bandwidth is a relatively straightforward process
of fabricating a structure with the required range of QPM periods, achieving high-quality ultra-
broadband OPA or OPCPA is much more challenging, owing in particular to subtle additional
effects which emerge due to the high intensities and strongly nonlinear interactions involved.
Indeed, broadband operation in this case requires careful control of the ultrafast dynamics of
a nonlinear, spatially inhomogeneous medium. Understanding and manipulating the associated
physical processes is very important for the continued advancement of such devices.

In this paper, we examine in detail several nonlinear processes which occur in high-gain
and strongly-saturated QPM interactions, and thereby determine the design constraints which
must be met by OPCPA systems based on chirped QPM devices to avoid such effects while
still supporting broad bandwidths and good conversion efficiency. Throughout the paper, we
discuss these constraints in the context of our high repetition rate mid-IR OPCPA system, in
particular to explain how we arrived at our most recent OPCPA result [1], which yielded almost
a factor of 2 shorter pulse duration compared to our result from a year earlier [5, 43], and
promises further improvements in the near future. The physics, design constraints, and system
design procedures we develop will be applicable to OPCPA, AFC interactions, and to strongly
nonlinear parametric systems in general, especially those involving spatially inhomogeneous
phase-matching media.

The paper is arranged as follows. In section 2, we introduce the experimental OPCPA setup
reported in [1], explaining its characteristic features. In section 3, we show the fundamental
properties of OPA and AFC in chirped QPM devices, as well as corresponding OPCPA de-
sign guidelines. In section 4, we discuss transverse beam effects, in particular the existence of
gain-guided modes and their suppression in the context of OPCPA. In section 5, we consider
random duty cycle (RDC) errors in QPM structures, and the role these imperfections can have
on OPCPA performance. In section 6, we examine additional, unwanted mixing processes sup-
ported by the χ(2) nonlinearity, and show how these can be suppressed. In section 7, we describe
the effects of group velocity mismatch on saturated chirped-QPM interactions, and the corre-
sponding implications for pulse chirping in order to avoid deleterious effects. With the analysis
from the above sections in hand, in section 8 we collect the key OPCPA design constraints,
further explain their implications and application to the mid-IR OPCPA system described in
section 2, and discuss the results. In appendix B, we provide for convenience a summary of the
definitions used in the paper.

2. Experimental system

In this section, we give a brief description of the mid-IR OPCPA system described Ref. [1],
in order to motivate and give context to the OPCPA design study performed in this paper. Our
system is shown schematically in Fig. 1.

The primary seed laser for the system is a 1.56-μm femtosecond fiber laser (Toptica FFS)
which produces 65-fs pulses at 80 MHz and an average power of 250 mW (3.1 nJ). We spec-
trally broaden this source using a dispersion-shifted telecom fiber (Thorlabs DCF3) to provide
> 200-nm bandwidth (corresponding to >1000-nm bandwidth for the 3.4-μm idler), before
chirping to few-ps durations via a pair of silicon prisms and a 4f pulse shaper in order to pro-
vide a suitable OPCPA seed. This chirping configuration was chosen with compression of the
final 3.4-μm idler output of the OPCPA chain in mind. The seed energy reaching the OPCPA
chain is 92.5 pJ. The primary pump laser is a 1.064-μm industrial laser (Time-Bandwidth Prod-
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Fig. 1. Schematic overview of the mid-infrared OPCPA setup. DM: dichroic mirrors. DM1:
reflective 1064 nm / transmissive 1560 nm & 3400 nm, DM2: reflective 1560 nm / trans-
missive 3400 nm. The OPA2 and OPA3 amplification stages are seeded by the 1560-nm
signal output beams from OPA1 and OPA2, respectively; the 3400-nm idler output beams
from OPA1 and OPA2 are discarded. For OPA3, the signal output is discarded, and the idler
output is compressed in a bulk sapphire rod.

ucts Duetto) which can produce 12-ps pulses at 50 kHz and an average power of up to 10 W.
We split these pulses into two parts, and further amplify one part in a home-built amplifier [44],
based on the Innoslab concept [41]. This amplification yields 15.2 W (304 μJ) of power imme-
diately before the final OPA stage, denoted OPA3.

The OPCPA chain consists of three aperiodically poled (i.e. chirped) MgO:LiNbO3 gratings
(denoted APPLN), each having the same apodized and chirped grating design [8]; the gratings
are 11-mm-long, 1-mm-thick, and 3-mm-wide, with a chirp rate of Δk′ =−2.5 mm−2 in order
to achieve a broad phase-matching bandwidth spanning the 3- to 4-μm spectral range. All
stages are operated in a collinear beam geometry. The first two OPA stages (denoted OPA1
and OPA2) are pumped by the residual Duetto output of 5.7 W (the part not used to seed
the Innoslab amplifier). The transmitted pump from OPA1 is used to pump OPA2, so as to
maximize the peak power in both stages given the available power. OPA3 is pumped by the
output of the Innoslab amplifier. The OPCPA chain is seeded by the signal wave at 1.56-μm,
and the amplified signal is propagated through the system until the final OPA stage, after which
we extract and compress the collinearly-generated 3.4-μm idler wave. The idler is compressed
by low-loss bulk propagation through 50 mm of AR-coated sapphire. These design choices are
explained in sections 3-7, and the various constraints are summarized in subsection 8.1. A more
detailed account of the experimental setup and results is given in [1].

The compressed idler pulses have a duration of 41.6 fs and an energy of 12 μJ, at a repetition
rate of 50 kHz. We currently use uncoated APPLN samples; accounting for these and other lin-
ear losses, we estimate an energy of 19 μJ inside OPA3, which represents a reasonable quantum
conversion efficiency of 24.5% in the final stage. The study we perform in the following sec-
tions explains our improved system layout and design, the limiting factors in terms of OPCPA
physics, and points the way towards further improvements in pulse duration and energy.

3. OPCPA in chirped QPM gratings

In this section, we introduce the fundamental properties of chirped QPM gratings for OPCPA.
In subsection 3.1, we introduce general coupled-wave equations which will be used later as the
starting point to establish several system design constraints. In subsection 3.2 we recapitulate
the interaction between plane- and continuous-wave (cw) pump, signal, and idler fields in the
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chirped QPM OPA regime. In subsection 3.3, we discuss pump depletion (saturation) in this
regime, and corresponding implications for OPCPA system layout. The paper involves various
definitions and symbols: for convenience, these are summarized in appendix B.

3.1. Coupled-envelope equations

OPCPA ideally involves the interaction between individual signal and idler frequency compo-
nents, and a corresponding region of the pump pulse in the time domain. However, other mixing
processes are possible and can perturb the desired interaction. In recent years, general single-
envelope descriptions of χ(2) mixing processes have emerged that account for all of the inter-
actions between co-propagating waves [45–47]. In Ref. [46], interactions in QPM waveguides
were considered, accounting for both χ(2) and χ(3) processes in a general frequency-domain ap-
proach for the first time; all orders of QPM, multiple waveguide modes (with a single envelope
used to describe the spectrum of each mode), and a re-calibration of the χ(3) coefficients (both
instantaneous and Raman nonlinearities) were included. We found that this level of generality
was needed to accurately model previous supercontinuum generation results [46, 48].

In the case of OPCPA, the chirped structure of the pulses involved means that even for very
broad bandwidths, the electric field can be split up naturally into multiple envelopes. Here,
we present a multiple-envelope model allowing for any number of additional envelopes corre-
sponding to various sum and difference frequency mixing between the signal, idler and pump
envelopes. By accounting for all the possible mixing processes between these envelopes, the
resulting dynamics can be captured with generality comparable to single-envelope techniques,
but with the advantage of clearly modelling and isolating the important processes involved, and
without the need to resolve the optical carrier frequency.

Building on the frequency-domain approach of Ref. [46] and the general formalism which
has been shown for unidirectional wave propagation problems as an important extension of con-
ventional slowly-varying envelope approximations [49], we arrive at a set of coupled-envelope
equations describing the extraordinary-wave (e-wave) polarization components of the electric
field in the nonlinear crystal, assuming paraxial and collinear beams and a uniaxial crystal:

∂ Ã j(ω −ω j)

∂ z
+ L̂ j(ω)Ã j(ω −ω j) =−i

ω2u(ω)

ke(ω)c2ε0
F [PNL, j] (ω −ω j). (1)

In this equation, coordinate z represents the propagation direction and x is along the c-axis of
the crystal. ko and ke denote the frequency-dependent propagation constants for the o- and e-
wave polarizations. The field envelope for wave j is denoted Aj, and tilde’s denoting frequency
domain envelope quantities [46]. ω j is the carrier frequency of wave j, and ω (lower-case)
represents absolute optical frequencies. PNL, j is the nonlinear polarization driving wave j. F is
the Fourier transform, defined as g̃(Ω) = F [g(t)](Ω) =

∫ ∞
−∞ g(t)exp(−iΩt)dt. L̂ j denotes the

(frequency-dependent) diffraction and dispersion operator for wave j, and is given by

L̂ j(ω) =
i
2

(
ke(ω)

ko(ω)2

∂ 2

∂x2 +
1

ke(ω)

∂ 2

∂y2

)

+ i

[

ke(ω)− ke(ω j)− ω −ω j

vre f

]

. (2)

We use a moving coordinate system based on a reference group velocity vref, which is typically
chosen to be a weighted average of the pump, signal, and idler group velocities. The total, real-
valued electric field E(x,y,z, t) can be expressed in terms of the envelopes Aj in the frequency
domain according to

Ẽ(ω)u(ω) =
1
2 ∑

j
Ã j(ω −ω j)e

−ike(ω j)z, (3)
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where u(ω) appearing in Eqs. (1) and (3) is the Heaviside step function; the form of these
equations arises because we assume Aj are (shifted) analytic signals (i.e. spectral components
equal to zero for absolute optical frequencies ω < 0).

The nonlinear polarization for each wave is given by

PNL, j(t)

ε0
=

d33

2 ∑
k,l

∑
m

d̄m

[(

Xj,kle
+i(Δk j,kl z−mφG(z))

)

Ak(t)Al(t)

+

(

2Xk, jle
−i(Δk j,kl z−mφG(z))

)

Ak(t)Al(t)
∗
]

, (4)

where this form accounts for all possible χ(2) mixing processes between the envelopes in-
cluded in the model, implicitly assuming an all-e-wave interaction for simplicity, that all other
envelopes (corresponding to different sums and differences of the included carrier frequencies)
are negligible, and that χ(2) is non-dispersive. Note that dependencies of both the nonlinear
polarization and the fields on spatial coordinates have been suppressed for compactness. The
coefficients Xj,kl specify which waves are coupled to each other according to energy conserva-
tion, and hence satisfy

Xj,kl =

{
0, ω j �= ωk +ωl

1, ω j = ωk +ωl
. (5)

For numerical calculations, of course, terms with Xj,kl = 0 can be ignored, and duplicated terms
can be calculated once and multiplied by two. The phase mismatches Δk appearing in Eq. (4)
are given by

Δk j,kl = ke(ω j)− ke(ωk)− ke(ωl). (6)

For a QPM interaction, we can express the spatially-varying nonlinear coefficient in terms of
its Fourier orders, even for cases with an aperiodic grating. Following [50], d(z) is given by

d(z)
d33

= sgn [cos(φG(z))− cos(πD(z))]

≡ d̄0(z)+
∞

∑
m=−∞
m�=0

d̄m(z)exp(imφG(z)) (7)

where m denotes the Fourier orders of the grating, the grating phase is φG(z) =
∫ z

0 Kg(z′)dz′
for local grating k-vector Kg(z), d33 is the relevant nonlinear coefficient of the material for
an all-e-wave interaction, and D(z) is local grating duty cycle. The Fourier coefficients are
given by d̄0 = (2D(z)−1) and d̄m = 2sin(πmD(z))/(πm) for m �= 0. Note that the signs of
the ±[Δk j,klz−mφG(z)] phases in Eq. (4) are needed in order to satisfy energy conservation
for each of the individual interactions involved (i.e. a particular set of envelopes { j,k, l} and a
particular QPM order m). The coefficients Xj,kl and the form of Eqs. (1) and (4) mean that all
interactions involving only the envelopes included in the model are accounted for, and that the
full system of equations conserves energy.

3.2. Quasi-cw mixing in the undepleted-pump regime

While Eq. (1) is very general, simplified sets of equations are also useful in order to gain insight
into the processes involved. In this subsection, we model plane-wave and quasi-cw interactions
between the three nominal envelopes (pump, signal, and idler), including only the first QPM
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order. Under these approximations, Eq. (1) can be reduced to the following, more familiar set
of coupled-wave equations [8]:

dAi,s

dz
=−i

ωi,s
(
d33d̄1

)

ni,sc
ApA∗

s,i exp

[

−i
∫ z

0
Δβ (z′)dz′

]

(8a)

dAp

dz
=−i

ωp
(
d33d̄1

)

npc
AiAs exp

[

+i
∫ z

0
Δβ (z′)dz′

]

, (8b)

where Δβ = ke(ωp)− ke(ωs)− ke(ωi)−Kg(z), and n j denotes the refractive index of wave j.
The effective first-order-QPM nonlinear coefficient is deff = d33d̄1, where d̄1 = 2/π for a 50-%
duty cycle grating.

Following [8], based on the coefficients in these equations, we can define coupling rates
satisfying γ2

p = (ωiωsd2
33d̄2

1)/(ninsc2)|Ap(z = 0)|2 and γ2
s = (ωiωpd2

33d̄2
1)/(ninpc2)|As(z = 0)|2.

From [2], the OPA power gain for the input signal wave in a long, linearly chirped grating
assuming a strong and undepleted pump and zero input idler is given by

Gs = exp

(

2π
γ2

p

|Δk′|

)

(9)

where Δk′ = −dKg/dz is the QPM chirp rate (the rate of change of the phase mismatch with
respect to z).

For OPCPA, we must account for the time-dependent pump intensity and the temporal lo-
calization of signal and idler spectral components. In the limit of highly chirped pulses, there
is a mapping between signal and idler frequencies and time, and hence pump intensity, result-
ing in gain narrowing effects. In this chirped-pulse limit, a frequency-dependent coupling rate
between signal and idler fields can be defined to account for such effects. We explained this
procedure in the context of chirped QPM OPCPA in [12], arriving at the following general
expression for the frequency-dependent gain:

Gs(Ω)≈ exp

⎡

⎣2
∫ zt p,2(Ω)

zt p,1(Ω)

√

γp(Ω)2 −
(

Δk0(Ω)−Kg(z)

2

)2

dz

⎤

⎦ , (10)

the form of which is reminiscent of the OPA gain rate in unchirped structures [51]. The
frequency-dependent signal-idler coupling coefficient is given by

γp(Ω)2 =
(ωi −Ω)(ωs +Ω)(d̄1d33)

2

ne(ωi −Ω)ne(ωs +Ω)c2

2
ne(ωp)ε0c

Ip(τs(ωs +Ω)), (11)

Ip(t) is the pump intensity, the single-frequency-argument material phase mismatch is given by

Δk0(Ω) = ke(ωp)− ke(ωs +Ω)− ke(ωi −Ω), (12)

τs(ωs+Ω) denotes the delay at which signal frequency ωs+Ω is localized, and zt p, j(Ω) denote
the ’turning points’ in Eq. (10), i.e. the points at which the integrand is zero. Since this integrand
is the gain coefficient in an unchirped OPA device, these turning points represent the points
where the local phase-mismatch is large enough that the OPA gain coefficient vanishes. Another
important variable is zpm(Ω), defined as frequency-dependent phase-matching point satisfying

Δk0(Ω)−Kg(zpm(Ω)) = 0. (13)
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Further insight into these quantities is given in Fig. 2, where we show an overview of chirped-
QPM OPA interactions.

The form for the gain in Eq. (10) can be used to find globally optimal chirp profiles to
obtain custom gain (and phase) spectra, as shown via a convex optimization framework in
[12]. Here, we use simplified design criteria for this aspect of the problem, but the general
procedures of [12] can be applied provided that the additional constraints we will discuss in this
paper are addressed. An important property of Eq. (10), described in more detail in Ref. [2], is
that gain takes place between the ’turning points’ zt p,1(Ω) and zt p,2(Ω). For a linear chirp rate
Δk′ = −dKg/dz = constant, there is a dephasing length, which is the distance required to go
from perfect phase-matching (Δk0 −Kg = 0) to zero amplification rate (|Δk0 −Kg|= 2γp). This
dephasing length is given by

Ldeph =
2γp

|Δk′| . (14)

We can define an OPA bandwidth as the range of frequencies which experience complete
amplification according to Eq. (10). Assuming for simplicity a linear, unapodized chirp profile
and approximating γp(Ω)≈ γp0 for peak coupling coefficient γp0, we find the following for the
range of material phase mismatches that are fully amplified:

ΔkOPA ≈ |Δk′|L−4γp0

≡ ΔkBW −4γp0. (15)

In turn, the material dispersion determines the spread of the phase mismatch for a given pump
wavelength and signal/idler spectral region of interest. Given a desired gain and bandwidth,
Eqs. (9) and (15) can be used to determine the grating length L and chirp rate Δk′ required as a
function of the coupling coefficient γp0. For any given nominal grating design, it is essential to
also append apodization regions in order to obtain a useful gain spectrum, as discussed in [8].

The value of γp0 is related to the peak intensity of the pump; a useful relation for the sig-
nal gain coefficient in terms of the pump peak power Ppk, confocal parameter ξp, and phase-
matching bandwidth is

ΛR,p ≡
γ2

p0

|Δk′| =
4ωiωsωp(d̄1d33)

2

πε0c4nins

ξpPpk

|Δk′|L . (16)

where ξp = L/(kpw2
p), ΛR,p is the peak gain factor, and Eq. (16) implicitly assumes a pump with

M2 = 1 and 1/e2 beam radius wp. Equation (16) can provide intuition for some of the required
experimental conditions for a given peak small-signal gain Gs = exp(2πΛR,p), especially in
cases where ΔkOPA ≈ |Δk′|L (although this latter approximation is not always accurate).

3.3. Quasi-cw mixing with saturation effects

Another important aspect of the problem is the effects of saturation. A key feature of chirped
QPM devices is adiabatic frequency conversion (AFC) [6, 7], which in the context of OPA en-
ables a conversion efficiency of the pump to the sum of the signal and idler which asymptotes to
100% with respect to both the pump and signal input intensities, provided that the chirp rate is
sufficiently slow with respect to the coupling between the waves, and that the range of grating
k-vectors is sufficiently large. AFC was recently studied in detail theoretically for the general
nonlinear three-wave mixing cases [8, 9]. The essentially arbitrary conversion efficiencies pre-
dicted by simplified three-wave models is made challenging by several practical constraints
such as limits on how strong the coupling between the fields can be made, as well as the onset
of additional, unwanted processes. We discuss such processes in subsequent sections.
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Fig. 2. (a) Example evolution of the three waves in a cw OPA interaction. For small ρ ,
the amplification corresponds closely to Eqs. (9) and (10). For larger ρ , the interaction
approaches the adiabatic frequency conversion case [8, 9], and for ρ � 1 (corresponding
to DFG or SFG rather than OPA), correspond to the case considered in [7]. The predicted
conversion efficiency increases with both ΛR,p and ρ , as can be seen from (b). The turn-
ing points zt p, j appearing in Eq. (10) are the two points where the normalized position
coordinate (z− zpm)/(2γp) = ±1: the ρ = 10−8 curve in the figure clearly shows that the
exponential gain takes place between these two points. Note also that zpm is frequency de-
pendent due to the dispersion of the material, so different wavelengths are amplified around
different longitudinal positions. (b) Simulated pump depletion ηp = |Ap(L)/Ap(0)|2 as a
function of ΛR,p (which determines the small-signal OPA gain) and ρ (which denotes the
ratio of input signal and pump photon fluxes, and hence how much gain is required in order
to saturate the pump). Contours are labelled with values of ηp. The grating length is chosen
such that L � 2Ldeph in each case [Ldeph defined in Eq. (14)], and hence has L negligible
impact on the pump depletion .

Important characteristic quantities of the three-wave mixing interaction [see Eqs. (8)] are
ΛR,p = γ2

p/|Δk′| and ΛR,s = γ2
s /|Δk′|, and ρ = Ns(0)/Np(0), where Nj(z) denote the photon

fluxes of wave j. It can be shown that ΛR,s = ρΛR,p. In the case of a strong signal and weak
pump (i.e. ΛR,s > 1 and ρ � 1), the pump depletion, defined as ηp = |Ap(L)/Ap(0)|2, can be
approximated as ηp = exp(−2πΛR,s) [7].

For OPA, we will generally have ΛR,p of order unity. Therefore we show in Fig. 2(b) the
predicted pump depletion ηp in terms of ΛR,p and ρ , for a suitably apodized nominally linearly
chirped QPM grating, modelling a spectral component phase-matched in the middle of the
grating. Example curves showing propagation of the seeded signal wave versus position in the
grating are also shown in Fig. 2(a) for several values of ρ at constant ΛR,p = 2 to illustrate the
process being modelled.

Figure 2 can provide guidelines for the values of ρ required in a final power amplifier
stage in order to effectively saturate the pump. For example, obtaining a peak conversion ef-
ficiency of 80% at a reasonable small-signal gain parameter of ΛR,p ≈ 2 [corresponding to
Gs = exp(2πΛR,p)≈ 2.9×105] requires a corresponding value of ρ = 10−2, which then places
constraints on pre-amplifier stages to achieve such an input photon flux. If the input photon flux
is limited to ρ = 10−3 by the pre-amplifier properties, 80% peak conversion efficiency requires
ΛR,p = 3, which may be challenging in practice (for example due to the effects discussed in
section 5), and will also lead to additional noise amplification. Achieving such a high peak
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conversion efficiency (i.e. corresponding to the peak of the pump intensity profile in space and
time) is important, since the total efficiency will be lower (unless using shaped, e.g. flat-top
beam and pulse profiles). Based on these considerations, combined with estimations of overall
system performance via simulations based on Eq. (1), as well as the effects considered in later
sections of this paper, we split our OPCPA system into three OPA stages, as depicted in Fig.
1. The stages have low pump depletion in OPA1, moderate depletion in OPA2, and substantial
depletion in OPA3. We summarize the various system design considerations in subsection 8.1.

Concerning the applicability of Fig. 2, the use of chirped pulses helps to support the assump-
tion of a series of continuous wave interactions [see Eq. (10) for example; we revisit this point
in more detail in section 7]. With the use of sufficiently wide beams (while maintaining the re-
quired intensities), diffraction can be neglected [see also section 4]. However, even under these
conditions, the interaction is still complicated by the temporally and transverse-spatially vary-
ing intensities of the pump and signal beams. To obtain quantitative predictions of total system
conversion efficiency, numerical simulations [see Eq. (1)] are required. Our focus in this paper
is on establishing the relevant physics and constraints, which can then guide more detailed nu-
merical simulations or adjustments of experimental conditions, with which performance can be
optimized around a nominal system layout.

4. Transverse beam effects: suppression of gain guided modes

The plane-wave physics discussed in section 3 can break down due to non-collinear gain-
guiding effects. Gain guiding is a general feature of OPA, but has unique properties for the
case of chirped QPM gratings, due to the combination of transverse spatial walk-off of the sig-
nal and idler waves and dephasing due to the QPM chirp [3]. Under certain conditions [3, 52],
non-collinear gain-guided modes can exist where the signal and idler fields adapt during ampli-
fication to the QPM grating chirp, enabling amplification over long distances. As a result, the
overall gain of such modes can greatly exceed that of the desired collinear OPA interaction. If
the modes are seeded by quantum noise, this process results in a large increase in the optical
parametric generation (OPG) background of the system. If the modes are seeded by the desired
signal or idler wave, the result can be a reduction in beam quality. While the noise content at the
output of the device can be partly reduced by spatial filtering, eventually the noise can be ampli-
fied to the point where it saturates the pump. It is thus critical in designing an OPCPA system to
ensure that these gain-guided modes are suppressed. The essential physics of these gain-guided
modes was considered in [3, 52], and can be modelled using Eq. (1) assuming idler, signal and
pump waves, and neglecting dispersion. Here, we consider the case of broadband OPCPA: we
show that with proper system design, gain guided modes can be fully suppressed, enabling
high-noise-contrast amplification [1].

4.1. Non-collinear phase-matching conditions

We first introduce non-collinear phase-matching in the context of QPM devices. We assume
a plane-wave interaction with k-vectors k j for j ∈ {i,s, p} and a grating k-vector Kg. Each
k j satisfies |k j| = k(ω j), where k(ω j) is one of the propagation constants associated with the
direction of k j. The vector phase mismatch is given by

ΔΔΔk = kp −ks −ki −Kg (17)

This equation can support phase-matching (ΔΔΔk = 0) for both collinear and non-collinear signal
and idler waves. We assume kp = kpẑ and Kg = Kgẑ for scalars kp = ke(ωp) and Kg. Phase-
matching along the transverse coordinates x and y implies that the transverse components of
ki and ks are equal and opposite. The z-component of the resulting phase mismatch can be
written as a function of the transverse spatial frequency components of the signal. As before,

#205795 - $15.00 USD Received 4 Feb 2014; revised 3 Apr 2014; accepted 8 Apr 2014; published 15 Apr 2014
(C) 2014 OSA 21 April 2014 | Vol. 22,  No. 8 | DOI:10.1364/OE.22.009627 | OPTICS EXPRESS  9638

DISTRIBUTION A: Distribution approved for public release.



we assume a uniaxial crystal, extraordinary-polarized waves, and small propagation angles with
respect to the c-axis, resulting in

k j · ẑ
ke

≈ 1− 1
2

[(
k j · x̂

ko

)2

+

(
k j · ŷ

ke

)2
]

. (18)

Since the magnitudes of the transverse spatial frequencies for the signal and idler are equal, it
is useful to define kx = ks · x̂ and ky = ks · ŷ. By applying these definitions and substituting Eq.
(17), the z component of the phase mismatch can be written as

ΔΔΔk · ẑ ≈ Δβ + ∑
j=i,s

[
ke(ω j)

2ko(ω j)2 k2
x +

1
2ke(ω j)

k2
y

]

(19)

where Δβ = ke(ωp)− ke(ωs)− ke(ωi)−Kg is the collinear phase mismatch introduced in Eqs.
(8a) and (8b). With some additional assumptions, Eq. (19) can be simplified significantly. If
we neglect the anisotropy of the material (via the substitution ko → ke), define the resulting
magnitude of the transverse components of the k-vectors as k⊥ = (k2

x + k2
y)

1/2, simplify the
resulting coefficients of k⊥ with the approximation ki + ks ≈ kp, and define a geometric mean
angle according to

θis =± |k⊥|√
ke(ωi)ke(ωs)

, (20)

then Eq. (19) can be simplified as

ΔΔΔk · ẑ ≈ Δβ +
ke(ωp)

2
θ 2

is. (21)

From Eqs. (19) and (21), ΔΔΔk · ẑ > Δβ . Hence, non-collinear phase-matching can be obtained
whenever Δβ < 0 (within the limits of the small-angle approximation). Note that the phase-
matching angle θis(z,Ω) is frequency-dependent, mainly due to the frequency dependence of
Δβ (z,Ω). Frequency dependencies have been suppressed in the above equations for compact-
ness. Note also that in a chirped QPM grating, Δβ (z,Ω), and hence the phase-matching angle
θis(z,Ω), changes with position, and hence the required mean angle of the signal and idler fields
must be able to evolve with position as well for amplification to continue; it turns out that this
evolution is connected with the size of the pump beam.

4.2. Non-collinear gain-guiding cut-offs

The gain-guided modes supported in chirped QPM devices were considered experimentally and
theoretically in [3], and then in additional theoretical detail in [52]. The main processes which
determine the gain rate are: the rate of spatial walk-off, determined by the size of the pump
beam and by the phase-matched signal and idler angles; the rate of dephasing, determined by
the QPM chirp rate; and the coupling rate between the signal and idler fields, given by γp. We
can thus define a gain distance Lg = γ−1

p , a walk-off distance Lwo = wp/θis, and a dephasing
distance Ldeph = 2γp/|Δk′| [see also Eq. (14)]. This dephasing distance can be understood in
the context of Eq. (10): it is the distance required for the integrand to go from its peak, with
(Δk0 −Kg) = 0, to zero, with (Δk0 −Kg) = 2γp (for a plane-wave interaction).

The exponential gain rate Γ of the gain-guided modes can be normalized to the maximum
possible gain rate γp associated with collinear, plane-wave propagation. Figure 3(a), adapted
from [3], shows this normalized gain rate (for the electric field) as a function of Lg/Lwo =
θis/(γpwp) for several values of Ldeph/Lg = 2γ2

p/|Δk′| = 2ΛR,p. The quantity Lg/Lwo can be
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Fig. 3. (a) Simulated normalized gain rate Γ/γp0 of non-collinear gain guided modes,
for different normalized angles and values of ΛR,p. The Λ−1

R,p = 0 case corresponds to an
unchirped grating. This figure is adapted from Fig. 2 of [3] and Fig. 12 of [52], with minor
modifications to notation. (b) Geometric mean angle θis versus idler wavelength, for two
particular grating k-vectors (chosen to satisfy collinear phase-matching for 3 or 4 μm). The
maximum angle occurs at degeneracy.

viewed as a normalized angle, θ̄ = θis/(wpγp), while ΛR,p determines the overall small-signal
plane-wave gain, as discussed in section 3.

For sufficiently large phase-matching angles, gain guiding is suppressed because the signal
and idler beams walk off the pump faster than they are amplified; for sufficiently small angles,
gain guiding is suppressed in the case of chirped QPM gratings because the beams are dephased
faster than they walk off the pump [3]. It is this latter property that allows the modes to be
suppressed in practice. From Fig. 3, an approximate condition for the gain to be cut-off is

θis

γpwp
� 1

πΛR,p
. (22)

This condition can be expressed as Ldeph/Lwo < (2/π), i.e. that the waves dephase before they
walk off the pump.

Fig. 3(a) and Eq. (22) show that sufficiently small normalized phase-matching angles are
required in order to suppress gain guided modes. Therefore, to see how to obtain this condition
in practice, we next determine the range of phase-matching angles supported by the crystal, for
a given QPM grating profile. The range of Kg(z) associated with the nominal part of the grating
(i.e. excluding apodization regions) is determined primarily by the required spectral bandwidth,
although it depends on γp as well [see Eq. (15)]. For a given material and pump wavelength,
there is a range of the material phase mismatch Δk0(Ω) [see Eq. (12)]. For each frequency
shift Ω, the largest phase-matching angle is the one corresponding to the most-negative value
of Δβ (z,Ω), and hence to the largest grating k-vector contained in the nominal grating pro-
file, which we denote Kg,max; if for a particular frequency Δβ (z,Ω) > 0, then no gain-guided
modes are supported for that frequency. We therefore arrive at the largest phase-matching angle
associated with each frequency shift Ω from some chosen carrier frequency:

θis,max(Ω)≈ Re

√
2(Kg,max −Δk0(Ω))

kp
, (23)

Fig. 3(b) shows the geometric mean angle θis as a function of idler wavelength, assuming
a 1064-nm pump and an MgO:LiNbO3 QPM grating, for two grating k-vectors, chosen to
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satisfy collinear phase-matching of 3 or 4 μm [53]. In a grating supporting amplification across
this spectral range, the curve corresponding to 4 μm would closely represent θis,max, up to a
correction to the range of grating k-vectors needed based on ΔkOPA given in Eq. (15). It is useful
to note that for the chosen configuration, θis,max corresponds to degeneracy (λi = λs = 2λp).

Quantum noise seeds the amplifier at all temporal and spatial frequencies, and we thus require
that Eq. (22) be satisfied for all frequencies Ω, not just those we are trying to amplify, in
order to fully suppress gain-guided modes. For a collinear interaction, a given material, and a
given pump wavelength, θis,max(Ω) is essentially fixed by the required gain bandwidth (since
this determines the range of grating k-vectors required). For the purposes of OPCPA system
design, the remaining degree of freedom to satisfy Eq. (22) is the factor γpwp, which must
be sufficiently large. Since γ2

p is proportional to pump intensity, (γpwp)
2 is proportional to the

peak power of the pump, independent of its beam size. Thus, suppression of gain guided modes
requires using a pump of sufficient peak power. To quantify this constraint, we substitute Eq.
(23) into Eq. (22) and express γpwp in terms of the pump peak power, which yields

Ppk >
π3ε0ninsnpc3

4ωiωsd2
33d̄2

1

(ΛR,pθis,max)
2 , (24)

where the signal and idler quantities in this equation should be evaluated at the frequencies
corresponding to θis,max. We have written Eq. (24) in terms of ΛR,p since this gain factor is
fixed by the desired OPCPA gain.

4.3. Implications for OPCPA

Consider an example with a 1.064-μm pump pulse and a 50%-duty-cycle QPM grating in an
MgO:LiNbO3 crystal. The relevant nonlinear coefficient for OPA is d33 ≈ 19.5 pm/V [54]. For
a range of Kg satisfying phase-matching between 3- and 4-μm, max(Kg) ≈ 2.198× 105 m−1,
which results in a maximum angle θis,max ≈ 0.06. This angle occurs at pump degeneracy, so the
corresponding signal and idler frequencies are ωi = ωs = ωp/2. For these parameters, Eq. (24)
can be expressed as

Ppk > (0.56 MW)×Λ2
R,p. (25)

For peak powers below this level, there will exist a finite range of signal frequencies which
can excite gain-guided modes, and thereby experience excessive gain through non-collinear
phase-matching. Note that Eq. (25) should be satisfied both for pre-amplifier as well as power-
amplifier stage(s).

For Gaussian pump pulses with 12-ps FWHM duration and an energy of 400 μJ, the peak
power is 31.3 MW. If 10% of the pulse is used for a pre-amplifier stage, Eq. (25) can be satis-
fied, within a good margin, while still obtaining high gain (e.g. ΛR,p > 2). In contrast, with a
100-μJ pump such as the one used in our earlier OPCPA experiments [4] (prior to the imple-
mentation of an additional amplifier [44]), satisfying Eq. (25) in a high-gain pre-amplifier stage
is quite challenging. In our current OPCPA system shown in Fig. 1, the average powers reach-
ing OPA1, OPA2, and OPA3 are 5.7 W, 3.8 W, and 15.2 W, respectively. The peak power inside
the (uncoated) crystals is relevant for considering gain-guided mode properties; these internal
peak powers are approximately 7.7 MW, 5.1 MW, and 20.6 MW, respectively. Operation at 50
kHz and re-using the transmitted pump from OPA1 to pump OPA2 ensured that we are able to
satisfy Eq. (25) in each OPA stage, even for relatively large values of ΛR,p ∼ 3. Experimentally,
we observe no evidence of gain-guided mode related effects, and demonstrate good OPG prop-
erties of the overall system (as discussed in more detail in [1]), indicating that we have indeed
suppressed these modes.
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5. Role of QPM duty cycle errors

In the previous section, we considered an unwanted effect which can arise due to the use of
finite-sized beams. In the following sections, we consider plane-wave interactions, but go be-
yond the three-wave mixing processes modelled by Eqs. (8a) and (8b). We first consider the
effects on OPCPA of random duty cycle (RDC) errors in the QPM grating. We recently studied
such effects in detail for several device configurations [50], including parasitic pump SHG in
the context of OPCPA. Here, we review the relevant results of [50], and then expand on the
analysis for the specific case of OPCPA. Note that while our focus in this paper is on the case
of chirped QPM gratings, RDC errors are relevant for OPCPA employing both chirped and
unchirped gratings, and explain the intense green light typically generated in 1-μm-pumped
QPM-based OPCPA systems; our results in this section are applicable to both chirped and
unchirped gratings.

5.1. Essential features of QPM gratings with RDC errors

A schematic of RDC errors is depicted in Fig. 4(a). For these types of errors, the statistics of
the QPM domain boundaries (from sample to sample) are assumed to be independent, identi-
cal, normal distributions. The mean boundary positions (corresponding to the nominal grating
design) are denoted z0[n] for boundary n (element n of vector z0), and their standard devia-
tions are σz. As an example of this notation, for a periodic 50-% duty cycle grating with period
2lD and domain length lD, z0[n] = nlD. RDC errors lead to a pedestal in the spatial frequency
spectrum of the grating which is approximately flat after performing an ensemble-average over
many gratings with different random errors.

To quantify the pedestal, we state the ensemble average of the spatial frequency spectrum of
the QPM grating, denoted

〈|g̃z(k)|2
〉

for longitudinal spatial frequency k. From Eq. (9) of [50],
this averaged spectrum is given by

〈|g̃z(k)|2
〉
= e−k2σ2

z |g̃z0(k)|2 +N
( π

kL

)2(
1− e−k2σ2

z

)
, (26)

where z0 is the vector of ideal (designed) grating domain boundary positions, z is a vector of ac-
tual boundary positions (including RDC errors), and N is the number of domains in the grating.
For a given grating, |g̃z(Δk)|2 is proportional to the cw conversion efficiency for spectral com-
ponents having material phase mismatch Δk. For a periodic grating of period 2lD, |g̃z0(Δk)|2
is thus approximately a sinc2 function in the vicinity of first-order QPM (Δk ≈ π/lD), and is
normalized to have peak equal to 1; see Eq. (10) of [50]. The second term in Eq. (26) is a
noise pedestal that originates from the RDC errors; it applies for gratings with at least sev-
eral domains (N � 1). It leads to an enhancement of the conversion efficiency for nominally
phase-mismatched processes.

Fourier spectra of an example apodized chirped MgO:LiNbO3 grating, designed for mid-IR
OPCPA, are illustrated in Fig. 4(b). We assume RDC errors with σz = 0.5 μm. The figure shows
ideal, actual, and ensemble-averaged spectra. For the ensemble average, averaging is performed
over 250 gratings with different errors. The regions corresponding to some additional processes
are also shown by vertical dashed lines (idler-pump SFG; signal-pump SFG; and pump SHG).
In particular, pump SHG is relatively close to 5th-order QPM. The efficiency of these nomi-
nally phase mismatched processes are enhanced by RDC errors, and also, potentially, by the
apodization profile employed (since it broadens the wings of the phase-matching regions).

RDC errors can also influence the desired process directly. This is illustrated by Fig. 4(c),
which shows the same curves as Fig. 4(b) but plotted on a linear scale in the vicinity of first-
order QPM. There is a residual fluctuation in the ideal (blue) curve due to imperfect apodization.
The averaged (black) curve closely corresponds to the ideal grating, apart from a exp(−k2σ2

z )
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Fig. 4. (a) Schematic of a QPM grating with random duty cycle (RDC) errors. Horizontal
dashed lines indicate the ideal, equally-spaced domain boundary positions. Elements of
the domain boundary vectors z (with RDC errors) and z0 (ideal) are indicated. (b) Fourier
spectra |g̃(k)|2 with parameters σz = 0.5 μm and a 10-mm crystal, and approximately a 30
μm average period. For the averaged case (black curve), averaging is performed over 250
gratings. The vertical dashed lines show the spatial frequencies corresponding to phase-
matching for some additional processes (signal-pump SFG; idler-pump SFG; and pump
SHG). (c) The same curves as (b), but shown on a linear scale in the vicinity of first-order
QPM. This plot reveals the influence of RDC errors on the nominal ’tuning curve’ of the
device.

scale factor which originates from the first term in Eq. (26). The single (red) curve shows an
individual grating with RDC errors, and clearly exhibits additional fluctuations compared to
the other curves. This effect will apply to all chirped QPM devices (not just OPCPA devices),
causing distortions to their “tuning curves”, and should therefore not be ignored; it emphasizes
the importance of minimizing RDC errors through fabrication improvements in the future.

5.2. Implications for QPM-based OPCPA

The RDC-enhanced efficiency of processes such as pump SHG can be calculated via g̃(k).
When using narrow-band pulses, this efficiency can fluctuate versus crystal temperature (as
in any phase-matching process) and due to lateral translation of the nonlinear crystal (if the
RDC errors vary along this coordinate). When using ultrashort pulses, however, the efficiency
can correspond closely to the ensemble average in Eq. (26), if the bandwidth of the pulses
exceeds the “natural linewidth” of the QPM peak (that is, the bandwidth for an ideal periodic
grating). Following the approach of Eq. (19) of [50], the pump SHG conversion efficiency
can be estimated. It is convenient to express the result in terms of the characteristic quantities
associated with the OPA process. Assuming Gaussian beam profiles and a sech2 pump temporal
profile, we find

〈USH〉
Up

≈ 1
3

(
1− e−Δk2

SHGσ2
z

Δk2
SHGσ2

z

)(
πσz

lD

)2
(

nins

nSHnp

ω2
p

ωiωs

d2
SHG

d2
OPA

)
(
γ2

pLlD
)
. (27)

Note that for a Gaussian temporal profile, the 1/3 factor becomes 1/(2
√

2). In Eq. (27), the first
quantity in parenthesis approaches 1 for small RDC errors, and the third quantity in parentheses
corresponds to the different strengths of the SHG and OPA interactions. In terms of chirped
QPM OPA quantities, γ2

pL = ΛR,pΔkBW , and hence this product is determined mainly by the
required gain and spectral bandwidth. As such, assuming the RDC-related contributions to SHG
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dominate, the ensemble-averaged SHG efficiency is a function only of the OPA requirements
and the RDC errors. For unchirped devices, γ2

pL is also proportional to the product of the k-
space gain bandwidth of the device times the logarithmic gain [2], which are also constrained
quantities.

In our OPCPA system [1], we observe the pump SHG to vary (∼factor-of-2 changes) due to
lateral translation of the crystal even in OPA1 and OPA2, in which the grating is 3-mm-wide
and the beams are only a few hundred μm wide, suggesting some inhomogeneity in the QPM
duty cycle errors along the grating width. We also observe the pump SHG to fluctuate with
temperature, exhibiting a dependence consistent with RDC errors (again, ∼factor-of-2 changes
over a range of ≈ 100 ◦C), given the acceptance bandwidth of the device with respect to pump-
and second-harmonic frequencies. Experimentally, in OPA1 and OPA2 we translate the QPM
gratings laterally and optimize their temperature to minimize pump SHG. In OPA3, the beam
width is comparable to the grating width, so we only optimize with respect to temperature.

As discussed in [50], at the corresponding intensities of green light, two-photon absorption
(TPA) can become significant, which may lead to photorefractive effects or an excessive thermal
load on the crystal; it is also worth noting that such TPA-induced photorefraction may differ
phenomonologically from normal one-photon photorefraction. After an analysis similar to that
detailed in [50], the TPA can be estimated as

〈UTPA〉
Up

≈ 24
35

( 〈USH〉
Up

)2 (
βTPAIp,pkL

)
(28)

where βTPA is the two-photon absorption coefficient for the SH. Note that the 24/35 factor
becomes 2/3 for a Gaussian pulse. The TPA is clearly related to the SHG efficiency given by
Eq. (27), but also includes the final factor in parenthesis, which is the TPA factor for a SH
pulse having intensity equal to the peak of the pump, neglecting TPA-induced changes to that
intensity; this factor can be quite large. Note also that we have assumed small losses, which is
a reasonable constraint to apply to a practical system.

To quantify the powers expected for SHG and TPA, we next apply Eqs. (27) and (28) to
our OPCPA system, assuming σz = 0.5 μm, a nonlinear coefficient of 19.5 pm/V for the OPA
process and 25.2 pm/V for the pump-SHG process. Based on our measured powers and beam
sizes, we estimate peak pump intensities inside the OPA1, OPA2, and OPA3 stages of 4.9, 6.8,
and 4.4 GW/cm2, respectively. For these values, we predict generated SHG powers (directly
after the uncoated crystals) of 188, 171, and 446 mW; note that with a slightly different σz = 0.4
μm, the latter value would be 296 mW. These predictions are in good agreement with the ≈
300 mW green power we observe after OPA3 at full power. Using the same parameters and the
TPA coefficient of LiNbO3 [55], Eq. (28) predicts two-photon-absorbed powers of 13.6, 23.1,
and 25.6 mW, respectively.

At intensities somewhat above those reported in [1], we begin to observe slight time-
dependent fluctuations in the generated green light, and also fanning of the transmitted pump
beam along the crystal c-axis. These observations appear consistent with photorefractive ef-
fects arising from the non-negligible TPA predicted by Eq. (28). Several photorefractive effects
relevant to our operating regime have been studied, for example, in Refs. [56–58]. While the
photorefractive effects we observe seem to be completely reversible, they place a limit on the
signal-idler coupling rate γp which we can employ, and hence on the single-pass small-signal
gain, and other properties of the amplifiers. A more detailed theoretical and experimental study
of such photorefractive effects in the high-power, high-intensity, QPM, TPA-dominated absorp-
tion regime may be warranted, to elucidate the most important material properties, beyond the
RDC characteristics, for maximizing the signal-idler coupling rate in the context of OPCPA.

#205795 - $15.00 USD Received 4 Feb 2014; revised 3 Apr 2014; accepted 8 Apr 2014; published 15 Apr 2014
(C) 2014 OSA 21 April 2014 | Vol. 22,  No. 8 | DOI:10.1364/OE.22.009627 | OPTICS EXPRESS  9644

DISTRIBUTION A: Distribution approved for public release.



6. Spectral effects: coincidentally phase-matched processes

Even in an ideal structure without any RDC errors, a number of factors can cause the minimal
plane-coupled-wave model considered in subsections 3.2 and 3.3 to break down. For exam-
ple, many components of the nonlinear polarization are neglected by the three-wave mixing
equations (8). In deriving these equations, the only components of the nonlinear polarization
that were retained were those with carrier frequency equal to that of the idler, signal, or pump.
In this section, we consider several additional processes, explaining their influence on QPM
OPCPA, in particular when using chirped gratings. Our main focus will be on χ(2) sum and
difference frequency mixing processes. We justify this focus in appendix A, where we estimate
the severity of several χ(3) and χ(3)-like processes.

6.1. Phase-matching of additional χ(2) mixing processes

We can gain information about the significance of the neglected χ(2) terms for a chirped-QPM
OPCPA device by performing a series of phase-matching calculations, assuming a pump with
a single-frequency component ωp. For each signal frequency ωs, all sum and difference fre-
quencies involving ωs, ωp, and ωi = ωp −ωs are generated (and in turn, all processes involv-
ing sums and differences of the resulting set also occur, and so on). As an example, the most
relevant DFG-like process (excluding the OPA process itself) is the generation of frequency
ωDF = |ωs −ωi|; the corresponding phase mismatch for this process is

Δk(DFG)
si = ke(ωs)− ke(ωs −ωi)− ke(ωi), (29)

where this equation assumes ωs > ωi. Many SFG processes also occur, generating frequencies

ω(SFG)
pq = ωp +ωq for indices p and q ∈ {i,s, p}. The corresponding phase mismatches are

given by Eq. (6).
The phase mismatches can be compared to the range of grating k-vectors required to quasi-

phase-match the desired OPA process (which would be Δk(SFG)
is in the above notation) by plot-

ting each Δkpq(ωs) over the frequency range of interest. In Fig. 5, we plot the phase-matching
period Λ for several processes, assuming a pump wavelength of 1.064-μm and all-e-wave po-
larized interactions in a MgO:LiNbO3 crystal operated at 150◦C. For the purposes of the figure
we assume ωs > ωi (that is, signal refers to the short-wavelength wave).

To interpret Fig. 5, consider an example case where OPA phase-matching must be satisfied
for idler wavelengths between 3-4 μm: the corresponding range of grating periods is approxi-
mately 28.6-30.9 μm (solid blue curve). Consider the 3.8-μm idler component. If the grating
is positively chirped (Δk′ > 0; short QPM periods near the input end of the crystal) then this
component is first amplified where the local period is ≈ 29.1 μm. Near the end of the grating,
where the period is ≈ 30.5 μm, SHG of this component is satisfied. If the amplified idler is suf-
ficiently intense, this process can be efficient, leading to distortions of the pulse and a reduction
in efficiency. If an even wider range of periods is present, for example 28-32 μm, then the idler
is first amplified where the period Λ ≈ 29.1 μm, up-converted to its SH around Λ ≈ 30.5 μm,
and this SH is itself amplified (by the pump of frequency ωp) around Λ ≈ 31.7 μm (dashed
curve). If the SHG process is reasonably efficient, then the idler SHG can effectively experi-
ence OPA twice, and hence have very high gain. Similar arguments can be made for the other
spectral components and processes illustrated. When the QPM periods for different processes
are quite close, the k-space extent of these processes is important (for example, OPA occurs
over the region for which |Δk|< 2γp).

In apodizing the grating, a highly nonlinear chirp profile is imposed at the beginning and end
of the device to achieve a weak interaction at the input and output regions [8]. Such a profile en-
tails a wide range of QPM periods, and hence the period is swept through the various processes
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Fig. 5. Coincidentally phase-matched processes, assuming a pump wavelength of 1.064
μm, as a function of the long-wave idler wavelength. The legend indicates the type of
interaction (SHG, OPA, or SFG) and the frequencies involved. The desired OPA interaction
is ωp =ωi+ωs; the corresponding curve is indicated. For each process, we consider phase-
matching for the nearest-odd-order of QPM (except for pump SHG process, for which we
show 4th- and 5th-order QPM).

illustrated in 5. For example, the period may be swept through pump SHG phase-matching.
Even though the chirp rate is rapid, the pump may be intense enough for the SHG process to
have non-negligible efficiency. Since pump SHG occurs at 4th- and 5th-order QPM, it is pos-
sible in principle to suppress this process by an appropriate choice of QPM duty cycle in the
regions where SHG phase-matching is satisfied (50% for 4th-order, and 40% or 60% for 5th).
This level of control of the duty cycle can be challenging in practice. Therefore, it is impor-
tant to maximize the chirp rate in the apodization regions (while still keeping the apodization
itself effective) so as to minimize the efficiency of such processes; we discussed such optimal
procedures for apodization in [8].

Based on Fig. 5, in order to avoid efficient long-wave SHG (2ωi = ωi +ωi) in a collinear
amplifier designed for wavelengths between 3 and 4 μm, the chirp rate should be negative
(Δk′ < 0), since with this choice SHG of the long-wave idler is phase-matched before that idler
has been amplified via the OPA process, and so the parasitic SHG process has low efficiency. It
is for this reason that we use a negative chirp rate in all of our OPCPA stages.

6.2. Numerical Example

When the phase-matching regions for the different processes are sufficiently separated, simple
expressions for their efficiency can be obtained. This is not always the case, however, so it is
useful to simulate all of the processes which are close to or pass through phase-matching using
the generalized coupled-envelope model in Eq. (1).

In the examples shown in Fig. 6(a) and 6(b), we consider quasi-cw interactions involving
several different spectral components. The set of frequencies included in these simulations is
as follows: ωi, ωs, ωp, 2ωi, 2ωs, 2ωp, (ωi + ωp), (ωs + ωp), and (ωs − ωi). The assumed
parameters are ΛR,p = 2 and ρ = 10−6. The chirp rate |Δk′| = 3 mm−2, and grating length
L = 10 mm.
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Fig. 6. Numerical example including several carrier waves. The pump and seeded idler
wavelengths are 1.064-μm and 3.8-μm, respectively. The legend shows the frequency of
each wave included in the model. The sign of the chirp rate (sgn(Δk′)) is (a) positive (show-
ing significant coupling to unwanted field envelopes and hence distortion of the desired
OPA process), and (b) negative (showing negligible distortions). The parameters are given
in the text

Several features are apparent from these figures. In Fig. 6(a), where the chirp rate is positive,
the signal and idler are fully amplified around 5 mm from the input. Shortly after this point,
the idler SHG process is phase-matched, and then the idler-SH OPA process is phase-matched.
This latter process leads to exponential growth of the (ωs−ωi) and (2ωi) spectral components.
Near the end of the grating, these components actually become stronger than the idler and
signal themselves, and can even deplete the pump. This operating regime is poorly suited to
OPCPA. The other curves in Fig. 6(a) exhibit no prominent features, except an overall growth
for up-converted components, since these are driven by waves which are amplified.

The behavior of Fig. 6(b), where the chirp rate is negative, is much more favorable. The only
non-negligible waves at the output are the desired signal and idler, the pump, and a significant
but still comparatively small pump second harmonic (which may actually be further enhanced
in reality due to the RDC errors in the grating, as discussed in section 5). Since idler SHG
and idler-SH-OPA occur earlier in the grating than idler OPA, these former two processes are
inefficient and do not play a significant role. Therefore, the undesired coincidentally-phase-
matched processes which occur in 6(a) have been avoided by using a negative chirp rate.

7. Temporal dynamics: saturation and group velocity mismatch

The quasi-cw chirped-pulse limit we have assumed so far breaks down when the relative group
delay between the idler, signal and pump accumulated during propagation through the QPM
grating is too large with respect to their (stretched) durations. While the fact that such break-
down occurs is obvious, the point at which it does, and the implications of the breakdown
mechanism(s) for system design, are not always obvious.

In this section, we show how this breakdown can in some situations lead to pronounced
ripples in the output signal spectrum, even in apodized QPM gratings. We explain the physics
of these ripples, and how they can be suppressed by appropriate combinations of pulse and
grating chirp rates (i.e. by overall design of the OPCPA system), while still satisfying other
constraints of the system and QPM devices (such as the requirement of Δk′ < 0 imposed by the
coincidental phase-matching issues discussed in section 6).
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7.1. Effects of group velocity mismatch (GVM)

To explain the important effects involved in saturated chirped QPM OPA devices in combina-
tion with non-zero temporal walk-off between the interacting signal, idler, and pump waves,
we first consider the much simpler case of unsaturated amplification of an unchirped signal
input (seed) pulse. Given imperfect apodization, two idler pulse components are generated at
the input to the device.

The temporal structure of the pulses in chirped QPM OPA with an unsaturated, continuous-
wave pump was discussed in [59]. The evolution of the waves in the saturated-pump regime,
and the influence of QPM apodization, was discussed in detail in [8]. More specifically, the
existence of two idler pulse components is evident from several other sources. For example, in
Eq. (E5) of [2], which represents the signal and idler in the frequency domain for an undepleted-
pump chirped-QPM OPA device, multiple idler pulse components are implied by setting As0 = 0
and then interchanging the i and s subscripts. That equation is still quite accurate near the input
of saturated OPA devices, provided the signal and idler are much weaker than the pump. The
two pulse components can also be understood in the context of cascaded χ(2) interactions,
the physics of which are relevant to chirped QPM devices in spatial regions where the phase-
mismatch is high for all of the spectral components involved. As an example, see the two
second-harmonic pulse components illustrated in Fig. 5(b) of Ref. [60] for a phase-mismatched
SHG interaction.

Of the two idler pulse components, the first, main component travels with the signal in
time until its constituent spectral components (frequency Ω) are amplified at the correspond-
ing phase-matched points zpm(Ω) (i.e. the points where Δβ (z,Ω) = 0). The second component
travels at the idler group velocity, and hence walks off of the signal pulse, and then experiences
an essentially separate OPA interaction, based on the same set of phase-matched points zpm(Ω).

The resulting amplified output of both waves involves multiple pulse components: the main
part, associated with the first pulse component described above, and pre- or post pulses, which
originate from the secondary idler pulse component. The corresponding spectrum has ripples,
associated with these multiple, delayed components [2]. Apodization serves to suppress the
secondary pulse component, by optimally matching the input eigenmodes of the device to the
input conditions (finite seeded wave, zero unseeded wave) [8]. However, in practice, apodiza-
tion is never perfect in a device with d(z)/d33 = ±1, and so there is always at least a small
secondary pulse component generated at the device input.

In the absence of pump saturation, the gain for each pulse component is essentially the same
(except for slight changes due to the time-dependent intensity of the pump). However, with
saturation, the weaker, unwanted pulse component can experience higher gain, since it saturates
its temporal region of the pump less than the main pulse. The resulting pulse components cause
an increased and unwanted spectral ripple. The use of a chirped seed pulse can either exacerbate
or, when properly arranged, completely resolve this problem. We discuss the chirped-pulse case
in the following subsection.

7.2. Influence of saturation and input pulse chirp

To understand the combined effects of GVM, saturation, and pulse chirp, it is useful to first
consider the characteristic velocities involved in the chirped-pulse interaction.

There are the temporal walk-off rates associated with the carrier frequencies of the three
waves, determined by their group velocities. There is in addition an “amplification wave-front”
which corresponds to the delay of the seed spectral component Ωpm(z) being amplified at posi-
tion z (subscript pm indicates “phase-matched”). We denote this delay as τsw(z,Ωpm(z)), where
τsw(z,Ω) is the group delay of frequency Ω and “sw” denotes seeded wave. Note that this delay
is related to the instantaneous frequency Ωinst(z, t) by Ωinst(z,τsw(z,Ω)) = Ω. Note also that in
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this section we will use Ω and Ωpm to refer to frequency shifts of the seeded wave with respect
to its carrier frequency ωsw, which is equal either to ωi or ωs. The unseeded wave has carrier
frequency ωuw = ωp −ωsw.

As well as an amplification wave-front, there is also a “secondary wave-front” related to the
accumulated delays of the spectral components of the secondary (unwanted) pulse component
which is generated in the envelope of the unseeded wave at the input to the grating, as described
above in subsection 7.1.

In order for the secondary pulse to not saturate the pump before the main components are
able to, it is necessary that these components travel at an opposite group velocity, relative to the
pump, compared to the amplification wave-front. In the following, we quantify this constraint.
In Fig. 7 and corresponding movies (Media 1 and Media 2), we illustrate the dynamics involved
for an example signal-seeded configuration involving positive or negative chirp on the signal
pulse. In the following paragraphs, we quantify the relevant processes and arrive at constraints
for system design.

Each spectral component of the secondary pulse propagates at the corresponding group ve-
locity of the material, given by vuw(−Ω)−1 = (∂ke/∂ω) |ω=ωuw−Ω. The total group delay of
these spectral components is determined by this group velocity and also by their initial group
delays at the input to the grating, which are in turn determined by the chirp of the input (i.e.
seeded) pulse. The secondary wave-front can therefore be expressed as:

τuw,eff(z) = τuw(0,−Ωpm(z))+ vuw(−Ωpm(z))
−1z, (30)

where the initial group delay spectrum of the secondary pulse satisfies τuw(0,−Ω) = τsw(0,Ω),
where τsw(0,Ω) is the group delay spectrum of the seeded pulse, determined by its chirp. We
can now introduce an effective group velocity of the secondary wave-front given by

vuw,eff(z)
−1 =

dτuw,eff

dz

=
1

vuw(−Ωpm(z))
+

(
dτsw(0,Ω)

dΩ

∣
∣
∣
∣
Ω=Ωpm

−βuw,GVD(−Ωpm(z))z

)
dΩpm

dz
. (31)

where we use β j,GVD = d(1/v j)/dΩ to denote the GDD coefficient of wave j (related to group
velocity dispersion, GVD), and β j,GDD = dτ j/dΩ to denote the GDD itself. Next, we consider
the amplification wave-front group velocity, vamp(Ω). The QPM chirp and material dispersion
determine the rate at which the phase-matched frequency of the seeded wave changes with
position, according to the implicit relation Δk0(Ωpm(z))−Kg(z) = 0. Hence, Ωpm satisfies

dΩpm

dz
=

dKg

dz
dΔk0

dΩ

∣
∣
∣
∣

−1

Ω=Ωpm

=−Δk′(z)δνuw,sw(Ωpm)
−1 (32)

where Δk′ ≡ ∂Δβ/∂ z = −dKg/dz, and δνuw,sw(Ω) ≡ dΔk0/dΩ = (vuw(−Ω)−1 − vsw(Ω)−1).
From the change in phase-matched frequency versus position and the (position-dependent)
pulse chirp of the seeded wave, we can calculate the group velocity of the amplification wave-
front. We thereby arrive at

vamp(z)
−1 =

d
dz

(τsw(z,Ωpm(z)))

=
1

vsw(Ωpm(z))
−
(

∂τsw

∂Ω

∣
∣
∣
∣
Ω=Ωpm(z)

+βsw,GVD(Ωpm(z))z

)
Δk′(z)

δνuw,sw(Ωpm(z))
. (33)
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Fig. 7. Illustration of group velocity walk-off effects in saturated-pump OPCPA. (a) Neg-
ative signal GDD (Media 1), (b) Positive signal GDD (Media 2). The figures and movies
show the evolution of cross- frequency resolved optical gating (FROG) spectrograms (dB
scale; 400 fs gate pulse) of the unseeded wave (in this case, the long-wavelength idler) as it
propagates through the QPM grating. The pump pulse is 12 ps long and the 1.55-μm signal
input is stretched from 30 fs to 6 ps with pure second-order phase. The z-dependence of
Kg is shown in the inset. The first ∼10 mm of the grating is a highly phase mismatched
region, added to illustrate the relevant dynamics: this region allows the secondary pulse to
propagate away from the main pulse, making it easier to distinguish; in a practical device,
this region would not be included. The current position in the grating is marked for each
frame.

Several curves are included in the main plot to highlight important features. The dashed
black line shows the group delays of the main pulse, determined by the input chirp and
propagation of the seeded pulse. The solid black line shows the group delays of the sec-
ondary pulse. The horizontal grey line shows the local phase-matched frequency. The
dashed vertical line shows the amplification wave-front, corresponding to velocity vamp(z)
[see Eq. (33)]. The solid vertical line shows the secondary wave-front, travelling at velocity
vuw,eff(z) [see Eq. (31)]. The intersection of the horizontal and vertical lines indicate the
points of the pulse components which are currently phase-matched.

Distortions occur when the amplification wave-front passes through temporal regions of
the pump which have already been depleted by the secondary pulse. This case is seen in
(b) for positive signal GDD. Due to the highly amplified secondary pulse, there are two
spectral regions of the signal and idler overlapped with each temporal region of the pump;
cross-talk between these multiple pulse components lead to generation of additional spec-
tral components, as seen in the image displayed for (b). In (a), the secondary wave-front
‘lags behind’ the amplification wave-front, so the secondary pulses are amplified less, and
the output spectrogram quality is much higher.

The terms in Eqs. (31) and (33) dependent on τsw(0,Ω) can be simplified by noting that
dτsw(0,Ω)/dΩ = βsw,GDD(Ω), which is the frequency-dependent group delay dispersion of the
seeded wave.

Given vuw,eff(z) and vamp(z), the criteria introduced above for the secondary pulse compo-
nents to not interact with temporal regions of the pump before the main pulse can be quantified:

(
vuw,eff(z)

−1 − vamp(z)
−1)(vamp(z)

−1 − v−1
p

)
< 0. (34)

To interpret this equation: if (v−1
amp − v−1

p ) > 0, the amplification wave-front moves from the
leading edge of the pump to the trailing edge. We then want the secondary wave-front to be
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closer in time to the leading edge of the pump than the amplification wave-front, so that it
is temporally overlapped with pump components which have already been partially depleted.
Thus, we need v−1

uw,eff < v−1
amp, so that the secondary wave-front accumulates less delay with

position. An analogous argument applies if both signs are reversed.
A convenient form for Eq. (34) results if we suppress dependencies of the various quantities

on position z and frequency Ωpm(z), and neglect group delay dispersion accumulated by both
envelopes within the crystal, i.e. neglecting β j,GVD. Equation (34) can then be re-written as

βsw,GDDΔk′ >
(
v−1

uw − v−1
sw

)(
v−1

sw − v−1
p

)
. (35)

Even further simplification of this inequality is possible in the case of a large enough GDD
that the magnitude of the left hand exceeds that of the right hand side. In this case, we simply
require that βsw,GDDΔk′ > 0. Since we found in section 6 that for the mid-IR OPCPA case under
consideration, Δk′ < 0 is required, Eq. (35) reduces, for strongly chirped pulses and gratings,
to βsw,GDD < 0, i.e. the seeded wave (whether the signal or idler) should have negative GDD.

In our OPCPA system [Fig. 1], the final idler output is compressed with bulk sapphire, which
has a negative GDD coefficient in the 3- to 4-μm range. Prior to compression, the idler therefore
has positive GDD. In the OPCPA stages, the even-orders of dispersion of the generated wave
acquire a sign flip with respect to those of the seeded wave (note that the odd orders do not
acquire such a sign flip). The seeded signal wave prior to OPA3 must therefore have negative
GDD, in accordance with Eq. (35). We designed the silicon prism pair and 4-f pulse shaper
seed-stretching system depicted in Fig. 1 so as to obtain such a negative signal GDD while also
being able to compensate for higher order dispersion terms of the generated idler wave.

In addition to the somewhat subtle points discussed so far in this section, there is also a more
obvious constraint based purely on temporal overlap of the pulses. To remain overlapped with
the pump throughout the grating, using Eq. (15) to find the grating length L as a function of γp0

and ΛR,p, the pump duration should satisfy

τp �
(

ΔkOPA

γ2
p0c

+
4

γp0c

)

δngΛR,p, (36)

where δng is a characteristic group index difference, corresponding to the largest group index
minus the smallest group index involved in the three-wave interaction. With this inequality, the
required pump duration can be estimated given the required gain and bandwidth. The minimum
required pump pulse duration is obtained when the pump intensity equals the damage threshold,
although this damage threshold is also a function of the pump duration.

To emphasize the results of this section: while the dynamics we have considered in Fig. 7 are
quite complicated, the constraint imposed on OPCPA system design is very simple, requiring
only that in any OPA stage with significant depletion of part of the pump temporal profile, the
seed should have the appropriate sign of GDD (negative in the case of our system, since we also
require Δk′ < 0). The pulse stretching / compression can then be arranged with this constraint
in mind, in addition to standard linear-optical considerations.

8. Summary and conclusions

8.1. Summary of OPCPA design constraints

In this subsection, we summarize the design constraints developed throughout this paper. One
aspect of these constraints is that they apply to both the OPCPA system as well as the individual
QPM devices, so it is important to design both at the same time.

To obtain sufficient gain, the factor ΛR,p = γ2
p/|Δk′| must be large enough; the correspond-

ing gain is given by Eq. (9). The actual gain and saturation in individual stages when using
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Gaussian beams and non-flat-top pulses must be calculated numerically using e.g. Eq. (1). The
amplification bandwidth is given by Eq. (15) or more generally by Eq. (10). For a given band-
width and gain, there are two equations for the three quantities γp, L, and Δk′. Avoiding χ(3)

and χ(3)-like processes, which typically scale with the intensity-length product (but also de-
pend in some cases on the temporal structure of the waves) is also important. We considered
such processes in appendix A.

The peak signal-idler coupling rate γp [Eq. (11)] is in addition constrained by the damage
threshold, which is a function of duration (for peak-intensity related damage), and also by the
thermal load on the crystal (for average power- and intensity- related damage). The grating
length L is also constrained by fabrication, but lengths of ∼ 50 mm are available, so this con-
straint can usually be ignored for OPCPA. The QPM crystal aperture along the c-axis can be
quite narrow (e.g. ∼ 3 mm available commercially with good domain quality). Nonetheless,
samples of up to 10 mm aperture have been demonstrated [61], as well as rotated-cut wafer
poling supporting wafer-sized beams [62], so QPM devices can be scaled to high powers and
energies. Wider gratings and elliptical beams may be necessary sometimes for power scaling.
In our case we used 1x3 mm gratings, but 2x2 mm gratings would be a natural alternative.

Achieving high conversion efficiency in a single high-gain OPA stage is difficult and requires
the parametric interaction to be driven very strongly, as indicated by Fig. 2. Use of a pump
which is too strong will result in excess noise amplification and other, unwanted effects such
as those discussed in sections 4, 5 and 6 and appendix A. Keeping a moderate pump intensity,
corresponding for example to a peak ΛR,p of 1.5 < ΛR,p < 3 means that multiple OPA stages
must be used in order to achieve good conversion efficiency in the final stage. Based on these
considerations and the properties of our pump source, we split our OPCPA system up into two
pre-amplifier stages followed by the power amplifier. Previously [4, 5], only a single strongly-
driven pre-amplifier was used.

Splitting the power amplifier into two parts and re-using the same pump, as we did for the
pre-amplifier stages, would be a promising approach, since in this way the first power amplifier
stage has (approximately) the same pump energy as the final stage, so a large ρ can be obtained
in the final stage without very high saturation in the penultimate stage. To be able to re-use the
pump in this way, its spatial and temporal properties must not be too heavily distorted in the
penultimate stage; these properties are related to saturation effects and the QPM grating quality.

Imperfections in the QPM grating, in particular RDC errors, lead to parasitic SHG and TPA,
and it is likely that these place limitations on the largest γp which we can use in practice before
the onset of beam fanning due to photorefractive effects. Minimizing these RDC errors will
be an important step for using larger γp without beam distortions and with less risk of crystal
fracture. We estimate σz ∼ 0.4 μm for our present devices based on the generated green light.
Evaluation of the RDC errors and minimizing them (to the extent possible given available
fabrication technology) is likely to be important in optimizing system performance, particularly
when using the same part of the pump for multiple stages.

Keeping a small-to-moderate level of group velocity mismatch between the waves relative to
their durations imposes a further constraint, given by Eq. (36). Minimizing GVM will generally
favor operation at the maximum intensity for a given pump duration and repetition rate (this
maximum may correspond to a reversible onset of beam distortions or to irreversible damage
of the crystal). Minimizing GVM is not necessarily a very strong constraint, however. With
γp = γmax, the other nominal design quantities Δk′ and L of each stage can be determined. The
use of a linear chirp is not required: shaping of the gain spectrum is possible, as described in
Ref. [12] for OPCPA as well as other parametric mixing configurations. Once a nominal grating
profile is chosen, suitable apodization profiles must be appended in order to achieve as clean
a gain spectrum as possible. This aspect of the design, as well as a detailed discussion of the
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underlying three-wave mixing process, was given in [8].
In terms of system constraints, the most important is likely the pump peak power constraint

given in Eq. (24) (in the context of gain-guided non-collinear mode suppression), since this
indicates the appropriate pump sources. For example, consider a system with a single pump
beam which is then split into multiple parts to pump the different stages. With Ppk/Λ2

R,p > 0.5
MW [comparable to Eq. (25)], using ΛR,p = 2.5, and using 10% of the total pump to drive
one or more pre-amplification stages, one arrives at Ppk > 30 MW. To satisfy the constraint by
a factor of ∼2 safety margin, one would need Ppk > 60 MW. Fortunately, such peak powers
are now readily achievable in a variety of laser systems, but this constraint is still important
in scaling to high repetition rates. In our system, we re-used the OPA1 pump for OPA2, and
operated at 50 kHz in order to achieve a sufficient safety margin in the pre-amplifiers given the
peak power available from our pump source.

Given operation at the damage threshold, characterized by γmax(τp, frep) (i.e. assuming a
damage threshold, and corresponding maximum signal-idler coupling rate, which is a function
of both the pump duration and its repetition rate), the GVM constraint Eq. (36) can turn the
above peak power requirement into a pulse energy requirement.

To avoid unwanted coincidentally phase-matched processes in the OPA stages, it is im-
portant to inspect the relevant phase-matching maps, taking into account the range of QPM
periods required for the desired interaction. For the mid-IR OPCPA case we focused on in
this paper, this consideration imposed the constraint Δk′ < 0. Note that with our definitions,
Δk′ = ∂Δk/dz = −dKg/dz, so Δk′ < 0 implies an increasing Kg(z) and hence a decreasing
QPM period versus position in the grating. Note also that if Δk0(Ω) was negative for some
mixing configuration, then the residual QPM phase-mismatch would be (Δk0 +Kg) rather than
(Δk0 −Kg); one would then have Δk′ =+dKg/dzw.

The presence of GVM between the waves and the use of chirped pulses and gratings can
lead to unwanted temporal effects, as discussed in section 7. These effects can be avoided by
satisfying Eq. (34), which will often reduce to Eq. (35) in practice. For our case, this constraint
together with the above Δk′ constraint meant a negative chirp on the signal was needed. This
chirp resulted in a positive idler chirp, requiring a negative-GVD material (such as sapphire) for
bulk compression of the generated idler. As such, the pulse stretching/compression should be
arranged with OPCPA constraints in mind. We use general ray-tracing procedures for evaluating
and optimizing linear-optical pulse chirping and compression strategies [63], incorporating both
the constraints discussed here and the spectral phase imposed onto the generated wave in the
chirped QPM structure [64]. We note, also, that the pulse-distortion effects discussed in section
7 may become negligible for very long (� 10 ps) pump pulses.

The above constraints, in addition to more “standard” OPCPA considerations, have proven
sufficient for development of our OPCPA system. In some cases, they represent subtle issues
not previously discussed or quantified in the context of chirped-QPM OPCPA design. Deciding
on specific beam sizes, distribution of gains between stages, arrangement of pulse chirping and
compression stages, and other experimental aspects, can be facilitated by (1) the comprehensive
analytical design equations and constraints we developed here, (2) more detailed numerical
calculations based on a generalized coupled-envelope model [Eqs. (1) and (4)], accounting for
all propagation effects including diffraction, dispersion, nonlinearities, presence of multiple
OPCPA stages, and so on (which is beyond the scope of this paper), and (3) optimization of
performance experimentally, guided by (1) and (2).

More generally, it is important to decide on appropriate pump sources (based on criteria such
as cost/complexity, wavelength, pulse energy, duration, and repetition rate) and seed sources
(based on criteria such as wavelength, bandwidth, energy, stability, and spectral quality, as
well as cost/complexity). These considerations will continue to evolve as the relevant laser
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technologies improve and become more available, and so we have not focused on them here.

8.2. Conclusions

The design and operation of chirped QPM devices can be subtle and complex. Initially unex-
pected effects can arise and amplify noise, distort beam and/or pulse profiles, or even damage
the nonlinear crystals. In this paper, we have presented a systematic analysis of the design of
OPCPA systems based on these devices, identifying several important constraints beyond those
usually present for OPCPA. While the underlying spatio-temporal dynamics can be complex,
the resulting design constraints, summarized above in subsection 8.1, are often comparatively
simple. For example, imposing particular signs on the grating and pulse chirps, necessitating
a pump with sufficient peak power, placing limits on the local disorder of the QPM grating
domains, and indicating the number of OPA stages required in the system.

As a result, our analysis provides a roadmap for development of chirped QPM OPCPA sys-
tems in the lab while avoiding the subtle unwanted effects which the combination of pulse and
grating chirp can introduce. So far, this enabled us to obtain almost a factor-of-2 improvement
in pulse duration, resulting in our latest 41.6-fs mid-IR OPCPA result [1]. The constraints we
have developed here reveal several important steps in further advancing QPM OPCPA towards
fewer-cycle pulses, higher energies, and new wavelength regions, while pumping with power-
scalable 1-μm laser sources and maintaining simple and compact experimental setups.

There is no relevant limit to the achievable bandwidth with respect to phase-matching, ex-
cept for the crystal transparency window. Therefore, understanding the physics of the nonlin-
ear processes involved (including the role of multiple, potentially competing nonlinearities),
and evaluating that physics in the context of system design, is the key to making use of the
broadband phase-matching which QPM technology supports. The general frequency-domain
multiple-envelope model we introduced will be useful in modelling a wide variety of para-
metric interactions, especially when augmented by χ(3) effects. Our results will also make it
possible to evaluate the feasibility of exploiting engineered QPM in emerging far-IR materials,
for example to achieve OPA and OPCPA in orientation-patterned GaAs [65, 66].

Beyond OPCPA, our results apply to chirped QPM devices in general. In particular, for DFG
and SFG interactions, especially when both of the input waves are intense, most of the con-
straints we have developed will also apply directly or with minor modifications. Furthermore,
the spatial, spectral, and temporal effects discussed in sections 4, 6, and 7, respectively, will ap-
ply to media with spatially inhomogeneous phase-matching conditions, not just chirped QPM
media, and thus our results have broad applicability to designing and understanding strongly-
driven parametric systems in general.

A. Justification of a model based on χ(2) effects

There are a number of χ(3) and χ(3)-like processes which can also influence the desired OPCPA
interaction, beyond the χ(2) dynamics predicted by the nonlinear polarization in Eq. (4). In this
appendix, we consider the significance of some of these neglected χ(3) effects in order to help
justify the use of the simplified χ(2)-based model in Eqs. (1) and (4).

Relevant processes include the (near-)instantaneous electronic susceptibility χ(3)
E and stim-

ulated Raman scattering (SRS), which we denote by a frequency dependent susceptibility

χ(3)
R (Ω). Furthermore, optical rectification (OR)-related processes can also occur: specifically,

the optical field can generate quasi-phase-matched counter-propagating THz waves, which in
turn can couple different spectral regions of the optical field together [67, 68]. These latter
effects have been quantified in the context of singly resonant OPO operation [69, 70].

Absolutely calibrating the third-order susceptibilities in LiNbO3 is challenging, owing for
example to contributions from cascaded χ(2) (even in bulk and with no QPM grating), as well
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as non-instantaneous nonlinearities such as SRS. In [46], we attempted to calibrate these effects
in the context of supercontinuum generation based on the measurements performed in [55], and

arrived at an electronic susceptibility of χ(3)
E = 5480 pm2/V2 and a peak SRS susceptibility of

χ(3)
R,pk = 5230 pm2/V2, together with a corresponding complex SRS response function. Here we

use these values, but note that further, direct measurements of these quantities would be useful.

The corresponding pump SPM via χ(3)
E is 0.75 rad for an intensity of 5 GW/cm2 and a grating

length of 11 mm. There is also a near-instantaneous SPM-like response from cascaded quadratic
nonlinearities, originating from all Fourier orders far from phase-matching. Such contributions

influence both the pump SPM, the calibration of χ(3)
E , and also the different nonlinear phase

shifts incurred by the signal and idler waves. Furthermore, there is significant uncertainty in

the above phase from χ(3)
E . If one just uses the n2 reported in [55] to determine χ(3)

E (without
accounting for other nonlinear processes), the SPM predicted is ≈ 3.4 times smaller.

The maximum SRS gain supported is comparable to the B-integral from χ(3)
E owing to their

comparable susceptibilities, but its influence on the pulse spectrum can be expected to be mi-
nor, since the strongest Raman peak is at ≈ 19 THz, which is well outside the range of spectral
components supported by the intensity of a few-ps pulse. Nonetheless, SRS effects may not be
vanishingly small in OPA3, in which the signal and idler intensities grow enough to substan-
tially saturate the pump, because our pulses exhibit significant spectral structure. Such structure
maps to temporal structure for a chirped pulse and will thus broaden the Fourier spectrum of
the chirped pulses’ intensity, thereby sampling a broader range of the Raman spectrum (which
also has peaks at lower frequencies such as 7.6 THz).

The OR-related sources of pulse distortion lead to SRS-like effects, but they depend on
the QPM grating structure. Specifically, phase-matching for counter-propagating THz waves
is governed, approximately, by ΔkT (z,Ω) = (nT +ng)Ω/c−Kg(z) = 0, where nT is the THz re-
fractive index (∼ 5.2 for LiNbO3 [71]), and ng is the optical group index (≈ 2.2 at 1 μm). This
relation yields a phase-matched THz frequency Ωpm satisfying Ωpm = Kg(z)c/(nT + ng). For
1-μm-pumped mid-IR OPCPA in MgO:LiNbO3, the QPM periods are around 30 μm, which
yields a frequency of 1.35 THz, respectively.

The bandwidth of the generated THz waves depends on the driving field, but in the limit of a
short intensity profile of the pulse, the THz field scales according to ÃT (Ω) ∝ Ω/[αT (Ω)/2+
i(nT + ng)(Ω − Ωpm)/c], where αT is the frequency-dependent THz absorption coefficient.
This Lorentzian-like response has a relatively narrow bandwidth, determined by the absorption
and index mismatch parameters according to ΩBW = αT (Ωpm)c/[2(nT +ng)]. For the counter-
propagating 1.35 THz case considered above, ΩBW = 2π ×0.014 THz. The effective suscepti-
bility seen by the optical field is given by

χ(3)
T (Ω) =

16d2
T

3nT c
Ω

αT + i(nT +ng)(Ω−Ωpm)
. (37)

In the context of narrow-band OPOs, this susceptibility can also be viewed as a THz OPA
process [69]. Assuming dT = 2/π ×152.4 pm2/V2 [71], Eq. (37) yields a peak of 125.6×103

pm2/V2, i.e. much greater than the χ(3)
E and χ(3)

R responses discussed above. This large effective
susceptibility helps explain the susceptibility of cw-pumped OPOs to this nonlinearity. In the
context of OPCPA, the distortion of the pulse is weak for pulses with narrow-band intensity
Fourier spectra; if the pulses are short enough (or have a sufficiently modulated structure) to
have intensity spectra approaching ΩBW , the significance of the resulting pulse distortion can
be (over-)estimated in the same manner as a calculation for the small-signal SRS gain (based on
the pump intensity and the effective third-order susceptibility), but multiplying by ΩBW/Ωpm ≈
0.01. This calculation yields an an “effective coupling” due to OR of ∼ 0.36.
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While this coupling is not vanishingly small, the use of a chirped QPM grating strongly
smears out the THz response, since Kg(z), and hence Ωpm(z), varies with position in the grat-
ing. Furthermore, the actual coupling obtained in practice will be much weaker than the above
estimation, because the signal and idler have lower intensity than the pump, and the pump can
be very narrow-band compared to Ωpm (if its pulse duration is long enough). If in addition the
signal and idler spectra are slowly-varying and the pulses are chirped to comparable duration to
the pump, there will be very little coupling to the THz wave. It should also be noted, however,
that the above treatment of coupling to THz waves is by no means comprehensive: for exam-
ple, we have not considered any effects involving phonon-polariton dynamics or the possible
influence of periodic poling in the ferroelectric crystal on such processes [72].

Based on the above discussion, we expect that χ(3) effects are minor, but not completely
negligible in all cases. Such effects should thus be kept in mind when designing and character-
izing OPCPA systems, including SRS-like processes in addition to B-integral considerations.
A greater knowledge of the relevant third-order nonlinear coefficients for LiNbO3 will also be
useful in order to more reliably quantify these issues.

B. Definitions and important quantities

This paper involves many definitions and symbols, and draws on various results. For ease of
reference, the tables 1-4 summarize the important quantities defined in the main text.

Table 1. Summary of basic quantities defined in the paper

Symbol Description Defined
L̂ j Diffraction and dispersion operators Eq. (2)
Aj Electric field envelopes Eq. (3)
PNL, j Nonlinear polarizations Eq. (4)
Xk, jl Interaction coefficients (= 0 or = 1) Eq. (5)

Δk j,kl Phase-mismatches for various carrier frequencies Eq. (6)
Δβ (z) Carrier-frequency quasi-phase-mismatch for OPA Eq. (8)
Δk′ QPM chirp rate, Δk′ = ∂Δβ/∂ z =−dKg/dz After Eq. (9)
Δk0(Ω) Frequency-dependent phase-mismatch (OPA) Eq. (12)
ΔΔΔk Vector phase mismatch Eq. (17)

φG(z) Accumulated QPM grating phase,
∫ z

0 Kg(z′)dz′ Eq. (7)
Kg(z) Local QPM grating k-vector Eq. (7)
D(z) Local QPM grating duty cycle Eq. (7)
d(z), d̄m Absolute & normalized nonlinear coefficients Eq. (7)
deff Effective nonlinear coefficient, deff = d33d̄1 Eq. (8)
γp Signal-idler coupling rate (OPA); ∝ |Ap| Preceding Eq. (9)
γp0 Peak of γp (when γp varies vs. space or time) See Eq. (15)
γs Idler-pump coupling rate (SFG/DFG); ∝ |As| Preceding Eq. (9)
γmax Max. γp possible (at damage threshold)
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Table 2. Summary of basic chirped QPM OPCPA related quantities

Symbol Description Defined
Gs ∼ exp(2πΛR,p); Signal gain (no pump depletion) Eqs. (9) and (10)
zpm Frequency-dependent phase-matching point Eq. (13)
Ldeph 2γp/|Δk′|; half the distance over which gain occurs Eq. (14)
ΔkOPA |Δk′|L−4γp0; OPA gain bandwidth (k-space) Eq. (15)
ΔkBW |Δk′|L; bandwidth of QPM grating (k-space) Eq. (15)
ΛR,p γ2

p/|Δk′|; Gain factor (determines small-signal gain) Eq. (16)
ΛR,s γ2

s /|Δk′|; Pump depletion factor for SFG/DFG Subsection 3.3
ρ Ratio of input signal and pump photon fluxes Subsection 3.3
η Pump depletion (output / input pump intensity) Subsection 3.3
L QPM grating length

Table 3. Summary of definitions used primarily in sections 4, 5, and 6.

Symbol Description Defined
ξp Pump confocal parameter See Eq. (16)
Lg Gain length Lg = γ−1

p0

Lwo wp/θis; Spatial walk-off length (1/e2 radius wp) Subsection 4.2
θis Geometric mean phase-matching angle Eq. (20)
θis,max Maximum of θis (vs. wavelength) Eq. (23)
Γ Gain-guided mode gain rate (Γ ≤ γp0) Fig. 3(a)

g̃z(k) Spatial Fourier transform of QPM grating Eq. (26)
σz Standard deviation of QPM RDC errors See Eq. (26)
N Number of domains in the QPM grating Eq. (26)
lD Half the QPM period Subsection 5.1
USH Generated pump SHG (RDC errors) Eq. (27)
UTPA Two-photon-absorbed pump SHG (RDC errors) Eq. (28)
βTPA Two-photon absorption coefficient Eq. (28)
dOPA Nonlinear coefficient for OPA Eq. (27)
dSHG Nonlinear coefficient for pump-SHG Eq. (27)

Δk(DFG)
si Phase-mismatch for signal-idler DFG Eq. (29)

Table 4. Summary of definitions used primarily in section 7.

Symbol Description
vsw(Ω) Group velocity of the seeded wave
vuw(Ω) Group velocity of the unseeded wave
vamp(z) Effective velocity of the amplification wavefront
τsw(z,Ω) Group delay spectrum of the seeded wave
τuw(z,Ω) Group delay spectrum of the unseeded wave
τuw,eff(z) Effective delay of the secondary wavefront
vuw,eff(z) Effective velocity of the secondary wavefront
β j,GVD(Ω) GDD coefficient of wave j ( j = sw or j = uw)
β j,GDD(z,Ω) GDD of wave j ( j = sw or j = uw)
Ωpm(z) Phase-matched seeded-wave frequency at position z
Ωinst(z, t) Instantaneous seeded-wave frequency
δνuw,sw(Ω) GVM coefficient between the seeded and unseeded waves
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P
hotons are ideal carriers of quantum information, as they
can be easily created and can travel long distances without
being affected by decoherence. For this reason, they are well

suited for quantum communication1. However, the interaction
between single photons is negligible under most circumstances.
Realizing such an interaction is not only fundamentally
fascinating but holds great potential for emerging technologies.
It has recently been shown that even weak optical nonlinearities
between single photons can be used to perform important
quantum communication tasks more efficiently than methods
based on linear optics2, which have fundamental limitations3.
Nonlinear optical effects at single-photon levels in atomic media
have been studied4,5 and demonstrated6–9, but these are neither
flexible nor compatible with quantum communication, as they
impose restrictions on photons’ wavelengths and bandwidths.
Here we use a high-efficiency nonlinear waveguide (WG)10,11 to
observe the sum-frequency generation (SFG) between a single
photon and a single-photon level coherent state from two
independent sources.

The potential of parametric interactions used for quantum
information processing has been demonstrated in a variety of
interesting experiments12–14. Although these interactions have
been shown to preserve coherence15–17, they are generally
performed using strong fields18–20. It is only recently that
parametric effects such as cross-phase modulation21,22 and
spontaneous downconversion23,24 have been observed with a
single-photon level pump. We take the next step and realize a
photon–photon interaction, which can enable some fascinating
experiments. For example, Fig. 1 shows how the SFG of two
photons g2 and g3 from independent spontaneous parametric
down conversion (SPDC) sources can herald the presence of two
distant photons g1 and g4, as proposed in ref. 2. If the photon
pairs are initially entangled using time-bin encoding, the
detection of the photon g5 on a basis that erases the ‘which
path’ information about its creation time projects the pair g1g4 in
an entangled state. If we compare this approach for the heralded
creation of entangled pairs with the linear optics scheme
presented in ref. 25 (which is shown to be optimal with respect
to the number of photon pairs needed), to obtain a generated
state with fidelity FZ0.9, and assuming an overall detection and
coupling efficiency of Z¼ 0.6, our nonlinear optical proposal
represents a competitive alternative as soon as the efficiency2

of the SFG is 10� 8. Such efficiencies of 10� 8 are, however,
extremely challenging to achieve in common nonlinear crystals.

In our experiment, we increase the interaction cross-section by
strongly confining the photons, both spatially and temporally,
over a long interaction length. The spatial confinement is
achieved with a state-of-the-art nonlinear WG10,11, whereas the
temporal confinement is obtained by using pulsed sources26. The
efficiency of the process is proportional to the square of the WG
length L2 and inversely proportional to the duration of the input
photons. L is limited by the group velocity dispersion between the
input photons and the unconverted photon2. We maximize the
SFG efficiency by matching the spectrotemporal characteristics of
the single photons with the phase-matching constraints of the
WG. A 4-cm WG and 10-ps photon satisfy these conditions. The
use of an integrated, room temperature device and telecom
wavelengths makes this approach to photon–photon interaction

S1 S2

γ1
γ2 γ3 γ4

SFG

γ5

Figure 1 | Concept. The SFG of photons from separate sources. A photon

from each of two pair sources S1 and S2 is sent over a distance to a

nonlinear WG. This WG performs the sum-frequency generation (SFG) of

photons g2 and g3 and outputs a photon g5. Detecting this photon heralds

the distant presence of photons g1 and g2. Critically, the SFG process will

work only for g2 and g3 and not for two photons coming from the same

source. This feature would allow for faithful entanglement swapping, which

is otherwise impossible to perform with two probabilistic pair sources and

linear optics.
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Figure 2 | Experimental set-up. A mode-locked laser that generates 10 ps pulses at 532 nm with a repetition rate of 430 MHz is used to pump the two

sources. The SPDC source consists of a periodically poled lithium niobate (PPLN) crystal set to produce pairs of photons at 807 and 1,560 nm. These are

deterministically separated by a dichroic mirror (DM) and collected into optical fibres. The remaining pump light is removed with a long pass filter (LP). The

DFG source consists of a similar PPLN crystal seeded by a continuous wave laser at 810 nm producing coherent state pulses at 1,551 nm by DFG.

These pulses are combined into the same fibre via a 200-GHz three-port dense wavelength divsion multiplexer (DWDM; ACPhotonics) and directed to the

PPLN waveguide (WG). The PPLN-WG is 4.5 cm long and has a SHG efficiency of 41% W� 1 cm� 2 at 1,556 nm. The upconverted light is separated from

the remaining telecom light via a prism, and sent to D1, a free space Si detector. The remaining unconverted telecom light is demultiplexed by another

DWDM and sent to detectors D3 and D4, two free running InGaAs detectors. D3 and D4 are used for monitoring the coupling stability during the

experiment and for optimizing the transmission of the input fields through the WG by optimising their polarization. We record threefold coincidences

between detectors D1, D2 and the laser clock signal using a time-to-digital converter (QuTools).
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well adapted to long-distance quantum communication, moving
quantum nonlinear optics one step further towards complex
quantum networks and future applications such as device-
independent quantum key distribution.

Results
Sources. A schematic of the experimental set-up is shown in
Fig. 2. A 532-nm mode-locked laser produces pulses that pump
two distinct sources. The first source produces pairs of photons
by spontaneous parametric downconversion at 807 and 1,560 nm
(SPDC source). Further details can be found in ref. 26. The
second source produces weak coherent state pulses at 1,551 nm by
difference frequency generation (DFG) source. The process is
stimulated by a 810-nm continuous wave seed laser. The average
number of photons in the coherent state pulse can be adjusted by
changing the seed and pump powers. All photons are coupled
into single-mode fibres.

The telecom photons generated by the SPDC source are
combined with the coherent state pulses from the DFG source
using a dense wavelength division multiplexer (DWDM). We
verified the single-photon nature of the SPDC source by
measuring the conditional second-order correlation function of
the telecom photon after the DWDM to be g(2)(0)¼ 0.03.

SFG device. The photons are then sent to a fibre pigtailed reverse
proton exchange type 0 periodically poled lithium niobate WG,
4.5 cm long10. This WG produces SFG of the input fields
according to the phase-matching conditions shown in Fig. 3.

The overall system efficiency for second harmonic generation
(SHG) is measured to be 41% W� 1 cm� 2 at 1,556 nm, and is
used to estimate the SFG efficiency as described in the Methods.
In addition to high efficiency, the WG exhibits almost ideal phase
matching, as can be seen from Fig. 3b, as well as a high coupling
of the fibre to the WG of 70%.

Measurement results. To verify the signature of our photon–
photon interaction, we record threefold coincidences between
detectors D1 and D2 (both Si detectors) and the laser clock signal.
When an upconverted photon is detected at D1 (3.5 Hz dark
counts, 62% detection efficiency at 780 nm), an electric signal is
sent to D2 (probability of dark count per gate 10� 3, detection
efficiency 40% at 810 nm)27 opening a 10-ns-detection window.
Conditioning the upconversion events on the laser clock signal
helps to reduce the noise. We ensure that the photons arrive at
the same time inside the WG by moving a motorized delay.
Figure 4a shows the upconverted signal as a function of the delay
between the photons. When performing this temporal alignment,
the mean number of photons in the coherent state was increased

to 25 per pulse. Each point of Fig. 4a corresponds to the number
of threefold coincidences between D1, D2 and the laser clock that
occur over 10 min. The full width at half maximum (FWHM) of
the graph seen in Fig. 4 is 14.8 ps, which corresponds to the
convolution of two 10 ps pulses from the pump laser. From the
spectra of the photons that are 1.2 nm for the SPDC and 0.8 nm
for the DFG, we can deduce their coherence times, respectively,
6.76 and 10.03 ps. This is a good indication that our photons are
close to being pure.

Once the SPDC and DFG sources have been characterized, we
set the temporal delay to zero and measure the performance of
the nonlinear interaction. For this measurement, the coherent
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state had a mean number of 1.7 photons per pulse inside the WG.
A histogram of arrival time differences is shown in Fig. 4b (each
bin corresponds to 0.32 ns). The main peak is the signature of
photon–photon conversion. It is also possible to see side peaks,
which correspond to a dark count at D1 owing to intrinsic noise
of the detector followed by a detection of a photon at D2 (see
Methods). The periodicity of these side peaks corresponds to the
period of the pump laser.

To more clearly see the signal-to-noise characteristics of the
experiment, we integrate over the events in the two central bins
for each peak. This is shown in Fig. 4c, where a peak with a
signal-to-noise of 2 can be seen.

The coincidence rate between D1 and D2 was 25±5 counts per
hour. To determine the efficiency of the SFG, we can use this rate
along with other independently measured parameters from our
set-up. We estimate the overall efficiency of the process at the
single-photon level to be ZSFG¼ (1.5±0.3)� 10� 8. Alternatively,
using the measurement of SHG efficiency, the calculation of the
SFG efficiency shown in Fig. 3 and accounting for the bandwidth
of the interacting beams, we estimated the efficiency to be
1.56� 10� 8, which agrees well with the value estimated from the
measured data. We highlight that this is the overall conversion
efficiency, which includes the effects of coupling into the WG,
internal losses and losses through the set-up up to D1. Correcting
for all of these losses, we obtain the intrinsic device efficiency of
(2.6±0.5)� 10� 8.

Discussion
We have demonstrated the nonlinear interaction between a single
photon and a single-photon level coherent state. Such single-photon
level parametric interactions open new perspectives for emerging
quantum technologies. At the level of efficiency (1.5� 10� 8)
demonstrated here, the technique is already competitive with linear
optics protocols25,28,29, and offers new possibilities such as
heralding entanglement at a distance2. This approach also opens
the way towards device-independent quantum key distribution30.
Unlike previously proposed linear optics schemes, there is
significant scope for improvements as higher nonlinearities are
realised. Work in this field is advancing rapidly, using materials
with higher nonlinear coefficients31 as well as methods for tighter
field confinement32. The use of an integrated, solid state, room
temperature device and a flexible choice of wavelengths will further
aid the applicability of this type of system in future quantum
communication technologies and beyond.

Methods
Evaluation of the number of photons in the coherent state. To evaluate the
number of photons per pulse in the coherent state, we measure the average power

Pa at the output of the DWDM. The average number of photons per pulse at this
point is

�n ¼ lPa

hc
� 1

f
ð1Þ

where f is the laser repetition rate of 430 MHz. To have the number of photons
inside the WG, we multiply n by the overall transmission of the set-up from the
DWDM to the interior of the WG, including the coupling of the pigtail inside the
WG of 70%. The overall transmission is 64%.

Noise characterization. Understanding the origin of the side peaks present in the
graph of Fig. 5 is crucial. To do this, we blocked the telecom photon coming from
the SPDC source but not the coherent state from the DFG source, and recorded
threefold coincidences between D1, D2 and the laser clock. The scaling of such
noise in detector D2 as a function of the average power in the coherent state can be
seen in Fig. 5. Each point in the graph corresponds to a coincidence histogram
integrated over 20 min. The quadratic behaviour of this noise suggests a possible
contribution of SHG from 1,551-nm pulses to these side peaks.

To evaluate this, we estimate the effective SHG efficiency from the second
harmonic spectrum seen in Fig. 4b. The peak value of such spectrum corresponds
to a measured efficiency of 41% W� 1 cm� 2. From a fit of such a spectrum, we
conclude that the effective SHG efficiency for 1,551 nm is ZSHG(1,551) ¼ 2.35
10� 4� 41% W� 1 cm� 2.

Taking into account this effective efficiency, we can estimate the expected rates
at detector D1 due to SHG of the coherent state pulses. These rates are simply

RSHGðPaÞ ¼ ðPa�mÞ2�ZSHGð1; 551Þ�L2� l
hc

ð2Þ

where m is the coupling efficiency of the coherent state into the optical fibre, which
was measured to be 76% and L is the length of the WG. The result of this
estimation compared with the actual measured values can be seen in Table 1.

From such an analysis, we can conclude that the SHG contribution to the noise
at the single-photon level can be neglected. The side peaks are then dominated by
coincidence between a dark count at D1 and a detection at D2. This confirms that a
detection of an upconverted photon does not come from conversion of two
photons from the same DFG pulse.

SFG efficiency measurement. Using the data shown in Fig. 5, we can extract the
rate of coincidences between D1 and D2, RSFG. By combining these with other
numbers from the set-up, independently characterised, we can then extract the
overall SFG efficiency from a single-photon measurement. The numbers used to
obtain this efficiency can be seen in Table 2.

The SFG efficiency is then given by

ẐSFG ¼
RSFG

b
ð3Þ

where b is the product of all the quantities in Table 2 times the laser repetition rate
of 430 MHz. From the experimental data, we obtained RSFG¼ 25±5 counts per
hour, yielding an overall efficiency of ZSFG ¼ (1.5 ± 0.3)� 10� 8.

SFG efficiency estimation. It is natural to ask whether the value found for the
SFG efficiency agrees with the value for the efficiency of the SHG, measured
classically, shown in Fig. 3. To do that, we modelled the phase-matching conditions
of the WG using the appropriate Sellmeier equations33.

The peak value of the SHG efficiency, corresponding to a wavelength of
1,556 nm, is 41% W� 1 cm� 2. Given an efficiency measured at the classical level Z,
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we can obtain the corresponding value at the single-photon level Ẑ using the
equation2

ẐðlÞ ¼ ZðlÞ
2
� hc

l
�Dn̂L

tbp
ð4Þ

where for our system, L¼ 4.5 cm, Dn̂Z296 GHz cm and tbp¼ 0.66. To give an
example, the peak level for the SHG efficiency then reads Ẑð1; 556Þ ¼ 5�10� 8,
which is of the same order of magnitude of the SFG efficiency obtained
experimentally. This estimation, however, did not take into account the bandwidth
of the interacting fields.

To take this into consideration, we use the matrix shown in Fig. 3 to obtain
Ẑðls; liÞ, the efficiency as a function of the wavelengths of the input fields. We then
integrate over the spectra of the interacting beams, normalized to the area, denoted
by ps(ls) and pi(li). The total effective efficiency reads

Ẑeff
SFG ¼

ZZ
psðlsÞpiðliÞẐðls; liÞdlsdli ¼ 1:56�10� 8 ð5Þ

which is in agreement with the value found from the measured data.
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Table 1 | Noise in D1 as a function of the coherent state size.

Pa (nW) Measured (Hz) Calculated (Hz)

6.20 15.30 18.60
3.54 5.70 6.60
2.10 3.80 2.30
1.47 4.00 1.10
0.75 3.20 0.30
0.00 3.50 0.00

Measured and calculated counts at D1 as a function of the power of the coherent state. As the
power is reduced, the SHG contribution to clicks at D1 falls below the detector noise level.
During the experiment, we operate in this regime.

Table 2 | Key parameters of the set-up.

SPDC source
pSPDC 0.03 ph per mode
t807 0.4
tgrating 0.7
Z807 0.4

tSPDC
DWDM 0.86

tbandwidth 0.4

DFG source
pDFG 1.7 ph per mode

tDFG
DWDM 0.96
Z780 0.6

DFG, difference frequency generation; DWDM, dense wavelength divsion multiplexer; p, number
of photons per mode; t, transmission.
These parameters were independently characterized. Each particular index refers to a different
optical element.
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The measurement of the magnitude and phase of the complex transfer function (CTF) of aperiodically poled lithium
niobate waveguide devices using frequency resolved optical gating (FROG) is demonstrated. We investigate the
sources of CTF distortions which are related to variations in the spatial distribution of the nonlinear coefficient
and phase-mismatch profile and present a method to infer fabrication errors from the CTF discussed. © 2014 Optical
Society of America
OCIS codes: (190.4360) Nonlinear optics, devices; (190.7110) Ultrafast nonlinear optics.
http://dx.doi.org/10.1364/OL.39.005106

Quasi-phase-matching (QPM) gratings can be used to
tailor the frequency response of wavelength converters,
a degree of freedom particularly useful for optical signal
processing devices. In Ref. [1], the phase response was
engineered to compensate for group-velocity mismatch
and a transfer function formalism for second harmonic
generation (SHG) was derived. The transfer function
here represents the magnitude and phase of the output
spectrum of a nonlinear mixing process compared to
the inputs. This transfer function is independent of the
input waves and only depends on intrinsic material
properties and QPM design. This concept is useful for
designing devices as well as analyzing the performance
of QPM-based optical-frequency converters (OFC).
Transfer functions may exhibit distortions because of

material defects or fabrication errors. In waveguide-
based OFCs, longitudinally varying phase velocity inho-
mogeneities can arise from longitudinal variations in the
waveguide lithography or processing conditions. In devi-
ces with a uniform, periodic grating, such inhomogene-
ities reduce the peak conversion efficiency and distort
the ideal sinc2 transfer function [2,3]. In chirped (aperi-
odic) gratings, each frequency component of the input
converts at distinct positions along the propagation direc-
tion, and perturbations create uneven conversion efficien-
cies and therefore distort the passband of the transfer
function. In practical devices, the QPMwaveguide param-
eters are often designed to minimize the sensitivity of the
phase-matching to fabrication errors; if the first-order
dependence of the phase-mismatch with respect to a
particular fabrication parameter, e.g., waveguide width,
vanishes, the design is said to be noncritical [4], in relation
to noncritical phase-matching in bulk frequency convert-
ers. However, large fabrication errors, or deviations of
the design from the noncritical condition, may still intro-
duce unwanted distortions to the transfer function, de-
grading device performance beyond acceptable limits.
While the transfer function can be measured by tuning

a CW input laser across the bandwidth of the device and
monitoring the amplitude and phase of the generated out-
put [5], measuring the phase response by this approach is
experimentally difficult. In this Letter, we introduce and

experimentally demonstrate a method for measuring
the CTF by characterizing the complex input and output
spectra of ultrafast pulses, as well as the extraction of the
spatial dependence of the effective nonlinear coefficient
d�z� and the phase mismatch Δβ�z�. These functions, in
turn, are useful for diagnosing fabrication defects, as
well as for predicting the performance of the device in
various phase-sensitive applications. We focus here on
the SHG process, though the concepts can be extended
straightforwardly to other mixing processes [6].

The CTF, D̂�Ω� ≡ Â2�Ω�∕Â2
1�Ω�, for SHG, in the low

conversion regime, is the ratio of the spectrum of output
second harmonic (SH), Â2�Ω�, to the spectrum of the
square of the input fundamental harmonic (FH) Â2

1�Ω�
here Ω � ω − ω2 is the frequency detuning from the SH
carrier ω2 and the hat notation denotes a Fourier trans-
form such that f̂ �Ω� is the Fourier transform of f �t�.
Assuming an undepleted pump and negligible group
velocity dispersion (GVD) over the bandwidth of the
pulse, the CTF is related to the nonlinear coefficient d�z�
by the following integral [7]:

D̂�Ω��
Z

∞

−∞
d�z�exp

�
−

1
2
�2α1−α2�z

�
exp�iΔϕ�Ω;z��dz; (1)

where Δϕ�Ω; z� � R
z
−∞ Δβ�Ω; z0�dz0 is the phase mis-

match, Δβ is the wave-vector mismatch, and d�z� is the
nonlinear coefficient. We assume Â2�Ω; z � 0� � 0 and
that d�z� � 0 outside of the range [0, L], where L is
the length of the QPM grating. This form expands on that
of Ref. [7] by including propagation power loss α1 at the
FH and α2 at the SH. In the general case, we consider
an apodized [8], nonuniform QPM grating whose apodiza-
tion profile and variations in the local grating period
and duty cycle are slow compared with the grating period
itself, such that d�z� can be accurately represented as
a sum of distinct Fourier components dm�z�, with a
z-dependent amplitude and k-vector. We also assume that
the mth component of the grating is phase-matched and
dominates all other orders of the grating. In this case, the
general form of d�z� becomes
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d�z� � dm�z� � jdm�z�j exp�iK0mz� iΦm�z��; (2)

where jdm�z�j is the amplitude of the mth Fourier com-
ponent of the grating and Φm�z� represents the phase of
the grating beyond the K0mz carrier phase.
Material and waveguide dispersion are represented by

Δβ�Ω; z�. To introduce the functional dependence of Δβ
on the spatial coordinate z, we introduce a parametric
representation ξ�z� such that Δβ�Ω; z� � Δβ�Ω; ξ�z��. If
we assume the typical variation δξ in the parameter,
e.g., the waveguide width, is small compared to the nomi-
nal parameter value ξ, we can perform a Taylor series
expansion resulting in

Δβ�Ω; ξ�z�� � Δβ0 �
∂Δβ
∂Ω

Ω� ∂Δβ
∂ξ

δξ� 1
2
∂2Δβ
∂Ω2 Ω2

� 1
2
∂2Δβ
∂ξ2

δξ2 � ∂2Δβ
∂Ω∂ξ

Ωδξ

� 1
2
∂3Δβ
∂Ω∂ξ2

Ωδξ2 � � � � ; (3)

where Δβ0 � Δβ�0; 0� and all derivatives are evaluated at
Ω � 0, ξ � 0. We consider situations where only terms up
to second order are significant. For the reverse proton-
exchange waveguides considered here, the following
inequality holds:

∂Δβ
∂ξ

δξ� ∂2Δβ
∂ξ2

δξ2 ≫
∂
∂Ω

�
∂Δβ
∂ξ

δξ� ∂2Δβ
∂ξ2

δξ2
�
Ωb: (4)

This inequality shows that the first and second-order
variations of Δβ with respect to the parameter ξ have
negligible dependence on frequency over the bandwidth
of the SH, Ωb. As a result, Δβ is additively separable up to
second-order and hence can be written as

Δβ�Ω; ξ�z�� � Δβ0 � ΔβΩ�Ω� � Δβξ�ξ�z��; (5)

where

ΔβΩ�Ω� �
∂Δβ
∂Ω

Ω� 1
2
∂2Δβ
∂Ω2 Ω2

Δβξ�ξ� �
∂Δβ
∂ξ

δξ� 1
2
∂2Δβ
∂ξ2

δξ2. (6)

If the device is designed to be noncritical for the
parameter ξ, then phase-matching does not have a first-
order dependence in ξ [3], i.e., �∂Δβ∕∂ξ�δξ � 0.
Here, we introduce the notation D̂�Ω� ≡ d̂�Δk�Ω�� and

the transfer function can be written as

d̂�Δkm� �
Z

∞

−∞
jdm�z�j exp

�
−

1
2
�2α1 − α2�z

�

× exp�iϕm�z�� exp�iΔkmz�dz; (7)

where

Δkm�Ω� � Δβ0 − K0m � ΔβΩ�Ω�; (8)

ϕm�z� � Φm�z� �
Z

z

0
Δβξ�ξ�z0��dz0. (9)

The transfer function has a Fourier transform relation-
ship with the product of the nonlinear coefficient and
propagation loss factor. It follows that jdm�z�j and
Δβ�ξ�z�� can be derived directly from the transfer function:

jdm�z�j � exp
�
1
2
�2α1 − α2�z

�
· jF−1�d̂�Δkm��j; (10)

Δβξ�ξ�z�� �
d

dz
�ArgfF−1�d̂�Δkm��g −Φm�z��; (11)

whereF −1 denotes the inverse Fourier transform. Deriving
jdm�z�j; and Δβξ�ξ�z�� from the transfer function D̂�Ω�
gives useful information about deviations of the device
from its design values, because of issues such as fabrica-
tion errors and photorefractive effects. Deviations of
jdm�z�j; from ideal could result from duty cycle variations
or QPM domain dropouts. Variations in Δβξ�ξ�z�� result
from variations in waveguide dispersion which distort
phase-matching.

The devices under test are aperiodically poled lithium
niobate (A-PPLN) waveguides. The linearly chirped QPM
gratings are 43 mm long and phasematch a bandwidth of
22 nm with a center wavelength of 1560 nm. Waveguides
are formed by proton exchange (PE) in benzoic acid
through a lithographically defined mask. The exchange
depth is determined by the exchange time and tempera-
ture [9]. This step is followed by annealing and reverse-
proton-exchange (RPE) steps which decrease propaga-
tion loss while increasing the modal overlap between in-
teracting fields [10–12].

In our experimental setup, a Ti:sapphire-pumped
optical parametric oscillator that outputs 150 fs duration
transform-limited pulses at 80 MHz with an average
power of 200 mW is used as the pump source (Opal,
Spectra-Physics). The magnitude and phase of the pump
are characterized by SHG Frequency Resolved Optical
Gating (FROG) [13]. This FH pump has a full width half-
maximum bandwidth exceeding the bandwidth of the
QPM grating to ensure that the entire transfer function is
sufficiently sampled. The SH pulse out of the PPLN wave-
guide device is characterized by a sum-frequency gener-
ation cross-FROG (SFG XFROG), where a fraction of the
pump pulse is mixed with the SH pulse via noncollinear,
type-I phase-matching in a 250 μm thick BBO crystal cut
at an angle of 22.4°. The spectrum of the generated out-
put of the BBO crystal is measured by a spectrometer
(HR4000, Ocean Optics) centered at 520 nm. FROG soft-
ware (FROG Scan 8, Mesaphotonics) was used to auto-
mate the measurement and retrieve the FROG trace.

We obtain low SHG (64 × 64 grid) and SFG (256 × 256
grid) FROG errors, 0.002 and 0.006, respectively. The
spectra of the retrieved FH and SH are compared with
independent measurements using an optical spectrum
analyzer (Yokogawa AQ6370C), confirming measure-
ment accuracy.

Once the input FH and output SH are measured, the
CTF is calculated by dividing the spectrum of the SH by
the spectrum of the square of the FH. Figure 1 shows the
magnitude and phase of the measured CTF. Theoreti-
cally, the curvature of the phase is proportional to the
chirp rate of the QPM grating, Dg � δk∕�2L�, the ratio
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of the k-vector bandwidth δk of the linearly chirped QPM
grating to the length of the QPM grating L [7]; the exper-
imentally observed curvature agrees to within 1% with
the predicted phase curvature based on the grating de-
sign. The magnitude of the transfer function was also
measured with a tunable, continuous-wave (CW) laser
at the FH wavelength. The ratio of the FH and SH power,�������������������
PSH∕P2

FH

q
, represents the magnitude of the transfer

function. As can be seen from Fig. 1, the two independent
measurements show good agreement. Slight discrepan-
cies come from small errors in the FROG measurement,
which can be further minimized by incorporating fre-
quency marginals [14]; our FROG software did not have
this capability. For comparison, the inset represents the
designed magnitude transfer function. The sample shown
here exhibits significant deviations from the ideal trans-
fer function; the best devices we have fabricated show
∼5% deviation from a flat passband.
Insight into the cause for these distortions is found by

extracting jdm�z�j; and Δβ�z� using Eqs. 10 and 11. The
loss coefficients α1 and α2 were previously measured and
correspond to 0.2 dB∕cm at the FH and 0.1 dB∕cm at the
SH. Errors in the loss measurement will add an artificial
slope to jdm�z�j;. The grating phase is Φ�z� � Dgz

2.
The measured nonlinear coefficient profile, jdm�z�j;,

shown in Fig. 2, is plotted together with the as-designed
profile. It is nearly constant for the majority of the device
and apodized near the edges at z � 0 and z � L to

prevent high-frequency ripples in the transfer function
[8]. The measured apodization profile and length closely
follows the design. The measured phase-mismatch error,
Δβξ�ξ�z��, ideally zero for all z, clearly exhibits distor-
tions. It can vary by as much as 500 m−1 over a length of
about 10 mm. These ripples inΔβξ�ξ�z�� are the dominant
cause of transfer function distortions.

The phase-mismatch errors can be attributed to four
possible causes in our fabrication process: variations
in the lithographically defined waveguide width, longi-
tudinal variations in PE temperature, anneal furnace
temperature, or RPE temperature. The effect of these
variations is estimated by using a 2D diffusion model
to map variations in these parameters to changes in the
guided-mode effective indices, and hence to phase-mis-
match errors. The variations in observed phase-mismatch
errors correspond to either a 0.2 μm variation in the
wet-etched SiO2 mask, a 0.3°C variation in the PE bath
temperature, a 2°C variation in the anneal furnace tem-
perature, a 0.2°C variation in the RPE bath temperature,
or a combination thereof. The corresponding waveguide-
mask width error is illustrated in Fig. 2. To test the uni-
formity of the waveguide width, we measured the mask
openings of two waveguides on a chip fabricated under
identical conditions to the chip mentioned above. Using
an atomic force microscope (AFM), the chip is sampled
32 times every 2 mm in the longitudinal direction. The
standard deviation of widths of each waveguide over the
32 scans has an average value of 0.04 μm with a median
value that varies about 0.2 μm over the length of the de-
vice, which is consistent with the CTF calculation. This
waveguide width error appears to be the dominant effect
and explains the majority of the Δβ error. If these errors
can be reduced significantly, investigation of and pos-
sible improvements to the temperature uniformity of
the exchange processes should be performed.

The CTF of 12 waveguides, spaced 400 μm apart, are
measured and the resulting Δβξ�ξ�z�� profiles are shown
in Fig. 3. There are bright bands at z � 17 mm and z �
31 mm signifying a strong correlation across the entire
device, which strongly suggests that the phase-matching
error of each waveguide is caused by global fabrication
problems.

There are a few things to note about this technique.
The calculated jdm�z�j; is not in absolute units. A

Fig. 1. Complex transfer magnitude (dashed, red) compared
with CW magnitude (thick, blue) and ideal magnitude (inset).
The phase (gray) curvature matches the theory to within 1%.

Fig. 2. Nonlinear coefficient jdm�z�j; measured (solid) and
as-designed (dash). Phase-mismatch error Δβξ�ξ�z�� and corre-
sponding waveguide-mask width error.

Fig. 3. Phase-mismatch error of 12 equidistantly spaced wave-
guides with a total separation of 4.4 mm.
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separate measurement is needed for absolute scaling.
The phase-mismatch, however, is in absolute units. Addi-
tionally, we neglect GVD and higher order dispersion at
the FH. In our case, the effect of GVD is small as it con-
tributes 0.1 rad of spectral phase over the bandwidth and
length of the device. Neglecting GVD leads to a conven-
ient one-to-one mapping between optical frequency of
the generated wave and spatial frequencies of the QPM
grating structure; this property is used to construct the
CTF. In cases where the FH accumulates non-negligible
group delay dispersion (GDD) over the length of the
device, there is a finite spread of QPM grating spatial
frequencies that can generate a particular SH optical
frequency. To account for FH-GDD, a more general
analysis discussed in [15] can be performed. In this analy-
sis, the transfer function used here is replaced with a
transfer matrix that describes the general mapping be-
tween grating spatial frequency and generated optical
frequency including all orders of dispersion at both
waves. Finally, the spatial resolution δz is limited by the
resolvable frequency content of the CTF. If the CTF
passband is resolved, then the bandwidth δk determines
δz. For a chirped grating, δk is determined by the length L

and chirp rate Dg of the QPM grating. Assuming the CTF
to be a perfect top hat, the point spread function would
have a sinc profile and the resolvable distance is
δz � 2π∕δk � π∕DgL. The device used in this study has
a chirp rate of Dg � 0.14 mm−2 and a grating length of
L � 43 mm, resulting in δz � 0.5 mm. However, in our
measurement, we are able to resolve a spectral range
of twice the CTF bandwidth, giving us a resolution
of δz � 0.25 mm.
In conclusion, we have described and implemented

a method for measuring the CTFs of QPM nonlinear
devices and relating these CTFs to spatial variations in
fabrication parameters. Further discussion of these
errors and their implications for the performance of time
lensing systems will be given in a subsequent paper.
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Harnessing nonlinearities strong enough to allow single photons to interact with one another is not only a
fascinating challenge but also central to numerous advanced applications in quantum information science.
Here we report the nonlinear interaction between two single photons. Each photon is generated in
independent parametric down-conversion sources. They are subsequently combined in a nonlinear
waveguide where they are converted into a single photon of higher energy by the process of sum-
frequency generation. Our approach results in the direct generation of photon triplets. More generally, it
highlights the potential for quantum nonlinear optics with integrated devices and, as the photons are at
telecom wavelengths, it opens the way towards novel applications in quantum communication such as
device-independent quantum key distribution.

DOI: 10.1103/PhysRevLett.113.173601 PACS numbers: 42.50.Dv, 03.67.Hk, 42.65.Ky

Observing nonlinear processes down to the quantum
regime is a long sought after goal for quantum information
science [1] as well as a fascinating concept in terms of
fundamental physics, first being raised in the seminal work
of Heisenberg and Euler [2]. It is only in recent years that
materials and technologies have advanced to the point
where one can probe this quantum nonlinear domain, and a
few implementations have led to experimental realizations
with attenuated classical laser light. This has included
cross-phase modulation with weak classical light in atomic
ensembles [3,4] and optical fibers [5], converting incident
laser light into a nonclassical stream of photons [6,7] or
Rydberg blockades [8] as well as all-optical switches with
attenuated classical light in various atomic systems [9–15].
These atomic systems naturally operate with very narrow
bandwidths and at specific wavelengths, typically in the
visible regime. A grand challenge is to realize photon-
photon interactions in materials that are less restrictive in
terms of bandwidths and wavelengths. Of particular interest
are photons at telecommunication wavelengths, as these
provide the wiring, the flying qubits, for myriad applica-
tions in quantum communication [16,17]. A further chal-
lenge is to realize photon-photon interactions in a material
that is not only less restrictive in terms of bandwidth, but
also operating at room temperature.
Here we take an approach that exploits a parametric

process, sum-frequency generation (SFG), in a nonlinear
crystal [18–23]. The efficiency of nonlinear optical materi-
als is constantly increasing and, by taking advantage of
their inherently large bandwidth, one can work with pulsed
systems and at higher repetition rates than with atomic
systems. Important experimental results have been obtained
in the context of quantum nonlinear optics with parametric
processes [24–27], including the sum-frequency generation

from two weak coherent states and between a coherent
state and a true single photon. Here we take the next step
and report, for the first time, a nonlinear interaction
between two true independent single photons (Fock states),
at telecom wavelengths, via SFG. Note that this experiment
cannot be seen simply as the time reversal process of
the nonlinear interaction presented in Refs. [24,25], nor
analogue to that of Ref. [20], as spontaneous parametric
down-conversion (SPDC) typically generates photon pairs
correlated in spectra, while our photons were generated in
independent sources and therefore have uncorrelated spec-
tra. Our approach opens up perspectives unreachable with
classical light. As an example, it allows one to generate
photon triplets directly, as depicted in Fig. 1. One photon
from each of two independent photon pair sources—based

FIG. 1 (color online). Concept: Two single photons from
independent photon pair sources are sent to a medium with
χð2Þ nonlinearity and interact, generating a third photon carrying
the sum of the energies and momenta of the input fields via SFG.
As the photons sent to the SFG converter are at telecom
wavelengths, the resulting photon triplet state allows, for exam-
ple, the converted photon to herald the entanglement of the
remaining two photon state at a distance.
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on SPDC—is sent to a nonlinear crystal where the two
photons undergo SFG to generate a third photon. As the
SFG requires one photon from each pair, the original
pairwise correlation for each SPDC source is now mapped
to the remaining three photon state—the SFG converted
photon can herald the presence of the remaining two
photons at distributed locations. This approach offers
unique opportunities, for example, to herald entangled
photon pairs—even remotely—and to perform quantum
key distribution where the security is independent of the
internal workings of the devices used to generate the secret
key [28].
The experiment has three distinct parts: the generation of

entangled photon pairs from independent SPDC sources
[we can also interpret this as generating two independent
single photons by two heralded single photon sources
(HSPS)]; the parametric interaction of two single photons
in a nonlinear waveguide; and, finally, the detection of
the resulting single photon of higher energy in coinci-
dence with the two remaining photons—the photon triplet.
A schematic of the setup is shown in Fig. 2.
The single photons are generated via SPDC in two

independent sources. HSPS1 and HSPS2 generate pairs at
807–1560 nm and 810–1551 nm, respectively. By ensuring
that the probability of creating a single pair in each source
is much smaller than one, the detection of the visible (807,
810 nm) photons heralds the creation of two independent
single telecom wavelength (1560, 1551 nm) photons. All of
the photons are coupled into single-mode fibers with
efficiencies ∼50%. In principle this could be increased
close to unity but is limited here by available pump power,
which enforces a compromise in coupling geometry [30].
Importantly, the heralding photons are filtered such that the
bandwidth of telecom photons is matched to the acceptance
bandwidth of the SFG process; cf. below. To verify
the single photon nature of these sources, we measured
the conditional second-order autocorrelation functions

gð2Þ1 ð0Þ ¼ 0.0300� 0.0005 and gð2Þ2 ð0Þ ¼ 0.0360� 0.0004,
for HSPS1 and HSPS2, respectively.In this configuration,
errors due to multipair emission are negligible [31].
The two fiber coupled telecom photons are then directed

to a 4.5 cm fiber-pigtailed periodically poled lithium
niobate (PPLN) waveguide that is quasi–phase matched
to perform the SFG process 1560 nmþ1551 nm→778 nm.
Figure 3 shows the results of a classical measurement of
the phase matching conditions of the waveguide. The
diagonal ridge corresponds to the SFG process, while
the horizontal and vertical ridges result from the second
harmonic generation (SHG) of each independent field.
Following [27] and taking into account the acceptance
bandwidth of the waveguide and the bandwidth of the
interacting photons, which are measured to be 0.27 nm, we
determine a system conversion efficiency of 1.56 × 10−8.
This is close to the independently measured value, found to
be ð1.5� 0.3Þ × 10−8.

Finally, the detection scheme consists of three single
photon detectors—D1, D2, and D3—based on Si ava-
lanche photodiodes. Detector D3 (PicoQuant: τ-SPAD-20)
operates in free-running mode with an efficiency of 60% at
778 nm and a dark-count rate of 3.5 s−1. Detectors D1 and
D2 (Excelitas diodes with custom electronics) are gated
(18 ns) devices with an efficiency of 60% and a dark-count
probability of 10−6=ns [32]. All of the detection events
from D1, D2, and D3 are recorded by a time-to-digital
converter.
Before running the nonlinear interaction measurement, it

is necessary to make sure the interacting photons arrive at
the same time into the nonlinear waveguide. To guarantee
this, we seed HSPS2 with a continuous wave laser at
810 nm, producing a pulsed coherent state at 1551 nm by
difference frequency generation [33] to improve the signal
to noise level. We record twofold coincidences betweenD3
and D2 as we scan the delay line placed before HSPS2.

FIG. 2 (color online). Experimental setup. A mode-locked laser
(Time-Bandwidth) generates 10 ps pulses at 532 nm with a
repetition rate of 430 MHz and is used to pump the two heralded
single photon sources (HSPS1 and HSPS2) based on PPLN
nonlinear crystals. Each source receives an average pump power
of 50 mW. The generated photons are deterministically separated
by dichroic mirrors (DM), collimated, and then collected into
single-mode optical fibers. The pump light is extinguished by
using high-pass filters with an extinction greater than 70 dB
(Semrock), as well as a prism (not shown) before coupling into
the optical fibers. Diffraction gratings (not shown) are employed
to filter the heralding photons (810, 807 nm) down to∼0.3 nm. In
this configuration the telecom photons are projected onto a
spectral mode that is matched to the acceptance bandwidth of
the SFG process, which was measured to be 0.27 nm. The two
fiber coupled telecom photons are combined via a dense wave-
length division multiplexer (DWDM) and directed to a 4.5 cm-
long fiber-pigtailed type-0 PPLN waveguide [29]. Propagation
loss in the waveguide is as small as 0.1 dB=cm. The unconverted
photons are deterministically separated from the SFG photons by
a prism (not shown) and the upconverted light is sent to a single
photon detector D3. The final photon triplet state is then detected
by coincidence measurements between detectors D1, D2, and
D3. The overall SFG conversion efficiency is 1.56 × 10−8,
including the coupling of the fiber pigtail, which is 70%.

PRL 113, 173601 (2014) P HY S I CA L R EV I EW LE T T ER S week ending
24 OCTOBER 2014

173601-2

DISTRIBUTION A: Distribution approved for public release.



This allows for the temporal alignment of the interacting
photons with picosecond resolution and also allows us to
determine the exact position of the threefold coincidence
peak in Fig. 4(a).
Once the two photons are temporally aligned, we can

remove the seed laser and use the two sources in the
heralded single photon configuration. We then proceed to
record threefold coincidences between D1, D2, and D3,
where the appearance of a peak in the threefold detection
time histogram signals the correlated generation of triplets
of photons and hence that the interaction between the two

independent telecom photons has taken place. We denote
the delay betweenD1 andD3 as τ31, and the delay between
D2 and D3 as τ32.
The threefold coincidences between D1, D2, and D3 are

shown in the time-of-arrival histogram in Fig. 4(a). Each
bin of this histogram corresponds to an acquisition window
of 2.3 ns for each detector matching the repetition rate of
the pump laser. We integrate for 260 hours and observe a
well-defined coincidence peak exactly where it is expected.
Moreover, Fig. 4(b) shows the histogram of threefold
coincidence counts. One sees a Poissonian distribution
for the background noise with a mean value of 35,
calculated by averaging overall counts in the 100 bins of
Fig. 4(a). The background noise is dominated by the
detection of photons at D1 and D2 in coincidence with
dark counts (3.5 s−1) from detector D3 [27]. The three
photon signature is the single bin containing 80 counts,
which has a statistical significance of over 7 standard
deviations with respect to the background. Furthermore,
given the Poisson distribution with a mean value of 35, the
probability of having a pixel with 80 accidental counts is of
the order of 10−11.
Our theoretical model of the system takes into account

the source emission probability, the losses of the setup,
the SFG conversion probability, and the detector efficiency
and noise levels. We estimated a rate of 0.40 threefold
coincidences versus a rate of 0.20 threefold noise events,
per hour, while the observed values are 0.31 and 0.13
coincidences, respectively. The measured values are both
slightly reduced due to source alignment drifting over the
long integration time. Nonetheless, the signal to noise ratio
is in good agreement with our predictions.

FIG. 3 (color online). Intensity plot of the classical SFG
efficiency as a function of the wavelength of two input fields.
The diagonal trace represents SFG between the input fields, while
the horizontal and vertical traces signal the contributions from
SHG of each independent input field. Note that the difference in
height between the SFG and SHG signals is of about a factor of 4,
as expected. It is also possible to see the oscillations from the
sinc2 structure of the phase matching on the leading edge.

FIG. 4 (color online). (a) The central peak (red) emerging from the background noise in the time-of-arrival threefold coincidence
histogram is a clear signature of the photon-photon interaction and the nonclassical correlations for the photon triplet state. The axis
labeled τ31 shows the delay between detectors D1 and D3, while τ32 shows the delay between D2 and D3. Each pixel is composed of
2.3 ns bins, defined by the laser repetition rate. (b) The histogram of threefold coincidence counts shows a Poissonian distribution for the
noise with a mean value of 35. The single peak at 80 corresponds to the true threefold coincidences and exceeds the mean value by over 7
standard deviations (7σ).
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Despite the challenging nature of the current experiment,
higher nonlinear conversion efficiencies allowed us to go
from interactions between two coherent states [28] to
interacting a single photon and a weak coherent state
[27]. Further improvements for the photon pair sources
[30] and detectors [32] have now made it possible to
demonstrate the first nonlinear interaction between two
independent quantum systems. The nonlinearity reported
here already offers promising perspectives—for example,
the implementation of quantum key distribution—where
the secrecy is independent of the internal workings of the
devices that are used to create the key (device-independent
quantum key distribution). An important aspect of this
framework is that the combination of entangled photon
pairs at telecom wavelengths and the SFG process allows
for maximally entangled photon pairs to be created at a
distance while being heralded through the detection of
converted photons [28]. The presented demonstration of
photon triplets by photon-photon interaction is also
promising from a fundamental perspective: for instance,
unambiguously excluding local hidden variable models
of entanglement in a loophole-free Bell-type experiment
[34,35], opening the way for investigating novel quantum
correlations [36], and providing a platform for studying
exotic states of light and quantum optical solitons [37].
Looking further ahead, higher efficiency nonlinear

interactions could be obtained by using tight spatial con-
finement of the optical modes [38], from the use of highly
nonlinear organic materials [39], or by exploiting weak
measurements based on pre- and postselected states, as
pointed out in Ref. [40]. In addition to these exciting
perspectives, we believe that our demonstration of an
interaction between two independent single photons will
strongly stimulate research in nonlinear optics in the
quantum regime.
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Highly phase-mismatched nonlinear interactions can
generate spatially localized optical fields that can affect the
performance of nonlinear optical devices. We present a
theoretical description of the generation of such spatially
localized optical fields by ultrafast pulses. The effects of
temporal walk-off and pump depletion are discussed, along
with methods for suppression of the localized field while
maintaining the performance of the nonlinear device. The
model is validated by the measurement of the spatial profile
of the localized field in a quasi-phase-matched (QPM) ape-
riodically poled lithium niobate (A-PPLN) waveguide.
Finally, we fabricate and characterize A-PPLN devices with
a 33% duty cycle to reduce the locally generated field by
90%. © 2016 Optical Society of America

OCIS codes: (190.4360) Nonlinear optics, devices; (320.7110)

Ultrafast nonlinear optics; (190.5330) Photorefractive optics;

(190.4975) Parametric processes.
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Lithium niobate (LiNbO3) is widely used for nonlinear optical
frequency conversion [1], and the advent of quasi-phase match-
ing [2,3] has led to a wide range of practical applications
[4]. Unfortunately, congruent LiNbO3 (CLN) suffers from
optically induced changes in the refractive index, which causes
beam distortion and alters phase matching of nonlinear optical
interactions [5]. Photo-refractive damage (PRD) can be re-
duced by using magnesium-doped LiNbO3 [6] or by modify-
ing the QPM structure [7]. However, CLN is still advantageous
in applications where PRD does not limit the performance [4]
due to its more advanced waveguide technologies.

In many applications, both the spectral amplitude and phase
imposed by the mixing process, as quantified in the ratio of
output field to the appropriate product of input fields, are
relevant performance parameters. Distortions in this complex
transfer function (CTF) [8] can be caused by PRD-induced
changes in the local phase matching, hence compromising
device functionality. If the effects of PRD are small and uni-

form along the length of the device, then the phase-matching
error is uniform, and the CTF simply shifts in spectrum, leav-
ing the overall profile unchanged. However, if the effects of
PRD are not uniform, then phase-matching errors vary spatially
and the CTF will exhibit distortions. Such spatially nonuni-
form changes in phase matching can be generated by spatially
localized fields resulting from phase-mismatched interactions in
a nonuniform QPM grating.

We begin with a discussion of the generation of localized
fields in pulsed interactions, including effects of temporal
walk-off and pump depletion. Next, we present measurements
of the spatial profile of the local field for various wavelengths
and powers in a typical linearly chirped PPLN second-harmonic
generation (SHG) device pumped with femtosecond pulses.
Finally, we demonstrate how this field can be suppressed via
QPM grating design. We focus on the generation and effects
of the local fields, rather than the complex topic of PRD [9,10].

The localized field is illustrated by analyzing SHG in a
linearly chirped QPM A-PPLN waveguide device. The QPM
grating profile is chosen to phase match SHG of the first-
harmonic pulse A1. However, with enough power, A1 and its
second-harmonic, A2, can generate noticeable amounts of
third-harmonic A3, despite this process being far from phase
matched, i.e., Δk ≈ 103 cm−1; here, Δk � k3 − k2 − k1 is the
wave vector mismatch. A3 is the localized field that can del-
eteriously affect device performance. The propagation equation
for A3 is

∂
∂z

A3 � −iκ3d̄A1A2 exp�iΔkz�; (1)

where d̄ �z� is the z-dependence of the nonlinear coefficient. The
envelope Aj is related to the electric field Ej by Ej�x; y; z� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2∕njε0c
p

Aj�z�Ej�x; y� exp�−ikjz� for j ∈ f1; 2; 3g, where Ej
is the normalized transverse field amplitude. These functions
are normalized such that

RR jEjj2dxdy � 1 and jAjj2 is equal
to the optical power of field j. The coupling coefficient κj is de-
fined as κj ≡ θ�8π2d 2

0∕n1n2n3cε0λ2j �
1
2, where c is the speed of

light, λj is the center wavelength of field Aj, nj is the index
of refraction for the jth wave, d 0 � χ�2�∕2 is the amplitude
of the pertinent component of the nonlinear susceptibility
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tensor, and θ � RR
d̃E1E2E3dxdy is the spatial overlap of the

interacting modes, where d̃ �x; y� is the transverse spatial distri-
bution of the nonlinear coefficient, but assumed constant in later
analysis. We restrict our analysis to the fundamental spatial
modes in A1 and A2; our devices were designed to use input/
output waveguide tapers to ensure single-mode operation. From
simulations of proton diffusion in lithium niobate [11], we com-
puted spatial mode indices and concluded that higher-order
spatial modes in A3 are negligible as they contribute less than
2% to the total local field.

We consider a nonuniform QPM grating where variations
in the local grating period and duty cycle are slow, compared
with the grating period itself, such that d̄ can be accurately
represented by a sum of distinct Fourier components Gm, with
a z-dependent k-vector. The general form of d̄ �z� is

d̄�z� �
X
m

Gm exp�iK mz � iΦm�z��; (2)

where Gm � 1∕�mπ� sin�mπD� is the amplitude of the mth
Fourier component of the grating, and D is the grating duty
cycle. A linear component K m � 2πm∕Λ is explicitly separated
out of the total grating phase, where Λ is the period of the
grating, and Φm�z� represents the phase of the grating beyond
the K m component. The average coherence length for gener-
atingA3 is π∕Δkm, where Δkm � k3 − k2 − k1 − K m. Since the
grating is designed to phase match SHG, the corresponding
coherence length for generating A3 is very short, compared
with the length of the device and the distances over which A1

and A2 amplitudes change significantly, suggesting the use of
multiple scales analysis [12] to understand the generation of
A3. This analysis leads to

A3 � κ3
X
m

Gm

Δkm
A1A2 exp�iφm�; (3)

where φm � Δkmz �Φm is the total phase mismatch. Cross-
terms from combinations of different grating Fourier components
are of the orderO�1∕Δk2m� and are considered to be insignificant.
As a result, A3 is generated from the sum of contributions from
distinct Fourier components of the grating and is proportional to
the spatial and temporal overlap of A1 and A2.

The time-domain picture of generating A3 from SFG in a
linearly chirped QPM grating is illustrated in Fig. 1. Pulse A1

with bandwidth Ω0 propagates through the grating with
group velocity u1. Frequencies in A1 phase match to generate
second-harmonic frequencies in A2 over a phase-match length
Lp � δνΩ0∕4Dg , where Dg is the chirp rate of the grating and
δν � 1∕u2 − 1∕u1 is the group velocity mismatch parameter.
A2 then travels freely with group velocity u2 ≠ u1. While
A1 and A2 overlap in space and time, A3 is generated, but
once SHG for A1 is no longer phase matched, A2 is no longer
generated, and the overlap betweenA1 andA2 decreases as the

fields walk off each other over a length Lw � 1∕δνΩ0. A3 van-
ishes once A1 and A2 no longer overlap and, as a result, it can
only exist locally in a finite spatial region of the grating, which
we define as w.

If this local field A3 causes PRD, then its spatial extent de-
termines the portion of the transfer function that is distorted,
and its maximum pulse energy affects the magnitude of the
distortion. These factors depend on parameters such as pulse
bandwidth Ω0, pulse chirp C , and grating chirp Dg .

To understand the relationship between these factors and
parameters, we must evaluate Eq. (3). It will be convenient
to work in the frequency domain so we define a frequency
domain envelope Âj�z;Ωj� � Âj�z;Ωj� expfi�k�ωj � Ωj�−
k�ωj��zg, where Âj�z;Ωj� is the Fourier transform of Aj�z; t�
and Ωj � ω − ωj is the angular frequency detuning from car-
rier frequency ωj. For simplicity, we assume Â1 is undepleted
and that there is negligible GVD so that Â1�z;Ω1� �
Â1�0;Ω1� and, thus, write Â2 in terms of the fundamental
Â1 via the transfer function D̂�z;Ω2� [13], according to

Â2�z;Ω2� � D̂�z;Ω2�cA2
1�Ω2�, where cA2

1�Ω2� is the convolu-
tion Â1�Ω1� ⊗ Â1�Ω1�. With these representations for the
fields, Eq. (3) becomes

Â�m�
3 �z;Ω3� � κ3

Gm

Δkm
fD̂�z;Ω2��Â1�Ω1� ⊗ Â1�Ω1��g

⊗ Â1�Ω1� exp�iφm�z��: (4)

To compute Â3 and illustrate the basic properties of local fields,
we consider a linearly chirped pulse Â1 with chirp rate C �
C1Ω2

0 and bandwidth Ω0 propagating through a linearly
chirped grating with chirp rate Dg as defined in [13]. To sim-
plify the analysis, we only consider the first Fourier component,
m � 1, and assume an infinitely long grating in which d̃�x; y� is
constant. By computing Â3, we can calculate the spatial extent
w and maximum pulse energy U of the localized field.

In Fig. 2, we explore how the normalized length w̄ �
w∕L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DgL∕�1∕L�

p
varies with normalized bandwidth Ω̄0 �

δνΩ0∕
ffiffiffiffiffiffiffiffi
4Dg

p � ffiffiffiffiffiffiffiffiffiffiffiffi
Lp∕Lw

p
for different chirp C . The length w̄

represents the fraction of the grating, of length L, where Â3

A1 A2 A3

Fig. 1. Time-domain illustration of local field A3 generation due to
SFG in a chirped QPM grating.
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Fig. 2. Length w̄ of locally generated field Â3 varies with pulse
bandwidth Ω̄0 for different chirp C , where Dg > 0 is assumed.
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exists, scaled by the square root of the ratio of the chirped
grating bandwidth, DgL, to the uniform grating bandwidth
1∕L. w̄ grows with increased phase-match length Lp or walk-
off length Lw. First, consider Â1 to be a transform-limited pulse
(C � 0). For small bandwidths (Lw ≫ Lp), Â1 is broad in time
which increases the walk-off length and results in increased w̄.
For large bandwidths (Lp ≫ Lw), Â1 phase matches over a
longer length which also increases w̄. However, for bandwidths
near unity (Lp ≈ Lw), neither effect dominates, and w̄ is at its
minimum.

Now consider a chirped pulse (C ≠ 0). For larger chirp rates
jC j, Â1 is broader in time which increases the walk-off length
and results in increased w̄. The curves shift toward larger
lengths, and the minimum shifts toward larger bandwidths.
Pulses with chirp C , such that C∕Dg < 0, have a chirp that
partially cancels out the grating chirp and temporally com-
presses Â2. This decreases the walk-off length Lw and, there-
fore, w̄ is smaller compared with those generated by pulses
with C∕Dg > 0.

In Fig. 3, we explore how the normalized pulse energy Ū �
U∕�κ22κ23G2

mU 3
0∕�2DgΔk21�� of Â3 depends on Ω̄0. The nor-

malization factor represents the energy in the third-harmonic
generated by a CW first-harmonic with power equal to that of
a flat-top pulse of energy U 0 and duration 1∕Ω0, where U 0 is
the pulse energy of Â1. For small bandwidths (Lw ≫ Lp), Â1 is
broad in time and, therefore, the peak power is less, which
means Â3 will have lower power Ū . For large bandwidths
(Lp ≫ Lw), Â1 is compressed, and its peak power increases, re-
sulting in higher Ū . For larger chirp rates jC j, Â1 is broader and
Ū decreases. Pulses with chirp C , such that C∕Dg < 0, gen-
erate a temporally compressed Â2 and, therefore, increase Ū .

To the extent that a localized field is causing PRD, it is im-
portant to choose parameters so that w̄ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DgL∕�1∕L�

p
; as a

result, w > L and, therefore, the CTF only shifts in spectrum.
Additionally, it is advantageous to choose a smaller bandwidth
Ω̄0 so that the pulse energy is minimized.

The position of the local field within the grating can change
due to changes in the center wavelength or depletion level of
Â1. This effect is potentially important as it can alter the spatial

profile of the localized field. We explore these effects experi-
mentally in an A-PPLN waveguide device by measuring the
spatial profile of the locally generated field, Â3, by collecting
light scattered out of the waveguide at the chip surface along
the length of the waveguide. A 400 μm core fiber, oriented at
45° with respect to surface normal, is scanned along the wave-
guide, and the collected light is detected with a silicon ava-
lanche photodiode; a bandpass filter ensures that only Â3 is
detected. We assume the scattered light measured at any given
position is proportional to jÂ3j2.

Our A-PPLN device has a QPM grating length of 43 mm
and a bandwidth of 22 nm, centered at 1560 nm with a grating
chirp rate of Dg � 0.07 mm−2. The sign of the chirp is such
that shorter wavelengths phase match later in the grating.
Our transform-limited input Â1 has a bandwidth of 16 nm,
which is equivalent to Ω̄0 � 7.4; we therefore expect w̄ �
4.7, i.e., w � 18 mm based on Fig. 2. We launch 2.5 mW
of Â1 into the waveguide and measure the local field profile
for λ1 � 1550 nm, 1560 nm, and 1570 nm, shown as the blue
lines in Figs. 4(a)–4(c). Theoretical plots, obtained via numeri-
cal simulations of Eq. (1) and the corresponding equations for
the evolution of A1 and A2 to enable inclusion of pump-
depletion effects, are shown as the red lines. The peak position
shifts toward the end of the grating as λ1 becomes shorter, and
the length matches the expected value of 20 mm, as shown in
Fig. 4(b). In Figs. 4(d)–4(f ), we fix the center wavelength at
1550 nm and change the input power of Â1 for each scan
(2.5 mW, 10 mW, and 20 mW). As the power is increased,
Â1 depletes as a larger fraction is converted to Â2. As a result,
the product Â1Â2 decays along the waveguide, and the peak
position shifts closer to the beginning of the grating.

Distortions in the CTF due to local-field-induced PRD can
be minimized by reducing the local field intensity through low-
ering the input power of Â1 at the expense of reduced efficiency
of the main interaction. Another way is to increase the operat-
ing temperature of the device such that the space charge field
can be screened more effectively by increased electron mobility
[14]; however, excessive temperatures can change waveguide
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properties. It is also possible to consult Fig. 2 and design the
length of the local field to span the entire length of the grating
such that transfer function distortion is uniform, and the over-
all effect is a constant frequency shift, though these designs may
not be consistent with the requirements for a given application.
Therefore, it is often advantageous to design the QPM grating
to minimize local field generation. This can be achieved by
adjusting the grating duty cycle D. The locally generated field,
Â3, is composed of contributions from different orders of the
QPM grating as seen in Eq. (3). Each contribution is weighted
by the factor Gm∕Δkm. In Fig. 5(a), we illustrate the contribu-
tion of each grating order to the total local field for a grating
with 50% duty cycle. The third-order Fourier component G3

provides the largest contribution, but can be eliminated by
setting D � 33%. The ratio of jÂ3j2 for 33% to 50% duty
cycles is about 13%; by setting D � 33%, jÂ3j2 can be re-
duced by almost 90%. The trade-off is a 14% reduction in
SHG efficiency due to the reduction of the first-order Fourier
component G1.

To demonstrate this effect, we test devices with 33% duty
cycle QPM gratings. We measured the amount of Â3 generated
by scanning a tunable, CW laser at 1550 nm across the band-
width of our devices and measured jÂ3j2 with a lock-in detec-
tion scheme. Figure 5(b) illustrates the amount of Â3 generated
for different gratings with duty cycles bracketed around 33% as
a percentage of the amount of Â3 generated for a 50% duty
cycle grating. The values are averages over different gratings of
identical design. The minimum amount of Â3 generated is

about 8%, and the measured results follow the theoretical
trend. The slight discrepancy at larger duty cycles can be attrib-
uted to measurement inaccuracy as the amount of Â3 is quite
small. With this design, the local field power is suppressed
by almost 10 dB, and one can expect much improved device
performance.

In summary, we have provided a model for understanding
a general class of parasitic effects called localized fields in
A-PPLN waveguide devices. This theory is supported by strong
agreement between simulation and measurement results. To
improve device performance, we have demonstrated that the
average power of localized fields can be suppressed by 10 dB
by using a 33% duty cycle grating. The analysis and design
presented offers guidance for designing optical frequency con-
verters that avoid the effects of localized fields.

Funding. Air Force Office of Scientific Research (AFOSR)
(FA9550-12-1-0110); U.S. Department of Energy (DOE)
(DE-AC52- 07NA27344).
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We report the generation of an optical-frequency comb in the midinfrared region with 1-GHz comb-line
spacing and no offset with respect to absolute-zero frequency. This comb is tunable from 2.5 to 4.2 μm
and covers a critical spectral region for important environmental and industrial applications, such as
molecular spectroscopy of trace gases. We obtain such a comb using a highly efficient frequency
conversion of a near-infrared frequency comb. The latter is based on a compact diode-pumped
semiconductor saturable absorber mirror–mode-locked ytterbium-doped calcium-aluminum gadolynate
(Yb:CALGO) laser operating at 1 μm. The frequency-conversion process is based on optical parametric
amplification (OPA) in a periodically poled lithium niobate (PPLN) chip containing buried waveguides
fabricated by reverse proton exchange. The laser with a repetition rate of 1 GHz is the only active element
of the system. It provides the pump pulses for the OPA process as well as seed photons in the range of
1.4–1.8 μm via supercontinuum generation in a silicon-nitride (Si3N4) waveguide. Both the PPLN and
Si3N4 waveguides represent particularly suitable platforms for low-energy nonlinear interactions; they
allow for mid-IR comb powers per comb line at the microwatt level and signal amplification levels up to
35 dB, with 2 orders of magnitude less pulse energy than reported in OPA systems using bulk devices.
Based on numerical simulations, we explain how high amplification can be achieved at low energy using
the interplay between mode confinement and a favorable group-velocity mismatch configuration where the
mid-IR pulse moves at the same velocity as the pump.

DOI: 10.1103/PhysRevApplied.6.054009

I. INTRODUCTION

The midinfrared spectral region between 2 and 20 μm
covers the strong vibrational transitions of a variety of
molecules that play an important role in environmental,
medical, and industrial diagnostics. The ability to detect
and quantify the presence of such molecules or to inves-
tigate their properties on a more fundamental level is thus
directly linked to the availability of a light source capable
of probing these transitions. Laser-frequency combs—i.e.,
lasers whose spectra consist of a series of equally spaced
discrete optical lines—combine three essential assets: the
high brightness of the light leads to a high detection
sensitivity, the narrow linewidth of the individual comb
lines allows for high-resolution measurements, while the
large spectral bandwidth enables fast simultaneous detection
of multiple species.
The success of optical-frequency combs in the near-

infrared region has been strongly tied to the advancement
of mode-locked lasers in that wavelength range [1–5].
Well-established gain media include Ti:sapphire [6] emit-
ting around 800 nm, and various host crystals doped with

ytterbium (Yb) or erbium (Er) emitting in the 1- and 1.5-μm
regions, respectively [7–9]. Various approaches have
recently been pursued to extend the spectral coverage of
frequency combs into the midinfrared region [10]. Direct
approaches include alternative laser gain materials for
mode-locked solid-state and fiber lasers [11–13] or semi-
conductor devices such as quantum-cascade lasers [14,15].
Another approach relies on exploiting different aspects of
nonlinear optics, such as supercontinuum generation (SCG)
in fibers [16–18] and waveguides [19–21], or Kerr-comb
generation in microresonators [22,23].
The challenge these approaches have in common is the

difficulty to detect and control the comb offset frequency
[24–26], i.e., the parameter that defines the exact position
of the evenly spaced frequency-comb lines on the
absolute-frequency axis. This problem can be circum-
vented by difference-frequency generation (DFG): in this
nonlinear process, the low-frequency part of a comb
(termed the “signal”) is mixed with the high-frequency
components (the “pump”) of the same comb in a medium
exhibiting a second-order (χð2Þ) nonlinearity, resulting in
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a difference-frequency comb (the “idler”) which will be
offset-free [27].
A configuration where the signal gets significantly

amplified during this mixing process is known as an optical
parametric amplifier (OPA). DFG- and OPA-based mid-IR
frequency combs have already been demonstrated using
bulk devices of various materials, such as periodically poled
lithium niobate (PPLN) [28–32], GaSe [33], AgGaSe2 [34],
CdSiP2 [35], and orientation-patterned GaAs [36]. Because
of the limited interaction length caused by diffraction and
material dispersion, single-pass bulk OPAs typically require
watt-level pumpbeams and several hundreds ofmilliwatts of
initial signal power to achieve powers per comb line>1 μW
in the mid-IR region. Schemes based on high-power
oscillators [37], laser preamplification of a pump and/or
signal beam [38], or an intracavity OPA [39] have been
demonstrated. Higher efficiencies in converting a near-IR
frequency comb to the mid-IR region can be obtained in a
resonant cavity, i.e., by turning the OPA into an optical
parametric oscillator [40–45]. However, the passive comb-
offset stability will be lost and the implementation of an
active stabilization [46] is instead required to eliminate the
offset. The development of stabilized mid-IR frequency
combs therefore benefits from a robust and compact con-
figuration that allows for efficient frequency conversion at
low energies with passive comb-offset stabilization, using a
single mode-locked laser oscillator as the only active
medium.
Here, we demonstrate chip-scale waveguide technology

as a compact low-energy platform for generating widely
tunable, offset-free mid-IR frequency combs. A diode-
pumped solid-state laser operating at 1 μmwith a repetition
rate of 1GHz serves as a single active sourcewith two output
beams. While one beam is directly used to pump an OPA
process in a PPLN waveguide, the other is spectrally
broadened in a silicon-nitride (Si3N4) waveguide to generate
signal photons in the wavelength range of 1.4–1.8 μm. The
idler can be tuned from 2.5 to 4.2 μmby laterally translating
the PPLNchip acrosswaveguideswith varying quasi-phase-
matching (QPM) periods [47]. With just 300 pJ of pump-
pulse energy and initial seed powers of <20 nW per comb
line, we achieve microwatt-level comb-line powers in the
mid-IR region. Compared to systems based on nonlinear
fibers for SCG and bulk PPLN for the OPA process [38], the
required pulse energy for obtaining the same power per
comb line is lowered by nearly 2 orders of magnitude.
In the following, we provide the details of the exper-

imental setup, present the mid-IR comb results, and explain
via numerical simulations how the approach leverages
favorable aspects of the waveguide dispersion in order to
maximize the achievable OPA gain. Moreover, our simu-
lations, which are in excellent agreement with our exper-
imental results, show that waveguides offer the possibility
to enter high-gain OPA regimes that are inaccessible to bulk
devices at low energies. The ability to perform efficient

supercontinuum-seeded frequency conversion at low pulse
energies, as demonstrated and explained here, could enable
multigigahertz comb-resolved sources based on chip-scale
nonlinear-optical devices, directly driven by highly com-
pact laser oscillators, thereby removing the need for laser
amplifiers and bulk frequency converters in such systems.

II. EXPERIMENTAL SETUP

The passively mode-locked laser oscillator shown in
Fig. 1(a) consists of a 2-mm-long ytterbium-doped cal-
cium-aluminum gadolynate (Yb∶CALGO) [48] emitting at
1053 nm and pumped at 980 nm using a spatially multi-
mode pump diode. The laser is mode locked with a
semiconductor saturable absorber mirror (SESAM) [49]
and can produce pulses as short as 63 fs at a repetition rate
of 1.025 GHz, with an output power of up to 1.7 W (when
both output beams are combined) [50]. One of the output
beams is coupled to a 7.5-mm-long Si3N4 waveguide
(spiraled onto a square of 1 × 1 mm) with a cross section
of 690 × 900 nm [Fig. 1(b)] [51–53]. A coupled pulse
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FIG. 1. (a) Experimental setup showing the two output beams
of the 1-GHz laser cavity. The negative second-order intracavity
dispersion necessary to achieve soliton mode locking is provided
by a Gires-Tournois-interferometer- (GTI-)type mirror. Isolators
prevent potential back reflections from the waveguide facets into
the laser. Grating pairs are used to compensate for the isolator
dispersion and additionally stretch the pulse in the OPA pump
arm. (b) Sketch of the (1 × 1)-mm chip with the 7.5-mm-long
Si3N4 waveguide embedded in silicon dioxide (SiO2). (c) Excerpt
of the PPLN chip containing buried RPE waveguides in regions
with different poling periods. The first 6.5 mm of the 2.5-cm-long
chip are unpoled, and the waveguides are tapered to facilitate
single-mode coupling.
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energy of 40 pJ (coupling efficiency 15%) is sufficient to
obtain a supercontinuum spanning from 650 to 1800 nm, as
shown in Fig. 2(a). Using a long-pass filter, the spectrum is
cut at 1400 nm and sent into the PPLN waveguide as a seed
for the OPA process.
The PPLN-waveguide chip with a dimension of 25 ×

6 × 0.5 mm contains 90 waveguides fabricated by reverse
proton exchange (RPE). The RPE method exhibits a first
step of exchanging lithium ions with protons, using a
diffusion process to create a region with a higher refractive
index capable of guiding light. In order to obtain buried
waveguides that support Gaussian modes and efficient
nonlinear mixing, the protons near the surface are sub-
sequently removed in a reverse-proton-exchange step. The
RPE waveguides used here are fabricated with a 12 μm
width and an exchange depth of 2.3 μm. This depth, which
is larger than in typical PPLN waveguides designed for
telecom applications [54], is chosen in order to guide the
mid-IR wavelengths. At the input side of the waveguide,
the width of the lithography-mask pattern is adiabatically
tapered to 2 μm to allow for efficient and single-mode
coupling of the input near-IR beams. The different wave-
guides are periodically poled, with poling periods ranging
from 17 to 30 μm to achieve QPM. Coupling into both
waveguides as well as beam collimation at the output is
performed in free space using antireflection-coated lenses.

A Faraday isolator protects the laser cavity from poten-
tial back reflections from the waveguide facets. Grating
pairs are used to compensate for the dispersion introduced
by the isolators. Angled waveguide facets could be used in
the future to eliminate the isolators. While the pulse at the
input of the Si3N4 waveguide is recompressed to a nearly-
transform-limited 85 fs, the pulses in the pump arm are
purposely stretched to nearly 800 fs to maximize the pump-
signal interaction in the PPLN waveguide. The general
advantage of pump-pulse stretching in a waveguide con-
figuration is discussed in Sec. IV.

III. RESULTS

A. Amplification and mid-IR spectra

Amplified spectra, obtained by scanning through the
waveguides with QPM periods from 24.60 to 26.49 μm, are
shown in Fig. 2(b). With a maximum pump-average power
of 310 mW coupled into the PPLN waveguides, we are able
to amplify the spectral region from 1.4 to 1.8 μm obtained
by SCG in the Si3N4 waveguide by up to 35 dB. The
corresponding mid-IR idler spectra range from 2.5 to
4.2 μm, with an average power reaching 10 mW at
3.5 μm [Fig. 2(c)]. Given the comb-line spacing of
1.025 GHz set by the laser, this value corresponds to an
average power per comb line of 4 μW. The DFG process
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leads to passive cancellation of the laser-comb offset;
therefore, the stability of the mid-IR comb lines depends
only on the stability of the laser repetition rate—and thus
the laser-cavity length. Here, sufficient stability is achieved
with low-drift mirror mounts and by boxing the setup. By
mounting the SESAM on a piezoelectric actuator as
described in Ref. [55], such ultrafast laser combs can be
fully stabilized with a long-term stabilization loop, and the
comb lines can also be shifted by a desired amount.
The amplified signal spectra are recorded with a grating-

based optical spectrum analyzer [(OSA), AndoAQ-6315A].
A Fourier-transform infrared spectrometer [(FTIR),
Thorlabs OSA2015] is used for the idler spectra. The path
length of approximately 1mbetween the output of the PPLN
waveguide and the free-space input of the FTIR analyzer is
sufficient to observe distinctive absorption features in the
ambient air. By magnifying the mid-IR comb generated in
thewaveguidewith theQPMperiod of 26.35 μm [Fig. 2(d)],
we can clearly identify the presence of water (H2O) and
carbon-dioxide (CO2) absorption lines by comparing the
spectrum recorded by the FTIR with the corresponding
absorption cross sections provided by the high-resolution
transmission molecular absorption (HITRAN) database.

B. Noise analysis

The relative intensity noise (RIN) of a frequency comb is
an important parameter, as it can limit the achievable
signal-to-noise ratio in spectroscopic applications such as
dual-comb spectroscopy [56]. In an OPA-based system, the
RIN can increase during preamplification of the pump and/
or signal, nonlinear broadening steps, and the OPA process
itself. RIN characterization at each stage of the setup thus
helps us to identify the bottlenecks and, ultimately, to design
low-noise systems. Figure 3 shows the RIN in our setup
measured at base band using appropriate photodiodes
(Silicon Thorlabs PDA100-EC for 980 nm, InGaAs
Thorlabs PDA10CS-EC for 1–1.8 μm, HgCdTe VIGO
PVI-4TE-6 + MIPDC-5 for 3.5 μm) and a signal-source
analyzer (Agilent E5052B). The noise performance of the
gigahertz-laser oscillator is set by its multimode pump diode.
Since no preamplifier is used, this noise level also corre-
sponds to the RIN of the OPA pump.
To investigate the impact of the OPA process itself, noise

measurements are recorded using the waveguide that pro-
vides the highest gain and absolute idler power (QPMperiod
25.47 μm, signalwavelength 1.50 μm). TheRINof the idler
is, as expected, very similar to the RIN of the amplified
signal. We observed, however, a noise increase of approx-
imately 30 dB with respect to the pump noise level (Fig. 3).
In order to determine the origin of this noise increase,

further measurements are performed. We verify that the
shot-noise levels, which depend on the wavelength and the
optical power of the photodiode, are well below each of
the respective RIN measurement results. The measured
RIN of the supercontinuum over the full wavelength range

accessible by the InGaAs photodiode (1–1.8 μm) is com-
parable to the gigahertz-laser output, with the exception of
white-noise contributions above 100 kHz and technical
noise around 100 Hz [Fig. 3, full supercontinuum (SC)].
However, the RIN of the supercontinuum after a 15-nm
bandpass filter centered at 1.5 μm is similar to the OPA
output (Fig. 3, filtered SC, before OPA). This filter
bandwidth is chosen to correspond to the bandwidth of
the amplified signal. It is well known that the interplay of
the various mechanisms responsible for spectral broadening
during the SCG process can lead to strongly-wavelength-
dependent RIN [57], which becomes apparent when using
narrow-band filters.
We can thus conclude from these observations that,

despite the high gain, the OPA process itself is not adding a
significant amount of noise, but that the noise increase
stems rather from the SCG process in the Si3N4 waveguide.
In the experiment presented here, the supercontinuum is
optimized, above all, for broad bandwidth and spectral
coherence [52], but the RIN may be minimized further by
numerically analyzing the wavelength dependence of
various noise types [58] and adapting the waveguide design
accordingly.

IV. DISCUSSION

The experimental OPA results presented above exploit
several advantageous properties that waveguides offer in
comparison to bulk devices. Simulations in agreement with
our experiments will be shown in this section, along with a
general discussion on how to take advantage of those
waveguide properties to achieve high gain—and thus high
conversion efficiency—of a near-IR into a mid-IR comb.
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A. Energy-dependent gain

For a phase-matched interaction assuming an unde-
pleted, plane-wave pump field Ep and no initial idler field
½Eið0Þ ¼ 0�, the signal field at the output of an OPA device
with length L can be written as [59]

EsðLÞ ¼ Esð0Þ coshðΓLÞ; ð1Þ

where Γ is the gain parameter defined as

Γ ¼ ffiffiffiffiffiffiffiffi
κiκs
p jEpj; ð2Þ

with κj ¼ 2πdeff=ðnjλjÞ, j ¼ i, s (idler and signal) and
where deff denotes the material-dependent effective non-
linear coefficient.
Assuming sufficiently long pump pulses to provide

constant pump intensity for the signal pulse during their
interaction, we can approximate the magnitude of the pump
field Ep as a function of the peak power Ppk ∼Up=τp:

jEpj ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

npϵ0c

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Up

πw2
0τp

s
; ð3Þ

where Up is the pulse energy, τp the pulse duration, np the
refractive index, and w0 the beam waist. To maximize
the interaction in a bulk device, the diffraction length of the
beam (and thus the beam radius) is often set to match the
distance LGVM over which the pump and signal pulses walk
off each other due to group-velocity mismatch (GVM),

w2
0kp ≈ LGVM ¼ τp

�
1

vp
−

1

vs

�
−1
; ð4Þ

where kp ¼ np2π=λp denotes the pump wave number.
For a given set of phase-matched pump-signal-idler

frequencies, the achievable gain will be independent of
the pump-pulse duration and can only be scaled via the
pulse energy,

ΓLGVM ∼ Cp;s;i

ffiffiffiffiffiffiffi
Up

p
ðbulkÞ; ð5Þ

with a proportionality factor Cp;s;i containing the wave-
length-dependent material properties. If the pump pulse is
too short, then confocal focusing, according to Eq. (4), may
yield an intensity above the material damage threshold. In
this case, the pump pulse can be stretched to avoid damage.
However, the diffraction still limits the achievable gain,
according to Eq. (5).

In a waveguide device, however, the interaction is not
limited by diffraction anymore, thus eliminating the rela-
tion imposed in Eq. (4) for the mode size as a function of
GVM. The gain can now additionally be scaled via the
pump-pulse duration and the effective mode area Aeff ,
which takes into account the modal overlap inside the
waveguide,

ΓLGVM ∼ C0p;s;i
ffiffiffiffiffiffiffi
Up

p ffiffiffiffiffiffiffiffi
τp
Aeff

r
ðwaveguideÞ; ð6Þ

where C0p;s;i ¼ Cp;s;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2kpðv−1p − v−1s ÞÞ

q
. Thus, high

gain can be maintained by stretching the pump-pulse
duration despite lowering the pulse energy.
The waveguide cross section is then chosen such as to

optimize the overlap of the guided pump, signal, and idler
modes (see Sec. III B). Stretching our pump pulses to
approximately 800 fs, as described in the experimental
section, and taking advantage of the tight mode confine-
ment provided by the PPLN waveguide thus allow us to
achieve high gain with nearly one order of magnitude less
pulse energy than a best-case estimate of a bulk interaction.

B. Pump versus idler group-velocity mismatch

In the presence of not only GVM between pump and
signal but also idler walk-off and group-velocity dispersion
of all of the waves, a more-general description of the OPA
process is required [60]. In order to explain the gain
variations observed experimentally across the broad signal
spectral range, we perform numerical simulations based on
a general model of the dynamics inside the PPLN wave-
guides. The model describes the propagation of the pump,
signal, and idler pulses through the waveguide, accounting
for the wavelength-dependent effective index and modal-
overlap coefficients in the waveguide, and it includes both
second- and third-order nonlinear properties of the PPLN
waveguides [61,62].
In order to determine the dispersion profile of the

waveguides, we proceed as follows. First, we simulate
the proton diffusion inside the waveguide during the
waveguide fabrication process, to obtain a proton concen-
tration profile over the cross section of the waveguide [63].
Following Ref. [63], we obtain the change in refractive
index as a function of the wavelength and the transverse
position, then calculate the corresponding properties of the
fundamental waveguide mode versus the wavelength.
These properties are reasonably accurate for IR wave-
lengths, but less is known about the mid-IR properties. To
account for this uncertainty, we apply an additional fixed
offset to the effective index for the mid-IR part of the
spectrum (wavelengths> 2 μm). This offset is chosen such
that the numerically predicted set of the phase-matched
signal wavelength versus the QPM period is in good
agreement with the experimentally measured dependence.
As can be seen in Fig. 4(a), we also include the change in

refractive index induced by OH absorption in the material
around 2.85 μm [61]. Having calculated the spatial profile
of the fundamental mode, an effective area for the OPA
process can be defined,

Aeffðωp;ωsÞ ¼
�Z

0

−∞

Z
∞

−∞
d̄ðx; yÞBðx; y;ωpÞBðx; y;ωsÞ

× Bðx; y;ωp − wsÞdxdy
�

−2
; ð7Þ
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where d̄ is a normalized nonlinear coefficient accounting
for the so-called dead layer (the layer at the top of the
waveguide, where the second-order susceptibility is erased
during fabrication) [54], and Bðx; y;ωÞ is the spatial profile
of the fundamental waveguide mode with frequency ω,
normalized according to

R
0
−∞

R
∞
−∞ jBðx; y;ωÞj2dxdy ¼ 1.

An effective pump intensity, Ppk=Aeff , can be introduced,
which leads to a normalized OPA gain rate γ ¼ Γ=
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pump power
p Þ. Figure 4(b) shows how the modal-
overlap integral in Eq. (7) affects the normalized-gain
coefficient γ over the range of signal wavelengths used
in this experiment.
In order to directly visualize the spectrally dependent

effect of modal overlap and GVM on the achievable gain,
the pulse-propagation simulations assume a flat-top initial
signal spectrum with a flat spectral phase. The following
input parameters corresponding to the experimental values
are used: 280-mW pump power, 1-mW signal power over
the whole flat-top spectrum (1300–1850 nm) and 70-fs
pump pulses with a negative chirp of −25, 000 fs2. A
general propagation loss of 0.1 dB=cm is included. We
assume a nonlinear coefficient of d33 ¼ 19.5 pm=V [64]
and, to obtain improved agreement with the experimentally
measured gain, Aeff is scaled by a small factor of 1.17
compared to the directly calculated value from Eq. (7).
Without any further adjustments, the simulations (Fig. 5)
are able to reproduce remarkably well the features observed
in the experiment [Fig. 2(b)].
Looking at the gain curve displayed in Fig. 4(b), one may

expect the amplification to monotonically increase with
increasing signal wavelength. However, the simulated
spectra shown in Fig. 5 are in good agreement with the
experimental data presented above: instead of a monotonic

increase, a maximal amplification of 35–40 dB is reached
in the range of 1450–1500 nm and then a decrease can be
observed until the effect of the OH absorption becomes
visible for signal wavelengths of around 1650–1700 nm.
This trend can be explained as follows: while the gain
coefficient γ contains information about the spatial overlap
of the idler with the pump and the signal mode inside the
waveguide, it does not take into account the temporal
behavior of the idler pulses. As can be inferred from
Fig. 4(a), the effective group velocity of the idler,
vg;effðλiÞ ¼ c=ngroup;effðλiÞ, crosses the velocity of the pump
(intersection with the red dashed line) when scanning the
QPM periods. It is for the signal wavelengths correspond-
ing to this intersection—i.e., where the idler moves at
nearly the same velocity as the pump—that we observe
maximum signal amplification. Figure 6 illustrates and
describes the three regimes that we encounter in the scan:
(1) At a signal wavelength of between 1500 and

1650 nm, both the signal and the idler propagate
with a higher velocity than the pump. Although a
high spatial overlap is given, the short temporal
overlap inhibits further amplification [Fig. 6(a)].

(2) For wavelengths of around 1450–1500 nm, the
corresponding idler temporally stays with the pump,
leading to the buildup of a strong idler pulse and
maximal signal amplification [Fig. 6(b)].

(3) In the third regime (<1450 nm), the signal and the
idler have opposite group velocities with respect to
the pump [Fig. 6(c)]. This configuration acts as a
“trap” for the signal and idler pulses, as they are
pulled towards each other, therefore ensuring a long
interaction length and, potentially, high amplifica-
tion. However, the amplification becomes highly
suppressed in this wavelength range due to the
increasing mode size of the idler and the resulting
poor spatial overlap.

From these experimental and numerical observations, we
conclude that the highest gain—and thus the most efficient
mid-IR idler generation—is achieved by designing a wave-
guidewhere the idler group velocity is as close as possible to
that of the pump while maintaining a high spatial overlap.
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V. CONCLUSION

In this paper, we address the challenge of nonlinear-
optical frequency conversion at low pulse energies with the
aim of transferring a 1-GHz frequency comb at 1 μm into
the application-relevant mid-IR spectral region. Using a
SESAM-mode-locked laser at 1 μm, we have achieved
tunable offset-free combs from 2.5 to 4.2 μm with up to
4 μW of power per comb line around 3.5 μm. The comb
spectra are generated in a PPLN RPE waveguide by optical
parametric amplification. The signal photons for the OPA
process are obtained by supercontinuum generation in a
silicon-nitride waveguide with only 40 pJ of coupled pulse
energy. During the OPA stage, this signal beam is amplified
by up to 35 dB using 300 pJ of pump energy. We show that,
in contrast to bulk devices, signal amplification in a
waveguide OPA can be increased by stretching the pump
pulse and exploiting the waveguide dispersion to obtain a

similar effective group velocity for pump and idler pulses.
Those degrees of freedom provide interesting design oppor-
tunities for low-energy frequency conversion of a variety of
compact laser sources, including semiconductor lasers [65],
without the need for additional laser power amplifiers.
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FIG. 6. Illustrative sketch and magnitude of the interacting fields with the center of the pump pulse setting the reference frame for all
figures. The dashed white lines indicate the expected temporal lead or lag of signal and idler pulses with respect to the pump due to
group-velocity mismatch (GVM). (a) Idler faster than pump. The three pulses overlap over only a short distance: the energy transfer
from pump to signal and idler is limited. (b) Idler follows pump. As the signal is passing through the pump pulse, the generated idler
photons stay overlapped with the pump and coherently add up to form a strong pulse. (c) Idler slower than pump, i.e., opposite signs for
signal and idler. Signal and idler “drag” each other along, leading to a longer interaction with the pump (the “trapped” state). Note the
change in magnitude of the electric field (the color bar) compared to (a) and (b). The lower field magnitudes are a consequence of the
reduced spatial-mode overlap, which considerably lowers the gain [as shown in Fig. 4(b)].
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