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Space-based persistent surveillance provides decision makers with information necessary to effec-

tively respond to both natural and man-made crises. This paper investigates a reconfigurable con-

stellation strategy that utilizes on-demand, maneuverable satellites to provide on-demand focused re-

gional coverage with short revisit times at greatly decreased cost when compared to traditional static

satellite constellations. A general framework is introduced to guide the design and optimization of

reconfigurable satellite constellations specifically tailored to stakeholder objectives while considering

requirement uncertainty. The framework consists of three elements: a detailed simulation model to

compute constellation performance and cost, Monte Carlo simulation, and a parallel multi-objective

evolutionary algorithm developed from the ε-NSGA-II genetic algorithm. Additionally, a new persis-

tence metric is developed to directly measure how well a design meets desired temporal and spatial

sampling requirements and a decision model and optimal assignment process is developed to deter-

mine how to employ the option of reconfigurability to respond to specific regional events. 8 optimiza-

tion runs were performed on a 1024 processor computing cluster to compare the cost-effectiveness

of several constellation architectures over varied coverage requirements. Results show that recon-

figurable constellations cost 20 to 70% less than similarly performing static constellations for the

scenarios studied, and this cost savings grows with increasingly demanding coverage requirements.

I. Introduction

Space-based surveillance systems provide imagery and other data products to support disaster response. While tra-

ditional space-based surveillance systems emphasize generating high spatial resolution imagery, effective disaster

response often also requires good temporal resolution where observation frequency is matched to event dynamics.

Ideally, these persistent systems would feature sufficient spatial and temporal resolution to support damage assess-

ment, search and rescue, and long-term recovery planning. Ground-based, air-based and space-based systems can

all provide effective disaster response, but all suffer from limitations. Ground-based systems including fixed sensors

and mobile response teams may become unavailable due to infrastructure damage. Air-based systems including fixed

wing aircraft, helicopters and unmanned aerial vehicles require significant capital investment to provide for air-basing

and personnel needs which often slows deployment and limits responsiveness. Traditional space-based constellations

provide wide-area coverage without the limitations of ground and air-based systems, but require a large number of

satellites to meet persistence goals.
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New thinking is needed to develop cost-effective persistent surveillance satellite constellations. In this paper we

introduce and explore a reconfigurable satellite constellation concept. The concept employs a dynamic constellation

comprised of maneuverable satellites to dramatically increase satellite utilization by focusing coverage on specific re-

gions on Earth in times of need. We also develop methodology that guides the design and optimization of cost-effective

reconfigurable satellite constellations while accounting for uncertainty in future operating context. The methodology

employs detailed simulation models and multi-objective evolutionary algorithms (MOEAs) to find the set of efficient

designs that comprise the optimal tradeoff between maximizing system performance and minimizing cost. We also

introduce a new performance figure of merit that measures how well a system meets temporal and spatial resolution

goals. We utilize this methodology to calculate the cost savings of implementing a reconfigurable architecture versus

a similarly performing traditional static architecture. This cost savings, called the value of reconfigurability, is the

amount saved by implementing the reconfigurable approach.

This paper introduces the reconfigurable constellation concept in Section II and details the constellation design and

optimization methodology in Section III. Sections IV through VII describe the three main elements of the method-

ology including: the multidisciplinary simulation model, Monte Carlo sampling, and multi-objective evolutionary

optimization. Section VIII presents a cost-effectiveness comparison between reconfigurable and static constellations

for different temporal and spatial resolution requirements. Conclusions and recommendations for future research are

then given Section IX.

II. Reconfigurable Constellations

This paper investigates a new flexible constellation architecture that gives operators the ability to focus satellite cov-

erage on different areas of the Earth in times of need. The reconfigurable constellation concept (ReCon), previously

introduced by Paek et al. [1] and further elaborated by this author [2], features two operational modes: global obser-

vation mode (GOM) and regional observation mode (ROM). GOM features a non-repeating ground track that allows

the satellites to provide coverage within a latitude band equal to the orbit inclination, and is similar to traditional static

constellations. ROM features repeating ground track (RGT) orbits where the Earth nodal day and the satellite’s orbital

period are synchronized so that the ground paths repeat and the satellites provide enhanced regional coverage. The

ReCon constellation normally resides in GOM providing partial global coverage. When a disaster event requiring

additional coverage occurs, a subset of the constellation would maneuver, via an altitude change and proper phas-

ing, into ROM to meet a desired level of persistence. This reconfigurable architecture trades an increase in system

complexity and operational burden associated with greater satellite maneuverability for greater satellite utilization due

to the ability to focus coverage. This increase in coverage leads to fewer required satellites in the constellation to

meet a specified level of persistence. We hypothesize that the benefits provided by reconfigurability will significantly

outweigh any costs associated with increased maneuverability and increased operational complexity.
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III. Reconfigurable Constellation Design and Optimization Framework

A constellation design and optimization framework was developed to provide a process to design and optimize re-

configurable satellite constellations that perform well under uncertain operating conditions. The framework is com-

prised of three nested layers shown in Figure 1. The innermost layer, the simulation layer, contains a detailed, multi-

disciplinary simulation model that computes the performance and cost of specific satellite constellation designs. The

middle layer, the Monte Carlo sampling layer, maps uncertain disaster event location and timing distributions into a

distribution of constellation performance. The outermost layer, the multi-objective optimization layer, utilizes state

of the art multi-objective evolutionary optimization algorithms to find the set of efficient designs that simultaneously

maximize expected performance and minimize cost. Sections IV and V explain the simulation model in more detail

while Sections VI and VII provide details on the Monte Carlo sampling and multi-objective optimization layers.

In addition to finding efficient designs, the framework also allows for a direct comparison of reconfigurable and

static architectures in terms of cost-effectiveness. Since static constellations are unable to reconfigure, they must

provide all regional event coverage from GOM. When the framework is used to optimize both reconfigurable and

static architectures for the same scenario, the resulting sets of efficient designs can be directly compared to calculate

the value of reconfigurability. The value of reconfigurability is defined as the reduction in cost of a reconfigurable

design when compared to a similarly performing static design. This concept is similar to the ‘value of flexibility’

metric which measures the benefit of incorporating flexibility into systems [3–5].

A. Persistence Figure of Merit

This paper investigates satellite constellations that provide persistent coverage, where persistence is defined as long-

term, continuing coverage with a specified frequency of observation. Therefore, the performance figure of merit must

capture how well the constellation coverage matches the desired persistence. If the coverage under-samples with

respect to the desired persistence, then some temporal event dynamics will be missed, and overall performance should

decrease. If the coverage over-samples with respect to the desired persistence, then all the temporal event dynamics

will be captured, but little or no additional utility may be gained for oversampling and system cost will likely increase.

In this case the performance should not increase beyond ideal sampling assuming that all the desired information is

gathered during each observation. Additionally, the performance metric must also account for several other factors that

influence optical imaging quality including spatial resolution and solar illumination. This section first motivates the

need for a new performance metric tied directly to persistence requirements and then introduces the newly developed

persistence metric.

Statistical metrics like average and maximum revisit time are often used to evaluate the performance of satellite

constellations, however, these metrics exhibit several undesirable traits that make them poor measures of persistence.

Previous literature [6–8] has shown that the two objectives of minimizing average revisit time and minimizing maxi-

mum revisit time are often in tension, and that improving one often degrades the other. This basic tension illustrates
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how these statistical measures fail in measuring persistence. Minimizing average revisit time involves simply increas-

ing the number of observations in a fixed time window regardless of when they occur. Minimizing maximum revisit

time simply attempts to reduce the longest gap in coverage with no consideration of other observations. Recently,

response time has been proposed as a better measure of persistence [Cite Roger Thompson Work]. This metric

provides significant improvements over average and maximum revisit time but it is still statistical in nature and there-

fore cannot easily incorporate additional factors like spatial resolution. Instead, we propose a new metric that takes

a micro-scale approach to measuring persistence and can easily incorporate spatial resolution and illumination con-

straints. This new persistence metric is comprised of two utility functions that measure how well the desired temporal

and spatial resolution are met. Most literature on satellite constellation design does not account for spatial resolution,

other than imposing fixed requirements. The ReCon concept, however, features satellites at different altitudes (caused

by the GOM and ROM modes of operation) and also satellites in ROM that ensure nadir passes over the disaster event.

Therefore, it is important to include the effect of spatial resolution on system performance. The persistence utility

function is written as a combination of these two effects:

U = (Uτ + ∆U) × UGS D (1)

Where Uτ is the temporal utility term, UGS D is the spatial utility term, and ∆U is a correction term to remove the order

dependance of sequential observations with different spatial resolution. The rest of this section explains these three

terms in greater detail.

The temporal utility term is based on the time elapsed since the last observation was made, and is described

mathematically by:

Uτ = min
([
τ

T

]
, 1

)
(2)

Where T is the desired persistence and τ is the time since the last observation was made. This utility function, shown

in Figure 2 (top), starts off at 0 when τ = 0 and ramps up to a maximum value of 1 when τ is equal to the desired

persistence T . Therefore, if the scene was recently sampled, the additional utility generated for another observation

would be low. If τ ≥ T , then the utility for another observation is set to 1 regardless of how large τ is. While capping

the maximum per-observation utility at 1 may seem counter-intuitive, there is an opportunity cost associated with

undersampling. Given the overall objective of maximizing the total utility generated during each event response, any

period where utility is not accumulating is lost opportunity in terms of maximizing total utility. Since τ is undefined

for the first observation of the day, Uτ is set to 1.

Ground sample distance (GSD) is a measure of the spatial resolution (information content) contained in optical

imagery. Similar to an event having a desired sampling rate, the event will also have a desired GSD driven by the

desired end data product. Rather than enforcing strict GSD requirements, we introduce a GSD based utility function

matched to the degradation in the optical information content as GSD increases past the desired GSD. This degradation

4 of 35

American Institute of Aeronautics and Astronautics



is matched to the change in the National Imagery Interpretability Rating Scale (NIIRS) as predicted in the General

Image Quality Equation (GIQE) [9, 10]. The GIQE predicts that the change in NIIRS based on increasing GSD

(assuming good sharpness) is given by [10]:

∆NIIRS = −3.32log10

[ x
X

]
(3)

Where X is the desired GSD and x is the actual GSD of an image. The GSD utility function is then given as a function

of ∆NIIRS as follows:

UGS D = min
(
max

(
1 − ∆NIIRS

δ
, 0

)
, 1

)
(4)

Where δ is a scaling parameter that maps the drop in UGS D to the drop in ∆NIIRS, so that UGS D = 0 when x ≥ 2δX. We

use δ = 2 in this analysis, which means that UGS D is zero when the actual GSD is four times greater than the desired

GSD. Figure 2 (bottom) shows the GSD utility curve as a function of x/X. The plot shows that UGS D = 1 when x ≤ X

and UGS D = 0 when x ≥ 4X. When X ≤ x ≥ 4X, the utility is governed by the scaled NIIRS relation. This spatial

resolution utility function also exhibits similar behavior to the temporal utility function in that no additional utility is

generated by spatial over-sampling.

The overall performance for a specific event is then defined as the cumulative sum of all utility generated during

the specified event duration, and, since we are interested in optical imagery in this paper, only observations made

during daytime generate utility. Future work could easily modify the persistence metric to vary the utility of optical

imagery as a function of solar beta angle as shown in [2]. Performance is defined as the sum of the persistence utility

generated by all observations provided by the constellation during each event response. The total performance for an

event response PE is written mathematically as the sum of the persistence utility generated over all observations during

each day and then summed over all the days during the event response:

PE =
∑
days

1 +

Nobs∑
i=2

U (τi, xi)

 (5)

The correction term ∆U, previously introduced in Equation 1, fixes the problem where the order of two obser-

vations with different GSD affects total utility. Consider the situation where observation O1 has 1.8m GSD while

observation O2 has 1.0m GSD. If these two observations are separated by 0.2hr (and T = 1hr, X = 1m), then the util-

ity for the first observation is U1 = 0.58 and the utility for the second observation is U2 = 0.2, and then the total utility

generated is 0.78. If the order of the observations was reversed, the breakdown would be: U1 = 1.0, U2 = 0.12, and

the total utility is 1.12. This difference is caused by the utility function not properly accounting for the situation where

the second observation has low temporal utility but provides better GSD. This is fixed by introducing the following

utility correction factor that increases the utility of a second observation with better GSD to ensure that the order of

observations does not affect total utility. The correction factor is defined as 0 for the first daily observation and for the
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remaining ith daily observations is:

∆Ui = max
[
0, U (τi−1, xi,∆Ui−1) − U (τi−1, xi−1,∆Ui−1)

] × (
1 − Uτ,i

UGS D,i

)
(6)

IV. Simulation Model

The simulation model calculates the performance and cost of constellation designs for possible future scenarios. Inputs

to the simulation model include: which architecture to model (static or reconfigurable); a set of design variables spec-

ifying the constellation pattern; a list of parameters specifying fixed system quantities; and a list of targets (location

and timing) representing all regional disaster events that the system must respond to over its lifetime. The simulation

model is comprised of five modules as shown in Figure 3. The simulation setup module generates the initial constel-

lation pattern and the satellite module sizes the optical payload, satellite bus, and propulsion system. The cost module

computes the constellation cost by aggregating the cost of the optical payload, the satellite bus, and launch and then

applies quantities of scale effects. The astrodynamics module employs a campaign-based simulation to track the state

of the constellation throughout its lifetime. For reconfigurable systems, the simulation model determines how to re-

spond to each event. The simulation model then tracks the coverage provided by the constellation for each event and

tracks the depletion of individual satellite propellant over time. The final module is the performance module which

computes the overall life-cycle performance of the system defined as the mean event performance generated during all

regional event responses. This performance model is tailored to rate how well the system provided the desired level

of temporal and spatial resolution coverage for each regional event. The remainder of this section summarizes the

important modeling processes and a more detailed explanation can be found in [2].

A. Constellation Pattern

GOM for both static and reconfigurable designs consists of satellites in a Walker Delta pattern. The Walker Delta

pattern features satellites in circular orbits with common semi-major axis and inclination that are divided into Np

equally spaced orbital planes, each containing Nsp satellites. A third parameter, F, controls the anomaly phasing of

satellites in adjacent orbital planes. Satellites in adjacent orbital planes are shifted in M by F × PU, where F =

0, · · · ,
(
Np − 1

)
and the pattern unit (PU) is given by PU = 2π/

(
NpNsp

)
[11, 12]. Therefore, five design variables

specify the pattern: the altitude, inclination, Np, Nsp, and F.

B. Satellite Properties

Values for satellite dry mass and stowed volume during launch are needed to estimate satellite bus cost and launch cost.

Rather than constructing detailed models to estimate satellite mass and volume, we decided use analogous estimation

based on the properties of ten recently launched optical Earth observation satellites (shown in Table 1). This approach

ensures that the estimated satellite footprint is grounded in reality. Figure 4 shows the curve fits for satellite dry mass
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and satellite stowed volume as a function of optical aperture diameter.

Propulsive capability is required for initial constellation deployment, station-keeping, aerodynamic drag makeup,

performing reconfiguration maneuvers, and disposal through de-orbiting at end-of-life. The propulsion system is sized

based on the total ∆V required (∆VT ) and Md. Propulsive maneuvers during initial deployment correct for launch

vehicle injection errors and properly phase the satellites in the constellation pattern. Phasing relates to the situation

where several satellites are launched together that will ultimately reside in different orbital slots in the constellation

pattern. These satellites will either need to spread out in M if they will reside in the same orbit plane, or Ω if they

will reside in different orbit planes. Changing M separation is trivial, since a small change in altitude between two

satellites will cause a difference in mean motion, and, therefore, M separation over time. Changing Ω is much harder

and can be accomplished via costly propulsive maneuvers or natural differences in orbital precession. Differential

orbital precession, caused primarily by the Earth J2 gravity variation, can be harnessed to slowly change the relative

Ω of satellites over time. For deployment, the satellites are launched to an altitude lower than the intended GOM

altitude to allow for phasing. The satellites then use differential orbital precession to achieve their final GOM orbit

planes in a limited deployment period, and the amount of ∆V required to raise the altitude to GOM (∆Vdep) is then

determined. The launch vehicle injection error ∆V (∆VLV ) was set to 22m/s which is able to correct 3σ error for

contemporary launch vehicles [2], and the station-keeping ∆V (∆VS K) is set to 10m/s per year [13] to maintain absolute

station-keeping in the constellation pattern. Aerodynamic drag makeup ∆V (∆Vdrag) is estimated using a parametric

atmospheric density relation as a function of altitude for solar mean [12] and a constant ballistic coefficient of 75kg/m3.

De-orbit ∆V (∆Vdeorbit) was calculated to lower perigee to 75km to ensure quick end-of-life disposal. The total ∆V

needed by each satellite is then:

∆VT = ∆Vdep + ∆VLV + ∆VS K + ∆Vdrag + ∆Vdeorbit + ∆Vrecon (7)

Where ∆Vrecon is the amount of ∆V allotted for reconfiguration maneuvers and is zero for static designs. The

propellant mass and total propulsion system mass are then calculated from ∆VT and Md. Since responsiveness is

important in the disaster response scenario studied in this paper, we only consider high thrust chemical monopropellant

systems able to perform fast reconfiguration maneuvers. However, efficient electric propulsion could potentially be

used for deployment, de-orbit and to return the satellites to GOM after an event response, and should be considered in

future work. Two parameters describe the propulsion system: the specific impulse IS P measures propellant efficiency

and dry mass fraction ξp is defined as the propulsion system dry mass as a fraction of the total propulsion system wet

mass. ξp is set to 0.2 assuming that propulsion system dry mass is roughly 20% of the total propulsion system wet mass.

IS P is set to 240s as a conservative estimate of the performance of new ‘green’ monopropellant technology [14, 15].
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The propellant mass is then given by the rocket equation as:

Mprop = −Md

(
ζ − 1

ξp (ζ − 1) − 1

)
(8)

Where ζ = exp (∆VT /gIS P). The total propulsion system mass is:

MP =
Mprop(
1 − ξp

) (9)

And the total satellite wet mass is:

Mw = Md + MP (10)

C. Cost

Modeled constellation cost is comprised of four elements: payload cost, satellite bus cost, launch cost, and economies

of scale effects. The payload cost is, in turn, modeled as the cost of the optical telescope assembly (OTA) and the

imaging sensor. OTA cost is parametrically modeled as a function of aperture diameter. Early work on developing

parametric cost models for terrestrial telescopes found that the cost of such systems scaled primarily with aperture

diameter raised to the powers of 2 - 3 [16]. However, recent research has shown that these models do not accurately

predict the cost of space telescopes [16–20], and recently developed models indicate that space OTA cost scales with

aperture diameter raised to the power of 1.4 to 2.0 [20]. We have used a power of 1.6 in this paper. Sensor cost was

modeled from the ‘Detectors Subsystem Cost for CCD Detectors’ cost estimating relationship (CER) contained in the

NASA Instrument Cost Model (NICM) [21], which gives the sensor cost as a function of mass. Absent available FPA

mass data for existing Earth observation satellites, MFPA is estimated by scaling the mass of the Kodak Model 1000

Camera System by aperture diameter [12]. This instrument was used on the IKONOS satellite and had an aperture

size of 0.7m and a FPA mass of 16kg [22]. We estimate that MFPA will scale with the cube of the scaling ratio, which

is a ratio of the aperture diameter to 0.7m. The scaling ratio is given as R = D
0.7m and then the FPA mass is given as

MFPA = 16kg × R3. Combining the OTA and sensor cost yields the total payload cost Cpay.

Cpay = 38000D1.6 + 60615D2.67 ($k FY2010) (11)

Satellite cost is modeled by blending the output from the Small Satellite Cost Model (SSCM) focused on smaller

satellites and the Unmanned Spacecraft Cost Model 8 (USCM8) focused on larger satellites. Both models estimate

cost based on the mass of the satellite, and we use the dry mass of the satellite Md for the cost estimate. The USCM8

model estimates both non-recurring engineering (NRE) cost and recurring engineering (RE) cost and takes in the

payload cost broken down into NRE and RE. Absent a detailed payload cost breakdown, we have assumed that the
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payload RE cost is 40% of the total cost predicted by Equation 11. The SSCM also predicts a combined NRE plus RE

cost, and we again assume that the satellite RE cost is 40% of the total cost predicted by the SSCM. The SSCM was

used for Md ≤ 400kg and the USCM8 cost model was used for Md ≥ 200kg, and linear blending was used to smooth

out the transition between models from 200kg to 400kg. Figure 5 illustrates example output of the satellite cost model

as a function of aperture diameter. The top plot shows the USCM8 (solid) and SSCM (dashed) estimated NRE and RE

cost as a function of aperture diameter while holding all other satellite variables constant. Also shown in the plot is the

region where the models are blended, corresponding to spacecraft dry mass between 200 and 400kg. The plot shows

that this is the region where both models show the most agreement and therefore the blended curves (in the bottom

plot) are fairly smooth. Additionally, a learning curve is applied to the RE cost to reflect the cost savings associated

with producing multiple identical satellites. While there are limited examples of large scale satellite production, a

learning curve of 90% has been proposed as a good rule of thumb for complex aerospace systems [23] and is used in

this paper. This means that the second unit will cost 90% of the cost of the first unit, and the fourth unit will cost 90%

the cost of the second unit and so on.

Launch cost is determined by a detailed launch vehicle assignment optimization which captures the effect on launch

cost of satellite wet mass (Mw), satellite stowed volume (ρsc × Mw), orbital inclination, GOM altitude, and the spread

of GOM orbital planes. The deployment strategy is as follows. The satellites are launched to an altitude less than their

intended GOM altitude to allow for phasing caused by differential orbital precession. This altitude difference will affect

both the amount that the satellite can drift in Ω during a fixed deployment time and also the amount of ∆V that each

satellite will expend maneuvering from the deployment altitude to the final GOM altitude. Increasing the deployment

altitude difference can potentially lower launch cost by allowing satellites with different orbit planes in GOM to share

the same launch, but will increase satellite cost by increasing maneuverability requirements. Therefore, the launch

altitude is optimized to minimize total constellation cost in the simulation model. Five U.S. launch vehicles, shown in

Table 2, that span a wide range of capability are included in the model. The reduction in payload mass capability of

each launch vehicle caused by increased launch altitude and increased inclination is modeled using published response

surfaces [24]. Several modifications to these response surfaces were made to enable estimation over the full range of

inclinations and launch vehicles considered in this paper. Retrograde inclinations past the range given by Lafleur et

al. were extrapolated and the Athena Ic was modeled with the response surface given for the Athena I with a scaled

payload mass to reflect increased capability. The Falcon Heavy was modeled with the Delta IV Heavy response surface,

also with a scaled payload mass to reflect it’s increased capability. An assignment optimization is then conducted to

determine the lowest cost suite of launch vehicles that can launch all the satellites subject to launch vehicle payload

mass and volume constraints and a maximum deployment time of 3 months. An unlimited supply of launch vehicles

was assumed and no restrictions were placed on launch azimuth.
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D. Campaign Based Simulation to Model Event Response

A campaign-based simulation models the system response for a given set of regional targets distributed in space and in

time throughout the system’s lifetime. This campaign-based simulation process is shown in Figure 6. The constellation

is initially deployed into GOM through the previously explained launch and deployment process. While in GOM,

the simulation model propagates the constellation using a numerical Keplerian propagator with J2 perturbations and

accounts for station-keeping and drag makeup ∆V expenditure. When the first regional event occurs that requires a

response, an assignment process determines the optimal combination of satellites to maneuver into ROM to best meet

the desired coverage while consuming the least amount of ∆V . The assigned satellites are then maneuvered into ROM

and access times and GSD are computed for coverage provided of the regional event location for the duration of the

event. After the event response is finished, the satellites in ROM return to GOM to await the next response. Section V

describes the assignment and reconfiguration strategy in more detail.

V. Regional Event Response

A. Reconfiguration Strategy

The goal of reconfiguration is to move satellites from GOM to a specific orbital slot in ROM that provides coverage

to the disaster event location. The maneuver consists of an altitude change in addition to proper phasing to achieve

the correct ROM orbit. The maneuver is modeled as a double Hohmann transfer which first places the satellite in a

circular drift orbit with a greater altitude difference from ROM to speed phasing with the desired ROM orbital slot.

All maneuvers are modeled as in-plane and impulsive. Propulsive plane changes are not used due to their immense

∆V cost.

Figure 7 shows the reconfiguration strategy in more detail. The satellite starts off (label A) with an initial orbital

position described by Ω0, M0, and aGOM . The satellite then performs a Hohmann transfer (label B) with initial propul-

sive maneuver ∆VT1a and final propulsive maneuver ∆VT1b to achieve a new semi-major axis of aD = aGOM + ∆hD.

The transfer has a duration of tT1 during which time the orbital state changes by ∆ΩT1 and ∆MT1 by J2 induced orbital

precession and mean motion, respectively. The satellite then waits in the drift orbit (label C) for duration tD during

which time the orbital state changes by ∆ΩD and ∆MD. When proper orbital phasing occurs, the satellite then performs

a second Hohmann transfer (label D) with initial propulsive maneuver ∆VT2a and final propulsive maneuver ∆VT2b to

achieve the RGT orbit (label E) with semi-major axis aROM . The second transfer has a duration of tT2 during which

time the orbital state changes by ∆ΩT2 and ∆MT2. The total reconfiguration time is tR = tT1 + tD + tT2. The rest of this

section explains how the drift time tD is computed to ensure proper phasing to place the satellite into a ROM orbit that

provides RGT coverage for the specific disaster event location.

Each RGT orbit can be described by the unique angle Λ that specifies the shift in longitude of the ground track

which is a function of the satellite’s orbital state and the RGT type (an integer number of orbits No repeating in an
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integer number of days Nd) [25]:

Λ = NoΩ + Nd M (12)

For any satellite in GOM, with a given Ω, this equation specifies the mean anomaly needed to place the satellite on

the RGT orbit that passes over the event ground location. Additionally, Λ for a specific ground location changes over

time due to the effects of mean motion and orbital precession as follows:

Λ f = Λ0 +
[
NoΩ̇ROM + Nd

(
nROM + ṀROM + ω̇ROM

)]
tR (13)

Where Λ0 is the initial RGT angle, and Λ f is the RGT angle at the end of the reconfiguration maneuver of duration tR.

Using Λ f in Equation 12, and rearranging for M yields:

M f =

(
Λ f − NoΩ f

)
Nd

(14)

Where Ω f is the satellite’s Ω at time t = tR. This relation gives the necessary M at the end of reconfiguration to achieve

the correct ROM orbit including J2 orbital precession effects. The satellite’s final orbital state (Ω f and M f ) is dictated

by the reconfiguration maneuver strategy and is determined by the following relations:

Ω f = Ω0 + ∆ΩT1 + ∆ΩD + ∆ΩT2 (15)

M f = M0 + ∆MT1 + ∆MD + ∆MT2 (16)

Where Ω0 and M0 describe the satellite’s original state, ∆ΩT1 and ∆MT1 is the change in orbital parameters during the

first Hohmann transfer, ∆ΩD and ∆MD are the change in orbital parameters during time spent in the drift orbit, and

∆ΩT2 and ∆MT2 are the change in orbital parameters during the second Hohmann transfer. Equations 15 and 16 can

then be expanded to:

Ω f = Ω0 + Ω̇T1tT1 + Ω̇DtD + Ω̇T2tT2 (17)

M f = M0 +
(
nT1 + ω̇T1 + ṀT1

)
tT1 +

(
nD + ω̇D + ṀD

)
tD

+
(
nT2 + ω̇T2 + ṀT2

)
tT2 (18)

Where tT1 and tT2 are the transfer times for Hohmann transfer 1 and 2 respectively which are equal to half the orbital
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period of the eccentric transfer orbits. Relations for n, Ω̇, ω̇, and Ṁ are given as [12]:

Ω̇ =
3nR2

⊕J2

2p2 cos i (19)

ω̇ =
−3nR2

⊕J2

4p2

(
5 cos2 i − 1

)
(20)

Ṁ =
−3nR2

⊕J2

4p2

(
3 cos2 i − 1

) √
1 − e2 (21)

Where the orbital parameter (p) is given as: p = a (1 − e), and R⊕ is the equatorial radius of Earth.

Given the known parameters i, aGOM , aROM , and ∆hD, then the only remaining variable in the problem is the

drift orbit duration tD. The problem is then reduced to finding the minimum tD that satisfies Equation 14. Selecting

different drift orbit altitudes (through the internal variable ∆hD) will change tD, and will also change the total round-trip

reconfiguration ∆V which is the sum of the ∆V required to complete the two reconfiguration Hohmann transfers and

the ∆V to return to GOM after the event response. Figure 8 shows the tradeoff between minimizing reconfiguration

time and minimizing reconfiguration ∆V for a situation where aROM is 20km less than aGOM . The top plot shows how

tD decreases as the drift orbit altitude is further from the ROM altitude. Also, the ascending pass RGT favors drift

orbits higher than ROM while the descending pass RGT favors drift orbits lower than ROM. Each ground location

has two different RGT orbits that pass overhead, one that passes over while ascending in latitude coverage (ascending

pass) and one that is descending in latitude coverage (descending pass). The middle plot shows the time to first pass

t f p, which is defined as the amount of time that it takes for reconfiguration as well as the additional amount of time

spent in ROM waiting to provide the first coverage for the disaster event. Here we see that in some cases, spending

more propellant to increase ∆hD reduces tD and tR, but does not reduce t f p. This is caused by the situation where the

faster reconfiguration places the satellite into ROM faster, but since only a single pass is provided per day to the event

location, the actual time to first pass remains the same. In this case, the operator would likely choose to save propellant

by reconfiguring slower, with no increase in t f p. The bottom plot shows that ∆VR increased with increasing |∆hD| and

hits a minimum value at the amount of ∆V needed to complete the round trip maneuver from GOM to ROM and back.

Several filtering steps are then taken to eliminate the dominated solutions in the t f p vs. ∆VR tradeoff to reduce the

reconfiguration decision space. A dominated solution is one where another option provides either the same or lower

t f p, while simultaneously providing the same or lower ∆VR. Several examples of dominated solutions are present in

Figure 8. First, we see that choosing a drift orbit in between GOM and ROM altitudes increases t f p without reducing

∆VR and is therefore a dominated solution. Second, higher drift orbits are dominated since they yield larger t f p for

a given ∆VR than lower drift orbits. Third, as was previously explained, sometimes increasing |∆hD| decreases tR but

not t f p, and therefore these solutions are also dominated. This filtering process is illustrated in Figure 9. The top plot

shows t f p vs. ∆VR for all reconfiguration options shown previously in Figure 8, and the bottom plot shows only the

non-dominated reconfiguration options for both ascending and descending pass RGT.
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B. Determining the Optimal Set of Satellites to Reconfigure

The next part of the reconfiguration process must determine the optimal way to respond to the event. The satellite

assignment problem must determine for each event response: 1. how many satellites to reconfigure; 2. which specific

combination of satellites to reconfigure; 3. how fast should the satellites be reconfigured (selection of drift orbit altitude

∆hD); and 4. which RGT orbit should each reconfigured satellite be placed in (selection of ascending or descending

pass coverage). Additionally, the assignment process should penalize assignment of satellites that have less than the

average amount of propellant left in the constellation (to avoid premature propellant depletion of some satellites) and

should prevent assignment of satellites that have run out of reconfiguration propellant or satellites that have failed.

Solving this optimization problem concurrently ensures that globally efficient solutions are found, but results in a

computationally complex combinatorial optimization problem. The total decision space for a single event response is

given as:

ND =

NT∑
k=1

[(
1 + 2N∆hD

)k
(
NT

k

)]
(22)

Where NT is the total number of satellites in the constellation and N∆hD is the number of non-dominated drift orbit alti-

tude options for each satellite. If the number of non-dominated solutions is around 5 total per satellite (i.e.
(
1 + 2N∆hD

)
=

5), the the total non-dominated decision space ND is: 2.2 × 109 for NT = 12; 2.8 × 1018 for NT = 24; and 7.7 × 1037

for NT = 48. The size of the decision space is prohibitively large for enumeration based optimization and therefore an

alternative assignment optimization strategy was needed.

To overcome the computational complexity of the combinatorial assignment problem, we have implemented a dy-

namic programming based optimization routine that efficiently finds the optimal assignment of satellites. The routine

minimizes reconfiguration cost per expected event performance generated for maneuvering 1 of NT total satellites, 2

of NT total satellites, up to NT of NT satellites. Total reconfiguration cost CR is defined as the sum of the individual

satellite reconfiguration costs CR = ΣCR,i, which is defined as the ∆VR with a penalty added for satellites that have less

than the average amount of propellant in the constellation as follows:

CR,i = ∆VR,i −min

0, ∆Vsat,i − 1
NT

NT∑
k=1

∆Vsat,k

Gpen (23)

Where ∆Vsat,i is the ith’s satellite ∆Vrecon and Gpen is a penalty function gain which is set to 0.1 in this paper. Gpen

can be used to control how tightly satellites are kept at the same propellant level. The penalty function works by

increasing the satellite reconfiguration cost proportional to the difference in its remaining ∆Vrecon compared to the

average remaining ∆Vrecon in the constellation. Additionally, no penalty is applied for satellites with higher than the

average propellant left.

The satellite assignment problem outputs the estimated total utility generated during event response as a function

of the total amount of ∆VR for reconfiguring 0 of NT satellites, 1 of NT satellites, etc., as shown in Figure 10. Here
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we see the effect of diminishing returns as the number of satellites to be reconfigured increases, the additional PE

generated steadily decreases.

C. Deciding How to Respond to Each Event

In an operational system, decision makers would select the appropriate response from the optimal assignment choices

shown in Figure 10. A decision model employing decision rules emulates this decision making process in the simula-

tion model to enable the rapid evaluation of candidate constellation designs during optimization. The decision model

must capture two primary characteristics of the decision making process. The first recognizes that there are two com-

peting objectives for decision makers: to provide effective coverage for the current event response, and to conserve

system resources for later event responses. The second recognizes that the decision maker will likely alter their pref-

erences based on the current state of the system as well as changes to forecast demand. These two characteristics are

captured by a decision model which converts the competing objectives of maximizing current event response perfor-

mance and minimizing overall fuel expenditure into a single objective to be maximized using a weighing variable α.

This single objective is written as:

J = −α
∑

(∆CR) + (1 − α) PE (24)

Where J is the objective to be minimized,
∑

(∆CR) is the total reconfiguration cost across all satellites, PE is the total

event performance, and α is the decision model weight variable. In an operational system, the decision maker would

have to balance the use of resources so that the system would not run out of propellant early, or have unused propellant

at the end of life. The α variable samples different decision maker preferences between these two objectives. α values

that are too high place too much emphasis on conserving propellant, likely leaving unused propellant in the satellites

at system end of life. This will correspond to lost opportunity for generating utility. Conversely, α values that are too

small place too much emphasis on generating utility. This will cause the system to run out of propellant early and the

system will then be unable to effectively respond to later events. To avoid selecting α apriori, we decided early on to

make α a design variable letting the optimization process select the appropriate α for a given constellation design. In

this way, the optimization process will likely select α so that most of the reconfiguration propellant is used for event

responses.

The second characteristic that the decision model needed to capture was the likely situation where the decision

maker would change their preferences during the system lifetime as information regarding propellant expenditure

became known. To model this behavior, α is continuously adapted during the regional simulation based on remaining

propellant. The adapted α is given as:

α =


min [(−δPGDM + 1)α0, 1] δP ≥ 0

α0/ (δPGDM + 1) δP < 0
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Where δP is related to the difference between the predicted and actual remaining propellant, GDM is a gain term con-

trolling how responsive the decision maker is to changing α based on new information, and α0 is the initial weighting

which is a system design variable. δP is calculated by comparing the average remaining propellant in the constellation

with an estimate of how much propellant should be remaining. This estimate is based on assuming a constant depletion

of propellant during the system’s lifetime. If δP > 0 then the system is using propellant at a slower rate than expected

and α can be decreased for future events to avoid having excess propellant at the end of the system lifetime. If δP < 0

then the system is using propellant faster than expected and α should be increased so that the system does not run out

of propellant early. δP, normalized to the interval -1 to 1 is given as:

δP =

(
∆Vsat − κ∆Vrecon

)
∆Vrecon

(25)

Where ∆Vsat is the average satellite reconfiguration propellant remaining, ∆Vrecon is the starting reconfiguration pro-

pellant, and κ is the fractional remaining lifetime of the constellation. We have set GDM = 3 in this paper.

Once α is determined, then the decision model objective function can be calculated using Equation 24. Figure

10 (bottom) shows J for three different α weightings for the assignment output introduced in Figure 10 (top). In this

example, when α = 0.08, J is maximized when 10 satellites are reconfigured. As α increases, and more emphasis is

placed on conserving propellant, the number of satellites that maximizes J is reduced. When α = 0.4, zero satellites

are reconfigured and regional coverage is only provided from GOM similar to a static constellation.

The design variable α0 is part of the constellation design and should inform the decision maker as to what opera-

tional preferences should be used in order to maximize overall system lifecycle performance. The reasoning behind

this is that the optimization process designed the system to perform well over the range of uncertain parameters with

the specific value of α0. In the case where no additional information is gathered, changing α0 will only yield sub-

optimal system performance. It is likely, that new information regarding the system and future event probabilities will

arise, in which case a new optimization should be performed to determine the new α0 weighting that should be used.

VI. Monte Carlo Simulation

We have modeled two uncertainties including the timing and location of future disaster events. A two-dimensional

probability distribution function (PDF), based on estimates of the distribution of future disaster events [26], is used to

draw the locations of future disaster events. The estimates are normalized by total economic loss risk data for a number

of disaster types including cyclones, earthquakes, floods, and volcanoes. The PDF, shown in Figure 11, is comprised

of a 2.5 minute grid of global multi-hazard total economic loss risks with equal weighting between the four disaster

types. The number and specific timing of events during the constellation lifetime is also uncertain. We have modeled

this uncertainty as a normal distribution of the time between disaster events. The shape of the distribution is controlled

by two parameters representing the mean time between events and the standard deviation of the time between events.
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These two parameters should be tailored to specific stakeholder goals and objectives. In this paper we assume that the

the mean time between events is 3 months and the standard deviation is 1 month. The minimum time between events is

constrained to 2.5 weeks to ensure that events do not overlap given a 14 day event duration. While overlapping events

is not a focus here, it is an important topic for future research since the availability of resources must then be split

between the two events. Additionally, decision makers would then have to consider the possibility of leaving satellites

in GOM as a reserve in case a second event were to occur during the current event response. Satellite failures could

also be introduced as an uncertainty in future work.

The uncertain event ground locations and uncertain event rate are then sampled together in order to construct a list

of targets (target deck) for each Monte Carlo simulation run. Each target deck represents one possible future operating

context for the system and is comprised of a list of ground locations (ϕ and λ) and the time of each event. The number

of events in the target deck is determined by sampling the event rate distribution to see how many events occur within

the constellation lifetime. The process starts off by randomly sampling the event rate PDF to determine the time of the

first event. Next, another random sample is taken from the event rate PDF which corresponds to the time between the

first and second events. Therefore, the time of the second event is the cumulative sum of the first two samples. This

process is continued until the cumulative sum exceeds the system design lifetime of 5 years. Available computational

resources limited the maximum number of Monte Carlo samples to no more than 24, which gives a 68% confidence

interval size of around 3% of median value. Therefore, the actual median performance value is within ±1.5% of the

performance value used to determine the population fitness with 68% confidence.

VII. Multi-Objective Evolutionary Optimization

Multi-Objective optimization is used to find the set of efficient designs for each architecture and operational scenario

that maximize performance while simultaneously minimize cost. The multi-objective optimization problem formula-

tion is expressed as:

min J (x,p)

subject to: g (x,p) ≤ 0

h (x,p) = 0

xi,LB ≤ xi ≤ xi,UB (i = 1, . . . , n)

Where J are the objectives to be minimized, g are inequality constraints, h are equality constraints, p are fixed pa-

rameters, and x is the design vector comprised of design variables with bounds xi,LB and xi,UB. The objectives are to

maximize the median event performance of the constellation over NMC Monte Carlo samples while simultaneously

minimizing constellation cost. Four inequality constraints are enforced: the altitude (GOM, ROM and any drift or-

bit altitudes) must be greater than 300km; the propulsion system mass fraction (MP/Mw) must be less than 0.42; the

maximum revisit time for partial global coverage (from −60◦ to 60◦ latitude) in GOM must be less than 24 hours;
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and NT must be less than equal to 36 satellites. The number of design variables in the design vector is different for

reconfigurable and static constellation designs. For the reconfigurable architecture there are nine total design variables

including: five continuous variables, three integer variables, and one categorical variable as shown in Table 3. For the

static architecture, No/Nd, ∆VR, and α0 are eliminated and ∆alt is converted into a GOM altitude variable with bounds

of 300km to 1000km, resulting in six total design variables.

A. Modified ε-NSGA-II Algorithm

Traditional optimization techniques attempt to find the single “globally optimal” design that best achieves a single

objective like maximizing performance or minimizing cost. However, complex, real-world systems often contain

multiple competing objectives. In these cases, multi-objective optimization attempts to find the set of non-dominated

designs where improving one objective always results in worsening another. Absent further information or preferences,

one non-dominated design cannot be said to be better than another. Therefore, the goal of multi-objective optimization

is not to output the best design, but to give designers more information about the direct tradeoff of multiple competing

objectives, hopefully leading designers to better informed decision making. The goal of multi-objective optimization

in this paper is to find the non-dominated set of designs that maximize median event performance over uncertain oper-

ating conditions while simultaneously minimizing total system cost. The satellite constellation optimization problem

presented here is difficult because: 1. the objective space is discontinuous and non-linear, 2. the design vector contains

continuous, integer, and discreet (categorical) variables, and 3. functional evaluations are computationally expensive.

Given these difficulties, we have implemented a novel optimization routine that builds on ε-NSGA-II [27,28] by adding

several additional features from the ε-MOEA [29] and Borg-MOEA [30] optimization routines. The added features

include: ε-dominance archiving to avoid deterioration; ε-Progress to detect stagnation; time continuation to recover

from stagnation; multiple recombination operators to improve search; and a new termination criterion to provide a

common stopping condition for all optimization runs presented in this paper. The rest of this section summarizes these

features.

Laumanns et al. [29] introduced the ε-dominance archiving concept to solve the deterioration problem by preserv-

ing diversity and guaranteeing convergence. Deterioration occurs when a fixed population size forces the algorithm

to remove non-dominated designs [31] and can eventually lead the algorithm to sacrifice convergence for diversity.

ε-dominance allows the decision maker to specify a desired resolution for each objective, denoted by ε, which effec-

tively divides the objective space into rectangular boxes with side length ε. In order for a solution to dominate another

solution, it must occupy an ε-box that is better in one or more of the objectives. If two solutions occupy the same

ε-box, only the solution closer to the lower left corner (assuming minimization) is saved, while the other is eliminated.

This process ensures that solutions do not bunch close together on the Pareto front and ensures that the computational

cost is commensurate with the desired resolution of the final non-dominated front.

The ε-Archive concept, first implemented in ε-MOEA [29], maintains an archive of ε-box non-dominated solutions
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external to the normal population. This ensures preservation of the best solutions and mitigates deterioration. ε-

NSGA-II uses the ε-Archive to seed a new population after restart while ε-MOEA and Borg-MOEA use the ε-Archive

to generate one of the parents during recombination, which is implemented in this paper. Hadka et al. [30] introduced

ε-Progress as an efficient method for measuring convergence using ε-dominance. During the ε-Archive update process,

a counter tracks how many solutions are accepted into the archive that reside in new ε-boxes. This effectively uses ε as

a minimum threshold for measuring improvement. The number of new ε-boxes added to the archive is tracked for each

generation. ε-Progress is then defined as the cumulative number of new ε-boxes added to the archive over the most

recent five generations divided by the archive size. When the ε-Progress metric drops below a specified value (0.2 is

used in this paper), then the optimization algorithm is determined to have stagnated and optimization is restarted.

While ε-Dominance and the ε-Archive significantly improves diversity and convergence, stagnation can still oc-

cur. Time continuation has been proposed [32, 33] as a way of recovering from stagnation. Traditional evolutionary

optimization techniques employ a single large population of fixed size. In the time continuation paradigm, the opti-

mization process is split between many ‘epochs’. When the population in one epoch stagnates, a new epoch is started

by seeding the new population with a diverse set of good performing members of the last epoch. Early research on

time continuation kept the population size constant between epochs; however, recent research has found that maintain-

ing the population size proportional to archive size improved convergence for complex problems [34]. Therefore, we

allow the population size to vary from epoch to epoch based on maintaining a 4:1 population size to archive size ratio,

shown to perform well in previous research [28].

The recombination operator is the primary search mechanism for evolutionary algorithms and is crucial to the

success of the optimization process. Deb et al. [35] classified crossover operators into two categories: variable-wise

and vector-wise operators. Variable-wise operators treat each variable separately and, therefore, do not perform well

for problems with significant linkage between design variables. Vector-wise operators use linear combinations of the

parents’ entire variable vectors to create an offspring variable vector. This strategy preserves the linkage between

variables and performs well for problems with coupled variables [36]. Crossover operators can also use a single

parent, two parents or many parents to create offspring. Recent research has shown that multi parent operators can

improve convergence for complex problems [37]. Given these factors, we have implemented a random multi-operator

approach where the optimization algorithm randomly selects an operator with equal probability when producing each

offspring. This approach is similar to the approach taken in Borg-MOEA, but we chose not to implement the adaptive

scheme where the probability of selecting different operators is adjusted based on the historical success of the offspring

generated by each operator. Nebro et al. [38] showed that the adaptive scheme did not provide significant advantages

over the random approach for bi-objective problems like the one studied here. The diverse set of operators implemented

in the modified ε-NSGA-II optimization routine are: 1. Uniform mutation (Pc = 1/n, 1 parent); 2. Simulated binary

crossover (λ = 20,Pc = 0.9, 3 parents [39, 40]); 3. Unimodal normal distribution (σζ = 0.5, ση = 0.35√
n , 3 parents

[41]); 4. Parent-centric crossover (σζ = ση = 0.1, 3 parents [42]); 5. Differential evolution (CR = 0.6, F = 0.5, 4
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parents [43]); and 6. Simplex crossover (ε =
√

n + 1, n + 1 parents [44]) where n is the number of design variables.

Polynomial mutation is also applied to all offspring except those produced by uniform mutation using recommended

settings from Deb et al. [45]: distribution index of 100 and a mutation probability of 1/n.

The optimization routine restart procedure is triggered when either stagnation is detected via ε-Progress or when

the population to archive size ratio differs from 4:1 by more than 25%. When a restart is triggered, the new population

size is calculated to best achieve a 4:1 ratio, and the population is regenerated through a modified injection scheme. The

original injection scheme proposed for ε-NSGA-II [28] added all of the archive members to the new population and

then the remaining slots were randomly populated. Instead, we use a modified injection scheme introduced by Hadka

et al. [30] for Borg-MOEA where the remaining population slots are filled by mutating randomly selected archive

members using uniform mutation with a probability of 1/n, again where n is the number of design variables [30]. This

strategy maintains a higher level of elitism than simple random generation of new population members. Additionally,

the crossover tournament size is adjusted to keep the tournament size proportional to the population size as is done in

Borg-MOEA [30]. Figure 12 shows the overall modified ε-NSGA-II optimization process. The main loop is similar to

the original NSGA-II algorithm with the exception of the offline archive, restart procedure, and termination criterion.

The optimization routine continues until the rate of improvement drops below a specified threshold. The rate of

improvement is defined as the number of archive updates per 100 functional evaluations, averaged over the last 2500

functional evaluations, as a percentage of the archive size. This improvement rate is similar to ε-Progress introduced

previously, however, it adds in a smoothing term to overcome short-term variations in the rate of convergence. The

optimization process is then terminated when the rate of improvement drops below 2.5 giving a common stopping

condition for all of the optimization runs presented in this paper.

B. Parallel Computing & Computational Resources

We recognized early on that parallel computing was needed to overcome the long functional evaluation computation

time encountered in the reconfigurable satellite constellation problem. For example, the simulation model run time

for a 36 satellite constellation was over 20s for static designs and over 76s for reconfigurable designs. We chose to

implement a master-slave approach, which utilizes a master processor that is responsible for all of the optimization

functions (recombination, archiving, restarts...) and communicates with a set of slave processors to perform functional

evaluations. Previous research has shown that the master-slave approach suffers significant loss in efficiency due to

generational synchronization with heterogeneous computational systems [46,47]. This is caused by the situation where

faster processors must wait for slower processors to finish execution, which effectively slows all resources down to the

speed of the slowest processor. This behavior is also encountered for systems with functional evaluations of varying

computational time like the simulation model with varying constellation size considered in this paper. To overcome

this problem, we implement a novel batch processing approach, which attempts to even out the computational burden

sent to each slave processor for each generation. This process splits up the total computational task for each generation
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into a set of discrete computation blocks, each with similar computational burden. Additionally, computation blocks

with longer estimated processing times are sent to the slave processors first so that blocks with shorter processing times

can be used later to even out computation time differences. This approach yielded parallelization speedup efficiencies

of around 50%. Future work could implement a stationary optimization routine similar to the one used in Borg-MOEA

to eliminate generational synchronization efficiency losses.

All optimization runs were performed on MIT Lincoln Laboratory’s LLGrid [48] computing cluster running MAT-

LAB R2014a. While we had access to 1024 processors in total, each optimization run was limited to 256 processors

in order to mitigate the generational synchronization efficiency loss by ensuring that there were enough computation

blocks for the algorithm to even out computational load. Limiting each optimization run to 256 processors allowed

four optimization runs to be performed in parallel to utilize the full 1024 processor capability. In total, 8 optimization

runs were completed over a span of 10 days, requiring almost 4 million simulation model calls. Without parallel com-

puting, this effort would have taken approximately 20 years of non-stop computation by a modern computer processor

(an Intel Core i5-2410M was used as reference). Post processing included performing a 96 sample Monte Carlo simu-

lation on the final non-dominated fronts using a 16 core Dell T7200 Precision workstation equipped with two E5-2665

eight core processors running Ubuntu 12.04 and MATLAB R2014a.

VIII. Results and Discussion

This section presents a comparison of optimized static and reconfigurable designs for four operational scenarios. These

scenarios were chosen to investigate how changing the desired temporal and spatial resolution parameters would affect

the cost effectiveness of static and reconfigurable architectures and the resulting value of reconfigurability. For scenario

1, an ideal design would provide persistent coverage with 1hr temporal resolution and 1m spatial resolution over a 5

year lifetime for event locations drawn from the natural disaster PDF. Scenarios 2 through 4 vary the desired temporal

and spatial resolution to 0.5hr-1m, 1hr-0.5m, and 0.5hr-0.5m, respectively.

Figure 13 shows the optimization run statistics for the reconfigurable architecture as a function of the number of

completed functional evaluations. The top plot shows how the population to archive size ratio and ε-Progress metric

changes throughout the optimization. As discussed earlier, when either exceeds the a specified limit, the optimization

routine restarts. The population size dynamically adjusts to the archive size during restart, shown in the middle plot.

Optimization continues until the ε-Termination criterion, common to all optimization runs presented in this paper,

is met, as shown in the bottom plot. For scenario 1, the reconfigurable architecture optimization terminated after

17,887 functional evaluations (427,288 simulation model calls with a Monte Carlo sampling size of 24), while the

static architecture optimization terminated after 25,405 functional evaluations (609,720 simulation model calls). The

average number of functional evaluations for scenarios 1-4 was around 21,902 for reconfigurable designs and 17,869

for static designs.

Several post-processing steps prepared the data for analysis and comparison following optimization termination.

20 of 35

American Institute of Aeronautics and Astronautics



First, a non-domination sort procedure was used to find the set of non-dominated designs encountered over all func-

tional evaluations performed during optimization. For scenario 1 there were 245 unique non-dominated designs for

the reconfigurable architecture and 263 unique non-dominated designs for the static architecture. Roughly 40 well

spaced designs were selected through non-domination sorting for further evaluation with a 96 sample Monte Carlo

simulation. This additional sampling solved two problems. First, due to computational time limitations, the Monte

Carlo sampling size used in the optimization routine was limited to 24 samples giving a 68% confidence interval size

for the median performance of around 3%. Increasing the sample size to 96 halved this to around 1.5%. Second,

since the optimization process was evaluating designs over several independent Monte Carlo simulations, it is prone

to identify ‘favorable’ Monte Carlo sample draws. The 96 sample final evaluation gives an unbiased estimate for the

median performance. Figure 14 shows the final non-dominated fronts for the reconfigurable and static architectures.

Direct comparison of the reconfigurable and static non-dominated fronts shows that reconfigurable designs com-

pletely dominate the static designs in terms of maximizing performance while minimizing cost. The value of reconfig-

urability (VoR) was previously defined as the reduction in total system cost, while maintaining the same performance,

made possible by adopting the more efficient reconfigurable architecture. VoR is determined by computing the hor-

izontal distance between the reconfigurable and static non-dominated fronts in Figure 14. Additionally, a bootstrap

re-sampling with replacement procedure is used to measure sampling error effects in the VoR calculation. 1000

bootstrap samples are generated for each non-dominated design to construct 1000 different splines representing the re-

configurable and static non-dominated fronts. VoR is then calculated as the horizontal distance between these splines.

Figure 15 shows the mean VoR (thick line) as well as the high and low 3σ VoR values (thin lines) as a function of the

normalized event performance, defined as a the median event performance P̃E divided by the maximum possible event

performance Pmax if the system exactly met temporal and spatial resolution goals. The top plot shows VoR in terms of

FY2010 dollars while the lower plot shows VoR in terms of a percentage of the static architecture cost. Here we see

that VoR is between 20 to 50% over most of the performance range, meaning that the reconfigurable architecture is 20

to 50% less expensive than a similarly performing static architecture. Also, VoR generally increases with increasing

performance indicating that reconfigurable designs are better able to provide the desired coverage.

Figure 16 shows design details corresponding to the reconfigurable (colored black) and static (colored gray) non-

dominated designs as a function of normalized performance. The plotted design details include: the total number of

satellites (NT ), aperture size (D), GOM altitude (hGOM), inclination (i), number of orbit planes (Np), and total ∆V

(∆VT ). Here we see that the non-dominated designs for the two architectures are significantly different. In the low

performance region (P̃E/Pmax < 0.6), static designs tend to feature more satellites at a lower altitude when compared

to reconfigurable designs. However, despite the lower altitude, static designs feature similar aperture sizes, since static

designs must have larger apertures to maintain good spatial resolution for off-nadir passes, while reconfigurable de-

signs ensure nadir viewing. The reduction in the number of satellites for reconfigurable designs is caused by increased

per-satellite utilization enabled by the ability to reconfigure. This is the fundamental cost reduction driver for recon-
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figurable architectures. In the higher performance region (P̃E/Pmax > 0.6), the static architecture runs up against the

maximum satellite constraint which is set to 36 satellites for the analysis presented in this paper. Therefore, to further

improve performance for static designs, altitude and aperture size must increase, inflating overall system cost.

Reconfigurable designs, except for very low performance designs that feature small numbers of satellites, tend to

feature prograde inclinations of around 60◦ and a single satellite per orbit plane. This difference is likely caused by the

tension between minimizing launch cost and maximizing performance. For small constellation sizes, it is difficult for

two satellites to share a single launch because the orbit planes are too far apart in Ω to be serviced by differential orbital

precession during the three month deployment period. Therefore, a dedicated launch for each satellite is needed, which

increases launch cost. However, the time of pass for a specific event location in an RGT orbit for the reconfigurable

architecture is a function of Ω only, and greater diversity in Ω leads to better persistence. This explains why high

performance reconfigurable designs tend to feature only one satellite per orbit plane. Static designs tend to feature

multiple satellites per orbit plane, fewer total orbit planes, and retrograde inclinations of around 120◦. Therefore,

for these static designs, the performance benefits of retrograde inclinations must outweigh the increase in launch

cost to launch to higher inclinations. There is, however, some chatter between prograde and retrograde inclinations

for low performing static designs, which indicates that the performance difference between prograde and retrograde

designs is small. Reconfigurable designs also feature nearly twice the total propulsive capability of static designs in

order to support reconfiguration maneuvers. The maximum propulsion system mass fraction constraint (set to 42%

which corresponds to around 980m/s using the propulsion system parameters specified earlier) is active for many

non-dominated reconfigurable designs and relaxing this constraint will likely increase the value of reconfigurability.

The performance metric used in this thesis directly measures both temporal and spatial resolution for persistent

surveillance and alleviates some of the problems encountered with traditional satellite coverage metrics. However,

it is useful to see how the static and reconfigurable non-dominated designs found using the new performance metric

compare in terms of the traditional metrics. Figure 17 shows a comparison of the static and reconfigurable non-

dominated designs in terms of average and maximum revisit time, mean response time and mean GSD as a function

of overall system cost. The traditional metric values plotted are the median metric value over all event responses

during the system lifetime and over the 96 Monte Carlo samples. The metric value for each event response is defined

as the daily value averaged over days 4 to 14 of the event response allowing the reconfigurable constellation time

to reconfigure into ROM. The desired metric values are plotted as horizontal dashed lines. Figure 17 shows that

the reconfigurable architecture provides better average revisit time and mean response time, and significantly better

maximum revisit time. However, the static architecture provides better mean GSD for low-cost designs. This likely

means that, for static designs, it is less costly to increase aperture size and therefore increase spatial resolution than to

increase temporal resolution. Consequently, the optimization process places more emphasis on providing better mean

GSD for these designs. This comparison shows that the traditional metrics tend to show the same trends as the new

persistence metric introduced in this paper.
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COmparing the results for different spatial and temporal resolution requirements shows that that VoR generally

increases with increasing temporal and spatial resolution requirements and is more sensitive to increased temporal

resolution, as shown in Figure 18. This indicates that the reconfigurable architecture is better able to handle increased

temporal resolution requirements due to its more efficient use of satellites. The mean VoR over the normalized perfor-

mance range of 0.5 ≤ P̃E/Pmax ≤ 1 is 36.5% for scenario 1, 46.7% for scenario 2, 48.5% for scenario 3, and 55.4%

for scenario 4.

IX. Conclusion

This paper introduces a new reconfigurable satellite constellation concept that is able to provide persistent coverage

to support effective disaster response. The ability to reconfigure the constellation allows system operators to actively

change the constellation pattern to focus coverage on a specific region. This improves satellite utilization and leads

to smaller, more cost effective constellations. The results show that reconfigurable constellations cost 20 to 70% less

than similarly performing static constellations despite additional maneuverability for reconfigurable designs.

This research has shown that a reconfigurable constellation provides cost-effective persistent regional coverage

when the region to be covered is unknown or uncertain a priori. However, utilizing the reconfigurable constellation

requires a significant departure from the way we traditionally operate satellite systems. First, the capability to re-

configure, primarily enabled by increased satellite maneuverability, must be built into the system upfront. Second,

the reconfigurable satellite constellation will only be as responsive as the decision making and satellite command-

ing processes. Effective employment of this type of system will require: new optimization tools to quickly identify

reconfiguration options; decision support tools to display this information to decision maker to aid in making quick

decisions; and quick satellite commanding to enact reconfiguration.

This paper also develops and demonstrates a general framework to guide the design and optimization of recon-

figurable satellite constellations specifically tailored to stakeholder objectives while considering uncertainty in the

locations of future disaster events. Each constellation optimization was performed in less than 30 hours, demon-

strating that parallel computing coupled with sophisticated optimization routines enable rapid spiral development of

satellite constellations. This approach quickly identified efficient designs without overly restricting the design space.

The framework is novel in that it avoids many of the assumptions and simplifications of past research by: 1. explicitly

considering uncertainty in future operating conditions; 2. concurrently optimizing constellation pattern design, satel-

lite design, and operations design; and, 3. utilizing multi-objective evolutionary algorithms and large scale parallel

computing. The methodology is easily tailored to consider other constellation design problems and in a future pa-

per the authors will show that it can quickly find efficient reconfigurable and static designs using several asymmetric

constellation patterns.

Additionally, this paper introduces a new persistence figure of merit that captures how well realized coverage

matches the desired temporal and spatial resolution. This metric eliminates without being skewed by statistical outliers,
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a limitation of several traditional constellation coverage metrics. The optimization routine, using this new persistence

metric, found designs that provided a good balance between meeting temporal and spatial resolution goals.
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Table 1. Properties of Selected Optical Earth Observation Satellites

Spacecraft Aperture Wet Mass Dry Mass Stowed Size Stowed Volume Density References
cm kg kg m,m,m m3 kg/m3

RapidEye 14.5 166.4 154.4 1.17, 0.78, 0.94 0.858 193.9 [49],a
EROS-A 30 260 230 2.23, 1.2, 1.2 3.21 81.0 a

NigeriaSat-2 38.5 286 274 0.79, 1.2, 1.2 1.456 188.2 [50],ab

FormoSat-2 60 746 665 2.4, 1.6, 1.6 6.14 121.4 [51],a
WorldView-1 60 2500 2090 3.6, 2.5, 2.5 22.5 111.1 [52],a
Quickbird 1,2 61 951 911 3.0, 1.6, 1.6 7.68 123.8 [22, 52],c
Pléiades 1B 65 1015 940 3.0, 2.5, 2.5 12 84.6 a

Ikonos 1,2 70 728 658† 1.83, 1.57, 1.57 4.51 161.4 a

GeoEye-1 110 1955 1811 4.35, 2.7, 2.7 31.7 61.7 a

WorldView-2 110 2800 2390 5.7, 2.5, 2.5 35.6 78.6 [52],a
† Estimated using ∆V = 300m/s and IS P = 300s
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Table 2. Assumed properties of selected U.S. launch vehicles

Launch Mass Cost Payload
Vehicle to LEO† Volume

kg $M (FY10) m3

Pegasus XL 443 30 1.87
Athena Ic 700 41 14.5
Minotaur IV 1650 50 11.4
Falcon 9 v1.1 10450 56.7 146
Falcon Heavy 53000 100 146
† Payload mass to 28.5◦ inclination, 200km
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Table 3. Reconfigurable architecture design variables and bounds

# Variable Name Symbol Type Bounds

x1 RGT type No/Nd cat. 31
2 , 15

1 , 29
2 , 14

1 , 27
2 , 13

1
x2 GOM altitude offset ∆alt cont. −50 to 50 km
x3 # orbit planes Np int. 1 to 36
x4 # satellites per plane Nsp int. 1 to 24
x5 Inclination i cont. 50◦ to 130◦

x6 Phasing parameter F int. 0 to Np − 1
x7 Aperture size D cont. 0.1 to 1.2 m
x8 ReCon ∆V ∆Vrecon cont. 0 to 1000 m/s
x9 Decision model weight α0 cont. 0 to 1
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Figure 11. Natural disaster risk PDF with increasing probability indicated by darker shading
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Figure 15. The value of reconfigurability, which is equal to how much cheaper the reconfigurable designs are when compared to iso-
performance static designs, is 20-50% of the static architecture cost
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Figure 16. Design details for the reconfigurable (colored black) and static (colored gray) non-dominated fronts
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Figure 17. When compared with traditional figures of merit, non-dominated reconfigurable designs (colored black) generally outperform
iso-cost non-dominated static designs (colored gray)
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Figure 18. The value of reconfigurability increases with increasing coverage requirements
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