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The availability of computational methods t o identify and define t he precise struc­
ture and location of promoters in prokaryotic genomes will provide a critical first 
step towards understanding the mechanisms by which genes are organized and 
regulated. We examine three different methods for promoter identificat ion, two of 
\vhich are adopted from related v·mrk and the other is a novel approach based on 
feature extraction. Hy the results of a set of experiments we evaluated prediction 
accuracy for identifying promoter regions from non-coding regions. 

1 Introduction 

\Vholc-genome sequencing and analysis of organisms provides an unprece­
dented opportunity to discover new genes and possible mechanisms by which 
they may be regulated. Ever since the complete genome sequencing of the 
first free-living organism in 1995, the bacterium Hacmophil-u.s infl:ucm:ac 1 , it 
has become abundantly clear that there is a very large number of putative or 
predicted genes which were previously unrecognized. In many prokaryotes, in­
cluding those that have been e:x.i:ensivdy studied for decades, this mnnber often 
approaches 25% or more 2 . A common means of identifying these new genes is 

'''I'his work was suppo11ed by NSF CCR-9972519, EIA-998()042, ACI-99822H, by Army 
Research Office contract DA/ DAAG55-98-l-0441, by the DOE ASCJ program, and by Army 
High Performance Computing Research Cent er contract number DAAH04-95-C-0008. Access 
to computing facilities was provided by the Minnesota Supercomputing Institute. 
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thn.)ugh the apphcatii)n of v.uxii)US gene-finding algi)ritlnns 3 ,4 ,'i,\l,?J:~ of var:;.ing 
that predict transcriptiunal t:tart and stop sites. V\.'hile there 

hac> been considerable progress in identifi~'.ation of ne1v genes through the ap·· 
pl1C1it1on of thi :se alg< iril-lnnt>:_ 1-hc discovery of h< lTi' thi :se genes arc rcg1 ilati :d is 
not as advanced and d('tailed n1echanis1ns of gene r('gnlati1)n and 
on ;i genon1e ~-c;ile arc ltn'.king. the fir~-t step by 1vhich genes ttrc regulated 
i::; 111odulalion of l he level of l This o.Jccurs \vhen Lhe enz.vrr11« 
llI\ .\_ pi)l~rrncrast.': '-Vhich i~> respi)nsiblc for cataly;;ring the pri)ductii)n i)f tht.' nC'-V 
R.I\_\ recognizes and bind0 n sequence of DI\_:\_ that it: n1u0t 
ofrcn located upstrean1 of the gene and knO\\-n as the prorno1-cr clcrncnt. It is 
thcr<'fore the locatinn and prinviry ::;trnctnre of the prnrnotFr that deterrnirH'" 
thi· siti' at ·which J-h(' n('\V R_I\_\ \Vill bi· initiaJ-(1d and J-11(' 
abundtnHx: of the n;1scent trttnscript. 

Several decades of un the 0tructure and functiun of nrok;,rv-

otic p1\n11otfTS h;i,vc led to the recogniti~n1 of three 111ajor featurec> 9-10 : (i) a 35 
hox: (ii) a 10 box: and (iii) the presence of a nucleotide (either _\dcninc 
rir C:-uanine) at J-h(' initiation :.,;iJ-e. Thi· 33 and 10 boxes ttr\' S1) 
ntnncd for their approxin1atc lo~'.ation prior to the tr;1ns~'.ription initiation site. 
Thc.v arc l.vpically hcxarncr sequences \Vilh l he pri111ar.v sl ruclltrc .._,,f TTC:_:\.(i_\ 
for tlu_' 35 elenu_'nt and 1~_,\1~_,\_:\1_· for tht.' 10 i)ne. Ho'-vevt.T: it is in1portant to 
recugnize that srhilst these canonical seq-r1cnccs have been dc0crit_H·d) there is 
considerable variation in both the structure and die relative location of 1-hcsc 
ek:1nent", nviking their cx;ict identification ·~sing co1nputational In<'thods a 
non-1-rivia.l task. 

"flu_' <1vaib1bilit:;.- t)f Ct)1nput<1tionai 1nethi)d" to identify and define the pr<> 
cise 0tructure and location of prornoter0 in prokn.ryotic genornes \vill 
a ~Titical firc>t step tO\Yardc> undcrc>tanding; the 1ne~'.hanisn1c> by 1vhich genes arc 
organi;;rcd and To achieve this goal. \VC studied three rncthods. t\vo 
<.>f ·which \Vi Ti' frorn prev-ions and the other is a r11)vel 
for identification of p1\Jn1otc-r elen1ents in the -~cno1nc of the n1odcl prokar:--·· 
olc, E«:cherichia coli {)verall, Lhc resulls of our :-:;how Lhal 
frequeni:y-ba"ed 1nethod and J\'1<1rkov chain rnodels arc inaccurate <ind (ii) in·· 
corporation of fetiturc-btiscd schcn1c in1pro..-es the tn'.curacy considerably to 
02.G'X for np to 5000 hasc long npstrcarn rc1~1<irn;, 

2 Related Research 

l'hc n1ajorit:-- of the rc~-ca1\'.h in pron1oter identifictttion hte' been fo~'.U~'cd on 
i le vel1..,•ping s1 tch cor11p1 tlal k•nal rru:Lhod:-> for 11 , i ::,i ~l, J .J 

and there C}..i"t~> li1nitcd n:_'t:ent re"e<1rch in devt.'lt)ping technique" for prornotcr 



identification in pn.)k.:;1,r:;.-otic t)rgani~nn:c:. 
l~hc ctirly resear~'.h in pron1oter identification 1vas pri1narily focused on try·· 

ing to differentiate a prornotcr elen1en1- fron1 a coding region Hi. IIo~·vc·vcr, as 
highl:;/ accurate hav(' been di'V('lripi·d for gene finding in 
otic organis1n~' ~L4 thi~' type of pro1notcr identifi.~'.;1tion te~'.hniqne~' tire no1Y of 
liLLle use. ()ne of Lhe rnosl recenl published \VOrk on devel...,1ping rnelhods for 
predicting prokaryi)tii: pri)1notcrs \Y<1~> di)nc by .. fhieffry et uL Hi. 1~hcir ~;tud:;.­

"'-Vac> focused on the E.coli g;cno1ne and the:-- used pattern n1atching; techniqucc> 
to ick:n1-ify ne\v prou1oter clcrnents sin1ilar to those J-ha1- arc alrcad:y kno\vn. 
"I'heir experirnents :c:hn\Yed that such technicpR::c: ach1Fve 75% precis1on "'-Vith 

accuracy: how('-viT, J-h(1ir <.>verall i'valua1-i1.>n \Va0 cr1nfi1sing. 

3 Methods 

AJl ho..,Htgh predicl ing prornoler localion::; in a gen...,1111e doe0 nol pro­
vide any i1npo1t<1nt infornv1tion 11 about the locatii)n of gent'S: it is cornputa·· 
tionally difficult to predict precise lucations uf prornotcn:: Jn. Thi0 is becau0e it 
is fctisiblc to precisel:-- identify coding rcgionc> \Yith help of con1puttitional ap·· 
proaclu's :J,-f. ·rhus, the ta:c:k rernained tn he solved 1:c: to distingu1:c:h prnrnotFr 
rcg1orts frorn non-pr\>rnoter up0trearn ri·gions. 

I11 l l1i0 \Ve 1:xarni11e l l1ree differer1l f...,1r Ll11· 
lucation uf prun1otcrs. The first it: 1nutivatcd hy a sirnilar 0et uf tcchmqrics 
that "'-Vere developed for eukttryoti~'. genon1es and ctin "'-VOrk in an uncn1per..-ic>ed 
0et1-ing. The second approach nscs :viarkov chain to huild a rnodcl 
of the kno1vn pro1notPr:c: tlv1t C<1n be u:c:ed to cla:c:sifJ_- 1f <1 p<nt1c1dar locatinn 
i0 part of a prornoJ-('r. Th(' la0t approach Si'li·c1-s a S('t of featnr('S that i'HC1)(l(' 
0equenl ial a0pei:l s of l he dalasel anil Lhen us1:0 Lhe 0elecl1:il feal ur\::-> for cla0-
sification. I3oth the I\'farki)v IIH)dci and the feature extr<11:tion tci:hniqut'S C<1n 
unly \Vurk in a 0upervi0ed 
arc alre;i,dy kno1vn). 

/]_ 1 F'rcqnency· [,ascd i'lpproach 

e .. there has to exist 0orr1c prornoter0 that 

Several have been proposed for cu1mry•:Juc 

and \Vere 0hu\vn to proch1ct· results J 
2•1:i,J 1 . princi-

ple of thec>e 1nethods is that if there exists a c>hort sequence of nucleotides that 
occurs n1orc in the nps1- rcarn of a gene d1an in the 
reg1on, then this short sequ<'nC<' 1nust lv1ve hPFn conserved fnr <1 reasnn. and 1:c: 
n good candidate for a prornoJ-er. 

In partii:ular tht'St' algoritlnru; tvork as folli)\VS. .First, for c<11:h gene tl1c:;.-

,, ., 



select <1 fixed :c:ize :c:equence up:c:trea1n fn.)111 the gene":c: tr<1n~;h1tion ~>t<n_t :c:ite. 
Then. they randornly select frun1 the cuding of the dif­
ferent genes so thtit they 1vill end up c>electing rnughly the sttine nu1nber of nu·· 
clco1-idc:c; as those present in all the selected ups1-rcarn regions. Given these ti;vo 
:c;ets of se(fU('IlC(':c;, J-h('S(' then find all the s-r1hSi'(J.U('HC('S that a 
certain 1nininnun frequency con~-traint 1T. e;1ch of discoYc-red subsequen~x:~' 
is pre:-:;enl al lea:->l er lin1es in lhe dalaseL The of l he subsequence:-> lhal 
art' bt'ing (h~;covered is usually lirnited ti) be <n:ound :c:evt'n to b<1~K:s. :\oi;v. 
fur each such pattern they co1npnte its 5pecificity tu the -r1pstrearn region_. svhich 
i:c; the ra1-io <lf thi: rnunber <lf tirnes it appears in an nps1-rcrun rcgi<Hl divided 
the nurnh<'r nf tirnes it <1ppears 1n a ending region. -F11u;1,liy:_ thes<' algor1th1n:c: 
l!Si · a thrl':c;hold p on the Spi ·~ ·ificity of a pattern: and prtu1i · all J-h(' patterns 
that htive ti specifi~'.ity helo\v p. the ptittern~' thtit re1ntiin ;ire then considered 
lo he lhe prorn.._,11 er ek:111enl0. 

This ha:c;ii· can hccn irnproved in J--~\'0 different \\-ays. Fir:c;t, in-
stead of cn•~nting the fr<'(1uency of <'xact patterns:. the pattern:c: tlH'IHS<'ives can 
be relaxed to in~'.lude one or n1ore \Yi Id card ch;1ractc-rs: tdlo1ving us to n1odel 
near rnalches 12

. Second, alg1..,1rilhn1s have been for delerrnining lhc 
up:c:trea1n specificit:;.- of a p<1ttern i;vithout cornparing it again~;t its frequt'IH::;.- to 
the cuding 1 ~. IIo\vever, the basic idea of these rl:nu1in0 the 
:c;arnc. in 1-hc :c;ense d1a1- a pattern specific to the upstreau1 regions arc predic1-cd 
as pro1noter:c:. 

One of the n1ain adv<1nt<1ge of tlu_' -&:equency-based appri)<11:hes h> that it 
unly that \Ve kno1x the location of and np0trea1n rcgHmo. 
_:\c> ti results: these approachcc> ctin be used "'-Vithout any a priori kno1vledg;c of 
kn<l\Vn prouHrU:r elerncnts, and can hi· i1sed to prorno1-er:c; i:ven 
in not-1-V<'ii··Studied g<'nOIIH'S. 

1Vltirkov ~'.hains tire \YCll-knO\Yil probabilistic te~'.hnique fnr ~'.lac>sify-ing scquen·· 
tial data 19 , and they lvive been successfnlly u:c:ed in a 1nunber nf :c:e(1nence­
has(1d s-r1ch as gene idi·ntification in pn)karyr11-es. t~nlike J-11(' 

freque1h'.y-b;1sed ;ipproaclL_ \tarkov ch;1in i~' ti ~-upc-rvi~,ed letirning td_~oritlun: 
il requires l raining dalasels lo build rnodel:-:; and lo rnake predicl ion. 

F< ir each of the classes that ·we ari · to lVIark< lV chains first 
lJnild <1 1nodel fro1n S<'quent1<il train1ng 1n1Jnt:c:. "I'he fnnchirnental <1ss1unpt1on of 
J\'l;1rkov ch;1ins is thtit tin event in a sequentitd strea1n depends onl:-- on ti lin1ited 
nurnber of preceding evenls. In Lhe case of D?\A .. scqucncc. \Vt' can rephrase il 
that tht.' probabihty i)f <1n occu1Tt.'nCt.' of e<11:h t:;.-pe of a nucleotide n at a p<n_tic·· 



ubir location ;i:; i:c: dttern1i11cd by its prt't:t'ding ~K:qnence of :.r:;www1 .. J: ;WWW k+ 1 • • - ;i: ;WWW 1 • 

The nun1bcr uf bases that influence :r:i is called the order of I\-Iarkov 
chains. :For cxa1nple. in the first--order \1arko..- chainc>, only a single fnrerunner 
;.r;iwwwJ affects the choice of a rrnclco1-idc at :z:-;. and in die second-order n 

of haS('0 ;f:;www2:r:;www1 dctiTrr1incs the rif the choice rif a rruck1(1J-f(l\_, 
at ,1:;. _:\resulting n1odel i~' a t;1hle of trttnsitinntd probabilities fnJn1 tt prefix of 
i :1 :rl ain 11 :nglh lo an i :haraclcr. 

During i :la0sificati< ni, 1-he :viarkov chain0 'lf thi: diffi :rent i :la0si :s ari: i 1sed t< l 
co1np•~te the prob<1hility that a pa-rtic1dar sequence is be1ng ge1u'r<1t<'d by the 
k1n.rn('d n1odcL The n1odcl that has the pn-'habl:;/ is u0cd to J-11(' 
ne\v ~-eque11ce. 

:For the prokaryotic pron1nter prediction prnbk:nL \Ye firc>t build tivo ]\'farko..­
chain n1odcls. one for prornoter regions and die odier for non-prornoter np-
0trca1n ri·gions. for each locati1)n of an Si'(J.U('HC(', \V(' c1)n1pnJ-(' J-11(' 
t'-VlJ probabilities, the prnhabilit:-- that the given input sequence nf length L i~' 

a prornolcr, and lhc •.Jnc Lhal Lhc sequence is not a p1\,1111oler. For cxarnplc 
'-Vith the first-i)rdcr 1nodt'L the prob<ibilitics arc [>( C = prornoter I ;r;iwww 1 ;.r:; _l <ind 
f>(C /:: pron1nter i ,1:;www1 tind \VC take the cltiss \vhich htis higher probability 
and it as prediction. 

(Jur third for dcveluping algorithn1s for prornoter \Vas 
n1nti..-ated by our recent 1vork on developing; c>calablc clustering; algoritlnns fnr 

0cqnences :lO. In that TVOrk, TVe fir0t used 0cqncntial pat1-ern di0covcry 
algor1th1n:c: to find all frecpR:ntly occ1u·ring s•~bseq•~<'nC<':c: in the datahas<'. '-Ve 
then projected etn'.h protein into ;i ne'-V space th;1t h;1d these features as it~' 

ilirru:n:-:;ion:->, and Lhcn \Vt: u:-:;cd l raililional vcclor-s.r)ai:1· algoril hrns 
to find the i:lustcr~;. Our cxpt'rin1ental results sho1vt'd that even though e<11:h 
p1·otc111 \vns as a rnulti-dirrH.:n0iunal vector in \vhich the 
ordering; relations bet1vccn the different subc>equences \Vas ~'.1Jn1plctely lost: the 
overall ciust<'r1ng soh~t1ons '-Ver<' c-x"Tre1nely gond. 

In tht' feat'itre-bat;ed approach 1ve folli)\Y a :c:irnilar fr<in1e"vork. ··rhe b<i~;ic 

idea is the folh_i\ving. Fir0t_. create a n1ulti-din1ensiunal 0pacc r'" 
di1nensions: each di1nenc>ion correspn1HJing; to nne nf the 4''(' posc>ible 1r-1nerc>. 
Then. taki: the i1p0treau1 region of enA:h geni: and hri:ak i1- into mcc1:laJJ1m1" 

segrnents of a cert<iin length n. -F'inaii;r. take e;ich one thes<' S<'grnents and rep­
resent it te' a vector in the 4''-'-dirnensiontd sp;1CP. by c"'U(,scribin,rj it tO all the 
po:->sible ·u.1-rru:r:-> Lhal il c•.Ynlains. A .. s a res!tll of Lhis Lhe 1u1-

derlying upstn:.'an1 regions <ire nO'-V reprcSt'nted u~;ing tradition;,] nndti-..-ari<ible 



vectors. \Ve can assign a class to each of these vectors based on whether or 
not thE1y are derived from the known promotE1I' regions. In our algorithm, se­
quence segments that were mostly (but not entirely) obtained from the known 
promoter regions were assigned to the positive class, whereas the rest of the 
sequences were placed in the negative class. 

Given such a representation of the data set, any traditional machine learn­
ing algorithm can be used to learn a model that differentiates one class from 
the other. For our experiments we decided to use support vector machines 
(SVM) 21

•22 , as they have been shown to consistently produce superior results 
than other classifiers. 

4 E:p erimental Results 

\Ve expcrimEmtally evaluated the performance of the various algorithms for 
promoter prediction on the E.coli genome. 

We obtained 471 locations of transcriptional start sites of E.coli publicly 
available from the PromEC :.rn database. Out of those 471, 54 promoters arc 
discarded because they arc completely covered by coding regions. Since the 
internal structure of those promoters are not yet determined completely, we 
take 101 bases as a promoter region from -75 to +25 relative to the transcrip­
tional start site and applied the three different methods which arc described 
in Section 3. 

By combining the predictions with the actual classes we can partition the 
test data into four classes. The true positi'Ues and the true negati'Ues which arc 
correctly predicted to be part of the positive or negative class, respectively; 
and the false positi'Ues and false negatives which arc the test data that were 
incorrectly predicted as positives or negatives, respectively. A common way of 
measuring that performance is to use two measures called the precision and 
recall. The precision p of a binary classifier is defined as 

and the recall is defined as 

lVtnie posi1+vcs r = ~~~~~~~~~~~~~~ 
,Vtrue positives +,'\[false negatives 

The precision measures what fraction of upstream regions that arc predicted 
positive arc actually of promoters, and the recall measures what fraction of the 
true promoters arc actually predicted as positive. An alternate way of evalu­
ating the performance of a classifier is to look at its accuracy, which is defined 
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as the fraction of correct predictions. However, when the different classes arc 
of significantly different sizes, the accuracy measure can be misleading, and 
looking at precision and recall provides more meaningful information. 

4.1 Frequency-based Approach 

To evaluate the performance of the frequency-based approaches to correctly 
identify the known promoters of E.coli, we performed the following experi­
ments. \Ve selected the genes whose upstream regions did not overlap with 
coding regions of the opposite strand. This gave us a total of 962 upstream 
regions, out of which 101 had known promoters. Then we randomly selected 
an equal number of genes and computed all oligonudcotidc sequences that 
satisfied certain support constraints up to length 10, allowing up to 2 wild 
cards. For each of these frequently occurring oligonuclcotidcs we computed 
their upstream specificity and filtered out patterns whose specificity was lower 
than a certain threshold p. The patterns that were left were used to predict 
promoter regions. In calculating the specificity we took into account of the 
different numb(ff of total nucleotides in the coding and non-coding regions. 

Table 1 summarized the results obtained by this approach using different 
values of O' and p. The precision and recall figures were computed by looking at 
the munber of nucleotides of the known promoter clements that were predicted 
correctly or incorrectly. A set of nucleotides is predicted correctly if it matches 
one of the selected patterns. 

Based on the scheme described in Section 3.1, we eA.i:racted frequent and 
upstream-specific patterns as shown in Table 1 to predict promoters. \Ve tested 
frequency threshold O' = 10 and 20, and the ratio threshold p = 2, 5 and 7. 

'I'able l: Prediction results by frequency-based approach for known promoters in upstreams. 
'I'hose upstream regions do not have any overlap with coding regions on the other strand. 
'I'he column labelled with "Patterns" shows the number of extracted patterns of up to 10 
bases satisfying the frequency O" and the ratio p thresholds. A pattern may contain 2 wild 
cards at most . 

Frequency Ratio Patterns Precision Recall 
O" (J (%) (%) 
10 2 12B8() ;37 48 
20 2 40247 ;37 48 
20 5 5709 41 47 
20 7 201'3 45 44 

Looking at these results, we can see that we increase p from 2 to 7, the 
precision increases at the cost of the decrease of recall. However, the quality 
of the overall results was quite low. 

7 



4.2 Jl;farkov Chain-.5 

[n thi" sect1on ;,vc d<'"crihc the In<'thodolngy for a \I <1rkov rnodel bas<'d classifi<'r. 
I'l.>r ('ach gi'ni' \Vh(>Se prornoJ-er ek:rni·nt is known \Vi' took an upstri'<Ull Si'(J.U('nC(' 
of n b;ises in len_~th fro1n the tr;ins~'.ription start site. lf the p1\Jn1otc-r elen1ent 
;,v;1~> included in these n bast'~>, that p<1I.ticular up~;trt'a1n region i;va" kept in the 
seL other\vi0e it \vn.s I't'rnove(l In onr experi1ncnt0 \Ve let n take the vah1es of 
200, 500, 1000, 2000 and ;)1)()1) kt1ding to five different datasets. Each of the 
dataset:-,; \Vas n:c;ed to evaluate 1-he perforn1ance of lVIarkov chains a 10-
fold ~T1):c;S validation. That \Ve thi· data into lU parts) H to bi· l!Si'd for 
training ;ind l for te~-tin_~ ;ind the overall expc-rin1ents i;Yas repeated 10 tin1e~'. 
each Lirnc \Vilh a diffcrcnl part for te»m[lg. 

_:\_s discu0scd in Section ~L2. \Vt' learn the transitional 
I),.ol,.,l,-ii1.t-lcw f.1•· the' JJO"'-l•1·v,-, ci•,,-c:: ('' C' t-f1.-' i·-11·1~"" ')''OlllC••<·r· r·<'c ... 1.1""'). 'l"(l tl1c'. - (fa"-"'-~-'- "· "-· V~- -"·'''" h "'• ~- ,-, ~-1-'"L'- -•- -,,_.,,-~."", ''"·' 

transi1-ional for the nega1-ive cla:c;s the re:c;t of the sek:c1-ed 
upstrca1n r<'ginrisL -Fnr ch1ssific<1t1on i;vc •~Sf' <1 "liding \Y1ndn;,v of '!JI bas<'" long 
and the log-ratio of the ti;vo prob;ihilities is used tn predict i;Yhether or not etn'.h 
IHtt.:It•.._11 idc is a parl .._,fa prornoleL 

Tahle 2 shO\VS the rl:0ult0 fur the different value0 uf n and YJ.1 • 1\ote that 
;,ve built separate n1odels for the t\VO strandc> ac> ;,ve found that so1ne nf the 
transi1-ional differ Looking at these resnlt:c; \Ve can 
sec tlv1t the best pcrfnrn1a-nce i;v;is obtained for n = 200. T)epending on the 
pttra1neters:_ the cLLe'sifier ;,v;is ttble to tn'.hieve precision and recall in the r;inge 
of 70---80',%·. IlO\\'CVt:r a:-> n incrca:-:;ed l hc qualil.v .._,f l hc predicl ions ucp1;mcu 

snbst<1ntially. AJsi_) note that tlu_' St'i:ond-order :'.\.Jarko;.- chain <11:tuall:;.- lead~> 

to \Vursc re0ults than the first order rnudel. at the srith 
respe~'.t to tr: \VC ~'.an sec that as YD incTettses the recndtc> tend tn get better. 

4./J F'eaf'ure-bo-."ed ~4pproo-ch 

The perforrnance of the feature-based approach \Vas evaluated using the :c;arne 
data S<'tS ;is those used for the IVfarknv u1odcl-has<'d "chcrne. -HO\YFvcr be­
canse thi·se t\VO rnodel J-h(' data in a diffiTent \Vay. the di·finition 
of the pnsitive and neg;iti;.-c ~'.hiss. te' ;,veil te' the cLLe'sification ;ind e;.-ahu.ttion 
I11elhoilology \Va:-> :-:;orncwhal diffcrenl. 

In particnlar. the transaction0 \Vere created ·using the sliding \Vint_k)\v ap-
proach discussed in Sectinn 3.:3: by uc>ing; a \VindO\V nf tr and c>liding it 
k has<'" <'<1ch tinu'. 

\Ve first explain the procedure fnr -~enc-rating exa1nples. i;vhich i;Yill be u~-ed 
for bolh and l Ll11: i:la:-:;siiier. V\-'e lake an :-:;eqitences .._,f 
b<1~K: p<1irs and break this ~K:quence into shorter overb1ppi11g "ecpJence~> of length 
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Table 2: Prediction results by the firs1 and the second order Markov chain models 

Window !vfaximum Forward Strand Backward Strand 
Order Size Upstream Precision Recall Precision Recall 

(k) (w) Length (n) (%) (%) (%) (%) 
200 ()().5 ()().4 Tl.3 72.9 
500 52.4 58.5 53.2 ()0.4 

10 1000 40.2 52.9 33.4 42.0 
2000 27.0 55.4 24.4 43.l 
5000 17.5 5G.7 11.0 43.0 
200 ()().5 n.7 Tl.3 81.2 
500 54 .0 ()0.9 52.7 ();J.() 

20 1000 43. l 54.7 33. l 40.7 
2000 :rn.5 5().4 25.4 41.8 
5000 20.0 58.0 12. l 41.() 
200 ()8.:J 81.() G8.2 88.l 
500 57.9 ()4.0 52.7 ()9.2 

40 1000 45.9 54.5 <l2.9 40.0 
2000 ~35.5 57. l 25.G 39.7 
5000 23.() 59.2 rn.o :rn.4 
200 ()8.7 ()I .5 70.4 ()7.4 
500 50.7 55. ~3 51.l 5:3 .2 

10 1000 40. l 51 .3 32.5 42.7 
2000 27.:J 54.5 25. l 44.() 
5000 17.9 57.0 11.4 44.() 
200 ()9.5 ()7.7 70.0 74.4 
500 51.8 55.5 50.G 5().1 

2 20 1000 4L:J 50.l <l2.5 41.2 
2000 :rn.9 55.0 25.l 41.5 
5000 20.() 58.5 12.G 42.4 
200 70.9 n.G G7.:J 81.8 
500 54.2 57.3 50.0 ()0.4 

40 1000 42.l 47.9 32.2 40.5 
2000 35.2 54.4 24.G 39.5 
5000 24.2 (;o.:J H .4 :rn.8 
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w = 50. The amount of the overlap is equal tow - k. These short overlapping 
sequences obtained from inter-genie sequences make up the examples in the 
dataset. The class label of this sequences is computed by finding the class 
label of majority of base pairs making up the sequence. Thus, for example if 
the majority of the base pairs making up the sequence are promoters then the 
example sequence will be labeled as a promoter sequence and similarly for non­
promoter sequences. Sequences having length less than w = 50 or sequences 
that do not have a clear majority arc ignored b After obtaining the example 
sequence the complete datasE1t is split into two parts, training sequences and 
testing sequences. 

Next we describe the methodology for building classification models and 
the motivation behind our approach. We first identify set of features and then 
transform example sequEmces into this feature space. After doing this trans­
formation each example is represented as a boolean feature vector. Depending 
on the presence and absence of features the indices in the boolean vector are 
set to true or false. These boolean feature vectors arc then used for building 
the classification model. 

The features used for classification are made up of four consecutive base 
pairs (i.e., w = 4), hence enumerating all possible base pairs (of length four) 
gives us a feature space of size 4w = 256. To identify the features present in 
an example sequence, we slide a window of size 4 across the example sequence, 
each time incrementing its position by one till the window slides across the 
entire sequence. Each position of this window (of size 4) constitutes a feature 
which is supported by the example. This special arrangement of sliding window 
means that each example consists of exactly 47(= 50 - 4 + 1) features. 

Table 3 shows the performance achieved by the feature-based approach 
using SVlVI as a classifier. The tables shows the results obtained for the five 
datasets, for different values for the length of the sliding window and the length 
of the oligonuclcotidcs that were used to derive the various features. These 
results correspond to those obtained after 10-way cross validation. Note that 
as it was the case with the l\farkov model-based technique, we build separate 
classifiers for the two different strands. 

Looking at the results in the table we can sec that the feature-based ap­
proach produces significantly better results than those produced by any of the 
earlier schemes. Its precision and recall even for the large data sets is over 
92%. The other t hing to note is that the overall quality seems to decrease for 
the data sets obtained by looking at upstream regions of size 1000, and 2000, 

bWe use the value of GG% to signi(y clear majority , i.e. , if 2/'3 of the w = 50 base pairs 
making up the example sequence are promote1-:s then the sequence will be classified as a 
promoter. 
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but it improves when we consider regions of length 5000. One of the reasons 
for that may be that the additional promoters that were included a.s we moved 
from 2000 to 5000 arc easier to classify. However, this is something that we 
arc currently investigating. 

'I'able cl: Prediction results of the feat11re-based approach. 'I'hose results are obtained by 
IO-way cross validation. Precision shows the value of precision and recall at the break­
even point. Columns labelled with "Inter-genie Regions" and "Known Promoters" show 
the number of non-coding regions and the number of the known promoters ·included ·in the 
dataset, depending on the value of the maximum upstream limit. 

Maximum Forward Strand Reverse Strand 
Upstream Inter-genie Known Precision Inter-genie Known Precision 

Length Regions Promoters (%) Regions Promoters (%) 
200 cH 40 97.5 41 44 97.8 
500 ()4 81 9Lc3 72 95 91.3 
1000 79 10:3 88.() 92 120 86.1 
2000 104 I32 88.() IOG I38 82.5 
5000 I29 I()() 92.9 I41 I7() 92.5 

5 Conclusion 

\Ve examined the prediction performance of two previously proposed schemes 
for promoter prediction, the frequency-based approach and lVIarkov chains, by 
performing cross-validated mqwriments using the precision and recall measure. 
\Ve also proposed another novel method, the foaturc-ba.scd approach with the 
SVlVI dassiffor and evaluated its prediction accuracy a.s well. The experimental 
result showed the foature-ba.scd approach achieved higher prediction accuracy 
(in terms of both precision and recall) than that of the other two methods. 
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