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Whole-genome sequencing and analysis of organisms provides an unprece-
dented opportunity to discover new genes and possihble mechanisms by which
they may be regulated. Ever since the complete genome sequencing of the
first free-living organism in 1995, the bacterium Hoemophilus influenzee T, it
has become abundantly clear that there is a very large number of putative or
predicted genes which were previously unrecognized. In many prokaryotes, in-
cludling those that have heen extensively studied for deeaces, this number often
approaches 25% or more®. A common means of identifying these new genes is
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The availability of computational methods to identify and defing the precise struc-
ture and location of promoters in prokaryotic genomes will provide a critical first
step towards understanding the mechanisms by which genes are organized and
regnlated, We examine three different methods for promoter identification, two of
which are adopted from related work and the other is a novel approach based on
feature extraction. By the results of 4 set of experiments we evaluated prediction
accuracy for identifving promoter regions from non-coding regions.
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through the application of various gene-finding algorithms of varving
sophistication that predict franscriptional start and stop sites. While there
hos been considerable progress in idontification of now gones through the ap-
plieation of these algorithms, the discovery of how these genes are regulated is
not a8 advanced and detailed mechanizmes of gene regulation und co-regulation
on a genome scale are lacking. The first step by which geves are regulated
tx by modulation of the level of franscription. This occurs when the envyme,
BENA poiymerase, which is vesponsible for cataiyzing the hi now
BNA transcript, recognizes and hinds a specific sequence of Di\.{ that s most
often located upstream of the gene and known ws the promoter element. It is
thereforo the location and primary stn f tho promotor that dotorn
the precise sie al which the new RNA transe rl{'a'ﬁ' will b initiated and the
abundance of the nascent transcript.

meveral decades of 111*»-*(;%5’tzg:,}iii011 o the structure and fnction of prokary-
otic promotors have led to the rocognition of three major foatures 1% (3} 2 35
b (3 10 boxs and (i) the presence of a purine nucleotide {either Adenine
or Guanine) at the transcription initiation site. The 35 and 10 boxes are so
namad for their a@mm wte focation prior 1o the transcripfion indtiation site.
They are typically hexamer sequences with the primary strue Lm(} of TTGAGA
for the 85 clement and TATAAT for the 10 one. Howew o7, it s Important §
recognize that whilst these canonical sequences have been described, there is
considerable variation in both the structure and the relative loeation of these
elemonts, making thoir exact id ing computational methods a
non-frivial task

L
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The ;wa,u;q.i}sim of computational methods to identify and define the pre-
cige structure and location of promoters in prokarvotic genomes will provide
a critical first stop sowards understanding the moe ch genos are
organized and regulated. To achieve this gonl, we studied three methods, two
of which wire a&iapwd from previons work, and the other is & novel HppLias h
for identification of promoter clements in the gonome of the model prokary-
ote, Escherichia coli. Overall, the results of our investigations show that (1)
fﬂ"(gi;(‘z;s'vn?)zm‘(i method and eri«;& chain models are maccurate and {11 m-
corporation of foature-hosed scheme improves the scouracy considerably to
G2 5% for up 1o H000 base long 'c'{psi;ma,m regions.

hanisms by w

2 Related Resecarch

has hoon focused

The majority of the research in promoter i o
19,12,18,14

developing bu(h (e)mpmm fiomal mwthe)ds for eu}uumu{ Grg amsrm
and there exists Hmited recent roseay cove 1’);;;-‘ tochm 1] or ;}?(}met{fr




tification in prokarvotic organisms.

The coarly rosearch in promoter idontification was pritum E§Y T{}C wee on try
ng to differentiate a promoter element from a coding region '*, However, as
highly wecurate wlgorithims have been deve h\pi wd for gene imdmﬂ in prokary-
obic org EHEE\EEIM 4 4 fhis s of pPYoMOteT identificati igues are now of
little use, One Of the most recent published work on e%e wiu;)m;: methods for
predicting prokarvotic promoters was done by Thieffry of 2L 1% Their study
was focnsod on the Foeoli genome and thoy used pattorn matching tochnigues
1o tdentify new promoter elements similar to those that are already known,
Their exporiments showed that such technigues achieve 75% predision with
high accurney; however, thelr overall experimental evaluation was confusing,

ide

3 Methods

Although predicting promoter locations in a prokacyote genome does not pro-
vide any imporar ' about the location of ﬁ(zz;{,‘s: it is computa-
tionadly difficult to predict precise locations of "a'fomm ers*9, This is hecause it
is foasihlo to preciscly idontify coding regions help of computational ap-
proaches %4 Thus, the task remaine §§ to he solved is to distinguish promoter
regions from non-promoter upstream regions,

In this study, we examine three different approaches for predicting the
location of promoters, The first & motivated by a similar set of techniques
th i s genomes and can work in an unsupervised

1t WOTE (§t‘¥(‘ oped for cularyos
setting. The second approach uses Markov (ham Lec hmqm 1o build a model
of the known promotors that con he wed to ol if » partioniar location
in part of a promoter. The last approach selects woset of feature:‘;% that encode
requential aspects of the dataser and then uses the selected fentures for ¢las-
sification. Both the Markov model and the eafure exiraciion fochnicues onn
only work in a supervised setting (4.e., there has fo exist some promoters that
are alroady known )

3.1 Freguency-bascd Approach

Several frequency-based approaches have heen proposed for evkarvotic genomes
and were shown to produce reasonably good results ' 1% The driving princi-
plo of these mothods 1 that # there oxists o short sequonee of macleotides thay
GECULS MOore ﬁequentl‘a in the upstream region of a gene than in the coding
rogion, thon this short seqguonce must have boen conservod for o reason, and is
a good candidate for being o promoter,

hms work as follows, Firss,

In purtienlar those algor or each gene they
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seloct n fized size sequence upstream from the gene’s franslafion start site.
Then, they randomly select subsequences from the coding regions of the dif-
ferent gones so that they will ond up selecting roughly the smne mumbor of nu-
clectides as those present in all the selected upstream regions. Given these two
rets of seguences, these algorithms then find wll the subsequences that satisfy u
certain minimum frogquency constraing 7, 4o, each of discovered subseguences
tv present ab least o times in the dataset. The length of the subsequences that
are being discovered s usually mited to be around seven 1o oight bases. Now,
for ench such pattern they compute its specificity 1o the upstream region, which
i the ratio of the number of times & appears inan upstream region divided by
; s 1E appears m a coding region. Fally, these algorith
TS B ’Lh[’e"‘ihold g on the specificity of a paitern, and prune Wil the patterns
that have a specificity helow g The g)dsé:i‘ ns that Temain sre then Q(}EE‘\E@{ Tl
to be the promofer elements.

This basic algorithm can been improved n two different ways
stoad of counting the fraquemoey of exact pagtorns, the pattorns ©
he velaxed to é whide one or more wild card characters, allowing us to model
near malches '?, Second, algorithms have been developed for determining the
upstream spe asﬁa :r“ (;f a padtorn without comparing it against s frequoney to
the coding region '*, However, the basie idea of these approaches remains the
rarme, In the sense that o pa{%;ern specific to the upstresm reglons are predicted
a8 Promotors.

One of the main advantage of the frequencs
only requires that we know the location of gene’s coding and up*tremn regions.
As o resulis, theso approaches can be used without any ¢ priori knowledgoe of
known promoter elements, and can be used to predict putative piorrmi eI’ even
in not-woll-studied genomes.

mhoer of

3. First, in-
wselves can

~hased approsches is thag it

3.2 Markov Chains

vguo for clas

a? kov chams are woll-known probabilistic o Ting sCouon-

P data ', and thoy have boon successfully used in o mmber of s 1%

?aa,;%e:‘d prediction fasks, such as gene identification in ;g'al'uk@,l’i“a’\i’(&% Unlike the

froquency-hased approach, Markov chain is o suporvised leaaming algorvithm:
thus, it requives fraining datasets to build models and 1o make prediction.

For each of the classes {imt w (} éﬂé‘ trving to {Idb*-,lfV \Luka W {h(ams first
build » modeal 7(}??1 8 ({ii(‘ié inl

e1ts, In the case of DNA requence, we can fe;ahraset i
wm oconrrence of each type of o mucleotide n ot o partic-
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ular location o s dot ; 10 OF By p gy - it
The number of preceding bages that inthwenee i is called the order of Markov
chains. For cxample, in the fivst-order Markov chains, only a single forerunmor
iy affects the cholece of o nucleotide al x;. and in the second-order only a
pair of bases z;_ox; 1 determines the proba ?’ailitv of the choice of a mucleotide
at xp. A resulting model is o table of transitional probabilitios from o profix of
certatn length to an incoming character.

Bruring clussification, the Muarkov chaing of the ditferent classes are used to
compite the probahility that o partienlar soqguence is hoing genersted hy the
tearned model. The model that has the highest probably is used to classify the
NEW SOUEnce.

For tho prokaryotic promotor prodiction problem, wo first build two Markov
chain models, one for promoter regions and the other for non-promoter up-
stream regions, Then, for each locution of an inprat sequence, we compute the
two probabilitios I that the given input sequence of length L4
a promoter, :iiid he one that the sequence is not o promoter. For example
with the first-order model, the probabilities are P(C = promoter | w052
P # promoter | 2325} and wo take tho class which has highor probohility
and wssign i as prediction,

i1y £ seq

o}

¥ aned

3.0 Featwre-bused Approach

e third approach for dew}w sing algorithms for promoter prediction was
motivatod by our recont work on doveloping scalable clustoring algorithms for
protein sequences <V, In that work, we first used sequential pattern discovery
algorithms 1o find all frogy z‘;?iv ocenrring subseguences in the database, wo
then E)i'{}j(‘("i't"’(‘; each protein into s new space that had these features as its
dmensions, and then we used fraditional vector-space elustering alpovithins
t0 fnd the clusters. Our exporimental results showed that oven thougn each
profein was eventually represented as a multi-dimensional vector in which the
ordering relations botwoeon the differont subseguences was complotely lost, the
overall clustering so oy good.
In the feature-tased approach we follow a similar framework. The basic
icden is the iﬂﬁmﬂn First, creste a multi-dimensional space cont aining 1%
ensions, cach dimonsion corresponding 1o one of the 4% possible w-mers.
Then, take the upstream region of each gene and break it into overlapping
s of o cortain longth 5. ly, take ench one : s and rep-
it as a vector in the 4%-dimensional space, by subseribing it to all the
thle w-mers that it contains, As a result of this transformation, the wn-
I ions sre now reprosontad using fraditional multi-variable

S WOTD OXITOTY




voctors. We can assign a class to each of these vectors based on whether or
not they are derived from the known promoter regions. In our algorithm, se-
quence segments that were mostly (but not entirely) obtained from the known
promoter regions were assigned £o the positive class, whereas the rest of the
sequences were placed in the negative class.

Given such a representation of the daga set, any traditional machine learn-
ing algorithm can be used t0 learn a model that differentiates one class from
the other. For our exporiments wo decided to use support voctor machines
(SVM) 2922, a3 they have heen shown to consistently produce superior results
than other classifiers,

4 Ep erimental Results

We experimentally evaluated the performance of the various algorithms for
promoter prediction on the E.coli genome.

We obtained 471 locations of transcriptional start sites of F.coli publicly
available from the PromEC #* database. Out of those 471, 54 promoters are
discarded because they are completely covered by coding regions. Since the
internal structure of those promoters are not yot determined complotely, we
take 101 hases as a promoter region from 75 1o 425 relative to the transerip-
tional start site aned applied the three different methods which are deseribed
in Section 3,

By combining the predictions with the actual classes we can partition the
test data, into four classes. Thoe true positives and the true negetives which are
correctly predicted to be part of the positive or negative class, respectively:
and the fulse positives and false negatives which are the tost data, that were
incorrectly predicted as positives or negatives, respectively. A common way of
measuzring that performance is £0 use two measures called the precision and
recall. The precision p of a binary classifier is defined as

I\"i e positives

b=

Ktrue positives o+ Efa]set prositives ’
and the recall is defined as

F‘ﬂmm positives

o= — = ;
i?\"i'rnc positives + i?\"-Fal;se negatives

The precision measures what fraction of upstream regions that are prodicied
positive are actually of promoters, and the recall measures what fraction of the
true promoters are actually predicted as positive. An alternate way of evalu-
ating the performance of a classifier is to look at its accuracy, which is defined
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as the fraction of correct predictions. However, when the different classes are
of significantly different sizes, the accuracy measure can be misleading, and
looking at preecision and recall provides more meaningful information.

£ a1 § I £

4.1 Frequency-hased Approach

To evaluate the performance of the frequency-based approaches to correctly
identify the known promoters of E.coli, we performed the following experi-
ments. We selected the genes whose upstream regions did not overlap with
coding regions of the opposite strand. This gave us a total of 962 upstream
regions, oud of which 101 had known promoters. Then we randomly selected
an equal number of genes and computed all oligonuecleotide sequences that
satisfied certain support constraints up to length 10, allowing up to 2 wild
cards. For each of these frequently occurring oligonuclectides we computed
their upstream specificity and filtered out patterns whose specificity was lower
than a certain threshold p. The patterns that were left were used to predict
promoter regions, In calculating the specificity we took into account of the
different number of total nucleotides in the coding and non-coding regions.

Table 1 summarized the results obtained by this approach using different
values of o and p. The precision and recall figures were computed by looking at
the number of nueleotides of the known promoter elements that were predicted
correctly or ncorrectly, A set of nucleotides is predicted correctly if it matches
one of the selected pattorns.

Based on the scheme described in Seetion 3.1, we extracted frequent and
upstream-specific patterns as shown in Table 1 to predict promoters. We tested
frequency threshold ¢ = 10 and 20, and the ratio threshold p = 2, 5 and 7.

Table 1: Prediction results by frequency-based approach for known promoters in upstreams.
Those upstrear regions do not have any overlap with coding regions on the other strand.
The cohaimn labelled with “Patterns” shows the mumber of extracted patterns of up 1o 10
bases satislving the frequency o and the ratio p thresholds. A pattern may contain 2 wild
cards at most.

Freguency  Batie | Patterns | Precision  Beeall
- p % (%)
¥ ;s F21386 37 48
20 Z 40247 37 48
20 5 5709 41 47
20 7 2013 45 44

Looking at these results, we can see that wo increase p from 2 to 7, the
precision increases at the cost of the decrease of recall. However. the quality
of the overall results was quite low.



4.2 Markow Choins

In this section wo describe the methodology for a Markov model based classifier.
For each gene whose promofer element is knov\'n wi: Look nn upstrenm sequence
n fength from the o ription start site. I the promotor ol
was included in these i bases, that particular upstroam region was kept in the
set, otherwise it was removed, In our experiments we let 1 take the walues of
260, 500, 1600, 2000 and 3000 loading o five different dozascis. Bach of the
datarets was used to evaluate the performance of Markov chaing wsing » 10-
fold cross validation, That is, we aph'ﬁ' thi data mLo 1} parts, 9 to be used for

ming and 1 for testing and the overall expor 8 was repeated 10 fimes,
each time with a different pact for testing,

As discursed in Section 3.2, during the training we learn the transitional
probabilities for the positive class (d.e., the known promotor rogions) and the
transitional pzob(ahlhi ies £m1 the ne Miwe clags {4, the rest of the se e(*i'i;‘d
upstream regions). For classific g window of w bases long
andl the log-ratio of the two probabilitios is used to prodics whother or not each
srucieo ldw is a part of » promoter,

Table 2 shows the results for the different values of noand w, Note that
wo built scparate models for the two strands as we found that some of the
transitional probabilities differ substantially, Looking st these results we can
soe that the boe formance was obtained for n = 200. Dopending on the
paramet f itfier able to achiove precision and recall in the range
of T0-80%. However as n increased the quallly of the predictions degraded
subsiantially.  Also note that the second-order Markov chain aetually leads
fo worse resulis than the Hrst order model. Looking at the sensitivity with
rospect o w, wo can soo that as w incronses the rosults tond to got be

o1

of 11 haso
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4.3 Feature-bused Approach

The performance of the feature-based approach was evaluated wsing the same
data sets ag those used for the Markov modelb-based o. However, he-
canse these two approaches model the data in o different way, the definition
of the positive and negasive class, as well as the classification and
methodology was somewhat different.

in pd,[ﬂauhﬂ the transactions were created using the shiding window an-
proach disenssed in Section 3.3, by using o window ¢ b ond sliding i
& bases each time.

We first explain the procedure fon raging oxamplos, which will bo used
for botl training and testing the classitier, We take an inte ,L—genic seqmen(‘e% of
hase pairs and broak this sequence into shorter overlapping soquences of length

ovaluation

-t
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“Table 2: Prediction results by the first and the second order Markov chain models

Window | Maximum Forward Strand Backward Strand
Order Size Upstream Precision | Becall | Precision | Recall
) | Gw) | Length(m) | (B) | (R | (B | (%)
200 665 66.4 TL3 72.5

5060 2.4 58.5 53.2 6.4

10 160 40.2 52.9 33.4 42.0

2000 27.0 55.4 24.4 43.1

e 17.5 56.7 1LO 43.0

2060 66.5 3.7 TL3 81.2

5060 540 60.9 52.7 63.6

1 20 100 43.1 54.7 33.1 40.7
2000 365 5.4 25.4 41.8

5000 20.0 58.0 12.1 41.6

2060 68.3 8.6 68.2 881

500 579 64.0 52.7 6%.2

40 6o 45.9 54.5 32.9 400

2000 355 57.1 25.6 3%.7

5000 23.6 59.2 13.0 3%.4

200 68.7 6l.5 T0.4 67.4

5060 50.7 55.3 511 53.2

10 100 40.1 51.3 32.5 42.7

2000 27.3 54.5 25.1 44.6

5000 17.9 57.0 11.4 44.6

2060 69.5 67.7 TO.0 74.4

500 51.8 55.5 50.6 56.1

2 20 L3G0 41.3 50.1 32.5 41.2
2600 309 55.0 25.1 41.5

5000 20.6 58.5 12.6 42.4

200 70.9 73.6 67.3 H1.8

5060 54.2 57.3 50.0 60.4

40 1Bo0n 42.1 47.9 32.2 405

2000 35.2 54.4 24.6 3%.5

5000 24.2 60.3 13.4 3%.8




= B, The amount of the overlap is equal to w - £, These short overlapping
sequences obtained from inter-genic sequences make up the examples in the
dataset. The class label of this sequences is computed by finding the class
fabel of majority of base pairs making up the sequence. Thus, for example if
the majority of the base pairs making up the sequence are promoters then the
example sequence will be labeled as a promoter sequence and similarly for non-
promoter sequences. Sequences having length less than w = 50 or sequences
that do not have a clear majority are ignored ? After obtaining the example
sequence the complete dataset is spit into two parts, training sequences and
testing seguences.

Next we describe the methodology for huilding classifieation models and
the motivation behind our approach. We first identify set of features and then
transform example sequences into this feature space. After doing this trans-
formation cach example is ropresented as a boolean feature vector. Depending
on the presence and absence of features the indices in the boolean vector are
set to true or false. These boolean foature vectors are then used for building
the classification model.

The features used for classification are made up of four consecutive hase
pairs (f.e., w = 4), hence enumerating all possible base pairs {of length four)
gives us o foature space of size 4% = 256, To identify the features present in
an example sequence, we slide a window of size 4 across the example sequence,
each time incrementing s position by one #ill the window slides across the
entire sequence. Bach position of this window {of size 4} constitutes a feature
which is supported by the example. This special arrangement of sliding window
means that each example consists of exactly 47{= 50 — 4 4 1) features.

Table 3 shows the performance achieved by the feature-based approach
using SVM as a classifier. The tables shows the results obtained for the five
datasets, for different values for the lengzh of the sliding window and the length
of the oligonucleotides that were used to derive the various features. These
results correspond to those obtained after 10-way cross validation. Note that
as it was the case with the Markov model-based technique, we build separate
classifiers for the two different strands,

Looking at the results in the table we can sce that the featurc-based ap-
proach produces significantly better results than those produced by any of the
earlier schemes. Its precision and recall even for the large data sets s over
92%. The othor thing to note is that the overall quality seems to decrease for
the data sets obtained by looking at upstream regions of size 1600, and 2000,

bWe use the value of 66% 1o signify clear majority, i.e., if 2/3 of the 2 = 50 base pairs
making up the example sequence are promoters then the sequence will be classified as a
promaoter.
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hut it improves when we consider regions of length 53000. One of the reasons
for that may be that the additional promoters that were included as we moved
from 2000 to H000 are easier o classify. Howover, this is something that wo
are currently investigating.

Table 3: Prediction resulis of the feature-based approach. Those results are obtained by
Th-way cross validation. Precision shows the value of precision and recall al the bLreak-
even point. Uolumns labelled with “Imter-genic Begiong” and “Known Promoters” show
the nmumber of non-coding regions and the number of the known promoters included in the
datagset, depending on the value of the maximum upstream limit,

Maxinum Forward Strand HReverse Strand
Upstrears | Inter-genic Known Precision | Inter-genic Known Precigion
Length Regions Promaoters %) Regions Promoters (%)
200 34 40 S7.5 41 44 978
500 64 81 913 72 95 9L.3
1000 % 103 88.6 92 120 86.1
2000 104 132 88.6 106 138 82.5
5000 12% 1656 52.9 141 176 92.5

5 Conclusion

We examined the predietion performance of two previously proposed schemes
for promoter prediction, the frequency-hased approach and Markov chains, by
performing cross-validated experiments using the precision and recall measure,
We also proposed another novel method, the feature-based approach with the
SVM classifier and evaluated its prediction accuracy as well, The experimental
result showed the feature-based approach achieved higher prodiction accuracy
{in torms of both precision and recall) than that of the other two methods.
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