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1 Introductio n 

In the classical TSP the targets (cities, points) are static entities and only one 
salesman is considered to traverse each target exactly once. A static TSP dataset 
consists of a certain number of targets and no targets are added or removed when 
processing, i.e., when the salesman traverses the cities. The location of all cities 
are fixed and there is no time aspect regarding t he traversal of the dataset . 

The multiple t raveling salesmen problem with moving targets (MTSPMT) 
deals with the case that cities or targets are assigned to several salesmen. There is 
a visibility time window for each target, which defines the time when the target is 
added and t he time when the target is removed again. In addition, the targets are 
not fixed , instead they vary their respective local positions over t ime, meaning the 
targets are moving on certain trajectories with a certain variable speed function. 
All salesmen start their tour from an initial depot. Each target must be visited 
once by exactly one salesman within its visibility time window. The objective is 
to minimize the total traveled distances of all salesmen. If we consider only one 
salesman and all cities are fixed and visible over the whole time horizon, we obtain 
the classical traveling salesman problem, which is NP-hard, see Garey .and John­
son [6] . Thus, the MTSPMT as a generalization of the classical TSP is NP-hard, 
too. 

The MTSPMT as a dynamical generalization of the TSP is more suitable to a 
wide range of real-world problems. A possible application of the MTSPMT can be 
found in the defense sector. An area, e.g., an airport or a military base, must be 
protected from incoming rocket, artillery or mortar fire (RAM) . With a battery of 
laser guns deployed over or near the protected area the decision has to be made, 
which available laser to select for the countermeasure. Here, laser guns correspond 
to the salesmen and the incoming fire are t he targets, where each target has a 
certain visibility time window and its local position is changing over time. In fact, 
this application is an online optimization problem, but it can be solved 'offline" 
with a moving horizon approach. For a detailed description of the application we 
refer to Stieber et al. [18]. 

Helvig et al. [8] adressed the Moving-Target TSP, which is the MTSPMT re­
stricted to one salesman. As possible applications they mention a supply ship, that 
resupplies patrolling boats or an airplane t hat must intercept a number of mobile 
ground units. They also addressed the Multi-Pursuer Moving-Target TSP with 
Resupply, where multiple pursuer are considered and each pursuer must return to 
the origin for resupply after intercepting each target. 

Many practical application such as routing and scheduling of vehicles have a 
dynamic component inherent. The time aspect is considered in traversing from 
customer to customer (or target to target). A related formulation can be found in 
the Stochastic Vehicle Routing Problem (SVRP) described by Gendreau et al. [7] , 
where some problem characteristics are stochastic. As an example which is related 
to our problem see the m-TSP with Stochastic Travel Times (m-TSPST). This 
problem considers m vehicles to serve a number of customers. In t his variant t he 
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length of the arcs vary, that means travel times between nodes are time dependent, 
e.g., due to congestions on roads. Often the vehicles are associated with basic costs 
in order to minimize the number of used vehicles in the solution. 

We want to investigate the time aspect of the MTSPMT. One way of modeling 
is the use of discrete time steps and embedding a multi-commodity flow problem 
in a t ime-expanded network. In case the precision and therefore the number of 
used time steps is increased, the size (measured in number of variables and con­
straints) of those problem instances can grow dramatically. We want to tackle this 
difficulty by presenting different modeling formulations regarding the time aspect. 
Instead of applying discrete time steps we introduce continuous time variables and 
solve instances by means of second-order cone programming (SOCP), see Lobo et 
al. [14] for an overview on SOCP. Another variant is to relax the time aspect 
completely, solve the resulting small problem and construct a time-feasible solu­
tion from it by introducing only parts of the time-discrete restrictions. Not every 
time-relaxed solution can result in a time-feasible solution. To this end, nearly 
all time-relaxed solutions have to be exploited. Therefor we embed the solution 
and construction procedure into a branch-and-bound framework to find a global 
optimal time-feasible solution. Instead of basing the construction process on the 
time discretization we are also able to use continuous time variables, which gives 
us the last modeling variant. 

To test and compare all variants we used randomly generated problem instances 
with varying numbers of targets and salesmen. Computational tests with different 
discretization precisions are conducted. 

T he remainder of this article is organized as follows. In Section 2 we provide a 
survey of the relevant literature. Two model variants which incorporate the time 
as a discrete and a continuous concept are presented in Section 3. The relaxation 
of time and its solution method is addressed in Section 4 and 5. Computational 
results are presented in Section 6 and afterwards we conclude. 

2 Literature 

Our contribution addresses a generalization of the classical traveling salesman 
problem (TSP) by considering more than one salesman and moving targets with 
time windows . For a survey on the classical TSP we refer to Lawler et al. [12] or 
Reinelt [17] . 

There are a number of articles in the literature that concern dynamical TSP 
generalizations. However, representative articles often relate to TSP generaliza­
tions with a number of problem restrictions. For example the traveling salesman 
problem with moving targets (TSPMT) and several variants of this problem are 
addressed in Helvig et al. [8, 9]. Restrictions are made for target speed, geometric 
behavior of the system and problem size (only few targets), thus the proposed 
algorithms are not applicable to the general case of TSPMT. Variants of TSPMT 
and TSPMT with resupply, where salesmen must return to the origin after in­
tercepting a target are also addressed by Jiang et al. [10], Jindal et al. [11 J and 
Liu [13]. 

Another application is described by Menezes et al. [15]. Several customers 
(people, objects or vehicles) move through a system, where each customer may 
have multiple demands for a resource while traveling. Mobile servers meet the 
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demand and provide for the customers. The authors assume that the customers are 
moving on structured paths through the system. One mobile server can intercept 
the customers multiple times to provide for their demand. Here the objective is 
not serving all points and minimizing the total traveled distance, but to maximize 
utility or profit . Examples of such a system might be people waiting in a line 
in a theme park or at an attraction. The authors do not solve practical problem 
instances, but structure and analyze the problem and answer the question how 
long should the server stay at any one location. 

Some articles address the dynamic traveling salesman problem, which is very 
similar to our problem description. Here, locations of targets change over time and 
targets may be added or deleted, but generally only one salesman is considered. 
Problem instances were mainly solved by heuristics as an online approach like 
Ahrens did in [1]. He created dynamic TSP instances by using static TSP datasets 
from a published and standardized library. Time is integrated in a way that the 
movement from one target to another can be done in one time step and the tar­
gets localized in the 2-dimensional space move at each time step. This movement 
is modeled by a Gaussian-distributed random distance that is added to the static 
points from the original dataset in each time step. The author examined the ap­
plicability of standard (static) TSP solvers to dynamic instances. Computational 
experiments were carried out with the Tour Construction Framework which com­
bines global and local heuristics and the TSP tour construction heuristic "nearest 
neighbor". 

In contrast to most of the mentioned articles we address the MTSPMT, a TSP 
with several salesmen and moving targets with a visibility time interval corre­
sponding to adding and removing targets. In this research we concentrate on an 
offline approach for solving MTSPMT instances to global optimality. In real-world 
online applications this can be used by applying a moving horizon approach. Since 
the time inherent in the dynamic variants of the TSP makes instances difficult 
in managing, we examine different ways of how to model time in these problems. 
Furthermore exact solution methods with regard to the different model variants 
are discussed. 

3 Two Mathematical Models 

Here, we introduce some basic notation to formulate the MTSPMT as an optimiza­
tion problem. Let W = {1, . .. , w} be a set of salesmen. All salesmen start their 
respective tour at the same location h. We assume a finite time horizon [0, T]. Let 
V = {1, ... , n} be a set of nodes (targets, cities or customers) and A~ V x V be a 
set of arcs (roads). The length of an arc depends on the time the arc is traversed 
and varies over time, since the nodes are moving. Thus, the distance for salesman 
k traveling from node i to node j starting at time s in i and arriving at time t 
in j is given by the function ci, j ,k : [0 , T] x [0 , T] ~ JR+ U { oo }. Each target i E V 

is assigned a time window [tf, tf]. Since the targets are only visible within this 
certain time window we have ci ,j ,k(s, t) = oo if s or t is outside this window. A 
maximum speed value vmax is assigned to the salesmen, that is the fastest speed 
at which they can traverse an arc in the underlying network. The goal is to reach 
each target from V by exactly one salesman from W such that the sum of all 
traveled distances of all salesmen is minimal. 
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3.1 Time-Discrete Model 

We have already addressed the time-discrete mixed-integer linear programming 
(MILP) formulation in [18]. For the convenience of the reader it is presented here 
in a concise way. We put a multi-commodity flow formulation in a time-expanded 
network. For an explanation of time-expanded networks see Ford and Fulkerson [ 4]. 
Therefor, we introduce a discretization of time. Let m be an integer number. The 
step size is defined by L1 := T jm. Then the set of all time steps is denoted by 
T := {0, ... , m}. Regarding different time steps, we have to take into account 
different arcs between any pair of nodes i and j. AT D ~ (V x T) x (V x T) is the 
set of arcs, where an arc (i, s,j, t) E ATD now depends on the departure time s 
and arrival time t , when traveling from node i to j. For each salesman the arrival 
time at any node in V is equal to the departure time in the same node, since the 
waiting time is included in the traveling time, thus, salesmen do not necessarily 
use their maximum speed. Having discrete points of time p, q E T we are able to 
evaluate the distance function c for arcs at these points c!·qk := ci J. k(P, q). 

t ,J , ' ' 
We introduce a family of binary decision variables x'I!·~k E {0, 1}. Here, xp ,qk = 

t ,J , t,J, 
1 represents the decision of sending salesman k from i to j, departing at time step 
p in i and arriving in j at time step q. 

The objective function is to minimize the total traveled distances of all sales­
men: 

c?.•qkxp,qk -+ min. 
t,J , t,J ,. (1) 

kEW (i ,p ,j ,q)EATD 

The demand constraint requires , that each node j must be visited once by exactly 
one salesman: 

x'I!·~ = 1 VJ. E V. 
t,],k ' (2) 

kEW iEV (p ,q):(i ,p ,j,q)EATD 

Each salesman k can do at most one trip at any time step p: 

"'"""' xp ,qk < 1, V k E W ,p E T. ~ t,J, · - (3) 
(i ,p ,j ,q)EATD 

The following flow conservation constraints ensure the feasibility of time, where 
each node j at which salesman k ends his tour can be regarded as the sink of the 
flow: 

x'I!•q > "'"""' q,p 
t ,J,k - ~ xj ,i ,k' Vj E V,q E T , k E W. (4) 

(i,p): (i ,p ,j ,q)EAT D (i ,p) :(j,q,i ,p)EAT D 

Summing up, we solve the following optimization problem: 

Arv x w 
min { ( 1) I ( 2) , ( 3) , ( 4), x E { 0, 1} } . (5) 

The presented model (5) is not restricted to special shapes of target trajecto­
ries. It can handle any trajectory. Likewise, there is no need to restrict the speed 
function of the targets , the model is able to deal with varying target speeds. A 
serious drawback of this model is the use of a time discretization. In case there is 
a need for a far better accuracy, the level of discretization has to be increased, re­
sulting in more time steps per target. Thus, the number of arcs grows and thereby 
the number of variables and constraints of the model , which leads to a higher 
computational burden. 
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3.2 Time-Continuous Model 

Another way of modeling t he time aspect in the MTSPMT is to apply t he big-M 
method (Miller-Thcker-Zemlin [16] constraints) instead of embedding the multi­
commodity flow structure in a t ime-expanded network. In this case the time is 
modeled by continuous time variables and time restriction constraints. 

We introduce a family of binary decision variables xi, j ,k E {0, 1 }, where xi,j,k = 
1 represents the decision of sending salesman k from i to j (independent of the 
time). Additionally, time-continuous variables t i,k E lR are defined to describe the 
arrival time of salesman k in node i . Now, we are able to formulate the continuous 
IEOdel. 

The objective function is to minimize the total traveled distances of all sales-
men: 

L L ci ,j ,k(ti ,kl tj,k)xi ,j ,k ---+ min. 
kEW (i ,j)EA 

Each node j must be visited once by exactly one salesman: 

L L Xi ,j ,k = 1, 'II j E v. 
kEW i:(i,j)E A 

Each salesman k can do at most one trip: 

L Xh ,j,k ::; 1, 'II k E w. 
j:(h,j)E A 

The following constraints ensure flow conservation: 

L Xi ,j ,k ~ L Xj,i,k> 'II j E v, k E w. 
( i): ( i ,j) EA ( i): (j,i) EA 

(6) 

(7) 

(8) 

(9) 

The Miller-Tucker-Zemlin constraints guarantee time-feasibility, that means , if 
salesman k goes from i to j and arrives at ti ,k in i, he cannot be earlier in j 
t han ti k plus the time he needs to travel from the position of i at t i k to the posi-

' ' tion of j at t j ,k when using maximum speed. The time horizon Tis the so called 
big-M constant in the following big-M constraints 

t· + ci ,j ,k(ti,k> tj,k) < t . + T. (1 _ x· . ) 
t ,k vmax - J,k t,J, k , V(i , j) E A ,k E W . (10) 

For the visibility time windows, the time variables have to satisfy the following 
bounds: 

S E 
tj ::; tj ,k::; tj , 'llj E V,k E W . (11) 

Summarized, we aim to solve the following optimization problem: 

min{ (6) I (7) , (8) , (9) , (10) , (11) , x E {0, 1 }AxW, t E lR v xw}. (12) 

The presented time-continuous formulation of the MTSPMT is based on an 
arbitrary nonlinear continuous function ci ,j ,k for the distance between two distinct 
nodes. In order to apply a standard MILP solver such as IBM ILOG CPLEX or 
Gurobi, we have to restrict the movement of the targets. To t his end , we assume the 
trajectories to be straight lines and the speed of each target to be constant . Here, 
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we use the same constant speed for all targets. Then ci ,j ,k represents the Euclidean 
distance between two points on a straight line. With this, the above presented 
optimization problem (12) can be handled as a second order cone program (SOCP). 
To solve instances based on formulation (12) with a standard MILP solver, the 
model has to be adjusted to the rules of the respective solver to formulate SOCPs 
(e.g., by introducing auxiliary variables for CPLEX). The constraints (10) define 
the cones and make the set of feasible solutions to be convex. 

Following the above given assumptions also for formulation (5) it turned out, 
that the time-continuous formulation has a major advantage. It does not concen­
trate on discrete time steps, thus, a salesman is able to reach a moving node at any 
possible point of its trajectory. In all cases, the precision of the optimal solution 
of (12) is equal or better than the optimal solution of (5) . The objective function 
value of (12) serves as a lower bound for the objective function value of (5) under 
the given trajectory assumptions. However, model formulations based on big-M 
constraints usually have a weak linear programming relaxation and thus, more 
nodes have to be examined, which slows down the solution process [2] . 

4 Time-Re laxation 

Assume we raise the number of time steps m to a fine discretization for the time­
discrete model, the resulting MILPs get extremely large and standard MILP solvers 
do not find an optimal solution in reasonably short time. In the following we use 
a method to tackle such problems by relaxing the time aspect in the model. This 
technique was first introduced by Fi.igenschuh et al. [5]. They successfully applied 
the method for scheduling and routing a small number of planes for fly-in safaris. 

First of all, we perform a projection of (5) from the time-discrete variable 
space ATD x W to Ax W (i .e. from (V x T) x (V x T) x W to V x V x W). The 
time-free counterpart of variables xp ,qk is simply xi J. k· The distance coefficients 

t ,J , ' ' 
ci,j ,k are formed by minimizing the distance over all time-expanded arcs from i 
to j, ciJ. k = min{c!'9k I p , q E T}. With this, we have the following model in the 

' ' t ,J , 
time-free space: 

mm I: I: Ci ,j,kXi ,j,k (13) 
kEW (i ,j)EA 

s.t . I: I: Xi ,j ,k 1, Vj E V 
kEW i:(i ,j)EA 

I: Xh ,j ,k :::; 1, VkEW 
j:(h ,j)EA 

I: Xi ,j ,k- I: x·. k > 
J , ~ , - 0, Vj E V,k E W. 

i:(i ,j)EA i:(j ,i)EA 

This is a classical multi-commodity flow problem, which is easy to solve by stan­
dard MILP solvers . The optimal solution of the time-relaxed (or time-free) model (13) 
serves as a lower bound to (5) , because the distance coefficients are computed as the 
minimum over all arc distances between two nodes. However, the reconstruction 
of a time-feasible solution from a time-free solution is not straightforward and not 
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every time-free solution yields in a time-feasible solution. For this purpose we have 
to run through nearly every time-free solution and try to create time-feasibility. 
We embed this construction within a branch-and-bound framework. 

In the branch-and-bound framework the time-free model (13) serves as the 
master problem. Given an optimal solution of the master problem, feasible times 
at which salesmen reach the nodes, have to be constructed from it. In case the 
objective function value of the constructed time-feasible solution is equal to the 
objective function value of the time-free solution, we are done and the constructed 
solution is proven global optimal for (5). However, this rarely happens. Therefore, 
the master problem is embedded in a branch-and-bound framework in order to 
obtain all possible time-free solutions. That means the master problem is treated 
as infeasible. For any of the time-free solutions, we try to construct a feasible 
counterpart with respect to the time constraints. If the time-feasible solution has 
the best objective function value found so far , it is stored. The time-free solution 
is then cut off in the branch-and-bound process. This can additionally be done for 
all salesmen permutations in order to prevent a repetition due to symmetries. If 
for a given time-free solution no time-feasible solution exists , we have to cut off 
the time-free solution as well. This method is realized by using the callback func­
tionality of CPLEX. Analyzing the time-free solution before trying to construct 
time-feasibility leads to a speed up in processing. For this we refer to the Section 5. 
For now, we want to concentrate on the construction of a time-feasible solution 
from a time-free solution. 

A tour in a time-free solution may be not connected, thus we call it a pretour. 
Assume we have a time-free solution, which is given through a bunch of pretours 
(not more than the number of salesmen). Then, a salesman is called active, if 
and only if there is an arc ( i, j) E A where the corresponding binary decision 
variable is nonzero in the given time-free solution. Pretours for all active salesmen 
are extracted from the solution. For each of these pretours a time-feasible tour is 
required. 

4.1 Discrete time-feasibility checking 

For a given time-free solution we construct a time-feasible solution by setting up a 
checking sub-MILP for each of the time-free salesman tours. The sub-MILP makes 
use of formulation (5) restricted to those arcs that correspond to binary variables , 
that are nonzero in the given time-free solution. It has to be checked for each 
salesman if a feasible tour exists that can be projected to the corresponding part 
of the time-free solution. If the checking MILP results in a feasible tour for all 
salesmen a total time-feasible tour is found. 

The time-feasibility checking MILP is set up as a minimum flow problem from 
a source to a sink. For salesman s we are able to extract the sequence of targets 
s has to visit from the binary variables x in the time-free solution. Let us assume 
ns is the number of targets s has to intercept and ( v1, v2, .. . , Vn s ) is the sequence 
extracted from the x variables of the time-free solution. Additionally home position 
his considered as the source and we extend our network by a node t , which serves 
as the sink. Thus, V 5 = { h, v1, v2, . . . , Vn

8
, t} denotes the sequence of targets for 

the flow. 
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From the set of all time-expanded arcs we now have to consider only those arcs 
where the corresponding x variable is non-zero in the time-free incumbent. That 
means, the set of arcs our checking MILP is based on, consists of all time-discrete 
arcs departing from home position h and arriving in v 1 , from v 1 to v2 and so on, 
until from Vns -1 to Vns. Additionally, we have to introduce artificial time-discrete 
arcs from Vn

8 
to sink t. That means, for each arc, that arrives in Vn s an arc is 

introduced departing at the time it arrived in vns and arriving in t one t ime step 
later than the latest possible arrival time of s in Vn s . The distance of all arcs 
between Vn

8 
and t is zero. We denote the set of all arcs by A 8 • 

According to the time-discrete model, we introduce binary decision variables 
xf,·;ucc(i) describing the decision of sending salesman s from target ito its successor 
succ(i) starting at time step p and arriving at time step q. The corresponding 
predecessor of i is denoted by pred(i). Then , the time-feasibility checking MILP 
for salesman s is formulated as follows: 

min c!!•q xp,q 
i,succ( i) ,s i,succ( i)' (14) 

( i,p,succ( i) ,q)E A 5 

s .t. p,q - 1 .f . - t 
X d( ) . - , l J - , pre J ,J 

{ 

-1, if j = h, 

p:(pred(j) ,p,j ,q)EAs '""' . . xq,p otherwise. 
D p:(J ,q ,succ(J) ,p)E A 5 J ,succ(J)' 

The optimization problem (14) aims to find t he shortest flow from h . to t. This 
kind of optimization problem can be solved in polynomial time by, e.g., Dijkstra's 
algorithm [3]. In case the checking MILP (14) results in a feasible tour for each 
salesman, we are able to construct a time-feasible solution for (5) by combining 
all salesman tours . If any of the salesman solutions is infeasible the construction 
process is aborted . 

4.2 Continuous time-feasibility checking 

According to our time-continuous model (12) , there is another possibility to for­
mulate the feasibility checking sub-MILP. In case the trajectories of all targets 
are straight lines with constant speed, the checking MILP can be modeled as a 
quadratic program without discrete time steps: 

Vn s -1 

min ch ,v1 (th , tl) x~~~t11 + L 
i=v1 

ti,t succ(i) t i, t 8 ucc(i) 
ci ,succ(i) xi ,succ(i) ' 

s .t . t i, tsucc(i) < MAX ( ) 
c . c·) v . tsucc(i) - ti ' t,succ t -

'If i = h, Vl, . . . , Vn s , 

tf ~ t i ~ t f , Vi = 1, ... , ns. 

(15) 

Here, ci ,j ( t i, tj) again denotes the Euclidean distance between position of node i 
at time step ti and node j at time step tj. In the objective function all traveled 
distances are summed up, while in the restriction time-feasibility is checked. That 
means, the travel time s needs to go from i to succ( i) has to be at least that high , 
that t he used speed of traveling is at most v MAx, the maximum speed. The bounds 
restriction ensures t hat each node is reached within its specified visibility window. 
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5 lmplementational D etails 

To solve the time-free problem and to construct feasible times for the salesman 
tours , we embed the time-relaxed problem (13) within a branch-and-bound frame­
work. The model (13) is called master problem. To check the solutions of the master 
problem and to produce the best time-feasible solution we used the callback utili­
ties of CPLEX. We implemented an instance of the LazyConstraintCallback and 
an instance of the BranchCallback. 

Each time a candidate feasible solution of the master problem is found at a 
node in the branch-and-bound tree CPLEX' LazyConstraintCallback is invoked. 
This is a user written callback to solve mixed-integer linear programs (MILP) 
while applying constraints in a "lazy" fashion, i.e., only when they are violated. 

The LazyConstraintCallback performs a checking of the candidate feasible so­
lution (master problem) and a possible construction of the feasible times according 
to (14) and (15) . Algorithm 1 presents an overview of the callback. A more detailed 
description of single steps is given in the following . 

In line 2-3 of the algorithm the branching rule is given. If the lower bound 
at a node is greater or equal to the best found objective function value of an 
incumbent, we will exit this callback and prune the current node. This is done by 
CPLEX' BranchCallback, which is invoked afterwards. Besides pruning subtrees 
the BranchCallback performs branching the same way CPLEX is suggesting it. 

Since (13) is a multi-commodity flow formulation, any solution presents a fea­
sible flow but not necessarily a feasible salesman tour due to the lack of subtour 
elimination constraints. In line 4-6 of Algorithm 1 we extract the solution for every 
salesman and test whether one of these candidate tours contains a cycle. If a cycle 
C C A is found, it will be cut off by the following constraints: 

L Xi ,j ,k :::; ICI - 1, \:lk E w. 
(i ,j)EC 

(16) 

Before setting up a MILP to solve the time-feasibility checking, we are able 
to exploit the visibility windows of the sequential targets of a candidate salesman 
tour to get information about time-feasibility. In line 7-9 a prechecking on time­
feasibility is performed by means of interval propagation. To check the tour of 
an active salesman we start at the first node of this tour. It can be reached over 
the whole visibility window from the salesman home position. Then, the visibility 
window defines the departure interval to travel to the second node. This has to be 
adjusted to the arrival interval of the second node, which is related to the visibility 
window of the second node. This procedure is visualized in an example shown in 
Figure 1. Here, the arrival interval of node v1 is the discrete interval [2 , 5]. This 
interval reduces to the departure interval [2, 3] because with a later departure the 
salesman cannot reach the following node v2 within its visibility window of [0 , 4]. 
Then, the corresponding arrival interval of v2 is [3, 4]. The departure interval of 
v2 has to be within or equal to [3, 4]. It has to be checked with the visibility 
window of the next node and so on. In case there is an infeasible interval , we have 
the information that the corresponding salesman tour is time-infeasible. Thus, the 
solution can be rejected. This is done by adding a global cut to the master problem. 
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Algorithm 1: CPLEX LazyConstraintCallback: Check time-free solution and 
if exists construct solution with times. 

Data: Time-relaxed x variables, best objective function value found so far 
besLobj _val 

Result: If exists time-feasible tours for all salesmen 
1 #Exploit bounds 
2 if current objective function value curr _obj _val 2:: besLobj _val then 
3 L return; 

4 #Cycle detection 
5 if x solution of an active salesman s contains a cycle then 
6 l add cut for all salesmen; 
7 return; 

8 #Time-feasibility checking by interval propagation 
9 if x solution of an active salesman s can be identified as time infeasible then 

10 l add global cut for all salesmen; 
11 return; 

12 #Checking 
13 initialize current solution curr _sol +--- 0; 
14 initialize alLsalesmen_feasible +--- true; 
15 initialize objective function value for time-feasible solution tour _val +--- 0; 
16 for each s E W do 
17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

if s is not active then 
L continue; 

if alLsalesmen_feasible i- true then 
L break; 

if time-free x solution part for s is already in solution pool then 
get time-feasible solution tour t for s; 
if t is infeasible then 
L alLsalesmen_feasible +--- false; 

else 
set up MILP to comput e time-feasible tour t for s; 
solve MILP; 
if MILP is infeasible then 

I 
alLsalesmen_f easible +--- false; 
add cut to cut off t his x solution part for a ll salesmen; 

else 

l #t is valid tour of s; 
tour _val +--- add objective function value oft; 
curr _sol = curr _sol U t; 

add time-free x solution of s and t to solution pool; 

36 if alLsalesmen_feasible =true then 
37 add cut to prevent solution to be repeated by other salesmen; 
38 if tour _val < besLobj _val then 
39 l best_obj_val = tour_val; 
40 save curr _sol; 
41 return; 

11 
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discrete 
arrival 
interval 

Fig. 1 Interval propagation. This figure presents the home position h of all salesman and 
a given salesman tour consisting of the sequence h , v1, v2. Each target is visualized by its 
trajectory and the corresponding discrete time steps, which are given by numbers . 

Therefore, consider an infeasible sequence of arcs P c A from node r to nodes, we 
can formulate the following constraints for each salesman to cut off this solution: 

L Xi, j ,k ::; IPI- 1, Vk E w. 
(i, j )EP 

For a pair of anti-parallel arcs ( i , j) and (j , i) we have 

xi ,j ,k + Xj ,i ,k ::; 1, Vk E W . 

(17) 

(18) 

Thus, lifting IPI - 1 backward arcs into the cut extends the applied constraints to: 

L Xi ,j ,k + L X . . k < IPI-1 J ,t, - ' VkEW. (19) 
(i, j )EP (i ,j)EP\ (pred( s) ,s) 

Interval propagation for the time-feasibility checking with continuous times is 
done in a similar way. In general the resulting arrival interval is slightly larger, 
see Figure 2, due to an exact calculation of the travel time. The travel time is 
not rounded to the next time step, its exact value is computed from the maximum 
salesman speed and the Euclidean distance between the corresponding positions of 
the targets. With this a salesman is able to arrive earlier and to depart later com­
pared to the time-discrete case. Computation of the exact departure and arrival 
interval consists of identifying the values t : fn, ttf::~x, t<;:;;,[n and t~~x' as visualized in 
Figure 2. As an initialization we take the whole visibility window [t8 , t E ] as the de­
parture interval and therefore compute the possible arrival interval for the arrival 
node. Since only a constant maximum speed is considered we take the equation of 
motion to compute t<;:;;,[n, which has to be within its visibility window: 

max ( arr S) II II V · tmi n - t = Parr - Pdep 2 ' (20) 

where Parr and Pdep are the positions of the nodes at the times t<;:;;,[n and t
8 

respectively. Since the right hand side of the motion equation is also depended on 
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Fig. 2 Interval propagation. Visualized is the discrete departure and arrival interval between 
consecutive nodes and t he extended departure and arrival interval between consecutive nodes 
when continuous times are considered. '='his figure presents the home position h of all salesman 
and a given salesman t our consisting of the sequence h, v1, v2. Each target is visualized by 
its trajectory and the corresponding discrete time steps, which are given by numbers . The 

variables t~fn and t'/::;'fx define the exact departure interval and t~[n and t~~x define the 
exact arrival interval. 

tC:::[n we have to square both sides and replace Parr and Pdep by their trajectory 
descriptions. This leads to a quadratic equation and tC:::[n can be obtained. e;;;;;x 
is set to tE of the arrival node, because waiting is permitted for salesman s. 

The next step is to calculate the right departure interval based on the recently 
computed arrival interval in the same way. For the next pair of consecutive nodes 
an intersection of the departure interval and the arrival interval of the former pair 
has to be taken. In case an empty intersection has been detected the salesman 
tour is time-infeasible. 

As mentioned earlier CPLEX' BranchCallback is responsible for pruning nodes 
or subtrees. The decision on which variable branching is performed adheres to 
CPLEX, but the BranchCallback supports a way to give information to the new 
generated nodes. We use this technique to give an adjusted set of arcs to the 
new nodes. This set is then further adjusted according to CPLEX' branching 
strategy. That means when branching is performed we get new information about 
the solution in this subtree in the case the branch variable is set to 1. In the other 
case, where the branch variable is set to 0 there is no additional information. 
More precisely, assume the branch variable that is set to 1 puts node w after 
node v for salesman s . Then, we have the information that all existing time­
expanded arcs {(i,p , w,q) E ATD I i E V\ {v}} that end in w can be removed for the 
solution procedure of the current node being processed. This information is passed 
down in the branch-and-bound tree and further adjusted in the corresponding 
subtree at nodes wit h branch varia,bles, which are set to 1. Based on the local and 
adjusted set of time-expanded arcs , we can recompute the distance coefficients 
ci, j ,k for the time-relaxed model (13) . In case the distance coefficients change, 
we introduce a new constraint to tighten the time-free model. This gives us an 
extended solution procedure. Additionally, time-feasibility checking by interval 
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Table 1 Instance settings. 

salesmen 
targets 1 2 3 4 6 

4 X X X 

6 X X X X 

8 X X X 

propagation can be performed on the local time-expanded set of arcs after global 
time-feasibility checking. In case of time-infeasibility a local cut is added to the 
current subtree. In any other case a time-feasible solution can be obtained because 
of valid departure and arrival time intervals. This solution is then calculated by 
setting up and solving the checking MILP. 

Finally, when a time-feasible solution is found there is a time-feasible tour for 
each active salesman. This solution has to be returned manually to the master 
problem and to the best solution found so far. Infeasible solutions are cut off by 
lazy constraints. 

Summing up, we have the time-discrete model (5) (TD for short), the time­
continuous model (12) (TC), the time-free model (13) with time-discrete feasibility 
checking (14) according to Algorithm 1 (TF-TD), the time-free model (13) with 
time-continuous feasibility checking (15) according to Algorithm 1 (TF-TC) and 
the time-free model (13) with discrete time-feasibility checking according to Algo­
rithm 1 extended by local information (TF-TDloc). 

6 Comp utational Results 

\li.ie applied our methods described above to a set of randomly generated test in­
stances. A test instance is generated by specifying the number of salesmen and the 
number of moving targets . For each of those pairs we created 25 instances, where 
the trajectory generation with more targets are based on the trajectories for fewer 
targets . That means an instance with 6 targets contains the same 4 trajectories as 
in the instance with 4 targets (plus 2 new ones) . We generated our test instances 
and checked afterwards if they are really solvable by a primitive check. This check 
was simply a test if the number of targets is divisible by the number of sales­
men without remainder. The positive outcome provided an allocation of targets to 
salesmen. With the allocation we tested if each salesman can intercept its part of 
the targets one after another in the middle of the respective trajectories. If it is not 
possible our trajectory generation is repeated. Due to this checking procedure, the 
target and salesmen pairs we used can be found in Table 1. The operating space 
is a square of size 500 length units. Due to reasons of visualization the trajectories 
of the targets are generated to have random lengths between 100 and 400 length 
units. The targets are assumed to have a constant traveling speed of 16 length 
units per time step. That leads to the normal or single (1) precision of time steps. 
The instances are then expanded by a higher discretization of time steps. We used 
a double (2) and a fourfold ( 4) precision for our tests. More precisely for two con­
secutive time steps we introduced a new one in the middle for double precision. 
Taking double precision and again introducing new time steps in the middle of 
two consecutive time steps leads to fourfold precision. 
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Table 2 CPLEX parameter settings. 

model I CPLEX parameter parameter value 

TD EpGap 0.0 
MIPEmphasis 3 

TC EpGap 0.0 
MIPEmphasis 3 
BarQCPEpComp 1e-8 

TF-TD EpGap 0.0 
MIPEmphasis 3 
HeurFreq -1 

TF-TD subMILP 1 EpGap 0.0 
TF-TC EpGap 0.0 

MIPEmphasis 3 
HeurFreq -1 

TF-TC subMILP EpGap 0.0 
BarQCPEpComp 1e-8 

The salesmen have a maximum traveling speed of 200 length units per time 
step. T heir actual traveling speed can be any value less or equal to the maximum 
speed in order to permit waiting. In all instances salesmen start their tours at the 
"home position", an initial position in the center of the operating space. 

Our proposed methods are not restricted to the two dimensional space. They 
can also be applied to the n-dimensional space, n E N. Furthermore our time­
discrete models are not restricted to linear trajectories , it is also possible to handle 
non-linear trajectories. In order to compare all models with each other we only 
used linear trajectories and a constant traveling speed of the targets. 

The time-expanded model (5) was solved with the MILP solver CPLEX using 
a start heuristic described in [18]. The CPLEX parameters we used are listed in 
Table 2 all other parameters were used with their default values. 

The time-continuous model (12) could be implemented in CPLEX as a second 
order cone program due to the assumption of linear trajectories and constant 
speed of the moving targets. In this case it is a convex optimization problem with 
constraints that formulate second order cones. We also used CPLEX to solve such 
problems. We set the parameter for the convergence tolerance for quadratically 
constrained problems (BarQCPEpComp) to 1e-8. All parameters we set differently 
from t heir default values can be extracted from Table 2. 

The time-relaxed models were also solved by CPLEX. We turned off the pa­
rameter for the node heuristic (HeurFreq) in order to save running time. The node 
heuristics would permanently check time free solutions that are usually infeasible 
and furthermore these solutions would arise repeatedly. For TF-TC we used the 
same convergence tolerance parameter (BarQCPEpComp) as in its counterpart 
with time. We refer to Table 2 for the complete list of applied CPLEX parame­
ters. To compare computational running times of all five models we aggregated the 
running times of each test set by using the geometric mean of the 25 instances in 
each test set. The values are given in Table 3. The first three columns specify the 
test set, where the first column (nbt) denotes the number of targets, the second 
column (nbs) denotes the number of salesmen and the third column describes the 
precision of the time steps. Column 4 to 8 contain the geometric means of the 
computational running times of the proposed five models. The missing values in 
the last row result from a computer memory that was not sufficient for solving 
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Table 3 Geometric mean of the running times of all proposed models. 

instance 
nbt nbs precision TD TC TF-TD TF-TC TF-TDloc 

4 1 1 0.2665 0.0963 0.0472 0.0457 0.0473 
4 1 2 8.9292 0.0963 0.0761 0.0457 0.0767 
4 1 4 89.9859 0.0963 0.1871 0.0457 0.1939 
4 2 1 2.1852 0.1371 0.0553 0.0601 0.0549 
4 2 2 40.0755 0.1371 0.0894 0.0601 0.0899 
4 2 4 170.9560 0.1371 0.2143 0.0601 0.2195 
4 4 1 6.6612 0.3301 0.0934 0.0692 0.0936 
4 4 2 68.2254 0.3301 0.1975 0.0692 0.1989 
4 4 4 269.6514 0.3301 0.5855 0.0692 0.5905 
6 1 1 1.5033 0.1917 0.3848 0.2720 0.4007 
6 1 2 41.9211 0.1917 1.0185 0.2720 1.0822 
6 1 4 563.2793 0.1917 3.4645 0.2720 3.6497 
6 2 1 16.3594 0.9682 0.6293 0.4074 0.6743 
6 2 2 147.5708 0.9682 1.5951 0.4074 1.7370 
6 2 4 738.3345 0.9682 5.3395 0.4074 5.8295 
6 3 1 29.9652 3.1040 0.8601 0.3496 0.9173 
6 3 2 177.8745 3.1040 2.1990 0.3496 2.3505 
6 3 4 675.9556 3.1040 7.2594 0.3496 7.7560 
6 6 1 75.3395 59.9248 10.2121 3.2947 10.2333 
6 6 2 308.3957 59.9248 20.7388 3.2947 20.8952 
6 6 4 1197.5080 59.9248 59.3193 3.2947 59.8541 
8 1 1 3.6934 0.6386 3.0288 1.9126 3.3066 
8 1 2 116.3597 0.6386 9.2450 1.9126 10.2484 
8 1 4 1460.2306 0.6386 32.2851 1.9126 36.0268 
8 2 1 56.5407 23.8182 8.9582 3.5514 9.9173 
8 2 2 441.6773 23 .8182 25.4224 3.5514 28.5381 
8 2 4 2373.6045 23.8182 94.4134 3.5514 106.7477 
8 4 1 122.5020 837.2738 92.1096 32.4143 96.5363 
8 4 2 510.0498 837.2738 179.6741 32.4143 185.6987 
8 4 4 2549.0757 837.2738 - 32.4143 -

some of the used instances. Our computational experiments were carried out on 
an Apple Mac mini computer running the MacOS 10.9.5 operating system with 
an Intel Core i7 running at 2.6 GHz on 4 cores, 6 MB L3 cache, and 16 GB 1600 
MHz DDR3 RAM. The version of CPLEX we used was 12.5.1. 

For the test set with 4 targets and 2 salesmen we put the problem sizes and 
the non-aggregated running times of all 25 instances in Table 4. The same values 
for the test set with 6 targets and 6 salesmen can be found in Table 5. In both 
tables problem sizes are compared for single precision and fourfold precision, where 
the respective first column (nbv) denotes the number of variables, the respective 
second column (nbc) is the number of constraints and the third column (nbn) 
represents the number of non-zeros in the corresponding MILP. Columns 7 to 11 
show computational running times of the instances with fourfold precision. The 
last row in Table 4 and Table 5 contains the aggregated running times for all 25 
instances. 

Looking at the values of the TD model in column 4 of Table 3, it is obvious 
that the values strongly correlate with the precision of time steps, but not with the 
number of used salesmen. The TD model is embedded in a time-expanded graph, 
which grows drastically in number of arcs when applying instances with a high 
number of time steps (high precision). Since the TC model is independent of time 
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Table 4 Problem sizes and exact running times of all proposed models for the 25 instances 
with target number 4 and number of salesmen 2. 

precision 1 precision 4 running times for precision 4 
nbv nbc nbn nbv nbc nbn TD TC TF-TD TF-TC TF-TDloc 

1314 124 5174 16988 454 67636 122.55 0.15 0.06 0.03 0.06 
2114 158 8356 28492 590 113582 190.59 0.20 0.80 0.13 0.86 
2496 174 9872 34198 654 136356 255.22 0.16 0.29 0.06 0.29 
2880 174 11396 40194 654 160302 444.16 0.16 0.94 0.14 0.99 
1478 134 5826 19752 494 78684 98.20 0.10 0.17 0.05 0.18 
3022 186 11964 42252 702 168526 365.98 0.14 1.00 0.11 1.06 
1564 138 6168 20556 510 81884 146.07 0.13 0.12 0.03 0.12 
2022 164 7988 27618 614 110082 117.06 0.16 0.49 0.08 0.50 
2768 182 10952 38744 686 154514 260.89 0.12 0.40 0.07 0.39 
3132 186 12404 43996 702 175496 266.39 0.15 0.08 0.02 0.08 
2116 160 8362 28754 598 114616 180.87 0.11 0.09 0.04 0.09 
1028 118 4038 13056 430 51948 85.21 0.11 0.07 0.04 0.06 
3078 178 12188 43038 670 171666 440 .82 0.13 0.53 0.09 0.52 
1278 128 5030 16498 470 65682 111.91 0.09 0.05 0.03 0.05 
1888 154 7454 25432 566 101350 143.18 0.12 0.68 0.16 0.72 
1726 148 6818 22862 550 91108 116.33 0.15 0.69 0.16 0.71 
2066 158 8158 28456 590 113422 213.58 0.13 0.14 0.04 0.13 
1138 116 4472 14662 422 58350 105.04 0.13 0.13 0.05 0.14 
2326 170 9200 31706 638 126414 137.81 0.17 1.11 0.15 1.10 

980 114 3848 12592 414 50094 68.34 0.15 0.12 0.05 0.12 
1926 152 7604 26280 574 104740 182.70 0.11 0.27 0.10 0.27 
2244 154 8868 30954 574 123400 241.26 0.25 0.07 0.04 0.07 
3714 202 14718 52928 766 211174 397.71 0.17 1.10 0.10 1.19 
1570 148 6190 20710 550 82494 123.66 0.13 0.04 0.02 0.05 
1162 124 4570 15178 454 60414 101.22 0.10 0.03 0.03 0.03 

2: 4916.75 3.52 9.45 1.83 9.78 

steps, the model is solved once. For reasons of better comparisons we take this 
one geometric mean value for all three different precision values, as can be seen in 
Table 3. However, the values of the TC model strongly correlate with the number 
of salesmen. That means a high number of salesmen makes the problem more 
difficult. This effect becomes particularly apparent at instances with 8 targets. 
Running times are increased by a factor of 103 when considering salesman number 
from 1 to 4. 

The t ime-free running times have a similar correlation behavior as their coun­
terparts with time. For a comparison of time and time-free variants we put the 
running time values in graphical visualizations, see Figure 3 for the TD and TF­
TD models and Figure 4 for the TC and TF-TC models. In the first picture of 
Figure 3 instances with 4 moving targets are considered. In the second picture 
instances with 6 moving targets and in the third picture instances with 8 moving 
targets are visualized. In all three pictures it is obvious, that the time-free variant 
(dashed lines) outperforms the variant with times (solid lines). This might indi­
cate that for instances with 4, 6 and 8 targets the TF-TD variant usually runs 
faster than the TD variant. This behavior can also be seen when looking at the 
exact running t imes in Table 4 and Table 5. The values of column TF-TD are far 
below the running time values of column TD, even if the computational effort for 6 
targets and 6 salesmen is much higher than for 4 targets and 2 salesmen. To solve 
all 25 instances with 4 targets and 2 salesmen TF-TD only needs about 0.2% of 
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Table 5 Problem sizes and exact running times of all proposed models for the 25 instances 
with target number 6 and number of salesmen 6. 

precision 1 precision 4 running times for precision 4 
nbv nbc nbn nbv nbc nbn TD TC TF-TD TF-TC TF-TDloc 

10338 516 40986 139008 1920 554610 901.23 57.70 8.73 0.25 8.70 
11826 576 46920 160290 2160 639672 1154.05 29.66 23.66 0.69 28.47 
17292 684 68694 240480 2592 960054 1705.57 43.53 28.58 0.50 29.77 
20076 696 79782 283758 2640 1133016 2350.53 52.05 36.46 0.74 37.21 
10902 540 43230 148518 2016 592608 1021.46 72.34 55.20 4.84 55.99 
15708 648 62382 218814 2448 873498 1764.26 64.60 334.86 39.94 336.02 

9900 528 39240 132816 1968 529848 855.83 47.18 21.85 0.84 21.56 
11250 588 44616 152082 2208 606846 625 .70 82.27 176.01 17.25 181.08 
17340 690 68880 243378 2616 971658 1622.43 71.23 325.67 32.56 253.97 
19446 702 77292 273636 2664 1092600 2070.53 77.44 285.50 15.82 291.88 
12804 594 50814 175974 2232 702306 1275.71 54.24 281.25 40.80 307.38 

9906 522 39264 133044 1944 530772 964.50 69 .27 33.69 1.87 32.75 
18018 666 71586 253482 2520 1012026 1977.32 39.92 44.58 1.24 47.08 
11034 558 43758 150624 2088 601038 1094.28 76.71 198.38 19.86 208.19 
11748 564 46602 160152 2112 639072 969.60 94.12 159.67 10.08 162.81 
13926 612 55284 190332 2304 759696 1618.97 47.84 380.44 59.42 359.68 
12546 588 49782 171036 2208 682584 1022.71 61.94 56.90 4.04 56.90 

9372 492 37134 127062 1824 506910 1383.62 45.72 6.17 0.38 6.52 
12420 612 49284 168354 2304 671838 842.11 59.39 82.20 5.40 68.30 

6936 438 27450 89874 1608 358374 471.37 81.10 47.28 4.00 48.81 
10272 546 40722 137934 2040 550326 831.70 73.37 28.09 2.42 33.22 
14466 600 57420 200280 2256 799398 1427.90 77.25 7.32 0.18 7.63 
19560 726 77730 276570 2760 1104288 1822.87 79.24 355.87 39.57 346.95 
12456 600 49422 170994 2256 682428 1007.93 48.09 35.66 1.40 36.02 
11766 552 46674 159666 2064 637140 1308.09 46.55 8.29 0.11 7.91 

I: 32090.27 1552.73 3022.32 304.18 2974.80 

the time TD needs to solve the instances (see the last row of Table 4). Regarding 
6 targets and 6 salesmen TF-TD needs 10% of the TD time (see the last row of 
Table 5). 

In Figure 4 the TC variant is compared with its time-free counterpart TF-TC. 
Since there is no time discretization and therefore no precision that can be raised 
to make the problem instances more difficult, we looked at the number of salesmen. 
A high number of salesmen also results in more difficult problem instances. The 
three pictures visualize the geometric mean of the running times for the different 
target numbers 4, 6 and 8. Running times increased over the number of used 
salesmen, but the time-free variant TF-TC has lower running times in all three 
diagrams when more than one salesman is considered. Looking at the aggregated 
running times in Table 4 and Table 5, we have that TF-TC only needs about half 
as long (50%) as TC to solve all 25 instances with 4 targets and 2 salesmen. For 6 
targets and 6 salesmen TF-TC only needs about 20% of the time, that TC takes 
to solve all 25 instances. 

The last column of Table 3 is the time-free variant TF-TD extended by local 
information about arcs with times from the current branch-and-bound tree. The 
aim was to exploit this information to create cutting planes in order to prune nodes 
in the branch-and-bound tree for an advantage in running times. Comparing the 
values of column 6 and 8, makes clear that the values are very similar, thus there 
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Fig. 3 Visualization of computational r unning times of the time-discrete model variants for 
target numbers 4, 6 and 8. 

is no advantage visible through applying local information. For a target number 
of 6 and 8 the values of TF-TDloc are all worse than the values of TF-TD. 

Summarizing, for a test set defined by number of targets and number of sales­
men we created 25 instances. We solved the instances for three different precision 
values (discretization) and then took the geometric mean of the 25 running times. 
Based on these values we observed that the TD variant is precision sensitive and 
the TC model with continuous times is very sensitive against the number of sales­
men. Regarding difficult instances, that are instances with either a high precision 
value or a high number of salesmen, the time-free variants beat the variants with 
time. Since the range of application for the discrete model variants (TD, TF-TD) 
and the continuous model variants (TC, TF-TC) is different, it is not straightfor­
ward to make a comparison over all model variants . The discrete variants allow 
for nonlinear target trajectories and variable speed functions, while the continuous 
variants are restricted to linear trajectories and constant target speeds. Further­
more the discrete variants apply for problems based on time steps (e. g. , time 
tables) , where departure and arrival take place exactly at these time steps and not 
in between as in our continuous variants. Nonetheless we restricted our problem 
instances to linear trajectories and constant speed of each target, in order to solve 
them with all variants for a comparison of computational run-times. Regarding 
the difficult ones of our instances, the best choice with respect to running times is 
the TF-TC variant. 
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Fig. 4 Visualization of computational running times of the time-continuous model variants 
for target numbers 4, 6 and 8. 

7 Conclusion 

We addressed a dynamic variant of the TSP, where several salesmen are looking for 
their tours through a system with moving targets . The targets enter the system at a 
certain time and leave the system again, after a while. Intercepting is only possible 
during this visibility time interval. We presented two model formulation, the first 
(TD) is based on discrete time steps and the second one (TC) uses continuous 
times by applying big-M constraints. Due to the different modeling of time both 
variants have different characteristics inherent. The precision sensitive TD model 
requires very long computational times especially when the number of time steps is 
increased. While the TC model is independent of number of time steps, it correlates 
with the number of salesmen and therefore results in high running times. 

Our main research focus is on another modeling variant . We completely re­
laxed the time aspect and solved the resulting simple time-free program. With 
some analysis of the time-free solutions and re-integrating parts of the time re­
strictions, global optimal salesman tours can be constructed. The re-integration of 
time can be done using discrete and continuous times. While the time-free variants 
follow a similar correlation behavior to their counterparts with time, for most of 
the considered instances they result in lower running times. Exploiting local infor­
mation during branching does not result in an apparent effect for running times. 
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For continuous times the time-free variant is faster for most of our instances. Thus, 
having linear trajectories and const ant speed TF-TC is the most promising vari­
ant with respect to computational running times. In case of nonlinear trajectories 
TF-TD would be the first choice. 
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