
UNCLASSIFIED

AD NUMBER:

LIMITATION CHANGES

TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD0843577

Approved for public release; distribution is unlimited.

Distribution authorized to US Government Agencies Only; Export Control; 1
Oct 1968. Other requests shall be referred to Rome Air Development
Center, Griffiss AFB, NY 13441.

RADC, USAF ltr dtd 13 Jun 1969

v\

CO

QO
a

RADC-TR-68-250
October 1968

DEVELOPMENT OF A MULTIDISPLAY, TIME-SHARED COMPUTER
FACILITY AND COMPUTER-AUGMENTED MANAGEMENT-SYSTEM RESEARCH

D. C. Engelbert
W. K. English

J. F. Rolifson

Controctor; Sfwferd Research Institute
Controct Number: AF30(6C2)-4103
Effective Dote of Controct; 23 February 1966
Controct E»|Mrotion Dote: 7 Morch 1968
Amount of Controct 659,204.00
Program Code Number: 7D30

Principle Investigator; D. C. Engelbort

Project Engineer: Fred Normond, RAOC
Phone: AC-315-3X-3678

Sponsored by
Advonced Reseorch Projects Agency

ARPA Order No. 967

This document is stdiiect to special
export controls and each transmittal
to foreign governments, foreign na
tionals or representatives thereto may
be made only with prior approval of
RADC (ENUF), GAFB, N Y.

Rome Air Development Center
Air Force Systems Commond

GriHiss Air Force Bose, New York

O

1 N0V251** j ll
c

/

t
—•i'.

WkM US Gov«n-e«i ar.wi«*«. .p«:ifie.u*««. or orWr dots arc us«d for wy por^e o<h«r

toiler “y “ -y ••y ***

Do aot roMfo ikis copy. Rotaio or deoiioy.

■ If, '
..w,..

W..

>

DEVELOPMENT OF A MULTIDISPLAY, TIME-SHARED COMPUTER

FACILITY AND COMPUTER-AUGMENTED MANAGEMENT SYSTEM RESEARCH

D. C. Engelbert

W. K. English
J. F. Rulifson

Stanford Rasearch Institute

This document is subject to special
export controls and each transmittal
to foreign governments, foreign na¬
tionals or représentât ives thereto may
be made only with prior approval of
RADC (EM1IF), GAFB, N Y. 13440.

This research was supported by the
Advanced Research Projects Agency
of the Department of Defense and
was monitored by Fred Normand
RADC (EMIF), GAFB, N Y. 13440
under Contract AF30(602>4103.

I

CONTEHTS

I INTRODUCTION j

II SOFTWARE DEVELOPMENT 4

III HARDWARE DEVELOPMENT 13

IV MANAGEKCNT-SYSTEH RESEARCH 26

APPENDIX A: GENERAL BACKGROUND A-l

APPENDIX B: HARDWARE REFERENCE MANUAL B-l

APPENDIX C: WIRELIST GENERATOR PROGRAM ^1

APPENDIX D: TREE FCTA D-l

BIBLIOGRAPHY E-l

▼

»

—.—_ 2

LIST OF ILLUSTRATIONS

Fig. II-l Functional Organisation of NLS 940 10

Fig. I1-2 Overlay Structure of NLS 940 12

Fig. III-l Facility Configuration of SDS 940 Computer is

Fig. III-2 Special Devices Channel 19

Fig. III-3 Executive Control Debugging Panel 2I

Fig. III-4 Display Console 2S

Fig. IV-1 All! Sponsors' On-Line Conference 55

vi

MM

INTRODUCTION

1 INTRODUCTION

IA This is the final report for a contract that began in February
1966 as a one-year exploration into computer-augmented management
techniques, and ended two years later, having focused mostly on the
development of an advanced research facility that will serve as a

laboratory for the exploration of computer aids to management.

1A1 The initial management-techniques project, as integrated into

the Augmented Human Intellect (AHI) Program at SRI, was to pursue
its research goals by developing computer-augmented management

techniques to be used and evaluated in the management activities

within the Program.

1A1A Appendix A describes the AHI Program, its "Bootstrap

Community" plan, specific features of its experimental
approach, its prior support history, and the status of the

Program at the beginning of this project.

1A2 A major change in the plans of the AHI Program -- i.e., to

establish a large computer-display research facility specially

designed to support the AHI research program — was approved early
in the contract period and resulted (with the knowledge and

approval of the contract monitor) in the following:

1A2A Deferment of the management-system research until the

major change was implemented

1A2B Enlargement of scope and increase in funding for this

project to support the new AHI research facility. This

enlarged facility will provide greatly increased power for
management-system research and experimentation.

1A3 The new facility is to provide continuous service to the AHI
research staff, to use both in their daily work (design, study,

document, program, plan, etc.) and in their system-improvement

experimentation.

1A3A The new facility development is behind its initial

schedule, so that the management-system research has involved a

larger proportion of conceptual and methodological study, and a

smaller proportion of computer programming and

special-technique utilization than was initially planned.

1A4 This report includes the following:

1A4A Description of Software Developments:

1A4A1 A set of Special-Purpose Languages (SPL's) to

1

j.

INTRODUCTION

facilitât« systea programing in the areas of user-display
interactive dialogue, character-string analysis,
character-string construction, and ring-structure
manipulation.

1A4A2 MDL940 (or siaply MDL), a Machine-Oriented Language
for doing detailed systea-subroutine programing

1A4A3 Tree Meta, a conpi1er-generation systen used to
produce the compilers for the SPL's end to produce the
syntax analyzer for the MOL coapiler.

1A4A4 The On-Line Systea (NLS), which interactively serves
the CRT work stations. It is designed for aaximua ease in
developing and Modifying both the service functions
available to a user and the particular "dialogue procedures"
used to control the application of these functions. Tree
Meta, the SPL's, and MOL are designed to serve the need for
flexible development and evolution of the NLS).

1A4B Description of the hardware 'developments for the new
multiconsole tiMe-shared nan-computer research systen:

1A4B1 An SDS 940 tine-sharing computer, using the latest
time-sharing system developed by Project GENIE, University
of California, Berkeley.

1A4B2 A 96-nillion-character disc-file system.

1A4B3 A custom-built display system, using two
character-vector generators to drive twelve S-inch CRT's,
with twelve independent closed-circuit TV systems providing
17-inch displays in AHI offices and laboratories.

1A4B4 User-control input equipment, associating with each
display a typewriter-like keyboard, a "mouse" (a
screen-selection device developed by SRI), a five-key keyset
(SRI-developed, for one-handed, chord-coded character
input), and a footswitch (making visible, as special
symbols, the normally non-visible space, tab, and
carriage-return characters).

1A4B5 A special SRI-built interface, to service the display
and input equipment with a minimum of burden on the CPU.

1A4C Description of Management-Research Developments:

1A4C1 The framework within which we view the research —
the organization to be managed, the "system" of management

2

INTRODXTION

to be studied and improved, etc.

1A4C2 The "ROMAN" (ROne MANafeeent) system of on-line aids
for analyzing management data -- initial development, early
in the project, on the CDC 3100.

1A4C3 Planning for the next stage of management-system
research.

1A4D Appendix A describes the AHI Program, including a
discussion of the bootstrap strategy and the notion of
"augmented organization." An outline of existing
text-manipulating systems is also presented. An account of AHI
project support and a brief history of the management-system
project completes Appendix A.

1A4E Appendix B is the programmer's manual for use of the
special SRI-built hardware, giving memory and Interrupt
assignments, new computer instructions, and the means of
controlling the disc, the display system, the console-input
devices, and the line printer. It also lists the character set
available for console keyboards, displays, and line printer,
and gives the octal codes used (uniformly throughout the
system) to represent them.

1A4F Appendix € describes the program used to help in the
fabrication, checkout, and docv*entation of the SRI-built
hardware. It operates on engineering specliications and
generates :

1A4F1 Wire lists specifying the back-panel wiring
connections to be done by fabrication technicians

1A4F2 Printout used to validate the correctness of the
wiring

1A4F3 Printout structured to aid checkout and maintenance.

1A4G Appendix D gives a thorough description of the Tree Meta
compiler-generalion system, including syntax, program
environment, a formal description, some detailed examples, a
bibliography, the Tree Meta compiler written in the Tree Meta
language, and supporting subroutines.

3

II — SOFTWARE DEVELOPUCNT

1 Special-Purpose Languages

IA The software effort for the 940 on-line syste« (NLS) has centered

around the iapleaentation of a set of special-purpose prograaaiing

languages (SPL's). This collection of languages, originally known as
the "Control Metalanguage," began as an attempt to formalize the

"control dialogue" between users and our specialized system. A
complete discussion of the original thnuehts and motivation is given

in Sec. III-3 of (Engelbartó). The SPL's are now a series of distinct

languages, differentiated by radically diverse syntaxes, unusual data

bases, and inherently different algorithmic-control or program-flow
procedures.

IB The current thinking on final causes, standards for designing the

manner of expression of languages, and functional aspects (operations
on data) of the SPL's are quite different from what originally
appeared in (Engelbartó). This evolution has been guided mostly by

shifts of emphasis. Some changes, however, have been qualitative--
they appear as major changes in the characterization of the SPL's.

1B1 Foremost in our design consideration is creating an interface

between the computer (with all of its hardware and software) and
individuals who are designing "user systems." To accomplish this,
the SPL's must somehow embody the potential of the computer and

existing software. They do this by being appropriate in their
generalizations and discriminations (i.e., by having the right
data and operations) and by reflecting this appropriateness in

their syntax. The SPL's are designed to be clear (not necessarily
obvious) to an experienced user. There has been no effort to make

them manifest all of the inherent qualities of the machine and its
system.

1B2 Designing the software foundations to mesh with the

special-purpose languages tends to continuously influence the
final organization of the system. This effect demands that the

machine code supporting the system possess coherent underlying

architecture. It also requires completeness (in command structure
and input codes) and consistency, as the properties of any "user
system."

1B3 Finally, the SPL's present us with a dimension of flexibility

and user-system design experimentation never before possible.

This flexibility is demonstrably unattainable without the SPL's.
Even the most sophisticated macro assemblers and general-purpose
languages lack the required "stylistic" properties.

1B4 It should be noted that the SPL's are neither
self-docunenting systems nor training systems.

4

II — SOFTWARE DEVELOPMENT

1B4A As mentioned previously, the SPL's are to be clear but
not obvious; it will take considerable background knowledge to
even read them. The SPL's cannot be expected to resolve

semantic ambiguity unless the reader has experience and
familiarity almost on a level with the writer.

1B4B A listing of a user system prograamwd in the SPL's will
not, in any sense, serve as a user's guide or a method of
teaching the use of the system. An analogy can be drawn with

linguistics, where one might attempt to use the theory of
transformational graimsars to teach the use of English.

Transformational theory exhibits a philosophical structure of

sentences and the potential for change in the sentences, but
it says nothing about the application or effectiveness of the

sentences. It is necessary first to master English. Having done

so, one may gain insight through transformation theory; and
having mastered a user system, one may gain insight through the

SPL's and the system specifications written in the SPL's.

1C One of the SPL's is concerned primarily with the syntax and

interpretation of the dialogue between a user and the computer

system. The rest are concerned with the execution of the
interpretation on the data bases.

ICI The dialogue syntax and interpretation SPL began as an

attempt to formally define the control-language dialogue of user
systems.

1C1A In the first attempt, the control language was described

as a finite state machine, and the language allowed a formal

textual definition of such a machine. A program written in
the control language accepted input characters from the work
station, gave immediate feedback about each character and the

current control state of the system via the display, and moved
on to the next state, in the restricted context characteristic

of such machines. A more complete discussion of this approach

appears in Sec. V of (Engelbart?).

1C1B It was originally thought that such an approach was

adequate for the definition of user-system control languages.

But, to paraphrase John McCarthy, the mrdel is metaphysically

adequate, but epistemologically inadequate. Implementation

revealed that the dialogue is a non-Markovian (nonstochastic,

historically dependent) process on the part of both the machine

and the user, and accurate characterization as a finite state

machine results in so many states that the model is useless. A

better model is a two-stack automaton with a small number of

immediate-access storage registers. Such an automaton does the
following things:

5

II — SOFTWARE DEVELOPMENT

1C1B1 Accepts input charecters fron a work station

1C1B2 Stores, in its first stack, either the input

characters or a variety of informâtion about its current

state

1C1B3 Stores, in its second stack, specification

information derived from the characters -- e.g., precisely

which character in a file the bug is pointing to

1C1B4 Places other information in its storage registers

1C1B5 Sends ianediate feedback to the work station about
its current control state

iriB6 Moves to its next state on the basis of decisions
influenced by either the first stack or any of the storage

registers. It may even branch to a state whose address it

fetches from the first stack.

1C2 The linear-content-analysis or string-analysis SPL has been

called the "pettem-matcher" in previous reports. Programs
written in this SPL (1) detect entities used in editing or (2)
compute Boolean functions of the presence of entities used in

display filtering.

1C2A The entities detectable within the SPL are characterized

by the delimiting characters or strings around them. For
example, a word might be defined as a string of printing
characters surrounded by blanks or punctuation. Once an

entity is detected, the delimiting positions can be stored for
future use, and general flags may be set to indicate whether
the entity has been found. The algorithmic nature of the

language closely resenfcles the procedures used in top-down
analysis with backup. The syntax of tie entity specification

closely resembles a single BNF rule, with extensions to permit

either left or right scanning, to reposition the scan to
previously stored positions or to specifications from the
second stack of the automaton, and limiting quantification of

an iteration operator.

1C2B The display-filter aspect of the language embeds the

entity-detection constructs in the context of general Boolean
functions, with the extended ability to perform unanchored or

"slide” searches.

1C3 The string-construction SPL is straightforward; it permits
the construction of new strings on the basis of (1) entities from

the linear content-analysis pointers, (2) the contents and format

6

■

II — SOFTWARE DEVELOPMENT

-

of the display through the specification stack, and (3) literal

strings. Statements of the SPL are concatenation rules. Tlie only

control is an "if-then-else” construct in which the Boolean

expression is a linear content-analysis statement, or an order
relation on the absolute positions of previously stored pointers.

1C4 The structure-manipulation SPL is concerned with the
construction of a "ring," whose elements point to the individual

statements created by the string-construction SPL.

1C4A Each ring element contains, among other things, a pointer

to another ring element which points to the successor statement

(if any), a pointer that points to the sublist statement (if
any), and flags to indicate whether this ring element is the

first or last statement at a given level.

1C4B The structure-manipulation language contains a number of

constructs designed for searching and testing the ring and for

linking up ring elements to for* the familar
structured-statement format.

1!) These four SPL's are not a complete system. There are portions
of the system being implemented that should be handled through SPL's

but are not. We intend someday to extend the SPL's as follows:

1D1 There should be an encoding language in which to specify the

mapping of raw input data from the work stations into the

character or macrocharacter format used in the dialogue

syntax-interpretation SPL.

102 The format of the display and the selection of information

displayed should also be handled with a special-purpose language.

While the formatting of the display presents no real problems,

information selection will require a lot of work. We must somehow
make explicit the way in which HOP and JUMP commands will work,

and turn the sequence generator into a special-purpose language.

IDS Finally, there is the graphics SPL. The syntax of the
graphics part of the system should be part of the control-dialogue

SPL. The graphics SPL is in a sense equivalent to the linear

content-analysis and string-construction SPL.

IE A thorough technical report on the SPL's, and detailed
programming documentation on the supporting library, are being

prepared.

7

II — SOFTWARE DEVELOPMNT

2 Tree Mete

2A Developing the SPL's is e dynamic trial-end-error process. The
development could not proceed at a viable pace without a
compiler-generation system. The fact that the SPL's are unspecified,

and much of the nature of their syntax is unforeseeable, means that

the compiler-generation system must also be dynamic. The pliability
of the Tree Meta system has amply sustained the evolution of the
SPL's.

2B Tree Meta is a compiler-compiler system for context-free

languages. Parsing statements of the metalanguage resemble

Backus-Naur fora with embedded tree-building directives. Unparsing
rules include extensive tree-scanning and code-generation constructs.

Appendix D describes the Tree Meta system in detail. Thorough

implementation docisaentation for the SDS 940 appears in the

discussion of the support subroutines. A history of computer

metalanguages and a tutorial guide to Tree Meta are other topics of
Appendix D.

3 The NLS Library

3A The unusual nature of the SPL's means that their operations and

data bases are rarely reflected in the arithmetic-oriented commands
of the counter. Thus, programs written in the SPL's compile mostly

into subroutine calls, and the background of subroutines is called

the NLS Library. The problem of choosing the appropriate

subroutines is the problem of building the right SPL's.

3B The other design problem of the NLS Library is integration into

the time-sharing system so that it performs smoothly, quickly, and
reliably. Considerations, progress, and results in this area are
discussed in (Rulifsonl).

4 MOL

4A Within the SPL/Tree Meta/NLS Library system, it is a formidable
task to ensure that the library will remain readable and

comprehensible, while retaining fast, tight code. The solution to

this problem is the Machine-Oriented Language (MOL). Developed
specifically to support the NLS Library programming effort, M0L940

combines the explicitness of assembly language with the phrase

structure of ALGOL-like languages. Since it allows constructs that
reference the 940 registers, reflect the 940 instruction set, and
smoothly interface with the TSS monitor and executive, it makes

assembly-language coding unnecessary. On the othrr hand, the
structure of the language--with blocks and if, for, while, and case

clauses--significantly improves the readability of the language and
drastically reduces the number of program labels.

8

SOFTWARE DEVELOPMENT

iü sL detu\edA ÍUÍÍÍfÍ^tÍOn °f the ‘‘•velop^nt of the MOL i, «ven
the ?f ÍEngelbart6) • A technical repon on the details of
eïthÎÎÎ«??? M Î PreParation (»«yl). T*e system has been received
by them 3ther SDS 9.A0 *“*” ^ is currently being used
to tho,«*i Í documentation on the compiler itself is available
to those interested in implementing the MOL in their 940 systems.

S SPL's and the On-Line System

•î.tIïea4SP!: fPProach t0 system design may now be seen by viewing the
eriToí n onT'¿lZ 0f îh\functiona it is to perfo^ aid thÍn ÍÍ terms ot its organizational characteristics.

the Sur h«ÍÍdíredi M-an infonBation-processing system, NLS 940 has
the four basic levels of operation shown in Fig. II-1.

f™. ^¡L940 Tit0I\receives bits* chBMCters, and interrupts
c™ck nldiñ« ill ^ 11 ^"P11*5 these» alon8 “ith internal clock readings, into compact words for further analysis by NLS.

iSto IÍ!rÍcte^enCÍder Í""ediately translates this infoim.tion
ií^dií! t f0r íUtUre WOrk- Simultaneously, it sends
tíÜÍÜl ní íbaCk th* work station in the form of an echo
register of characters on the display screen.

^ chara<*ers, button settings, and screen-position pointers
Prnce««in!> pass*d . on to the dialogue-interpretation phase.

P^eeds fro" this point on by normal time-sharing

automaton fIÏhh Í ÎCfitSt P™08*8*«1 by th® two-stack automaton. Feedback about the control states of the system is sent
to the work station. Characters are compiled into strings
absolute screen-pointer positions are translated into character
positions within the document, and subroutines of the other parts
of the system are selectively executed.

textual editing and structural changes are perform»

statements dÍSp3ay Kenerator selectively choos»
foîî^iïg? reV document on the basis o' “ th

5B4A The new content and structure of the document

SB4B Previous status of the display screen

5B4C The command just executed

5B4D Certain global parameters (level and truncation).

SC The overlay structure of the system only vaguely resembles this

9

Tâ-bt«»-»

Figure II-l Functional Organization of NLS 940

Il -- SOFTWARE DEVELOPMENT

infomation-processing view. The actual positioning of routines in

inclu!îyer V structu^e has guided by a number of factors
including frequency of use. Since the entire system is in re“trwt

th! °verlay Vrocessor allows subroutines to
themselves and run properly, normal parameter and Y
informâtion-conmunication standards may be broken.

iîh5h*de'1 t0/h<,,‘ ,h' i- »hich .«h
°^ay is written. The size of each box is proportional to the
nî?"jfr ln5tructions in the corresponding overlay* the ammmr nf
sh.di„g is prrportional to th. .«uot *

502 The content analyzer is an extension of the metacompiler
special-language approach. The real-time content analyzer^akes
statements directly from the document currently being worked with

“ PS l“'“y '»rt,bl'cod* -uî
routines !«iînaly*î? «««"»"ts for display-creation
routines. This small on-line compiler is written in

inte^dU« ™n!r îPeCiîlly ‘‘«'P'«' for this purposÔ. Th.
emediate compiler is, of cours*, written in Tree MetaT

11

UTILITY

[PARAMETER
■spec miii

I DISPLAY I
GENERATION

«•ASS 4

INPUT t' l pTv< J
■H sob 1

|PEEDBACK| L MANIPULATION 1

Hin
PwîïGil

Format TE»ö
Lt: ojtput 1 ^TEXT™

E0,T .
CONTENT

ANALYZER

KEY TO PROGRAMING
LANGUAGES

ARPAS

MOL

H dialogue

Him STRUCT MANIPULATION ■ CONTENT ANALYSIS
AND STRING CONST

»* Y» i » - ï

Figure II-2 Overlay Structure of NL£ 940

12

Ill — HARDWARE DEVELOPNCNT: 940 Computer Facility

1 The 940 Computer Facility

1A The 940 computer was selected primarily because of the
sophisticated time-sharing software that was available on it.

1A1 The CDC 3300 (with time-sharing hardware) was also carefully
evaluated, since it is program-compatible with the existing
text-handling system on the CDC 3100.

1A2 It became apparent very soon in our examination that for the
size of the facility we were considering, the 940 was the only

machine with really effective time-sharing software. For any
other computer, we would have had to develop whatever software was

necessary for serving multiple display consoles.

1A3 Going to the 940 involved completely reprogramming the text

system, but this system was due for redesign in any case. The

work on it was much more in line with the research goals of the

program than expending our efforts in learning how to write
time-sharing software.

IB An order for the 940 computer was placed in October 1966,
contingent upon the additional funds requested for this project.

1B1 The computer was delivered in June 1967, The acceptance

period began on 5 July and the computer was finally accepted on 5

August 1967. In general, the facility has operated very well,
particularly when compared with some other 940 installations that
we have knowledge of. Some difficulties that have been

encountered since acceptance are worthy of mention.

1B1A During the first few months of operation, there was

considerable difficulty with the tape drives, which were
manufactured by Wang and distributed by SDS. SDS engineers did
not really understand the adjustment and maintenance of these
drives.

1B1B When the facility was first delivered, the circuitry for

direct connection of Teletypes to the Teletype coupling
equipment was not really understood.

1B1C For a period of about one month, in Novenfcer, we had
continuing difficulty with memory parity errors. The errors

were relatively infrequent and did not occur when SDS

diagnostics were used. This was very costly to us, both in
lost computer time and in time spent helping SDS engineers
track down the difficulties.

IBID The Memory Interface Connection (MIC) delivered with our

13

k

III — HARDWARE DEVELOPÆNT: 940 Computer Facility

facility was really a prototype and not a production unit.

Documentation delivered with it was not adequate and SDS
engineeis did not understand its operation. We spent

considerable time in checking out our equipment, debugging the

MIC. and bringing its documentation up to date.

1C The present facility is somewhat changed from that originaly

proposed. Fig. III-l is a block diagram of the current
configuration, and the following is a summary of its major

components:

ICI A central processor with time-sharing hardware.

1C2 Four 16K memory banks with word length of 24 hits and cycle

time of 1.8 microseconds:

1C2A Each memory bank contains provisions for a second port to

memory through a Memory Access Module (MAM).

1C3 Communications equipment for connecting to 16 Teletypes:

1C3A Adaptor cards designed at Bolt, Beranek and Newman are

available for connecting these to dataphone terminals.

1C4 Three magnetic tape units, 75 ips, 800 bpi.

1C5 A paper-tape station with 8-level reader and punch.

1C6 Three RAD storage units:

1C6A These are drums, each with a capacity of 500,000 24-bit

words.

1C6B The RADs connect to the second memory buss through a

Direct Access Communication channel (DACC).

1C7 A Memory Interface Connection (MIC) through which the special

peripheral equipment is interfaced.

14

F
i
g
u
r
e

I
I
I
-
l

F
a
c
i
l
i
t
y

C
o
n
f
i
g
u
r
a
t
i
o
n

o
f

S
D
S

9
4
0

Ill — HARDWARE DEVELOPÆNT: Other Facility Equipment

2 Other Facility Equipment

2A In addition to the SDS equipment, the facility includes

peripheral equipment of other manufacturers and a considerable amount

of equipment designed and constructed by SRI.

2B All of the non-SDS equipment is interfaced to the computer

through the Special Devices Channel which connects to the second
memory buss through the MIC.

2B1 The decision to construct the special devices channel rather
than to try to interface the equipment through regular SDS

equipment was made primarily for the following reasons:

2B1A The SDS I/O channels (both the DACC and the data

multiplex channel) did not offer the specific features needed.

2B1A1 It was apparent that in trying to provide display

service to users the major limitation would be CPU time

available for processing user requests. The Special Devices

Channel (SDC) is as automatic as possible in its access to

memory, and wherever possible, data is formatted so as to

minimize executive time for processing to users.

2B1B In addition, the SDS channels were not thoroughly checked

out as production items and might have given us considerable

trouble.

2B2 The 940 computer includes a variable priority feature for
memory access, which is critical in allowing the connection of

this much high-speed equipment to the second memory buss.

2B2A The equipment on this buss (not including the proposed
special operations equipment) will require a maximum data rate

on the buss of approximately 264,000 words per second or 1 out

of 2.1 memory cycles.

2B2B The variable priority scheme operates essentially as
follows :

2B2B1 There is a "wired-in" priority for all devices
connected to the second buss, but any device may request

memory access at one of two priority levels.

2B2B2 A device requesting high-priority access takes

precedence over the CPU, any device requesting low-priority

access, and any device with a high-priority request which is
below it in the wired-in priority. Ignoring the special

operations equipment, the order of priority access is as
follows :

16

Ill -- HARDWARE DEVELOPÆNT: Other Facility Equipment

RAD—High
Disc—High

Display 1—High
Display 2—High
CPU

RAD--Low
Disc--Low

Display 1—Low

Display 2--Low

Input Devices Controller
Low-Priority Controller.

2B2C This variable-priority scheme allows a device to request

memory access at low priority when inonediate access is not
required, and to switch to high priority when obtaining a
memory cycle is critical.

2B2C1 For example, when transferring data, the RAD needs
one of every four memory cycles. The RAD controller can

therefore make three memory requests at low priority. If

none of these is successful, it can then request high
priority access and be assured of getting the next cycle

(since it is the highest priority device on the second

buss).

2B2D The variable priority scheme is discussed by Melvin

Pirtle (see Pirtlel). With his help, simulations were run on

our particular configuration.

2B2D1 Results showed that we could expect less than 1

percent degradation in CPU performance due to the loading on

the second memory buss.

2B3 A basic design feature of the channel is that all controllers

operate from a fixed core addresss with no provision for

transmitting addresses by EOM-POT instructions.

2B3A This fixed address is a "Unit Reference Cell" for each

controller (except the Input Device Controller) that serves as
the communication between the controller and the program.

2B3A1 The Unit Reference Cell serves two functions:

2B3A1A It contains the address of the command table or

buffer in core that the controller is processing. This

address is set by the program when controller operation

is initiated (by an F.OM) and is updated by the controller

17

Ill -- HARDWARE DFVELOPÆNT: Other Facility Equipment

as each command or buffer is successfully processed.

2B3A1B It also contains an error code, written by the

controller when any error is detected in the processing
of a command or buffer.

2B3A2 This method is good for system reliability, since the

Unit Reference Cell will always indicate the nature of any

error and the address of the comnand or buffer being
processed when the error occurred.

2B4 Another advantage realized through the design of the hardware
is a uniform character set.

2B4A The line printer, displays, and keyboards all have

characters and codes matching the internal character set of the
timesharing system. (The character set is described in Appendix
B.)

2C The equipment connected to the Special Devices Channel is shown
in block diagram in Fig. II1-2. The major components and their
functions are discussed below.

2C1 Executive Hardware

2C1A This is essentially an electrical interface to the SDS

MIC and a multiplexer that allows asynchronous access to core
by any of the six controllers connected to it.

2C1B The executive hardware decodes computer EOM instructions

for program control and SKS instructions for sensing the status
of the various controllers.

2C1C It accepts addresses and requests for memory access from

the controller, determines relative priority among the
controllers, and synchronizes the requests and passes them
along to the computer via the MIC.

2C1D It contains circuits to generate parity on data

transmitted to the computer, or it can pass along a parity bit

generated by a controller. On read operations, parity is not
checked, but is passed along to the individual controllers.

2C1E also synchronizes interrupts from the various
controllers and passes them along to the computer.

2C1F Included in the executive hardware are comprehensive
debugging and monitoring aids.

18

T

«i

I

u

F
i
g
u
r
e

I
I
I
-
2

S
p
e
c
i
a
l

D
e
v
i
c
e
s

Ill — HARDWARE DEVELOPÆNT: Other Facility Equipment

2C1F1 A debugging panel contains indicators that can be
switched to any of the six controllers to monitor data,
addresses, priority, and other functions (see Fig. III-3).

2C1F2 Any of the six controllers can be switched "off-line"
and operated from the debugging panel with simulated data
entered by hand ir. the monitor registers.

2C1F3 A switch is provided for each of the six controllers
that will operate the controller in a step mode (one memory
access per step) either on line or off line.

2C1F4 Two meters are also included on the panel which will
indicate for any selected unit or the entire channel the
percentage of memory cycles being requested and the
percentage of memory cycles actually served.

2C2 Disc File

2C2A The disc-file system will consist of a Bryant Model 4061
disc file and a disc controller.

2C2A1 The disc file is an "A" frame with a capacity of
twelve data discs. As delivered, the file will contain six
data discs and will be expanded in the field as the
additional capacity is needed.

2C2A1A With the initial six discs the capacity will be
about 32 million 24-bit words.

2C2A2 The disc controller is being designed and built by
Bryant to interface with the executive hardware.
Specifications for the controller were developed jointly by
Bryant, Project GENIE at Berkeley, and SRI, It includes
features for reading and writing across page boundaries and
extensive error-checking provisions (for details on this and
other devices on the channel see Appendix A).

2C3 Display System

2C3A The display system consists of two identical subsystems
each with display controller, display generator, six CRT's, and
six closed-circuit television systems.

2C3B The display controllers have been designed and built at
SRI. They process display "command tables" and "display lists"
that are resident in core, and pass along "display buffers"
containing instructions to the display generators.

20

Figure III-3 E^cecutive Ccntrol Debugging Panel

HARDWARE DEVELOPMENT: Other Facility Equipment

2C3C The display generator and CRT's are being purchased from

Tasker to SRI's specificati ns. Each will have general
character and vector capabilities. They will accept

instructions (beam positioning, character writing, etc.) from
the controller.

2C3C1 They drive in parallel six 5-inch high-resolution CRT

monitors on which the display pictures are producer.
Presentations for each of the CRT's are generated
sequentially and unblank signals from the display

controllers select one or more of the monitors at a given
time. 6

2C3C2 Character-writing time on the displays will be
approximateiy eight microseconds, allowing an average of
1000 characters on each of the six monitors when
regenerating at 20 cycles per second. Because of image
retention in the vidicons, and video reversal (see below),

it is possible to regenerate at this low rate without
annoying flicker.

2C3D A high-resolution (875-line) closed-circuit television
system will transmit display pictures from each CRT to a

television monitor at a corresponding work-station console.

2C3D1 It was originally proposed to implement a display

system consisting of two 21-indi computer-refreshed computer
displays and ten storage-tube display stations.

2C3D2 This system was abandoned because the Tektronix

high-resolution storage tubes that were to be an integral

part of it were not available. They are still not available
in production quantities.

2C3D3 The present system wa' the most reasonable
alternative for providing display service to individual
offices in the building. It has both advantages and
disadvantages.

2C3D3A On the positive side, refreshed displays will be

provided to users with the capability of much more
dynamic presentations than would have been possible with

storage tubes. In addition, with the television system,

it is possible to invert the video to provide a
black-on-white display. This presentation is usable in

higher ambient light conditions than would be possible

with direct-view CRT's, and subjectively reduces the
effect of flicker due to low regeneration rates.

22

Ill — HARDWARE DEVELOPMENT : Other Facility Equipment

2C3D3B "Hie most significant disadvantage is that more
computer memory must be allocated to regenerate the
displays. (The television system also was somewhat more
expensive to develop than was expected with the storage
tubes.)

2C4 Input-Devices Controller

2C4A In addition to the television monitor, each work station
console will have a keyboard, binary keyset, and mouse.

2C4B The state of these devices is read by the Input-Devices
Controller (IDC) at a preset interval (about 30 milliseconds)
and written into a fixed location in core.

2C4B1 Bits are added to information from the keyboards,
keysets and mouse switches to indicate when a new character
has been received or a switch has changed state during the
sample period. A new character or switch change causes an
interrupt to be issued at the end of the sample period.

2C4B2 Mouse coordinates are digitized by an A-to-D
converter and formatted by the Input-Devices Controller as
beam-position instructions to the display generator,
provisions are made in the display controller for including
an entry in the mouse position table as a display buffer.
This allows the mouse position to be continuously displayed
without attention from the CPU.

2C4B3 The IDC also has provisions for turning on or off up
to twelve binary signals to each console for control of bits
set in an output area of the fixed table.

2C4B3A These output signals may be used to control
either audio feedback to the work stations or visual
indicators (other than displays).

2C5 Special Operations

2C5A The box with the label "Special Operations" in Fig. III-2
is at this time only a provision in the executive hardware for
the addition of a high-speed controller. Tentative plans are
for adding special hardware here to provide operations not
available in the 940 instruction set, such as character string
moves or string pattern matching.

2C6 Low-Priority Devices Controller

2C6A This controller accommodates three devices with

23

Ill — HARDWARE DEVELOPICHT: Other Facility Equipment

relatively low transfer rates.

2C6A1 At this time only the line printer is implemented.

This is a Potter Model HSP-3S02 chain printer with 96

printing characters and a speed of 230 lines per minute.

2C6A2 Provisions have been made for adding an on-line

selectric typewriter, a graph plotter, and a terminal for
the proposed ARPA computer network.

3 Work Stations

3A Each actual work station consists of a 17.inch television

monitor, keyboard, binary keyset, and mouse.

3A1 The keyboards were manufactured by Friden. They have 61 keys
including spacebar, and have the "system" coding.

3A2 The keyset and mouse were developed at SRI and have been used

with the 3100 system for some time (see Englishl).

3B Signals are transmitted to and from the work stations by cables

routed through the building ceiling.

5C Experimental physical configurations have been built for various

office and conference room situations. Figure III-4 shows a console

in a typical office.

4 Wire List Program

4A In the development of the hardware for the facility this project

contributed to the development of some comp iter aids for producing

wire lists to direct technicians in the construction of the logic

units.

4B This wire list program was also supported by other projects at

SRI. It is described in detail in Appendix C.

24

Figure III-4 Diaplay Oonaol*

IV — MANAGEMENT SYSTEM RESEARQI: Introduction

1 Introduction

1A Our concept of the "system" for doinp ménagement work (the system
whose study and improvement this project undertook) has undergone a
steady evolution, particularly in the last few months; it became
clear that we were not likely to have available our new facility for
testing computerized management aids under this project, and we were
led instead to do more basic studying and planning.

1A1 The kind of computer aids developed in the early part of the
project for the CDC 3100 -- as described in Sec. IV-3 below -- are
an important part of what we now see as the "system." But the
study and considerations outlined in Secs. IV-2 and IV-4 of this
section led us to plan for a somewhat different approach for the
next stage of our research from that taken initially.

1A2 This research project is experimenting with the management of
an organization consisting principally of "knowledge workers"
(i.e., those who apply information to specific work and generate
information for others) working together in an environment that
includes sophisticated and highly interactive on-line aids
(representative of many important organizations of tomorrow).

1A3 In the last few months we have become aware that it makes
little sense to consider a "management system" as including only
administrative procedures, conventions, and aids. The
"governmental" aspects of an organization of "knowledge workers"
are now recognized as key problems demanding our attention, within
the concept of a "management system." These aspects include the
processes by which goals are established and conflicts of
attitude, opinion, and special interests are resolved.

1A4 These governmental problems involve a broad range of
organizational questions. In the Bootstrap Community, it is
clear that new and quite different forms of human organization
could evolve--e.g., teams of individuals working extremely
closely, requiring new procedures, protocol, methods, skills, and
attitudes to provide the stable working environment that better
couples human capabilities into coordinated efforts.

1A4A For instance, the monolithic pyramid of responsibility
and decision control will undoubtedly change as a consequence
of a higher degree of personal cooperation. Via the "instant
mobility" of their individual display stations, people could
rally together for a brief cooperative effort, and minutes
later regroup in other ways for another set of problems.

1A4B Alternatively, they can easily keep an eye on an on-going
dialogue (as developed in the coimnon computer-held record

26

IV MANAGEMENT SYSTEM RESEARCH : The ROMAN Svsten

IV -- MAN ACF. MF. VT SYSTEM RESEARCH: Introduction

through which the dialogue communication is taking place) to

enter into it when they feel thev can contribute.

1MC These factors make possible much more flexible means for

integrating individual cont’•ibutions of judgment, decision,

knowledge, suggestion, etc., and provide an opportunity to
develop faster, more powerful responsiveness to changes in

organizational opportunities, problems, goals, etc.

IAS To evolve towards the new organization, with its different

roles and interpersonal working relationships, is now seen to be a

fundamental and critical part of this project's approach.

1ASA Our current plans for launching the second stage include

initial development of basic on-line aids valuable for certain

management tasks.

1A5B However, we will also give consideration to the

development of those aspects of the management system that will

contribute to our understanding of "best" Bootstrap Community

organization. This work may concentrate on the establishment

of attitudes, techniques, and practices merely for "working

closely" with one another.

1A5C This split suggests a logical classification of work into
"administrâtive"-related tasks and "organization"-related

tasks.

IB Contents of the Rest of this Section of the Report

1B1 A framework describing management research is presented

first.

1B1A This framework introduces the notions of "task" and

"activity," describes the current project activities, and

discusses the concept of "experimental organization."

1B2 A detailed, technical description of a system of on-line

management aids, implemented on the CDC 3100, follows this

framework.

1B3 A description of general plans completes this section.

IV -- MANAGEMENT SYSTEM RESEARCH: The ROMAN System

IV -- MANAGEMENT-SYSTEM RESEARCH: Framework

2 Framework for Management Research

2A The uniqueness of the AHI Bootstrap Community necessitated an
unconvenuona1 scheme for describing work 'units in^he project The

definition of this scheme has been a part of the development^ of our
management system.

cA1u Pr°ject has been mapped into a set of "Activities."

níoi.ír provifes. a clear scope of interest to the separate
p j ct sponsors. Actitivies are the prime work-entities in the
Bootstrap (.omnunity.

2A1A Each Activity is given certain specific responsibilities

is set up as a separate cost center, and is allocated resources’
and authority as appropriate for its goals.

2A1B There are two basic types of Activity —

"action-oriented," and "research-oriented." The relevance of
these terms will be described below in the discussion of
current Bootstrap Community Activities.

2A2 Day-to-Day work can be described in terms of "tasks." For
example, the programming for the SDS 940 graphics package is a

2A2A Each task will tie specifically to one or more

activities, with task specification, resource allocation,
supervision, etc., stemming directly from the plans, resources
and responsible staff within the Activities.

2B The current Bootstrap-Comnunity Activity breakdown is as follows:

2B1 The Executive Activity -- with responsibility for overall
planning and coordinating for the Bootstrap Community.

2B2 Servi ce-System Activity - with responsibility for the
design, implementation, and operation of the hardware-software
system which provides service to che users at their respective
consoles. r

i-System Activity -- with responsibility for coordinating

repertoire of service functions; the control-dialogue
procedures with which the user controls the execution of these

functions; the terminology and conventions for specifying and

documenting the functions and control-dialogue procedures; and the
development and consistent, application of the design principles
tor these user-system features.

2B4
The Network-Information-Center Activity with

28

IV -- MANAGEMKNT-SYSTEM RESEARQI: Framework

responsibility for designing, implementing, and operating the

Information Center that is to serve the forthcoming ARPA computer
network.

2B5 Miscellaneous Activity -- the catch-all for miscellaneous,

small activities, and for activities that are tentatively being
developed towards becoming full-fledged Activities (e.g.,
development and operation of our X-DOC (external documentation
system), etc.).

2B6 Programming-System Activity -- with responsibility for

coordinating and improving the principles, conventions,

techniques, computer aids, methods, etc., for doing the

computer-programming tasks within the Bootstrap Community.

2B7 Engineering-System Activity -- with responsibility for

coordinating and improving the principles, conventions,

techniques, computer aids, methods, etc. for doing the engineering
tasks within the Bootstrap Community.

2B8 Management-System Activity -- with responsibility for
coordinating and improving the principles, conventions,

techniques, computer aids, methods, etc., for doing the management

tasks within the Bootstrap Community. This includes the
principles, conventions, techniques, etc. necessary for the

establishment of a stable organization of people working closely
together.

2C There are two basic types of Activity

2C1 The first five Activities -- Executive, Service-System,

User-System, Network Information Center, and Miscellaneous -- are

"action-oriented.” This means that these Activities are directly
concerned with day-to-day operations within the Bootstrap

Community. For instance, the Service-System must provide service,

at the consoles, for each member of the Community.

2C2 The last three Activities -- Prograrming-System,

Engineering-System, and Management-System -- are
"research-oriented" in the sense that they "back up" other
Activities, providing the (improved) means for performing other

activities. For instance, the Management-System Activity provides

the framework, principles, aids, procedures, etc. used by, say,

the Executive Activity, in the actual management and government of

the Bootstrap Community (noting that this Executive Activity is
thus truly "action-oriented").

2C2A Resources allocated to a specific research Activity are
used for the coordination of that system's evolution, for

29

IV -- MANAGEMENT-SYSTEM RESEARCH• Framework

studying, analyzing, designing, and implementing new svstem
features, or for training Bootstrap Community personnel in the
use of that system,

*.’(.> It is thus possible for a research Activity to sponsor a task
that will contribute to the performance of either (or both)
action-oriented or research-oriented Activities. It is possible
for, say, techniques developed as a part of the Management-System
Activity to be used by the Executive Activity to manage further
technique development in the Management-System Activity. The
circularity in this procedure is at the heart of the Bootstrap
st.-ategy.

2(4 "Tasks" cut across Activity boundaries, and may be
simultaneously within more than one Activity designation. For
instance, progranming for the development of a p.raphics package
for the SDS '.>40 is a task that may contribute simultaneously to
the Programming System Activity (e.g., by suggesting a new
progranming technique), the Engineering-System Activity (e.g., the
graphics package may be useful as a part of an on-line hardware
debugging system).

2CS The two-dimensional scheme of Activities and Tasks does not
perfectly describe work within the Bootstrap Community. Part of
the task structure is the redefinition of this conceptual scheme,
and this work will proceed as a part of the Management-System
research.

2H General Characteristics of the Management-System Activity

2D1 It is to be assumed that management tasks will be executed
continually throughout the various levels and pursuits of each
Activity. The following are examples with administrative, rather
than organizational (i.e., "governmental") significance.

2P1A The planning, scheduling, assignment, and supervising of
money and personnel resources comprise a large and important
set of these tasks.

2P1A1 As indicated by the breakdown of Activities,
engineering and programming comprise very important pursuits
within the Community, and each has an Activity charged with
coordinating and improving the system of doing its types of
tasks.

2PIA2 But consider that, in the execution of any reasonably
large engineering or programming task, there will actually
be a mixture of management and technical (i.e., engineering
or programming) tasks involved.

30

IV -- MANACFMFNT-SYSTTM RF.SF.AROI: Framework

-’niA3 It is not clear at this point what practical
differentiation should he made between what is considered to
be a management task and what is a technical task,
(onsider, for example, the principles employed in planning,
assigning, and reviewing the allocation of resources as
involved in (obvious) management tasks. Hiere is a good
reason to assume that these principles will have meaningful
and fruitful application to the way a programmer (for
instance) sets up his time and tasks for the week ahead.

Recording and accountant-type analysis of resource
expenditures represent another set of common and important tvpe
of management tasks.

2D1B1 Here again, we would find these tasks widely
distributed throughout the Community, and potentially
applicable even for fragments of an individual's activity.

2D1B2 For instance, it is an appealing possibility to
develop flexible and accurate means for monitoring and
recording the expenditures of a person's time towards
different tasks. This would be valuable not only for
regular operational analysis, but for supporting the
Management-System research by helping to study better the
dynamics of organizational activity.

2D1C We expect continual clarification and differentiation of
categories of "management tasks" throughout the project.

2D2 The responsibilities of the Management-Svstem Activity will
be :

2D2A Management-System Development

2D2A1 Lstablishing and keeping current a description
(perhaps "model") of the existing management system.

21UA2 Collecting and analyzing needs and possibilities for
improvement

2D2A3 Developing a framework and methodology for evaluating
and selecting needs and possibilities for investing
next-available resources (or for recommending
special-allocation attention)

2D2A4 Implementing modification/additions to the Management
system to fill selected needs or to implement selected
possibilities.

31

-

IV -- MANAGEMLNT-SYSTEM RESEARCH ; Framework

2E

2D2A5 Convincing Bootstrap-
or its new changes are worth

Community staff that
using

the system

2D2A6 Developing

ascertain a user's
tests or performance-evaluation means to
proficiency with the system

2D2A7 Setting standards or proficiency in system

usage*55 Wlth "levels" of Proficiency according to

usage —

types of

pXi“rln8 and c°achi"i! us"s'to -‘•«‘»p «'«f

2D2B Activity Self-Improvement

its2Bown t0 deVel°P systematic aids for doing

respoñsibiUty ' " WÍthÍn "0th” Activity's

2D2B1A Each such pursuit will require explicit approval

whole noXeCM1V\ACtÍVÍty " becauSe the rnmunity as a
whole normally has the ''right» to benefit directly from

all products of this activity, and also because any

deveîn T• ^ ^ be bettcr *P«ified and
developed in cooperation with other Activities.

The "Experimental Organization"

r1!,!! iS * SU^tle administrative aspects
ACtÍVÍ,y- “d organization

2E2 The Bootstrap Community will begin to

Management System (including both »

"organization") via an "empirical" approach.

evolve its own form of

administration" and

2E2A A fundamental requirement is to have the
organization" aware of and be practiced users

general "management practices" currently known
not these practices involve computer aids.

"experimental
of the best

-- whether or

2E3 We feel that an early emphasis on "good management' will soo
Rive way (in importance) to the notion of as the
augmented comnunity grows in complexity. B ^

attitudes of rthe mOSt P:essi"8 Problems i* that of changing
toiaíds a °*rl0mujnty™”*>*r* from wholly sci-tific orientation
ingredients concern f°r human effectiveness. Such
ingredients as attitude. habit. skill. and experience

32

r

«

IV -- MANAGEMENT-SYSTEM RESEARCH : Framework

fundamentally affect the effectiveness of an organization, and it

seems clear that we have to pay attention to these in the

"experimental organization."

2E4A For instance, to allocate resources effectively requires

serious concern for the relative value of the various results
associated with the alternatives.

2E4B For this one particular practice to become integrated
into one's working life as an effective feature of management

(whether for managing one's personal endeavor or that of a

larger organizational unit), there has to exist both the
attitude-motivation set that brings a person to give this

working techniuue a real try, and the experience and feedback

that develops intuition, judgment, and skill in its

application.

2E5 The broader concept of the management system (i.e., including
the organizational issues) embraces many other problems. These

are basically concerned with the establishment of a stable

configuration for the Bootstrap Comnunity -- a form that is "best"
able to allow the Coiwiunity to grow in problem-solving capability.

33

?

IV -- ^lANAnr.MF.NT SYSTFM RESEARCH : The ROMAN System

3 The ROMAN System for the CDC 3100

3A General

3A1 The ROMAN management-aid system was implemented on the 3100

with two objectives in mind. These were to gain experience in
using an on-line system for actual management data and to uncover

some of the problems in implementing such a system and in

expanding NETS to handle this kind of data.

3A2 In selecting a test area for implementation, we chose the

analysis of the status-report records of our resource expenditures

as a reasonably specific and well-defined problem that would meet

these needs.

3A2A The objectives were as follows:

3A2A1 Generate a data base in computer-readable form that
would contain updated records regarding resource status for

projects in the area of our management concern.

3A2A2 Provide the manager with general ways of calling for

summary analysis of these data in tabular or graphic form.

3A2A3 Allow simple matnematical operations such as summing,

averaging, or converting man-hours to dollars.

3A3 While not all of the objectives were achieved, due to the changes

described under lb in the introduction, three systems were developed:

3A3A A system operating with NETS to generate analytic

summaries of specially structured record files.

3A3B A system for paper-tape logging of computer usage.

3A3C A data structure for personnel time-reporting records

involving specified jobs.

3B The ROMAN System

3B1 Note: The remainder of Sec. IV-3 is increasingly detailed

and technical. The more general discussion is resumed in Sec.

IV-4.

3B2 This system provides for the on-line examination and analysis

of accounting-type data or any data records that can be stored in

the data formats described below.

3B2A The system is operated from NETS, which serves as an

34

IV MANACF.MHNT SYSTFM RESEAROI: The ROMAN Systerr

executive.

3B2A1 An instruction calling for a piven analytic action on
the record files is written in an MTS file as part of a
normal text statement, with special first-character(s)
"tags" identifying the beginning of special instruction
words.

3B2A2 A special "execute” conmand may be designated in
NETS, with a given analysis-instruction statement as a
command operand (designated by direct selection, by entering
as a literal either the name or the location number, or by
use of indirect selection via a marker call).

3B2A3 After execution, any summary results from the
analysis instruction are inserted back into NETS as a new
text statement (some instructions merely generate a new
record file).

3B3 In addition to the normal text files, two special file types
are associated with the system.

3B3A The original data base is contained in a packed source
file of four computer words per entry, made up of eight
"fields" defined as follows:

project : class : type

name job

hour day

charge

3B3A1 Generic names have been given to the fields with a
particular application in mind, but any data consistent with
the format of the field could be used.

3B3A2 Data within each field is stored either as a literal
or as a binary’ code requiring table lookup. For the
present, applications of the fields are defined as follows:

3B3A2A Project--the Bootstrap-Community (BC) cost center
against which this charge is made. This corresponds to
the SRI term "project" and to the BC term "Activity."

3B3A2B Class--an activity class such as supervisory,

35

IV -- MANAGEMENT SYSTEM RESEARCH: The ROMAN System

technician, etc. associated with each charge. This was
not actually used in the 3100 system.

3B3A2C Type--the type of charge such as computer time,
labor, purcha.e order, etc.

3B3A2D Name--the person originating the charge.

3B3A2E Job--a code for a particular defined task against
which charges are to be accumulated.

3B3A2F Hour and Day--the time the charge is incurred.

3B3A2G Charge--the actual charge in hours or dollars
depending on the type.

3B3B The second file type unique to the system is the "get"

3B3B1 This file is a subset of a source file and contains
exactly the same data for each record as the source file.

3B3B2 The "get" file is generated by a command to the

system specifying the source file, a name for the "get"
file, and parameters identifying the subset of records to be
transferred from the source file.

3B3B2A The "get" file may be generated from another
"get" file or from a source file.

3B3B2B The "get" file was incorporated in the system so

that the user could generate a small file containing the
data in which he is interested.

3B4 Instruction-Syntax Description Conventions

3B4A In the following description of the system, a modified

Backus-Naur form is used to describe instruction syntax.

3B4A1 A dollar sign ($) designates "any number of" the
following syntactic entity. Apart from this convention, the

relation to Backus-Naur form is quite direct.

3B4A2 The defined term, in a definition equation, is

enclosed in parentheses to make it a "statement name" in

3B4A2A This convention greatly facilitates on-line study
of such descriptive documentation -- using the Hop Name

36

IV -- MANAGEMENT SYSTEM RESEARCH: The ROMAN System

command, a user can select the name of a syntactic
entity, as found anywhere in the text (without adjacent
printing characters), and immediately have his display
view transferred to the definition of that term.

3B4B A semicolon terminates the definition equation of a given
syntactic entity, and our convention is to follow the semicolon
with the names of those terms in whose definition the given
entity appears as a right-hand term.

3B4B1 This also facilitates on-line study of this type of
descriptive documentation. The Mop Name command may thus he
used to quickly and easily examine the different descriptive
usages of any of these syntactic entities.

3B5 (instruction) * displaycommand searchconmandstring

3B5A (displaycommand) * "**" operation filenames ; instruction

3B5A1 (operation) * listop listspec / getop / plotop
plotspec ; displaycommand

3B5A1A (listop) * "list"; operation. This causes a
summary tabulation to be produced and inserted as a text
statement following the instruction statement.

3B5A1B (listspec) » "(" searchparameter
searchparameter ")" ; operation

3B5A1B1 The LISTSPEC designates how the sumnary
tabulation is to be ordered.

3BSA1B2 (searchparameter) ■ "T" / "P" / "I'* / "C" / "N"
! "H" / "D" / "A" ; listspec searchcommand T « Type of
record P « Job I « Project (or funding center) C *
Charge N * Name II * Hour D « Pay A ■ Activity
class

3B5A1C (getop) - "get"; operati on . This causes a new
data file to be produced, containing a specified summary
of designated data files.

3B5A1D (plotop) ■ "plot"; operation

3B5A1D1 The plotspec was to designate which data-field
names would be respectively the X and Y axes of the plot,

3B5A1E (plotspec) - "(" xfie.Jname "," yfieldname ")" ;
operation

37

IV -- MANAGEMENT SYSTEM RESEARCH : The ROMAN System

3B5A1E1 (xfieldiame) = fieldname ; plotspec

3B5A1E2 (yfieldname) = fieldname ; plotspec

3B5A1E3 (fieldname) = "project" / "class" / "type" /
"name" / "job" / "hour" / "day" / "charge" ; xfieldname
yfielJname

3B5A1F Only LIST and GET were implemented. PLOT was to
generate a graphical portrayal of the sumary analysis.

3BSA2 (filenames) « "(" ((sourcefile getfile) /
sourcefile) ")" ; displaycommand

3BSA2A (sourcefile) = the file upon which the
INSTRUCTION operates; filenames

3B5A2B (getfile) * the file created as a result of the
operation of the INSTRUCTION on the SOURCEFILE ;
filenames

3B5B (searchcommandstring) = $ searchcommand ; instruction

3B5B1 (searchcommand) » (space/comma) "*" searchparametcr
logicalcondition searchdesipnator ; scarchcommandstring

3B5B1A (logicalcondition) » "." / "," ! ">not" ;
searchcommand

3B5B1A1 .not was not implemented.

3B5B1B (searchdesignator) 3 specific value of data in
field specified by the SEARC11PARAMFTER; searchcommand

3B5B1C If a given SEARO[PARAMETER does not appear in anv
SEARCHCOMMAND, then the data field represented by the
search parameter) is summed over.

3BSB1D If a given SEARCHPARAMETER appears in a
SEARCHCOMMAND without any associated LOGICALCONDITION or
SEARCHDESIGNATOR, then all distinct data entries in the
data field represented by that SEARCHPARAMETER are
identified; i.e., there is no summing over this field.

3BSB1E Any LOGICALCONDITION may be used with a given
SEARO (PARAMETER in the SEARCHCOMMAND.

38

MANAGHMENT SYSTEM RESEARCH : ROMAN System

3B5B1F "Hie use of LOGICALCONDlTIONs and implies

some ordering among the SEARCHDESI CM ATORs for’each type
of SEARCMPARAMETER. If and are used, thev must
he used as a pair, with the SEARCHCOMMANI) containing
appearing before the SEARCHCOMMAND containing No
other SEARQICONflANI) may appear between the two.

3B5B1G The legal SEARt HDESIGNATORS for all

SEARÜI PARAMETERS, except Type itself, are determined by
the tyjie of record concerned. The list of legal Tvpc
SEARCHDESIGNATORS is as follows:

L = Labor (i.e., personnel) charges, in hours

F = Facility charges for computer use in hours
M = L ♦ 1 = Labor (i.e., personnel) charges, in

dollars

G = F ♦ 1 = Facility charges, in dollars

3B6 Examples of HISPIAYCOFftAND

3B6A **LIST(N,P)(POMEFILE)

3B6A1 Under the control of the associated

SEARCHCOMMANDSTRING, this DISPLAYCOMMAND will display as a
list of up to 8 columns, an abstract taken from the file

named ROMEFI LE that is sorted by Project within Name.

3BPB * *GET(ROMEFI LE,TEMP)

3B6B1 Under the control of the associated

S E A RG ICOMMANUSTRINO, this DISPLAYCOMMAND will take SUBSET of

ROM! FI LE and store it as a GETFILE named TEMP. This will
not be displayed in any form.

3B7 Examples of SEARCUCOKWAND

3B7A *p*csf1 searches for Project (job mnemonic) CSFL

3B7B *nsearches for all Names

3B7(. *d.660315 *d,660811 searches for all Dates between 15
March 1066 and 11 August 1966.

3B8 Example of SEARCHCOMMANDSTRING : *T«f *D.660315 *D 660701
*N=wke *N=dce *N*jfr *1=5919 *P=csnl *P=rad

3B8A TIiis SEARQ(COMMANDS!RING will search for Type F records
for all Charges under Projects CSNL and RAD incurred by KKE,
DCE, and .1ER between 15 March 1966 and 1 July 1966.

>

IV -- MANAGFMFNT SYSTFM RESEARCH: The ROMAN System

3B9 Example of INSTRUCTION

3B9A “list(n,i)(romefile) *n«dce “n-wke *d660401 'dböOSOl .

dce 40.26 wke 10.10 total 50.36

3B9A1 The result of executing this INSTRUCTION is shown
above, listing all charges incurred by DCF and WKE on use of
the computer facility between 1 April and 1 May. The list

is sorted by name. The list is derived from the SOURCEFILE
named ROFf.FILE and written as a regular NETS statement at
the end of the text buffer which is subsequently moved to

follow the statement containing the INSTRUCTION with
conventional NETS operations.

3B10 Source files for the ROMAN system can be generated in two
ways :

3B10A Text files could be generated and updated by the NETS

and then through an off-line ROMAN routine translated into the
packed source file.

Data could also be read directly from punched cards and
translated into packed source files through an off-line
routine.

3B10(. Additional off-line processes were provided for
generating and updating the look-up tables required in
connection with the name and job fields of the data files.

3C Computer Legging System

3C1 To get computer logging information in computer-readable form
for the ROMAN system, we designed and installed a logging system
for the 3100, completely external to the computer.

3flA Since the computer is used by many people in the
laboratory in a "hands on" mode, resident programs cannot be
used for logging.

3C2 The logging system consists of a card reader, a clock, and a
tape-punching Teletype.

3C2A The card reader was adapted from an automatic tube

tester. It accepts plastic cards with up to nine alphanumeric

characters. Each card contains the initials of the user and a

six-character code identifying the project or job to which the
computer time is to be charged.

3C2R A simple clock was constructed using a one-minute timer

40

IV -- MANAGEMENT SYSTEM RESEARCH : The ROMAN System

and stepping switches to provide a readout of time (hours and
minutes) in ASCII code.

3C2C When a card is inserted in the reader, the Teletype
prints the time followed by the initials of the user and the
job code. When the card is removed from the reader, the
Teletype prints the time off followed by a carriage return and
two line feeds.

3C2P An interlock to the computer "Master Clear" prevents any
computer operations unless a card is in place in the reader.

3C3 This system produces a punched paper tape as well as the
printed record. The punched paper tape can then be read into the
NETS and edited for any errors and then, through file generation
routines, entered into the ROMAN source file.

3D Job Structure and Time Reporting Procedures

3D1 We developed a structure of "jobs" that defines the activity
in our area of managerial concern.

3D1A A "job" is any uniquely identifiable task or activity and
is the smallest unit for which accounting records are kept.

3D1B In the structure the importance of a changing environment
has been emphasized. There is flexibility in that jobs may be
broken down into subjobs or grouped into larger jobs at any
time.

3P1C Procedures for updating a file of job definitions and
information on cost centers to which the jobs will be charged
have been worked out using NETS.

3D2 On the basis of the job structure, an experimental system of
pejsonnel time reporting was established.

3D2A Individuals taking part in this system were asked to
report all of the time that they spent on any of the defined
jobs, without regard for conventional accounting constraints
(such as reporting 8 hours each day and 40 hours each week).

3D2A1 To make this reporting easier, we made provisions for
individuals to define jobs themselves when the previously
defined jobs did not adequately identify their work.

3D2B A program was written to analyze the data collected in
this system.

41

>

IV -- MANAGEMENT SYSTEM RESEARCH ; The ROMAN System

3D2B1 Phase 1 of this program analyzes the raw data
collected from individuals and produces a summary of actual
hours worked on defined jobs.

3D2B2 Phase 2 produces two files to be used as input to the
status-reporting programs.

3D2B2A The first file is a copy of the summary produced
in Phase 1.

3P2B2B The second file is compatible with the external
accounting system, producing daily and weekly totals
corrected for 8 hours per day and 40 hours per week.
This is essentially a file on financial status.

42

IV — MANAGEMENT-SYSTEM RESEARG!: Aupnented Administration

4 Augmented Administration: Some Immediate Possibilities

4A The text-manipulation facility initially built into NLS (the
On-Line System on the 940 -- see Sec. II) provides in itself
considerable power for aiding general processes of management, such
as planning, coordinating, review, etc. However, we plan certain
extensions to cover other management data-processing needs (such as
were provided by the ROMAN aids on the 3100).

4A1 An "expected" type of extension, for the Management-System
Research Activity, is of course that which operates upon
management-informat ion files to produce analyses of interest to
various management operations.

4A2 These will be important to us, and a rather general approach
is described below that will include within it those capabilities
developed in the ROMAN system, but in addition should allow many
different tools to be developed, experimented with, and integrated
into the management-system tool kit.

4B "Ready-Made" features

4B1 The NLS "Chain Generator"

4B1A For the requirements of flexible display-creation and
printout-generation, we set up this special processor entity to
search in a general way through NLS files, locating in a
specified sequence those statements that satisfy given
requirements.

4B1A1 For instance, the chain generator could be asked to
generate a "chain" of all those statements found in Files
AA, BB, and CC, down to Level 4, whose content satisfied
certain complex specifications.

4B1A2 Alternatively, the generator could be set to follow
cross-reference links of specified type, so that the
generated chain would represent an "associative trail" (to
borrow an old term from Vannevar Bush) through the files.

4B15 This facility will have considerable general value, as
indicated by the value of its more primitive counterpart on the
CDC. 3100 NLTS -- i.e., the Level-Truncation Viewing and the
Pattern-Match Filter features.

4B2 CAL

4B2A This is the basic on-line (Teletype) calculator package,
developed by Dr. Butler Lampson of Project Genie at II.C.

43

IV — MANAGEMF.VT-SYSTEM RESEARCH: Augmented Administration

Berkeley, and furnished as a standard software subsystem with

the SDS 940 Time-Sharing System.

4B2B Besides offering flexible, easy-to-use, interactive
calculator programming, CAL has a "graphic" feature providing

for the construction of graphs, etc. on the CRT.

4B2B1 We have experimented with this feature on our new

displays (before the vector generator was really working
well enough to make decent drawings), and we see irmnediate

and relevant applicability to our needs.

4B2B2 For example, we had it generate "pie" charts,
calculating and displaying the percentage distribution among

an arbitrar)- list of units.

4B2C We have conjectured as follows upon the possibility of

modifying CAL:

4B2C1 It now uses a two-level hierarchical structure in its

source code (Parts and Steps), and refers "TO" and "DO"

commands to exact location nianbers. It tolerates gaps in
the numbering, as well as interpolative numbering -- hut one

does not "renumber" (in a cleaning-up operation) without

considerable need, because all of these references must he

updated individually.

4B2C2 We would like to have CAL accept the arbitrary-depth

structure as used in NLS, and to accept the Name-Link

references used there, too. This would let us use the full
power of NLS in composing, studying, and modifying our

calculator programs, as well as providing general

comp'\tibi 1 ity with our working environment.

4'y¿C3 We would like also to provide an interface on the

operand-gathering operations of CAL so that it would work in
conjunction with the Chain Generator. We want to be able to
reach into any sequence of statements, in any of our NLS

files, to use as input to a CAL operation any terms whose
identity may be specified by location (as in fixed-field

formatting) or by context (e.g., identified by descriptors),

or by some combination thereof.

4B2C4 We would similarly want to develop an output

interface between CAL and NLS, to allow CAL output to be
inserted in an arbitrary place in an NLS file (in specified

format, including graphical), or to replace an existing term

or construct with an updated one, or indeed to generate a

new NLS file if desired.

44

IV -- MANAGEMENT-SYSTEM RESEARCH: Augmented Administration

4C General On-Line Graphic Package

4C1 We have been developing the specifications for extending the

data structure, and the Control Metalanguage syntax and

translator, to enable us to compose, study, and modify graphical

portrayals as an integral part of our NLS file structure.

4C1A We will concentrate initially upon the ’’integration"

featire, i.e., upon integrating graphs, line drawings, etc.

into the 'tructured-text files so that graphics can be used to

support the expository or descriptive purpose of the text, or

vice versa.

4C1A1 There are several ways of achieving this.

4C1A1A One way is to employ a free mixture of both forms

on the display.

4C1A1B Another means is the use of compatible

cross-reference links embedded in text to refer to

graphic entities, and vice versa.

4C1A1C A third way is to let the product of the chain
generator be an arbitrary mixture of text and graphics,
and also let the pattern-match filtering work on the

graphic entities.

4C1B The control-dialogue procedures for working with the

graphic portrayals are also to be harmonious with the rest of
our system. This promises to be relatively easy to accomplish,

because of the flexibility of the Control Metalanguage approach

and the conceptual order of our basic control-language

approach.

4C2 This graphics package will serve many needs within the

Bootstrap Community, but its early developments will be aimed to

support two principal needs:

4C2A Documentation Diagrams -- for what is needed to record

thoroughly and accurately the goals, plans, implementation,

operation, etc. of all of our activities. This documentation

effort is very important to many aspects of getting our
"bootstrapping" effectively operative -- including, as noted

below, the Management-System Research Activity.

4C2B Management Analysis Portrayals ---for what is needed to
portray information of special relevance to the communication,

analysis, study, etc. activities of the Management System.

POL*1 ;

45

IV -- MANAGEMENT-SYSTEM RESEARCH : Augmented Organization

5 Augmented Organization

SA The "environment" will be strongly influenced by the following

factors :

5A1 Slow but steady development of the full NLS system on the 940
-- getting the disc system going to provide file capacity, getting
the display system up to quality and quantity, getting NLS and the
Time-Sharing System to give reasonably good response to all the
displays, getting system reliability up past the tolerable and
into the dependable, etc. For a system of its complexity, we must

allow for many months of this development work.

5A2 An unknown degree of distraction, from such new development
pursuits as the management aids discussed above, caused by crises
in this more fundamental pursuit of getting the basic system

dependa!) le.

SA3 New staffing, to make up for some loss during the winter, and
for an increase in contract budget over last year, is not likely
to mature until early summer, when the university grauuates become
available. We will be understaffed for a while, and then will be
faced with indoctrinating new people -- i.e., there will be more
burden on old staff before the new staff becomes productive.

SB To reach significant results in the Management-System research
and to facilitate the "Bootstrap-Comnunity" approach, we need to

devote early and serious effort to developing better organizational
structure and activity within the Community and instilling much more
extensive awareness and practice of (and dialogue about) "good"

management principles.

5B1 Launching this particular pursuit is not dependent upon the
facility development, and this fact, together with the basic
importance of the pursuit, led us to predict extra emphasis on
this "organizational" topic during the first six months.

5B2 We will specify and steadily pursue the specific
data-manipulation developments described above, but once they are
specified their development rate will hinge upon the evironmental

factors listed above.

5C There are some interesting possibilities for computer aids to the

"organization" problem, particularly in the area of

intercommunication and conferencing.

50 We anticipate that individual researchers will take part in
team efforts, with each researcher working in his own office and
connected to others by the computer system.

4f>

IV -- MAN AGE MENT-SYSTF. M RESEARCH : Augmented Organization

5C1A A system to augment intercoimunication is thus necessary

to enhance the capabilities of this team.

SC2 This problem is distinct from that of augmented conferencing

where the concern is with people working together at the same

location.

5D Augmented Intercommunication

5D1 What will exist in this regard within the initial NLS is

roughly as follows:

5D1A The creator of a file can designate who else may have

access to this file (i.e., who may get a copy to study), as

well as who else (not necessarily the same group) may modify
the file (i.e., replace one version with another).

S!)1B As soon as one person has replaced a modified file into

disk storage, another can pick up a copy to learn what has been

changed.

5D1C If two users may each modify a given file, they may use

it to comnunicate between themselves, more or less as if they

were taking turns writing on a blackboard visible to both. The
difference is that only one at a time may write on the file,
and the other cannot see the new change until it is finished.

SD1P Of course, they may use several communication files, so
that each can be composing a new message simultaneously (on

different files); also, any long message can be sent in parts
so that the recipient need not wait through the entire

composition before seeing any of it.

51)2 Generally, this basic facility, by virtue of the

instantaneous availability of a new version of a given file to

everyone concerned, is in itself a very significant improvement in
the means of organizational intercoimunication.

5P2A However, putting this improvement to work raises

inmediate questions and problems. Consider, for instance, that

two users will be in disagreement relatively often. Tor such

an instance, there should be a period of dialogue, arriving at
a resolution of some sort.

5D2A1 The dialogue would presumably proceed via

interchanges written into a communication file -- probably

the file containing a passage over which the disagreement
arose.

47

IV -- MAN AdFMF.NT-SYSTF.M RESE ARO I : Auemented OrRanization

5D2A2 IVhen the dialogue is over, one user must clear up the

residue and incorporate the outcome of the dialogue into the

original passage. Possibly the other user would later need

help in remembering the original version so as to see how

the passage had been changed; he would need to find the

record of the dialogue.

5D2A2A There would need to be conventions as to the

recording of the dialogue, etc.

SD2A3 A second disagreement could occur during the course

of this dialogue, and a third during the dialogue to resolve

the second disagreement, etc.

5D3 Special aids to human interconmunication are bound to evolve

ultimately. The following are some possibilities:

5D3A Annunciators (User-Interrupt System)

5D3A1 This refers to special signals indicating to a user

that there is a message (or a requested operation) to be

brought to his attention.

5D3A1A These signals function like the annunciators in
certain communication equipment -- more or less raising a

flag at the edge of the user's consciousness so that he

can interrupt his current activity when it suits the
occasion. The analogy to the interrupt system in

computer hardware is quite direct.

5D3A1B Each individual could probably establish his own

way of having these annunciators implemented -- e.g.

blinking marks at one edge of the screen, etc.

5D3A2 In responding to an annunciator signal, a user may be

taken automatically to a particular view of some passage

which others are working on and would like his help, or

there may of course just be an independent message. In the

latter case, an automatic message-answering facility c0^d
be useful, setting up in turn an annunciator call upon the

originator.

5D3A3 An announcement could be sent simultaneously to a

specified set of people, with code terms possible for

specifying special sets of people to whom group messages are

frequently sent.

5D3A3A A user could have a message circulated in a

specified order through a given set of people, and

48

IV — MANAŒMFNT-SYSTEM RESEARCH: Augmented Organization

perhaps could even set up an algorithm for dynamic
determination of the sequencing (with looping possible)
depending upon the additions made by the successive
people.

Sn3A4 Different levels of urgency could be signalled.

SD3A5 One typical signal could be an "alarm clock," set by
the user himself for a given time or event.

5D3B Voting

5D3B1 A logical extension to the annunciator system is a
set of aids for automatically calling for votes, for
increasing the urgency of an ignored annunciator signal, for
presenting the issue to each voter, and for recording the
votes and registering the results.

5D3B2 To initiate such a procedure, a user would need to
designate the particular issue, the group over which the
vote is required, the priority level, etc. Perhaps he would
include a request to be interrupted when the voting was
complete, or by a certain time.

5D3C Dialogue structure

5D3C1 The interactive discussion is likely to take
nonlogical paths in its course toward understanding and
compromise, and it could produce a messy file unless special
means are provided for either accommodating this disorderly
development or else cleaning up as it proceeds.

5D3C1A Initially, the parties to the dialogue would have
to do this cleaning up, but it could be very useful to
develop a technique for structuring the successive
contributions to reflect the course of the argument and
provide help in clarifying its overall status at a given
moment.

5D3C2 This might entail developing a node-link structuring,
with ways of labeling the branching of dead-end paths,
superseded arguments, alternatives yet unexamined, etc., and
various ways of displaying different views of this to help
see where the argvanent has been, where it is incomplete,
what the net result currently is, whose "turn" it is now on
a given branch, etc.

5D3D Signatures

49

IV - MANAGEMENT-SYSTEM RESEARCH : AuRmented Organization

5!)3ni A new dialogue entry should include the
identification of the person making it, as well as a record
of the entry time.

The computer can automatically install this
"signature" in each entry.

5D3E Concurrent access

M>3M The course of a dialogue would be faster and less
frustrating to all parties if simultaneous access were not
1 imitated to "one at a time making additions," as will be
the initial case.

5[)3E2 With the special dialogue structuring, or even in an
ordinary structure (with special algorithms regulating the
operations allowed each participant), simultaneous access
could be much improved without undue difficulty.

5M3E2A It would probably be necessary to enter a special
operating (dialogue) mode, in which many operations are
disallowed, and special ones provided; all users could
then reference the same file.

5n3F;2B For instance, if participants were limited only
to the attachment of new statements (dialogue entries),
as seems a reasonable possibility, then it is logically
feasible to let them both be working on the same file.

5D3E2C User A could see where User B is attaching the
entry he is currently composing; if desired, he could
even see the current state of that entry (although he
could rot do anything about it until the entry was
finished).

5P3F Injunctions

5D3F1 Some sections of a dialogue file could be open for
modification, to sharpen up an argument, etc. Rut if some
passage is under attack, it could create great heat and
confusion if someone changed it before another party had had
his say.

5U3F2 To control this, there could be an "injunction"
feature, where User A could affix an injunction upon a
specified passage, and the computer system would permit no
subsequent changes until "due process" had lifted that
injunct ion.

50

-- MAN ACÍi MF NT-SYSTEM RESEARQI: Augmented Organization

50SF2A "Due process" would mean release either by User A
or by some higher authority who overruled him.

51)30 Journal records

SnSGl Allowing changes to be made in sections of the
dialogue record, during the course of the dialogue, has
definite advantage toward providing a better current
"statement" of interaction.

SM3niA However, it loses the "history" of the
development of that current state.

5D3G2 A possible way to save the history would be for the
computer system to automatically keep a log (a journal
record) of each action by each participant, complete enough
so that from this record it could make a dynamic rerun of
the dialogue as it actually occurred.

5D3G3 For research purposes it would be very useful to be
able to study the dynamics of these dialogues.

5D3G3A Among the consequent possibilities is the ability
to evaluate the relative effectiveness of different
individuals in a new and useful way. This possibility
would also be valuable for operational management
systems.

5D3G3B This facility would also enable analyses to trace
the source of important contributions.

5E Augmented Conferencing

SEI Dialogue from distributed consoles is important, but we are
assuming that personal-confrontation dialogue is still necessary
and very important.

SE1A It is not clear how much difference there might be in the
nature of the computer aids required to "augment" a conference
as compared with those for the distributed dialogue, but al
least the physical arrangements will be different.

51 IB Tbe following is a description of our initial experience
with augmented conferencing.

SI.2 The On-Line Sponsors' Progress-Review Meeting

SH2A On 12 and 13 October 1967 the following Sponsors’
representatives visited us for a progress-review meeting:

Mflifim'Hifipfiii.iiiiiri'M',, i, |i

IV -

*

_

- MANAGEMENT-SYSTEM RESEARCH: Augmented Organization

5E2A1 Robert Taylor and Barry Messier, ARPA

SE2A2 A. E. Gribble, NASA-Langley

SE2A3 Fred Dion and Dean Bergstrom, RADC

SE2B For this meeting we built a special square table, seating
five on a side, with the center area open. Ne arranged six of
our television monitors in the center area, so that each of the
20 persons was conveniently near at least one of them. Fig.
IV-1 shows this arrangement.

5E2B1 These TV monitors were placed low enough to give each
participant an unobstructed view of all other participants
around the table.

SE2B2 At one location at the table we set up the mouse,
keyboard, and keyset terminal equipment to remotely control
NLTS on the CDC 3100.

5E2B3 A TV camera captured the image generated on the large
display scope in the computer room, and the video was wired
to the six monitors in the conference room.

SE2B3A The video signals were inverted, so that the
displays in the conference room showed black characters
on a white background.

SE2B4 iix auxiliary mice were located around the table,
wired so that depressing the control button on any one of
them would pick up a relay to connect that mouse into a
special input channel to the coaputer.

SE2B4A This channel controlled the position on the
screen of a second, extra-large tracking arrow.

5E2B4B This setup allowed any participant easily to take
a nearby mouse, hold the button down to establish his
control of the extra tracking pointer, and move this
pointer about on the screen as a means of pointing out
items on the display about which he wished to talk.

SE2C Ne collected about ISO of the files that have been
developed in the program, and put then on one disc pack to be
available for access and study during the conference.

SE2C1 This included all of the working specifications and
some of the symbolic source code of our 940 system design,
vhe documentation and user guides for the 3100 and 940

S2

. l mm M llt

IV — MANAGENCNT-SYSTEM RFSEAROI: Augmented Organization

subsystems, all of our recent reports and proposals, etc.

5E2C2 We also included sea« files specially prepared to
show the activity, framework, and candidate conference
topics, and a framework from which to generate the working
agenda.

SE2C3 Figure IV-1 shows the specially prepared agenda fíle,
with the view parameters set to show only first-level
statements, displaying one line of each.

SE2D As a means for presenting a large quantity of complex
material, in a manner flexibly adjustable to the course of the
discussion and to the special needs and questions of the
participants, this setup proved very valuable.

5E2D1 The full power of NITS for moving nimbly between
files, and within a given file for scanning, freezing,
cross-reference hopping, content filtering, etc., gives to a
practiced user an unusual capability for presenting his
material.

5E3 Conferencing plans and possibilities

5E3A We were all quite enthusiastic about the experience, and
we are looking forward not only to regularly running our own
program meetings and design sessions in this manner, but
perhaps to holding more on-line meetings with sponsors and
people outside the program.

5E3B Besides this 20-man conference setup, we shall need to
develop means appropriate for 2- to S-man groups, perhaps using
the office consoles.

5E3B1 One basic need would be for independent control
devices (mouse, keyset, etc.) for each participant.

5E3B2 Also, provision so that whatever display surface(s)
are being used can be arbitrarily divided up for independent
control. (This feature is also valuable for single-person
use.)

5F The challenge of adapting to not only a unique working
environment (i.e. the Bootstrapping Cownmity, where a person is a
specialist-contributor researcher as well as a subject), but to a
rapidly evolving environment, is quite critical here.

5G This thrust in our general plans represents a shift in focus to a
broader concept of "management system," with esçhasis on

S3

*

• »

IV — MANAGEfCNT-SYSTEM RESEARCH: Augmented Organization

organizational problems. However, in parallel with efforts to
understand these issues, we will continue to develop software
management (administrative) aids, based on the SOS 940.

54

i
e

1I
S

i

S

55/56

e

.

APPENDIX A — Gañera1 Background: General Features of AHI Research

1 General Features of AHI Research

1A Increasing the value of plentiful and Uaediate computer service
requires a '’systesi engineering" approach which, besides concerning
itself with the development of the various computer-aid techniques
and operations, treats in a coordinated fashion other significant
aspects of the "user system" that are amenable to study and
improvement. Some of these aspects are as follows:

1A1 The nature and structure of concepts with which the user
approaches his problems. These concepts include "task,"
"constraint," "resource," "deadline," "progress review,"
"responsibility," etc. Specific instances of these coason and
important concepts will appear in a project environment in
relationships forming a structure.

1A2 The nature and structure of the symbolic representations of
these working concepts — such as formatting, footnoting,
cross-referencing, special tagging, charting, etc.

1A3 The way in which the user "encodes" his requests for service
from the computer system, considering both the mental and the
physical actions that are required to control the computer.

1A4 The procedures and methods with which he pursues his goals,
at every level of activity where the system designer can
practically make changes (e.g., how he changes a sentence, adds a
reference, cleans out his files, gets a trial design approved, or
sets up a project.)

IB This system-oriented approach is also an experimental one, in
which all of the varied developments are put to work in a coordinated
real-life working environment to be tested and evaluated.

1C The value ascribed to new developments, and the system of
priorities used to select the next implementation from among many
possibilities, are both based upon the associated improvements to the
system's capability -- i.e., to the working effectiveness of the
people in this experimental environment.

ID The users of this experimental system — i.e., the "subjects" of
experimentation — are the staff of the AHI Research Center. We call
this the "bootstrap" approach, and the group of users is called the
"Bootstrap Community."

1D1 Thus, the aids developed and experimented with are those that
promise to the Bootst.ap Community thq best payoff either in
direct improveMnt of working abilities or in new understanding
toward that end.

A-l

APPENDIX A — General Background: General Features of Allí Research

IE Implicit in the above, but deserving explicit coaaent, is the
evolutionary nature of the system growth that results from this
approach. Developments of various facets of this system, as well as
our means to study, analyse, design, and implement them, must all
evolve together in a coordinated fashion.

APPENDIX A — GENERAL BACKGROUND: Bootstrap Approach

2 Major Considerations Associated With the Bootstrap Approach

2A The Whole-Syste* Concept of Augnenting Hunan Intellect

2A1 We are concerned with the effectiveness of an "augmented

him an." Our concept of "augmented human" includes the human plus

the language, methodology, and artifacts he uses.

2A2 It is our concern to improve the effectiveness of
system — i.e., augment the human by evolving better language,

methodology rad and the «ana for learning h» bwt to

use them in the pursuit of comprehension of our complex

environment.

2A3 There is no sense in isolating a part of this system for

study to the exclusion of other parts. The AHI L
concerned with study, design, experimentation, and evaluation of

all aspects of this system.

2A4 Limited problems can be isolated and worked on at any given
time. But the evolutionary "«ture of ^ s^at^ allows us to
continually redirect our concern as new problems are identified.

2B Empirical Evaluation of System Features Within a Working System

2B1 Considering that this is a whole-system »PProachand that the
whole system is very complex, we cannot analytically

mutual-interaction effects that a change in one
has throughout the rest of the system. The net worth of a change
in one component must be evaluated by its effect on whole-system

performance.

2B2 These considerations argue strongly for evaluating each

feature by observing its effect within a whole system that is not

only in realistic use but has had time to be *h«k®"
when the system has come to some sort of equilibrium aft r
implementation of a new feature can the feature be evaluated. The

resulting growth is by a series of small, evolutionary steps.

2C Evolutionary Approach

2C1 An important operational question is how large an

evolutionary step should be to maximite experimental progress.

2C2 The "site" of a given step can be measured in several ways:

2C2A By its development cost in talent, dollars, and computer

demand

A-3

APPENDIX A — GENERAL BACKGROUND: Bootstrap Approach

2C2B By the magnitude of the changes required in the
operational environment -- i.e., in hardware, conventions,
skills, procedures, data formats, operating roles, etc.

2C2C By the time required to implement and check out the
change, and tc shake down the new whole-system operations.

2C3 At the present state of our development, most "steps" cannot
be quantitatively evaluated. Evaluation and decision thus become
a community problem, demanding new rules, procedures, methods and
organization to enable a "consensus" to be attained. These issues
are discussed as "organization" problems in Sec. IV.

2C4 Because of the great uncertainties in our research
environment, the evolutionary approach means we make small steps
in preference to large ones. Less uncertainty is involved with
small pragmatic steps into the "unknown." Small steps can be
accomplished without major equipment changes.

2C4A For example, we do not try to develop automatic
speech-recognition capability, because it is a large-step
change and does not at all promise corresponding value in terms
of our goals.

2D The Bootstrap Strategy

2D1 The assumption that the whole-system, empirical, and
evolutionary principles are all to be followed in an exploratory
program leads to certain requirements:

2D1A The first requirement is a an experimental service system
capable of providing the necessary service functions.

2D1B The second requirement is a set of subjects to use the
system.

2D1B1 The subjects are trained in the use of current
language, methods, and artifacts.

2D1B2 They use these augmentation means exclusively (where
applicable) in the pursuit of significant intellectual work
in which they have full professional motivations and
pressures.

2D1B3 They not only become comfortable and smoothly
skillful in the use of each innovation, bu': also pay
attention to the new needs, possibilities, and complaints
associated with the interaction of each innovation with the
rest of the working environment.

APPENDIX A — GENERAL BACKGROUND: Bootstrap Approach

2D1B4 This often calls for-a succession of changes until

the dynaaic "reverberation" throughout the syste* caused by

the introduction of the original innovation has died

and the syste« assumes a certain condition of integrated

smoothness in its operation.

2D1C The third requirement is a set of research tasks -- for

example:

2D1C1 Studying the subjects and the subject-augmentation

system

2D1C2 Analyzing and evaluating needs and possibilities

2D1CÎ Designing new parts of the system or redesigning

established parts

2D1C4 Implementing changes and training subjects to take

advantage of new features

2D1CS Conducting other normal research support activities
including literature work, reference keeping, professional
communication, planning, coordination, documentation,

project management, etc.

2D2 TYie "bootstrap" principle, as applied here, results in one

set of people playing the roles of both subjects and researchers.

2D2A This means that the researchers are constantly studying,

analyzing, evaluating, designing, implementing, training, and

learning over the whole range of recognizable, understandable,

and designable portions of their own professional working

environment -- within a set of objectives, principles, and

concepts that it is their responsibility constantly to improve.

2D2B The areas in which they seek to augment their ability to

comprehend and solve problems will be these activities

themselves.

2D2C In that the researchers' daily work might be said to h-

"augmentâtion-system development," the sum of the developments

steaming from their work will be an "augmentation-system

development system."

2D2D The principles and techniques of analysis, design,

implementation, evaluation, and training that they develop will

be communicable to others who wish to work cn specific

augnmntation systems.

A-5

APPENDIX A -- GENERAL BACKGROUND: Bootstrap Approach

2E The "Augaented Organization"

2E1 In our Bootstrap Conmunity, we have an organization of

"augmented humans," interactively cooperating and communicating

with the aid of real-time cross-coupling through their computer
system.

2E1A Such an organization is promised a direct gain in

effectiveness because its individual members can do more
complex tasks and do them better and quicker.

2EIB He expect a source of marked improvement in

organizational effectiveness to be found in the new abilities
to intercommunicate, to follow sophisticated cooperative

procedures, to work simultaneously on coimnon data, to have

semi-automatic interpersonal "interrupt" protocol leading to
approval or voting actions, etc.

2E1C The product of "augmented organizational coordination" of

"augmented human" members presents a truly exciting potential.

2F The Management-System research is viewed as an important part in

pursuing this potential within the SRI AHI Program.

A-6

APPENDIX A — GENERAL BACKGROUND: Experimental Environment

3 Specific Features of Our Experimental Environment

3A The foregoing has been an attempt to give the reader s?me
into the conceptual framework and research strategy witlJJ-hich the

AMI Program pursues the potential of "augmenting . *
The following is an introduction to the actual work that has been

carried out by the Augmented Human Intellect Research Center.

3B Our initial focus has been on computer-aided text manipulation.

fBv ’text" we mean generally infoimation represented by strings ot
characters. This could include mathematical equations, programming

statements, etc.) There are several reasons for this:

3B1 Text is representative of our speech and much of our

conscious reasoning about nontextual records; it is the basic
fabric in which most of the collaboration in system development

work such as ours takes place.

3B2 Text is applicable as a representation of our thoughts and

actions at all levels of our working system (e.g., from coding for
the computer up to long-range planning for the research program).

This makes it widely applicable to our own work.

3B3 A coordinated working system for manipulating text is

relatively easy to implement. With equivalent resources, a wider

collection of useful working aids may be implemented for text than

for graphics, for instance.

3B4 An effective system for handling the text of working records

(planning, design, reference, etc.) will provide a sound structure

in which later to embed manipulation techniques for other symbols

-- e.g., graphics.

3C The Use of Structured Text

3C1 A very early feature of our conceptual framework regarding

means for augmenting human intellect was the introduction of more

explicit "structuring" of working information. We took the view

that the symbols one works with are supposed to represent a

mapping of one's associated concepts, and further that one s

concepts exist in a "network" of relationships as opposed to the

essentially linear form of actual printed records. Thus it was

decided that the concept-manipulation aids derivable from

real-time computer support could be appreciably enhanced by

structuring conventions that would make explicit (for both the

user and the computer) the various types of network relationships

among concepts.

3C1A As an early experiment with this concept, we adopted some

A-7

ò

APPENDIX A — GENERAL BACKGROUND: Experimental Environment

years ago the convention of organizing all information into

hierarchical structures, with provisions for arbitrary

cross-referencing among the elements of a hierarchy. The
principal manifestation of this hierarchical structure is

simply the breaking up of text into short paragraphs called

"statements," each of which bears a number showing its serial

location in the text and its "level" in an "outline" of the

text. For some material, the structured statement form may be

undesirable. In these cases, there are means for suppressing

the special formatting in the final printout of the structured

text.

3C1B The ability to name individual statements and to forn
arbitrary cross-reference links between any two statements,
when added to the basic hierarchical form, yields a general

structuring capability that is quite flexible. These
structuring conventions are expected to evolve relatively

rapidly as our research progresses.

3C2 The basic validity of this approach has been well established

by our subsequent experience. We have found that in both off-line

and on-line computer aids, the conception, stipulation, and

execution of significant manipulations is made much easier by the

structuring conventions. Also, in working on line at a CRT

console, not only is manipulation made much easier and more

powerful by the structure, but a user's ability to get about very

quickly within his data, and to have special "views" of it

generated to suit his need, are significantly aided by the

structure.

3C3 We have com to write all of our documentation, notes,

reports, and proposals according to these conventions, because of

the resulting increase in our ability to study and manipulate them

during composition, modification, and usage. Our programing

systems also incorporate the conventions. We have found it to be

fairly common that after an initial period of negative reaction in
reading explicitly structured material, one comes to prefer it to

material printed in the normal form.

3D Means of Manipulating Working Text

3D1 Two coordinated systems of text manipulation are used within

the AHI Research Center. The purpose of these systems is to aid

their users in composing, modifying, and studying the text of

their working information, with special attention to the case»

flexibility, and power that make working records flexible enough

to be kept up to date with current thinking and developMnts. All
of our text-manipulâtion techniques will work to some extent with
normal "free" text, but are much more effective and powerful when

A-8

? ✓

é

!

APPENDIX A — GENERAL BACKGROUND: Experimental Environment

used on structured text. Output«text from either system can be

manipulated further with the other system. The two systems are

described below.

3D2 FLTS

3D2A One system is the Off-Line Text Manipulation System

(FLTS), which provides a means for harnessing computer aie» for
a user sitting off-line at any writing device that produces

punched paper tape.

3D2A1 The paper tape is later batch-processed by a computer

program that operates upon the new text input, as well as
upon any specified "old" or previously processed text,

according to user-specified directives (conands) embedded

in the text. These directives may be deleted from the text

on final output.

3D2A2 FLTS may be used for composing and modifying new

files, for adding to or modifying old files, and for merging

and reorganizing new and old files.

3D3 NLTS

3D3A The other system is the On-Line Text Manipulation System

(NLTS), with which a user sitting in front of a CRT display

gets immediate response to his key-stroke and pointing actions
in terms of modification to the displayed text, or the place in

text he wishes to view, or the form of a view he wishes to see.

3D4 Printout

3D5 Special printing-control features have been developed to

facilitate output printing for either system. Special control

directives arc eni>edded in the text, to be carried and manipulated

as part of a file's regular content. These are recognized and

interpreted during output. By these means margins may be set, page

headings may be established, etc.

3D5A As an example, with the exception of pages containing

illustrations, every page in any of our current reports was

typed on its mat directly from computer output. The system, in
response to directives, automatically leaves page space for the

pages that contain photographs. One directive permits the

printing of the directives to be suppressed, so that they will

not appear in the final copy.

3E Note: These systems are being transferred to the SPS 940
time-sharing computer.

A-9

APPENDIX A -- GENERAL BACKGROUND: Experimental Environment

3E1 "The 940 display-oriented on-line system is called NLS , and

will include graphic- as well as text-manipulation capabilities.

Its initial version will provide essentially the the same user

features as the 3100 NLTS. An improved printout system is being
implemented.

3E2 The equivalent of FLT® is scheduled for implementation after

NLS is running well, and will be a system usable for either

off-line (via paper-tape) or on-line typewriter-controlled

manipulation of files containing mixed text and graphic
information.

A-10

í

APPENDIX A — GENERAL BACKGROUND: Prior Support History

4 Prior Support History

4A A project for the Air Force Office of Scientific Research

(Contract AF 19(638)-1021, under which the basic conceptual work was

done, as well as the first off-line text-manipulation work

4B An internally sponsored project at Stanford Research Institute,

under which an intermediate-state off-line system was developed

4C A project for the Advanced Research Projects Agency (Contract

SD-269), under which work on information structuring, basic working
methodology, and the higher-level manipulation processes in the

on-line system were done

4D A project for the Electronic Systems Division of the Air Force

(Contract AF 19(628)-1088) which studied structuring and manipulating

techniques for managing information (specifically, system-program

design documentation)

4E A contract with NASA (Contract NAS 1-3988) in which we studied

and developed the display-control techniques that represent the

operational foundation of the on-line system.

4F A contract jointly sponsored by ARPA and NASA (Contract NAS

1-S904), begun just before this management-system research project
and running in parallel since then, which has supported the basic

developments of the AHI Program (sec Engelbart6 and Engelbart?).

A-l 1

APPENDIX A — GENERAL BACKGROUND: Status at Beginning of Project

5 Status at the Beginning of the Project

SA At the tiiee the project began, we had just replaced our earlier

CDC 160A with the present CDC 3100. Our new facility comprised:

SA1 The CDC 3100 computer, in the following configuration:

5A1A Memory: 16,000 words, 24 bit, 1.7S microseconds

SA1B Three I/O channels, one of which is compatible with the

interface previously used on soi» of our equipment for coupling

to the CDC 160A

5A1C Paper-tape I/O

SAID Three magnetic-tape transports

SA1E One IBM 1311 disk file (2.000,000 character capacity)

SAIF One ISO-line/minute printer

SA1G Punched-card reader, 1200 cards per minute.

5A2 Work Station

5A2A Special (SRI) interface equipment couples the 3100 to a

display generator, and to the various keyboards and selection

devices of the work station.

5A2B Before the project began, SRI had installed a Strata

character generator, with a repertoire of 63 characters and a

generation rate of the order of 100.000 characters per second.

SA2C Early in the project, SRI added a vector generator to our

display-driving equipment.

5A3 Software for the 3100

SA3A CDC provides a FORTRAN IV compiler, an assembler for
their COMPASS symbolic machine language, and the SCOPE

operating system, under which programs in either language may

be run. (There are, of course, other CDC software systems, but

these were the only ones of concern to us.)

SB An early version of NETS had been programmed for the 3100, with

essentially the same internal organization and external functional

features that had been implemented on the 160A (see Englishl).

5B1 This implementation was programmed in COWASS.

A-12

APPENDIX A — GENERAL BACKGROUND: Status at Beginning of Project

5B2 Hie 3100 had considerably moro room in core for working data

— so we now could contain the whole of a 30,000-character working

file in core — whereas on the 160A only some 3000 characters out

of a 17,000-character working file could be held in core.

5B3 The response to many comands, when working on a large file,

was thus noticeably faster.

SB4 Quite a few inprovements in detailed software design were

made in this reprogramming, but it was not a "redesign," since our
basic need was to get a system operating as quickly as possible on

the 3100. The 160A was to be removed, and we did not want to be

without a usable on-line text manipulation system.

SC The structure-manipulation part of a new FITS had been specified

for the 3100, and was being implemented in FORTRAN IV.

SCI The manipulation functions specified were essentially the

same as in the system previously implemented in ALGOL on our BSS00
(see Engelberts).

5D The basic assembly-debugging facilities within the COPE system

had essentially been put into operation. This version of the system
was still written in COMPASS.

SE A SNOBOL3 compiler had been designed for the 3100, and was

essentially programmed (in COPE) but not checked out.

SF XDOC: External-Document System

SF1 Since 19S9, under various successive sponsors, we have been

accumulating a file of "external documient" (XDOC) citations and
reprints.

SF2 The citations had been punched on paper tape as they

accumulated, and we had about 2000.

5F3 Of the actual referenced papers, at least 75 percent existed

as reprints or copies, stored in our files under their XDOC

accession numbers.

5F4 The only index we had to this was a card file arranged

alphabetically by author.

5G The further developments of these 3100 systems are described in

(Engelbartb) and (Engelbart7).

APPENDIX A — General Background: History of Management Project

6 History of Management-System Project

6A "nie project began in February 1966, and an initial set of

computer aids was specified and implemented (as described earlier in

this report) to support the management of our manpower and facility

resources. This was as initially planned for the research project,

making use of the CDC 3100 computer-display system.

6B At the ARPA Contractors' meeting at MIT on 7 and 8 April 1966, in

a discussion between D. C. Engelbart of SRI and Robert Taylor of
ARPA, it was agreed to study the possibilities for a significant

expansion in the computer-display facilities for the AHI Program —
an expansion for which ARPA was tentatively interested in receiving a

proposal.

6B1 The basis for the initial exploration was to consider

establishing on the order of twelve CRT consoles, to be

distributed among the offices and work areas of the AHI Research

Program, to be served with full-time availability by a time-shared

computer system able to provide the needed level of response and

file storage.

6C Knowing that any such expansion would significantly alter the
planned activity for the management-system project, Engelbart visited

RADC on 9 April to discuss the situation with Mr. A. R. Bamum and

his staff. Tlie consensus reached during this discussion was as

follows:

6C1 If such a change were to be made, it would be better (for the

AHI program as a whole) to do it as soon as possible, since the

much-increased research progress yielded by the proposed new

system would thus have longer to produce results.

6C2 Once a firm decision to change facilities was reached, it

would be wasteful to continue to invest time and money in

developing management aids on the CDC 3100 -- since we would not
carry on with the use of the old facility, and thus would not be

able to use, evaluate, and improve these aids.

6C3 Thus, it was realized that, compared with the initial
expectations on this management-system research project,

significantly less results would be obtained during the project

period if this new facility development were to take place --

i.c., results represented by explicit new computer-augmented

management practices.

6C4 This project had been viewed, by both sponsor and contractor,

as an initial stage of at least a two-stage effort, and while the
contemplated facility changeover would diminish the results from

4-H

(

APPENDIX A -- General Background: History of Management Project

the first stage, it would tremendously enhance the productivity of

a second stage.

6C4A Part of th. tentative ««-facility
that ARPA would support the entire couputer facility, allowin*

free use of it by <>£« !£>««* ^ the coordinated
management-system project) WOuld free the fairly
rÄ of“”« subdue« rÍoc support eoney
otherwise required for CbC 3100 computer charges, to beapp'l
?«ííd” iícíeased manpower effort on the management-system

research.

6C4B Also, the near 20-fold increase in console availability,
plus t« Augmented organisational-coordination« «j»«.
produce a very *“h richer .nviron-nt U^ich^hi^lncre^d

riÄ «ron,y””Sfd permit a much wid«^ range^of

SrirrT«.a«u2ny ïh.b«ÏÏngee«iron^t for the manager

of the future.

PCS In th. long run, then, RADC-s return
would be increased by shifting th. nature of
coordinate with such a facility expansion, if the latter were made
possible.

f,rA It was aereed then that SRI would proceed with a study as to

% ifferpS..cx;t rcp;^.nutt:d r r
JU«t*^.d bftaier;.

rPr^f Ä r&S

rgotfatloisl^fs e^LSedTíigh^nough probability ^f the new

system.

6E
in accordance with prior arrangement. a telephone discussion was

A-15

APPENDIX A — General Background: History of Management Project

then held with Mr. Bamun in which it was agreed that SRI should

request an extension of the contract without funds for this project.

Accordingly SRI requested that the conract termination date be so

extended, from its original date of 22 March 1967 to a new date of 1
September 1967.

6F It had been initially assumed that the added ARPA funds would be

attached to the existing ARPA-NASA contract. It was found

preferable, however, to route this added funding to SRI through RADC.

Formal proposals were submitted by SRI on 1 February 1967 (ESU

6G On S May 1967, the modifications to Contract AF 30(602)-4103 were
finalized and money became available for ordering equipment and
implementing the new system.

6G1 Concurrently, the termination date of the contract was

adjusted to 7 March 1968; thus this "first stage" of

management-system research became but a part of the larger

project, and its tendnation date was made concurrent to that of
the facility support portion — the latter being an inflexible

date, since a large segment of the funding supports the computer
lease, which the AHI program has no flexibility to adjust.

5*’ At *h* tiw* Lof this report — i.e., at the above-mentioned
termination date, the new facility is not quite functional, and no

special aids have been programmed for management-system support.
However, there have been developed special features in the data
structuring, in the Control Metalanguage, etc. (see Sec. Ill) to
enable the ready addition of these contemplated special computer
Bias •

A-16

4

APPENDIX B — HARDWARE REFERENCE MANUAL

1 Introduction

ia This document is a preliminary reference manual for programming
connected to the Sp.ci.l-D.vl«, Ch.nn.1

(SDC).

IB The Sp.ci.l-D.vi«, Ch.nn.1 i, .n I/O chmn.l de5i«.J to
inter'.« . sroup of nonstmJ.rd (non-SDS) equipnent to the SOS 940

i^t“! n consists of .n ...cutiv. control »nd six independent

units.

1B1 The channel provides direct access to memory for each of the

units.

1B1A Memory addresses, direction of transfer, and priority arc

supplied independently hy the units.

1B1B The units operate asynchronously. Uc ~ec^vfin^tro1
standardizes timing and determines priority among the units.

1B2 It responds to EOM and SKS instructions for program control

of the devices.

1B2A Each unit operates from a fixed address in core, with no

J«îisioÔ for transfer of address., with the ROM instructions.

1B3 Interrupts are transmitted to the computer under certain

l"diSrr the various units. ••in. interrupt linos are

provided.

1C Hie units and associated devices handled by the channel are as

follows:

in A disc file with approximately 32 million words of storage.

£ average a«e,s time is?9S ns and the data rate is 42.000 words

per second.

1C2 Two independent display systems each with six displays.

An Input-Device Controller (IDC), which reads the input

devices associated with the CRT work stations (keyboards, binary

keysets, and mice) and also provides certain output sirnals for

use at the consoles.

1C4 a terminal to accommodate special hardware for time-sharing

system improvements.

1C5 A Low-Priority Controller accommodating three low-priority

devices :

HARDWARE REFERENCE MANUAL

1C5A A line printer with printing speed of 230 lines/min and

96 characters, including upper- and lower-case alphabets.

1C5B An on-line Selectric typewriter, with provisions to

acconmodate a plotter at some future date.

1C5C A terminal to interface the proposed ARPA computer

network.

B-2

./

HARDWARE REFERENCE MANUAL

2 The following terns are used in describing the operation of the SDC:

2A Advance sector word -- A word in core that is written by the

controller to indicate the sector in each zone that will be available

next.

2B Command table -- A contiguous buffer in core containing comnands

to a disc or display controller.

2C Console status table -- A bank of 56 words that contain data on

the input devices and output signals for each console.

2D Display buffer -- A contiguous buffer in the display pages

containing display instructions.

2D1 The display buffer may cross the page boundary and has a

maximum length of 1023 words.

2E Display controller — The system hardware that interprets

computer instructions (EOM and SKS) and controls the command-table

processing.

2F Display generator -- The display-system hardware that accepts

display instructions and from them produces a picture on a CRT.

2G Display instructions -- Instructions to the display generator

(beam motion, character writing, etc.) that cause the actual

generation of a display.

2H Display list -- A contiguous buffer in the display pages

containing pointers to display buffers.

2111 The display list, by definition, begins in the first display
page and may extend into the second page (if it exists). Within

this restriction it may be of any length.

21 Display pages -- One or two pages in user core that may contain a

display list and display buffers.

211 The first display page is the page in which the display list

begins.

212 If a second page is available it is the next consecutive (to

the user) page.

2J Error word -- A fixed core location in which the disc controller

writes bits indicating error conditions in the disc system.

2K Input Devices Controller -- The system hardware that controls the

B-3

HARDWARE REFERENCE MANUAL

input devices (keyboard, keyset, mouse end switches) for each console

and the output signals (other than display) to each console.

2L Unit reference cell (URC) -- A fixed location in core for each

laiit that contains the address of the command (or print buffer) being
processed by that unit and the error code associated with that unit

when an error condition is detected.

2M Print buffer -- A contiguous buffer in core containing characters

(control and data) for the line printer.

B-4

HARDWARE REFERENCE MANUAL

3 Core and Interrupt Assignments

3A The following fixed octal cord locations are assigned to the

devices on the channel:

10 URC - line printer

11 URC - network
12 URC - typewriter/plotter
20 URC - first display system
30 URC - second display system

50 URC - disc system
51 Advance sector word - disc system

52 Error code - disc system

260 - 350 Console Status Table

3B The following are interrupt assignments:

205 Input Device Controller

206 Disc - normal

207 Disc - error
210 Special Operations

211 Line Printer

212 Network
213 Typewriter/Plotter

214 Display 1
215 Display 2

B-5

HARDWARE REFERENCE MANUAL

4 Computer Instructions

4A Program control of the Special Devices Channel is through EOM

instructions.

4A1 The EOM code is 20230YXX

4A1A The Y digit refers to the EOM type. The EOM actions vary

for the units and are described along with the respective

units.

4A1B The X digits refer to the unit. These are

1 Disc file

2 First display system
3 Second display system

4 Special operations
5 Input device controller

16 Line printer

26 Network
36 Typewriter/plotter

4B SKS instructions are used to sense status in the system.

4B1 The SKS code is 04030YXX

4B1A The Y digit refers to the SKS type. The conditions

sensed are described along with the respective units.

4B1B The X digits refer to the unit with the same coding as

for EOM instructions.

B-6

(

HARDWARE REFERENCE MANUAL

5 Disc File System

SA General

5A1 The subsystem described here consists of a Bryant ni*c
Series 4000, Mod A2A, and a control unit, present 7-disc

system is capable of storing approximately 32 million 24 bit

words.

SB EOM and SKS Instructions

SB1 Four EOM instructions are defined for the disc subsystem.

SB1A The EOM codes are

* 20230101 Go chain
20230201 Go no-chain
20230301 Disconnect

20230401 Reset

SBIB The EOM actions are:

5B1B1 Go-Chain — This EOM causes the controller to start

command processing.

SB1B1A Processing always starts with the command

addressed by the URC when the EOM is executed.

SB1B1B If a disconnect request has previously been

stored by a Disconnect EOM and the *yst«™ is ***** ^

(processing commands), a Go-Chain

disconnect request.

5B1B1C A Go-Chain EOM issued while the system is busy

and no disconnect request is stored results in a cormand

error.

5B1B2 Go-No Chain - l^is EOM causes the controller to

process the single command table entry pointed to by

URC.

5B1B2A A Go-No Chain EOM received while the controller

is processing commands results in a command error.

5B1B3 Disconnect -- This EOM causes the controller to

disconnect at the next normal interrupt condition.

SB1B3A The execution of a Go-Chain EOM before the next

B-7

HARDWARE REFERENCE MANUAL

normal interrupt condition is reached cancels the

disconnect request.

5B1B4 Reset --This EOM inwediately terminates any disc

operation in process when the EOM is received, and returns

the system to the disconnect state.

5B2 Two SKS instructions are defined.

5B2A The SKS codes are

04030101 Skip if Busy

04030201 Skip on No Error Conditions

SB2B The conditions sensed are;

SB2B1 Skip if Busy — This instruction causes the next

instruction to be skipped if the disc system is busy.

5B2B2 Skip on No Error Condition — This instruction causes

the next instruction to be skipped if no outstanding error

conditions exist on the disc subsystem. Execution of this

instruction does not reset any error conditions.

SC Command-Table Processing

SCI After either Go EOM the system begins processing commands

with the conmand addressed by the URC.

SCIA The URC always points to the current command being

processed.

5C1A1 In a Go-Chain or Go-No Chain operation, after »he

successful completion of the command, the URC is updated

(incremented by 3) to point to the first word of the next

command.

5C2 There are three types of cotimands in the command table.

5C2A Data Transfer Command -- This command consists of three

command words located in contiguous memory locations.

SC2A1 The first word contains the disc address. It consists
of concatenated binary address fields. Not all combinations

in certain address fields are used; the unused combinations

form invalid addresses. The address word has the following

format :

B-8

HARDWARE REFERENCE MANUAL

O 2 3

:1 0: :

I Track

10 12 19 23

Zone Surface Sector

5C2A1A Interrupt bit — If Bit 2 is a 1, a normal
interrupt is given after successful completion of the

command.

SC2A1B Track Address Field (8 bits) — This field is
used to select one of 256 head array positions. All bit
combinations in this field are valid.

5C2A1C Zone Address Field (2 bits) — TMs field is used
to select one of the three disc frequency zones as
follows:

00 Zone 1
01 Zone 2
10 Zone 3
11 Invalid

5C2A1D Surface Address Field (7 bits) -- This field is
used to select one of the 12 data surfaces and two heads

per zone.

5C2A1D1 Surfaces are nunbered 0 to 11, with the low
order bit selecting the head.

5C2A1D2 The valid addresses for the 6 disc system are
0000000 through 0010111.

5C2A1F. Sector Address Field (4 bits) — This field is
used to select the proper sector on a track.

5C2A1E1 The valid combinations for this field depend on
the zone selected. Sectors are numbered zero to k, where
k is one less than the number of sectors in the zone.
The following combinations for each zone arc valid.

Zone Address Field Sectors
1 0000-0010 3
2 0000-0111 8
3 0000-1010 11

B-9

..mmmmmmw" 1

HARDWARE REFERENCE MANUAL

ItfLJÎ*- SeCOnrd WOrd contains the class and word count. Its format is as follows: ‘

0 6 12 23

Class Count

SC2A2A Class Field contains the
B*t (Read/Write) and information
subdivided as follows:

Hi reelion-of-Trans fer
on headers. It is

0 1 2 6

Head I/O class

-rm.„ Mt iS a '• b'*“" fUldS

transfer 61'5 the direction of
transfer and the use of the class field as follows:

00
01
10
11

Read - No compare with class
Read - Compare with class
Write record and class field
Write if class compares equal

definin. “T 1M’.4;bit »«I« »PP«rs in each record
defining a class to which the record belongs. If class
comparison 15 called for and fails, an ertlr internet ”

SC2«B Count Field - This field defines the nuaber
24-bit words to be transferred.

of

5C2A2B1 The maximum word count is 2048.
count in the comisand word results in an
count error.

Exceeding this
illegal word

5C2A2B2 If the field is
position the head array on
with a word count of zero).

tero the command serves to
ly. (Headers may be written

B-io

HARDWARE REFERENCE MANUAL

5C2A3 The third word contains the core memory address at

which the transfer is to begin and mapping information to be

used in crossing p*g® boundaries. The word format is:

0 2 6 8 23

R Map Core Address

5C2A3A The R bit indicates whether mapping is to be

used.

5C2A3A1 A ! in the R position indicates mapping, and a 0

indicates no mapping.

5C2A3B The "map" bits (Bits 2-6) are used to remap the

16-bit address when a page boundary is crossed.

SC2A3B1 When the page boundary is crossed (lower 11

address bits are zero) and mapping is used, the upper 5

bits of the address are replaced by the map bits.

SC2A3B2 If no mapping is used (R-0), crossing a page

boundary results in a map error.

5C2A3C Core Address — This field contains the absolute

core address at which the information transfer is to

begin.

5C2B Branch Command -- This command causes the next command

word to be taken from the core location given in the branch

command word rather than in sequence in the cownand table. The

core address is absolute and no remapping takes place. The

word format is:

0 2 8 23

:0 1: :

I Core Address

5C2B1 If the interrupt hit is set a normal interrupt will

be generated after the command is executed.

5C2B2 Note: After a branch conrand the URC is written

with the entire contents of the branch command word.

B-ll

HARDWARE REFERENCE MANUAL

SC2C Disconnect Command Word -- This word causes the disc

controller to disconnect. The word format is:

0 2 23

:0 1: :

I

5C2C1 If the interrupt bit is set a normal interrupt will
be generated after the command is executed.

5D Disc File Formats

5D1 Disc Format: Each of the twelve data surfaces is divided

into three zones, with a pair of heads for each zone. Each of the
three zones has a separate clock frequency and bit density

optimized for the zone.

SD2 Zone Format: A zone is divided into 512 tracks,

corresponding to each of two heads at 256 positions of the head

array.

5D3 Track Format: A track is divided into sectors by prerecorded

sector pulses. The number of sectors per track is a function of
the zone.

Zone 1 3 sectors/track Inner Zone
Zone 2 8 sectors/track Middle Zon-
Zone 3 11 sectors/track Outer Zone

5D4 Sector Format: There is one fixed-length record per sector,

with a data field of 256 24-bit words. Associated with each
record is a header field used to identify the record and ensure

that head and zone selection are correct before writing or reading

a record, and a class field used to grant access to records by
class.

5D4A In all subfields of the sector a preamble and postamhle

are used to ensure reliable reading of the first and last bits
of the subfield.

5D4A1 These bits are all "ones," generated by the

controller and never transferred to the computer.

5D4B The overall format of the sector is

B-12

P-....

HARDWARE REFERENCE MANUAL

50 bits 25 bits 6450 bits

Header Field Class Field Data Field

5D4B1 The header field consists of two header words
generated by the control unit and is not transferred to the

Central Processor.

SD4B1A These words are written only when special key
switches (one for each header word) are on and a 1
appears in the 0 bit of the class and count word.

5D4B1B Header word 1

8 bits 8 bits 5 bits 1 3 bits

: Preamble :Track Addresst Zeros : P :Postamble:

5D4B1B1 This word is written by the disc controller and
is used for track verification.

5D4B1C Header word 2

8 bits 2 7 bits 4 bits 1 3 bits

: Preamble : Z : surface rsector : P :postamble:

SD4B1C1 Zone Subfield (2 bits) — These two bits
correspond to the zone address and are used to insure
proper selection of the zone.

5H4B1C2 Surface Subfield (7 bits) — These seven bits
are uied to ensure correct selection of the head and
recording surface.

5D4B1C3 Sector Subfield (4 bits) -- This subfield is
used to identify the sector or record and is unique on
each track.

5D4B1C4 Parity Subfield (1 bit) -- Odd parity is
generated for each header word and is checked whenever
the header is read.

B-I3

>

HARDWARE REFERENCE MANUAL

ÜD4B2 Class Field Format -- The format of the class field

is :

8 bits 4 bits 9 bits 1 3 bits

: Preamble : Class ; Zeros : P : Postamble:

5D4B2A Class Subfield -- This is a 4-bit field defininp
the class to which a record belongs. Normally the class
field is read and compared with that appearing in the
command word; if they are equal the operation proceeds.

5ri4B2B Parity Subfield (1 bit) -- Odd parity

5D4B3 Data Field Format

8 bits 6400 bits 8 bits 3 bits

: Preamble : Data : Check Bits iPostamble:

5D4B3A Data Subfield (6400 bits) -- This subfield
consists of 256 24-bit machine words. An odd parity bit
is inserted every 24 bits by the control unit. Tt is
transferred in its entirety on a read operation with odd
parity generated for each word. If less than 256 words
are transferred on a write, the control unit generates
the necessary zeros to fill out the data sub field.

5D4B3B Check Subficld (8 bits) -- This subfield is used
for error checking over the data record. It is generated
by the control unit on a read or write operation and is
never transferred to the central processor.

5D4B4 Cap Format -- A gap of 75 bit times is allowed
between each alterable segment of the sector format and the
next. This allows sufficient time for the recovery of the

read amplifiers after writing a segment of the sector field.

5F. Clocking

5E1 Clock tracks are prerecorded on a separate disc with its own

set of heads that do not move.

5E1A Each zone has a separate heads for write clock and

sector/index pulse.

B-1'J

HARDWARE REFERENCE MANUAL

5E1B When the system is busy, the advance sector word is
updated by the controller to indicate the next available sector
in each zone. This word has the following format.

034 11 15 19 23

TV Track Zone 3 Zone 2 Zone 1

5E1B1 "TV" is the track verification bit. When this bit is
a 1 the heads have settled on the addressed track.

5E1B2 The "track" code indicates the head array position
if TV is 1 and head array destination if TV is 0.

5F Error Conditions

5F1 Whenever an abnormal condition is detected by the controller
the following actions occur:

5F1A Any data transfer operation in process is terminated.

5F1A1 A disc read operation is terminated inmediately on
detection of the error.

SF1A2 On a disc write operation the remainder of the
current sector is filled with zeros and the operation is
terminated.

5F1B Bits indicating the error conditions are written in the
disc error word.

5F1C An abnormal interrupt is generated.

SFln The controller goes to the disconnect state.

5F2 The disc error word contains a 1 for every abnormal condition
that has occurred. At least one bit will always be set and more
than one can be set.

5F2A The format of this word is

Bit

12 Illegal Word Count
13 Map Error
14 Control Unit Error

B-15

HARDWARE REFERENCE MANUAL

15 Class Not Equal

16 Not Ready

17 Angular Position Error

18 Head Position Error
19 Invalid Address

20 Command Error

21 Data Transfer Error
22 Check Field Error

23 Word Parity Error

5F3 Data and Command Errors

5F3A Word Parity Error (Bit 23) -- This condition is set

whenever the parity is incorrect on a 24-bit sequence in the

data field of a record during a read operation.

5F3B Check Field Error (Bit 22) — This bit is set whenever

the check bits at the end of the record indicate that an error

has been made in reading the record.

5F3C Data Transfer Error (bit 21) -- This bit is set when data

being transferred from the Central Processing Unit to the

Control Unit has incorrect parity.

5F3D Command Error (bit 20) -- This bit is set for the

following conditions:

5F3D1 Incorrect parity for a command word transferred from

the comuter.

5F3D2 Invalid command code.

5F3D3 A Go-No Chain EOM received while busy.

5F3D4 Go-Chain FaIM receive while busy and no disconnect

request waiting.

5F4 Addressing and Positioning Errors

SF4A Invalid Address (Bit 19) -- This bit is set when the disc

address specified in a transfer conmand is invalid or a data

transfer exceeds the cylinder.

5F4A1 A cylinder consists of all tracks on all surfaces

that can be accessed from a single head position.

5F4B Head Position Error (Bit 18) -- This bit is set if the
head array is not correctly positioned as determined by failure

B-16

HARDWARE REFERENCE MANUAL

to get track verification after 7 revolutions or incorrect

track address in header word 1.

5F4C Angular Position Error (Bit 17) -- This bit is set when
the angular position specified in the address does not match
that read from header word 2, or if a parity error is detected

in header word 2.

5F4D Illegal Word Count (Bit 12) -- This bit is set when the
word count in a data transfer command exceeds 2048.

5F5 Miscellaneous Errors

5F5A Not Ready (bit 16) -- This bit is set if the control unit
receives an information transfer command and the disc is not

ready.

SFSB Class Compare Not Equal (bit 15) -- This bit is set if a
class compare is requested and the record has a different class
from the Information Transfer Command.

5F5C Control Unit Error (bit 14) -- This bit is set when
timing or sequencing errors in the control unit prevent
completion of the operation.

SF5D Map Error (bit 13) — This bit is set when a data
transfer crosses a page boundary and mapping is not legal.

B- 17

HARDWARE REFERENCE MANUAL

6 The Display System

6A General Characteristics

6A1 The display system has general character, vector, and
plotting capabilities.

6A1A Screen position is specified by 10 bits for horizontal
and 10 bits for vertical, **ith a resolution of at least S00
line pairs in each dimension.

6A1A1 The time required for full screen deflection and
settling to within 0.1 percent is approximately IS
microseconds.

6A1B The character generator can produce 128 characters but at
present only 96 characters are implemented. The lower case
codes act as nulls.

6A1B1 Characters and codes are given in Sec. 9.

6A1B2 All characters are written relative to a beam
position at the lower left comer of the allotted character
space.

6A1B3 Four character sizes are available with a range of
sizes allowing from 32 to 128 characters per line.

6A1B4 In the print mode, the average time per character for
a full screen of characters is approximately 12
microseconds.

6A1C The line generator is capable of drawing straight lines
of varying type between specified endpoints.

6A1C1 In the line mode, the time required to draw a full
screen line is approximately 25 microseconds; shorter lines
take proportionally less time.

6B Display Controller Operation

6B1 ROM instructions for the display controller are:
•

1 Initiate
2 Pause
3 Restart
4 Reset

B-18

HARDWARE REFERENCE MANUAL

yr

l

6B1A The EOM actions are:

6B1A1 The Initiate EOM starts command processing.

6B1A1A Processing will always start with the command

addressed by the Unit Reference Cell at the time the FOM

is executed.

6B1A1B An Initiate EOM directed to a busy unit will be

ignored by the system.

6B1A2 The Pause EOM will cause the system to stop

processing commands after the command in process at the time

the EOM is received.

6B1A2A The system may be started again by the Restart

EOM.

6B1A3 The Restart EOM will cause the system to continue

processing (with the next command) after a pause or a

failure interrupt.

6H1A3A A Restart EOM executed following a Pause EOM will

cancel the pause request.

6B1A3B A Restart EOM directed to a unit that is

disconnected (reset) will be ignored.

6B1A4 A Reset EOM will immediately stop all display

processing and return the system to the reset state.

bB2 SKS codes for the display controller are .

1 Coranand Table Active

2 Unit Busy

6B2A The conditions sensed are as follows:

6B2A1 Command Table Active

6B2A1A The unit is in the process of interpreting a

command.

6B2A1A1 When this status is detected the command table

should not be changed by the program.

6H2A2 Unit Busy

6B2A2A The unit is processing commands.

B-19

HARDWARE REFERENCE MANUAL

6B2A2A1 The unit is not busy when in either the pause or

disconnect state.

6B3 Command Table Processing

6B3A After an Initiate EOM, the display system will process

the command table without further action by the program.

6B3B The address of the first word of the command being

processed is always contained in the Unit Reference Cell.

6B3B1 This cell is updated on the successful completion of

a command.

6B3C Each entry in the command table consists of two words

with the following format:

6B3C1 First word:

026 11 17 23

:0 0 1 1:

op id map 1 map 2 console

code

6B3C1A Bits 0-2 contain the op code. Op-codes are

0 Disconnect

1 Pause
2 Start Display, Normal

3 Start Display, Step Mode

4 Branch
5 Branch Timed
6 NOP

7 Reset

6B3C1B Bits 3-6 contain a code to identify this as the

first word of a command.

6B3C1C Bits 7-11 contain the relocation map for the

first display page.

6B3C1D Bits 12 - 17 contain the relocation map for the

second display page.

6B3C1D1 The highest order bit (Bit 12) of this map

B-20

HARDWARE REFERENCE MANUAL

indicates a legal map. If thii bit is 0 the map will not
be used and only one display page is available to the
user.

6B3C1E The 6 bits (18 - 23) indicate which of the 6 CRTs
(one or more) will be unblanked for this display list.

6B3C2 Second word:

0 8 23

1 address

6B3C2A Bit 0 is the interrupt bit.

6B3C2B Bits 1-7 are not used.

6B3C2C Bits 8-23 contain an address but may be ignored
depending on the op-code.

6B3D Processing of op-codes is as follows:

6B3D1 Disconnect -- Command processing will immediately
stop and the system will be reset. An Initiate EOM must be
issued to initiate further processing.

6B3D2 Pause -- The system will stop processing commands
until a Restart or Initiate EOM is received.

6B3D3 Start Display, Normal -- The system will display the
identified display list on the selected console.

6B3D3A A 14-bit display-list address in user core is
contained in the command address field. Relocation map 1
is always used to map this into an absolute 16-bit
address.

6B3D4 Start Display, Step Mode -- The system will display
only the single display list entry pointed to by the address
field.

6B3DS Branch -- The display system will jump to the
location specified in the address field and continue to
process commands.

6B3D6 Branch Timed -- The same as the Branch conmand.

B-21

3

hardware reference manual

except that the branch will not be executed unless the
regeneration timer has run out.

6B3n6A For synchronous operation the branch will be
executed on the first sync pulse after the timer has run
out.

6B3D6B The regeneration timer is set for the desired
regeneration rate and will be reset whenever a Branch
Timed command is executed.

6B3D7 NOP — Processing will go inmediately to the next
coimnand.

6B3D7A The interrupt bit is ignored. No interrupt will
be given.

6B3D8 Reset -- This sends a reset signal to the display
generator.

6R3I If the interrupt bit is set in any command (except NOP) a
display interrupt is given after successful processing of that
command. *

6B4 Display-List Processing

6B4A The display list format is as follows:

0 9 ,.

word count buffer address

6B4A1 The buffer address is the 14-bit address in user core
of the first word of the display buffer.

6B4A2 The word count gives the length of the buffer.

6B4A3 The M bit indicate that mapping is not to be used for
this buffer.

bB4B Each entry in the display list is processed in the
following mAnnpr*

6B4B1 If the word count is not zero, the display buffer
will be transmitted to the display generator.

B-22

HARDWARE REFERENCE MANUAL

6B4B1A If two display pages arc- available the buffer may
begin in either page and may extend over the page
boundary. The appropriate relocation map will be used.

6B4B1B If the M bit is set mapping is not applied to this
buffer. The address field refers to an absolute address
in lower core and only one display page is available.

6B4B1C If the buffer begins outside the display pages or
extends beyond the display pages, an error condition will
result.

6B4B2 If the word count is zero, this entry in the display
list will be ignored and the system will proceed immediately
to the next display list entry.

6B4B3 A display list entry containing a zero address
terminates the display list.

6B4B3A If the display list extends beyond the display
pages an error will result.

6B5 Errors in display commands will be detected and reported by
the system.

6BSA These error conditions are as follows:

6B5A1 Illegal Command

bBSAlA The command identifier field of a command table
entry is not correct, or the op-code field is not a legal
op-code.

6BSA2 Display list Overflow

bB5A2A Display list extends beyond display pages.

6BSA3 Illegal Buffer Address

bBSA3A The buffer address given by t);e disf lay list is
not within the display pages.

6B5A4 Buffer Overflow

6B5A4A Display buffer extends beyond display pages.

6R5A5 Excessive Time

6B5A5A The processing of a command has exceeded the

D-23

HARDWARE REFERENCE MANUAL

maximum time allowed.

6B5A5A1 Maximum time will be adjustable and will

normally be set to allow a frame of about 1200 characters

for each command (about 6 milliseconds).

6B5B Action on error conditions is as follows:

6B5B1 Processing action depends on the type of error.

6BSB1A For transmission parity, the processing will

continue without interruption.

6B5B1B For all other errors command processing will

terminate at the command causing the error, and may be

restarted by a Restart EOM.

6B5B2 An error code indicating the type of error will be

entered into the Unit Reference Cell.

6B5B2A The format for the Unit Reference Cell is as

follows :

0 2 8 23

error command table address

code

6B5B2A1 Error codes are

000 No Error (normal interrupt)

001 List Overflow

010 Buffer Overflow

011 Illegal Buffer Address
100 Illegal Conmand

101 Excessive Time

6B5B2A2 Bits 3-7 are unused.

6B5B2A3 Bits 8-23 contain the address of the conmand

that resulted in the error.

6B5B3 An interrupt will be generated.

6C Display Instructions

Ai

0-24

HARDWARE REFERENCE MANUAL

6C1 The display system operates in two général states -- the
control state and the normal state.

6C2 A 1 in the most significant bit position always indicates a
control word. There are two types of control word:

6C2A Parameter and Mode Specification Words

6C2A1 The parameter specification words set parameters that
are retained in the system until changed by a further
parameter specification or by a system reset.

6C2A2 There are two parameter specification words: certain
parameters can he set by either word.

6C2A3 For both words the "X" bit preceding the parameter
designates whether that parameter is to be changed.

6C2A3A When this bit is set the associated parameter
specification will be used.

6C2A3B When this bit is a 0 the parameter existing in
the system will not be changed.

6C2A4 First Parameter Specification Word:

024 12 14 17 23

: 1 1 0 : :x: :x::x: :x:

plot character 1 size h increment

6C2A4A Bits 5 through 11 specify the plotting character
to be used in plot modes.

6C2A4B Bit 13 specifies the intensity for all writing
modes.

6(2A4B1 A 1 indicates high intensity and a 0 low
intensity.

6C2A4C Bits 15 and 16 specify the character size used in
print and plotting modes.

6C2A4C1 Size codes and corresponding approximate numbers
of characters per line are

Code Characters/Line

B-25

HARDWARE REFERENCE MANUAL

00
01

10
11

128
80
64
42

6C2A4D Bits 18 through 23 specify the horizontal
increment to he used in the incremental plot mode and
print mode.

6C2A5 Second Parameter Specification Word:

0 2 4 7 10 12 14 17 23

: 1 1 1:x: :x: :x::x::x: :x:

mode line R I size h increment

6C2A5A Bits 4 through 6 specify the modes for the normal
state.

6C2A5A1 Codes and associated modes are

Code Mode
000 Print
001 Print Italics
010 Incremental Plot, Absolute
011 Incremental Plot, Relative
100 Random Plot, Absolute
101 Random Plot, Relative
110 Line
111 Line Grid

6C2A5B Bits 8 and 9 specify the line type used in line
writing modes.

6C2A5B1 Line types and codes are

Code Line Type
00 Solid Line
01 Dotted Line
10 Dashed Line
11 Dot-Dash Line

6C2A5C Bit 11 specifies blinking.

B-26

HARDWARE REFERENCE MANUAL

6C2A5C1 When blink is called for the unblank will be
pated on and off at a manually adjustable rate (about
cycle/second) until the blink is reset by a parameter
specification word or by a reset.

6C2ASD Other bits arc as described for the first

parameter specification word.

6C2B Position Specification Word:

02 11 14 25

: 1 0: • :

vertical position horizontal position

6C2B1 Bits 2 through 11 specify the absolute vertical

position.

6C2B2 Bits 14 through 23 specify the absolute horizontal

position.

6C2B3 Bits 12 and 13 are not used.

6C3 In the normal state, there are eight possible modes. The
mode is changed by a parameter specification word or by a reset.

6C3A Print Mode:

0 8 lb 23

character 1 character 2 character 3

6C3A1 This mode is used for writing lines of text on the
display in a typewriter-like fashion.

6C3A2 Characters are packed three to a word with automatic
horizontal incrementing after each character is written.
The horizontal increment is specified in the parameter

specification word.

(»C3A2A Exceeding the maximum number of characters in a
line will cause the characters to "wrap around" and write

over the first part of the line.

B-27

HARDWARE REFERENCE MANUAL

6C3A3 A 1 in hit p05***011* 8 or 16 indicates that the
remaining characters in the word are to be ignored.

6C3B Incremental Plot, Absolute:

02 12 14 23

first V position second v position

6C3B1 In this mode, two plotting characters may he written
for each 24-bit word.

6C3B1A Bits 2 through 11 specify the absolute vertical
position of the first character to be plotted.

6C3B1B Bits 14 through 22 specify the absolute vertical
position of the second character to be plotted.

6C3B2 The horizontal position is in^ it»onted after each
character is plotted, by an amount specified in the
parameter specification word.

6C3B3 A 1 in bit position 12 indicates that the : econd half
of this word is to be ignored. The horizontal position will
not be incremented for the second word half.

6C3B4 Bits 1 and 13 are not used.

6C3C Incremental Plot, Relative:

02 12 14 23

:0:s: :x:s:

first v. increment second v. increment

6C3C1 This node is identical to Incremental Plot, Absolute,
except that vertical positions are specified relative to the
previous beam position. Bits 1 and 13 are the sign bits.

6C3C2 In this and all other relative nodes negative numbers
are given in two's-complement form. That is, a negative
change of one unit is called for by the binary number 11 111
111 111. 6c3c3 Relative positioning that exceeds the
screen limits will result in "end-around" operation.

B-28

HARDWARE REFERENCE MANUAL

6C3D Random Plot, Absolute:

02 12 14 23

vertical position horizontal position

6C3D1 In this mode one plotting character may be written

for each 24-bit word.

6C3D1A Bits 2 through 11 specify the absolute vertical

position.

6C3Din Bits 14 through 23 specify the absolute

horizontal position.

6C3D2 Bit 12 indicates whether or not a character is to be

written.

6C3D2A If Bit 12 is a 1, the designated plotting

character will be written at the position.

6C3D2B If Bit 12 is a 0, the beam position will be

changed but no character will be written.

6C3E Random Plot, Relative:

0 2 12 14 23

vertical increment horizontal increment

6C3E1 This mode is identical to Random Plot, Absolute,

except that vertical and horizontal positions are specified

relative to the previous beam position. Bits 1 and 13 are

the sign bits.

6C3F Line:

02 12 14 23

vertical increment horizontal increment

B-29

HARDWARE REFERENCE MANUAL

6C3F! In this mode a line is written from the previous beam
position to a new point specified relative to that hcam

position.

6C3F1A When a line is specified that exceeds the screen
limits it is drawn in the direction and length indicated.
(Some distortion nay of course result outside of the
normal working area.) Beam position is then updated in
the normal end-around manner.

6C3F1B Bits 2 through 11 specify the change in vertical

position, with Pit 1 indi;ating the sign.

6C3F1C Bits 14 through 23 specify the change in
horizontal position, with Bit 13 indicating the sign.

6C3F2 Bit 12 specifies whether or not a line is to be
written.

6C3F2A If Bit 12 is a 1, a line of the type designated
by the parameter specification word will be drawn and the
beam position changed to correspond to the end of the
line.

6C3F2B If Bit 12 is a 0, no line will be drawn but the
beam position will be changed.

6r3r, Line Grid:

02 12 14 23

:0:s: :w:x:s : :w:

vertical increment horizontal increment

6C3G1 This node is provided to facilitate writing
horizontal and vertical lines on the screen. One vertical
and one horizontal line may be written for each 24-bit word.
The accuracy has been reduced to 9 bits to accommodate this
feature.

6r3GlA Bits 2 through 10 specify the change in vertical
position for the first line, with Bit 1 indicating the
sign.

6C3G1B Bit 11 indicates whether or not the line is to be

drawn as a result of this vertical change.

B-30

HARDWARE REFERENCE MANUAL

6C3G1B1 If Bit 11 is a 1, a line with length and

direction specified by the vertical change will be drawn

from the previous beam position. The vertical beam
position will then be changed to correspond to the end of

the line.

6C3G1B2 If Bit 11 is a 0, no line will be drawn, but the
vertical position will be changed.

6C3G1C In a similar manner, Bits 14 through 22 and Bit
13 specify the change in horizontal position with Bit 23

indicating whether or not a line is to be written.

6C3G1D The first word half or vertical line is always

executed before the horizontal line.

B-31

HARDWARE REFERENCE MANUAL

7 Input Devices Controller (IDC)

7A The EOM instructions for the I DC are

1 Initiate

4 Disconnect

7A1 No IIRC is associated with the IDC. The 16-hit address of the

Console Status Table (CST) will be wired into the IDC.

7A2 No error conditions are detected by the IDC.

7B Communication between the IDC and the software is through the

CST.

7B1 At a regular sampling interval (determined by the IDC) the

input devices are read and information relative to their state
written into the CST. A block of "output" words is also read from

memory by the IDC to control signals to the various consoles.

7B2 The format of the CST is

1 1
1 1 Block 0, outputs, 16 words.

1 1

1 1
1 1 Block 1, keyboard and keysets, 12 words.

1 1
1 1 Block 2, switches, 12 words.

1 1
1 1 Block 3, A-D converter (mice), 16 words.

1 1

7B2A The order within each block corresponds in the obvious

way to the numbering of the console stations.

7B2B The word format within the blocks is as follows:

7B2B1 Outputs -- Bits 19-21 correspond to six possible

output signals the software may send to the console.

7B2B1A An output signal is of a "one-shot" nature. To

B-32

HARDWARE REFERENCE MANUAL

control a signal that has a duration in time, such as a

light, two signals are required: one to turn the light

on, another to turn it off.

7B2B2 Keyboard-Keyset

0123b 10 IS 23

Keyset b Keyset a Keyboard

7B2B2A Bits lb-23 contain the code of the character most

recently received from the keyboard. Characters and

codes are shown in Sec. 9.

7B2B2B Bits 11-15 contain the code of the character most

recently received from Keyset a.

7B2B2C Bits 6-10 contain the code most recently recieved

from Keyset b.

7B2B2D Bits 0-3 indicate when valid characters have been

written.

7B2B2D1 Bit 3 is set to one by the hardware whenever a

new keyboard character is written.

7B2B2D2 Bit 2 is set to one whenever a new character is

written for Keyset a.

7B2B2D3 Bit 1 is set to one whenever a new Keyset b

character is written.

7B2B2D4 Bit 0 is set to one whenever a character is

written in any position.

7B2B2E The valid code remains in the CST for the sampling
interval (approximativ 30 ms). Thiring any sampling
interval when a "valid character" bit is not set, the
corresponding character location may contain garbage.

7B2B3 switches

012 18 21 23

X X X s p ca

B-3:j

hardware reference manual

7B2B3A The state of the console switches at each
sampling period is indicated by Bits 21 - 23, and changes
in the switches between two successive sampling periods
are indicated by bits 18 - 20.

7B2B3A1 Bit 23 is the CA switch on the mouse and Bit 20
indicates a change in this switch.

7B2B3A2 Bit 22 is the pointer switch on the mouse, with
Bit 19 indicating a change.

7B2B3A3 Bit 21 is the spare button on the mouse, with
Bit 18 indicating a change.

7B2B3A4 For each switchword. Bit 0 is set to one
whenever any switch has changed.

7B2B3A5 In the last word of Block 2, Bit 0 is set if
Block 1 contains any valid characters or if any of the
console switches (Block 2) have changed state.

7B2B4 Mice:

02 11 14 23

:0 0: :1 1:

vertical horizontal

7B2B4A Bits 2-11 contain the vertical coordinate from
the A/D converter

7B2B4B Bits 14-23 contain the horizontal coordinate from
the A/D converter

7B2B4C The 10-bit coordinates are positive, with origin
at the lower left comer of the display.

7B2B4D Bits 0 and 12 are specified to eliminate the
necessity for reformatting the coordinates before sending
them to the display.

7B2B4F. Bits 1 and 13 are "don't cares" to the display;
however, Bit 1 is set to 0 and Bit 13 is set to 1.

B-34

HARDWARF. REFERENCE MANUAL

7B3 After the last word of Block 2 has been written, i
have been any valid characters written in Block 1 or if any
changes have been indicated in Block 2, a 205 interrupt is

f there
switch

issued.

D-35

HARDWARE reference manual

K Line Printer

8A General Information

nrintimT [’rinter is a Potter HSP-3502 chain printer with 96
íüiute g haracters and a Printing speed of about 230 lines per

iicheT*5 CWart WiH accomodate widths from 2-1/2 to 18-1/2
inches. Character spacing is lo per inch and line spacine is

number^o^charactle ” l "" ^ " 10 P" numoer of characters per line is 132.

8A3 Characters and codes are shown in Sec. 9.

8B EOM and SKS Codes

8B1 The EOM codes are

20230106
20230406

Initiate
Reset

character íüsi^Lfh the printer wlth the w-d and
EOM is given! ^ contents of the URC at the time the

Ill'll printer control 1er will continue to process the
p int buffer until an illegal character or end-of-buffer
code is read, or until a Reset EOM is issued.

8B1A2 An Initiate EOM given while the printer is busy will
be ignored. 7

-i" "'Tn E<” "in tem.nate all prin.int aad
return the system to a reset state.

-î?1* Rese^ F0M ßlven whi,e the printer is disconnected will be ignored.

8B2 One SKS code is provided for the printer. The code is

04030106 Skip on Ready

8B.A This SKS will skip if the printer is ready to begin

occur n‘ If the Printer iS nPt reat,y» the following actions

D-36

1

MARPWARF REFFRENŒ MANUAL

8B2A1 The indicator lights on the printer begin to blink,

indicating that attention is required.

8B2A2 An interrupt is issued when the printer is made
ready.

8C The Unit Reference Cell associated with the printer system has
the following format:

0 2 6 8 23

error address

8C1 Bits 6-23 contain the absolute address of the first

character of the line in the print buffer currently being printed.

8C1A Bits 8-23 denote the absolute word address.

8C1B Bits 6-7 indicate the character in the word.

8C1B1 A 00 code is the leftmost character. The 11 code is
not used but will be interpreted as the leftmost character.

8C2 When error conditions are detected the error code is
contained in Bits 0-3.

8C3 After a line has been successfuly printed the address in the
unit reference is updated to point to the first ch iracter of the
next line.

81) The print buffer is a contiguous sequence of words in core that
is interpreted by the printer controller as three 8-bit characters
per word.

8D1 Characters in the print buffer may be either data characters
or control characters.

8D1A The control characters are

370
371

373
372
374
375
376

(SCI) Space on Channel 1 (6 lines/inch)
(SC4) Space on Channel 4 (10 lines/inch)
(NOP) No Operation
(NSP) No Spacing
(E.IT) Top of Form
(EOB) End of Print Buffer
(EOL) End of Line

B-37

HARDWARE REFERENCE MANUAL

377 (NOP) No Operation

8D1A1 Control codes contained anywhere in a line control

the spacing after that line.

8D1A1A The spacing option (SCI or SC4) is stored by the

controller and need not be included in each iine.

8D1A1A1 When the controller is initiated (by an EOM) the

option will be SCI.

8D1A1A2 Channel 1 will normally be set for single space

mi Channel 4 for double space.

8D1A1B The NSP code inhibits spacing only on the line in
which it occurs.

8D1A1C Only one EJT code in a line will be recognized.

8P1A1C1 For a page eject operation the EJT must be

followed by an F.OL or EOB.

8D1A2 An EOL or EOB code will cause the current line to be
printed with any characters already in the line left
justified.

8D1A2A The maximum number of characters in a line is
132. When that number of characters have been read the
current line will automatically be printed and the next
character in the print buffer will be the first character

in the next line.

8D1A3 An EOB code will generate an interrupt to the

computer after the line is printed and any spacing action

has been completed.

8P1A4 The number of lines on a page is normally set to bt)

(controlled by the format tape). When the last line has
been printed, an automatic page eject will position the
paper at the top line of the next page.

8D1B Data characters are either printing characters or space.
Characters and codes are given in Sec. 9.

8D1C Any character codes in the print buffer other than data

characters or control characters are considered illegal codes

and will result in an error.

B-38

HARDWARE REFERENCE MANUAL

8D2 Print buffers may be as large as desired, but no relocation

mapping is provided. !f a buffer is to extend across a page
boundary the software system must ensure that the two pages are
consecutive in memory.

8E Error Conditions

SEI On the detection of any error, an interrupt is issued and the

error code is written in the Unit Reference Cell.

8E2 The error conditions detected and p error codes are:

000 No Error
101 Illegal Character Code
110 Printer Not Ready
111 Excessive Time

8E2A Zeros in the error-code bits of the Unit Reference Cell
after an interrupt indicate a normal interrupt (printer made

ready or EOB).

8E2B The 101 code indicates that an illegal character has been

detected in the print buffer.

8E2C The 110 code indicates printer off-line, paper out, or

ribbon failure.

8F2D The 111 code indicates that in a normal printing

operation excessive time has been required for printing a line.

Sr.201 The timer is normally set for 2.S seconds. This
error will indicate printer failures not detected by other
printer error circuits.

B-39

Hardware reference manual

9 Character Set

following is the universal character set used with the Allí
940 and peripheral devices. Variations for particular devices are
noted and explained below.

000 (a) M (space)
001 !
002 "

003 *
004 $
005 %
006 it
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035

(
)
*
♦

•

/
0
1
2
3
4
5
6

7
8
9

<

S

036 >
037 ?
040 §
041 A
042 B
043 C
044 [)
045 E
046 F
047 C,
050 II
051 I
052 J

100
101
102
102
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133 (h)
134 (b)
135 (c)
136 (c)
137 (c)
140
141 (c)
142
143
144 (c)
145
146
147
150
151 (a)
152

• (center dot)
a
b
c
d
e
f
R
h
i
j
k
1
m
n
o
P
9
r
s
t
u
V

w
X

y
z

*‘ (overbar)
_ (underline)
(alternate mode)
(command delete)
(rubout)

I (d)
« (d)
M (d)-#-

(backspace)

(command accept)

(tab)

B - 4 0

HARDWARE REFERENCE MANUAL

053
054

055

05b
057
060
061
062
06 3
064
065
066
067
070
071
072
073
074

075
076
077

K

L
M

N
n

p
Q
R
s
T
U
V
w
X
Y
z

;
]
t

153
154

155 (a)

156
157
160
161
162
163
164
165
166
167 (c)
170
171
172
173
174

175
176
177 (e)
200 (c)

^ (carriage return)

(backspace word)

nul 1
(shift II)

9A1 (a)
display
separate
increment

These svmbols for spacing characters aPPjvtothe
only They are optionally displayed under control of a
Ci signai.to th/dUplay system but cause hor.tontal

ing at al 1 times.

9A1A For the line printer the 000 code is a space, and code.

151 and 155 are illegal.

9A2
the

(b) Uese two characters are displayed and printed outside
lormal character space and do not cause horttontal

incrementing.

PA3 (c) Keyboard only. These characters do not display or

print.

9A4 (d) Plotting character on line printer only

9Af, (c) Null character-no character displayed or printed, and

no incrementing.

B-4L/B-42

BLANK PAGE

ÄS***
»• » * » .i «, f

APPENDIX C -- WIRF.LIST GENERATOR PROGRAM

1 Introduction

1A This appendix describes a computer program that supports the
design and construction of digital equipment.

1A1 The program automates several of the clerical tasks
associated with logical design, and performs diagnostic operations
that are difficult without computer aid.

1A2 The program produces a set of listings that document a
digital design. Some of the listings are structured to aid the
maintenance and checkout operations, others arc structured to aid
the process of wiring the equipment, and another is used to
validate the correctness of the wiring.

1R Experience in the use of this program has so far been as follows:

1R1 There is a significant reduction in number of errors in
comparison with hand-prepared wirelists.

1R2 Initial checkout of equipment with the listings is relatively
simple.

1R3 The program provides an easy means of recording changes and
producing up-to-date documentation on the equipment.

1C An important aspect of the program is that it permits one to
prepare input data with the on-line text-editing facility (NETS).

ICI The form of program input conforms to present high-level
language standards; statements are free-field, and delimiters and
key words are used to control translation. Since record
boundaries are not significant, the input is essentially a stream
of text, and thus compatible with text files that are prepared
with NETS.

ID The remainder of this appendix describes the characteristics of
the program in greater detail.

1D1 Section 2 describes the background of the development of the

program.

1D2 Section 3 describes the input language and the role of NETS
for maintaining design descriptions in this language.

1D3 Section 4 describes the functions of the program and the

documentation that it produces.

1D4 Section 5 is a summary of experience in the use of the

C-l

APPEND!X C -- WIRELIST GENERATOR PROGRAM

program,

2 Background of Program Development

2A The construction of digital equipment requires a document known
as a "wirelist.” This is an ordered list of the wire connections
that are to be made.

2A1 Since the standard doctonent for the design of a piece of
equipment is the logic schematic, and not the wirelist, it is
necessary to translate the schematic into a wirelist.

2A2 When this translation is done by hand, it is normal for
errors to appear in the wirelist, even after laborious
cross-checking. Moreover, the hand-produced wirelist is not
easily organized to facilitate the assembly of the unit, and if
assembly is a hand process, additional errors are inevitable in
spite of additional cross-checking.

2B The process of translating logic schematics to wirelists is
purely mechanical, and easily automated.

2B1 A moderate-sized piece of equipment contains several thousand
connections, so that hand translation of logic schematics to
wirelists can take days or weeks of technician time.

2B2 When a wirelist generator program is used for the
translation, the technician instead spends his time translating
the schematic into machine-readable form.

2R2A This effort is comparable to the effort required to write
the wirelist itself, or even somewhat less.

2B3 Once the design is in machine-readable form, many different
processes can be carried out on it over and above the generation
of the wirelist.

2B3A Among these processes arc error-checking, generation of
several different types of documentation, and first-order
optimization of the ordering of connections in the wirelist.

2B4 The cost of computer processing to produce these results is
far smaller than the saving in both time and expense.

2C Wirelist programs are actually only part of the story. Within
the current state of the art, it is possible to produce diagnostic
test schedules, fault directories, and logic schematic drawings, and
to automate the layout of components in the backplane or on circuit
cards.

C-2

APPENDIX C -- NI RELIST GENERATOR PROGRAM

2D Wire list programs have been used for many years, but are not
available in the public domain because of proprietary status for
that reason and because of a desire to use the wirelist program in
conjunction*with NETS, a program development effort was undertaken at

SRI.

201 Many of the characteristics of the re^*^d
similar to those of its predecessors (e.g., the 1111111 system
by Lockheed Missiles and Space Company, and the AnD system used by
Philco-Ford), but the program has more advanced characteristics

than earlier wirelist programs. Some of these features

described in the following sections.

3 The Input Language

3A Input data to the program is oriented to the description of logic
gates instead of the description of pins on the gates.

3A1 This results in a reduction of SO percent or more in the
number of characters required to describe a design.

3A2 The free-field form of input
editing and much less error-prone

input data.

is ideally suited to on-line
than conventional fixed-field

3A3 Finally, the input language is such :hat a logic designer can
use it with ease, instead of adapting to conventions that are
machine-oriented rather than design-oriented.

3B There are four types of information that the designer must five
to the wirelist program. They are as follows:

3B1 The backplane, and the conventions used for addressing pins

in the backplane

3B2 The catalog of pluggable logic units

3B3 The catalog of logic gates that are mounted on the pluggable

units

3B4 The logic schematic of the design.

3C In most production environments, the first three items remain

relatively constant from design to design.

3C1 The purpose of
to save the designer
catalogs.
catalog is

using catalogs and backplane descriptions is
the effort of retrieving data from the

Since the program can perform the retrieval when the
supplied, the designer need not specify the information

03

APPENDIX C -- WIRELI ST GENERATOR PROCRAM

in the design description. This function of the catalog in the
program will become more clear as the language is described.

3D The backplane description is a single statement that gives the
levels of interconnection in the backplane and the scheme for
specifying pin addresses on the backplane. For example:

CHASSIS CAGE(1:101(CARDIA:Z1(PIN[1:201));

3D1 This statement states that a backplane has ten cages, labeled
1 through 10, each of which has card slots labeled A through 2,
and each card slot has 20 pins, labeled 1 through 20.

301A "CHASSIS" is a key word that the program recognizes.

30IB The names "CAGE," CARD," and "PIN" are names supplied by
the designer.

3D1C A typical pin in the backplane described by the statement
above is specified by giving the cage, card, and pin
designators in that order. Hence an address might be (5,C,10)
which specifies Cage 5, Card C, Pin 10.

3E The catalog of logic gates is specified by giving the number of
inputs, the loading of each input, and the fanout capability of the
output. For example, a two-input NAND is specified by the statement:

GATE N2(A,B), LOAD»1, FANOUT-8;

3E1 This states that there are two inputs, "A" and "B," that each
input draws one unit load, and that an N2 gate can drive eight
unit loads.

3F This is the simplest type of gate description. In the general
case, a pate is an iterative collection of stages, with some
additional inputs and outputs that do not fit the iterative
structure. To facilitate the description of these gates, a prototype
stage is described just once and the number of stages is given. The
special inputs and outputs are described individually.

3G The description of pluggable units follows the format of gate
descriptions.

3G1 Each gate on a pluggable unit is described separately, and
the pins to which the pate inputs and outputs are connected are
specified.

3G2 A unique index is given to each gate, and that index serves

C-4

APPENDIX C -- WIRKLIST GENERATOR PROGRAM

to locate signals on cards. Tims, the designer need only specify
that a signal comes from a given gate on a particular card and the
program will supply the proper pin connections.

3G3 An example of a pluggable unit specification is:

LOGICAL CARI) C100*
1 :=N2< 1 > (2,3),
4 :*N2<2> (5,6);

3G3A Here we have specified that a C100 card has two N2 gates
on it; the first has output on Pin 1 and inputs on Pins 2 and
3, while the second has output on Pin 4, with inputs on Pins 5
and 6.

3H The logic schematic can be specified without designating the
absolute physical locations of the gates and pins. This allows the
program to process schematics and perform diagnostic functions before
the design has been laid out physically on a backplane.

3111 The form of specification is to give each gate a name, and to
specify the names of the gates that are connected to the input of
each gate. A typical statement of this type is:

YC :-N2(YA,YB);

3111A The output signal name appears to the left of the symbol
and this is followed by the name of the gate.

3111B The input signals appear in parentheses and the semicolon
terminates the statement. This is similar in appearance to the
gate declaration for N2, except that the reserved word "GATE"
replaces the output signal name and the ":=". The symbol ":="
is interpreted to mean "is produced by."

31 There are several means for specifying the physical location of
signals in the backplane.

311 One such way is to merge a set of location specifications
with a set of signal specifications of the type shown above.

312 Another method is to give the physical address of a gate in
the same statement that gives the names of the inputs to the gate.
Thus, the statement

UC ON 2 AT (2,A)

can be merged with the signal-definition statement above to
specify that HC is the second gate on the card plugged into

C-5

APPENDIX C -- WIRELIST GENERATOR PROGRAM

location (2,A). Alternatively, we could

YC :» N2(YA,YB) ON 2 AT (2,A);

have written

313 The two methods are equivalent. In either event, it is also
necessary to specify that a card is to be plugged into location
(2,A), and this is done by the statement

C100 AT (2,A);

3J This covers essentially all the main features of the input
language structure. It is important to mention that the program is
insensitive to the order of appearance of statements, except that the
statements that describe the card catalog must appear before the
statements that describe a schematic diagram. Thus, if the medium for
source input is a punched-card deck, the deck can be shuffled without
affecting the program's behavior.

3k Earlier we remarked that a considerable saving in input
characters is achieved by using a gate-oriented description instead
of a pin-oriented description.

3K1 In practice, even higher-level descr.ptions are useful and
powerful to have in a language.

3K2 One such tool is the macro, which functions for wirclist
programs in mich the same way that a macro functions in assembly
languages.

3K3 Although the language was designed so that macros could be
incorporated into it, they have not yet been implemented. The
reason for this is that much of the power of macros has been
realized through the use of an on-line text-editing facility.

3L This facility has been used extensively as a powerful aid for
generating and maintaining the files of input data.

3L1 The rapid on-line search and edit facilities make it easy to
find and modify statements that need to be changed.

31,2 Through the use of the "pattem matcher," extensive checking
and correcting of the syntax can be done on line before the input
data is submitted to the wirelist program.

3L3 Furthermore, the text-structuring features are a convenient
way to organize the input data into sections and include comment
statements where needed.

4 The Wirelist Program

C-6

APPHNinX C — WIRLLIST GENERATOR PROGRAM

4A TT>e similarity of the input
•me input compiler is an adaptation of an ALTOL co^rUr^ writt

rdapr^'.ri-roi^:^iS rt^r^TiSX"Burr:u7s ^rsSo.
4B The wire list program is composed
input compiler and a file processor

of two functional blocks—an
The interface between the

blocks is an inte^diate'Hie'that contains the design information.

rei„fr:.r'.,“r ‘t. -reS.
syu*>ol table processing capability that is charac eri
compilers.

4B1A As signals are processed, information from the
table is retrieved and inserted in records that are output to
an intermediate disc file.

4B1B The disc records bear a striking similarity to the

conventional fixed-field input to wire-list ^

major difference that each record contains more
than is usuallv input from punched cards. One re

T„, “^ pia, ao th.t o„. Irp^ st.t.nent n.y cau..
several records to be generated.

4Bir Each record gives an internal name to the pin it

describes and contains the name of the
the name of the signal on the output of the gate to which the
pin is connected. It also contains the nai^ of the gate ne
Same of the pluggable card, the symbolic address and other
ilTomllior. that is valuable for design documentation.

4B2 The file is rrocessed by a succession of sorting operations.
thrclose of each sort, some processing is done on the file and

a listing of the results is produced. 1^0 listings that can be
produced are given below.

4B2A A carB-pl.ce™,„t llstinE-11.is lists the 'J'
backplane and the cards associated with each slot. arranged
lexicographically bv card-slot location.

4B2B A load-check listing-This lists every gate output and
all of the inputs driven by the output, ordered
lexicographically by signal name. Allowable fanout is given
III on^^^ of each ^r'^'L^rl^Ss ‘T on
given. The system automatically checks for overloads, absent

sources, al)sent loads, and multiply-defined names.

4B2C A signal input list-This lists every signal output and

C-7

APPENDIX C — WIRELIST GENERATOR PROGRAM

alí signals that are inputs «to tha gate that produces each
signal, ordered lexicographically by signal-output naae. In
addition, this listing includes the pin assignment for each
output signal.

4B2D A master-term list—This lists the wire chains to be
made, with each chain arranged lexicographically by backplane
address, aad the chains arranged lexicographically by signal
name.

4B2E A pin listing—This lists the signal name associated with
each pin on the backplane, arranged lexicographically by pin
location. The listing also gives the nuaber of wire wraps on
each pin. This is used to check a backplane after wiring.

4B2F Multilevel wire lists—These list portions of the wire
chains ordered lexicographically by signal name and backplane
location to facilitate orderly wiring and asseafcly of the
backplane. The lowest-level listing gives the interpin
connections for each card, ordered lexicographically by card
slot. The next level gives the intercard chains for each cage,
ordered lexicographically by cage and then by signal name. The
next level is an intercage list, and further levels are
possible up to five levels.

4B2G Tallies of gates used-The system can give a tally of
the number of gates of each type *hat are used. Tallies are
kept for she entire design and for submodules that are
identified by the user.

4C The set of listings that can be produced by the program resembles
the output of other wirelist programs. A simple set of controls
allows the user to request particular listings, so that the program
does not have to perform all processing on every run. Some of the
listings can be produced when the file is incomplete. An important
—pi« of this capability is the ability to perform load checks when
the addresses of the signals are not specified.

S Use: Experience

5A Three different modules of digital equipment have been built and
checked out using the wirelist program, and a fourth unit is under
development currently. The experience to date has shown the value of
the program in two important areas.

5A1 Wiring errors were reduced from 5 percent to 0.1 percent as a
result of the computer processing. This accounted for a great
reduction in the time required to check out a unit.

C-8

.„
%

APPENDIX C — HIRELIST GENERATOR PROGRAM

5A1A These figures are based on a conparison of
systems hand-» ired by various technicians. Alth°“Ç" .^e
technicians had si.ilar experience and eapabim1«.
individual differences nay have accounted for so«e of tne
dfference in error rates.

SA2 The effort of docunentation was reduced. The output listings
that show the wiring chains and the inputs to gates provide
sufficient doc«entation for capturing the state of the design.
ÎÜ.S. listings together vith logic sketches are
design debugging. The expense of obtaining *ccur***** j
finished loeic sdiematics was avoided without compromising either
S2 i^ricy of SrScumentation or its utility for maintenance

and checkout.

SB Hie program language is extremely easy to J"0 *J¡*
in a few hours by the logic designer who used it.
program was in a state of flux during the processing of the firat few
designs, which accounted for a few minor problems. ^ *
most ^recent design was processed, the program operation was
extremely smooth and the user was well acquainted with the use of all

of its facilities.

SC The computer cost for program operation is roughly 8 to 10 cents
per conductor, with up to five iterations through the program to
eliminate all errors. Dollar costs for designs run from $100 to $300
depending on the site of the design. Hie saving in checkout time is

many times this cost.

SD In summary, the wirelist program functions in several capacities
in the support of digital design. It is used to i^prowt Production
techniques, quality control, and documentation, and for maintenance
and checkout Assistance. Not to be overlooked in
ability to capture a design in a text file that can be manipulated in
the on-line interactive environment of NLTS.

C-9/C-10

APPENDIX D — TREE >€TA: Introduction

1 Terns such ms "netalanguage" and "metacompiler" have a variety of
meanings. Their usage within this report, however, is well defined.

1A "Language," without the prefix "neta," means any formal computer
language. These are generally languages like ALGOL or FORTRAN. Any
metalangauge is also a language.

IB A compiler is a computer program that reads a formal-language
program as input and translates that program into instructions that
nay be executed by a computer. The term "compiler" also means a
listing of the instructions of the compiler.

1C A language that can be used to describe otMr languages is a
metalanguage. English is an infrmal, general metalanguage that can
describe any formal language. backus-Naur Form or BNF (Nuri) is a
formal metalanguage used to define ALGOL. BNF is weak, for it
describes only the syntax of ALGOL, and says nothing about the
semantics or meaning. English, on the other hand, is powerful, yet
its informality prohibits its translation into computer programs.

ID A metacompiler, in the most general sense of the term, is a
program that reads a metalanguage program as input and translates
that program into a set of instructions. If the input program is a
complete description of a formal language, the translation is a
compiler for the language.

2 The broad meaning of the word "metacompiler," the strong, divergent
views of many people in the field, and our restricted ise of the word
necessitate a formal statement of the design standards and scope of Tree
Meta.

2A Tree Meta is built to deal with a specific set of languages and
an even more specific set of users. This project, therefore, adds to
the ever-increasing problem of the proliferation of machines and
languages, rather than attempting to reduce it. There is no attempt
to design universal languages, or machine independent languages, or
any of the other goals of many compiler-compiler systems.

2B Conf)iler-compiler systems may be rated on two almost independent
features: the syntax they can handle and the features within the
system that ease the compiler-building process.

2B1 Tree Meta is intended to parse context-free laguages using
limited backup. There is no intent or desire on the part of th»
users to deal with such problems as the FORTRAN "continue*'
statement, the PL/I "enough ends to match," or the ALGOL "is it
procedure or is it a variable" question. Tree Meta is only one
part of a system-building technique. There is flexibility at all
levels of the system and the design philosophy has been to take

1

APPENDIX D — TREE «TA: Introduction

the easy way out rather than fight old problens.

2B2 Many of the features considered necessary for a
conpiler-conpiler system are absent in Tree Mea. Such things as
symbol-tables that handle ALGOL-style blocks and variable types
are not included. Neither are there features for multidimensional
subscripts or higher level macros. These features are not present
because the users have not yet needed them. None, however, would
be difficult to add.

2B3 Tree Meta translates directly from a high-level language to
machine code. This is not for the faint of heart. There is a
very small number of users (approximately 3); all are
machine-language coders of about tne same high level of
proficiency. The nature of the special-purpose languages dealt
with is such that general formal systems will not work. The data
structures and operations are too diverse to produce appropriate
code with current state-of-the-art formal compiling techniques.

3 There are two classes of formal-definition compiler-writing schemes.

3A In terms of usage, the productive or synthetic approach to
language definition is the most common. A productive grammar
consists primarily of a set of rules that describe a method of
generating all the possible strings of the language.

SB The reductive or analytic technique states a set of rules that
describe a method of analyzing any string of characters and deciding
whether that string is in the language. This approach simultaneously
produces a structur*- for the input string so that code may be
compiled.

3C The metacompilers are a combination of both schemes. They are
neither purely productive nor purely reductive, but merge both
techniques into a powerful working system.

4 The metacompiler class of compiler-compiler systems may be
characterized by a common top-down parsing algorithm and a common
syntax. These compilers are expressible in their own language, whence
the prefix "meta."

4A The following is a formal discussion of top-down parsing
algorithms. It relies heavily on definitions and formalisms which
are standard in the literature and may be skipped by the lay reader.
For a language L, with vocabulary V, nonterminal vocabulary N,
productions P, and head S, the top-down parse of a string u in L
starts with S and looks for a sequence of productions such that S«u
(S produces u).

D-2

APPENDIX D — TREE NCTA: Introduction

4A1 Let

V - [E, T, F, ♦, *, (,)', X]

N - [E, T, F)

P - IE î :■ T / T ♦ F
T ïî- F / F * T

F ::- X / (E)

L - (V,N,P,E)

4A2 The following intentionally incomplete ALGOL procedures will

perform a top-down analysis of strings in L.

4A2A boolean procedure 0; E :■ if T then (if issyirholC*')
then E else true) else false; comment issymbol (arg) is a

Boolean procedure that compares the next symbol in the input

string with its argument, arg. If there is a match the input

stream is advanced;

4A2B boolean procedure T; T :» if F then (if issy!li>ol(,*,)

then T else true) else false;

4A2C boolean procedure F; F :■ if issywbolCX') then true

else if issywboli* (*) then (if F. then (if issymbol(’)') then

true else false) else false) else false;

4A3 The left-recursion problem can readily be seen by a slight

modification of L. Change the first production to

E ::- T / E ♦ T
and the procedure for E in the corresponding way to

E :- if T then tnie else if F.

4A3A Parsing the string "X+X", the procedure F. will call T,

which calls F, which tests for "X” and gives the result •'true.”
E is then true but only the first element of the string is in
the analysis, and the parse stops before completion. If the

input string is not a member of the language, T is false and F.

loops infinitely.

4A3B The solution to the problem used in Tree Meta is the

arbitrary number operator. In Tree Meta the first production

could be
E ::« T$(T)

where the dollar sign and the parentheses indicate that the

quantity can be repeated any number of times, including 0.

4A3C Tree Meta makes no check to ensure that the compiler it
is producing lacks syntax rules containing left recursion.
This problem is one of the more common mistakes made by

D-3

APPENDIX D — TREE ÍCTA; Introduction

inexperienced metalanguage programmers.

4B The input language to the metacompiler closely resembles BNF.

The primary difference between a BNP rule
<go to> go to <lahel>

and a metalanguage rule
GOTO • "GO" "TO" .ID;

is that the metalanguage has been designed to use a computer-oriented

character set and simply delimited basic entities. The

arbitrary-nusber operator and parenthesis construction of the

metalanguage are lacking in BNF. For example:
TERM ■ FACTOR $(("*" / "/" / "") FACTOR);

is a metalanguage rule that would replace 3 BNF rules.

4C The ability of the compilers to be expressed in their own

language has resulted in the proliferation of metacompiler systems.
Each one is easily bootstrapped from a more primitive version, and

complex compilers are built with little programing or debugging

effort.

5 The early history of metacompilers is closely tied to the history of

SIG/PLAN Working Group 1 on Syntax Driven Compilers. The group was
started in the Los Angles area primarily through the effort of Howard

Metcalfe (Schmidt1).

5A In the fall of 1962, he designed two compiler-writing

interpreters (Metcalfl). One used a bottom-to-top analysis technique

based on a method described by Ledley and Wilson (Ledleyl). The
other used a top-to-bottom approach based on a work by Glennie
(Glenniel) to generate random F.nglish sentences from a context-free

grasnar.

SB At the same time. Val Schorre described two "metamachines"—one

generative and one analytic. The generative machine was implemented,
and produced random algebraic expressions. S-horre implemented Meta

I the first metacompiler, on an IBM 1401 at UCLA in January 1963

(Schorrel). His original interpreters and metamachines were written
directly in a pseudo-machine language. Meta I, however, was written

in a higher-level syntax language able to describe its own

compilation into the pseudo-machine language. Meta I is described in
an unavailable paper given at the 1963 Colorado ACM conference.

5C Lee Schmidt at Bolt, Beranek, and Newman wrote a metacompiler in
March 1963 that utilized a CRT display on the time-sharing PDP-1
(Schmidt2). This compiler produced actual machine code rather than

interpretive code and was partially bootstrapped from Meta I.

6 Schorre bootstrapped Meta II from Meta I during the Spring of 1963

(Schorre2). The paper on the refined metacompiler system presented at

D-4

APPENDIX D — TREE ÆTA: Introduction

the 1964 Philadelphia ACM conference is the first paper on a

metacompiler available as a general reference. '"l**^** V™
implementation technique of Schorre's system laxd the ^Jation for

most of the systems that followed. Again the system was implemented on
a small 1401, and was used to implement a small ALGOL-like languag .

7 Many similar systems inmediately followed.

7A Roger Rutman of A. C. Sparkplug developed and implemented LOGIK,

a language for logical design simulation, on the TRM 7090 in
*964 (Rutmanl). T*is compiler used .0 slgorith. th.t produced

efficient code for Boolean expressions.

7B Another paper in the 1964 ACM proceedings describes Meta III,

developed by Schneider and Johnson at UCLA for the IBM 7090

(Schneider1). Meta III represents an attempt to produce efficient

machine code for a large class of languages. It was implemente

completely in assembly language. Two compilers were writ*Jn¡Í5a
III—CODOL, a compiler-writing demonstration compiler, and PUREGOL,

a dialect of ALGOL 60. (It was pure gall to call it ALGOL). Tne
rumored METAFORE, able to compile full ALGOL, has never been

announced.

7C Late in 1964, Lee Schmidt bootstrapped a metacompiler from the

PDP-1 to the Beckman 420 (Schmidts). It was a logic equation

generating language known as FQGEN.

8 Since 1964, System Development Corporation has supported

effort in the development of metacompilers. This e“ort

powerful metacompilers written in LISP which have

tree-searching and backup capability (Bookl) (Book2).

a major
includes

extensive

9 An outgrowth of one of the Q-32 systems at SDC is Meta 5 (Oppenheiml)

ÍSchafferl). This system has been successfully released to a wide
number of users and has had many string-manipulation applications other

than conmiling. The Meta 5 system incorporates backup of the input

stream and enough other facilities to parse any ÇOníext-**"slt^;
language. It has many elaborate push-down stacks, attribute setting

testing facilities, and output mechanisms. The fact that Meta s

successfully translates JOVIAL programs to PL/1 programs clearly

demonstrates its power and flexibility.

10 The LOT system was developed during 1966 at Stanford Research

Institute and was modeled very closely after Meta II (Kirkleyl). 11

new special-purpose constructs allowing it to generate a compiler which

would in turn be able to compile a subset of PL/1. This system had

extensive statistic-gathering facilities and was used to study the

characteristics of top-down analysis. It also embedded system control,

normally relegated to control cards, in the metalanguage.

D-5

APPENDIX D — TREE WîTA: Introduction

11 The concept of the metamachine originally put forth by Glennie is so

simple that three hardware versions have been designed and one actually

implemented. The latter at Washington University in St. Louis. This

machine was built from macromodular components and has for instructions

the codes described by Schorre (Schorre2).

APPENDIX D -- THEE META : Basic Syuta«

12 A metaprogram is a set of metalanguages rules, lach rule has the

form of a BNF rule, with output instructions embedded in the syntactic

description.

12A The Tree Meta compiler converts each of the rules to a set of

instructions for the computer.

12B As the rules (acting as instructions) compile a program, they

read an input stream of characters one character at a time. Each new

character is subjected to a series of tests until an appropriate
syntactic description is found for that character. The next
character is then read and the rule testing moves forward through the

input.

13 The following four rules illustrate the basic constructs in the

system. They will be referred to later by the reference numbers R1A

through R4A.

R1A EXP « TERM ("♦" EXP / EXP / .EMPTY);

R2A TERM « FACTOR $("*" FACTOR / "/" FACTOR);

R3A FACTOR - FACTOR / PRIM;

R4A PRIM - .ID / .MUM / "(" EXP ")"i

13A The identifier to the left of the initial equal sign names the

rule. This name is used to refer to the rule from other rules. The

name of rule R1A is EXP.

13B The right part of the rule—everything between the initial equal

sign and the trailing semicolon—is the part of the rule which

effects the scanning of the input. Five basic types of entities may
occur in a right part. Each of the entities represents some sort of

a test which results in setting a general flag to dther "true" or

"false".

13B1 A string of characters between quotation marks (")

represents a literal string. These literal strings are tested

against the input stream as characters are read.

13B2 Rule names may also occur in a right part. If a rule is
processing input and a name is reached, the named rule is invoked.

R3A defines a FACTOR as being either a minus sign followed by a

FACTOR, or just a PRIM.

13B3 The right part of the rule FACTOR has just been defined as

"a string of elements," "or" "another string of elements." The

D-7

APPENDIX D — TREE META: Basic Syntax

"or's" are indicated by slash marks (/) and each individual string

is called an alternative. Thus, in the above example, the minus

sign and the rule name FACTOR are two elements in R3A. These two

elements make up an alternative of the rule.

13B4 The dollar sign is the arbitrary number operator in the

metalanguage. A dollar sign must be followed by a single element,

and it indicates that this element may occur an arbitrary number

of times (including rero). Parentheses may be used to group a set

of elements into a single element as in R1A and R2A

13B5 The final basic entities may be seen in rule R4A. These

represent the basic recognizers of the metacompiler system. A

basic recognizer is a program in Tree Meta that may be called upon
to test the input stream for an occurrence of a particular entity.

In Tree Meta the three recognizers are "identifier*’ as .ID,
"number" as .NUM, and "string" as .SR. There is another basic
entity tha is treated as a recognizer but does not look for

anything. It is .EMPTY and it always returns a value of "true."

14 Suppose that the input stream contains the string X*Y when the rule

EXP is invoked during a compilation.

14A EXP first calls rule TERM, that calls FACTOR, that tests for a

minus sign. This test fails and FACTOR then tests for a plus sign
and fails again. Finally FACTOR calls PRIM, that tests for an
identifier. The character X is an identifier; it is recognized and

the input stream advances one character.

14B PRIM returns a value of "true" to FACTOR, which in turn returns

to TERM. TERM tests for an asterisk and fails. It then tests for a

slash and fails. The dollar sign in front of the parenthesized group
in TERM, however, means that the rule has succeeded because TERM has

found a FACTOR followed by zero occurrences of "asterisk FACTOR" or

"slash FACTOR." Thus TERM returns a "true" value to EXP. EXP now

tests for a plus sign and finds it. The input stream advances

another character.

14C EXP now calls on itself. All necessary information is saved so

that the return may be made to the right place. In calling on itself,

it goes through the sequence just described until it recognizes the

Y.

14D Thinking of the rules in this way is confusing and tedious. It

is best to think of each rule separately. For example: one should

think of R2A as defining a TERM to be a series of FACTORS separated
by asterisks and slashes and not attempt to think of all the possible

things a FACTOR could be.

D-8

(

APPENDIX D — TREE M-TA: Basic Syntax

15 Tree Meta is different from most metacompiler systems in

builds a parse tree of the input stream before producing any

Before we describe the syntax of node generation, let us first

that it

output.
discuss

parse trees.

ISA A parse tree is a structural description of the input stream in

terms of the given grammar.

15A1 Using the four rules above, the input stream

XfY*Z

has the following parse tree

EXP

15A2 In this tree

of the primary
routines.

each node is either the name of a rule or one

entities recognized by the basic recognizer

15A3 In this tree there is a great deal of su¡^a¡;ef’0r^at
For example, Y is a PRIM, which is a FACTOR, which is the left
member of a TERM. This degree of subcategorization is generally

undesirable.

15B The tree produced by the

the one above, yet it contains

compilation. .

metacompiler program is simpler than

sufficient information to complete the

D-9

APPENDIX D — TREE META: Basic Syntax

15B1 The parse tree actually produced is

15B2 In this tree the nanes of the nodes are not the rule names

of the syntactic definitions, but rather the names of rules that
will be used to generate the code from the tree.

15B3 The rules that produce the above tree are the same as the

four previous rules with new syntax additions to perform the
appropriate node generation. The complete rules are:

RIB FXP ■ TERM ("♦" EXP :ADD/ EXP :SUB) [2] .EMPTY);

R2B TERM ■ FACTOR $(("*" FACTOR :MULT/ "/•• FACTOR :DIVD)
[2])ï

R3B FACTOR ■ FACTOR :MINUS[1) / PRIM;

R4B PRIM ■ .ID / .NUM / EXP ")";

ISC As these rules scan an input stream, they perform just like the

first set. As the entities are recognized, however, they are stored

on a push-down stack until the node-generation elements remove them

to make trees. Ne will step through these rules with the same sample
input stream:

X+Y*Z

1SC1 EXP calls TERM, which calls FACTOR, which calls PRIM, which

recognizes the X The input stream moves forward and the X is put
on a stack.

15C2 PRIM returns to FACTOR, which returns to TERM, which returns

to EXP. The plus sign is recognized and EXP is again called.
Again EXP calls TERM, which calls FACTOR, which calls PRIM< which

recognizes the Y. The input stream is advanced, and Y is put on

the push-down stack. The stack now contains Y X, and the next

character on the input stream is the asterisk.

D-10

(

APPENDIX D — TREE MiTA: Basic Syntax

15C3 PRIM returns to FACTOR, which returns to TERM. The asterisk

is recognized and the input is advanced another character.

15C4 The rule TERM now calls FACTOR, which calls PRIM, which

recognizes the Z, advances the input stream, and puts the Z on the

push-down stack.

15C5 The :MULT in now processed. This names the next node to

be put in the tree. Later we will see that in a complete

metacompiler program there will be a rule named MULT which will e
processed when the time comes to produce code from the tree.

Next, the [2] in the rule TERM is processed. This tells the system

to construct a portion of a tree. The branch is to hav® ^wo
nodes, and they are to be the last two entities recognized (they
are on the stack). The name of the branch is to be WILT, since

that was the last name given. The branch is constructed and Cne
top two items of the stack are replaced by the new node of the

tree.

15C5A The stack now contains

MULT

15C5B The parse tree is now

15C5C Notice that the nodes are assento led in a left-to-right

order, and that the original order of recognition is retained.

15C6 Rule TERM now returns to EXP which names the next node by
executing the :ADD — i.e., names the next node for the tree.

The [2] in rule EXP is now executed. A branch of the tree is
generated that contains the top two items of the stack and whose
name is ADI). The top two items of the stack arc removed, leaving

it as it was initially, empty. The tree is now complete, as first

shown, and all the input has been passed over.

16 The imparsing rules have two functions: they produce output and they

test the tree in much the same way as the parsing rules test the input

stream. This testing of the tree alows the output to be based on the
deep structure of the input, and hence better output may be produced.

D-li

APPENDIX D — TREE META: Basic Syntax

‘îi we <*i»cu»5 the node-testing features, let us first

fon^i'a n,tV*ófOU5 ,1^5 0f output ",y be Producedf The .m~ s & ~r.35n“"
S-,2 vs “
SrTfeletv^*.íarrÍage r*turn» one «rites a backslash (upper-case L on
a Teletype) as an element of an unparse rule.

ToAn.,tT? vhe °Utput readable, there is a tab feature.

¿ SrewítCníríCter. "í6 0UtpUt strean» one «rites a coma as an element of an output rule.

16A3 A literal string can be inserted in the output stream bv

tT.t L“^“"8 the “í*"1 itri"e in the unparse rule.^Notice
ïhê n^J t ^P*”' * »««al string becomes output, while "
tî'r£''%rl'Lll "'f0™5 f «"tity to be .„ted for in’th. Up«
an opération 'end.’ ‘"I °Li°ie “hich has I- as a label, ADDPas
followine^strino^oc* , SY? “ -1 e"”»». one would write the toilowing string of elements in an unparse rule:

»9
L" , "ADD" , ,,SYSH

tree may hT.Hh^^hfn.™' i“* eXa"ple °f * * "»<1« of the »nas e,r ® ei. er the name of an unparse rule, such as ADD or

identifier X?5*0 Cntities recognized during the parse, such as'the

16A4A Suppose that the expression X+Y*Z has been parsed and

(îatïr«*win sèê AD“ T’l’*”' tula processing the ADD node
IdinîT«! , ^ thi5 s,,te is reached). To put the
"thr fi ♦ ^lnu0 t,1C stream, one writes ,,*1M (meanine
a Íiní of rodJ* an element- For example, to generatf

fiííS x! oífwouH iriîï! 0peratÍOn COde ADA -d the operand

•XnA", *1

16A4B To generate the code for the left-hand node of the tree

Cautior^must FSlÍT J"1" “ an elenent of the unParse rule,
append a nnnt#» t®kei? t0 ensure that no attempt is made to
be^tested "®nJ®™inal "°de to the output stream; each node must

:: th,t ii »the ^ - •>«
16AS Generated labels are handled automatically. As each unparse

D-12

APPENDIX D — TREE W.TA: Basic Syntax

rule is entered, a new set of labels is generated. A label is

referred to by a number sign (upper-case 3 on a Teletype) followed

by a number. Every time a label is mentioned during the execution

of a rule, the label is appended to the output stream. If another
rule is invoked in the middle of a rule, all the labels are saved
and new ones generated. When a return is made the previous labels

are restored.

17 As trees are being built during the parse phase, a time comes when

it is necessary to generate code from the tree. To do this one writes
an asterisk as an element of a parse rule -- for example

R5B PROGRAM ■ ••.PROGRAM" $(ST *) ".END";

which generates code for each statement after it has been entirely

parsed. When the asterisk is executed, control of the program is
transferred to the rule whose name is the root (top node or last
generated node) of the tree. When return is finally made to the rule

which initiated the output, the entire tree is cleared and the
generation process begins anew.

17A An unparse rule is a rule name followed by a series of output
rules. Each output rule begins with a test of nodes. The series of

output rules make up a set of highest-level alternatives. When an

unparse rule is called, the test for the first output rule is made.

If it is satisfied, the remainder of the alternative is executed; if

it is false, the next alternative output rule test is made. This

process continues until either a successful test is made or all the

alternatives have been tried. If a test is successful, the

alternative is executed and a return is made from the unparse rule

with the general flag set "true." If no test is successful, a return
is made with the general flag "false."

17B The simplest test that can be made is the test to ensure that

the correct number of nodes emanate from the node being processed.
The ADD rule may begin

ADD[-,-] ->

The string within the brackets is known as an out-test. The hyphens

are individual items of the out-test. Each item is a test for a

node. All that the hyphen requires is that a node be present. The

name of a rule need not natch the name of the node being processed.

17B1 If one wishes to eliminate the test at the head of the

out-rule, one nay write a slash instead of the bracketed string of

items. The slash, then, takes the place of the test and is always

true. Thus, a rule which begins with a slash immediately after
the rule name may have only one out-rule. The rule

D-13

.— '.

APPENDIX D — TREE META: Basic Syntax

MT / »> .EMPTY;

is frequently used to flag the absence of an optional item in a

list of items. It may be tested in other unparse rules but it
itself always sets the general flag true and returns.

17B2 The nodes emanating from the node being evaluated are

referred to as *1, *2, etc., counting from left to right. To test

for equality between nodes, one merely writes *i for some i as

the desired item in an out-test. For example, to see if node 2 is
the same as node 1, one could write either [-,M] or [*2,-]. To
see if the third node is the same as the first, one could write

[-,*2,*1], In this case, the *2 could be replaced by a hyphen.

17B3 One may test to see if a node is an element which was

generated by one of the basic recognizers by mentioning the name

of the recognizer. Thus to see if the node is an identifier one

writes .ID; to test for a number one writes .NUM. To test whether

the first node emanating from the ADD is an identifier and if the
second node exists, one writes [.ID,-].

17B4 To check for a literal string on a node one may write a

string as an item in an out-test. The construct [-,"1"] tests to

be sure that there are two nodes and that the second node is a 1.

The second node will have been recognized by the .NUM basic
recognizer during the parse phase.

17B5 A generated label may be inserted into the tree by using it
in a call to an unparse rule in another unparse rule. This
process will he explained later. To see if a node is a previously

generated label one writes a number sign followed by a number. If
the node is not a generated label the test fails. If it is a

generated label the test is successful and the label is associated

with the nunfcer following the nunfcer sign. To refer to the label
in the unparse rule, one writes the number sign followed by the

number.

17B6 Finally, one may test to see if the name matches a specified

name. Suppose that one had generated a node named STORE. The left

node emanating from it is the name of a variable and on the right
is the tree for an expression. An unparse rule may begin as

follows:

STORE[-,ADD[*1,"1"]] ■> , "MIN " *1

D-14

APPENDIX D — TREE META: Basic Syntax

The *1 as an item of the ADD refers to the left node of the

STORE. Only a tree such as

would satisfy the test, where the two identifiers must be the

same or the test fails. An expression such as X * X ♦ 1 meets all
the requirements. The code generated (for the SDS 940) would be
the single instruction MIN X, which increments the cell X by one.

17C Each out-rule, or highest-level alternative, in an unparse rule

is also made up of alternatives. These alternatives are separated by

slashes, as are the alternatives in the parse rules.

17C1 The alternatives of the out-rule are called "out-exprs." The

out-expr may begin with a test, or it may begin with instructions
to output characters. If it begins with a test, the test is made.

If it fails the next out-expr in the out-rule is tried. If the

test is successful, control proceeds to the next element of the

out-expr. When the out-expr is done, a return is made from the

unparse rule.

17C2 The test in an out-expr resembles the test for the out-rule.

There are two types of these tests.

17C2A Any nonterminal node in the tree may be transferred to

by its position in the tree rather than its name. For example,

*2 would invoke the second node from the right. This operation

not only transfers control to the specific node, but it makes
that node the one fron which the next set of nodes tested

emanate. After control is returned to the position immediately

following the *2, the general flag is tested. If it is ’'true"
the out-expr proceedes to the next element. If it is "false"

and the *2 is the first element of the out-expr the next
alternative of the out-expr is tried. If the flag is "false"

and the *2 is not the first element of the out-expr, a compiler

error is indicated and the system stops.

17C2B TTie other type of test is made by invoking another

unparse rule by name and testing the flag on the completion of

the rule. To call another unparse rule from an out-expr, one

writes the name of the rule followed by an argument list
enclosed in brackets. The argument list is a list of nodes in

D-15

APPENDIX D — TREE fETA: Basic Syntax

the tree. These nodes are put on the node stack, and when the

call is made the rule being called sees the argument list as

its set of nodes to analyze. For example:

ADD [MINUS [-J,-] -> SUB[*2,*1:M]

17C2B1 Only nodes and generated labels can be written as

arguments. Nodes are written as *1, *2, etc. To reach other

nodes of the tree one may write such things as *1:*2, which

means "the second node emanating from the first node

emanating from the node being evaluated." Referring to the

tree for the expression X*Y*Z if ADD is being evaluated,
*2:M is Y.To go up the tree one may write an "uparrow"(t)
followed by a number before the asterisk-number-colon

sequence. The uparrow means to go up that many levels
before the search is made down the tree. If MULT were being

evaluated,t1*1 would be the X.

17C2B2 If a generated label is written as an argument, it

is generated at that time and passed to the called unparse

rule so that that rule may use it or pass it on to other

rules. The generated label is written just as it is in an

output element—a number sign followed by a number.

17C3 The calls on other unparse rules may occur anywhere in an
out-expr. If they occur in a place other than the first element,

they are executed in the sane way, except that after the return
the flag is tested; if it is false a compiler error is indicated.
This use of extra rules helps in making the output rules more

concise.

17C4 The rest of an out-expr is made up of output elements

appended to the output stream, as discussed above.

17D Sometimes it. is necessary to set the general flag in an out-expr,

just as it is sometimes necessary in the parse rules. .EMPTY may be

used as an element in an out-expr at any place.

17E Out-exprs may be nested, using parentheses, in the same way as

the alternatives of the parse rules.

18 There are a few features of Tree Meta which are not essential but do

make programming easier for the user.

18A If a literal string is only one character long, one may write

an apostrophe followed by the character rather than writing a

quotation mark, the character, and another quotation mark. For

example: 'S and "S" are interchangeable in either a parse rule or an

D-16

APPENDIX D — TREE META: Basic Syntax

unparse rule.

18B As the parse rules proceed through the input stream they may

come to a point where they are in the middle of a parse alternative

and there is a failure. This may happen for two reasons: backup is

necessary to parse the input, or there is a syntax error in the

input. Backup will not he covered in this introductory chapter. If

a syntax error occurs the system prints out the line in error with an
arrow pointing to the character which cannot be parsed. The system

then stops. To eliminate this, one may write a question mark
followed by a number followed by a rule name after any test except
the first in the parse equations. For example:

ST ■ .ID '■ question 2 F. EXP question 3 E

question 4 E :STnRE[2] ;

Suppose this rule is executing and has called rule EXP, and EXP

returns with the flag false. Instead of stopping Tree Meta prints

the line in error, the arrow, and an error comment which contains the

number 3, and transfers control to the parse rule E.

18C Comments may be inserted anywhere in a metalanguage program

where blanks may occur. A comment begins ann ends with a percent
sign, and may contain any character -- except, of course, a percent
sign.

18D In addition to the three basic recognizers .ID, .NWM, and .SR,

there are two others which are occasionally very useful.

18D1 The symbol .LET indicates a single letter. It could be

thought of as a one-character identifier.

18D2 The symbol ,G!R indicates any character. In the parse

rules, .CIIR causes the next character on the input stream to be

taken as input regardless of what it is. Leading blanks are not

discarded as for .ID, .NIIM, etc. The character is stored in a
special way, and hence references to it are not exactly the same

as for the ether basic recognizers. In node testing, if one

wishes to check for the occurrence of a particular character that
was recognized by a .ÜIR, one uses the single quote-character

construct. When outputting a node item which is a character
recognized by a .CIIR, one adds a :C to the node indicator. For
example, *1:C.

181: Occasionally some parts of a compilation are very simple and it

is cumbersome to build a parse tree and then output from it. For this

reason the ability to output directly from parse rules has been
added.

D-17

APPENDIX D — TREE ÆTA: Basic Syntax

>>

18E1 The syntax for outputting from parse rules is generally the
same as for unparse rules. The output expression is written
within square brackets, however. The items from the input stream
that normally are put in the parse tree may be copied to the
output stream by referencing them in the output expression. The
most recent item recognized is referenced as * or *S0. Items
recognized previous to that are *S1, *S2, etc., counting in
reverse order--that is, counting down from the top of the stack
they are kept in.

18E2 Normally the items are removed from the stack and put into
the tree. However, if they are copied directly to the output
stream, they remain in the stack. They are removed by writing an
ampersand at the end of the parse rule (just before the
semicolon). This causes all input items added to the stack by that
rule to be removed. The input stack is thus the same as it was
when the rule was called.

D- 18

i

APPENDIX D -- TREE META: Program Environment

19 When a Tree Meta program is compiled by the metacompiler, a

machine-language version of the program is generated. However, it is not

a complete program since several routines are missing. All Tree Meta

programs have common functions such as reading input, generating output,
and manipulating stacks. It would be cumbersome to have the
metacompiler duplicate these routines for each program, so they are

contained in a library package for all Tree Meta programs. The library

of routines mu^t be loaded with the machine-language version of the Tree

Meta program to make it complete.

19A The environment of the Tree Meta program, as it is running, is

the library of routines plus the various data areas.

19B This section describes the environment in its three logical
parts: input, stack organization, and output.

19B1 TTiis is a description of the current working version, with

some indications of planned improvements.

20 Input Machinery

20A The input stream of text is broken into lines and put into an

input buffer. Carriage returns in the text are used to determine the

ends of lines. Any line longer than 80 characters is broken into two

lines. This line orientation is necessary for the following:

20A1 Syntax-error reporting

20A2 A possible anchor mode (so the compiler can sense the end of
a line)

20A3 An interlinear listing option.

20A4 In the future, characters for the input buffer will be

obtained fron another input buffer of arbitrary block size, but at

present they arc obtained from the system with a Character I/O
command.

20B It is the job of routine RLINF. to fill the input line buffer. If

the listing flag is on, RLINE copies the new line to the output file
(prefixed with a comment character--an asterisk for our assembler).

It also checks for an End-of-File, and for a multiple blank

character, which is a system feature built into our text files.
There is a buffer pointer that indicates which character is to be

read from the line buffer next, and RLINE resets that pointer to the
first character of the line.

20C Input characters for the Tree *leta program are not obtained from
the input line buffer, but from an input window, which is actually a

D-19

Ml 1' ,lli 1,.1^

.^

APPENDIX D -- TREE META: Program Environment

character ring buffer. Such a buffer is necessary for backup. There

are three pointers into the input window. A program-character

counter (PCC) points to the next character to be read by the program.

This may be moved back by the program to effect backup. A

library-character counter (LCC) is never changed except by a library
routine when a new character is stored in the input window. PCC is

used to compute the third pointer, the inout-window pointer (IWP).
Actually, PCC and LCC are counters, and only IWP points into the
array RING which is the character ring buffer. LCC is never backed

up and always indicates the next position in the window where a new
character must be obtained from the input line buffer, backup is
registered in BACK, and is simply the difference between PCC and l.CC.

BACK is always negative or zero.

20D There are several routines that deal directly with the input

window.

20D1 The routine PUTIN takes the next character from the input

line buffer and stores it at the input-window position indicated

by IWP. This involves incrementing the input-buffer pointer, or
calling RLINE if the buffer is empty. PUTIN does not change IWP.

20D2 The routine INC is tised to put a character into the input
window. It increases IWP by one by calling a routine, MPIWP,

which makes IWP wrap around the ring buffer correctly. If there is

backup (i.e., if BACK is less than 0), BACK is increased by one

and INC returns, since the next character is in the window

already. Otherwise, LCC is increased by one, and PUTIN is called

to store the new character.

20D3 A routine called INCS is similar to INC except that it

deletes all blanks or comments that may be at the current point in

the input stream. This routine implements the comment and blank

deletion for .ID, .NUM, .SR, and other basic recognizers. INCS

first calls INC to get the next character and increment IWP. From
then on, PUTIN is called to store succeeding characters in the

input window in the same slot. As long as the current character
(at IWP) is a blank, INCS calls PUTIN to replace it with the next
character. The nonblank character is then compared with a coment

character. INCS returns if the comparison fails, but otherwise

skips to the next comment character. When the end of the comment

is located, INCS returns to its blank-checking loop.

20D3A Note that comments do not get into the input window.

For this reason, BACK should be zero when a comment is found in

the loop described above, and this provides a good opportunity

for an error check.

20D4 Before beginning any input operation, the IWP pointer must

D-20

APPENDIX D — TREE META: Program Environment

he reset, since the program may have set PCC back. The routine

WPREP computes the value of BACK from PCC-LCC. This value rmist be

between 0 and the negative of the window size. IWP is then

computed from PCC modulo the window size.

20D5 The program-library interface for inputting items from the

input stream consists of the routines ID, NUM, SR, LET, and (HR.
The first four are quite similar. ID is typical of them, and
works as follows: First MFLAG is set false. WPREP is called to

set up IWP, then INCS is called to get the first character. If
the character at IWP is not a letter, ID returns (MELAG is still

false); otherwise a loop to input over letter-digits is executed.

When the letter-digit test fails the flag is set true, and the

identifier is stored in the string storage area. The class of
characters is determined by an array (indexed by the character

itself) of integers indicating the class. Before returning, IF*
calls the routine GOBL which updates PCC to the last character

read in (which was not part of the identifier). That is, PCC is

set to LCC+BACK-1.

20D6 The occurrence of a given literal string in the input stream

is tested for by calling, routine TST. The character count and the
string follow the call instruction. TST deletes leading blanks and

inputs characters, comparing them one at a time with the

characters of the literal string. If at any point the match

fails, TST returns false. Upon reaching the end of the string, TST
sets the flag true, sets PCC to LCC+BACK, and returns. In

addition to TST, there is a simple routine to test for a single
character string (TC1I). It inputs one character (deleting
blanks), compares it to the given character and returns false, or

adjusts PCC and returns true.

21 Stacks and Internal Organization

21A Three stacks are available to the program. A stack called

MSTACK is used to l\old return locations and generated labels for the

program's recursive routines. Another stack, called KSTACk, contains
references to input items. When a basic recognizer is executed, the

reference to that input item is pushed into KSTACK. The third stack

is called NSTACK, and contains the actual tree. The three stacks are

declared in the Tree Meta program rather than the library: the

program determines the size of each.

21A1 The operation of MSTACK is very simple. At the beginning of

each routine, the current generated labels and the location that

the routine was called from are put onto ‘»STACK. The routine is

then free to use the generated labels or call other routines. The

routine ends by restoring, the generated labels from MSTACK and

returning.

'S

APPENDIX D -- TREE META: Propram Environment

21A2 KSTACK contains single-word entries. Each entry will
eventually be placed in NSTACK as a node in the tree. The format
of the node words is as follows: There are two kinds of nodes,
terminal and nonterminal. Terminal nodes are references to input
items. Nonterminal nodes are generated by the parse rules, and
have names which are names of output rules.

21A2A A terminal node is a 24-bit word with either a
string-storage index or a character in the address portion of
the word, and a flag in the top part of the word. The flag
indicates which of the basic recognizers (ID, NUM, SR, LET, or
CHR) is to read the item from the input stream.

D-22

'

APPENDIX D -- TREE META: Program Environment

21A2R A nonterminal node consists of a word with the address

of an output rule in the address portion, and a flag in the top
part which indicates that it is a nonterminal node. A node

pointer is a word with an NSTACK index in the address and a
pointer flag in the top part of the word. Each nonterminal
node in NSTACK consists of a nonterminal node word followed by

a word containing the number of subnodes on that node, followed
by a terminal node word or node pointers for each subnode. For
example.

TREE NSTACK KSTACK

ADD

21A2C KSTACK contains terminal nodes (input items) and

nonterminal node pointers that point to nodes already in

NSTACK. NSTACK contains nonterminal nodes.

2IB String Storage is another stack-like area. All the items read

from the input stream by the basic recognizers (except CHR) are

stored in the string-storage arca (SS). This consists of a series of

character strings prefixed by their character counts. An index into
SS consists of the address of the character count for a string.

D-23

MMMMWNNinMai

APPENDIX D -- TREE META: Program Environment

Strings in SS are unique. A routine called STORE will search SS for

a given string, and enter it if it is not already there, returning
the SS index of that string.

2!C Other routines perform housekeeping functions like packing and

unpacking strings, etc. There are three error-message writing

routines to write the three types of error messages (syntax, system,

and compiler). The syntax error routine copies the current input
line to the teletype and gives the line number. A routine called

FINISH closes the files, writes the number of cells used for each of
the four stack areas (KSTACK, MSTACK, NSTACK, and SS), and terminates
the program.

<.1C1 At many points in the library routines, parameters are

checked to see if they are within their bounds. The system error

routine is called if there is something wrong. This routine
writes a number indicating what the error is, and terminates the

program. In the current version, the numbers correspond to the
following errors:

21C1A (1) Class çodes are illegal

21C IB (2) Backup too far

21C1C (64) Character with code greater than <>3 in ring buffer

21C1D (4) Test for string longer than ring size

21C1E (5) Trying to output a string longer than maximum
string length

21C1F

21C1C

21C1H

21C1I

21C1.T

21C1K

(6) String-storage overflow

(7) Illegal character code

(8) Trying to store SS element of length zero

(11) 'KTACK overflow

(12) NSTACK overflow

(IS) KSTACK overflow

2IP There is a set of routines used by Tree "eta that are not

actually part of the library, but are loaded with the library for

Tree *1eta. They are not included in the library since they are not.
necessarily required for every Tree Meta program, but more likely

only for Tree fteta. They arc called "support routines." The

routines perform short but frequently needed operations and serve to

D-24

APPENDIX P -- TREE META: Program Environment

increase code density in the metacompiler. Examples of the

operations are generating labels, saving and restoring labels and

return addresses on MSTACK, comparing flags in NSTACK, generating

nodes on NSTACK, etc.

22 Output Facilities

22A The output from a Tree Meta program consists of a string of

characters. In the future it might be a string of bits constituting a

binary program, but at any rate it can be thought of as a stream of
data. The output facilities available to the program consist of a set

of routines to append characters, strings, and numbers to the output

stream.

22A1 A string in SS can be written on the output stream by

calling the routine OUTS with the SS index for that string. OUTS

checks the SS index and generates a system-error message if it is

not reasonable.

22A2 A literal string of characters is written by calling the

routine LIT The literal string follows the call as for TST.

22A3 A number is written using routine OUTS. The binary

representation is given, and is written as a signed decimal

integer.

22A4 All of the above routines keep track of the number of

characters written on the output stieam (in G1N0). Based on this
count, a routine called TAB will output enough spaces to advance

the current output line to the next tab stop. Tabs are set at

8-character intervals. The routine CRLF will output a carriage

return and a line feed and reset CUNO.

22A5 Títere are several routines that are convenient for
debugging. One (WRSS) will print the contents of SS. Another

(WRIW) will print the contents of the input window.

D-25

APPENDIX D -- TREE META: Formal Description

23 This chapter is a formal description of the complete Tree Meta

language. It is designed as a reference guide.

23A For clarity, strings that would normally be delimited by

quotation marks in the metalanguage are capitalized instead, in this

chapter only.

23B Certain characters cannot be printed on the report-generating

output media but are on the teletypes and in the metalanguage--their
names, preceeded by periods, are used instead. They are
.exclamation, .question, .pound, .ampersand, .backslash, and

.percent.

24 Programs and Rules

24A Syntax

24A1 program » .META .id (.LIST / .empty) size / .CONTINUE $rule

.END;

24A2 size ■ '(siz $(', siz) •) / .empty;

24A3 siz ■ .chr '■ ,num;

24A4 rule « .id ('■ exp (.ampersand / .empty) / '/ "■>M geni /

outrul) * ; ;

24B Semantics

24B1 A file of symbolic Tree Meta code may be either an original

main file or a continuation file. A compiler may be composed of

any number of files but there may be only one main file.

24B1A The mandatory identifier following the string .META in a

main file names the rule at which the parse will begin.

24B1B The optional .LIST, if present, will cause the compiler
currently being generated to list input when it is compiling a

program.

24B1C Tlie size construct sets the allocation parameters for the

three stacks and string storage used by the Tree Meta library,
nie default sizes are those used by the Tree Meta compiler. M,

K, N, and S are the only valid characters; the size is

something that must be determined by experience. The maximum

number of cells used during each compilation is printed out at

the end of the compilation.

24B2 Mien a file begins with .CONTINUE, no initialization or

D-26

APPENDIX D -- TREE META: Formal Description

storage-allocation code is produced.

24B3 There are three different kinds of rules in a Tree Meta
program. All three begin with the identifier that names the rule.

24B3A Parse rules are distinguished by the * following the
identifier. If all the elements that generate possible nodes
during the execution of a parse rule are not built into the
tree, they must be popped from the kstack by writing an
ampersand immediately before the semicolon.

24B3B Rvues with the string / *> following the identifier
may be composed only of elements hat produce output. There is
no testing of flags within a rule of this type.

24B3C llnparsc rules have a left bracket following the
identifier. This signals the start of a series of node tests.

25 Expressions

25A Syntax

25A1 exp * '«-suback (•/ exp / .empty) / subexp ('/ exp / .empty);

25A2 suback * ntest (suback / .empty) / stest (suback / .empty);

25A3 subexp ■ (ntest / stest) (noback / .empty);

25A4 noback * (ntest / stest ('.question .nun (.id / '.question)
/ .empty)) (noback / .empty);

25B Semantics

25B1 The expressions in parse rules are composed entirely of
ntest, stest, and error-recovery constructs. The four rules
above, which define the allowable alternation and concatention of
the test, are necessary to reduce the instructions executed when
there is no backup of the input stream.

25B2 An expression is essentially a series of subexpressions
separated by slashes. Each subexpression is an alternative of the
expression. The alternatives arc executed in a left-to-right
order until a successful one is found. The rest of that
alternative is then executed and the rule returns to the rule that
invoked it.

25B3 The subexpressions are series of tests. Only subexpressions
that begin with a leftarrow arc allowed to back up the input
stream and rescan it.

D-27

/

APPENDIX D -- TREE META: Formal Description

25B3A Without the arrow at the head of a subexpression, any

test other than the first within the subexpression may be

followed by an error code. If the error code is absent and the
stest fails during compilation, the system prints an error

comment and stops. If the error code is present and the stest

fails, the system prints the number following the '.question in

the error code, and if the optional identifier is given the
system then transfers control to that rule; otherwise it stops.

2SB3B If the test fails, the input stream is restored to the

position it had when the subexpression began to test the input

stream and the next alternative is tried. The input stream may
never be moved back more characters than are in the ring
buffer. Normally, backup is over identifiers or words and the
buffer is long enough.

26 Elements of Parse Rules

26A Syntax

26A1 ntest * (':.id / '[(.num '] / genp ’] ('.backslash /

.empty) / •< genp •> ('.backslash / .empty) / (.CHR / •*) / "■>"
/ comm;

26A2 genp « genpl / .empty;

26A3 genpl ■ genp2 (genpl / .empty);

26A4 genp2 ■ '* (S .num / .empty) (L / C / N / .empty) / genu;

26A5 comm * .EMPTY / '.exclamation .sr;

26A6 stest » '. .id / .id / .sr / •(exp •) / ".chr / (.num '$ /
'$) (.num / .empty) stest / '- (.sr / ".chr);

26B Semantics

26B1 The ntest elements of a parse aile cannot change the value

of the general flag, and therefore need not be followed by
flag-checking code in the compiler.

26R1A Ute : .id construct names the next node to be put into
the tree, .".ic identifier must be the name of another rule.

20B1B The [.num] constructs a node with the name used in

the last : .id construct, and puts the number of nodes

specified after the arrow on the new node in the tree.

2bBlC The { genp 1 is used to write output into the normal

D-28

APPENDIX D — TREE META: Formal Description

output stream during the parse phase of the compilation.

26B1D The < penp> is used to print output back on the user
teletype instead of the normal output stream. This is
generally used during long compilations to assure the user that
the system is still up and running correctly.

26B1E The occurrence of a .ch’' causes one character to be read
from the input stream into a special register which may be put
into the tree just as the terminal symbols recognized by the
other basic recognizers are.

26B1F An asterisk causes the rule currently in execution to
perform a subroutine call to the rule named by the top of the
tree.

26B1G The "«>H ntest construct causes the input stream to be
moved from its current position past the first occurrence of
the next stest. This may be used to skip over comments, or to
move the input to a recognizable point such as a semicolon
after a syntax error.

26B2 The comm elements are common to both parse and unparse
rules.

26B2A The .EMPTY in any rule sets the general flag true.

26B2B The .exclamation-string construct is used to insert
patches into the compiler currently being produced. The string
following the .exclamation is immediately copied to the output
stream as a new line. This allows the insertion of any special
code at any point in a program.

2bB3 Stests always test the input stream for a literal string or
basic entity. If the entity is found it is removed from the input
stream and stored in string storage. Its position in string
storage is saved on a push-down stack so that the entity may later
he added as a terminal node to the tree.

26B3A A .id construct provides a standard machine-language
subroutine call to the identifier. Supplied with the Tree Meta
library are subroutines for .id, .num, .sr, .chr, and .let
which check for identifier, number, string, character, and
letter respectively.

26B3B An identifier by itself produces a call to the rule with
the name of the identifier.

26B3C A literal string merely tests the input stream for the

APPENDIX D -- TREE META: Formal Description

string. If it is found it is discarded. The

apostrophe-character construct functions like the literal

string, except that the test is limited to one character.

26B3D The number-$-number construct is the arbitrary-number

operation of Tree 'leta. m$n preceding an element in a parse

rule means that there must be between m and n occurrences of

the next element coming up in the input. The default options

for m and n are zero and infinity respectively.

26B3E The hyphen-string and hyphen-character constructs test

in the same way as the literal string and apostrophe-character
constructs. After the test, however, the flag is complemented
and the input-stream pointer is never moved forward. This

permits a test to be sure that something does not occur.

27 Unparse Rules

27A Syntax

27A1 outrul * '1 outr (outrul / .empty);

27A2 out* • items •] "■>" outexp;

27A3 items • item (', items / .empty);

27A4 m • / .id '(outest / nsimpl / '. .id / .sr / ".chr /

'. po»»d ;

27B Semantics

27B1 The unparse rules are similar to the parse rules in that

they test something and return a true or false value in the
general flag. The difference is that the parse rules test the

input stream, delete characters from the input stream, and huild a

tree, while the unparse rules test the tree, collapse sections of

the tree, and write output.

27R2 There are two levels of alternation in the unparse rules.

The highest level is not written in the normal style of Tree Meta
as a series of expressions separated by slashes; rather, it is

written in a way intended to reflect the matching of nodes and
structure within the tree. Each unparse rule is a series of these

highest-level alternations. The tree-matching parts of the

alternations are tried in sequence until one is found that
successfully matches the tree. The rest of the alternation is

then executed. There may be further test within the alternation,

but not complete failure as with the parse rules.

D-30

APPENDIX D -- TREE META: Formal Description

27R3 The syntax for a tree-matching pattern is a left bracket, a
series of items separated by commas, and a right bracket. The
items are matched against the branches emanating from the current
top node. The matching is done in a left-to-right order. As soon
as a match fails the next alternation is tried.

27B4 If no alternation is successful a false value is returned.

27R5 Each item of an unparse alternation test may be one of five
different kinds of test.

27B5A A hyphen is merely a test to be sure that a node is
there. This sets up appropriate flags and pointers so that the
node may be referred to later in the unparse expression if the
complete match is successful.

27B5B The name of the node may be tested by writing an
identifier that is the name of a rule. The identifer must then
be followed by a test on the subnodes.

27B5C A nonsimple construct, primarily an
asterisk-number-colon sequence, may be used to test for node
equivalence. Note that this does not test for complete
substructure equivalence, but merely to see if the node being
tested has the same name as the node specified by the
construct.

27B5D The .id, .num, .chr, .let, or ,sr checks to see if the
node is terminal and was put on the tree by a .id recognizer,
.num recognizer, etc. during the parse phase. This test is
very simple, for it merely checks a flag in the upper part a
word.

27R5L If a node is a terminal node in the tree, .and if it has
been recognized by one of the basic recognizers in meta, it may
be tested against a literal string. This is done by writing
the string as an item. The literal string, does not have to be
put into the tree with a .sr recognizer; it can be any string,
even one put in with a .let.

27B5F If the node is terminal and was generated by the .chr
recognizer it may be matched against another specific character
by writing the apostrophe-character construct as an item.

27B5n Finally, the node may be tested to see if it is a
generated label. The labels may be generated in the unparse
expressions and then passed down to other unparse rules. The
test is made writing a .pound-number construct as an item. If
the node is a generated label, not only is this match

/

d-:u

APPENDIX D -- TkF.L META: Formal Description

successful hut the label is made available to the elements of

the unparse expression as the number following the .pound.

28 Unparsc Expressions

28A Syntax

28A1 outexp » subout ('/ outexp / .empty);

28A2 subout = outt (rest / .empty) / rest;

23A3 rest » outt (rest / .empty) / pen (rest / .enptv);

28A4 outt * .id '[arg 1st '] / ’(outexp •) / nsimpl (*: (S / L /
N / C) / empty);

28A5 arglst = argmnt (', arglst / .empty) / .empty;

28A6 argmnt = nsimp / '.pound .nun;

28A7 nsimpl = 't nsimp / nsimp;

28A8 nsimp = 1 * .num (nsimp / .empty);

28A9 geni * (cut / comm) (geni / .empty);

28A10 gen * com / genu /'</'>;

2811 Semantics

28B1 The rest of the unparsc rules follow more closely the stvle

of the parse rules. Each expression is a series of alternations
separated by slash narks.

28R2 Each alternation is a test followed by a series of output

instructions, calls of other unparsc rules, and parenthesized
expressions. Once an unparse expression has begun executing calls

on other rules, elements may not fail; if they do a compiler error
is indicated and the system stops.

28H3 The first element of the expression is the test. This

element is a call on another rule, whicli returns a true or false
value. The call is made by writing the name of the rule followed

by a series of nodes. The nodes are put together to appear as

part of the tree, and when the call is made the unparse rule

called views the nodes specified as the current part of the tree,
and thus the part to match against and process.

28R3A Two kinds of things may tie put in ns nodes for the

D-32

APPF.NDIX D -- TREE META: Formal Description

calls. The simplest is a generated label. This is done by
writing a .pound followed by a number. Only the numbers 1 and
2 may be used in the current system. If a label has not yet
been generated, one is made up. This label is then put into the
tree.

28R3B Any already constructed node also may be put into the
tree in this new position. The old node is not removcd--rather
a copy is made. An asterisk-number construct refers to nodes in
the same way as the highest-level alternation.

28FM This process of making new structures from the
already-existing tree is a very powerful way of optimizing the
compiler and condensing the number of rules needed to handle
compilation.

28R5 The rest of the unparse expression is made up of output
comands, and more calls on unparse rules. As noted above, if any
except the first call of an expression fails, a compiler error is
indicated and the system stops.

28Bb dust as in the parse rules, brackets may be used to send
immediate printout to the user Teletype.

28B7 The astcrisk-number-colon construct is used frequently in
the Tree Meta system. It appears in the node-matching syntax as
well as in the form of an element in the unparse expressions.
When it is in an expression it must specify a node that exists in
the tree.

28B7A If the node specified is the name of another rule, then
control is transferred to that node by the standard subroutine
linkage.

28B7B If the node is terminal, then the terminal strinr
associated with the node is copied onto the output stream.

28B7f The simplest form of the construct is an asterisk
followed by a number, in which case the node is found by
counting the appropriate number of nodes from left to ripht.
This may be followed by a colon-number construct, which means
to go down one level in the tree after performing the
asterisk-number choice and count over the number of nodes
spedficd by the number following the colon. This process ma''
be repeated as often as desired, and one mav therefore go as
deep as one wishes. All of this specification may be preceded
by an t-number construct which means to go up in the tree,
through parent nodes, a specified number of times before
starting down.

D-Jj

APPENDIX D — TREE META: Formal Description

28B7I) After the search for »he node has been completed, a

nimber of different types of output may be specified if the

node is terminal. There is a compiler error if the node is not

terminal.

28B7P1 :s puts out the literal string

28B7D2 :1 puts out the length of the string as a decimal

number

28871)3 :n puts out the string-storage index pointer if the

node is a string-storage element; otherwise it puts out the

decimal code for the node if it is a ,chr node.

28B7D4 :c puts out the character if the node was

constructed with a .chr recognizer.

29 Output

29A Syntax

29A1 genu * out / '. .id '] ((.id / .num) / .empty) '] / '.pound

.num (': / .empty);

29A2 out « ('.backslash / ', / .sr / ”.chr / "♦w" / ”-w" / ".w"

/ ".pound" ;

29B Semantics

29B1 The standard primitive output features include the

following :

29B1A Write a carriage return with a backslash

29B1B Write a tab with a comma

29B1C Write a literal string by giving the literal string

29B11) Write a single character using the apostrophe-character

construct

29B1E Write references to temporary storage by using a working
counter. Three types of action may be performed with the

counter. ♦W adds one to the counter and writes the current

value of the counter onto the output stream. -W subtracts one

from the counter and does not write anything. .W writes the

current value without changing it. Finally, .pound W writes the
maximum value that the counter ever reached during the

compilatinn.

D-34

APPENDIX I) -. TREE MITA: Formal Description

29B2 The .id [(.num/.id)] is used to generate a call (940 BRM
instruction) with a single argument in the A register. It has
been used mostly as a debugging tool during various bootstrap
sessions with the system. For example, .TERR[5] generates a call
to the subroutine CERR with a 5 in the A register.

29B3 .pound 2 means "define generated label 2 at this point in
the program being compiled." It writes the generated label in
the output stream followed by an EQII *. This construct is added
only to save space and writing.

D-35

APPENDIX D -- Tree Meta: Conclusions vinil Future Plans

iu Since the work on Tree Meta is still in progress, there arc few
conclusions and plentiful future plans.

SI P.ere are many research projects that could be undertaken to improve
the ^ree Meta system.

31.\ Something that has never been done, and that we feel is very
important, is a complete study of the compiling characteristics of
top-down analysis techniques. This would include an accurate study of
where all the time goes during a compilation as well as a study of
the flow of control during both parse and unparse phases for
different kinds of compilers and languages. At the same time it
would be worthwhile to try to get similiar statistics from other
compilers. It may be possible to interest some people at Stanford in
cooperating on this.

31B SPC has added an intermediate phase to their metacompiler
system. They call it a bottom-up phase, and it has the effect of
nutting various attributes and features on the nodes of the tree.
This allows one to write simpler and faster node-matching
instructions in the unparse rules. Ke would like to investigate this
scheme, for it appears to hold the potential for allowing the
compiler writer to conceptualize more complex tree patterns and thus
utilize the node-matching features to a fuller extent.

31(, Yet another intermediate phase could be added to Tree Meta which
would do tr.insformations on the tree before the unparsc rules produce
the final code. In attempts to write compilers in Tree Meta to
compile code for languages with complex data structures (such as
algebraic languages with matrix operations or string-oriented
languages with tree operations) and to make these compilers produce
efficient code, we have found that tree tr.insformat ions similar to
those used for natural-language translation allow one to specify
easily and simply the rules for tree manipulation that permit the
unparse rules to produce efficient, dense code. Implementation of
the tree-transformat ion phase into the Tree Meta system would be an
extensive research project, but could add a completely new dimension
to the power of Tree Meta.

à Hi Fherc are a scries of additions, some very small and some major,
that we intend to add to Tree Meta during the next year.

311)1 Other metacompiler systems have had a construct that allows
nodes to have an arbitrary number of nodes emanating from them.
Tins requires additions in parse rules to specify such a search,
additions in the node-matching syntax, and additions in the output
syntax to scan and output any number of branches.

311)2 We have always felt that it would be nice to have the basic

D-36

APPENDIX D -- Tree Meta: Conclusions and Future Plans

recognizers such as "identifier" defined in the metalanguage.

There have been systems with this feature, but the addition has

always had very bad effects on the speed of compilation. We feel

that this new freedom can be added to Tree Meta without having

telling effects on the compilation speed.

31D3 The error scheme for unparse rules is rather crude--the

compiler just stops. We would like to find a reasonable way of

accommodating such errors and putting the recovery-procedure

control in the metalanguage.

311)4 Currently the unparse rules expand into b times as many
machine-language instructions as the parse rules. This happens
because we did not choose the most appropriate set of subroutines

and common procedures for the unparse rules. Without changing the
syntax of Tree Meta or the way the stacks work, we feel that we
can reduce the size of the unparse rules by a factor of 4. This

would free a considerably larger amount of core storage for stacks

and enlarge the size of programs that Tree *leta could handle. It

would also make it run faster in time-sharing mode since less

would have to be swapped into core to run it.

3IDS In doing some small tests on the speed of Tree Meta we found

that better than 80 percent of the compilation time is spent

outputting strings of characters to the system. The code that
Tree fleta now produces is the simplest form of assembly code. It

would be a verv simple task to make Tree Meta able to directly
produce binary code for the loader rather than symbolic code for

the assembler. A similar change could also be made to outrmt

absolute code directly into core so that Tree Meta could be used

as the compiler for systems that do incremental compilation.

31F Finally, there is the following list of minor additions or

changes to be made to the Tree Meta svstem.

311 1 Make the library output routines do block I/O rather than
character I/O. This could cut compilation times by more that 7o

percent.

311.2 Fix Tree Meta so that strings can be put into the tree and
passed down to other unparse rules. This would allow the unparsc

rules to be more useful as subroutines and thus cut down the

number of unparse rules needed in a compiler.

3113 Finally, we would like to add the ability to associate a set
of attributes with each terminal entity as it is recognized, to

test these attributes later, ar.d to add more or change them if

necessary. To do this we would associate a single 24-bit word
with the string when it is put into string storage and add syntax

D-37

APPENDIX I) -- Tree Meta: Conclusions and Future Plans

to the metalanguage to set, reset, and test the bits of the word.

D-38

APPENDIX D -- Tree Meta: Bibliography

1 (Bookl) Erwin Book, "The LISP Version of the Meta Compiler," Tf Ol
MENtf TM-2710/330/0Ü, System Development Corporation, 2S00 Colorado
Avenue, Santa Monica, California 90400, 2 November 1965.

2 (Book2) Erwin Book and D. V. Schorre, "A Simple Compiler Showing
Features of Extended META," SP-2822, System !>evelopment Corporation,
2500 Colorado Avenue, Santa Monica, California 90406, 11 April 1967.

3 (Gienniel) A. E. Glennie, "On the Syntax Machine and the
Construction of a Universal Co-iputer," Technical Report Number 2, AD
240-512, Computation Center, Carnegie Institute of Technology, 1960.

4 (Kirkleyl) Charles R. Kirkley and Johns F. Rulifson, "The LOT System
of Syntax Directed Compiling," Stanford Research Institute Internal
Report ISR 187531-139, 1966.

5 (Ledlcyl) Robert Ledley and J. B. Wilson, "Automatic Progranitting
Language Translation Through Syntactical Analysis," Communications of
the Association for Computing Machinery, Vol. 5, No. 3 pp. 145-155,
March 1962.

6 (Metcalfel) Howard Metcalfe, "A Parameterized Compiler Based on
Mechanical Linguistics," Planning Research Corporation R-311, March 1,
1963, also in Annual Review in Automatic Progranrung, Vol. 4, 125-165.

7 (Naurl) Peter Naur et al., "Report on the Algorithmic Language ALGOL
60," Conmunications of the Association for Compting Machinery, Vol. 3,
No. 5, pp.299-384, May i960.

8 (Oppenhciml) D. Oppenheim and D. Haggerty, "Ft-TA 5: A Tool to
Manipulate Strings of Data," Proceedings of the 21st National
Conference of the Association for Computing Machinery, 1966.

9 (Rutmanl) Roger Rutman, "LOGIK. A Syntax Directed Compiler for
Computer Bit-Time Simulation," Master Thesis, UCLA, August 1964.

10 (Schmidt 1) L. 0. Schmidt, "The Status Bit," Special Interest Group
on Programming Languages Working Group 1 News Letter, 1964.

11 (Schmidt2) PDP-l

12 (Schmidts) EQGEN

13 (Schniederl) F. W. Schneider and G. D. Johnson, "A Syntax-Directed
Compiler-Writing Compiler to Generate Efficient Code," Proceedings of
the 19th National (onferencc of the Association for Computing 'lachinery,
1964.

14 (Schorrel) D. V. Schorrc, "A Syntax-Directed SFIALGOL for the 1401,"

D-39

APPLNDIX I) -- Tree 'Ictn: Kib 1 lop.raphv

Procecdinßs of the 18th National (onfercncc of the Association for
(omputtn*: ‘lachinerv, Denver, Colorado, 1963.

IS (SchorreJ) 1>. V. Schorre, "'tLTA II, A Syntax-Directed Compiler
Writinr Lairuagc," Proceedings of the l^th National Conference of the
Associât ioi for fonputinr ‘lachinerv,

U- lo

APPF.NMX H -- TREH 'f!;TA: Detailed íxar^nlcs

1 This section of the report is nerely the listings of compilers for two

languages.

2 The first language, known as SAL for "snail algebraic language," is a

straightforward algebraic ALfXH-like language.

3 The second example resembles Schorre's META II. This is the original
metacompiler that was used to bootstrap Tree Meta. It is a one-page
compiler written in its own language (a subset of Tree "eta).

o

N

«TREE META SMALL ALGEBRAIC LANGUAGE - 29 SEPTEMBER 1967 X

.META PROGRAM .LIST

PROGRAM » ".PROGRAM” DEC * SC DEC *> iSTARTNC 03 ST * SC’J ST *)
".FINISH" ? 1E lEMDNCO] * FINISH I

DEC « ".DECLARE" .ID SC, .ID ID0C2Î) ’i íDECNCHí

E » RESET * > *1 SC ST *) ".END" ?99E iEWDNCOI * FINISH!

ST a IFST / WHILEST / FORST / GOST / IOST / BLOCK /
• ID Cl ILBLC 1] ST f DOC 2 J / •- EXP t STORFC 23) î

IFST « ".IF" EXP ".THEN" ST C".ELSE" ST t SI FTEC 33 / • EMPTY sSIFTC23)î

WHILEST » ".WHILE" EXP ".DO" ST t WHLC 23 i

FORST a ".FOR" VAR EXP ".BY" EXP ".TO" EXP ".DO" ST IFORC53Î

GOST = ".GO" ".TO" .ID IGOCII!

IOST a ".OPEN" C"INPUT" .ID ’C .ID '3 IOPNINPI23 /
"OUTPUT" .ID *[.ID *3 lOPNOUTC 23 ï /

".CLOSE" . ID I CLSFILC 13 /
".READ" .ID * t I CL 1 ST IBRS38C23 /
".INPUT" .ID 'I IDLIST »XCIOC23 /
".WRITE" .ID '1 VLIST î0UTNUMC23 /

".OUTPUT" .ID 't VLIST X OUTCARC 23 Î
IDLIST a VAR CIELIST XDOC23 / .EMPTY)!

WL1ST = C.ID / «NUM / .SR) CWLIST ID0C2J / .EMPTY)!

BLOCK = ".BEGIN" ST SCi ST X DOC 23) ".END"!

EXP a ".IF" EXP ".THEM" EXP ".ELSE" EXP i AI Ft 33 / IMION!

UNION a INTERSECTION CW UNION XORC23 / .EMPTY)!

INTERSECTION a nEG C'A INTERSECTION :ANDC23 / .EMPTY)!

NE G » "N(j 1 " NEGNE G / RELATION!

NEGNEG * "NOT " NEG / RELATION XNOTC 13 !

RELATION SUM C C »«a» SUM X

"<" SUM ILT
">a" SUM 1GE
">" SUM :GT
"»" SIM I EG
’# SUM t NE

LE /
/

/

/

/

) C 23 / . EMPTY) î

D-42

SUM = TERM ((*♦ SUM t ADD/ SUM iSUB)C83/ • FWPTY) i

TERM = FACTOR ((•* TERM IMULT/V TERM IDIVID/’» TERM » REM) C 23 /. FMFTY) Í

FACTOR = FACTOR ÍMINUSE13 / '♦ FACTOR / PRIMARY?

PRIMARY = VARIABLE / CONSTANT / *(EXP ’>!

VARIABLE = .ID iVARC I3J

CONSTANT = .NUM :CONC13î

SI FTEC - 3 *> LOPRC * 1» #1» #23 BRFC*1»#23 fW’EOU *2 SI Fl E1 C #2. * 33 i

SIFTE1C # 1# - 3 => » "BRU"# #2\ #1#"EGU *M\ *2 #2.,,ECU

SIFTC-#-3 => LOPRC*l.#W#23 BRFC*I##23 #l."EOU *”\ *2 #2,"EQU *"\i

WHLC-#-3 => # 1 # "ECU VHL1C*1.#23 *2 #MBRUM.#1\ #2.MEQU *,,\i

LHL 1C “# #23 => LOPRC * 1 » # 1 # #23 BRFC^1*#23 fWEOU *MVJ

GOC-3 => #"BRU”# * 1N ?

EORC-.-#-#-»-3 => <"DO NOT USE FOR STATEMENTS”»;

LBLC-3 => * 1#"EOU *"î

AI FC ” 3 => LOPRC*l. #1. #23 BRFC’í-l.íPS #l.”FOU ***\ ACCC+23 AIFU#2**33

AIFlC#I#-3 => »"BRU”.#2\ #1#"EQU ACCC*P3 #2#"EQU *"\î

LOPRtORC-#-3.#1.-3 => LOPRC* 1:*1.#1##23 BRTC* 1 ; * 1.# 13
#2#"FOU LOPRC* #1.*33

[ANDC-.-3.-, #13 => LOPRC *ll*l,#2*#13 BRFC * 11 * 1. # 13
#2,"EOU *"\ LOPPC* 1 :*2.*2.#13

CNOTC - 3 » # 1, #2 3 =» LOPRC * 1 : * 1 » #2. # 13
C-,-,-3 = > .empty;

BRTC ORC-,-3,#13
CAN DC- ,- 3, #13
[NOT C- 3,#13
CLEC-.-3,#13
CLTC-,-3,#13
C EQC-,-3,#13
CGEC-.-3. #13
CGTC-,-3,#13
C NET -,-3, #13

= > BRI C * 1 1*2, # 13
= > BRI C * 1 :*2, # 13
3> BRFC * 11 * 1, # 13
= > BLEC* U*l,* 15*2, #13
= > ELTC * 1 s * 1, * 1 : *2. # 13
= > EEQC *15*1,* 1 : *2, #13
= > BGEC * 1 s * 1, * 1 :*2, # 13
= > BLEC*ls*2. *15*1, #13
= > BNEC * U * 1.* 15 *2,# 13

C-,#13 = > ACCC *13 ."SHE =0"\ "BRU",#1\;

BRFCORC-,-3, #13
[AN DC - , - 3 . # 1 3
CNOTC-3.#13

= > BRFC* 11*2, # 13
= > BRFC * 15 *2, # 13
= > BRTC * 15 * 1. # 13

D- 13

--2--

CLEC-#-D» #1]
CLTC-#-3# #1)
CE0C-#-3*#n
C GEC - »-]*#!]
CGTC-#-3##U
CNEC-i-3# #13
C-# # 13

= > BLEC* 1 ! *2» * SI *1# # 13
= > BGEC*H*l#*ll*2# #13
= > BNEC* 1**1#* 1**2# #13
= > BLTC * 1 î* 1# * 1 : *2# #13
*> BLEC*U*l#*li*2##13
= > BF.GC*. l*l#*H*2# #13
= > ACCC * 13 «•'SKAs-r'V , "BRU"# # i\;

BLTC - i -j #13 ** C TOK QJ C * 1 3 ACCC*23 # "SKE”# * 1\# "SKG"# * 1\ /
WO RK C * 13 ACCC *23 # "SKE"# V\# "SKG"# ,,T4". W-W\)

,"BRU **2"\ »"BHVp i\\i

BLEC-,-,#13 => (TOKENC *23 ACCC*13 , MSKGM, *2\ /
TOKFMC*13 ACCC *23 , MSKGM» * 1\, MBHU ♦♦2"\ /
WO RK C * 2 3 ACCC *13 , "SK G", W-V\)

,"BRU",#i\;

BE&C -, -, #13 => (TOK EN C *23 ACCCM3 ,"SKEM,*2\ /
TOKHUC * 1 3 ACCC *23 , "SKE”, * 1\ /
WO RK C *23 ACCC *13 , "SKE”, "T*". W-W\)

,"BRU *+2"\ ,"BRU",#1\î

BGEC -,-,#13 => (TOK EN C * 1 3 ACCC *23 , "SKE", * 1\, "SKG", * 1\ /
WORKC * 1 3 ACCC *23 , "SKE", "T-*-". W\, "SKG", "T+". W-W\ >

, "BRU", # i\J

BNEC - , - , # 13 => CTOKiMC*23 ACCC*13 ,"SKE",*2\ /
TOKENC * 1 3 ACCC *23 ,"SKE",*1\ /
WORKC *23 ACCC *13 , "SKE", "T*"« VJ-W\ >

,"DRU",#IVî

STOHEC-,VAHC ♦ . 1 3 => "*ITS ALREADY THERETV
C -, ADDC VARC *13, CONC " 1" 3 3 3 => ,"MIN",*1\
C-,ADDCV ARC *13,-33 => ACCC*2t*23 ,"ADM",*1\
C-,SUBCVARC*13»-33 => ACCC*2s*23 , "CNA; ADM "*1\
C-, - 3 => BREGC *23 ,"STB",* IV /

ACCC *23 ,"STA",*1\;
ADDC MINUSC - 3, - 3 => SUBC * 2, + 1 : * 1 3

C-,-3 => ir)KLNC*23 ACCCM3 ,MADD",*2\ /
WORKC*13 ACCC*23 , "ADD","T*".W-W\;

SUBC-,-3 => TO K El'l C * 2 3 ACCC*13 , "SUE", *2\ /
TOK EMC * S 3 (BREGC *23 , "CbA; CNA; ADD "*1\ /

ACCC *23 , "CNA; ADD "*1V) /
WORKC *23 ACCC* 13 , "SUB", "T*". W-W\ ;

MINUSC-3 => TOK ENC * 13 ,"LDA",*1\ ,"CNA"\ /
BREGC*13 ,"CBA; CNA"\ /
ACCC*13 ,"CNA"\;

DI VI DC - , - 3 => TOKENC*23 (BREGC*13 ,"CBA"\ /
ACCC*13) ,"RSH 23; DIV "*2\ /

WORKC*23 (BREGC*13 ,MCBA”V /
ACCC *13) , "RSH 23; D1V T+".W-W\;

D- 1 1

BREGC MULTO#-]] =» > TOKEWC * 11 *21 ACCC * 1S * 1] # •,MULM# * U *2"î RSH 1"\ /
TOKFTJC * 1 : * I] ACCC*1**2] # •’MUL’*» ♦ 1 » * r*J RSH |"\ /
WORKC *ll*l] ACCC * 1 : * 2] # "M UL"# • W-W"í RSH 1

CREMC-#-]] => T0KFNC*l:*2] <BHEGC*lt*U # "CBA^X /
ACCl*!]) ,”RSH 23; DW "* 11*2\ /

WOHKC * 11*2] (BREGC * 11* 1] #"CBA^X /

ACCC*lt*l]> # "RSH 23; DIV T^M
.w-w"; RSH i-x;

ACCL -] => TOKENC*]] #MLLAM#*1\ /
BREGt * 1] »”CBA"\ /

* i;

WORKC-] => BREGC*]] # MSTBM# ,,T+,,+ W\ /
ACCC*]] #MSTA,,#MT+,,*V/V;

TOKEN CV ARC . ID]] => .EMPTY
CCONC.NUM]] => .empty;

MULT / => .empty;

REM / => .EMPTY!

AND / => .EMPTY#

or / => .empty;

not / => .empty;

ENDN / => *,T,,#,,BSSM# I WS # "END*^;

VARC.ID] => *i;

CON C . N UM] = > » = * 1 ;

LE / => .empty;

lt / => .empty;

ec / => .empty;

ge: / => .empty;

gt / => .empty;

ne / => .empty;

DOC-#-] = > *1 *2;

OPNINPC-#-] => #"CLEAH; BRS is; BRU m*2”; BRS 16; BHU M*2"; SI A ,,*1\

OPNOUTC-#-] *> # "CLEAR; BRS 18; BRU "*2"; LDX =3; BPS 19; BRU "
*2"; STA "*i\;

n-45

--0--

CLSFILt-î -* »"LDA 1”; BRS 20"\i

BRS30C -# • I D] »> # **LDA 1"J LDB *101 BRS 38; STA "*2\
*> BRS381•l#*2i*13 BRS38C*t#*2:*2Î;

XCI OC -# • I D3 *> #"CI0 "*1”; STA *,*2\
C - # - 3 *> XCI OC *1#02J* 13 XCIOC • 1# *2« *23;

OUTCARC. I D3 *> » "LDA M*2M! CIO "*1\
C-#.NLr3 *> * "L DA CIO ***1\
C-#.SR3 *> »"LDA m"U") LDB -"*2lL"i LDX •**1"; BRS 36; BRU ,,*2\

1» "ASC '*2'
t- 3 *> OUTCARC *l»*2i*13 OUTCARC* 1 »*2»*23 ;

OUTNUMC-» • I D3 »> »"LDA "*1"; LDA *10i BRS 38;
C-».NUM3 *> »"LDA «"*2"; CIO "*1\
C - » • SR3 *> »"LDA -"#1"; LDB *"*2«L"; LDX "*1"1 BRS 361 BRU "*2\

#1 »"ASC "* **2’
[-,-3 *> 0UTNl>.C* l»*2l* 13 OUTNUMC * 1» *2l *23 ;

STARTN / *> "START"» "EQU”»"*"\;

DECNC.ID3 *> * 1»"BSS 1"\
C-3 *> DECNC *11*13 DECNC *11*23 i

• END

D- 16

▼

--o-.

.META PROGHM *5*

PHOGRM *
C
C

••.META" .ID ? 1? <"META II 1.1">
NOLIST EXT, NUL; »START BHM INI TL"I

SKSTKSZ EQU i; SMSTKSZ EQU lOOiiNSTKSZ
(".LIST" C,"CLA; STA LI STFG"I / .EMPTY)
C, "BRM rline; brm ••*"; BRM FINISH")
(•(SIZ SC, SIZ) •) ? 17F / .EMPTY)

SST "• END" 7 2E
BSS HSSTOP DATA SS* SSSI ZE-5î SSS
DATA MSTK; SMSPT DATA MSTK+M STKSZ-S) SM STK
DATA NSTK; SNSPT DATA N STK + N STKSZ-5) SN STK
DATA KSTK; SKSPT DATA KSTK+KSTKSZ-5) SKSTK

'] <"DONE">;

EQU 1;SSSSIZE EQU 550")

C"STAR
t " SM SP
C "SNSP
C" SK SP
C , " EN D

BSS SSSIZE")
BSS MSTKSZ")
BSS NSTKSZ")
BSS KSTKSZ")

ST »

EXP =

SUBEXP

REST «

ELT =

GEN =

SKE = lí BRU "* 1))

.ID ’« 7 3E <"ST"> C*,"ZRO; LDA *-1) BRM CLL")
EXP ? AE 'Í 7 5E C, "BRU RTN")Î
SUBEXP SC/ C,"LDA MFLAG) SKE *0i BRU "* 1)

SUBEXP) C * I, "EQU *");
« (GEN / ELT t , "LDA MFLAGJ

SREST C * 1,"EQU *")J
/ ELT C , "LDA MFLAGi SKE =0) BRU

C? .NUM 7 12E C,"LDA="*";
(.ID C,"BRM

• EMPTY C ,"CLA; BRM ERRî BRS

GEN *♦4")

BRM ERR
'•,*)/ •?

EXIT

)
C ,"BRS EXIT"))7 13E/

)) J

. .ID 76E

.ID C , "BRM1

.SR C , "BRM
•(EXP ? 7 E
•• .CHR t,

C,"BRM",*"; STA STAR") /

•,*)/
TSTÍ DATA "*L"; ASC ••••*••) /

•) 78E /
•LDA s"*N”; BRM TCH’

’t
•S

CRLF’
);
) /

BRU ’
•) /
LDA*
DATA

*1"; MIN MFLAG") /

I wp;

BRU **3) MIN NCCP; BRU "*1)/

OUT

»OUT ’) 7 1 OE C , "BRM
[* 1, "EQU *") ELT 79E

C , "LDA MFLAGJ SKE =0J
• EMPTY" (,"LDA = 1J STA MFLAG
.CHR" [» "BRM V/PREPJ BRM INC)
SR 712E *> 713E C,"BRM LITT)
*>" [* 1, "EQU *") ELT 714E

t , "LDA MFLAGJ SKE = OJ

t .SR ?15E C,*)J
SR [,"BRM LIT) DATA "*L") ASC

(,"BRM TAB") /
(.NIM C , "L DA = 47B J CIO FNIMOJ MIN CHNO J

"J BRM GENLABJ STA GN""J BRM OUTN"
•L (, "LDA* STAR) BRM OUTN") /
•N C, "LDA STAR) BRM OUTN") /
•C [, "LDA STAR) CIO FNUMOJ MIN CHNO"
.EMPTY C, "LDA STAR) BRM OUTS"))/

CHR [, "LDA *"*N"; CIO FNUMOJ MIN CHNO")/

STA STARJ MIN
asc ••• •*• •";

NCCP") /
PRM CRLFT*

') /

•*
LDA
) /

) /

GN"

E « * >
SIZ *

•l (, "BRM CRLF")J
•J C , "BRU HTN") SSI
"K*" .NUM t "SKSTKSZ EQU
"Ma" -NUM ("SMSTKSZ EQU
•’N*" .NUM ("SNSTKSZ EQU
"S*" .NUM C" SSSSI Z E EQU

. END

END"
•*)
•*)

••*)

? 1 IE
/
/

/

•END") FINISH)

D-17

J

0'

7

•META PROGHM XTHEE 1-3X

PROGRM « (".META" .ID ? I? (•••LIST" iLISTCO]/ • EWPTY iMTCO]) SIZE
: BEG INC 3 3 /

CONTINUE" «MTC03) <"TREE 1 • 3"> t SETUPC 13 * S< RULE *)
".END" ? 2E IENDNC03 * <"DONE">I

SIZE = •(SIZ $(•# SIZ : DOC 23 > *> ? 50E / .EMPTY tMTC03í

SIZ * . CHR '« ? 54E .NOM ? S5E »SIZSC23»

RULE = .ID
< *« EXP ? 3E <'4 IKPOPKC 13 / .EMPTY) l OUTPTC 23 /
V "=>•• ? 3E GENI t SIMPE 23 /
OUTRUL I OUTPTC 23) ? 5E ? 6E I

EXP » •- SUBACK ? 7E C V EXP ?0E t BALTERC 23 / .EMPTY t BALTERC 13) /
SUBEXP < V EXP ? 9E «ALTERE 23/ .EMPTY);

SUBACK = NTEST (SUBACK » DOC 23 / .EMPTY) /
STEST (SUBACK t CONCATC 23 / .EMPTY);

SUBEXP = (NTEST / STEST) (NOBACK «CONCATC 23 / .EMPTY);

NOBACK = (NTEST / STEST (*? .NUM 710E »LOADED (.ID / '? »ZH0C03) ?11E
« ERCODC 33 / .EMPTY « ERC 1 3))
(NOBACK «DOC 23 / .EMPTY);

NTEST = *« .ID 712E «NDLBC 13 /
•C (.NUM '3 7 1AE «MKNODEC 13 /

GENF '3 ? S2E (•»/.EMPTY «OUTCRC 03 »DOC23)) /
•< GENF •> ? 53E (’« /.EMPTY » OUTCRC 03 «DOC23) « TTYC 13 /
(".CHR" iGCHH /
•* »GO) C 03 /
"*>" STEST ? 15E » SCANC 13 /
comm;

GENP = GENP1 / .EMPTY «MTC03;

GENP1 = GENP2 (GENP 1 : DOC 23 / .EMPTY);

GENP2 = '* ('S .NUM 751E «PAROUTCD / .EMPTY »ZH0C03 « PAROUTC 13)
CL « 0L / ’C »0C / ‘N »ON / .EMPTY *0S)C03 »NO PTC 23/ GENU»

COMM : ".EMPTY" « SETC 03 /
' I .SR 7 18E »IMEDC 13»

STEST = *. .ID 719E «PRIMED /
. I D » CALLC13/

.SR t STSTC13 /
•(EXP 7 20E ') 72 IE /
•• .CHR » CTSTC 13/

(.NUM ’S ? 2 3E /’$: Z ROC 03) (.NUM /.EMPTY «MTC 03) STEST ?24E » ARBC 33 /
•- (.SR » NSRC D / •• «CHR » NCHRC 1 3) 726E »NTSTCD;

D- 18

1

0 UTFt UL = '[OUTFi ?27E (OUTRUL : ALTEHC 2] / • tMPTY) lOSETCHi

OUTR = OUTEST •,= >M ?29E OUTEXR ? 30E : CONCATC 2] i

OUTES1 = < (*] tMT / jONE / M-» -]M : TWO / jTHRE) CO] /
ITEMS ’]) t CNTCKC 13 J

ITEMS = ITEM ITEMS 7 32E t 1 TMSTRC 23 / .EMPTY t LI TEMC 1 3) J

ITEM = •- JMTC03 /
•ID ’[?33E OUTEST 73^E JRITEMC23/
NSIMP1 *NI TEMC 1 3 /

. ID 7 35E IF I TEMC 13 /
.SR ITTSTC13 /
• * .CHR JCHTSTC 13 /

*# .NUM ? 37 E xGNITEMC 13J

OUTEXP = SUE30UT <V OUTEXP »ALTERC23 / .EMPTY);

SUBOUT = OUTT (REST l CONCATC 23 / .EMPTY) / REST;

REST = OUTT (REST IOERC23/ .EMPTY) / GEN (REST ÍDOC23/ .EMPTY);

OUTT = .ID ’C 7 39 F ARGLST ') 7AOE * OUTCLLC 23 / ’(OUTEXP ’) 7A1E /
NSIMP1 Cl ('S »OS / 'L »OL / ’N »ON/ *C »OOC03 » NO PT C 2 3 /

. EMPTY » DOITC 13);

ARGLST = ARGMNT »ARGC13 C# ARGLST » DOC 23 / .EMPTY) / .EMPTY » MTC 03 ;

ARCMNT = NS IMP » ARGLDC 13 / *# .NIIM »GENARGC13;

NSIMP1 = - *1 NS I MP * UPC 23 / NSIMP t LKT C 1 3 ;

NS1MP = '* .NIM (► ’» NSIMP »CHASEC23 / .EMPTY * LCHASFC 13);

GEMI = (OUT/COMM) (GENI »D0C23 / .EMPTY);

GEM = COMM / GENU / '< »TTYC03 / '> »FILC03;

G EMU = OUT /
*. .ID 7A2E ’C ?43E ((.ID / • NIM) »L0ADC13 »CALLC23 /

.EMPTY »CALLC 13) '] /
*# .NUM » GNLBLC 1 3 Cx »DEFC13 / .EMPTY) ;

OUT = C\ »DUTCH / IOUTAB) C 03 /
• SR »OUTSRC 13 /
• * .CHR : OUTCHL 13 /
••♦V" » UPWRKC 03 » OUTWRKC 11 /
•’-W" t DVNWRKC 03 /
••.W’* » MIC 03 SOUTWRK /
•t'W »MAXWRKC 03 ;

E = .EMPTY RESET => ’; K RULE *) ".END** 799E FINISH;

D-19

2

XOUT RULES!

SETUP [-] => ,"NOLIST NUL# EXTi GtU OPD 101B5#l#lîPF OPD I02B5#I,1»\
"BT OPD 103B5# 1# IJ PSHN OPD 1 04B5# l # 1Í PSHK OPD 10 5BS# 1# 1"\
"MKND OPD 106B5# I# UNDLBL OPD 107BS# 1# 1J GET OPD 110B5#1#1"\
"BPTR OPD 11 1B5# 1» UBNPTR OPD 1 12B5# 1 # I î RI 1 OPD 113BS, I,l"\
"RI2 OPD 1 MBS# 2i FLGT OPD 115B5#l#i;BE OPD 116B5#1#1"\
"LAB OPD 117B5» I# 11 CE OPD 120B5# 1# I; LDKA OPD 121B5#1#1"\

"SKSTKSZ EQU 100J ÍMSTKSZ EC'U UOISNSTKSZ EQU 1300» SSSTKSZ EQU 1400"\

BEGINC-#-#-ï a> "SSTART BRM INITLi CLA; SI A WRKI STA XWRK"\ *3 *2
#"BRM RLINE; BRM "*l"î BRM FINISH"\;

LIST / => " CLA; STA LISTFGJ"#

OUTPTC - # -] => *ll S # "ZRO » LDA *-U BRM CLLO"\ *2 #"BRU RTNO"\î

SIMPC-#-] => *1 #"ZRO"\ *2 # "BRR "*1\;

BALTERC-] => #"BRM SAV"\ *1 #"BRM RSTR"\
C-#-3 => #"BRM SAV"\ *1 #"BRM RSTRî BT "#1\ *2 fl.DCJJ

D / a> #"EüU *"\i

ALTERC-# SETC 3 J => *1 *2
CCONCATO#-]#-] a>PMTC *11* 1# #11 *li*2 #"BRU "#2\ ll.DC) *2 #2.DC]
[-,-3 => ,»bt "#i\ *2 #i.rn;

PMTCPRIMC-3##13 => #"BRM "*ll*l*S"i BF "#l"î MRG "* 1J* 1 «S"FLGî PSHK =0"\
[-,-] 3> ,"BF "#1\I

ERtALTERC“#SETC313 *> *1
[-] => ,"BE = - 1 "\»

DOC -# - 3 a> *1 *g;

CONCATC -# -] => *1 # "BF "# 1\ *2 fl.Dti;

LOADC.NUM3 => # "L DA »"*ltS\
C.ID3 *> # "L DA "* 1 I S\J

CALLt-3 »> #"BRM "*l\
[-#-] => *2 #"BRM "*1\J

MT / => .empty;

CLA / => "CLA";

ZRO / => "o";

D-50

3

ER CO DC • # ” » " 3 «> *1 *2 #MBE

NDLBC “ 3 **> / "NDLBL

MKNODEC-3 ■> #"MKND ■"♦IM

ARBC ZROC3#HTC J#“l «= > #1.DCD #3.^61 "0\"l MIN MFLAG"\
C .NUM,MTt 3#-3 ■> AFB 1C * 1 3 # 1. DC 3 *3

,"SKR* MSPJ BT M#l"l SKN* MSP» BRU *♦3» BT "#1"» MIN MFLAG"\
• ARB3C 3

C - • • NUM* • 3 ■> ARB 1C *23 #1.DC3 *3
,MSKR* MSP» BT -#1"» SKN* MSP"V ARB2[*1.*23»

ARB1C-3 «> # "BRM SAV» L LA -"*I«SM+1I MIN MSP» STA* MSP"\»

ARB2C “» »NLM 3 *> • "BRU ♦♦Ai CLAi STA MFLAG» BRU ♦♦4» LDA^ MSP» SKG --^2
"-"♦1"I MIN MFLAG-V • ARB3C 3

[-3 *> »"BRU ♦♦3» CLA » STA MFLAGM\ •ARB3C 3 >

ARB3 / *» # "LDA ■-!» ADM MSP» BRM RSTR"\i

GCHR /■» «"BRM WPREP» BRM INC» LDA^ I WP» MRG CHRFLG» MIN NCCP» PSHK * 0Mt

GO / *» » "BRM OUTREE» BT **3t LDA -2» BRM CERRAS»

SET / *» »"LDA »1» STA MFLAGM\»

TTYC-3 a> TTYC3 ♦! FILt3
C3 -» » "LDA »U STA FN UM0"\ XCHCHC 3 »

FILt 3 *> ,"LDA XFNUMO» STA FNUMOM\»

XCHCH/ a> ,”LDA TCHNO» XMA CHNOl STA TCHNO"\»

STRINGC-3 *> ” DATA ••♦llLM» ASC "••♦»"Ni

OSETC-3 ■» »MBRM BEGN♦!»

CNTCKt-3 -> * I #MCLBi SHE NCNT» STB MFLAG"S»

ONE / ■> * "LDA » r*\»

TWO / a > p ML DA * 2M\ 5

THFE / •> »"LDA * 3"\ »

I TM STR C • * - 3 *> ♦ 1 »’’MIN CNT» FAX -1,2^ ^2»

LI TIM t-3 »> *! »"MIN CNT» LDA CNT"\»

RI TIM C - » - 3 a > ,MRI1 a •'* 1 '* » BRU "#1\ *2 »"RI2"\ # 1. Dt 3 »

OERC - » - 3 * > * 1 » "CE ■ 1"\ *2»

D-51

4'

OUTCLL [-»-] => » ML DA NSFi STA SNSPi NDLBL »"♦r'î CL A; STA CNVK
« "LDA KTÍ STA MF”\ *2

» "MKND CNTi PSHN SNSPJ LDX KTî PRM* O# 2J BRM POPK"\
» ”LDA* NSPJ STA NSP^x;

ARGLDC-] => * "LDA Mr*\ *lî

ARG C-J => *1 » ’’PSHK =01 MIN CNT"\1

CHASE C-#-J => » "GET =,,*r,l BPTH ++3i LDA = 31 BRM CERRM\ *21

LCHASE C-3 => » ’’GET ="*1\1

DOIT C-3 => *1 #”BNPTR M#1
"1 CAXJ PSHK = 01 BRM* 0# 21 BRM POPKl BRU **2”\
#1•DC 3 ß"BRM 0 DTS”\1

NOPT C-#-3 => *1 » "BNPTR **3l LDA =41 BRM CERRl ” *21

SCAN C-3 => # 1 • DC 3 *1 # *'BT **31 MIN NCCPl BRU M#l\l

PRIM C-3 => ß "BRM "»r’l BF *+3l MRG ,,*l,,FLGl PSHK =0"\i

STST C-3 => ß"BRM TST1 " STRINGC*13l

CTST C-3 => # **LDA =’•* 1 *N”1 BRM TCH”\1

OS / => " BRM OUTS"M

ON / => " ETR =77777Bi BRM OUTN'M

OL / = > ” CAX1 LDA 0* 21 BRM 0UTN”\1

OC / => " ETR = 377B1 CIO FNUMOl MIN CHN0"\1

GNLBL C-3 => ,"GFN GNLB"*1\1

DEF C-3 => *1 ß ’’BRM LITl DATA 61 AbC . EQU *M,,\1

OUTCR / => ß ’’BRM CRLF”\1

OUTAB / => ß **BRM TAB”\ 1

OUTSR C-3 => ß "BRM LIT! M STRINGC*13i

OUTCH C-3 => ß ”L DA =,,*l*N,,i CIO FNUMOl MIN CHN0"\1

ETJDN / => "SS TOP DATA SS* SSTKSZ-51 SSS BSS SSTKSZ"\
"MSP DATA MSTK1ÎMSPT DATA MSTK + MSTKSZ-51 JWSTK BSS MSTKSZ"\
"NSP DATA NSTK1 ÎNSPT DATA NSTK*NSTKSZ-51 SNSTK BSS NS1KSZ"\
"KSP DATA KSTKJfKSPT DATA KSTK+KS1KSZ- 51 ÎKSTK BSS KSTKSZ"\
"VRK BSS 11XWKK BSS 11 END"\i

SAVG C-3 => ß"BRM SAVGN"\ *1 #"BRM HS3GN"\1

D-52

5-

IMED C-D => #*l\í

NI Tf-M t - 3 => # "SIX INDX; LDA KT^N *1
» "CLBJ LDX INDXî SKE 0# 2i STB MFLAG"\ I

FITEMC-3 => • "FLGT M* 1 * SMFLG,*\J

TTSTC-3 => #MBHM SSTESTJ" STHINGC*13î

CHTSTC-1 => *"CLB; LDA =M*llN"; MRG CHRFLG* SKE 0*2; STB MFLAG"\!

GNITEMC-3 => t ’’FLGl GÜJFLGi ETK =77777BJ STA GNLB*'* 11 S*

GENARGC - 3 => # "LAB GNLB"*l:S"i MRG GENFLG”\ *

NTSTC “ 3 => • "LDA NCCPi STA SNCCP"\ *1
p "LDA =1J SKR MFLAGI BRU + + 2i STA MFLAG; LDA SNCCF; STA NCCP"\;

NCHRC-3 => »"LDA ="*llN"; BHM TCH"\J

NSRC-3 => »"BRM TSTJ "STRINGt*13;

UPC ” 1 "»• 3 => »"LDA* KSP"\ *2
C - » - 3 => »"LDX KSPí LDA !-"*HS"»2"\ *2*

LKTC-3 => »"LDA KT"\ *li

UPWRK / => »"MIN WRKJ LDA WRKi SK G XWRKi LDA XVRKî STA XV(RK"\Î
DWNWRK / => »"LDA =-lí ADM VRK"\i
0UTVÍRKC-3 => *1» "LDA VRKî BRM 0UTN"\;
MAXWRK / => »"LDA XWRKî BRM 0UTN"\;
SI ZSC • CHR» - 3 => * 1 ï C”3TKSZ EOU "*2*S\;

KPOPKC-3 => »"MIN MSP; LDA KU STA* MSP; MIN MSPî LDA KSP; STA* MSP"\
*1 »"LDX MSP! LDA 0» 2; STA KSPî LDA -1»2; STA KT; LDA =-2J ADM MSP"\

PAROUTC ZROC 3 3 => »"LDA KT"S
C"0"3 =» »"LDA KT"\
C-3 => » "LDKA ="* 1\;

. END

0-53/D-54

BLANK PAGE

BIBLIOGRAPHY

1 (Engelbart 1) D. C. Engelbart, "Special Considerations of the
Individual as n User, Generator, and Retriever of Information," Paper
presented at Annual Meeting of American Documentation Institute,
Berkeley, California (23-27 October 1960).

2 (Engelbart2) D. C. Engelburt, "Augmenting Human Intellect: A
Conceptual Framework," Summary Report, Contract AF 49(638)-1024, SRI
Project 3578, Stanford Research Institute, Menlo Park, California
(October 1962), AD289565.

3 (Engelbart3) l). C. Engelbart, "A Cono ptual Framework for the
Augmentation of Man's Intellect," vistas in information handling, Vol.
1, P. W. Howerton and David C. Weeks, eds. (Spartan Rooks, Washington,
D.C., 1963).

4 (Engelbart4) D. C. Engelbart, "Augmenting Human Intellect:
Experiments, Concepts, and Possibilities," Summary Report, Contract AF
49(638)-1024, SRI Project 3578, Stanford Research Institute, Menlo Park,
California (March 1965), AP640989.

5 (EngelbartS) l). C. Engelbart and B. Huddart, "Reserrch on
Computer-Augmented Information Management," Technical Report
F.sn-TDR-65-168, Contract AF 19(628)-4088, Stanford Research Institute,
Menlo Park, California (March 1965), AD622520.

6 (Englishl) W. K. English, I). C. E.ngelbart, and B. Huddart,
"Computer-Aided Display Control," Final Report, Contract NAS 1-3988, SRI
Project 5061, Stanford’Research Institute, Menlo Park, California (July
1965).

7 (Engelbart6) D. C. Engelbart, W. K. English, and J. F. Rulifson,
"Study for the Development of Human Intellect Augmentation Techniques,"
Interim Progress Report, (Contract NAS 1-5904, SRI Project 589(1, Stanford
Research Institute, Menlo Park, California (March 1967).

8 (Engelbart7) D. C. Engelbart, "Study for the Development of Human
Intellect Augmentation Techniques," Final Report, Contract NAS 1-5904,
SRI Project 5890, Stanford Research Institute, Menlo Park, California
(March 1968).

9 (Hopperl) J. D. Hopper and L. P. Deutsch, "COPE: An Assembler and
On-Line-CRT Debugging System for the CDC 3100," Technical Report 1,
Contract NAS 1-5904, SRI Project 5890, Stanford Research Institute,
Menlo Park, California (March 1968).

10 (llayl) R. E. Hay and J. F. Rulifson, "*t)L940: A Machine-Oriented
ALGOL-Like Language for the SDS 940," Technical Report 2, Contract NAS
1-5904, SRI Project 5890, Stanford Research Institute, Menlo Park,
California (March 1968).

E-l

bibliography

11 (Pirtlel) M. Pirtle, "Intercommunication of Processors ar^ Memory,"
ProceeilinRS of Fall Joint Computer Conference (November 1967),

12 (Rulifsonl) J. F. Riilifson, "Aspects of Reliability and Response in
a Pisplay-Oriented Time-Sharing System," Stanford Research Institute,
Menlo Park, California (April 1968).

13 Note: Reports with AP numbers are available from Defense
IV>cumentation Center, Buildin« S, Cameron Station, Alexandria, Virginia
22314. Reference Nos. 4 and 0 may be obtained from CFSTI, Sills
Buildinp, 5825 Port Royal Road, Springfield, Virginia 22151; cost S3.00
per copy or 75 cents for microfilm.

iL

P
i

E-2

r V -

USCUASSIPIED

document control data rad

StADford Roearch Initltute
333 Ravanswood Avenua
Henlo Park. California 9fc025

Upclaaamad
d* C«-. .»

DEVEXOPMOIT OP A JWLTIDISPLAY. TIItt-SHAHn) COMPUTDt PACILITY AID
COMPUTER-AUGMEPreC MARAOOreJPr-STSTIX RESEARCH

a Ot t(m.m V a,o •§ » Tvp* tl ea^r mclwatv*

Pinal Re^rt
D. C. Engelbart
W. K. English
J. f. Rullfson

» MR F * C * T 1

October 1968
T« *0**t aao OP a*6C»

105
Tk aio O* •tPt

13

AP30(60?)-U103
f> a<*0>«C P »«0

5581

f

SRI Project 59X9

iAia aagwrf; *

RADC-TF-68-250

This docunent is subject to special export controls and each transaittal to foreign
govemnents, foreign nationals or representatives thereto nay be Bade only with prior
approval of RADC (OtllP), CAPE, H.Y. 131*1.0.

RADC PROJECT QICIHi:ER
Fred Horaand
AC-315-330-3678

Rone Air Developnent Center (EMIIP)
Orifflss Air Porce Base, Hew York 13l*k0

;paclal aoftvare 4evelop«aott, to facllltata easy larlaMntatlon and podlflcatlon
of powarful iDteraotlva user aids. Include the Tree Meta cwtpiler generator, the
MOL940 Machlne-Crlented aysteaa prograaBlns language, four Rpeclal-Purpose Unguages
(TPL's) for high-level apeciflcatlon of user-control dialogue and Interactive function
ar.d an associated On-Line Systaa (HLS) integrating these coaponerts

.1473 iniPI A'^c; T FT

yiicLASSirip_
fccurity CUattlication

1 « LINK A LINK a L IN K C

• O c ■ « T NO L « W T NOW« N r

Multldi«play, Time-Shartd Coiaputer Facility

Interactive Man/Machlne Syateœ

Computer Aids to Management

Computer Display Generator

Syntax-Driven Compiler-Compiler

Special-Purpose Languages

J_ J_ J_
tmCLASSIFIED

Security Cla«*tfu ation

